1 //===- LoopLoadElimination.cpp - Loop Load Elimination Pass ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implement a loop-aware load elimination pass.
10 //
11 // It uses LoopAccessAnalysis to identify loop-carried dependences with a
12 // distance of one between stores and loads.  These form the candidates for the
13 // transformation.  The source value of each store then propagated to the user
14 // of the corresponding load.  This makes the load dead.
15 //
16 // The pass can also version the loop and add memchecks in order to prove that
17 // may-aliasing stores can't change the value in memory before it's read by the
18 // load.
19 //
20 //===----------------------------------------------------------------------===//
21 
22 #include "llvm/Transforms/Scalar/LoopLoadElimination.h"
23 #include "llvm/ADT/APInt.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/DepthFirstIterator.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/Analysis/AssumptionCache.h"
31 #include "llvm/Analysis/BlockFrequencyInfo.h"
32 #include "llvm/Analysis/GlobalsModRef.h"
33 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
34 #include "llvm/Analysis/LoopAccessAnalysis.h"
35 #include "llvm/Analysis/LoopAnalysisManager.h"
36 #include "llvm/Analysis/LoopInfo.h"
37 #include "llvm/Analysis/ProfileSummaryInfo.h"
38 #include "llvm/Analysis/ScalarEvolution.h"
39 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
40 #include "llvm/Analysis/TargetLibraryInfo.h"
41 #include "llvm/Analysis/TargetTransformInfo.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/Dominators.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/Module.h"
46 #include "llvm/IR/PassManager.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/IR/Value.h"
49 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/Debug.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include "llvm/Transforms/Utils.h"
54 #include "llvm/Transforms/Utils/LoopSimplify.h"
55 #include "llvm/Transforms/Utils/LoopVersioning.h"
56 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
57 #include "llvm/Transforms/Utils/SizeOpts.h"
58 #include <algorithm>
59 #include <cassert>
60 #include <forward_list>
61 #include <tuple>
62 #include <utility>
63 
64 using namespace llvm;
65 
66 #define LLE_OPTION "loop-load-elim"
67 #define DEBUG_TYPE LLE_OPTION
68 
69 static cl::opt<unsigned> CheckPerElim(
70     "runtime-check-per-loop-load-elim", cl::Hidden,
71     cl::desc("Max number of memchecks allowed per eliminated load on average"),
72     cl::init(1));
73 
74 static cl::opt<unsigned> LoadElimSCEVCheckThreshold(
75     "loop-load-elimination-scev-check-threshold", cl::init(8), cl::Hidden,
76     cl::desc("The maximum number of SCEV checks allowed for Loop "
77              "Load Elimination"));
78 
79 STATISTIC(NumLoopLoadEliminted, "Number of loads eliminated by LLE");
80 
81 namespace {
82 
83 /// Represent a store-to-forwarding candidate.
84 struct StoreToLoadForwardingCandidate {
85   LoadInst *Load;
86   StoreInst *Store;
87 
88   StoreToLoadForwardingCandidate(LoadInst *Load, StoreInst *Store)
89       : Load(Load), Store(Store) {}
90 
91   /// Return true if the dependence from the store to the load has an
92   /// absolute distance of one.
93   /// E.g. A[i+1] = A[i] (or A[i-1] = A[i] for descending loop)
94   bool isDependenceDistanceOfOne(PredicatedScalarEvolution &PSE,
95                                  Loop *L) const {
96     Value *LoadPtr = Load->getPointerOperand();
97     Value *StorePtr = Store->getPointerOperand();
98     Type *LoadType = getLoadStoreType(Load);
99     auto &DL = Load->getParent()->getModule()->getDataLayout();
100 
101     assert(LoadPtr->getType()->getPointerAddressSpace() ==
102                StorePtr->getType()->getPointerAddressSpace() &&
103            DL.getTypeSizeInBits(LoadType) ==
104                DL.getTypeSizeInBits(getLoadStoreType(Store)) &&
105            "Should be a known dependence");
106 
107     int64_t StrideLoad = getPtrStride(PSE, LoadType, LoadPtr, L).value_or(0);
108     int64_t StrideStore = getPtrStride(PSE, LoadType, StorePtr, L).value_or(0);
109     if (!StrideLoad || !StrideStore || StrideLoad != StrideStore)
110       return false;
111 
112     // TODO: This check for stride values other than 1 and -1 can be eliminated.
113     // However, doing so may cause the LoopAccessAnalysis to overcompensate,
114     // generating numerous non-wrap runtime checks that may undermine the
115     // benefits of load elimination. To safely implement support for non-unit
116     // strides, we would need to ensure either that the processed case does not
117     // require these additional checks, or improve the LAA to handle them more
118     // efficiently, or potentially both.
119     if (std::abs(StrideLoad) != 1)
120       return false;
121 
122     unsigned TypeByteSize = DL.getTypeAllocSize(const_cast<Type *>(LoadType));
123 
124     auto *LoadPtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(LoadPtr));
125     auto *StorePtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(StorePtr));
126 
127     // We don't need to check non-wrapping here because forward/backward
128     // dependence wouldn't be valid if these weren't monotonic accesses.
129     auto *Dist = cast<SCEVConstant>(
130         PSE.getSE()->getMinusSCEV(StorePtrSCEV, LoadPtrSCEV));
131     const APInt &Val = Dist->getAPInt();
132     return Val == TypeByteSize * StrideLoad;
133   }
134 
135   Value *getLoadPtr() const { return Load->getPointerOperand(); }
136 
137 #ifndef NDEBUG
138   friend raw_ostream &operator<<(raw_ostream &OS,
139                                  const StoreToLoadForwardingCandidate &Cand) {
140     OS << *Cand.Store << " -->\n";
141     OS.indent(2) << *Cand.Load << "\n";
142     return OS;
143   }
144 #endif
145 };
146 
147 } // end anonymous namespace
148 
149 /// Check if the store dominates all latches, so as long as there is no
150 /// intervening store this value will be loaded in the next iteration.
151 static bool doesStoreDominatesAllLatches(BasicBlock *StoreBlock, Loop *L,
152                                          DominatorTree *DT) {
153   SmallVector<BasicBlock *, 8> Latches;
154   L->getLoopLatches(Latches);
155   return llvm::all_of(Latches, [&](const BasicBlock *Latch) {
156     return DT->dominates(StoreBlock, Latch);
157   });
158 }
159 
160 /// Return true if the load is not executed on all paths in the loop.
161 static bool isLoadConditional(LoadInst *Load, Loop *L) {
162   return Load->getParent() != L->getHeader();
163 }
164 
165 namespace {
166 
167 /// The per-loop class that does most of the work.
168 class LoadEliminationForLoop {
169 public:
170   LoadEliminationForLoop(Loop *L, LoopInfo *LI, const LoopAccessInfo &LAI,
171                          DominatorTree *DT, BlockFrequencyInfo *BFI,
172                          ProfileSummaryInfo* PSI)
173       : L(L), LI(LI), LAI(LAI), DT(DT), BFI(BFI), PSI(PSI), PSE(LAI.getPSE()) {}
174 
175   /// Look through the loop-carried and loop-independent dependences in
176   /// this loop and find store->load dependences.
177   ///
178   /// Note that no candidate is returned if LAA has failed to analyze the loop
179   /// (e.g. if it's not bottom-tested, contains volatile memops, etc.)
180   std::forward_list<StoreToLoadForwardingCandidate>
181   findStoreToLoadDependences(const LoopAccessInfo &LAI) {
182     std::forward_list<StoreToLoadForwardingCandidate> Candidates;
183 
184     const auto *Deps = LAI.getDepChecker().getDependences();
185     if (!Deps)
186       return Candidates;
187 
188     // Find store->load dependences (consequently true dep).  Both lexically
189     // forward and backward dependences qualify.  Disqualify loads that have
190     // other unknown dependences.
191 
192     SmallPtrSet<Instruction *, 4> LoadsWithUnknownDepedence;
193 
194     for (const auto &Dep : *Deps) {
195       Instruction *Source = Dep.getSource(LAI);
196       Instruction *Destination = Dep.getDestination(LAI);
197 
198       if (Dep.Type == MemoryDepChecker::Dependence::Unknown) {
199         if (isa<LoadInst>(Source))
200           LoadsWithUnknownDepedence.insert(Source);
201         if (isa<LoadInst>(Destination))
202           LoadsWithUnknownDepedence.insert(Destination);
203         continue;
204       }
205 
206       if (Dep.isBackward())
207         // Note that the designations source and destination follow the program
208         // order, i.e. source is always first.  (The direction is given by the
209         // DepType.)
210         std::swap(Source, Destination);
211       else
212         assert(Dep.isForward() && "Needs to be a forward dependence");
213 
214       auto *Store = dyn_cast<StoreInst>(Source);
215       if (!Store)
216         continue;
217       auto *Load = dyn_cast<LoadInst>(Destination);
218       if (!Load)
219         continue;
220 
221       // Only propagate if the stored values are bit/pointer castable.
222       if (!CastInst::isBitOrNoopPointerCastable(
223               getLoadStoreType(Store), getLoadStoreType(Load),
224               Store->getParent()->getModule()->getDataLayout()))
225         continue;
226 
227       Candidates.emplace_front(Load, Store);
228     }
229 
230     if (!LoadsWithUnknownDepedence.empty())
231       Candidates.remove_if([&](const StoreToLoadForwardingCandidate &C) {
232         return LoadsWithUnknownDepedence.count(C.Load);
233       });
234 
235     return Candidates;
236   }
237 
238   /// Return the index of the instruction according to program order.
239   unsigned getInstrIndex(Instruction *Inst) {
240     auto I = InstOrder.find(Inst);
241     assert(I != InstOrder.end() && "No index for instruction");
242     return I->second;
243   }
244 
245   /// If a load has multiple candidates associated (i.e. different
246   /// stores), it means that it could be forwarding from multiple stores
247   /// depending on control flow.  Remove these candidates.
248   ///
249   /// Here, we rely on LAA to include the relevant loop-independent dependences.
250   /// LAA is known to omit these in the very simple case when the read and the
251   /// write within an alias set always takes place using the *same* pointer.
252   ///
253   /// However, we know that this is not the case here, i.e. we can rely on LAA
254   /// to provide us with loop-independent dependences for the cases we're
255   /// interested.  Consider the case for example where a loop-independent
256   /// dependece S1->S2 invalidates the forwarding S3->S2.
257   ///
258   ///         A[i]   = ...   (S1)
259   ///         ...    = A[i]  (S2)
260   ///         A[i+1] = ...   (S3)
261   ///
262   /// LAA will perform dependence analysis here because there are two
263   /// *different* pointers involved in the same alias set (&A[i] and &A[i+1]).
264   void removeDependencesFromMultipleStores(
265       std::forward_list<StoreToLoadForwardingCandidate> &Candidates) {
266     // If Store is nullptr it means that we have multiple stores forwarding to
267     // this store.
268     using LoadToSingleCandT =
269         DenseMap<LoadInst *, const StoreToLoadForwardingCandidate *>;
270     LoadToSingleCandT LoadToSingleCand;
271 
272     for (const auto &Cand : Candidates) {
273       bool NewElt;
274       LoadToSingleCandT::iterator Iter;
275 
276       std::tie(Iter, NewElt) =
277           LoadToSingleCand.insert(std::make_pair(Cand.Load, &Cand));
278       if (!NewElt) {
279         const StoreToLoadForwardingCandidate *&OtherCand = Iter->second;
280         // Already multiple stores forward to this load.
281         if (OtherCand == nullptr)
282           continue;
283 
284         // Handle the very basic case when the two stores are in the same block
285         // so deciding which one forwards is easy.  The later one forwards as
286         // long as they both have a dependence distance of one to the load.
287         if (Cand.Store->getParent() == OtherCand->Store->getParent() &&
288             Cand.isDependenceDistanceOfOne(PSE, L) &&
289             OtherCand->isDependenceDistanceOfOne(PSE, L)) {
290           // They are in the same block, the later one will forward to the load.
291           if (getInstrIndex(OtherCand->Store) < getInstrIndex(Cand.Store))
292             OtherCand = &Cand;
293         } else
294           OtherCand = nullptr;
295       }
296     }
297 
298     Candidates.remove_if([&](const StoreToLoadForwardingCandidate &Cand) {
299       if (LoadToSingleCand[Cand.Load] != &Cand) {
300         LLVM_DEBUG(
301             dbgs() << "Removing from candidates: \n"
302                    << Cand
303                    << "  The load may have multiple stores forwarding to "
304                    << "it\n");
305         return true;
306       }
307       return false;
308     });
309   }
310 
311   /// Given two pointers operations by their RuntimePointerChecking
312   /// indices, return true if they require an alias check.
313   ///
314   /// We need a check if one is a pointer for a candidate load and the other is
315   /// a pointer for a possibly intervening store.
316   bool needsChecking(unsigned PtrIdx1, unsigned PtrIdx2,
317                      const SmallPtrSetImpl<Value *> &PtrsWrittenOnFwdingPath,
318                      const SmallPtrSetImpl<Value *> &CandLoadPtrs) {
319     Value *Ptr1 =
320         LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx1).PointerValue;
321     Value *Ptr2 =
322         LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx2).PointerValue;
323     return ((PtrsWrittenOnFwdingPath.count(Ptr1) && CandLoadPtrs.count(Ptr2)) ||
324             (PtrsWrittenOnFwdingPath.count(Ptr2) && CandLoadPtrs.count(Ptr1)));
325   }
326 
327   /// Return pointers that are possibly written to on the path from a
328   /// forwarding store to a load.
329   ///
330   /// These pointers need to be alias-checked against the forwarding candidates.
331   SmallPtrSet<Value *, 4> findPointersWrittenOnForwardingPath(
332       const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) {
333     // From FirstStore to LastLoad neither of the elimination candidate loads
334     // should overlap with any of the stores.
335     //
336     // E.g.:
337     //
338     // st1 C[i]
339     // ld1 B[i] <-------,
340     // ld0 A[i] <----,  |              * LastLoad
341     // ...           |  |
342     // st2 E[i]      |  |
343     // st3 B[i+1] -- | -'              * FirstStore
344     // st0 A[i+1] ---'
345     // st4 D[i]
346     //
347     // st0 forwards to ld0 if the accesses in st4 and st1 don't overlap with
348     // ld0.
349 
350     LoadInst *LastLoad =
351         std::max_element(Candidates.begin(), Candidates.end(),
352                          [&](const StoreToLoadForwardingCandidate &A,
353                              const StoreToLoadForwardingCandidate &B) {
354                            return getInstrIndex(A.Load) < getInstrIndex(B.Load);
355                          })
356             ->Load;
357     StoreInst *FirstStore =
358         std::min_element(Candidates.begin(), Candidates.end(),
359                          [&](const StoreToLoadForwardingCandidate &A,
360                              const StoreToLoadForwardingCandidate &B) {
361                            return getInstrIndex(A.Store) <
362                                   getInstrIndex(B.Store);
363                          })
364             ->Store;
365 
366     // We're looking for stores after the first forwarding store until the end
367     // of the loop, then from the beginning of the loop until the last
368     // forwarded-to load.  Collect the pointer for the stores.
369     SmallPtrSet<Value *, 4> PtrsWrittenOnFwdingPath;
370 
371     auto InsertStorePtr = [&](Instruction *I) {
372       if (auto *S = dyn_cast<StoreInst>(I))
373         PtrsWrittenOnFwdingPath.insert(S->getPointerOperand());
374     };
375     const auto &MemInstrs = LAI.getDepChecker().getMemoryInstructions();
376     std::for_each(MemInstrs.begin() + getInstrIndex(FirstStore) + 1,
377                   MemInstrs.end(), InsertStorePtr);
378     std::for_each(MemInstrs.begin(), &MemInstrs[getInstrIndex(LastLoad)],
379                   InsertStorePtr);
380 
381     return PtrsWrittenOnFwdingPath;
382   }
383 
384   /// Determine the pointer alias checks to prove that there are no
385   /// intervening stores.
386   SmallVector<RuntimePointerCheck, 4> collectMemchecks(
387       const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) {
388 
389     SmallPtrSet<Value *, 4> PtrsWrittenOnFwdingPath =
390         findPointersWrittenOnForwardingPath(Candidates);
391 
392     // Collect the pointers of the candidate loads.
393     SmallPtrSet<Value *, 4> CandLoadPtrs;
394     for (const auto &Candidate : Candidates)
395       CandLoadPtrs.insert(Candidate.getLoadPtr());
396 
397     const auto &AllChecks = LAI.getRuntimePointerChecking()->getChecks();
398     SmallVector<RuntimePointerCheck, 4> Checks;
399 
400     copy_if(AllChecks, std::back_inserter(Checks),
401             [&](const RuntimePointerCheck &Check) {
402               for (auto PtrIdx1 : Check.first->Members)
403                 for (auto PtrIdx2 : Check.second->Members)
404                   if (needsChecking(PtrIdx1, PtrIdx2, PtrsWrittenOnFwdingPath,
405                                     CandLoadPtrs))
406                     return true;
407               return false;
408             });
409 
410     LLVM_DEBUG(dbgs() << "\nPointer Checks (count: " << Checks.size()
411                       << "):\n");
412     LLVM_DEBUG(LAI.getRuntimePointerChecking()->printChecks(dbgs(), Checks));
413 
414     return Checks;
415   }
416 
417   /// Perform the transformation for a candidate.
418   void
419   propagateStoredValueToLoadUsers(const StoreToLoadForwardingCandidate &Cand,
420                                   SCEVExpander &SEE) {
421     // loop:
422     //      %x = load %gep_i
423     //         = ... %x
424     //      store %y, %gep_i_plus_1
425     //
426     // =>
427     //
428     // ph:
429     //      %x.initial = load %gep_0
430     // loop:
431     //      %x.storeforward = phi [%x.initial, %ph] [%y, %loop]
432     //      %x = load %gep_i            <---- now dead
433     //         = ... %x.storeforward
434     //      store %y, %gep_i_plus_1
435 
436     Value *Ptr = Cand.Load->getPointerOperand();
437     auto *PtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(Ptr));
438     auto *PH = L->getLoopPreheader();
439     assert(PH && "Preheader should exist!");
440     Value *InitialPtr = SEE.expandCodeFor(PtrSCEV->getStart(), Ptr->getType(),
441                                           PH->getTerminator());
442     Value *Initial = new LoadInst(
443         Cand.Load->getType(), InitialPtr, "load_initial",
444         /* isVolatile */ false, Cand.Load->getAlign(), PH->getTerminator());
445 
446     PHINode *PHI = PHINode::Create(Initial->getType(), 2, "store_forwarded",
447                                    &L->getHeader()->front());
448     PHI->addIncoming(Initial, PH);
449 
450     Type *LoadType = Initial->getType();
451     Type *StoreType = Cand.Store->getValueOperand()->getType();
452     auto &DL = Cand.Load->getParent()->getModule()->getDataLayout();
453     (void)DL;
454 
455     assert(DL.getTypeSizeInBits(LoadType) == DL.getTypeSizeInBits(StoreType) &&
456            "The type sizes should match!");
457 
458     Value *StoreValue = Cand.Store->getValueOperand();
459     if (LoadType != StoreType)
460       StoreValue = CastInst::CreateBitOrPointerCast(
461           StoreValue, LoadType, "store_forward_cast", Cand.Store);
462 
463     PHI->addIncoming(StoreValue, L->getLoopLatch());
464 
465     Cand.Load->replaceAllUsesWith(PHI);
466   }
467 
468   /// Top-level driver for each loop: find store->load forwarding
469   /// candidates, add run-time checks and perform transformation.
470   bool processLoop() {
471     LLVM_DEBUG(dbgs() << "\nIn \"" << L->getHeader()->getParent()->getName()
472                       << "\" checking " << *L << "\n");
473 
474     // Look for store-to-load forwarding cases across the
475     // backedge. E.g.:
476     //
477     // loop:
478     //      %x = load %gep_i
479     //         = ... %x
480     //      store %y, %gep_i_plus_1
481     //
482     // =>
483     //
484     // ph:
485     //      %x.initial = load %gep_0
486     // loop:
487     //      %x.storeforward = phi [%x.initial, %ph] [%y, %loop]
488     //      %x = load %gep_i            <---- now dead
489     //         = ... %x.storeforward
490     //      store %y, %gep_i_plus_1
491 
492     // First start with store->load dependences.
493     auto StoreToLoadDependences = findStoreToLoadDependences(LAI);
494     if (StoreToLoadDependences.empty())
495       return false;
496 
497     // Generate an index for each load and store according to the original
498     // program order.  This will be used later.
499     InstOrder = LAI.getDepChecker().generateInstructionOrderMap();
500 
501     // To keep things simple for now, remove those where the load is potentially
502     // fed by multiple stores.
503     removeDependencesFromMultipleStores(StoreToLoadDependences);
504     if (StoreToLoadDependences.empty())
505       return false;
506 
507     // Filter the candidates further.
508     SmallVector<StoreToLoadForwardingCandidate, 4> Candidates;
509     for (const StoreToLoadForwardingCandidate &Cand : StoreToLoadDependences) {
510       LLVM_DEBUG(dbgs() << "Candidate " << Cand);
511 
512       // Make sure that the stored values is available everywhere in the loop in
513       // the next iteration.
514       if (!doesStoreDominatesAllLatches(Cand.Store->getParent(), L, DT))
515         continue;
516 
517       // If the load is conditional we can't hoist its 0-iteration instance to
518       // the preheader because that would make it unconditional.  Thus we would
519       // access a memory location that the original loop did not access.
520       if (isLoadConditional(Cand.Load, L))
521         continue;
522 
523       // Check whether the SCEV difference is the same as the induction step,
524       // thus we load the value in the next iteration.
525       if (!Cand.isDependenceDistanceOfOne(PSE, L))
526         continue;
527 
528       assert(isa<SCEVAddRecExpr>(PSE.getSCEV(Cand.Load->getPointerOperand())) &&
529              "Loading from something other than indvar?");
530       assert(
531           isa<SCEVAddRecExpr>(PSE.getSCEV(Cand.Store->getPointerOperand())) &&
532           "Storing to something other than indvar?");
533 
534       Candidates.push_back(Cand);
535       LLVM_DEBUG(
536           dbgs()
537           << Candidates.size()
538           << ". Valid store-to-load forwarding across the loop backedge\n");
539     }
540     if (Candidates.empty())
541       return false;
542 
543     // Check intervening may-alias stores.  These need runtime checks for alias
544     // disambiguation.
545     SmallVector<RuntimePointerCheck, 4> Checks = collectMemchecks(Candidates);
546 
547     // Too many checks are likely to outweigh the benefits of forwarding.
548     if (Checks.size() > Candidates.size() * CheckPerElim) {
549       LLVM_DEBUG(dbgs() << "Too many run-time checks needed.\n");
550       return false;
551     }
552 
553     if (LAI.getPSE().getPredicate().getComplexity() >
554         LoadElimSCEVCheckThreshold) {
555       LLVM_DEBUG(dbgs() << "Too many SCEV run-time checks needed.\n");
556       return false;
557     }
558 
559     if (!L->isLoopSimplifyForm()) {
560       LLVM_DEBUG(dbgs() << "Loop is not is loop-simplify form");
561       return false;
562     }
563 
564     if (!Checks.empty() || !LAI.getPSE().getPredicate().isAlwaysTrue()) {
565       if (LAI.hasConvergentOp()) {
566         LLVM_DEBUG(dbgs() << "Versioning is needed but not allowed with "
567                              "convergent calls\n");
568         return false;
569       }
570 
571       auto *HeaderBB = L->getHeader();
572       auto *F = HeaderBB->getParent();
573       bool OptForSize = F->hasOptSize() ||
574                         llvm::shouldOptimizeForSize(HeaderBB, PSI, BFI,
575                                                     PGSOQueryType::IRPass);
576       if (OptForSize) {
577         LLVM_DEBUG(
578             dbgs() << "Versioning is needed but not allowed when optimizing "
579                       "for size.\n");
580         return false;
581       }
582 
583       // Point of no-return, start the transformation.  First, version the loop
584       // if necessary.
585 
586       LoopVersioning LV(LAI, Checks, L, LI, DT, PSE.getSE());
587       LV.versionLoop();
588 
589       // After versioning, some of the candidates' pointers could stop being
590       // SCEVAddRecs. We need to filter them out.
591       auto NoLongerGoodCandidate = [this](
592           const StoreToLoadForwardingCandidate &Cand) {
593         return !isa<SCEVAddRecExpr>(
594                     PSE.getSCEV(Cand.Load->getPointerOperand())) ||
595                !isa<SCEVAddRecExpr>(
596                     PSE.getSCEV(Cand.Store->getPointerOperand()));
597       };
598       llvm::erase_if(Candidates, NoLongerGoodCandidate);
599     }
600 
601     // Next, propagate the value stored by the store to the users of the load.
602     // Also for the first iteration, generate the initial value of the load.
603     SCEVExpander SEE(*PSE.getSE(), L->getHeader()->getModule()->getDataLayout(),
604                      "storeforward");
605     for (const auto &Cand : Candidates)
606       propagateStoredValueToLoadUsers(Cand, SEE);
607     NumLoopLoadEliminted += Candidates.size();
608 
609     return true;
610   }
611 
612 private:
613   Loop *L;
614 
615   /// Maps the load/store instructions to their index according to
616   /// program order.
617   DenseMap<Instruction *, unsigned> InstOrder;
618 
619   // Analyses used.
620   LoopInfo *LI;
621   const LoopAccessInfo &LAI;
622   DominatorTree *DT;
623   BlockFrequencyInfo *BFI;
624   ProfileSummaryInfo *PSI;
625   PredicatedScalarEvolution PSE;
626 };
627 
628 } // end anonymous namespace
629 
630 static bool eliminateLoadsAcrossLoops(Function &F, LoopInfo &LI,
631                                       DominatorTree &DT,
632                                       BlockFrequencyInfo *BFI,
633                                       ProfileSummaryInfo *PSI,
634                                       ScalarEvolution *SE, AssumptionCache *AC,
635                                       LoopAccessInfoManager &LAIs) {
636   // Build up a worklist of inner-loops to transform to avoid iterator
637   // invalidation.
638   // FIXME: This logic comes from other passes that actually change the loop
639   // nest structure. It isn't clear this is necessary (or useful) for a pass
640   // which merely optimizes the use of loads in a loop.
641   SmallVector<Loop *, 8> Worklist;
642 
643   bool Changed = false;
644 
645   for (Loop *TopLevelLoop : LI)
646     for (Loop *L : depth_first(TopLevelLoop)) {
647       Changed |= simplifyLoop(L, &DT, &LI, SE, AC, /*MSSAU*/ nullptr, false);
648       // We only handle inner-most loops.
649       if (L->isInnermost())
650         Worklist.push_back(L);
651     }
652 
653   // Now walk the identified inner loops.
654   for (Loop *L : Worklist) {
655     // Match historical behavior
656     if (!L->isRotatedForm() || !L->getExitingBlock())
657       continue;
658     // The actual work is performed by LoadEliminationForLoop.
659     LoadEliminationForLoop LEL(L, &LI, LAIs.getInfo(*L), &DT, BFI, PSI);
660     Changed |= LEL.processLoop();
661     if (Changed)
662       LAIs.clear();
663   }
664   return Changed;
665 }
666 
667 PreservedAnalyses LoopLoadEliminationPass::run(Function &F,
668                                                FunctionAnalysisManager &AM) {
669   auto &LI = AM.getResult<LoopAnalysis>(F);
670   // There are no loops in the function. Return before computing other expensive
671   // analyses.
672   if (LI.empty())
673     return PreservedAnalyses::all();
674   auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
675   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
676   auto &AC = AM.getResult<AssumptionAnalysis>(F);
677   auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
678   auto *PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
679   auto *BFI = (PSI && PSI->hasProfileSummary()) ?
680       &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr;
681   LoopAccessInfoManager &LAIs = AM.getResult<LoopAccessAnalysis>(F);
682 
683   bool Changed = eliminateLoadsAcrossLoops(F, LI, DT, BFI, PSI, &SE, &AC, LAIs);
684 
685   if (!Changed)
686     return PreservedAnalyses::all();
687 
688   PreservedAnalyses PA;
689   PA.preserve<DominatorTreeAnalysis>();
690   PA.preserve<LoopAnalysis>();
691   return PA;
692 }
693