1 //===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs loop invariant code motion, attempting to remove as much
10 // code from the body of a loop as possible.  It does this by either hoisting
11 // code into the preheader block, or by sinking code to the exit blocks if it is
12 // safe.  This pass also promotes must-aliased memory locations in the loop to
13 // live in registers, thus hoisting and sinking "invariant" loads and stores.
14 //
15 // Hoisting operations out of loops is a canonicalization transform.  It
16 // enables and simplifies subsequent optimizations in the middle-end.
17 // Rematerialization of hoisted instructions to reduce register pressure is the
18 // responsibility of the back-end, which has more accurate information about
19 // register pressure and also handles other optimizations than LICM that
20 // increase live-ranges.
21 //
22 // This pass uses alias analysis for two purposes:
23 //
24 //  1. Moving loop invariant loads and calls out of loops.  If we can determine
25 //     that a load or call inside of a loop never aliases anything stored to,
26 //     we can hoist it or sink it like any other instruction.
27 //  2. Scalar Promotion of Memory - If there is a store instruction inside of
28 //     the loop, we try to move the store to happen AFTER the loop instead of
29 //     inside of the loop.  This can only happen if a few conditions are true:
30 //       A. The pointer stored through is loop invariant
31 //       B. There are no stores or loads in the loop which _may_ alias the
32 //          pointer.  There are no calls in the loop which mod/ref the pointer.
33 //     If these conditions are true, we can promote the loads and stores in the
34 //     loop of the pointer to use a temporary alloca'd variable.  We then use
35 //     the SSAUpdater to construct the appropriate SSA form for the value.
36 //
37 //===----------------------------------------------------------------------===//
38 
39 #include "llvm/Transforms/Scalar/LICM.h"
40 #include "llvm/ADT/PriorityWorklist.h"
41 #include "llvm/ADT/SetOperations.h"
42 #include "llvm/ADT/Statistic.h"
43 #include "llvm/Analysis/AliasAnalysis.h"
44 #include "llvm/Analysis/AliasSetTracker.h"
45 #include "llvm/Analysis/AssumptionCache.h"
46 #include "llvm/Analysis/CaptureTracking.h"
47 #include "llvm/Analysis/GuardUtils.h"
48 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
49 #include "llvm/Analysis/Loads.h"
50 #include "llvm/Analysis/LoopInfo.h"
51 #include "llvm/Analysis/LoopIterator.h"
52 #include "llvm/Analysis/LoopNestAnalysis.h"
53 #include "llvm/Analysis/LoopPass.h"
54 #include "llvm/Analysis/MemorySSA.h"
55 #include "llvm/Analysis/MemorySSAUpdater.h"
56 #include "llvm/Analysis/MustExecute.h"
57 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
58 #include "llvm/Analysis/ScalarEvolution.h"
59 #include "llvm/Analysis/TargetLibraryInfo.h"
60 #include "llvm/Analysis/TargetTransformInfo.h"
61 #include "llvm/Analysis/ValueTracking.h"
62 #include "llvm/IR/CFG.h"
63 #include "llvm/IR/Constants.h"
64 #include "llvm/IR/DataLayout.h"
65 #include "llvm/IR/DebugInfoMetadata.h"
66 #include "llvm/IR/DerivedTypes.h"
67 #include "llvm/IR/Dominators.h"
68 #include "llvm/IR/Instructions.h"
69 #include "llvm/IR/IntrinsicInst.h"
70 #include "llvm/IR/IRBuilder.h"
71 #include "llvm/IR/LLVMContext.h"
72 #include "llvm/IR/Metadata.h"
73 #include "llvm/IR/PatternMatch.h"
74 #include "llvm/IR/PredIteratorCache.h"
75 #include "llvm/InitializePasses.h"
76 #include "llvm/Support/CommandLine.h"
77 #include "llvm/Support/Debug.h"
78 #include "llvm/Support/raw_ostream.h"
79 #include "llvm/Target/TargetOptions.h"
80 #include "llvm/Transforms/Scalar.h"
81 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
82 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
83 #include "llvm/Transforms/Utils/Local.h"
84 #include "llvm/Transforms/Utils/LoopUtils.h"
85 #include "llvm/Transforms/Utils/SSAUpdater.h"
86 #include <algorithm>
87 #include <utility>
88 using namespace llvm;
89 
90 namespace llvm {
91 class LPMUpdater;
92 } // namespace llvm
93 
94 #define DEBUG_TYPE "licm"
95 
96 STATISTIC(NumCreatedBlocks, "Number of blocks created");
97 STATISTIC(NumClonedBranches, "Number of branches cloned");
98 STATISTIC(NumSunk, "Number of instructions sunk out of loop");
99 STATISTIC(NumHoisted, "Number of instructions hoisted out of loop");
100 STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk");
101 STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk");
102 STATISTIC(NumPromotionCandidates, "Number of promotion candidates");
103 STATISTIC(NumLoadPromoted, "Number of load-only promotions");
104 STATISTIC(NumLoadStorePromoted, "Number of load and store promotions");
105 STATISTIC(NumMinMaxHoisted,
106           "Number of min/max expressions hoisted out of the loop");
107 STATISTIC(NumGEPsHoisted,
108           "Number of geps reassociated and hoisted out of the loop");
109 STATISTIC(NumAddSubHoisted, "Number of add/subtract expressions reassociated "
110                             "and hoisted out of the loop");
111 STATISTIC(NumFPAssociationsHoisted, "Number of invariant FP expressions "
112                                     "reassociated and hoisted out of the loop");
113 
114 /// Memory promotion is enabled by default.
115 static cl::opt<bool>
116     DisablePromotion("disable-licm-promotion", cl::Hidden, cl::init(false),
117                      cl::desc("Disable memory promotion in LICM pass"));
118 
119 static cl::opt<bool> ControlFlowHoisting(
120     "licm-control-flow-hoisting", cl::Hidden, cl::init(false),
121     cl::desc("Enable control flow (and PHI) hoisting in LICM"));
122 
123 static cl::opt<bool>
124     SingleThread("licm-force-thread-model-single", cl::Hidden, cl::init(false),
125                  cl::desc("Force thread model single in LICM pass"));
126 
127 static cl::opt<uint32_t> MaxNumUsesTraversed(
128     "licm-max-num-uses-traversed", cl::Hidden, cl::init(8),
129     cl::desc("Max num uses visited for identifying load "
130              "invariance in loop using invariant start (default = 8)"));
131 
132 static cl::opt<unsigned> FPAssociationUpperLimit(
133     "licm-max-num-fp-reassociations", cl::init(5U), cl::Hidden,
134     cl::desc(
135         "Set upper limit for the number of transformations performed "
136         "during a single round of hoisting the reassociated expressions."));
137 
138 // Experimental option to allow imprecision in LICM in pathological cases, in
139 // exchange for faster compile. This is to be removed if MemorySSA starts to
140 // address the same issue. LICM calls MemorySSAWalker's
141 // getClobberingMemoryAccess, up to the value of the Cap, getting perfect
142 // accuracy. Afterwards, LICM will call into MemorySSA's getDefiningAccess,
143 // which may not be precise, since optimizeUses is capped. The result is
144 // correct, but we may not get as "far up" as possible to get which access is
145 // clobbering the one queried.
146 cl::opt<unsigned> llvm::SetLicmMssaOptCap(
147     "licm-mssa-optimization-cap", cl::init(100), cl::Hidden,
148     cl::desc("Enable imprecision in LICM in pathological cases, in exchange "
149              "for faster compile. Caps the MemorySSA clobbering calls."));
150 
151 // Experimentally, memory promotion carries less importance than sinking and
152 // hoisting. Limit when we do promotion when using MemorySSA, in order to save
153 // compile time.
154 cl::opt<unsigned> llvm::SetLicmMssaNoAccForPromotionCap(
155     "licm-mssa-max-acc-promotion", cl::init(250), cl::Hidden,
156     cl::desc("[LICM & MemorySSA] When MSSA in LICM is disabled, this has no "
157              "effect. When MSSA in LICM is enabled, then this is the maximum "
158              "number of accesses allowed to be present in a loop in order to "
159              "enable memory promotion."));
160 
161 static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI);
162 static bool isNotUsedOrFoldableInLoop(const Instruction &I, const Loop *CurLoop,
163                                       const LoopSafetyInfo *SafetyInfo,
164                                       TargetTransformInfo *TTI,
165                                       bool &FoldableInLoop, bool LoopNestMode);
166 static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop,
167                   BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo,
168                   MemorySSAUpdater &MSSAU, ScalarEvolution *SE,
169                   OptimizationRemarkEmitter *ORE);
170 static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT,
171                  const Loop *CurLoop, ICFLoopSafetyInfo *SafetyInfo,
172                  MemorySSAUpdater &MSSAU, OptimizationRemarkEmitter *ORE);
173 static bool isSafeToExecuteUnconditionally(
174     Instruction &Inst, const DominatorTree *DT, const TargetLibraryInfo *TLI,
175     const Loop *CurLoop, const LoopSafetyInfo *SafetyInfo,
176     OptimizationRemarkEmitter *ORE, const Instruction *CtxI,
177     AssumptionCache *AC, bool AllowSpeculation);
178 static bool pointerInvalidatedByLoop(MemorySSA *MSSA, MemoryUse *MU,
179                                      Loop *CurLoop, Instruction &I,
180                                      SinkAndHoistLICMFlags &Flags,
181                                      bool InvariantGroup);
182 static bool pointerInvalidatedByBlock(BasicBlock &BB, MemorySSA &MSSA,
183                                       MemoryUse &MU);
184 /// Aggregates various functions for hoisting computations out of loop.
185 static bool hoistArithmetics(Instruction &I, Loop &L,
186                              ICFLoopSafetyInfo &SafetyInfo,
187                              MemorySSAUpdater &MSSAU, AssumptionCache *AC,
188                              DominatorTree *DT);
189 static Instruction *cloneInstructionInExitBlock(
190     Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI,
191     const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater &MSSAU);
192 
193 static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo,
194                              MemorySSAUpdater &MSSAU);
195 
196 static void moveInstructionBefore(Instruction &I, BasicBlock::iterator Dest,
197                                   ICFLoopSafetyInfo &SafetyInfo,
198                                   MemorySSAUpdater &MSSAU, ScalarEvolution *SE);
199 
200 static void foreachMemoryAccess(MemorySSA *MSSA, Loop *L,
201                                 function_ref<void(Instruction *)> Fn);
202 using PointersAndHasReadsOutsideSet =
203     std::pair<SmallSetVector<Value *, 8>, bool>;
204 static SmallVector<PointersAndHasReadsOutsideSet, 0>
205 collectPromotionCandidates(MemorySSA *MSSA, AliasAnalysis *AA, Loop *L);
206 
207 namespace {
208 struct LoopInvariantCodeMotion {
209   bool runOnLoop(Loop *L, AAResults *AA, LoopInfo *LI, DominatorTree *DT,
210                  AssumptionCache *AC, TargetLibraryInfo *TLI,
211                  TargetTransformInfo *TTI, ScalarEvolution *SE, MemorySSA *MSSA,
212                  OptimizationRemarkEmitter *ORE, bool LoopNestMode = false);
213 
214   LoopInvariantCodeMotion(unsigned LicmMssaOptCap,
215                           unsigned LicmMssaNoAccForPromotionCap,
216                           bool LicmAllowSpeculation)
217       : LicmMssaOptCap(LicmMssaOptCap),
218         LicmMssaNoAccForPromotionCap(LicmMssaNoAccForPromotionCap),
219         LicmAllowSpeculation(LicmAllowSpeculation) {}
220 
221 private:
222   unsigned LicmMssaOptCap;
223   unsigned LicmMssaNoAccForPromotionCap;
224   bool LicmAllowSpeculation;
225 };
226 
227 struct LegacyLICMPass : public LoopPass {
228   static char ID; // Pass identification, replacement for typeid
229   LegacyLICMPass(
230       unsigned LicmMssaOptCap = SetLicmMssaOptCap,
231       unsigned LicmMssaNoAccForPromotionCap = SetLicmMssaNoAccForPromotionCap,
232       bool LicmAllowSpeculation = true)
233       : LoopPass(ID), LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap,
234                            LicmAllowSpeculation) {
235     initializeLegacyLICMPassPass(*PassRegistry::getPassRegistry());
236   }
237 
238   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
239     if (skipLoop(L))
240       return false;
241 
242     LLVM_DEBUG(dbgs() << "Perform LICM on Loop with header at block "
243                       << L->getHeader()->getNameOrAsOperand() << "\n");
244 
245     Function *F = L->getHeader()->getParent();
246 
247     auto *SE = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
248     MemorySSA *MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA();
249     // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
250     // pass. Function analyses need to be preserved across loop transformations
251     // but ORE cannot be preserved (see comment before the pass definition).
252     OptimizationRemarkEmitter ORE(L->getHeader()->getParent());
253     return LICM.runOnLoop(
254         L, &getAnalysis<AAResultsWrapperPass>().getAAResults(),
255         &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(),
256         &getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
257         &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(*F),
258         &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(*F),
259         &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*F),
260         SE ? &SE->getSE() : nullptr, MSSA, &ORE);
261   }
262 
263   /// This transformation requires natural loop information & requires that
264   /// loop preheaders be inserted into the CFG...
265   ///
266   void getAnalysisUsage(AnalysisUsage &AU) const override {
267     AU.addPreserved<DominatorTreeWrapperPass>();
268     AU.addPreserved<LoopInfoWrapperPass>();
269     AU.addRequired<TargetLibraryInfoWrapperPass>();
270     AU.addRequired<MemorySSAWrapperPass>();
271     AU.addPreserved<MemorySSAWrapperPass>();
272     AU.addRequired<TargetTransformInfoWrapperPass>();
273     AU.addRequired<AssumptionCacheTracker>();
274     getLoopAnalysisUsage(AU);
275     LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
276     AU.addPreserved<LazyBlockFrequencyInfoPass>();
277     AU.addPreserved<LazyBranchProbabilityInfoPass>();
278   }
279 
280 private:
281   LoopInvariantCodeMotion LICM;
282 };
283 } // namespace
284 
285 PreservedAnalyses LICMPass::run(Loop &L, LoopAnalysisManager &AM,
286                                 LoopStandardAnalysisResults &AR, LPMUpdater &) {
287   if (!AR.MSSA)
288     report_fatal_error("LICM requires MemorySSA (loop-mssa)",
289                        /*GenCrashDiag*/false);
290 
291   // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis
292   // pass.  Function analyses need to be preserved across loop transformations
293   // but ORE cannot be preserved (see comment before the pass definition).
294   OptimizationRemarkEmitter ORE(L.getHeader()->getParent());
295 
296   LoopInvariantCodeMotion LICM(Opts.MssaOptCap, Opts.MssaNoAccForPromotionCap,
297                                Opts.AllowSpeculation);
298   if (!LICM.runOnLoop(&L, &AR.AA, &AR.LI, &AR.DT, &AR.AC, &AR.TLI, &AR.TTI,
299                       &AR.SE, AR.MSSA, &ORE))
300     return PreservedAnalyses::all();
301 
302   auto PA = getLoopPassPreservedAnalyses();
303   PA.preserve<MemorySSAAnalysis>();
304 
305   return PA;
306 }
307 
308 void LICMPass::printPipeline(
309     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
310   static_cast<PassInfoMixin<LICMPass> *>(this)->printPipeline(
311       OS, MapClassName2PassName);
312 
313   OS << '<';
314   OS << (Opts.AllowSpeculation ? "" : "no-") << "allowspeculation";
315   OS << '>';
316 }
317 
318 PreservedAnalyses LNICMPass::run(LoopNest &LN, LoopAnalysisManager &AM,
319                                  LoopStandardAnalysisResults &AR,
320                                  LPMUpdater &) {
321   if (!AR.MSSA)
322     report_fatal_error("LNICM requires MemorySSA (loop-mssa)",
323                        /*GenCrashDiag*/false);
324 
325   // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis
326   // pass.  Function analyses need to be preserved across loop transformations
327   // but ORE cannot be preserved (see comment before the pass definition).
328   OptimizationRemarkEmitter ORE(LN.getParent());
329 
330   LoopInvariantCodeMotion LICM(Opts.MssaOptCap, Opts.MssaNoAccForPromotionCap,
331                                Opts.AllowSpeculation);
332 
333   Loop &OutermostLoop = LN.getOutermostLoop();
334   bool Changed = LICM.runOnLoop(&OutermostLoop, &AR.AA, &AR.LI, &AR.DT, &AR.AC,
335                                 &AR.TLI, &AR.TTI, &AR.SE, AR.MSSA, &ORE, true);
336 
337   if (!Changed)
338     return PreservedAnalyses::all();
339 
340   auto PA = getLoopPassPreservedAnalyses();
341 
342   PA.preserve<DominatorTreeAnalysis>();
343   PA.preserve<LoopAnalysis>();
344   PA.preserve<MemorySSAAnalysis>();
345 
346   return PA;
347 }
348 
349 void LNICMPass::printPipeline(
350     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
351   static_cast<PassInfoMixin<LNICMPass> *>(this)->printPipeline(
352       OS, MapClassName2PassName);
353 
354   OS << '<';
355   OS << (Opts.AllowSpeculation ? "" : "no-") << "allowspeculation";
356   OS << '>';
357 }
358 
359 char LegacyLICMPass::ID = 0;
360 INITIALIZE_PASS_BEGIN(LegacyLICMPass, "licm", "Loop Invariant Code Motion",
361                       false, false)
362 INITIALIZE_PASS_DEPENDENCY(LoopPass)
363 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
364 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
365 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
366 INITIALIZE_PASS_DEPENDENCY(LazyBFIPass)
367 INITIALIZE_PASS_END(LegacyLICMPass, "licm", "Loop Invariant Code Motion", false,
368                     false)
369 
370 Pass *llvm::createLICMPass() { return new LegacyLICMPass(); }
371 
372 llvm::SinkAndHoistLICMFlags::SinkAndHoistLICMFlags(bool IsSink, Loop &L,
373                                                    MemorySSA &MSSA)
374     : SinkAndHoistLICMFlags(SetLicmMssaOptCap, SetLicmMssaNoAccForPromotionCap,
375                             IsSink, L, MSSA) {}
376 
377 llvm::SinkAndHoistLICMFlags::SinkAndHoistLICMFlags(
378     unsigned LicmMssaOptCap, unsigned LicmMssaNoAccForPromotionCap, bool IsSink,
379     Loop &L, MemorySSA &MSSA)
380     : LicmMssaOptCap(LicmMssaOptCap),
381       LicmMssaNoAccForPromotionCap(LicmMssaNoAccForPromotionCap),
382       IsSink(IsSink) {
383   unsigned AccessCapCount = 0;
384   for (auto *BB : L.getBlocks())
385     if (const auto *Accesses = MSSA.getBlockAccesses(BB))
386       for (const auto &MA : *Accesses) {
387         (void)MA;
388         ++AccessCapCount;
389         if (AccessCapCount > LicmMssaNoAccForPromotionCap) {
390           NoOfMemAccTooLarge = true;
391           return;
392         }
393       }
394 }
395 
396 /// Hoist expressions out of the specified loop. Note, alias info for inner
397 /// loop is not preserved so it is not a good idea to run LICM multiple
398 /// times on one loop.
399 bool LoopInvariantCodeMotion::runOnLoop(Loop *L, AAResults *AA, LoopInfo *LI,
400                                         DominatorTree *DT, AssumptionCache *AC,
401                                         TargetLibraryInfo *TLI,
402                                         TargetTransformInfo *TTI,
403                                         ScalarEvolution *SE, MemorySSA *MSSA,
404                                         OptimizationRemarkEmitter *ORE,
405                                         bool LoopNestMode) {
406   bool Changed = false;
407 
408   assert(L->isLCSSAForm(*DT) && "Loop is not in LCSSA form.");
409 
410   // If this loop has metadata indicating that LICM is not to be performed then
411   // just exit.
412   if (hasDisableLICMTransformsHint(L)) {
413     return false;
414   }
415 
416   // Don't sink stores from loops with coroutine suspend instructions.
417   // LICM would sink instructions into the default destination of
418   // the coroutine switch. The default destination of the switch is to
419   // handle the case where the coroutine is suspended, by which point the
420   // coroutine frame may have been destroyed. No instruction can be sunk there.
421   // FIXME: This would unfortunately hurt the performance of coroutines, however
422   // there is currently no general solution for this. Similar issues could also
423   // potentially happen in other passes where instructions are being moved
424   // across that edge.
425   bool HasCoroSuspendInst = llvm::any_of(L->getBlocks(), [](BasicBlock *BB) {
426     return llvm::any_of(*BB, [](Instruction &I) {
427       IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I);
428       return II && II->getIntrinsicID() == Intrinsic::coro_suspend;
429     });
430   });
431 
432   MemorySSAUpdater MSSAU(MSSA);
433   SinkAndHoistLICMFlags Flags(LicmMssaOptCap, LicmMssaNoAccForPromotionCap,
434                               /*IsSink=*/true, *L, *MSSA);
435 
436   // Get the preheader block to move instructions into...
437   BasicBlock *Preheader = L->getLoopPreheader();
438 
439   // Compute loop safety information.
440   ICFLoopSafetyInfo SafetyInfo;
441   SafetyInfo.computeLoopSafetyInfo(L);
442 
443   // We want to visit all of the instructions in this loop... that are not parts
444   // of our subloops (they have already had their invariants hoisted out of
445   // their loop, into this loop, so there is no need to process the BODIES of
446   // the subloops).
447   //
448   // Traverse the body of the loop in depth first order on the dominator tree so
449   // that we are guaranteed to see definitions before we see uses.  This allows
450   // us to sink instructions in one pass, without iteration.  After sinking
451   // instructions, we perform another pass to hoist them out of the loop.
452   if (L->hasDedicatedExits())
453     Changed |=
454         LoopNestMode
455             ? sinkRegionForLoopNest(DT->getNode(L->getHeader()), AA, LI, DT,
456                                     TLI, TTI, L, MSSAU, &SafetyInfo, Flags, ORE)
457             : sinkRegion(DT->getNode(L->getHeader()), AA, LI, DT, TLI, TTI, L,
458                          MSSAU, &SafetyInfo, Flags, ORE);
459   Flags.setIsSink(false);
460   if (Preheader)
461     Changed |= hoistRegion(DT->getNode(L->getHeader()), AA, LI, DT, AC, TLI, L,
462                            MSSAU, SE, &SafetyInfo, Flags, ORE, LoopNestMode,
463                            LicmAllowSpeculation);
464 
465   // Now that all loop invariants have been removed from the loop, promote any
466   // memory references to scalars that we can.
467   // Don't sink stores from loops without dedicated block exits. Exits
468   // containing indirect branches are not transformed by loop simplify,
469   // make sure we catch that. An additional load may be generated in the
470   // preheader for SSA updater, so also avoid sinking when no preheader
471   // is available.
472   if (!DisablePromotion && Preheader && L->hasDedicatedExits() &&
473       !Flags.tooManyMemoryAccesses() && !HasCoroSuspendInst) {
474     // Figure out the loop exits and their insertion points
475     SmallVector<BasicBlock *, 8> ExitBlocks;
476     L->getUniqueExitBlocks(ExitBlocks);
477 
478     // We can't insert into a catchswitch.
479     bool HasCatchSwitch = llvm::any_of(ExitBlocks, [](BasicBlock *Exit) {
480       return isa<CatchSwitchInst>(Exit->getTerminator());
481     });
482 
483     if (!HasCatchSwitch) {
484       SmallVector<BasicBlock::iterator, 8> InsertPts;
485       SmallVector<MemoryAccess *, 8> MSSAInsertPts;
486       InsertPts.reserve(ExitBlocks.size());
487       MSSAInsertPts.reserve(ExitBlocks.size());
488       for (BasicBlock *ExitBlock : ExitBlocks) {
489         InsertPts.push_back(ExitBlock->getFirstInsertionPt());
490         MSSAInsertPts.push_back(nullptr);
491       }
492 
493       PredIteratorCache PIC;
494 
495       // Promoting one set of accesses may make the pointers for another set
496       // loop invariant, so run this in a loop.
497       bool Promoted = false;
498       bool LocalPromoted;
499       do {
500         LocalPromoted = false;
501         for (auto [PointerMustAliases, HasReadsOutsideSet] :
502              collectPromotionCandidates(MSSA, AA, L)) {
503           LocalPromoted |= promoteLoopAccessesToScalars(
504               PointerMustAliases, ExitBlocks, InsertPts, MSSAInsertPts, PIC, LI,
505               DT, AC, TLI, TTI, L, MSSAU, &SafetyInfo, ORE,
506               LicmAllowSpeculation, HasReadsOutsideSet);
507         }
508         Promoted |= LocalPromoted;
509       } while (LocalPromoted);
510 
511       // Once we have promoted values across the loop body we have to
512       // recursively reform LCSSA as any nested loop may now have values defined
513       // within the loop used in the outer loop.
514       // FIXME: This is really heavy handed. It would be a bit better to use an
515       // SSAUpdater strategy during promotion that was LCSSA aware and reformed
516       // it as it went.
517       if (Promoted)
518         formLCSSARecursively(*L, *DT, LI, SE);
519 
520       Changed |= Promoted;
521     }
522   }
523 
524   // Check that neither this loop nor its parent have had LCSSA broken. LICM is
525   // specifically moving instructions across the loop boundary and so it is
526   // especially in need of basic functional correctness checking here.
527   assert(L->isLCSSAForm(*DT) && "Loop not left in LCSSA form after LICM!");
528   assert((L->isOutermost() || L->getParentLoop()->isLCSSAForm(*DT)) &&
529          "Parent loop not left in LCSSA form after LICM!");
530 
531   if (VerifyMemorySSA)
532     MSSA->verifyMemorySSA();
533 
534   if (Changed && SE)
535     SE->forgetLoopDispositions();
536   return Changed;
537 }
538 
539 /// Walk the specified region of the CFG (defined by all blocks dominated by
540 /// the specified block, and that are in the current loop) in reverse depth
541 /// first order w.r.t the DominatorTree.  This allows us to visit uses before
542 /// definitions, allowing us to sink a loop body in one pass without iteration.
543 ///
544 bool llvm::sinkRegion(DomTreeNode *N, AAResults *AA, LoopInfo *LI,
545                       DominatorTree *DT, TargetLibraryInfo *TLI,
546                       TargetTransformInfo *TTI, Loop *CurLoop,
547                       MemorySSAUpdater &MSSAU, ICFLoopSafetyInfo *SafetyInfo,
548                       SinkAndHoistLICMFlags &Flags,
549                       OptimizationRemarkEmitter *ORE, Loop *OutermostLoop) {
550 
551   // Verify inputs.
552   assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr &&
553          CurLoop != nullptr && SafetyInfo != nullptr &&
554          "Unexpected input to sinkRegion.");
555 
556   // We want to visit children before parents. We will enqueue all the parents
557   // before their children in the worklist and process the worklist in reverse
558   // order.
559   SmallVector<DomTreeNode *, 16> Worklist = collectChildrenInLoop(N, CurLoop);
560 
561   bool Changed = false;
562   for (DomTreeNode *DTN : reverse(Worklist)) {
563     BasicBlock *BB = DTN->getBlock();
564     // Only need to process the contents of this block if it is not part of a
565     // subloop (which would already have been processed).
566     if (inSubLoop(BB, CurLoop, LI))
567       continue;
568 
569     for (BasicBlock::iterator II = BB->end(); II != BB->begin();) {
570       Instruction &I = *--II;
571 
572       // The instruction is not used in the loop if it is dead.  In this case,
573       // we just delete it instead of sinking it.
574       if (isInstructionTriviallyDead(&I, TLI)) {
575         LLVM_DEBUG(dbgs() << "LICM deleting dead inst: " << I << '\n');
576         salvageKnowledge(&I);
577         salvageDebugInfo(I);
578         ++II;
579         eraseInstruction(I, *SafetyInfo, MSSAU);
580         Changed = true;
581         continue;
582       }
583 
584       // Check to see if we can sink this instruction to the exit blocks
585       // of the loop.  We can do this if the all users of the instruction are
586       // outside of the loop.  In this case, it doesn't even matter if the
587       // operands of the instruction are loop invariant.
588       //
589       bool FoldableInLoop = false;
590       bool LoopNestMode = OutermostLoop != nullptr;
591       if (!I.mayHaveSideEffects() &&
592           isNotUsedOrFoldableInLoop(I, LoopNestMode ? OutermostLoop : CurLoop,
593                                     SafetyInfo, TTI, FoldableInLoop,
594                                     LoopNestMode) &&
595           canSinkOrHoistInst(I, AA, DT, CurLoop, MSSAU, true, Flags, ORE)) {
596         if (sink(I, LI, DT, CurLoop, SafetyInfo, MSSAU, ORE)) {
597           if (!FoldableInLoop) {
598             ++II;
599             salvageDebugInfo(I);
600             eraseInstruction(I, *SafetyInfo, MSSAU);
601           }
602           Changed = true;
603         }
604       }
605     }
606   }
607   if (VerifyMemorySSA)
608     MSSAU.getMemorySSA()->verifyMemorySSA();
609   return Changed;
610 }
611 
612 bool llvm::sinkRegionForLoopNest(DomTreeNode *N, AAResults *AA, LoopInfo *LI,
613                                  DominatorTree *DT, TargetLibraryInfo *TLI,
614                                  TargetTransformInfo *TTI, Loop *CurLoop,
615                                  MemorySSAUpdater &MSSAU,
616                                  ICFLoopSafetyInfo *SafetyInfo,
617                                  SinkAndHoistLICMFlags &Flags,
618                                  OptimizationRemarkEmitter *ORE) {
619 
620   bool Changed = false;
621   SmallPriorityWorklist<Loop *, 4> Worklist;
622   Worklist.insert(CurLoop);
623   appendLoopsToWorklist(*CurLoop, Worklist);
624   while (!Worklist.empty()) {
625     Loop *L = Worklist.pop_back_val();
626     Changed |= sinkRegion(DT->getNode(L->getHeader()), AA, LI, DT, TLI, TTI, L,
627                           MSSAU, SafetyInfo, Flags, ORE, CurLoop);
628   }
629   return Changed;
630 }
631 
632 namespace {
633 // This is a helper class for hoistRegion to make it able to hoist control flow
634 // in order to be able to hoist phis. The way this works is that we initially
635 // start hoisting to the loop preheader, and when we see a loop invariant branch
636 // we make note of this. When we then come to hoist an instruction that's
637 // conditional on such a branch we duplicate the branch and the relevant control
638 // flow, then hoist the instruction into the block corresponding to its original
639 // block in the duplicated control flow.
640 class ControlFlowHoister {
641 private:
642   // Information about the loop we are hoisting from
643   LoopInfo *LI;
644   DominatorTree *DT;
645   Loop *CurLoop;
646   MemorySSAUpdater &MSSAU;
647 
648   // A map of blocks in the loop to the block their instructions will be hoisted
649   // to.
650   DenseMap<BasicBlock *, BasicBlock *> HoistDestinationMap;
651 
652   // The branches that we can hoist, mapped to the block that marks a
653   // convergence point of their control flow.
654   DenseMap<BranchInst *, BasicBlock *> HoistableBranches;
655 
656 public:
657   ControlFlowHoister(LoopInfo *LI, DominatorTree *DT, Loop *CurLoop,
658                      MemorySSAUpdater &MSSAU)
659       : LI(LI), DT(DT), CurLoop(CurLoop), MSSAU(MSSAU) {}
660 
661   void registerPossiblyHoistableBranch(BranchInst *BI) {
662     // We can only hoist conditional branches with loop invariant operands.
663     if (!ControlFlowHoisting || !BI->isConditional() ||
664         !CurLoop->hasLoopInvariantOperands(BI))
665       return;
666 
667     // The branch destinations need to be in the loop, and we don't gain
668     // anything by duplicating conditional branches with duplicate successors,
669     // as it's essentially the same as an unconditional branch.
670     BasicBlock *TrueDest = BI->getSuccessor(0);
671     BasicBlock *FalseDest = BI->getSuccessor(1);
672     if (!CurLoop->contains(TrueDest) || !CurLoop->contains(FalseDest) ||
673         TrueDest == FalseDest)
674       return;
675 
676     // We can hoist BI if one branch destination is the successor of the other,
677     // or both have common successor which we check by seeing if the
678     // intersection of their successors is non-empty.
679     // TODO: This could be expanded to allowing branches where both ends
680     // eventually converge to a single block.
681     SmallPtrSet<BasicBlock *, 4> TrueDestSucc, FalseDestSucc;
682     TrueDestSucc.insert(succ_begin(TrueDest), succ_end(TrueDest));
683     FalseDestSucc.insert(succ_begin(FalseDest), succ_end(FalseDest));
684     BasicBlock *CommonSucc = nullptr;
685     if (TrueDestSucc.count(FalseDest)) {
686       CommonSucc = FalseDest;
687     } else if (FalseDestSucc.count(TrueDest)) {
688       CommonSucc = TrueDest;
689     } else {
690       set_intersect(TrueDestSucc, FalseDestSucc);
691       // If there's one common successor use that.
692       if (TrueDestSucc.size() == 1)
693         CommonSucc = *TrueDestSucc.begin();
694       // If there's more than one pick whichever appears first in the block list
695       // (we can't use the value returned by TrueDestSucc.begin() as it's
696       // unpredicatable which element gets returned).
697       else if (!TrueDestSucc.empty()) {
698         Function *F = TrueDest->getParent();
699         auto IsSucc = [&](BasicBlock &BB) { return TrueDestSucc.count(&BB); };
700         auto It = llvm::find_if(*F, IsSucc);
701         assert(It != F->end() && "Could not find successor in function");
702         CommonSucc = &*It;
703       }
704     }
705     // The common successor has to be dominated by the branch, as otherwise
706     // there will be some other path to the successor that will not be
707     // controlled by this branch so any phi we hoist would be controlled by the
708     // wrong condition. This also takes care of avoiding hoisting of loop back
709     // edges.
710     // TODO: In some cases this could be relaxed if the successor is dominated
711     // by another block that's been hoisted and we can guarantee that the
712     // control flow has been replicated exactly.
713     if (CommonSucc && DT->dominates(BI, CommonSucc))
714       HoistableBranches[BI] = CommonSucc;
715   }
716 
717   bool canHoistPHI(PHINode *PN) {
718     // The phi must have loop invariant operands.
719     if (!ControlFlowHoisting || !CurLoop->hasLoopInvariantOperands(PN))
720       return false;
721     // We can hoist phis if the block they are in is the target of hoistable
722     // branches which cover all of the predecessors of the block.
723     SmallPtrSet<BasicBlock *, 8> PredecessorBlocks;
724     BasicBlock *BB = PN->getParent();
725     for (BasicBlock *PredBB : predecessors(BB))
726       PredecessorBlocks.insert(PredBB);
727     // If we have less predecessor blocks than predecessors then the phi will
728     // have more than one incoming value for the same block which we can't
729     // handle.
730     // TODO: This could be handled be erasing some of the duplicate incoming
731     // values.
732     if (PredecessorBlocks.size() != pred_size(BB))
733       return false;
734     for (auto &Pair : HoistableBranches) {
735       if (Pair.second == BB) {
736         // Which blocks are predecessors via this branch depends on if the
737         // branch is triangle-like or diamond-like.
738         if (Pair.first->getSuccessor(0) == BB) {
739           PredecessorBlocks.erase(Pair.first->getParent());
740           PredecessorBlocks.erase(Pair.first->getSuccessor(1));
741         } else if (Pair.first->getSuccessor(1) == BB) {
742           PredecessorBlocks.erase(Pair.first->getParent());
743           PredecessorBlocks.erase(Pair.first->getSuccessor(0));
744         } else {
745           PredecessorBlocks.erase(Pair.first->getSuccessor(0));
746           PredecessorBlocks.erase(Pair.first->getSuccessor(1));
747         }
748       }
749     }
750     // PredecessorBlocks will now be empty if for every predecessor of BB we
751     // found a hoistable branch source.
752     return PredecessorBlocks.empty();
753   }
754 
755   BasicBlock *getOrCreateHoistedBlock(BasicBlock *BB) {
756     if (!ControlFlowHoisting)
757       return CurLoop->getLoopPreheader();
758     // If BB has already been hoisted, return that
759     if (HoistDestinationMap.count(BB))
760       return HoistDestinationMap[BB];
761 
762     // Check if this block is conditional based on a pending branch
763     auto HasBBAsSuccessor =
764         [&](DenseMap<BranchInst *, BasicBlock *>::value_type &Pair) {
765           return BB != Pair.second && (Pair.first->getSuccessor(0) == BB ||
766                                        Pair.first->getSuccessor(1) == BB);
767         };
768     auto It = llvm::find_if(HoistableBranches, HasBBAsSuccessor);
769 
770     // If not involved in a pending branch, hoist to preheader
771     BasicBlock *InitialPreheader = CurLoop->getLoopPreheader();
772     if (It == HoistableBranches.end()) {
773       LLVM_DEBUG(dbgs() << "LICM using "
774                         << InitialPreheader->getNameOrAsOperand()
775                         << " as hoist destination for "
776                         << BB->getNameOrAsOperand() << "\n");
777       HoistDestinationMap[BB] = InitialPreheader;
778       return InitialPreheader;
779     }
780     BranchInst *BI = It->first;
781     assert(std::find_if(++It, HoistableBranches.end(), HasBBAsSuccessor) ==
782                HoistableBranches.end() &&
783            "BB is expected to be the target of at most one branch");
784 
785     LLVMContext &C = BB->getContext();
786     BasicBlock *TrueDest = BI->getSuccessor(0);
787     BasicBlock *FalseDest = BI->getSuccessor(1);
788     BasicBlock *CommonSucc = HoistableBranches[BI];
789     BasicBlock *HoistTarget = getOrCreateHoistedBlock(BI->getParent());
790 
791     // Create hoisted versions of blocks that currently don't have them
792     auto CreateHoistedBlock = [&](BasicBlock *Orig) {
793       if (HoistDestinationMap.count(Orig))
794         return HoistDestinationMap[Orig];
795       BasicBlock *New =
796           BasicBlock::Create(C, Orig->getName() + ".licm", Orig->getParent());
797       HoistDestinationMap[Orig] = New;
798       DT->addNewBlock(New, HoistTarget);
799       if (CurLoop->getParentLoop())
800         CurLoop->getParentLoop()->addBasicBlockToLoop(New, *LI);
801       ++NumCreatedBlocks;
802       LLVM_DEBUG(dbgs() << "LICM created " << New->getName()
803                         << " as hoist destination for " << Orig->getName()
804                         << "\n");
805       return New;
806     };
807     BasicBlock *HoistTrueDest = CreateHoistedBlock(TrueDest);
808     BasicBlock *HoistFalseDest = CreateHoistedBlock(FalseDest);
809     BasicBlock *HoistCommonSucc = CreateHoistedBlock(CommonSucc);
810 
811     // Link up these blocks with branches.
812     if (!HoistCommonSucc->getTerminator()) {
813       // The new common successor we've generated will branch to whatever that
814       // hoist target branched to.
815       BasicBlock *TargetSucc = HoistTarget->getSingleSuccessor();
816       assert(TargetSucc && "Expected hoist target to have a single successor");
817       HoistCommonSucc->moveBefore(TargetSucc);
818       BranchInst::Create(TargetSucc, HoistCommonSucc);
819     }
820     if (!HoistTrueDest->getTerminator()) {
821       HoistTrueDest->moveBefore(HoistCommonSucc);
822       BranchInst::Create(HoistCommonSucc, HoistTrueDest);
823     }
824     if (!HoistFalseDest->getTerminator()) {
825       HoistFalseDest->moveBefore(HoistCommonSucc);
826       BranchInst::Create(HoistCommonSucc, HoistFalseDest);
827     }
828 
829     // If BI is being cloned to what was originally the preheader then
830     // HoistCommonSucc will now be the new preheader.
831     if (HoistTarget == InitialPreheader) {
832       // Phis in the loop header now need to use the new preheader.
833       InitialPreheader->replaceSuccessorsPhiUsesWith(HoistCommonSucc);
834       MSSAU.wireOldPredecessorsToNewImmediatePredecessor(
835           HoistTarget->getSingleSuccessor(), HoistCommonSucc, {HoistTarget});
836       // The new preheader dominates the loop header.
837       DomTreeNode *PreheaderNode = DT->getNode(HoistCommonSucc);
838       DomTreeNode *HeaderNode = DT->getNode(CurLoop->getHeader());
839       DT->changeImmediateDominator(HeaderNode, PreheaderNode);
840       // The preheader hoist destination is now the new preheader, with the
841       // exception of the hoist destination of this branch.
842       for (auto &Pair : HoistDestinationMap)
843         if (Pair.second == InitialPreheader && Pair.first != BI->getParent())
844           Pair.second = HoistCommonSucc;
845     }
846 
847     // Now finally clone BI.
848     ReplaceInstWithInst(
849         HoistTarget->getTerminator(),
850         BranchInst::Create(HoistTrueDest, HoistFalseDest, BI->getCondition()));
851     ++NumClonedBranches;
852 
853     assert(CurLoop->getLoopPreheader() &&
854            "Hoisting blocks should not have destroyed preheader");
855     return HoistDestinationMap[BB];
856   }
857 };
858 } // namespace
859 
860 /// Walk the specified region of the CFG (defined by all blocks dominated by
861 /// the specified block, and that are in the current loop) in depth first
862 /// order w.r.t the DominatorTree.  This allows us to visit definitions before
863 /// uses, allowing us to hoist a loop body in one pass without iteration.
864 ///
865 bool llvm::hoistRegion(DomTreeNode *N, AAResults *AA, LoopInfo *LI,
866                        DominatorTree *DT, AssumptionCache *AC,
867                        TargetLibraryInfo *TLI, Loop *CurLoop,
868                        MemorySSAUpdater &MSSAU, ScalarEvolution *SE,
869                        ICFLoopSafetyInfo *SafetyInfo,
870                        SinkAndHoistLICMFlags &Flags,
871                        OptimizationRemarkEmitter *ORE, bool LoopNestMode,
872                        bool AllowSpeculation) {
873   // Verify inputs.
874   assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr &&
875          CurLoop != nullptr && SafetyInfo != nullptr &&
876          "Unexpected input to hoistRegion.");
877 
878   ControlFlowHoister CFH(LI, DT, CurLoop, MSSAU);
879 
880   // Keep track of instructions that have been hoisted, as they may need to be
881   // re-hoisted if they end up not dominating all of their uses.
882   SmallVector<Instruction *, 16> HoistedInstructions;
883 
884   // For PHI hoisting to work we need to hoist blocks before their successors.
885   // We can do this by iterating through the blocks in the loop in reverse
886   // post-order.
887   LoopBlocksRPO Worklist(CurLoop);
888   Worklist.perform(LI);
889   bool Changed = false;
890   BasicBlock *Preheader = CurLoop->getLoopPreheader();
891   for (BasicBlock *BB : Worklist) {
892     // Only need to process the contents of this block if it is not part of a
893     // subloop (which would already have been processed).
894     if (!LoopNestMode && inSubLoop(BB, CurLoop, LI))
895       continue;
896 
897     for (Instruction &I : llvm::make_early_inc_range(*BB)) {
898       // Try hoisting the instruction out to the preheader.  We can only do
899       // this if all of the operands of the instruction are loop invariant and
900       // if it is safe to hoist the instruction. We also check block frequency
901       // to make sure instruction only gets hoisted into colder blocks.
902       // TODO: It may be safe to hoist if we are hoisting to a conditional block
903       // and we have accurately duplicated the control flow from the loop header
904       // to that block.
905       if (CurLoop->hasLoopInvariantOperands(&I) &&
906           canSinkOrHoistInst(I, AA, DT, CurLoop, MSSAU, true, Flags, ORE) &&
907           isSafeToExecuteUnconditionally(
908               I, DT, TLI, CurLoop, SafetyInfo, ORE,
909               Preheader->getTerminator(), AC, AllowSpeculation)) {
910         hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
911               MSSAU, SE, ORE);
912         HoistedInstructions.push_back(&I);
913         Changed = true;
914         continue;
915       }
916 
917       // Attempt to remove floating point division out of the loop by
918       // converting it to a reciprocal multiplication.
919       if (I.getOpcode() == Instruction::FDiv && I.hasAllowReciprocal() &&
920           CurLoop->isLoopInvariant(I.getOperand(1))) {
921         auto Divisor = I.getOperand(1);
922         auto One = llvm::ConstantFP::get(Divisor->getType(), 1.0);
923         auto ReciprocalDivisor = BinaryOperator::CreateFDiv(One, Divisor);
924         ReciprocalDivisor->setFastMathFlags(I.getFastMathFlags());
925         SafetyInfo->insertInstructionTo(ReciprocalDivisor, I.getParent());
926         ReciprocalDivisor->insertBefore(&I);
927 
928         auto Product =
929             BinaryOperator::CreateFMul(I.getOperand(0), ReciprocalDivisor);
930         Product->setFastMathFlags(I.getFastMathFlags());
931         SafetyInfo->insertInstructionTo(Product, I.getParent());
932         Product->insertAfter(&I);
933         I.replaceAllUsesWith(Product);
934         eraseInstruction(I, *SafetyInfo, MSSAU);
935 
936         hoist(*ReciprocalDivisor, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB),
937               SafetyInfo, MSSAU, SE, ORE);
938         HoistedInstructions.push_back(ReciprocalDivisor);
939         Changed = true;
940         continue;
941       }
942 
943       auto IsInvariantStart = [&](Instruction &I) {
944         using namespace PatternMatch;
945         return I.use_empty() &&
946                match(&I, m_Intrinsic<Intrinsic::invariant_start>());
947       };
948       auto MustExecuteWithoutWritesBefore = [&](Instruction &I) {
949         return SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop) &&
950                SafetyInfo->doesNotWriteMemoryBefore(I, CurLoop);
951       };
952       if ((IsInvariantStart(I) || isGuard(&I)) &&
953           CurLoop->hasLoopInvariantOperands(&I) &&
954           MustExecuteWithoutWritesBefore(I)) {
955         hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
956               MSSAU, SE, ORE);
957         HoistedInstructions.push_back(&I);
958         Changed = true;
959         continue;
960       }
961 
962       if (PHINode *PN = dyn_cast<PHINode>(&I)) {
963         if (CFH.canHoistPHI(PN)) {
964           // Redirect incoming blocks first to ensure that we create hoisted
965           // versions of those blocks before we hoist the phi.
966           for (unsigned int i = 0; i < PN->getNumIncomingValues(); ++i)
967             PN->setIncomingBlock(
968                 i, CFH.getOrCreateHoistedBlock(PN->getIncomingBlock(i)));
969           hoist(*PN, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
970                 MSSAU, SE, ORE);
971           assert(DT->dominates(PN, BB) && "Conditional PHIs not expected");
972           Changed = true;
973           continue;
974         }
975       }
976 
977       // Try to reassociate instructions so that part of computations can be
978       // done out of loop.
979       if (hoistArithmetics(I, *CurLoop, *SafetyInfo, MSSAU, AC, DT)) {
980         Changed = true;
981         continue;
982       }
983 
984       // Remember possibly hoistable branches so we can actually hoist them
985       // later if needed.
986       if (BranchInst *BI = dyn_cast<BranchInst>(&I))
987         CFH.registerPossiblyHoistableBranch(BI);
988     }
989   }
990 
991   // If we hoisted instructions to a conditional block they may not dominate
992   // their uses that weren't hoisted (such as phis where some operands are not
993   // loop invariant). If so make them unconditional by moving them to their
994   // immediate dominator. We iterate through the instructions in reverse order
995   // which ensures that when we rehoist an instruction we rehoist its operands,
996   // and also keep track of where in the block we are rehoisting to make sure
997   // that we rehoist instructions before the instructions that use them.
998   Instruction *HoistPoint = nullptr;
999   if (ControlFlowHoisting) {
1000     for (Instruction *I : reverse(HoistedInstructions)) {
1001       if (!llvm::all_of(I->uses(),
1002                         [&](Use &U) { return DT->dominates(I, U); })) {
1003         BasicBlock *Dominator =
1004             DT->getNode(I->getParent())->getIDom()->getBlock();
1005         if (!HoistPoint || !DT->dominates(HoistPoint->getParent(), Dominator)) {
1006           if (HoistPoint)
1007             assert(DT->dominates(Dominator, HoistPoint->getParent()) &&
1008                    "New hoist point expected to dominate old hoist point");
1009           HoistPoint = Dominator->getTerminator();
1010         }
1011         LLVM_DEBUG(dbgs() << "LICM rehoisting to "
1012                           << HoistPoint->getParent()->getNameOrAsOperand()
1013                           << ": " << *I << "\n");
1014         moveInstructionBefore(*I, HoistPoint->getIterator(), *SafetyInfo, MSSAU,
1015                               SE);
1016         HoistPoint = I;
1017         Changed = true;
1018       }
1019     }
1020   }
1021   if (VerifyMemorySSA)
1022     MSSAU.getMemorySSA()->verifyMemorySSA();
1023 
1024     // Now that we've finished hoisting make sure that LI and DT are still
1025     // valid.
1026 #ifdef EXPENSIVE_CHECKS
1027   if (Changed) {
1028     assert(DT->verify(DominatorTree::VerificationLevel::Fast) &&
1029            "Dominator tree verification failed");
1030     LI->verify(*DT);
1031   }
1032 #endif
1033 
1034   return Changed;
1035 }
1036 
1037 // Return true if LI is invariant within scope of the loop. LI is invariant if
1038 // CurLoop is dominated by an invariant.start representing the same memory
1039 // location and size as the memory location LI loads from, and also the
1040 // invariant.start has no uses.
1041 static bool isLoadInvariantInLoop(LoadInst *LI, DominatorTree *DT,
1042                                   Loop *CurLoop) {
1043   Value *Addr = LI->getPointerOperand();
1044   const DataLayout &DL = LI->getModule()->getDataLayout();
1045   const TypeSize LocSizeInBits = DL.getTypeSizeInBits(LI->getType());
1046 
1047   // It is not currently possible for clang to generate an invariant.start
1048   // intrinsic with scalable vector types because we don't support thread local
1049   // sizeless types and we don't permit sizeless types in structs or classes.
1050   // Furthermore, even if support is added for this in future the intrinsic
1051   // itself is defined to have a size of -1 for variable sized objects. This
1052   // makes it impossible to verify if the intrinsic envelops our region of
1053   // interest. For example, both <vscale x 32 x i8> and <vscale x 16 x i8>
1054   // types would have a -1 parameter, but the former is clearly double the size
1055   // of the latter.
1056   if (LocSizeInBits.isScalable())
1057     return false;
1058 
1059   // If we've ended up at a global/constant, bail. We shouldn't be looking at
1060   // uselists for non-local Values in a loop pass.
1061   if (isa<Constant>(Addr))
1062     return false;
1063 
1064   unsigned UsesVisited = 0;
1065   // Traverse all uses of the load operand value, to see if invariant.start is
1066   // one of the uses, and whether it dominates the load instruction.
1067   for (auto *U : Addr->users()) {
1068     // Avoid traversing for Load operand with high number of users.
1069     if (++UsesVisited > MaxNumUsesTraversed)
1070       return false;
1071     IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
1072     // If there are escaping uses of invariant.start instruction, the load maybe
1073     // non-invariant.
1074     if (!II || II->getIntrinsicID() != Intrinsic::invariant_start ||
1075         !II->use_empty())
1076       continue;
1077     ConstantInt *InvariantSize = cast<ConstantInt>(II->getArgOperand(0));
1078     // The intrinsic supports having a -1 argument for variable sized objects
1079     // so we should check for that here.
1080     if (InvariantSize->isNegative())
1081       continue;
1082     uint64_t InvariantSizeInBits = InvariantSize->getSExtValue() * 8;
1083     // Confirm the invariant.start location size contains the load operand size
1084     // in bits. Also, the invariant.start should dominate the load, and we
1085     // should not hoist the load out of a loop that contains this dominating
1086     // invariant.start.
1087     if (LocSizeInBits.getFixedValue() <= InvariantSizeInBits &&
1088         DT->properlyDominates(II->getParent(), CurLoop->getHeader()))
1089       return true;
1090   }
1091 
1092   return false;
1093 }
1094 
1095 namespace {
1096 /// Return true if-and-only-if we know how to (mechanically) both hoist and
1097 /// sink a given instruction out of a loop.  Does not address legality
1098 /// concerns such as aliasing or speculation safety.
1099 bool isHoistableAndSinkableInst(Instruction &I) {
1100   // Only these instructions are hoistable/sinkable.
1101   return (isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||
1102           isa<FenceInst>(I) || isa<CastInst>(I) || isa<UnaryOperator>(I) ||
1103           isa<BinaryOperator>(I) || isa<SelectInst>(I) ||
1104           isa<GetElementPtrInst>(I) || isa<CmpInst>(I) ||
1105           isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
1106           isa<ShuffleVectorInst>(I) || isa<ExtractValueInst>(I) ||
1107           isa<InsertValueInst>(I) || isa<FreezeInst>(I));
1108 }
1109 /// Return true if MSSA knows there are no MemoryDefs in the loop.
1110 bool isReadOnly(const MemorySSAUpdater &MSSAU, const Loop *L) {
1111   for (auto *BB : L->getBlocks())
1112     if (MSSAU.getMemorySSA()->getBlockDefs(BB))
1113       return false;
1114   return true;
1115 }
1116 
1117 /// Return true if I is the only Instruction with a MemoryAccess in L.
1118 bool isOnlyMemoryAccess(const Instruction *I, const Loop *L,
1119                         const MemorySSAUpdater &MSSAU) {
1120   for (auto *BB : L->getBlocks())
1121     if (auto *Accs = MSSAU.getMemorySSA()->getBlockAccesses(BB)) {
1122       int NotAPhi = 0;
1123       for (const auto &Acc : *Accs) {
1124         if (isa<MemoryPhi>(&Acc))
1125           continue;
1126         const auto *MUD = cast<MemoryUseOrDef>(&Acc);
1127         if (MUD->getMemoryInst() != I || NotAPhi++ == 1)
1128           return false;
1129       }
1130     }
1131   return true;
1132 }
1133 }
1134 
1135 static MemoryAccess *getClobberingMemoryAccess(MemorySSA &MSSA,
1136                                                BatchAAResults &BAA,
1137                                                SinkAndHoistLICMFlags &Flags,
1138                                                MemoryUseOrDef *MA) {
1139   // See declaration of SetLicmMssaOptCap for usage details.
1140   if (Flags.tooManyClobberingCalls())
1141     return MA->getDefiningAccess();
1142 
1143   MemoryAccess *Source =
1144       MSSA.getSkipSelfWalker()->getClobberingMemoryAccess(MA, BAA);
1145   Flags.incrementClobberingCalls();
1146   return Source;
1147 }
1148 
1149 bool llvm::canSinkOrHoistInst(Instruction &I, AAResults *AA, DominatorTree *DT,
1150                               Loop *CurLoop, MemorySSAUpdater &MSSAU,
1151                               bool TargetExecutesOncePerLoop,
1152                               SinkAndHoistLICMFlags &Flags,
1153                               OptimizationRemarkEmitter *ORE) {
1154   // If we don't understand the instruction, bail early.
1155   if (!isHoistableAndSinkableInst(I))
1156     return false;
1157 
1158   MemorySSA *MSSA = MSSAU.getMemorySSA();
1159   // Loads have extra constraints we have to verify before we can hoist them.
1160   if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
1161     if (!LI->isUnordered())
1162       return false; // Don't sink/hoist volatile or ordered atomic loads!
1163 
1164     // Loads from constant memory are always safe to move, even if they end up
1165     // in the same alias set as something that ends up being modified.
1166     if (!isModSet(AA->getModRefInfoMask(LI->getOperand(0))))
1167       return true;
1168     if (LI->hasMetadata(LLVMContext::MD_invariant_load))
1169       return true;
1170 
1171     if (LI->isAtomic() && !TargetExecutesOncePerLoop)
1172       return false; // Don't risk duplicating unordered loads
1173 
1174     // This checks for an invariant.start dominating the load.
1175     if (isLoadInvariantInLoop(LI, DT, CurLoop))
1176       return true;
1177 
1178     auto MU = cast<MemoryUse>(MSSA->getMemoryAccess(LI));
1179 
1180     bool InvariantGroup = LI->hasMetadata(LLVMContext::MD_invariant_group);
1181 
1182     bool Invalidated = pointerInvalidatedByLoop(
1183         MSSA, MU, CurLoop, I, Flags, InvariantGroup);
1184     // Check loop-invariant address because this may also be a sinkable load
1185     // whose address is not necessarily loop-invariant.
1186     if (ORE && Invalidated && CurLoop->isLoopInvariant(LI->getPointerOperand()))
1187       ORE->emit([&]() {
1188         return OptimizationRemarkMissed(
1189                    DEBUG_TYPE, "LoadWithLoopInvariantAddressInvalidated", LI)
1190                << "failed to move load with loop-invariant address "
1191                   "because the loop may invalidate its value";
1192       });
1193 
1194     return !Invalidated;
1195   } else if (CallInst *CI = dyn_cast<CallInst>(&I)) {
1196     // Don't sink or hoist dbg info; it's legal, but not useful.
1197     if (isa<DbgInfoIntrinsic>(I))
1198       return false;
1199 
1200     // Don't sink calls which can throw.
1201     if (CI->mayThrow())
1202       return false;
1203 
1204     // Convergent attribute has been used on operations that involve
1205     // inter-thread communication which results are implicitly affected by the
1206     // enclosing control flows. It is not safe to hoist or sink such operations
1207     // across control flow.
1208     if (CI->isConvergent())
1209       return false;
1210 
1211     using namespace PatternMatch;
1212     if (match(CI, m_Intrinsic<Intrinsic::assume>()))
1213       // Assumes don't actually alias anything or throw
1214       return true;
1215 
1216     // Handle simple cases by querying alias analysis.
1217     MemoryEffects Behavior = AA->getMemoryEffects(CI);
1218 
1219     // FIXME: we don't handle the semantics of thread local well. So that the
1220     // address of thread locals are fake constants in coroutines. So We forbid
1221     // to treat onlyReadsMemory call in coroutines as constants now. Note that
1222     // it is possible to hide a thread local access in a onlyReadsMemory call.
1223     // Remove this check after we handle the semantics of thread locals well.
1224     if (Behavior.onlyReadsMemory() && CI->getFunction()->isPresplitCoroutine())
1225       return false;
1226 
1227     if (Behavior.doesNotAccessMemory())
1228       return true;
1229     if (Behavior.onlyReadsMemory()) {
1230       // A readonly argmemonly function only reads from memory pointed to by
1231       // it's arguments with arbitrary offsets.  If we can prove there are no
1232       // writes to this memory in the loop, we can hoist or sink.
1233       if (Behavior.onlyAccessesArgPointees()) {
1234         // TODO: expand to writeable arguments
1235         for (Value *Op : CI->args())
1236           if (Op->getType()->isPointerTy() &&
1237               pointerInvalidatedByLoop(
1238                   MSSA, cast<MemoryUse>(MSSA->getMemoryAccess(CI)), CurLoop, I,
1239                   Flags, /*InvariantGroup=*/false))
1240             return false;
1241         return true;
1242       }
1243 
1244       // If this call only reads from memory and there are no writes to memory
1245       // in the loop, we can hoist or sink the call as appropriate.
1246       if (isReadOnly(MSSAU, CurLoop))
1247         return true;
1248     }
1249 
1250     // FIXME: This should use mod/ref information to see if we can hoist or
1251     // sink the call.
1252 
1253     return false;
1254   } else if (auto *FI = dyn_cast<FenceInst>(&I)) {
1255     // Fences alias (most) everything to provide ordering.  For the moment,
1256     // just give up if there are any other memory operations in the loop.
1257     return isOnlyMemoryAccess(FI, CurLoop, MSSAU);
1258   } else if (auto *SI = dyn_cast<StoreInst>(&I)) {
1259     if (!SI->isUnordered())
1260       return false; // Don't sink/hoist volatile or ordered atomic store!
1261 
1262     // We can only hoist a store that we can prove writes a value which is not
1263     // read or overwritten within the loop.  For those cases, we fallback to
1264     // load store promotion instead.  TODO: We can extend this to cases where
1265     // there is exactly one write to the location and that write dominates an
1266     // arbitrary number of reads in the loop.
1267     if (isOnlyMemoryAccess(SI, CurLoop, MSSAU))
1268       return true;
1269     // If there are more accesses than the Promotion cap, then give up as we're
1270     // not walking a list that long.
1271     if (Flags.tooManyMemoryAccesses())
1272       return false;
1273 
1274     auto *SIMD = MSSA->getMemoryAccess(SI);
1275     BatchAAResults BAA(*AA);
1276     auto *Source = getClobberingMemoryAccess(*MSSA, BAA, Flags, SIMD);
1277     // Make sure there are no clobbers inside the loop.
1278     if (!MSSA->isLiveOnEntryDef(Source) &&
1279            CurLoop->contains(Source->getBlock()))
1280       return false;
1281 
1282     // If there are interfering Uses (i.e. their defining access is in the
1283     // loop), or ordered loads (stored as Defs!), don't move this store.
1284     // Could do better here, but this is conservatively correct.
1285     // TODO: Cache set of Uses on the first walk in runOnLoop, update when
1286     // moving accesses. Can also extend to dominating uses.
1287     for (auto *BB : CurLoop->getBlocks())
1288       if (auto *Accesses = MSSA->getBlockAccesses(BB)) {
1289         for (const auto &MA : *Accesses)
1290           if (const auto *MU = dyn_cast<MemoryUse>(&MA)) {
1291             auto *MD = getClobberingMemoryAccess(*MSSA, BAA, Flags,
1292                 const_cast<MemoryUse *>(MU));
1293             if (!MSSA->isLiveOnEntryDef(MD) &&
1294                 CurLoop->contains(MD->getBlock()))
1295               return false;
1296             // Disable hoisting past potentially interfering loads. Optimized
1297             // Uses may point to an access outside the loop, as getClobbering
1298             // checks the previous iteration when walking the backedge.
1299             // FIXME: More precise: no Uses that alias SI.
1300             if (!Flags.getIsSink() && !MSSA->dominates(SIMD, MU))
1301               return false;
1302           } else if (const auto *MD = dyn_cast<MemoryDef>(&MA)) {
1303             if (auto *LI = dyn_cast<LoadInst>(MD->getMemoryInst())) {
1304               (void)LI; // Silence warning.
1305               assert(!LI->isUnordered() && "Expected unordered load");
1306               return false;
1307             }
1308             // Any call, while it may not be clobbering SI, it may be a use.
1309             if (auto *CI = dyn_cast<CallInst>(MD->getMemoryInst())) {
1310               // Check if the call may read from the memory location written
1311               // to by SI. Check CI's attributes and arguments; the number of
1312               // such checks performed is limited above by NoOfMemAccTooLarge.
1313               ModRefInfo MRI = BAA.getModRefInfo(CI, MemoryLocation::get(SI));
1314               if (isModOrRefSet(MRI))
1315                 return false;
1316             }
1317           }
1318       }
1319     return true;
1320   }
1321 
1322   assert(!I.mayReadOrWriteMemory() && "unhandled aliasing");
1323 
1324   // We've established mechanical ability and aliasing, it's up to the caller
1325   // to check fault safety
1326   return true;
1327 }
1328 
1329 /// Returns true if a PHINode is a trivially replaceable with an
1330 /// Instruction.
1331 /// This is true when all incoming values are that instruction.
1332 /// This pattern occurs most often with LCSSA PHI nodes.
1333 ///
1334 static bool isTriviallyReplaceablePHI(const PHINode &PN, const Instruction &I) {
1335   for (const Value *IncValue : PN.incoming_values())
1336     if (IncValue != &I)
1337       return false;
1338 
1339   return true;
1340 }
1341 
1342 /// Return true if the instruction is foldable in the loop.
1343 static bool isFoldableInLoop(const Instruction &I, const Loop *CurLoop,
1344                          const TargetTransformInfo *TTI) {
1345   if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
1346     InstructionCost CostI =
1347         TTI->getInstructionCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
1348     if (CostI != TargetTransformInfo::TCC_Free)
1349       return false;
1350     // For a GEP, we cannot simply use getInstructionCost because currently
1351     // it optimistically assumes that a GEP will fold into addressing mode
1352     // regardless of its users.
1353     const BasicBlock *BB = GEP->getParent();
1354     for (const User *U : GEP->users()) {
1355       const Instruction *UI = cast<Instruction>(U);
1356       if (CurLoop->contains(UI) &&
1357           (BB != UI->getParent() ||
1358            (!isa<StoreInst>(UI) && !isa<LoadInst>(UI))))
1359         return false;
1360     }
1361     return true;
1362   }
1363 
1364   return false;
1365 }
1366 
1367 /// Return true if the only users of this instruction are outside of
1368 /// the loop. If this is true, we can sink the instruction to the exit
1369 /// blocks of the loop.
1370 ///
1371 /// We also return true if the instruction could be folded away in lowering.
1372 /// (e.g.,  a GEP can be folded into a load as an addressing mode in the loop).
1373 static bool isNotUsedOrFoldableInLoop(const Instruction &I, const Loop *CurLoop,
1374                                       const LoopSafetyInfo *SafetyInfo,
1375                                       TargetTransformInfo *TTI,
1376                                       bool &FoldableInLoop, bool LoopNestMode) {
1377   const auto &BlockColors = SafetyInfo->getBlockColors();
1378   bool IsFoldable = isFoldableInLoop(I, CurLoop, TTI);
1379   for (const User *U : I.users()) {
1380     const Instruction *UI = cast<Instruction>(U);
1381     if (const PHINode *PN = dyn_cast<PHINode>(UI)) {
1382       const BasicBlock *BB = PN->getParent();
1383       // We cannot sink uses in catchswitches.
1384       if (isa<CatchSwitchInst>(BB->getTerminator()))
1385         return false;
1386 
1387       // We need to sink a callsite to a unique funclet.  Avoid sinking if the
1388       // phi use is too muddled.
1389       if (isa<CallInst>(I))
1390         if (!BlockColors.empty() &&
1391             BlockColors.find(const_cast<BasicBlock *>(BB))->second.size() != 1)
1392           return false;
1393 
1394       if (LoopNestMode) {
1395         while (isa<PHINode>(UI) && UI->hasOneUser() &&
1396                UI->getNumOperands() == 1) {
1397           if (!CurLoop->contains(UI))
1398             break;
1399           UI = cast<Instruction>(UI->user_back());
1400         }
1401       }
1402     }
1403 
1404     if (CurLoop->contains(UI)) {
1405       if (IsFoldable) {
1406         FoldableInLoop = true;
1407         continue;
1408       }
1409       return false;
1410     }
1411   }
1412   return true;
1413 }
1414 
1415 static Instruction *cloneInstructionInExitBlock(
1416     Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI,
1417     const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater &MSSAU) {
1418   Instruction *New;
1419   if (auto *CI = dyn_cast<CallInst>(&I)) {
1420     const auto &BlockColors = SafetyInfo->getBlockColors();
1421 
1422     // Sinking call-sites need to be handled differently from other
1423     // instructions.  The cloned call-site needs a funclet bundle operand
1424     // appropriate for its location in the CFG.
1425     SmallVector<OperandBundleDef, 1> OpBundles;
1426     for (unsigned BundleIdx = 0, BundleEnd = CI->getNumOperandBundles();
1427          BundleIdx != BundleEnd; ++BundleIdx) {
1428       OperandBundleUse Bundle = CI->getOperandBundleAt(BundleIdx);
1429       if (Bundle.getTagID() == LLVMContext::OB_funclet)
1430         continue;
1431 
1432       OpBundles.emplace_back(Bundle);
1433     }
1434 
1435     if (!BlockColors.empty()) {
1436       const ColorVector &CV = BlockColors.find(&ExitBlock)->second;
1437       assert(CV.size() == 1 && "non-unique color for exit block!");
1438       BasicBlock *BBColor = CV.front();
1439       Instruction *EHPad = BBColor->getFirstNonPHI();
1440       if (EHPad->isEHPad())
1441         OpBundles.emplace_back("funclet", EHPad);
1442     }
1443 
1444     New = CallInst::Create(CI, OpBundles);
1445   } else {
1446     New = I.clone();
1447   }
1448 
1449   New->insertInto(&ExitBlock, ExitBlock.getFirstInsertionPt());
1450   if (!I.getName().empty())
1451     New->setName(I.getName() + ".le");
1452 
1453   if (MSSAU.getMemorySSA()->getMemoryAccess(&I)) {
1454     // Create a new MemoryAccess and let MemorySSA set its defining access.
1455     MemoryAccess *NewMemAcc = MSSAU.createMemoryAccessInBB(
1456         New, nullptr, New->getParent(), MemorySSA::Beginning);
1457     if (NewMemAcc) {
1458       if (auto *MemDef = dyn_cast<MemoryDef>(NewMemAcc))
1459         MSSAU.insertDef(MemDef, /*RenameUses=*/true);
1460       else {
1461         auto *MemUse = cast<MemoryUse>(NewMemAcc);
1462         MSSAU.insertUse(MemUse, /*RenameUses=*/true);
1463       }
1464     }
1465   }
1466 
1467   // Build LCSSA PHI nodes for any in-loop operands (if legal).  Note that
1468   // this is particularly cheap because we can rip off the PHI node that we're
1469   // replacing for the number and blocks of the predecessors.
1470   // OPT: If this shows up in a profile, we can instead finish sinking all
1471   // invariant instructions, and then walk their operands to re-establish
1472   // LCSSA. That will eliminate creating PHI nodes just to nuke them when
1473   // sinking bottom-up.
1474   for (Use &Op : New->operands())
1475     if (LI->wouldBeOutOfLoopUseRequiringLCSSA(Op.get(), PN.getParent())) {
1476       auto *OInst = cast<Instruction>(Op.get());
1477       PHINode *OpPN =
1478           PHINode::Create(OInst->getType(), PN.getNumIncomingValues(),
1479                           OInst->getName() + ".lcssa");
1480       OpPN->insertBefore(ExitBlock.begin());
1481       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1482         OpPN->addIncoming(OInst, PN.getIncomingBlock(i));
1483       Op = OpPN;
1484     }
1485   return New;
1486 }
1487 
1488 static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo,
1489                              MemorySSAUpdater &MSSAU) {
1490   MSSAU.removeMemoryAccess(&I);
1491   SafetyInfo.removeInstruction(&I);
1492   I.eraseFromParent();
1493 }
1494 
1495 static void moveInstructionBefore(Instruction &I, BasicBlock::iterator Dest,
1496                                   ICFLoopSafetyInfo &SafetyInfo,
1497                                   MemorySSAUpdater &MSSAU,
1498                                   ScalarEvolution *SE) {
1499   SafetyInfo.removeInstruction(&I);
1500   SafetyInfo.insertInstructionTo(&I, Dest->getParent());
1501   I.moveBefore(*Dest->getParent(), Dest);
1502   if (MemoryUseOrDef *OldMemAcc = cast_or_null<MemoryUseOrDef>(
1503           MSSAU.getMemorySSA()->getMemoryAccess(&I)))
1504     MSSAU.moveToPlace(OldMemAcc, Dest->getParent(),
1505                       MemorySSA::BeforeTerminator);
1506   if (SE)
1507     SE->forgetBlockAndLoopDispositions(&I);
1508 }
1509 
1510 static Instruction *sinkThroughTriviallyReplaceablePHI(
1511     PHINode *TPN, Instruction *I, LoopInfo *LI,
1512     SmallDenseMap<BasicBlock *, Instruction *, 32> &SunkCopies,
1513     const LoopSafetyInfo *SafetyInfo, const Loop *CurLoop,
1514     MemorySSAUpdater &MSSAU) {
1515   assert(isTriviallyReplaceablePHI(*TPN, *I) &&
1516          "Expect only trivially replaceable PHI");
1517   BasicBlock *ExitBlock = TPN->getParent();
1518   Instruction *New;
1519   auto It = SunkCopies.find(ExitBlock);
1520   if (It != SunkCopies.end())
1521     New = It->second;
1522   else
1523     New = SunkCopies[ExitBlock] = cloneInstructionInExitBlock(
1524         *I, *ExitBlock, *TPN, LI, SafetyInfo, MSSAU);
1525   return New;
1526 }
1527 
1528 static bool canSplitPredecessors(PHINode *PN, LoopSafetyInfo *SafetyInfo) {
1529   BasicBlock *BB = PN->getParent();
1530   if (!BB->canSplitPredecessors())
1531     return false;
1532   // It's not impossible to split EHPad blocks, but if BlockColors already exist
1533   // it require updating BlockColors for all offspring blocks accordingly. By
1534   // skipping such corner case, we can make updating BlockColors after splitting
1535   // predecessor fairly simple.
1536   if (!SafetyInfo->getBlockColors().empty() && BB->getFirstNonPHI()->isEHPad())
1537     return false;
1538   for (BasicBlock *BBPred : predecessors(BB)) {
1539     if (isa<IndirectBrInst>(BBPred->getTerminator()))
1540       return false;
1541   }
1542   return true;
1543 }
1544 
1545 static void splitPredecessorsOfLoopExit(PHINode *PN, DominatorTree *DT,
1546                                         LoopInfo *LI, const Loop *CurLoop,
1547                                         LoopSafetyInfo *SafetyInfo,
1548                                         MemorySSAUpdater *MSSAU) {
1549 #ifndef NDEBUG
1550   SmallVector<BasicBlock *, 32> ExitBlocks;
1551   CurLoop->getUniqueExitBlocks(ExitBlocks);
1552   SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(),
1553                                              ExitBlocks.end());
1554 #endif
1555   BasicBlock *ExitBB = PN->getParent();
1556   assert(ExitBlockSet.count(ExitBB) && "Expect the PHI is in an exit block.");
1557 
1558   // Split predecessors of the loop exit to make instructions in the loop are
1559   // exposed to exit blocks through trivially replaceable PHIs while keeping the
1560   // loop in the canonical form where each predecessor of each exit block should
1561   // be contained within the loop. For example, this will convert the loop below
1562   // from
1563   //
1564   // LB1:
1565   //   %v1 =
1566   //   br %LE, %LB2
1567   // LB2:
1568   //   %v2 =
1569   //   br %LE, %LB1
1570   // LE:
1571   //   %p = phi [%v1, %LB1], [%v2, %LB2] <-- non-trivially replaceable
1572   //
1573   // to
1574   //
1575   // LB1:
1576   //   %v1 =
1577   //   br %LE.split, %LB2
1578   // LB2:
1579   //   %v2 =
1580   //   br %LE.split2, %LB1
1581   // LE.split:
1582   //   %p1 = phi [%v1, %LB1]  <-- trivially replaceable
1583   //   br %LE
1584   // LE.split2:
1585   //   %p2 = phi [%v2, %LB2]  <-- trivially replaceable
1586   //   br %LE
1587   // LE:
1588   //   %p = phi [%p1, %LE.split], [%p2, %LE.split2]
1589   //
1590   const auto &BlockColors = SafetyInfo->getBlockColors();
1591   SmallSetVector<BasicBlock *, 8> PredBBs(pred_begin(ExitBB), pred_end(ExitBB));
1592   while (!PredBBs.empty()) {
1593     BasicBlock *PredBB = *PredBBs.begin();
1594     assert(CurLoop->contains(PredBB) &&
1595            "Expect all predecessors are in the loop");
1596     if (PN->getBasicBlockIndex(PredBB) >= 0) {
1597       BasicBlock *NewPred = SplitBlockPredecessors(
1598           ExitBB, PredBB, ".split.loop.exit", DT, LI, MSSAU, true);
1599       // Since we do not allow splitting EH-block with BlockColors in
1600       // canSplitPredecessors(), we can simply assign predecessor's color to
1601       // the new block.
1602       if (!BlockColors.empty())
1603         // Grab a reference to the ColorVector to be inserted before getting the
1604         // reference to the vector we are copying because inserting the new
1605         // element in BlockColors might cause the map to be reallocated.
1606         SafetyInfo->copyColors(NewPred, PredBB);
1607     }
1608     PredBBs.remove(PredBB);
1609   }
1610 }
1611 
1612 /// When an instruction is found to only be used outside of the loop, this
1613 /// function moves it to the exit blocks and patches up SSA form as needed.
1614 /// This method is guaranteed to remove the original instruction from its
1615 /// position, and may either delete it or move it to outside of the loop.
1616 ///
1617 static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT,
1618                  const Loop *CurLoop, ICFLoopSafetyInfo *SafetyInfo,
1619                  MemorySSAUpdater &MSSAU, OptimizationRemarkEmitter *ORE) {
1620   bool Changed = false;
1621   LLVM_DEBUG(dbgs() << "LICM sinking instruction: " << I << "\n");
1622 
1623   // Iterate over users to be ready for actual sinking. Replace users via
1624   // unreachable blocks with undef and make all user PHIs trivially replaceable.
1625   SmallPtrSet<Instruction *, 8> VisitedUsers;
1626   for (Value::user_iterator UI = I.user_begin(), UE = I.user_end(); UI != UE;) {
1627     auto *User = cast<Instruction>(*UI);
1628     Use &U = UI.getUse();
1629     ++UI;
1630 
1631     if (VisitedUsers.count(User) || CurLoop->contains(User))
1632       continue;
1633 
1634     if (!DT->isReachableFromEntry(User->getParent())) {
1635       U = PoisonValue::get(I.getType());
1636       Changed = true;
1637       continue;
1638     }
1639 
1640     // The user must be a PHI node.
1641     PHINode *PN = cast<PHINode>(User);
1642 
1643     // Surprisingly, instructions can be used outside of loops without any
1644     // exits.  This can only happen in PHI nodes if the incoming block is
1645     // unreachable.
1646     BasicBlock *BB = PN->getIncomingBlock(U);
1647     if (!DT->isReachableFromEntry(BB)) {
1648       U = PoisonValue::get(I.getType());
1649       Changed = true;
1650       continue;
1651     }
1652 
1653     VisitedUsers.insert(PN);
1654     if (isTriviallyReplaceablePHI(*PN, I))
1655       continue;
1656 
1657     if (!canSplitPredecessors(PN, SafetyInfo))
1658       return Changed;
1659 
1660     // Split predecessors of the PHI so that we can make users trivially
1661     // replaceable.
1662     splitPredecessorsOfLoopExit(PN, DT, LI, CurLoop, SafetyInfo, &MSSAU);
1663 
1664     // Should rebuild the iterators, as they may be invalidated by
1665     // splitPredecessorsOfLoopExit().
1666     UI = I.user_begin();
1667     UE = I.user_end();
1668   }
1669 
1670   if (VisitedUsers.empty())
1671     return Changed;
1672 
1673   ORE->emit([&]() {
1674     return OptimizationRemark(DEBUG_TYPE, "InstSunk", &I)
1675            << "sinking " << ore::NV("Inst", &I);
1676   });
1677   if (isa<LoadInst>(I))
1678     ++NumMovedLoads;
1679   else if (isa<CallInst>(I))
1680     ++NumMovedCalls;
1681   ++NumSunk;
1682 
1683 #ifndef NDEBUG
1684   SmallVector<BasicBlock *, 32> ExitBlocks;
1685   CurLoop->getUniqueExitBlocks(ExitBlocks);
1686   SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(),
1687                                              ExitBlocks.end());
1688 #endif
1689 
1690   // Clones of this instruction. Don't create more than one per exit block!
1691   SmallDenseMap<BasicBlock *, Instruction *, 32> SunkCopies;
1692 
1693   // If this instruction is only used outside of the loop, then all users are
1694   // PHI nodes in exit blocks due to LCSSA form. Just RAUW them with clones of
1695   // the instruction.
1696   // First check if I is worth sinking for all uses. Sink only when it is worth
1697   // across all uses.
1698   SmallSetVector<User*, 8> Users(I.user_begin(), I.user_end());
1699   for (auto *UI : Users) {
1700     auto *User = cast<Instruction>(UI);
1701 
1702     if (CurLoop->contains(User))
1703       continue;
1704 
1705     PHINode *PN = cast<PHINode>(User);
1706     assert(ExitBlockSet.count(PN->getParent()) &&
1707            "The LCSSA PHI is not in an exit block!");
1708 
1709     // The PHI must be trivially replaceable.
1710     Instruction *New = sinkThroughTriviallyReplaceablePHI(
1711         PN, &I, LI, SunkCopies, SafetyInfo, CurLoop, MSSAU);
1712     // As we sink the instruction out of the BB, drop its debug location.
1713     New->dropLocation();
1714     PN->replaceAllUsesWith(New);
1715     eraseInstruction(*PN, *SafetyInfo, MSSAU);
1716     Changed = true;
1717   }
1718   return Changed;
1719 }
1720 
1721 /// When an instruction is found to only use loop invariant operands that
1722 /// is safe to hoist, this instruction is called to do the dirty work.
1723 ///
1724 static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop,
1725                   BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo,
1726                   MemorySSAUpdater &MSSAU, ScalarEvolution *SE,
1727                   OptimizationRemarkEmitter *ORE) {
1728   LLVM_DEBUG(dbgs() << "LICM hoisting to " << Dest->getNameOrAsOperand() << ": "
1729                     << I << "\n");
1730   ORE->emit([&]() {
1731     return OptimizationRemark(DEBUG_TYPE, "Hoisted", &I) << "hoisting "
1732                                                          << ore::NV("Inst", &I);
1733   });
1734 
1735   // Metadata can be dependent on conditions we are hoisting above.
1736   // Conservatively strip all metadata on the instruction unless we were
1737   // guaranteed to execute I if we entered the loop, in which case the metadata
1738   // is valid in the loop preheader.
1739   // Similarly, If I is a call and it is not guaranteed to execute in the loop,
1740   // then moving to the preheader means we should strip attributes on the call
1741   // that can cause UB since we may be hoisting above conditions that allowed
1742   // inferring those attributes. They may not be valid at the preheader.
1743   if ((I.hasMetadataOtherThanDebugLoc() || isa<CallInst>(I)) &&
1744       // The check on hasMetadataOtherThanDebugLoc is to prevent us from burning
1745       // time in isGuaranteedToExecute if we don't actually have anything to
1746       // drop.  It is a compile time optimization, not required for correctness.
1747       !SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop))
1748     I.dropUBImplyingAttrsAndMetadata();
1749 
1750   if (isa<PHINode>(I))
1751     // Move the new node to the end of the phi list in the destination block.
1752     moveInstructionBefore(I, Dest->getFirstNonPHIIt(), *SafetyInfo, MSSAU, SE);
1753   else
1754     // Move the new node to the destination block, before its terminator.
1755     moveInstructionBefore(I, Dest->getTerminator()->getIterator(), *SafetyInfo,
1756                           MSSAU, SE);
1757 
1758   I.updateLocationAfterHoist();
1759 
1760   if (isa<LoadInst>(I))
1761     ++NumMovedLoads;
1762   else if (isa<CallInst>(I))
1763     ++NumMovedCalls;
1764   ++NumHoisted;
1765 }
1766 
1767 /// Only sink or hoist an instruction if it is not a trapping instruction,
1768 /// or if the instruction is known not to trap when moved to the preheader.
1769 /// or if it is a trapping instruction and is guaranteed to execute.
1770 static bool isSafeToExecuteUnconditionally(
1771     Instruction &Inst, const DominatorTree *DT, const TargetLibraryInfo *TLI,
1772     const Loop *CurLoop, const LoopSafetyInfo *SafetyInfo,
1773     OptimizationRemarkEmitter *ORE, const Instruction *CtxI,
1774     AssumptionCache *AC, bool AllowSpeculation) {
1775   if (AllowSpeculation &&
1776       isSafeToSpeculativelyExecute(&Inst, CtxI, AC, DT, TLI))
1777     return true;
1778 
1779   bool GuaranteedToExecute =
1780       SafetyInfo->isGuaranteedToExecute(Inst, DT, CurLoop);
1781 
1782   if (!GuaranteedToExecute) {
1783     auto *LI = dyn_cast<LoadInst>(&Inst);
1784     if (LI && CurLoop->isLoopInvariant(LI->getPointerOperand()))
1785       ORE->emit([&]() {
1786         return OptimizationRemarkMissed(
1787                    DEBUG_TYPE, "LoadWithLoopInvariantAddressCondExecuted", LI)
1788                << "failed to hoist load with loop-invariant address "
1789                   "because load is conditionally executed";
1790       });
1791   }
1792 
1793   return GuaranteedToExecute;
1794 }
1795 
1796 namespace {
1797 class LoopPromoter : public LoadAndStorePromoter {
1798   Value *SomePtr; // Designated pointer to store to.
1799   SmallVectorImpl<BasicBlock *> &LoopExitBlocks;
1800   SmallVectorImpl<BasicBlock::iterator> &LoopInsertPts;
1801   SmallVectorImpl<MemoryAccess *> &MSSAInsertPts;
1802   PredIteratorCache &PredCache;
1803   MemorySSAUpdater &MSSAU;
1804   LoopInfo &LI;
1805   DebugLoc DL;
1806   Align Alignment;
1807   bool UnorderedAtomic;
1808   AAMDNodes AATags;
1809   ICFLoopSafetyInfo &SafetyInfo;
1810   bool CanInsertStoresInExitBlocks;
1811   ArrayRef<const Instruction *> Uses;
1812 
1813   // We're about to add a use of V in a loop exit block.  Insert an LCSSA phi
1814   // (if legal) if doing so would add an out-of-loop use to an instruction
1815   // defined in-loop.
1816   Value *maybeInsertLCSSAPHI(Value *V, BasicBlock *BB) const {
1817     if (!LI.wouldBeOutOfLoopUseRequiringLCSSA(V, BB))
1818       return V;
1819 
1820     Instruction *I = cast<Instruction>(V);
1821     // We need to create an LCSSA PHI node for the incoming value and
1822     // store that.
1823     PHINode *PN = PHINode::Create(I->getType(), PredCache.size(BB),
1824                                   I->getName() + ".lcssa");
1825     PN->insertBefore(BB->begin());
1826     for (BasicBlock *Pred : PredCache.get(BB))
1827       PN->addIncoming(I, Pred);
1828     return PN;
1829   }
1830 
1831 public:
1832   LoopPromoter(Value *SP, ArrayRef<const Instruction *> Insts, SSAUpdater &S,
1833                SmallVectorImpl<BasicBlock *> &LEB,
1834                SmallVectorImpl<BasicBlock::iterator> &LIP,
1835                SmallVectorImpl<MemoryAccess *> &MSSAIP, PredIteratorCache &PIC,
1836                MemorySSAUpdater &MSSAU, LoopInfo &li, DebugLoc dl,
1837                Align Alignment, bool UnorderedAtomic, const AAMDNodes &AATags,
1838                ICFLoopSafetyInfo &SafetyInfo, bool CanInsertStoresInExitBlocks)
1839       : LoadAndStorePromoter(Insts, S), SomePtr(SP), LoopExitBlocks(LEB),
1840         LoopInsertPts(LIP), MSSAInsertPts(MSSAIP), PredCache(PIC), MSSAU(MSSAU),
1841         LI(li), DL(std::move(dl)), Alignment(Alignment),
1842         UnorderedAtomic(UnorderedAtomic), AATags(AATags),
1843         SafetyInfo(SafetyInfo),
1844         CanInsertStoresInExitBlocks(CanInsertStoresInExitBlocks), Uses(Insts) {}
1845 
1846   void insertStoresInLoopExitBlocks() {
1847     // Insert stores after in the loop exit blocks.  Each exit block gets a
1848     // store of the live-out values that feed them.  Since we've already told
1849     // the SSA updater about the defs in the loop and the preheader
1850     // definition, it is all set and we can start using it.
1851     DIAssignID *NewID = nullptr;
1852     for (unsigned i = 0, e = LoopExitBlocks.size(); i != e; ++i) {
1853       BasicBlock *ExitBlock = LoopExitBlocks[i];
1854       Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock);
1855       LiveInValue = maybeInsertLCSSAPHI(LiveInValue, ExitBlock);
1856       Value *Ptr = maybeInsertLCSSAPHI(SomePtr, ExitBlock);
1857       BasicBlock::iterator InsertPos = LoopInsertPts[i];
1858       StoreInst *NewSI = new StoreInst(LiveInValue, Ptr, InsertPos);
1859       if (UnorderedAtomic)
1860         NewSI->setOrdering(AtomicOrdering::Unordered);
1861       NewSI->setAlignment(Alignment);
1862       NewSI->setDebugLoc(DL);
1863       // Attach DIAssignID metadata to the new store, generating it on the
1864       // first loop iteration.
1865       if (i == 0) {
1866         // NewSI will have its DIAssignID set here if there are any stores in
1867         // Uses with a DIAssignID attachment. This merged ID will then be
1868         // attached to the other inserted stores (in the branch below).
1869         NewSI->mergeDIAssignID(Uses);
1870         NewID = cast_or_null<DIAssignID>(
1871             NewSI->getMetadata(LLVMContext::MD_DIAssignID));
1872       } else {
1873         // Attach the DIAssignID (or nullptr) merged from Uses in the branch
1874         // above.
1875         NewSI->setMetadata(LLVMContext::MD_DIAssignID, NewID);
1876       }
1877 
1878       if (AATags)
1879         NewSI->setAAMetadata(AATags);
1880 
1881       MemoryAccess *MSSAInsertPoint = MSSAInsertPts[i];
1882       MemoryAccess *NewMemAcc;
1883       if (!MSSAInsertPoint) {
1884         NewMemAcc = MSSAU.createMemoryAccessInBB(
1885             NewSI, nullptr, NewSI->getParent(), MemorySSA::Beginning);
1886       } else {
1887         NewMemAcc =
1888             MSSAU.createMemoryAccessAfter(NewSI, nullptr, MSSAInsertPoint);
1889       }
1890       MSSAInsertPts[i] = NewMemAcc;
1891       MSSAU.insertDef(cast<MemoryDef>(NewMemAcc), true);
1892       // FIXME: true for safety, false may still be correct.
1893     }
1894   }
1895 
1896   void doExtraRewritesBeforeFinalDeletion() override {
1897     if (CanInsertStoresInExitBlocks)
1898       insertStoresInLoopExitBlocks();
1899   }
1900 
1901   void instructionDeleted(Instruction *I) const override {
1902     SafetyInfo.removeInstruction(I);
1903     MSSAU.removeMemoryAccess(I);
1904   }
1905 
1906   bool shouldDelete(Instruction *I) const override {
1907     if (isa<StoreInst>(I))
1908       return CanInsertStoresInExitBlocks;
1909     return true;
1910   }
1911 };
1912 
1913 bool isNotCapturedBeforeOrInLoop(const Value *V, const Loop *L,
1914                                  DominatorTree *DT) {
1915   // We can perform the captured-before check against any instruction in the
1916   // loop header, as the loop header is reachable from any instruction inside
1917   // the loop.
1918   // TODO: ReturnCaptures=true shouldn't be necessary here.
1919   return !PointerMayBeCapturedBefore(V, /* ReturnCaptures */ true,
1920                                      /* StoreCaptures */ true,
1921                                      L->getHeader()->getTerminator(), DT);
1922 }
1923 
1924 /// Return true if we can prove that a caller cannot inspect the object if an
1925 /// unwind occurs inside the loop.
1926 bool isNotVisibleOnUnwindInLoop(const Value *Object, const Loop *L,
1927                                 DominatorTree *DT) {
1928   bool RequiresNoCaptureBeforeUnwind;
1929   if (!isNotVisibleOnUnwind(Object, RequiresNoCaptureBeforeUnwind))
1930     return false;
1931 
1932   return !RequiresNoCaptureBeforeUnwind ||
1933          isNotCapturedBeforeOrInLoop(Object, L, DT);
1934 }
1935 
1936 bool isThreadLocalObject(const Value *Object, const Loop *L, DominatorTree *DT,
1937                          TargetTransformInfo *TTI) {
1938   // The object must be function-local to start with, and then not captured
1939   // before/in the loop.
1940   return (isIdentifiedFunctionLocal(Object) &&
1941           isNotCapturedBeforeOrInLoop(Object, L, DT)) ||
1942          (TTI->isSingleThreaded() || SingleThread);
1943 }
1944 
1945 } // namespace
1946 
1947 /// Try to promote memory values to scalars by sinking stores out of the
1948 /// loop and moving loads to before the loop.  We do this by looping over
1949 /// the stores in the loop, looking for stores to Must pointers which are
1950 /// loop invariant.
1951 ///
1952 bool llvm::promoteLoopAccessesToScalars(
1953     const SmallSetVector<Value *, 8> &PointerMustAliases,
1954     SmallVectorImpl<BasicBlock *> &ExitBlocks,
1955     SmallVectorImpl<BasicBlock::iterator> &InsertPts,
1956     SmallVectorImpl<MemoryAccess *> &MSSAInsertPts, PredIteratorCache &PIC,
1957     LoopInfo *LI, DominatorTree *DT, AssumptionCache *AC,
1958     const TargetLibraryInfo *TLI, TargetTransformInfo *TTI, Loop *CurLoop,
1959     MemorySSAUpdater &MSSAU, ICFLoopSafetyInfo *SafetyInfo,
1960     OptimizationRemarkEmitter *ORE, bool AllowSpeculation,
1961     bool HasReadsOutsideSet) {
1962   // Verify inputs.
1963   assert(LI != nullptr && DT != nullptr && CurLoop != nullptr &&
1964          SafetyInfo != nullptr &&
1965          "Unexpected Input to promoteLoopAccessesToScalars");
1966 
1967   LLVM_DEBUG({
1968     dbgs() << "Trying to promote set of must-aliased pointers:\n";
1969     for (Value *Ptr : PointerMustAliases)
1970       dbgs() << "  " << *Ptr << "\n";
1971   });
1972   ++NumPromotionCandidates;
1973 
1974   Value *SomePtr = *PointerMustAliases.begin();
1975   BasicBlock *Preheader = CurLoop->getLoopPreheader();
1976 
1977   // It is not safe to promote a load/store from the loop if the load/store is
1978   // conditional.  For example, turning:
1979   //
1980   //    for () { if (c) *P += 1; }
1981   //
1982   // into:
1983   //
1984   //    tmp = *P;  for () { if (c) tmp +=1; } *P = tmp;
1985   //
1986   // is not safe, because *P may only be valid to access if 'c' is true.
1987   //
1988   // The safety property divides into two parts:
1989   // p1) The memory may not be dereferenceable on entry to the loop.  In this
1990   //    case, we can't insert the required load in the preheader.
1991   // p2) The memory model does not allow us to insert a store along any dynamic
1992   //    path which did not originally have one.
1993   //
1994   // If at least one store is guaranteed to execute, both properties are
1995   // satisfied, and promotion is legal.
1996   //
1997   // This, however, is not a necessary condition. Even if no store/load is
1998   // guaranteed to execute, we can still establish these properties.
1999   // We can establish (p1) by proving that hoisting the load into the preheader
2000   // is safe (i.e. proving dereferenceability on all paths through the loop). We
2001   // can use any access within the alias set to prove dereferenceability,
2002   // since they're all must alias.
2003   //
2004   // There are two ways establish (p2):
2005   // a) Prove the location is thread-local. In this case the memory model
2006   // requirement does not apply, and stores are safe to insert.
2007   // b) Prove a store dominates every exit block. In this case, if an exit
2008   // blocks is reached, the original dynamic path would have taken us through
2009   // the store, so inserting a store into the exit block is safe. Note that this
2010   // is different from the store being guaranteed to execute. For instance,
2011   // if an exception is thrown on the first iteration of the loop, the original
2012   // store is never executed, but the exit blocks are not executed either.
2013 
2014   bool DereferenceableInPH = false;
2015   bool StoreIsGuanteedToExecute = false;
2016   bool FoundLoadToPromote = false;
2017   // Goes from Unknown to either Safe or Unsafe, but can't switch between them.
2018   enum {
2019     StoreSafe,
2020     StoreUnsafe,
2021     StoreSafetyUnknown,
2022   } StoreSafety = StoreSafetyUnknown;
2023 
2024   SmallVector<Instruction *, 64> LoopUses;
2025 
2026   // We start with an alignment of one and try to find instructions that allow
2027   // us to prove better alignment.
2028   Align Alignment;
2029   // Keep track of which types of access we see
2030   bool SawUnorderedAtomic = false;
2031   bool SawNotAtomic = false;
2032   AAMDNodes AATags;
2033 
2034   const DataLayout &MDL = Preheader->getModule()->getDataLayout();
2035 
2036   // If there are reads outside the promoted set, then promoting stores is
2037   // definitely not safe.
2038   if (HasReadsOutsideSet)
2039     StoreSafety = StoreUnsafe;
2040 
2041   if (StoreSafety == StoreSafetyUnknown && SafetyInfo->anyBlockMayThrow()) {
2042     // If a loop can throw, we have to insert a store along each unwind edge.
2043     // That said, we can't actually make the unwind edge explicit. Therefore,
2044     // we have to prove that the store is dead along the unwind edge.  We do
2045     // this by proving that the caller can't have a reference to the object
2046     // after return and thus can't possibly load from the object.
2047     Value *Object = getUnderlyingObject(SomePtr);
2048     if (!isNotVisibleOnUnwindInLoop(Object, CurLoop, DT))
2049       StoreSafety = StoreUnsafe;
2050   }
2051 
2052   // Check that all accesses to pointers in the alias set use the same type.
2053   // We cannot (yet) promote a memory location that is loaded and stored in
2054   // different sizes.  While we are at it, collect alignment and AA info.
2055   Type *AccessTy = nullptr;
2056   for (Value *ASIV : PointerMustAliases) {
2057     for (Use &U : ASIV->uses()) {
2058       // Ignore instructions that are outside the loop.
2059       Instruction *UI = dyn_cast<Instruction>(U.getUser());
2060       if (!UI || !CurLoop->contains(UI))
2061         continue;
2062 
2063       // If there is an non-load/store instruction in the loop, we can't promote
2064       // it.
2065       if (LoadInst *Load = dyn_cast<LoadInst>(UI)) {
2066         if (!Load->isUnordered())
2067           return false;
2068 
2069         SawUnorderedAtomic |= Load->isAtomic();
2070         SawNotAtomic |= !Load->isAtomic();
2071         FoundLoadToPromote = true;
2072 
2073         Align InstAlignment = Load->getAlign();
2074 
2075         // Note that proving a load safe to speculate requires proving
2076         // sufficient alignment at the target location.  Proving it guaranteed
2077         // to execute does as well.  Thus we can increase our guaranteed
2078         // alignment as well.
2079         if (!DereferenceableInPH || (InstAlignment > Alignment))
2080           if (isSafeToExecuteUnconditionally(
2081                   *Load, DT, TLI, CurLoop, SafetyInfo, ORE,
2082                   Preheader->getTerminator(), AC, AllowSpeculation)) {
2083             DereferenceableInPH = true;
2084             Alignment = std::max(Alignment, InstAlignment);
2085           }
2086       } else if (const StoreInst *Store = dyn_cast<StoreInst>(UI)) {
2087         // Stores *of* the pointer are not interesting, only stores *to* the
2088         // pointer.
2089         if (U.getOperandNo() != StoreInst::getPointerOperandIndex())
2090           continue;
2091         if (!Store->isUnordered())
2092           return false;
2093 
2094         SawUnorderedAtomic |= Store->isAtomic();
2095         SawNotAtomic |= !Store->isAtomic();
2096 
2097         // If the store is guaranteed to execute, both properties are satisfied.
2098         // We may want to check if a store is guaranteed to execute even if we
2099         // already know that promotion is safe, since it may have higher
2100         // alignment than any other guaranteed stores, in which case we can
2101         // raise the alignment on the promoted store.
2102         Align InstAlignment = Store->getAlign();
2103         bool GuaranteedToExecute =
2104             SafetyInfo->isGuaranteedToExecute(*UI, DT, CurLoop);
2105         StoreIsGuanteedToExecute |= GuaranteedToExecute;
2106         if (GuaranteedToExecute) {
2107           DereferenceableInPH = true;
2108           if (StoreSafety == StoreSafetyUnknown)
2109             StoreSafety = StoreSafe;
2110           Alignment = std::max(Alignment, InstAlignment);
2111         }
2112 
2113         // If a store dominates all exit blocks, it is safe to sink.
2114         // As explained above, if an exit block was executed, a dominating
2115         // store must have been executed at least once, so we are not
2116         // introducing stores on paths that did not have them.
2117         // Note that this only looks at explicit exit blocks. If we ever
2118         // start sinking stores into unwind edges (see above), this will break.
2119         if (StoreSafety == StoreSafetyUnknown &&
2120             llvm::all_of(ExitBlocks, [&](BasicBlock *Exit) {
2121               return DT->dominates(Store->getParent(), Exit);
2122             }))
2123           StoreSafety = StoreSafe;
2124 
2125         // If the store is not guaranteed to execute, we may still get
2126         // deref info through it.
2127         if (!DereferenceableInPH) {
2128           DereferenceableInPH = isDereferenceableAndAlignedPointer(
2129               Store->getPointerOperand(), Store->getValueOperand()->getType(),
2130               Store->getAlign(), MDL, Preheader->getTerminator(), AC, DT, TLI);
2131         }
2132       } else
2133         continue; // Not a load or store.
2134 
2135       if (!AccessTy)
2136         AccessTy = getLoadStoreType(UI);
2137       else if (AccessTy != getLoadStoreType(UI))
2138         return false;
2139 
2140       // Merge the AA tags.
2141       if (LoopUses.empty()) {
2142         // On the first load/store, just take its AA tags.
2143         AATags = UI->getAAMetadata();
2144       } else if (AATags) {
2145         AATags = AATags.merge(UI->getAAMetadata());
2146       }
2147 
2148       LoopUses.push_back(UI);
2149     }
2150   }
2151 
2152   // If we found both an unordered atomic instruction and a non-atomic memory
2153   // access, bail.  We can't blindly promote non-atomic to atomic since we
2154   // might not be able to lower the result.  We can't downgrade since that
2155   // would violate memory model.  Also, align 0 is an error for atomics.
2156   if (SawUnorderedAtomic && SawNotAtomic)
2157     return false;
2158 
2159   // If we're inserting an atomic load in the preheader, we must be able to
2160   // lower it.  We're only guaranteed to be able to lower naturally aligned
2161   // atomics.
2162   if (SawUnorderedAtomic && Alignment < MDL.getTypeStoreSize(AccessTy))
2163     return false;
2164 
2165   // If we couldn't prove we can hoist the load, bail.
2166   if (!DereferenceableInPH) {
2167     LLVM_DEBUG(dbgs() << "Not promoting: Not dereferenceable in preheader\n");
2168     return false;
2169   }
2170 
2171   // We know we can hoist the load, but don't have a guaranteed store.
2172   // Check whether the location is writable and thread-local. If it is, then we
2173   // can insert stores along paths which originally didn't have them without
2174   // violating the memory model.
2175   if (StoreSafety == StoreSafetyUnknown) {
2176     Value *Object = getUnderlyingObject(SomePtr);
2177     bool ExplicitlyDereferenceableOnly;
2178     if (isWritableObject(Object, ExplicitlyDereferenceableOnly) &&
2179         (!ExplicitlyDereferenceableOnly ||
2180          isDereferenceablePointer(SomePtr, AccessTy, MDL)) &&
2181         isThreadLocalObject(Object, CurLoop, DT, TTI))
2182       StoreSafety = StoreSafe;
2183   }
2184 
2185   // If we've still failed to prove we can sink the store, hoist the load
2186   // only, if possible.
2187   if (StoreSafety != StoreSafe && !FoundLoadToPromote)
2188     // If we cannot hoist the load either, give up.
2189     return false;
2190 
2191   // Lets do the promotion!
2192   if (StoreSafety == StoreSafe) {
2193     LLVM_DEBUG(dbgs() << "LICM: Promoting load/store of the value: " << *SomePtr
2194                       << '\n');
2195     ++NumLoadStorePromoted;
2196   } else {
2197     LLVM_DEBUG(dbgs() << "LICM: Promoting load of the value: " << *SomePtr
2198                       << '\n');
2199     ++NumLoadPromoted;
2200   }
2201 
2202   ORE->emit([&]() {
2203     return OptimizationRemark(DEBUG_TYPE, "PromoteLoopAccessesToScalar",
2204                               LoopUses[0])
2205            << "Moving accesses to memory location out of the loop";
2206   });
2207 
2208   // Look at all the loop uses, and try to merge their locations.
2209   std::vector<DILocation *> LoopUsesLocs;
2210   for (auto *U : LoopUses)
2211     LoopUsesLocs.push_back(U->getDebugLoc().get());
2212   auto DL = DebugLoc(DILocation::getMergedLocations(LoopUsesLocs));
2213 
2214   // We use the SSAUpdater interface to insert phi nodes as required.
2215   SmallVector<PHINode *, 16> NewPHIs;
2216   SSAUpdater SSA(&NewPHIs);
2217   LoopPromoter Promoter(SomePtr, LoopUses, SSA, ExitBlocks, InsertPts,
2218                         MSSAInsertPts, PIC, MSSAU, *LI, DL, Alignment,
2219                         SawUnorderedAtomic, AATags, *SafetyInfo,
2220                         StoreSafety == StoreSafe);
2221 
2222   // Set up the preheader to have a definition of the value.  It is the live-out
2223   // value from the preheader that uses in the loop will use.
2224   LoadInst *PreheaderLoad = nullptr;
2225   if (FoundLoadToPromote || !StoreIsGuanteedToExecute) {
2226     PreheaderLoad =
2227         new LoadInst(AccessTy, SomePtr, SomePtr->getName() + ".promoted",
2228                      Preheader->getTerminator());
2229     if (SawUnorderedAtomic)
2230       PreheaderLoad->setOrdering(AtomicOrdering::Unordered);
2231     PreheaderLoad->setAlignment(Alignment);
2232     PreheaderLoad->setDebugLoc(DebugLoc());
2233     if (AATags)
2234       PreheaderLoad->setAAMetadata(AATags);
2235 
2236     MemoryAccess *PreheaderLoadMemoryAccess = MSSAU.createMemoryAccessInBB(
2237         PreheaderLoad, nullptr, PreheaderLoad->getParent(), MemorySSA::End);
2238     MemoryUse *NewMemUse = cast<MemoryUse>(PreheaderLoadMemoryAccess);
2239     MSSAU.insertUse(NewMemUse, /*RenameUses=*/true);
2240     SSA.AddAvailableValue(Preheader, PreheaderLoad);
2241   } else {
2242     SSA.AddAvailableValue(Preheader, PoisonValue::get(AccessTy));
2243   }
2244 
2245   if (VerifyMemorySSA)
2246     MSSAU.getMemorySSA()->verifyMemorySSA();
2247   // Rewrite all the loads in the loop and remember all the definitions from
2248   // stores in the loop.
2249   Promoter.run(LoopUses);
2250 
2251   if (VerifyMemorySSA)
2252     MSSAU.getMemorySSA()->verifyMemorySSA();
2253   // If the SSAUpdater didn't use the load in the preheader, just zap it now.
2254   if (PreheaderLoad && PreheaderLoad->use_empty())
2255     eraseInstruction(*PreheaderLoad, *SafetyInfo, MSSAU);
2256 
2257   return true;
2258 }
2259 
2260 static void foreachMemoryAccess(MemorySSA *MSSA, Loop *L,
2261                                 function_ref<void(Instruction *)> Fn) {
2262   for (const BasicBlock *BB : L->blocks())
2263     if (const auto *Accesses = MSSA->getBlockAccesses(BB))
2264       for (const auto &Access : *Accesses)
2265         if (const auto *MUD = dyn_cast<MemoryUseOrDef>(&Access))
2266           Fn(MUD->getMemoryInst());
2267 }
2268 
2269 // The bool indicates whether there might be reads outside the set, in which
2270 // case only loads may be promoted.
2271 static SmallVector<PointersAndHasReadsOutsideSet, 0>
2272 collectPromotionCandidates(MemorySSA *MSSA, AliasAnalysis *AA, Loop *L) {
2273   BatchAAResults BatchAA(*AA);
2274   AliasSetTracker AST(BatchAA);
2275 
2276   auto IsPotentiallyPromotable = [L](const Instruction *I) {
2277     if (const auto *SI = dyn_cast<StoreInst>(I))
2278       return L->isLoopInvariant(SI->getPointerOperand());
2279     if (const auto *LI = dyn_cast<LoadInst>(I))
2280       return L->isLoopInvariant(LI->getPointerOperand());
2281     return false;
2282   };
2283 
2284   // Populate AST with potentially promotable accesses.
2285   SmallPtrSet<Value *, 16> AttemptingPromotion;
2286   foreachMemoryAccess(MSSA, L, [&](Instruction *I) {
2287     if (IsPotentiallyPromotable(I)) {
2288       AttemptingPromotion.insert(I);
2289       AST.add(I);
2290     }
2291   });
2292 
2293   // We're only interested in must-alias sets that contain a mod.
2294   SmallVector<PointerIntPair<const AliasSet *, 1, bool>, 8> Sets;
2295   for (AliasSet &AS : AST)
2296     if (!AS.isForwardingAliasSet() && AS.isMod() && AS.isMustAlias())
2297       Sets.push_back({&AS, false});
2298 
2299   if (Sets.empty())
2300     return {}; // Nothing to promote...
2301 
2302   // Discard any sets for which there is an aliasing non-promotable access.
2303   foreachMemoryAccess(MSSA, L, [&](Instruction *I) {
2304     if (AttemptingPromotion.contains(I))
2305       return;
2306 
2307     llvm::erase_if(Sets, [&](PointerIntPair<const AliasSet *, 1, bool> &Pair) {
2308       ModRefInfo MR = Pair.getPointer()->aliasesUnknownInst(I, BatchAA);
2309       // Cannot promote if there are writes outside the set.
2310       if (isModSet(MR))
2311         return true;
2312       if (isRefSet(MR)) {
2313         // Remember reads outside the set.
2314         Pair.setInt(true);
2315         // If this is a mod-only set and there are reads outside the set,
2316         // we will not be able to promote, so bail out early.
2317         return !Pair.getPointer()->isRef();
2318       }
2319       return false;
2320     });
2321   });
2322 
2323   SmallVector<std::pair<SmallSetVector<Value *, 8>, bool>, 0> Result;
2324   for (auto [Set, HasReadsOutsideSet] : Sets) {
2325     SmallSetVector<Value *, 8> PointerMustAliases;
2326     for (const auto &ASI : *Set)
2327       PointerMustAliases.insert(ASI.getValue());
2328     Result.emplace_back(std::move(PointerMustAliases), HasReadsOutsideSet);
2329   }
2330 
2331   return Result;
2332 }
2333 
2334 static bool pointerInvalidatedByLoop(MemorySSA *MSSA, MemoryUse *MU,
2335                                      Loop *CurLoop, Instruction &I,
2336                                      SinkAndHoistLICMFlags &Flags,
2337                                      bool InvariantGroup) {
2338   // For hoisting, use the walker to determine safety
2339   if (!Flags.getIsSink()) {
2340     // If hoisting an invariant group, we only need to check that there
2341     // is no store to the loaded pointer between the start of the loop,
2342     // and the load (since all values must be the same).
2343 
2344     // This can be checked in two conditions:
2345     // 1) if the memoryaccess is outside the loop
2346     // 2) the earliest access is at the loop header,
2347     // if the memory loaded is the phi node
2348 
2349     BatchAAResults BAA(MSSA->getAA());
2350     MemoryAccess *Source = getClobberingMemoryAccess(*MSSA, BAA, Flags, MU);
2351     return !MSSA->isLiveOnEntryDef(Source) &&
2352            CurLoop->contains(Source->getBlock()) &&
2353            !(InvariantGroup && Source->getBlock() == CurLoop->getHeader() && isa<MemoryPhi>(Source));
2354   }
2355 
2356   // For sinking, we'd need to check all Defs below this use. The getClobbering
2357   // call will look on the backedge of the loop, but will check aliasing with
2358   // the instructions on the previous iteration.
2359   // For example:
2360   // for (i ... )
2361   //   load a[i] ( Use (LoE)
2362   //   store a[i] ( 1 = Def (2), with 2 = Phi for the loop.
2363   //   i++;
2364   // The load sees no clobbering inside the loop, as the backedge alias check
2365   // does phi translation, and will check aliasing against store a[i-1].
2366   // However sinking the load outside the loop, below the store is incorrect.
2367 
2368   // For now, only sink if there are no Defs in the loop, and the existing ones
2369   // precede the use and are in the same block.
2370   // FIXME: Increase precision: Safe to sink if Use post dominates the Def;
2371   // needs PostDominatorTreeAnalysis.
2372   // FIXME: More precise: no Defs that alias this Use.
2373   if (Flags.tooManyMemoryAccesses())
2374     return true;
2375   for (auto *BB : CurLoop->getBlocks())
2376     if (pointerInvalidatedByBlock(*BB, *MSSA, *MU))
2377       return true;
2378   // When sinking, the source block may not be part of the loop so check it.
2379   if (!CurLoop->contains(&I))
2380     return pointerInvalidatedByBlock(*I.getParent(), *MSSA, *MU);
2381 
2382   return false;
2383 }
2384 
2385 bool pointerInvalidatedByBlock(BasicBlock &BB, MemorySSA &MSSA, MemoryUse &MU) {
2386   if (const auto *Accesses = MSSA.getBlockDefs(&BB))
2387     for (const auto &MA : *Accesses)
2388       if (const auto *MD = dyn_cast<MemoryDef>(&MA))
2389         if (MU.getBlock() != MD->getBlock() || !MSSA.locallyDominates(MD, &MU))
2390           return true;
2391   return false;
2392 }
2393 
2394 /// Try to simplify things like (A < INV_1 AND icmp A < INV_2) into (A <
2395 /// min(INV_1, INV_2)), if INV_1 and INV_2 are both loop invariants and their
2396 /// minimun can be computed outside of loop, and X is not a loop-invariant.
2397 static bool hoistMinMax(Instruction &I, Loop &L, ICFLoopSafetyInfo &SafetyInfo,
2398                         MemorySSAUpdater &MSSAU) {
2399   bool Inverse = false;
2400   using namespace PatternMatch;
2401   Value *Cond1, *Cond2;
2402   if (match(&I, m_LogicalOr(m_Value(Cond1), m_Value(Cond2)))) {
2403     Inverse = true;
2404   } else if (match(&I, m_LogicalAnd(m_Value(Cond1), m_Value(Cond2)))) {
2405     // Do nothing
2406   } else
2407     return false;
2408 
2409   auto MatchICmpAgainstInvariant = [&](Value *C, ICmpInst::Predicate &P,
2410                                        Value *&LHS, Value *&RHS) {
2411     if (!match(C, m_OneUse(m_ICmp(P, m_Value(LHS), m_Value(RHS)))))
2412       return false;
2413     if (!LHS->getType()->isIntegerTy())
2414       return false;
2415     if (!ICmpInst::isRelational(P))
2416       return false;
2417     if (L.isLoopInvariant(LHS)) {
2418       std::swap(LHS, RHS);
2419       P = ICmpInst::getSwappedPredicate(P);
2420     }
2421     if (L.isLoopInvariant(LHS) || !L.isLoopInvariant(RHS))
2422       return false;
2423     if (Inverse)
2424       P = ICmpInst::getInversePredicate(P);
2425     return true;
2426   };
2427   ICmpInst::Predicate P1, P2;
2428   Value *LHS1, *LHS2, *RHS1, *RHS2;
2429   if (!MatchICmpAgainstInvariant(Cond1, P1, LHS1, RHS1) ||
2430       !MatchICmpAgainstInvariant(Cond2, P2, LHS2, RHS2))
2431     return false;
2432   if (P1 != P2 || LHS1 != LHS2)
2433     return false;
2434 
2435   // Everything is fine, we can do the transform.
2436   bool UseMin = ICmpInst::isLT(P1) || ICmpInst::isLE(P1);
2437   assert(
2438       (UseMin || ICmpInst::isGT(P1) || ICmpInst::isGE(P1)) &&
2439       "Relational predicate is either less (or equal) or greater (or equal)!");
2440   Intrinsic::ID id = ICmpInst::isSigned(P1)
2441                          ? (UseMin ? Intrinsic::smin : Intrinsic::smax)
2442                          : (UseMin ? Intrinsic::umin : Intrinsic::umax);
2443   auto *Preheader = L.getLoopPreheader();
2444   assert(Preheader && "Loop is not in simplify form?");
2445   IRBuilder<> Builder(Preheader->getTerminator());
2446   // We are about to create a new guaranteed use for RHS2 which might not exist
2447   // before (if it was a non-taken input of logical and/or instruction). If it
2448   // was poison, we need to freeze it. Note that no new use for LHS and RHS1 are
2449   // introduced, so they don't need this.
2450   if (isa<SelectInst>(I))
2451     RHS2 = Builder.CreateFreeze(RHS2, RHS2->getName() + ".fr");
2452   Value *NewRHS = Builder.CreateBinaryIntrinsic(
2453       id, RHS1, RHS2, nullptr, StringRef("invariant.") +
2454                                    (ICmpInst::isSigned(P1) ? "s" : "u") +
2455                                    (UseMin ? "min" : "max"));
2456   Builder.SetInsertPoint(&I);
2457   ICmpInst::Predicate P = P1;
2458   if (Inverse)
2459     P = ICmpInst::getInversePredicate(P);
2460   Value *NewCond = Builder.CreateICmp(P, LHS1, NewRHS);
2461   NewCond->takeName(&I);
2462   I.replaceAllUsesWith(NewCond);
2463   eraseInstruction(I, SafetyInfo, MSSAU);
2464   eraseInstruction(*cast<Instruction>(Cond1), SafetyInfo, MSSAU);
2465   eraseInstruction(*cast<Instruction>(Cond2), SafetyInfo, MSSAU);
2466   return true;
2467 }
2468 
2469 /// Reassociate gep (gep ptr, idx1), idx2 to gep (gep ptr, idx2), idx1 if
2470 /// this allows hoisting the inner GEP.
2471 static bool hoistGEP(Instruction &I, Loop &L, ICFLoopSafetyInfo &SafetyInfo,
2472                      MemorySSAUpdater &MSSAU, AssumptionCache *AC,
2473                      DominatorTree *DT) {
2474   auto *GEP = dyn_cast<GetElementPtrInst>(&I);
2475   if (!GEP)
2476     return false;
2477 
2478   auto *Src = dyn_cast<GetElementPtrInst>(GEP->getPointerOperand());
2479   if (!Src || !Src->hasOneUse() || !L.contains(Src))
2480     return false;
2481 
2482   Value *SrcPtr = Src->getPointerOperand();
2483   auto LoopInvariant = [&](Value *V) { return L.isLoopInvariant(V); };
2484   if (!L.isLoopInvariant(SrcPtr) || !all_of(GEP->indices(), LoopInvariant))
2485     return false;
2486 
2487   // This can only happen if !AllowSpeculation, otherwise this would already be
2488   // handled.
2489   // FIXME: Should we respect AllowSpeculation in these reassociation folds?
2490   // The flag exists to prevent metadata dropping, which is not relevant here.
2491   if (all_of(Src->indices(), LoopInvariant))
2492     return false;
2493 
2494   // The swapped GEPs are inbounds if both original GEPs are inbounds
2495   // and the sign of the offsets is the same. For simplicity, only
2496   // handle both offsets being non-negative.
2497   const DataLayout &DL = GEP->getModule()->getDataLayout();
2498   auto NonNegative = [&](Value *V) {
2499     return isKnownNonNegative(V, SimplifyQuery(DL, DT, AC, GEP));
2500   };
2501   bool IsInBounds = Src->isInBounds() && GEP->isInBounds() &&
2502                     all_of(Src->indices(), NonNegative) &&
2503                     all_of(GEP->indices(), NonNegative);
2504 
2505   BasicBlock *Preheader = L.getLoopPreheader();
2506   IRBuilder<> Builder(Preheader->getTerminator());
2507   Value *NewSrc = Builder.CreateGEP(GEP->getSourceElementType(), SrcPtr,
2508                                     SmallVector<Value *>(GEP->indices()),
2509                                     "invariant.gep", IsInBounds);
2510   Builder.SetInsertPoint(GEP);
2511   Value *NewGEP = Builder.CreateGEP(Src->getSourceElementType(), NewSrc,
2512                                     SmallVector<Value *>(Src->indices()), "gep",
2513                                     IsInBounds);
2514   GEP->replaceAllUsesWith(NewGEP);
2515   eraseInstruction(*GEP, SafetyInfo, MSSAU);
2516   eraseInstruction(*Src, SafetyInfo, MSSAU);
2517   return true;
2518 }
2519 
2520 /// Try to turn things like "LV + C1 < C2" into "LV < C2 - C1". Here
2521 /// C1 and C2 are loop invariants and LV is a loop-variant.
2522 static bool hoistAdd(ICmpInst::Predicate Pred, Value *VariantLHS,
2523                      Value *InvariantRHS, ICmpInst &ICmp, Loop &L,
2524                      ICFLoopSafetyInfo &SafetyInfo, MemorySSAUpdater &MSSAU,
2525                      AssumptionCache *AC, DominatorTree *DT) {
2526   assert(ICmpInst::isSigned(Pred) && "Not supported yet!");
2527   assert(!L.isLoopInvariant(VariantLHS) && "Precondition.");
2528   assert(L.isLoopInvariant(InvariantRHS) && "Precondition.");
2529 
2530   // Try to represent VariantLHS as sum of invariant and variant operands.
2531   using namespace PatternMatch;
2532   Value *VariantOp, *InvariantOp;
2533   if (!match(VariantLHS, m_NSWAdd(m_Value(VariantOp), m_Value(InvariantOp))))
2534     return false;
2535 
2536   // LHS itself is a loop-variant, try to represent it in the form:
2537   // "VariantOp + InvariantOp". If it is possible, then we can reassociate.
2538   if (L.isLoopInvariant(VariantOp))
2539     std::swap(VariantOp, InvariantOp);
2540   if (L.isLoopInvariant(VariantOp) || !L.isLoopInvariant(InvariantOp))
2541     return false;
2542 
2543   // In order to turn "LV + C1 < C2" into "LV < C2 - C1", we need to be able to
2544   // freely move values from left side of inequality to right side (just as in
2545   // normal linear arithmetics). Overflows make things much more complicated, so
2546   // we want to avoid this.
2547   auto &DL = L.getHeader()->getModule()->getDataLayout();
2548   bool ProvedNoOverflowAfterReassociate =
2549       computeOverflowForSignedSub(InvariantRHS, InvariantOp,
2550                                   SimplifyQuery(DL, DT, AC, &ICmp)) ==
2551       llvm::OverflowResult::NeverOverflows;
2552   if (!ProvedNoOverflowAfterReassociate)
2553     return false;
2554   auto *Preheader = L.getLoopPreheader();
2555   assert(Preheader && "Loop is not in simplify form?");
2556   IRBuilder<> Builder(Preheader->getTerminator());
2557   Value *NewCmpOp = Builder.CreateSub(InvariantRHS, InvariantOp, "invariant.op",
2558                                       /*HasNUW*/ false, /*HasNSW*/ true);
2559   ICmp.setPredicate(Pred);
2560   ICmp.setOperand(0, VariantOp);
2561   ICmp.setOperand(1, NewCmpOp);
2562   eraseInstruction(cast<Instruction>(*VariantLHS), SafetyInfo, MSSAU);
2563   return true;
2564 }
2565 
2566 /// Try to reassociate and hoist the following two patterns:
2567 /// LV - C1 < C2 --> LV < C1 + C2,
2568 /// C1 - LV < C2 --> LV > C1 - C2.
2569 static bool hoistSub(ICmpInst::Predicate Pred, Value *VariantLHS,
2570                      Value *InvariantRHS, ICmpInst &ICmp, Loop &L,
2571                      ICFLoopSafetyInfo &SafetyInfo, MemorySSAUpdater &MSSAU,
2572                      AssumptionCache *AC, DominatorTree *DT) {
2573   assert(ICmpInst::isSigned(Pred) && "Not supported yet!");
2574   assert(!L.isLoopInvariant(VariantLHS) && "Precondition.");
2575   assert(L.isLoopInvariant(InvariantRHS) && "Precondition.");
2576 
2577   // Try to represent VariantLHS as sum of invariant and variant operands.
2578   using namespace PatternMatch;
2579   Value *VariantOp, *InvariantOp;
2580   if (!match(VariantLHS, m_NSWSub(m_Value(VariantOp), m_Value(InvariantOp))))
2581     return false;
2582 
2583   bool VariantSubtracted = false;
2584   // LHS itself is a loop-variant, try to represent it in the form:
2585   // "VariantOp + InvariantOp". If it is possible, then we can reassociate. If
2586   // the variant operand goes with minus, we use a slightly different scheme.
2587   if (L.isLoopInvariant(VariantOp)) {
2588     std::swap(VariantOp, InvariantOp);
2589     VariantSubtracted = true;
2590     Pred = ICmpInst::getSwappedPredicate(Pred);
2591   }
2592   if (L.isLoopInvariant(VariantOp) || !L.isLoopInvariant(InvariantOp))
2593     return false;
2594 
2595   // In order to turn "LV - C1 < C2" into "LV < C2 + C1", we need to be able to
2596   // freely move values from left side of inequality to right side (just as in
2597   // normal linear arithmetics). Overflows make things much more complicated, so
2598   // we want to avoid this. Likewise, for "C1 - LV < C2" we need to prove that
2599   // "C1 - C2" does not overflow.
2600   auto &DL = L.getHeader()->getModule()->getDataLayout();
2601   SimplifyQuery SQ(DL, DT, AC, &ICmp);
2602   if (VariantSubtracted) {
2603     // C1 - LV < C2 --> LV > C1 - C2
2604     if (computeOverflowForSignedSub(InvariantOp, InvariantRHS, SQ) !=
2605         llvm::OverflowResult::NeverOverflows)
2606       return false;
2607   } else {
2608     // LV - C1 < C2 --> LV < C1 + C2
2609     if (computeOverflowForSignedAdd(InvariantOp, InvariantRHS, SQ) !=
2610         llvm::OverflowResult::NeverOverflows)
2611       return false;
2612   }
2613   auto *Preheader = L.getLoopPreheader();
2614   assert(Preheader && "Loop is not in simplify form?");
2615   IRBuilder<> Builder(Preheader->getTerminator());
2616   Value *NewCmpOp =
2617       VariantSubtracted
2618           ? Builder.CreateSub(InvariantOp, InvariantRHS, "invariant.op",
2619                               /*HasNUW*/ false, /*HasNSW*/ true)
2620           : Builder.CreateAdd(InvariantOp, InvariantRHS, "invariant.op",
2621                               /*HasNUW*/ false, /*HasNSW*/ true);
2622   ICmp.setPredicate(Pred);
2623   ICmp.setOperand(0, VariantOp);
2624   ICmp.setOperand(1, NewCmpOp);
2625   eraseInstruction(cast<Instruction>(*VariantLHS), SafetyInfo, MSSAU);
2626   return true;
2627 }
2628 
2629 /// Reassociate and hoist add/sub expressions.
2630 static bool hoistAddSub(Instruction &I, Loop &L, ICFLoopSafetyInfo &SafetyInfo,
2631                         MemorySSAUpdater &MSSAU, AssumptionCache *AC,
2632                         DominatorTree *DT) {
2633   using namespace PatternMatch;
2634   ICmpInst::Predicate Pred;
2635   Value *LHS, *RHS;
2636   if (!match(&I, m_ICmp(Pred, m_Value(LHS), m_Value(RHS))))
2637     return false;
2638 
2639   // TODO: Support unsigned predicates?
2640   if (!ICmpInst::isSigned(Pred))
2641     return false;
2642 
2643   // Put variant operand to LHS position.
2644   if (L.isLoopInvariant(LHS)) {
2645     std::swap(LHS, RHS);
2646     Pred = ICmpInst::getSwappedPredicate(Pred);
2647   }
2648   // We want to delete the initial operation after reassociation, so only do it
2649   // if it has no other uses.
2650   if (L.isLoopInvariant(LHS) || !L.isLoopInvariant(RHS) || !LHS->hasOneUse())
2651     return false;
2652 
2653   // TODO: We could go with smarter context, taking common dominator of all I's
2654   // users instead of I itself.
2655   if (hoistAdd(Pred, LHS, RHS, cast<ICmpInst>(I), L, SafetyInfo, MSSAU, AC, DT))
2656     return true;
2657 
2658   if (hoistSub(Pred, LHS, RHS, cast<ICmpInst>(I), L, SafetyInfo, MSSAU, AC, DT))
2659     return true;
2660 
2661   return false;
2662 }
2663 
2664 /// Try to reassociate expressions like ((A1 * B1) + (A2 * B2) + ...) * C where
2665 /// A1, A2, ... and C are loop invariants into expressions like
2666 /// ((A1 * C * B1) + (A2 * C * B2) + ...) and hoist the (A1 * C), (A2 * C), ...
2667 /// invariant expressions. This functions returns true only if any hoisting has
2668 /// actually occured.
2669 static bool hoistFPAssociation(Instruction &I, Loop &L,
2670                                ICFLoopSafetyInfo &SafetyInfo,
2671                                MemorySSAUpdater &MSSAU, AssumptionCache *AC,
2672                                DominatorTree *DT) {
2673   using namespace PatternMatch;
2674   Value *VariantOp = nullptr, *InvariantOp = nullptr;
2675 
2676   if (!match(&I, m_FMul(m_Value(VariantOp), m_Value(InvariantOp))) ||
2677       !I.hasAllowReassoc() || !I.hasNoSignedZeros())
2678     return false;
2679   if (L.isLoopInvariant(VariantOp))
2680     std::swap(VariantOp, InvariantOp);
2681   if (L.isLoopInvariant(VariantOp) || !L.isLoopInvariant(InvariantOp))
2682     return false;
2683   Value *Factor = InvariantOp;
2684 
2685   // First, we need to make sure we should do the transformation.
2686   SmallVector<Use *> Changes;
2687   SmallVector<BinaryOperator *> Worklist;
2688   if (BinaryOperator *VariantBinOp = dyn_cast<BinaryOperator>(VariantOp))
2689     Worklist.push_back(VariantBinOp);
2690   while (!Worklist.empty()) {
2691     BinaryOperator *BO = Worklist.pop_back_val();
2692     if (!BO->hasOneUse() || !BO->hasAllowReassoc() || !BO->hasNoSignedZeros())
2693       return false;
2694     BinaryOperator *Op0, *Op1;
2695     if (match(BO, m_FAdd(m_BinOp(Op0), m_BinOp(Op1)))) {
2696       Worklist.push_back(Op0);
2697       Worklist.push_back(Op1);
2698       continue;
2699     }
2700     if (BO->getOpcode() != Instruction::FMul || L.isLoopInvariant(BO))
2701       return false;
2702     Use &U0 = BO->getOperandUse(0);
2703     Use &U1 = BO->getOperandUse(1);
2704     if (L.isLoopInvariant(U0))
2705       Changes.push_back(&U0);
2706     else if (L.isLoopInvariant(U1))
2707       Changes.push_back(&U1);
2708     else
2709       return false;
2710     if (Changes.size() > FPAssociationUpperLimit)
2711       return false;
2712   }
2713   if (Changes.empty())
2714     return false;
2715 
2716   // We know we should do it so let's do the transformation.
2717   auto *Preheader = L.getLoopPreheader();
2718   assert(Preheader && "Loop is not in simplify form?");
2719   IRBuilder<> Builder(Preheader->getTerminator());
2720   for (auto *U : Changes) {
2721     assert(L.isLoopInvariant(U->get()));
2722     Instruction *Ins = cast<Instruction>(U->getUser());
2723     U->set(Builder.CreateFMulFMF(U->get(), Factor, Ins, "factor.op.fmul"));
2724   }
2725   I.replaceAllUsesWith(VariantOp);
2726   eraseInstruction(I, SafetyInfo, MSSAU);
2727   return true;
2728 }
2729 
2730 static bool hoistArithmetics(Instruction &I, Loop &L,
2731                              ICFLoopSafetyInfo &SafetyInfo,
2732                              MemorySSAUpdater &MSSAU, AssumptionCache *AC,
2733                              DominatorTree *DT) {
2734   // Optimize complex patterns, such as (x < INV1 && x < INV2), turning them
2735   // into (x < min(INV1, INV2)), and hoisting the invariant part of this
2736   // expression out of the loop.
2737   if (hoistMinMax(I, L, SafetyInfo, MSSAU)) {
2738     ++NumHoisted;
2739     ++NumMinMaxHoisted;
2740     return true;
2741   }
2742 
2743   // Try to hoist GEPs by reassociation.
2744   if (hoistGEP(I, L, SafetyInfo, MSSAU, AC, DT)) {
2745     ++NumHoisted;
2746     ++NumGEPsHoisted;
2747     return true;
2748   }
2749 
2750   // Try to hoist add/sub's by reassociation.
2751   if (hoistAddSub(I, L, SafetyInfo, MSSAU, AC, DT)) {
2752     ++NumHoisted;
2753     ++NumAddSubHoisted;
2754     return true;
2755   }
2756 
2757   if (hoistFPAssociation(I, L, SafetyInfo, MSSAU, AC, DT)) {
2758     ++NumHoisted;
2759     ++NumFPAssociationsHoisted;
2760     return true;
2761   }
2762 
2763   return false;
2764 }
2765 
2766 /// Little predicate that returns true if the specified basic block is in
2767 /// a subloop of the current one, not the current one itself.
2768 ///
2769 static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI) {
2770   assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop");
2771   return LI->getLoopFor(BB) != CurLoop;
2772 }
2773