1 //===- LoopFlatten.cpp - Loop flattening pass------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass flattens pairs nested loops into a single loop.
10 //
11 // The intention is to optimise loop nests like this, which together access an
12 // array linearly:
13 //
14 //   for (int i = 0; i < N; ++i)
15 //     for (int j = 0; j < M; ++j)
16 //       f(A[i*M+j]);
17 //
18 // into one loop:
19 //
20 //   for (int i = 0; i < (N*M); ++i)
21 //     f(A[i]);
22 //
23 // It can also flatten loops where the induction variables are not used in the
24 // loop. This is only worth doing if the induction variables are only used in an
25 // expression like i*M+j. If they had any other uses, we would have to insert a
26 // div/mod to reconstruct the original values, so this wouldn't be profitable.
27 //
28 // We also need to prove that N*M will not overflow. The preferred solution is
29 // to widen the IV, which avoids overflow checks, so that is tried first. If
30 // the IV cannot be widened, then we try to determine that this new tripcount
31 // expression won't overflow.
32 //
33 // Q: Does LoopFlatten use SCEV?
34 // Short answer: Yes and no.
35 //
36 // Long answer:
37 // For this transformation to be valid, we require all uses of the induction
38 // variables to be linear expressions of the form i*M+j. The different Loop
39 // APIs are used to get some loop components like the induction variable,
40 // compare statement, etc. In addition, we do some pattern matching to find the
41 // linear expressions and other loop components like the loop increment. The
42 // latter are examples of expressions that do use the induction variable, but
43 // are safe to ignore when we check all uses to be of the form i*M+j. We keep
44 // track of all of this in bookkeeping struct FlattenInfo.
45 // We assume the loops to be canonical, i.e. starting at 0 and increment with
46 // 1. This makes RHS of the compare the loop tripcount (with the right
47 // predicate). We use SCEV to then sanity check that this tripcount matches
48 // with the tripcount as computed by SCEV.
49 //
50 //===----------------------------------------------------------------------===//
51 
52 #include "llvm/Transforms/Scalar/LoopFlatten.h"
53 
54 #include "llvm/ADT/Statistic.h"
55 #include "llvm/Analysis/AssumptionCache.h"
56 #include "llvm/Analysis/LoopInfo.h"
57 #include "llvm/Analysis/LoopNestAnalysis.h"
58 #include "llvm/Analysis/MemorySSAUpdater.h"
59 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
60 #include "llvm/Analysis/ScalarEvolution.h"
61 #include "llvm/Analysis/TargetTransformInfo.h"
62 #include "llvm/Analysis/ValueTracking.h"
63 #include "llvm/IR/Dominators.h"
64 #include "llvm/IR/Function.h"
65 #include "llvm/IR/IRBuilder.h"
66 #include "llvm/IR/Module.h"
67 #include "llvm/IR/PatternMatch.h"
68 #include "llvm/Support/Debug.h"
69 #include "llvm/Support/raw_ostream.h"
70 #include "llvm/Transforms/Scalar/LoopPassManager.h"
71 #include "llvm/Transforms/Utils/Local.h"
72 #include "llvm/Transforms/Utils/LoopUtils.h"
73 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
74 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
75 #include <optional>
76 
77 using namespace llvm;
78 using namespace llvm::PatternMatch;
79 
80 #define DEBUG_TYPE "loop-flatten"
81 
82 STATISTIC(NumFlattened, "Number of loops flattened");
83 
84 static cl::opt<unsigned> RepeatedInstructionThreshold(
85     "loop-flatten-cost-threshold", cl::Hidden, cl::init(2),
86     cl::desc("Limit on the cost of instructions that can be repeated due to "
87              "loop flattening"));
88 
89 static cl::opt<bool>
90     AssumeNoOverflow("loop-flatten-assume-no-overflow", cl::Hidden,
91                      cl::init(false),
92                      cl::desc("Assume that the product of the two iteration "
93                               "trip counts will never overflow"));
94 
95 static cl::opt<bool>
96     WidenIV("loop-flatten-widen-iv", cl::Hidden, cl::init(true),
97             cl::desc("Widen the loop induction variables, if possible, so "
98                      "overflow checks won't reject flattening"));
99 
100 namespace {
101 // We require all uses of both induction variables to match this pattern:
102 //
103 //   (OuterPHI * InnerTripCount) + InnerPHI
104 //
105 // I.e., it needs to be a linear expression of the induction variables and the
106 // inner loop trip count. We keep track of all different expressions on which
107 // checks will be performed in this bookkeeping struct.
108 //
109 struct FlattenInfo {
110   Loop *OuterLoop = nullptr;  // The loop pair to be flattened.
111   Loop *InnerLoop = nullptr;
112 
113   PHINode *InnerInductionPHI = nullptr; // These PHINodes correspond to loop
114   PHINode *OuterInductionPHI = nullptr; // induction variables, which are
115                                         // expected to start at zero and
116                                         // increment by one on each loop.
117 
118   Value *InnerTripCount = nullptr; // The product of these two tripcounts
119   Value *OuterTripCount = nullptr; // will be the new flattened loop
120                                    // tripcount. Also used to recognise a
121                                    // linear expression that will be replaced.
122 
123   SmallPtrSet<Value *, 4> LinearIVUses;  // Contains the linear expressions
124                                          // of the form i*M+j that will be
125                                          // replaced.
126 
127   BinaryOperator *InnerIncrement = nullptr;  // Uses of induction variables in
128   BinaryOperator *OuterIncrement = nullptr;  // loop control statements that
129   BranchInst *InnerBranch = nullptr;         // are safe to ignore.
130 
131   BranchInst *OuterBranch = nullptr; // The instruction that needs to be
132                                      // updated with new tripcount.
133 
134   SmallPtrSet<PHINode *, 4> InnerPHIsToTransform;
135 
136   bool Widened = false; // Whether this holds the flatten info before or after
137                         // widening.
138 
139   PHINode *NarrowInnerInductionPHI = nullptr; // Holds the old/narrow induction
140   PHINode *NarrowOuterInductionPHI = nullptr; // phis, i.e. the Phis before IV
141                                               // has been applied. Used to skip
142                                               // checks on phi nodes.
143 
144   FlattenInfo(Loop *OL, Loop *IL) : OuterLoop(OL), InnerLoop(IL){};
145 
146   bool isNarrowInductionPhi(PHINode *Phi) {
147     // This can't be the narrow phi if we haven't widened the IV first.
148     if (!Widened)
149       return false;
150     return NarrowInnerInductionPHI == Phi || NarrowOuterInductionPHI == Phi;
151   }
152   bool isInnerLoopIncrement(User *U) {
153     return InnerIncrement == U;
154   }
155   bool isOuterLoopIncrement(User *U) {
156     return OuterIncrement == U;
157   }
158   bool isInnerLoopTest(User *U) {
159     return InnerBranch->getCondition() == U;
160   }
161 
162   bool checkOuterInductionPhiUsers(SmallPtrSet<Value *, 4> &ValidOuterPHIUses) {
163     for (User *U : OuterInductionPHI->users()) {
164       if (isOuterLoopIncrement(U))
165         continue;
166 
167       auto IsValidOuterPHIUses = [&] (User *U) -> bool {
168         LLVM_DEBUG(dbgs() << "Found use of outer induction variable: "; U->dump());
169         if (!ValidOuterPHIUses.count(U)) {
170           LLVM_DEBUG(dbgs() << "Did not match expected pattern, bailing\n");
171           return false;
172         }
173         LLVM_DEBUG(dbgs() << "Use is optimisable\n");
174         return true;
175       };
176 
177       if (auto *V = dyn_cast<TruncInst>(U)) {
178         for (auto *K : V->users()) {
179           if (!IsValidOuterPHIUses(K))
180             return false;
181         }
182         continue;
183       }
184 
185       if (!IsValidOuterPHIUses(U))
186         return false;
187     }
188     return true;
189   }
190 
191   bool matchLinearIVUser(User *U, Value *InnerTripCount,
192                          SmallPtrSet<Value *, 4> &ValidOuterPHIUses) {
193     LLVM_DEBUG(dbgs() << "Checking linear i*M+j expression for: "; U->dump());
194     Value *MatchedMul = nullptr;
195     Value *MatchedItCount = nullptr;
196 
197     bool IsAdd = match(U, m_c_Add(m_Specific(InnerInductionPHI),
198                                   m_Value(MatchedMul))) &&
199                  match(MatchedMul, m_c_Mul(m_Specific(OuterInductionPHI),
200                                            m_Value(MatchedItCount)));
201 
202     // Matches the same pattern as above, except it also looks for truncs
203     // on the phi, which can be the result of widening the induction variables.
204     bool IsAddTrunc =
205         match(U, m_c_Add(m_Trunc(m_Specific(InnerInductionPHI)),
206                          m_Value(MatchedMul))) &&
207         match(MatchedMul, m_c_Mul(m_Trunc(m_Specific(OuterInductionPHI)),
208                                   m_Value(MatchedItCount)));
209 
210     if (!MatchedItCount)
211       return false;
212 
213     LLVM_DEBUG(dbgs() << "Matched multiplication: "; MatchedMul->dump());
214     LLVM_DEBUG(dbgs() << "Matched iteration count: "; MatchedItCount->dump());
215 
216     // The mul should not have any other uses. Widening may leave trivially dead
217     // uses, which can be ignored.
218     if (count_if(MatchedMul->users(), [](User *U) {
219           return !isInstructionTriviallyDead(cast<Instruction>(U));
220         }) > 1) {
221       LLVM_DEBUG(dbgs() << "Multiply has more than one use\n");
222       return false;
223     }
224 
225     // Look through extends if the IV has been widened. Don't look through
226     // extends if we already looked through a trunc.
227     if (Widened && IsAdd &&
228         (isa<SExtInst>(MatchedItCount) || isa<ZExtInst>(MatchedItCount))) {
229       assert(MatchedItCount->getType() == InnerInductionPHI->getType() &&
230              "Unexpected type mismatch in types after widening");
231       MatchedItCount = isa<SExtInst>(MatchedItCount)
232                            ? dyn_cast<SExtInst>(MatchedItCount)->getOperand(0)
233                            : dyn_cast<ZExtInst>(MatchedItCount)->getOperand(0);
234     }
235 
236     LLVM_DEBUG(dbgs() << "Looking for inner trip count: ";
237                InnerTripCount->dump());
238 
239     if ((IsAdd || IsAddTrunc) && MatchedItCount == InnerTripCount) {
240       LLVM_DEBUG(dbgs() << "Found. This sse is optimisable\n");
241       ValidOuterPHIUses.insert(MatchedMul);
242       LinearIVUses.insert(U);
243       return true;
244     }
245 
246     LLVM_DEBUG(dbgs() << "Did not match expected pattern, bailing\n");
247     return false;
248   }
249 
250   bool checkInnerInductionPhiUsers(SmallPtrSet<Value *, 4> &ValidOuterPHIUses) {
251     Value *SExtInnerTripCount = InnerTripCount;
252     if (Widened &&
253         (isa<SExtInst>(InnerTripCount) || isa<ZExtInst>(InnerTripCount)))
254       SExtInnerTripCount = cast<Instruction>(InnerTripCount)->getOperand(0);
255 
256     for (User *U : InnerInductionPHI->users()) {
257       LLVM_DEBUG(dbgs() << "Checking User: "; U->dump());
258       if (isInnerLoopIncrement(U)) {
259         LLVM_DEBUG(dbgs() << "Use is inner loop increment, continuing\n");
260         continue;
261       }
262 
263       // After widening the IVs, a trunc instruction might have been introduced,
264       // so look through truncs.
265       if (isa<TruncInst>(U)) {
266         if (!U->hasOneUse())
267           return false;
268         U = *U->user_begin();
269       }
270 
271       // If the use is in the compare (which is also the condition of the inner
272       // branch) then the compare has been altered by another transformation e.g
273       // icmp ult %inc, tripcount -> icmp ult %j, tripcount-1, where tripcount is
274       // a constant. Ignore this use as the compare gets removed later anyway.
275       if (isInnerLoopTest(U)) {
276         LLVM_DEBUG(dbgs() << "Use is the inner loop test, continuing\n");
277         continue;
278       }
279 
280       if (!matchLinearIVUser(U, SExtInnerTripCount, ValidOuterPHIUses)) {
281         LLVM_DEBUG(dbgs() << "Not a linear IV user\n");
282         return false;
283       }
284       LLVM_DEBUG(dbgs() << "Linear IV users found!\n");
285     }
286     return true;
287   }
288 };
289 } // namespace
290 
291 static bool
292 setLoopComponents(Value *&TC, Value *&TripCount, BinaryOperator *&Increment,
293                   SmallPtrSetImpl<Instruction *> &IterationInstructions) {
294   TripCount = TC;
295   IterationInstructions.insert(Increment);
296   LLVM_DEBUG(dbgs() << "Found Increment: "; Increment->dump());
297   LLVM_DEBUG(dbgs() << "Found trip count: "; TripCount->dump());
298   LLVM_DEBUG(dbgs() << "Successfully found all loop components\n");
299   return true;
300 }
301 
302 // Given the RHS of the loop latch compare instruction, verify with SCEV
303 // that this is indeed the loop tripcount.
304 // TODO: This used to be a straightforward check but has grown to be quite
305 // complicated now. It is therefore worth revisiting what the additional
306 // benefits are of this (compared to relying on canonical loops and pattern
307 // matching).
308 static bool verifyTripCount(Value *RHS, Loop *L,
309      SmallPtrSetImpl<Instruction *> &IterationInstructions,
310     PHINode *&InductionPHI, Value *&TripCount, BinaryOperator *&Increment,
311     BranchInst *&BackBranch, ScalarEvolution *SE, bool IsWidened) {
312   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
313   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
314     LLVM_DEBUG(dbgs() << "Backedge-taken count is not predictable\n");
315     return false;
316   }
317 
318   // Evaluating in the trip count's type can not overflow here as the overflow
319   // checks are performed in checkOverflow, but are first tried to avoid by
320   // widening the IV.
321   const SCEV *SCEVTripCount =
322     SE->getTripCountFromExitCount(BackedgeTakenCount,
323                                   BackedgeTakenCount->getType(), L);
324 
325   const SCEV *SCEVRHS = SE->getSCEV(RHS);
326   if (SCEVRHS == SCEVTripCount)
327     return setLoopComponents(RHS, TripCount, Increment, IterationInstructions);
328   ConstantInt *ConstantRHS = dyn_cast<ConstantInt>(RHS);
329   if (ConstantRHS) {
330     const SCEV *BackedgeTCExt = nullptr;
331     if (IsWidened) {
332       const SCEV *SCEVTripCountExt;
333       // Find the extended backedge taken count and extended trip count using
334       // SCEV. One of these should now match the RHS of the compare.
335       BackedgeTCExt = SE->getZeroExtendExpr(BackedgeTakenCount, RHS->getType());
336       SCEVTripCountExt = SE->getTripCountFromExitCount(BackedgeTCExt,
337                                                        RHS->getType(), L);
338       if (SCEVRHS != BackedgeTCExt && SCEVRHS != SCEVTripCountExt) {
339         LLVM_DEBUG(dbgs() << "Could not find valid trip count\n");
340         return false;
341       }
342     }
343     // If the RHS of the compare is equal to the backedge taken count we need
344     // to add one to get the trip count.
345     if (SCEVRHS == BackedgeTCExt || SCEVRHS == BackedgeTakenCount) {
346       ConstantInt *One = ConstantInt::get(ConstantRHS->getType(), 1);
347       Value *NewRHS = ConstantInt::get(
348           ConstantRHS->getContext(), ConstantRHS->getValue() + One->getValue());
349       return setLoopComponents(NewRHS, TripCount, Increment,
350                                IterationInstructions);
351     }
352     return setLoopComponents(RHS, TripCount, Increment, IterationInstructions);
353   }
354   // If the RHS isn't a constant then check that the reason it doesn't match
355   // the SCEV trip count is because the RHS is a ZExt or SExt instruction
356   // (and take the trip count to be the RHS).
357   if (!IsWidened) {
358     LLVM_DEBUG(dbgs() << "Could not find valid trip count\n");
359     return false;
360   }
361   auto *TripCountInst = dyn_cast<Instruction>(RHS);
362   if (!TripCountInst) {
363     LLVM_DEBUG(dbgs() << "Could not find valid trip count\n");
364     return false;
365   }
366   if ((!isa<ZExtInst>(TripCountInst) && !isa<SExtInst>(TripCountInst)) ||
367       SE->getSCEV(TripCountInst->getOperand(0)) != SCEVTripCount) {
368     LLVM_DEBUG(dbgs() << "Could not find valid extended trip count\n");
369     return false;
370   }
371   return setLoopComponents(RHS, TripCount, Increment, IterationInstructions);
372 }
373 
374 // Finds the induction variable, increment and trip count for a simple loop that
375 // we can flatten.
376 static bool findLoopComponents(
377     Loop *L, SmallPtrSetImpl<Instruction *> &IterationInstructions,
378     PHINode *&InductionPHI, Value *&TripCount, BinaryOperator *&Increment,
379     BranchInst *&BackBranch, ScalarEvolution *SE, bool IsWidened) {
380   LLVM_DEBUG(dbgs() << "Finding components of loop: " << L->getName() << "\n");
381 
382   if (!L->isLoopSimplifyForm()) {
383     LLVM_DEBUG(dbgs() << "Loop is not in normal form\n");
384     return false;
385   }
386 
387   // Currently, to simplify the implementation, the Loop induction variable must
388   // start at zero and increment with a step size of one.
389   if (!L->isCanonical(*SE)) {
390     LLVM_DEBUG(dbgs() << "Loop is not canonical\n");
391     return false;
392   }
393 
394   // There must be exactly one exiting block, and it must be the same at the
395   // latch.
396   BasicBlock *Latch = L->getLoopLatch();
397   if (L->getExitingBlock() != Latch) {
398     LLVM_DEBUG(dbgs() << "Exiting and latch block are different\n");
399     return false;
400   }
401 
402   // Find the induction PHI. If there is no induction PHI, we can't do the
403   // transformation. TODO: could other variables trigger this? Do we have to
404   // search for the best one?
405   InductionPHI = L->getInductionVariable(*SE);
406   if (!InductionPHI) {
407     LLVM_DEBUG(dbgs() << "Could not find induction PHI\n");
408     return false;
409   }
410   LLVM_DEBUG(dbgs() << "Found induction PHI: "; InductionPHI->dump());
411 
412   bool ContinueOnTrue = L->contains(Latch->getTerminator()->getSuccessor(0));
413   auto IsValidPredicate = [&](ICmpInst::Predicate Pred) {
414     if (ContinueOnTrue)
415       return Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT;
416     else
417       return Pred == CmpInst::ICMP_EQ;
418   };
419 
420   // Find Compare and make sure it is valid. getLatchCmpInst checks that the
421   // back branch of the latch is conditional.
422   ICmpInst *Compare = L->getLatchCmpInst();
423   if (!Compare || !IsValidPredicate(Compare->getUnsignedPredicate()) ||
424       Compare->hasNUsesOrMore(2)) {
425     LLVM_DEBUG(dbgs() << "Could not find valid comparison\n");
426     return false;
427   }
428   BackBranch = cast<BranchInst>(Latch->getTerminator());
429   IterationInstructions.insert(BackBranch);
430   LLVM_DEBUG(dbgs() << "Found back branch: "; BackBranch->dump());
431   IterationInstructions.insert(Compare);
432   LLVM_DEBUG(dbgs() << "Found comparison: "; Compare->dump());
433 
434   // Find increment and trip count.
435   // There are exactly 2 incoming values to the induction phi; one from the
436   // pre-header and one from the latch. The incoming latch value is the
437   // increment variable.
438   Increment =
439       cast<BinaryOperator>(InductionPHI->getIncomingValueForBlock(Latch));
440   if ((Compare->getOperand(0) != Increment || !Increment->hasNUses(2)) &&
441       !Increment->hasNUses(1)) {
442     LLVM_DEBUG(dbgs() << "Could not find valid increment\n");
443     return false;
444   }
445   // The trip count is the RHS of the compare. If this doesn't match the trip
446   // count computed by SCEV then this is because the trip count variable
447   // has been widened so the types don't match, or because it is a constant and
448   // another transformation has changed the compare (e.g. icmp ult %inc,
449   // tripcount -> icmp ult %j, tripcount-1), or both.
450   Value *RHS = Compare->getOperand(1);
451 
452   return verifyTripCount(RHS, L, IterationInstructions, InductionPHI, TripCount,
453                          Increment, BackBranch, SE, IsWidened);
454 }
455 
456 static bool checkPHIs(FlattenInfo &FI, const TargetTransformInfo *TTI) {
457   // All PHIs in the inner and outer headers must either be:
458   // - The induction PHI, which we are going to rewrite as one induction in
459   //   the new loop. This is already checked by findLoopComponents.
460   // - An outer header PHI with all incoming values from outside the loop.
461   //   LoopSimplify guarantees we have a pre-header, so we don't need to
462   //   worry about that here.
463   // - Pairs of PHIs in the inner and outer headers, which implement a
464   //   loop-carried dependency that will still be valid in the new loop. To
465   //   be valid, this variable must be modified only in the inner loop.
466 
467   // The set of PHI nodes in the outer loop header that we know will still be
468   // valid after the transformation. These will not need to be modified (with
469   // the exception of the induction variable), but we do need to check that
470   // there are no unsafe PHI nodes.
471   SmallPtrSet<PHINode *, 4> SafeOuterPHIs;
472   SafeOuterPHIs.insert(FI.OuterInductionPHI);
473 
474   // Check that all PHI nodes in the inner loop header match one of the valid
475   // patterns.
476   for (PHINode &InnerPHI : FI.InnerLoop->getHeader()->phis()) {
477     // The induction PHIs break these rules, and that's OK because we treat
478     // them specially when doing the transformation.
479     if (&InnerPHI == FI.InnerInductionPHI)
480       continue;
481     if (FI.isNarrowInductionPhi(&InnerPHI))
482       continue;
483 
484     // Each inner loop PHI node must have two incoming values/blocks - one
485     // from the pre-header, and one from the latch.
486     assert(InnerPHI.getNumIncomingValues() == 2);
487     Value *PreHeaderValue =
488         InnerPHI.getIncomingValueForBlock(FI.InnerLoop->getLoopPreheader());
489     Value *LatchValue =
490         InnerPHI.getIncomingValueForBlock(FI.InnerLoop->getLoopLatch());
491 
492     // The incoming value from the outer loop must be the PHI node in the
493     // outer loop header, with no modifications made in the top of the outer
494     // loop.
495     PHINode *OuterPHI = dyn_cast<PHINode>(PreHeaderValue);
496     if (!OuterPHI || OuterPHI->getParent() != FI.OuterLoop->getHeader()) {
497       LLVM_DEBUG(dbgs() << "value modified in top of outer loop\n");
498       return false;
499     }
500 
501     // The other incoming value must come from the inner loop, without any
502     // modifications in the tail end of the outer loop. We are in LCSSA form,
503     // so this will actually be a PHI in the inner loop's exit block, which
504     // only uses values from inside the inner loop.
505     PHINode *LCSSAPHI = dyn_cast<PHINode>(
506         OuterPHI->getIncomingValueForBlock(FI.OuterLoop->getLoopLatch()));
507     if (!LCSSAPHI) {
508       LLVM_DEBUG(dbgs() << "could not find LCSSA PHI\n");
509       return false;
510     }
511 
512     // The value used by the LCSSA PHI must be the same one that the inner
513     // loop's PHI uses.
514     if (LCSSAPHI->hasConstantValue() != LatchValue) {
515       LLVM_DEBUG(
516           dbgs() << "LCSSA PHI incoming value does not match latch value\n");
517       return false;
518     }
519 
520     LLVM_DEBUG(dbgs() << "PHI pair is safe:\n");
521     LLVM_DEBUG(dbgs() << "  Inner: "; InnerPHI.dump());
522     LLVM_DEBUG(dbgs() << "  Outer: "; OuterPHI->dump());
523     SafeOuterPHIs.insert(OuterPHI);
524     FI.InnerPHIsToTransform.insert(&InnerPHI);
525   }
526 
527   for (PHINode &OuterPHI : FI.OuterLoop->getHeader()->phis()) {
528     if (FI.isNarrowInductionPhi(&OuterPHI))
529       continue;
530     if (!SafeOuterPHIs.count(&OuterPHI)) {
531       LLVM_DEBUG(dbgs() << "found unsafe PHI in outer loop: "; OuterPHI.dump());
532       return false;
533     }
534   }
535 
536   LLVM_DEBUG(dbgs() << "checkPHIs: OK\n");
537   return true;
538 }
539 
540 static bool
541 checkOuterLoopInsts(FlattenInfo &FI,
542                     SmallPtrSetImpl<Instruction *> &IterationInstructions,
543                     const TargetTransformInfo *TTI) {
544   // Check for instructions in the outer but not inner loop. If any of these
545   // have side-effects then this transformation is not legal, and if there is
546   // a significant amount of code here which can't be optimised out that it's
547   // not profitable (as these instructions would get executed for each
548   // iteration of the inner loop).
549   InstructionCost RepeatedInstrCost = 0;
550   for (auto *B : FI.OuterLoop->getBlocks()) {
551     if (FI.InnerLoop->contains(B))
552       continue;
553 
554     for (auto &I : *B) {
555       if (!isa<PHINode>(&I) && !I.isTerminator() &&
556           !isSafeToSpeculativelyExecute(&I)) {
557         LLVM_DEBUG(dbgs() << "Cannot flatten because instruction may have "
558                              "side effects: ";
559                    I.dump());
560         return false;
561       }
562       // The execution count of the outer loop's iteration instructions
563       // (increment, compare and branch) will be increased, but the
564       // equivalent instructions will be removed from the inner loop, so
565       // they make a net difference of zero.
566       if (IterationInstructions.count(&I))
567         continue;
568       // The unconditional branch to the inner loop's header will turn into
569       // a fall-through, so adds no cost.
570       BranchInst *Br = dyn_cast<BranchInst>(&I);
571       if (Br && Br->isUnconditional() &&
572           Br->getSuccessor(0) == FI.InnerLoop->getHeader())
573         continue;
574       // Multiplies of the outer iteration variable and inner iteration
575       // count will be optimised out.
576       if (match(&I, m_c_Mul(m_Specific(FI.OuterInductionPHI),
577                             m_Specific(FI.InnerTripCount))))
578         continue;
579       InstructionCost Cost =
580           TTI->getInstructionCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
581       LLVM_DEBUG(dbgs() << "Cost " << Cost << ": "; I.dump());
582       RepeatedInstrCost += Cost;
583     }
584   }
585 
586   LLVM_DEBUG(dbgs() << "Cost of instructions that will be repeated: "
587                     << RepeatedInstrCost << "\n");
588   // Bail out if flattening the loops would cause instructions in the outer
589   // loop but not in the inner loop to be executed extra times.
590   if (RepeatedInstrCost > RepeatedInstructionThreshold) {
591     LLVM_DEBUG(dbgs() << "checkOuterLoopInsts: not profitable, bailing.\n");
592     return false;
593   }
594 
595   LLVM_DEBUG(dbgs() << "checkOuterLoopInsts: OK\n");
596   return true;
597 }
598 
599 
600 
601 // We require all uses of both induction variables to match this pattern:
602 //
603 //   (OuterPHI * InnerTripCount) + InnerPHI
604 //
605 // Any uses of the induction variables not matching that pattern would
606 // require a div/mod to reconstruct in the flattened loop, so the
607 // transformation wouldn't be profitable.
608 static bool checkIVUsers(FlattenInfo &FI) {
609   // Check that all uses of the inner loop's induction variable match the
610   // expected pattern, recording the uses of the outer IV.
611   SmallPtrSet<Value *, 4> ValidOuterPHIUses;
612   if (!FI.checkInnerInductionPhiUsers(ValidOuterPHIUses))
613     return false;
614 
615   // Check that there are no uses of the outer IV other than the ones found
616   // as part of the pattern above.
617   if (!FI.checkOuterInductionPhiUsers(ValidOuterPHIUses))
618     return false;
619 
620   LLVM_DEBUG(dbgs() << "checkIVUsers: OK\n";
621              dbgs() << "Found " << FI.LinearIVUses.size()
622                     << " value(s) that can be replaced:\n";
623              for (Value *V : FI.LinearIVUses) {
624                dbgs() << "  ";
625                V->dump();
626              });
627   return true;
628 }
629 
630 // Return an OverflowResult dependant on if overflow of the multiplication of
631 // InnerTripCount and OuterTripCount can be assumed not to happen.
632 static OverflowResult checkOverflow(FlattenInfo &FI, DominatorTree *DT,
633                                     AssumptionCache *AC) {
634   Function *F = FI.OuterLoop->getHeader()->getParent();
635   const DataLayout &DL = F->getParent()->getDataLayout();
636 
637   // For debugging/testing.
638   if (AssumeNoOverflow)
639     return OverflowResult::NeverOverflows;
640 
641   // Check if the multiply could not overflow due to known ranges of the
642   // input values.
643   OverflowResult OR = computeOverflowForUnsignedMul(
644       FI.InnerTripCount, FI.OuterTripCount, DL, AC,
645       FI.OuterLoop->getLoopPreheader()->getTerminator(), DT);
646   if (OR != OverflowResult::MayOverflow)
647     return OR;
648 
649   for (Value *V : FI.LinearIVUses) {
650     for (Value *U : V->users()) {
651       if (auto *GEP = dyn_cast<GetElementPtrInst>(U)) {
652         for (Value *GEPUser : U->users()) {
653           auto *GEPUserInst = cast<Instruction>(GEPUser);
654           if (!isa<LoadInst>(GEPUserInst) &&
655               !(isa<StoreInst>(GEPUserInst) &&
656                 GEP == GEPUserInst->getOperand(1)))
657             continue;
658           if (!isGuaranteedToExecuteForEveryIteration(GEPUserInst,
659                                                       FI.InnerLoop))
660             continue;
661           // The IV is used as the operand of a GEP which dominates the loop
662           // latch, and the IV is at least as wide as the address space of the
663           // GEP. In this case, the GEP would wrap around the address space
664           // before the IV increment wraps, which would be UB.
665           if (GEP->isInBounds() &&
666               V->getType()->getIntegerBitWidth() >=
667                   DL.getPointerTypeSizeInBits(GEP->getType())) {
668             LLVM_DEBUG(
669                 dbgs() << "use of linear IV would be UB if overflow occurred: ";
670                 GEP->dump());
671             return OverflowResult::NeverOverflows;
672           }
673         }
674       }
675     }
676   }
677 
678   return OverflowResult::MayOverflow;
679 }
680 
681 static bool CanFlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI,
682                                ScalarEvolution *SE, AssumptionCache *AC,
683                                const TargetTransformInfo *TTI) {
684   SmallPtrSet<Instruction *, 8> IterationInstructions;
685   if (!findLoopComponents(FI.InnerLoop, IterationInstructions,
686                           FI.InnerInductionPHI, FI.InnerTripCount,
687                           FI.InnerIncrement, FI.InnerBranch, SE, FI.Widened))
688     return false;
689   if (!findLoopComponents(FI.OuterLoop, IterationInstructions,
690                           FI.OuterInductionPHI, FI.OuterTripCount,
691                           FI.OuterIncrement, FI.OuterBranch, SE, FI.Widened))
692     return false;
693 
694   // Both of the loop trip count values must be invariant in the outer loop
695   // (non-instructions are all inherently invariant).
696   if (!FI.OuterLoop->isLoopInvariant(FI.InnerTripCount)) {
697     LLVM_DEBUG(dbgs() << "inner loop trip count not invariant\n");
698     return false;
699   }
700   if (!FI.OuterLoop->isLoopInvariant(FI.OuterTripCount)) {
701     LLVM_DEBUG(dbgs() << "outer loop trip count not invariant\n");
702     return false;
703   }
704 
705   if (!checkPHIs(FI, TTI))
706     return false;
707 
708   // FIXME: it should be possible to handle different types correctly.
709   if (FI.InnerInductionPHI->getType() != FI.OuterInductionPHI->getType())
710     return false;
711 
712   if (!checkOuterLoopInsts(FI, IterationInstructions, TTI))
713     return false;
714 
715   // Find the values in the loop that can be replaced with the linearized
716   // induction variable, and check that there are no other uses of the inner
717   // or outer induction variable. If there were, we could still do this
718   // transformation, but we'd have to insert a div/mod to calculate the
719   // original IVs, so it wouldn't be profitable.
720   if (!checkIVUsers(FI))
721     return false;
722 
723   LLVM_DEBUG(dbgs() << "CanFlattenLoopPair: OK\n");
724   return true;
725 }
726 
727 static bool DoFlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI,
728                               ScalarEvolution *SE, AssumptionCache *AC,
729                               const TargetTransformInfo *TTI, LPMUpdater *U,
730                               MemorySSAUpdater *MSSAU) {
731   Function *F = FI.OuterLoop->getHeader()->getParent();
732   LLVM_DEBUG(dbgs() << "Checks all passed, doing the transformation\n");
733   {
734     using namespace ore;
735     OptimizationRemark Remark(DEBUG_TYPE, "Flattened", FI.InnerLoop->getStartLoc(),
736                               FI.InnerLoop->getHeader());
737     OptimizationRemarkEmitter ORE(F);
738     Remark << "Flattened into outer loop";
739     ORE.emit(Remark);
740   }
741 
742   Value *NewTripCount = BinaryOperator::CreateMul(
743       FI.InnerTripCount, FI.OuterTripCount, "flatten.tripcount",
744       FI.OuterLoop->getLoopPreheader()->getTerminator());
745   LLVM_DEBUG(dbgs() << "Created new trip count in preheader: ";
746              NewTripCount->dump());
747 
748   // Fix up PHI nodes that take values from the inner loop back-edge, which
749   // we are about to remove.
750   FI.InnerInductionPHI->removeIncomingValue(FI.InnerLoop->getLoopLatch());
751 
752   // The old Phi will be optimised away later, but for now we can't leave
753   // leave it in an invalid state, so are updating them too.
754   for (PHINode *PHI : FI.InnerPHIsToTransform)
755     PHI->removeIncomingValue(FI.InnerLoop->getLoopLatch());
756 
757   // Modify the trip count of the outer loop to be the product of the two
758   // trip counts.
759   cast<User>(FI.OuterBranch->getCondition())->setOperand(1, NewTripCount);
760 
761   // Replace the inner loop backedge with an unconditional branch to the exit.
762   BasicBlock *InnerExitBlock = FI.InnerLoop->getExitBlock();
763   BasicBlock *InnerExitingBlock = FI.InnerLoop->getExitingBlock();
764   InnerExitingBlock->getTerminator()->eraseFromParent();
765   BranchInst::Create(InnerExitBlock, InnerExitingBlock);
766 
767   // Update the DomTree and MemorySSA.
768   DT->deleteEdge(InnerExitingBlock, FI.InnerLoop->getHeader());
769   if (MSSAU)
770     MSSAU->removeEdge(InnerExitingBlock, FI.InnerLoop->getHeader());
771 
772   // Replace all uses of the polynomial calculated from the two induction
773   // variables with the one new one.
774   IRBuilder<> Builder(FI.OuterInductionPHI->getParent()->getTerminator());
775   for (Value *V : FI.LinearIVUses) {
776     Value *OuterValue = FI.OuterInductionPHI;
777     if (FI.Widened)
778       OuterValue = Builder.CreateTrunc(FI.OuterInductionPHI, V->getType(),
779                                        "flatten.trunciv");
780 
781     LLVM_DEBUG(dbgs() << "Replacing: "; V->dump(); dbgs() << "with:      ";
782                OuterValue->dump());
783     V->replaceAllUsesWith(OuterValue);
784   }
785 
786   // Tell LoopInfo, SCEV and the pass manager that the inner loop has been
787   // deleted, and invalidate any outer loop information.
788   SE->forgetLoop(FI.OuterLoop);
789   SE->forgetBlockAndLoopDispositions();
790   if (U)
791     U->markLoopAsDeleted(*FI.InnerLoop, FI.InnerLoop->getName());
792   LI->erase(FI.InnerLoop);
793 
794   // Increment statistic value.
795   NumFlattened++;
796 
797   return true;
798 }
799 
800 static bool CanWidenIV(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI,
801                        ScalarEvolution *SE, AssumptionCache *AC,
802                        const TargetTransformInfo *TTI) {
803   if (!WidenIV) {
804     LLVM_DEBUG(dbgs() << "Widening the IVs is disabled\n");
805     return false;
806   }
807 
808   LLVM_DEBUG(dbgs() << "Try widening the IVs\n");
809   Module *M = FI.InnerLoop->getHeader()->getParent()->getParent();
810   auto &DL = M->getDataLayout();
811   auto *InnerType = FI.InnerInductionPHI->getType();
812   auto *OuterType = FI.OuterInductionPHI->getType();
813   unsigned MaxLegalSize = DL.getLargestLegalIntTypeSizeInBits();
814   auto *MaxLegalType = DL.getLargestLegalIntType(M->getContext());
815 
816   // If both induction types are less than the maximum legal integer width,
817   // promote both to the widest type available so we know calculating
818   // (OuterTripCount * InnerTripCount) as the new trip count is safe.
819   if (InnerType != OuterType ||
820       InnerType->getScalarSizeInBits() >= MaxLegalSize ||
821       MaxLegalType->getScalarSizeInBits() <
822           InnerType->getScalarSizeInBits() * 2) {
823     LLVM_DEBUG(dbgs() << "Can't widen the IV\n");
824     return false;
825   }
826 
827   SCEVExpander Rewriter(*SE, DL, "loopflatten");
828   SmallVector<WeakTrackingVH, 4> DeadInsts;
829   unsigned ElimExt = 0;
830   unsigned Widened = 0;
831 
832   auto CreateWideIV = [&](WideIVInfo WideIV, bool &Deleted) -> bool {
833     PHINode *WidePhi =
834         createWideIV(WideIV, LI, SE, Rewriter, DT, DeadInsts, ElimExt, Widened,
835                      true /* HasGuards */, true /* UsePostIncrementRanges */);
836     if (!WidePhi)
837       return false;
838     LLVM_DEBUG(dbgs() << "Created wide phi: "; WidePhi->dump());
839     LLVM_DEBUG(dbgs() << "Deleting old phi: "; WideIV.NarrowIV->dump());
840     Deleted = RecursivelyDeleteDeadPHINode(WideIV.NarrowIV);
841     return true;
842   };
843 
844   bool Deleted;
845   if (!CreateWideIV({FI.InnerInductionPHI, MaxLegalType, false}, Deleted))
846     return false;
847   // Add the narrow phi to list, so that it will be adjusted later when the
848   // the transformation is performed.
849   if (!Deleted)
850     FI.InnerPHIsToTransform.insert(FI.InnerInductionPHI);
851 
852   if (!CreateWideIV({FI.OuterInductionPHI, MaxLegalType, false}, Deleted))
853     return false;
854 
855   assert(Widened && "Widened IV expected");
856   FI.Widened = true;
857 
858   // Save the old/narrow induction phis, which we need to ignore in CheckPHIs.
859   FI.NarrowInnerInductionPHI = FI.InnerInductionPHI;
860   FI.NarrowOuterInductionPHI = FI.OuterInductionPHI;
861 
862   // After widening, rediscover all the loop components.
863   return CanFlattenLoopPair(FI, DT, LI, SE, AC, TTI);
864 }
865 
866 static bool FlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI,
867                             ScalarEvolution *SE, AssumptionCache *AC,
868                             const TargetTransformInfo *TTI, LPMUpdater *U,
869                             MemorySSAUpdater *MSSAU) {
870   LLVM_DEBUG(
871       dbgs() << "Loop flattening running on outer loop "
872              << FI.OuterLoop->getHeader()->getName() << " and inner loop "
873              << FI.InnerLoop->getHeader()->getName() << " in "
874              << FI.OuterLoop->getHeader()->getParent()->getName() << "\n");
875 
876   if (!CanFlattenLoopPair(FI, DT, LI, SE, AC, TTI))
877     return false;
878 
879   // Check if we can widen the induction variables to avoid overflow checks.
880   bool CanFlatten = CanWidenIV(FI, DT, LI, SE, AC, TTI);
881 
882   // It can happen that after widening of the IV, flattening may not be
883   // possible/happening, e.g. when it is deemed unprofitable. So bail here if
884   // that is the case.
885   // TODO: IV widening without performing the actual flattening transformation
886   // is not ideal. While this codegen change should not matter much, it is an
887   // unnecessary change which is better to avoid. It's unlikely this happens
888   // often, because if it's unprofitibale after widening, it should be
889   // unprofitabe before widening as checked in the first round of checks. But
890   // 'RepeatedInstructionThreshold' is set to only 2, which can probably be
891   // relaxed. Because this is making a code change (the IV widening, but not
892   // the flattening), we return true here.
893   if (FI.Widened && !CanFlatten)
894     return true;
895 
896   // If we have widened and can perform the transformation, do that here.
897   if (CanFlatten)
898     return DoFlattenLoopPair(FI, DT, LI, SE, AC, TTI, U, MSSAU);
899 
900   // Otherwise, if we haven't widened the IV, check if the new iteration
901   // variable might overflow. In this case, we need to version the loop, and
902   // select the original version at runtime if the iteration space is too
903   // large.
904   // TODO: We currently don't version the loop.
905   OverflowResult OR = checkOverflow(FI, DT, AC);
906   if (OR == OverflowResult::AlwaysOverflowsHigh ||
907       OR == OverflowResult::AlwaysOverflowsLow) {
908     LLVM_DEBUG(dbgs() << "Multiply would always overflow, so not profitable\n");
909     return false;
910   } else if (OR == OverflowResult::MayOverflow) {
911     LLVM_DEBUG(dbgs() << "Multiply might overflow, not flattening\n");
912     return false;
913   }
914 
915   LLVM_DEBUG(dbgs() << "Multiply cannot overflow, modifying loop in-place\n");
916   return DoFlattenLoopPair(FI, DT, LI, SE, AC, TTI, U, MSSAU);
917 }
918 
919 PreservedAnalyses LoopFlattenPass::run(LoopNest &LN, LoopAnalysisManager &LAM,
920                                        LoopStandardAnalysisResults &AR,
921                                        LPMUpdater &U) {
922 
923   bool Changed = false;
924 
925   std::optional<MemorySSAUpdater> MSSAU;
926   if (AR.MSSA) {
927     MSSAU = MemorySSAUpdater(AR.MSSA);
928     if (VerifyMemorySSA)
929       AR.MSSA->verifyMemorySSA();
930   }
931 
932   // The loop flattening pass requires loops to be
933   // in simplified form, and also needs LCSSA. Running
934   // this pass will simplify all loops that contain inner loops,
935   // regardless of whether anything ends up being flattened.
936   for (Loop *InnerLoop : LN.getLoops()) {
937     auto *OuterLoop = InnerLoop->getParentLoop();
938     if (!OuterLoop)
939       continue;
940     FlattenInfo FI(OuterLoop, InnerLoop);
941     Changed |= FlattenLoopPair(FI, &AR.DT, &AR.LI, &AR.SE, &AR.AC, &AR.TTI, &U,
942                                MSSAU ? &*MSSAU : nullptr);
943   }
944 
945   if (!Changed)
946     return PreservedAnalyses::all();
947 
948   if (AR.MSSA && VerifyMemorySSA)
949     AR.MSSA->verifyMemorySSA();
950 
951   auto PA = getLoopPassPreservedAnalyses();
952   if (AR.MSSA)
953     PA.preserve<MemorySSAAnalysis>();
954   return PA;
955 }
956