1 //===-- LoopPredication.cpp - Guard based loop predication pass -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The LoopPredication pass tries to convert loop variant range checks to loop
10 // invariant by widening checks across loop iterations. For example, it will
11 // convert
12 //
13 //   for (i = 0; i < n; i++) {
14 //     guard(i < len);
15 //     ...
16 //   }
17 //
18 // to
19 //
20 //   for (i = 0; i < n; i++) {
21 //     guard(n - 1 < len);
22 //     ...
23 //   }
24 //
25 // After this transformation the condition of the guard is loop invariant, so
26 // loop-unswitch can later unswitch the loop by this condition which basically
27 // predicates the loop by the widened condition:
28 //
29 //   if (n - 1 < len)
30 //     for (i = 0; i < n; i++) {
31 //       ...
32 //     }
33 //   else
34 //     deoptimize
35 //
36 // It's tempting to rely on SCEV here, but it has proven to be problematic.
37 // Generally the facts SCEV provides about the increment step of add
38 // recurrences are true if the backedge of the loop is taken, which implicitly
39 // assumes that the guard doesn't fail. Using these facts to optimize the
40 // guard results in a circular logic where the guard is optimized under the
41 // assumption that it never fails.
42 //
43 // For example, in the loop below the induction variable will be marked as nuw
44 // basing on the guard. Basing on nuw the guard predicate will be considered
45 // monotonic. Given a monotonic condition it's tempting to replace the induction
46 // variable in the condition with its value on the last iteration. But this
47 // transformation is not correct, e.g. e = 4, b = 5 breaks the loop.
48 //
49 //   for (int i = b; i != e; i++)
50 //     guard(i u< len)
51 //
52 // One of the ways to reason about this problem is to use an inductive proof
53 // approach. Given the loop:
54 //
55 //   if (B(0)) {
56 //     do {
57 //       I = PHI(0, I.INC)
58 //       I.INC = I + Step
59 //       guard(G(I));
60 //     } while (B(I));
61 //   }
62 //
63 // where B(x) and G(x) are predicates that map integers to booleans, we want a
64 // loop invariant expression M such the following program has the same semantics
65 // as the above:
66 //
67 //   if (B(0)) {
68 //     do {
69 //       I = PHI(0, I.INC)
70 //       I.INC = I + Step
71 //       guard(G(0) && M);
72 //     } while (B(I));
73 //   }
74 //
75 // One solution for M is M = forall X . (G(X) && B(X)) => G(X + Step)
76 //
77 // Informal proof that the transformation above is correct:
78 //
79 //   By the definition of guards we can rewrite the guard condition to:
80 //     G(I) && G(0) && M
81 //
82 //   Let's prove that for each iteration of the loop:
83 //     G(0) && M => G(I)
84 //   And the condition above can be simplified to G(Start) && M.
85 //
86 //   Induction base.
87 //     G(0) && M => G(0)
88 //
89 //   Induction step. Assuming G(0) && M => G(I) on the subsequent
90 //   iteration:
91 //
92 //     B(I) is true because it's the backedge condition.
93 //     G(I) is true because the backedge is guarded by this condition.
94 //
95 //   So M = forall X . (G(X) && B(X)) => G(X + Step) implies G(I + Step).
96 //
97 // Note that we can use anything stronger than M, i.e. any condition which
98 // implies M.
99 //
100 // When S = 1 (i.e. forward iterating loop), the transformation is supported
101 // when:
102 //   * The loop has a single latch with the condition of the form:
103 //     B(X) = latchStart + X <pred> latchLimit,
104 //     where <pred> is u<, u<=, s<, or s<=.
105 //   * The guard condition is of the form
106 //     G(X) = guardStart + X u< guardLimit
107 //
108 //   For the ult latch comparison case M is:
109 //     forall X . guardStart + X u< guardLimit && latchStart + X <u latchLimit =>
110 //        guardStart + X + 1 u< guardLimit
111 //
112 //   The only way the antecedent can be true and the consequent can be false is
113 //   if
114 //     X == guardLimit - 1 - guardStart
115 //   (and guardLimit is non-zero, but we won't use this latter fact).
116 //   If X == guardLimit - 1 - guardStart then the second half of the antecedent is
117 //     latchStart + guardLimit - 1 - guardStart u< latchLimit
118 //   and its negation is
119 //     latchStart + guardLimit - 1 - guardStart u>= latchLimit
120 //
121 //   In other words, if
122 //     latchLimit u<= latchStart + guardLimit - 1 - guardStart
123 //   then:
124 //   (the ranges below are written in ConstantRange notation, where [A, B) is the
125 //   set for (I = A; I != B; I++ /*maywrap*/) yield(I);)
126 //
127 //      forall X . guardStart + X u< guardLimit &&
128 //                 latchStart + X u< latchLimit =>
129 //        guardStart + X + 1 u< guardLimit
130 //   == forall X . guardStart + X u< guardLimit &&
131 //                 latchStart + X u< latchStart + guardLimit - 1 - guardStart =>
132 //        guardStart + X + 1 u< guardLimit
133 //   == forall X . (guardStart + X) in [0, guardLimit) &&
134 //                 (latchStart + X) in [0, latchStart + guardLimit - 1 - guardStart) =>
135 //        (guardStart + X + 1) in [0, guardLimit)
136 //   == forall X . X in [-guardStart, guardLimit - guardStart) &&
137 //                 X in [-latchStart, guardLimit - 1 - guardStart) =>
138 //         X in [-guardStart - 1, guardLimit - guardStart - 1)
139 //   == true
140 //
141 //   So the widened condition is:
142 //     guardStart u< guardLimit &&
143 //     latchStart + guardLimit - 1 - guardStart u>= latchLimit
144 //   Similarly for ule condition the widened condition is:
145 //     guardStart u< guardLimit &&
146 //     latchStart + guardLimit - 1 - guardStart u> latchLimit
147 //   For slt condition the widened condition is:
148 //     guardStart u< guardLimit &&
149 //     latchStart + guardLimit - 1 - guardStart s>= latchLimit
150 //   For sle condition the widened condition is:
151 //     guardStart u< guardLimit &&
152 //     latchStart + guardLimit - 1 - guardStart s> latchLimit
153 //
154 // When S = -1 (i.e. reverse iterating loop), the transformation is supported
155 // when:
156 //   * The loop has a single latch with the condition of the form:
157 //     B(X) = X <pred> latchLimit, where <pred> is u>, u>=, s>, or s>=.
158 //   * The guard condition is of the form
159 //     G(X) = X - 1 u< guardLimit
160 //
161 //   For the ugt latch comparison case M is:
162 //     forall X. X-1 u< guardLimit and X u> latchLimit => X-2 u< guardLimit
163 //
164 //   The only way the antecedent can be true and the consequent can be false is if
165 //     X == 1.
166 //   If X == 1 then the second half of the antecedent is
167 //     1 u> latchLimit, and its negation is latchLimit u>= 1.
168 //
169 //   So the widened condition is:
170 //     guardStart u< guardLimit && latchLimit u>= 1.
171 //   Similarly for sgt condition the widened condition is:
172 //     guardStart u< guardLimit && latchLimit s>= 1.
173 //   For uge condition the widened condition is:
174 //     guardStart u< guardLimit && latchLimit u> 1.
175 //   For sge condition the widened condition is:
176 //     guardStart u< guardLimit && latchLimit s> 1.
177 //===----------------------------------------------------------------------===//
178 
179 #include "llvm/Transforms/Scalar/LoopPredication.h"
180 #include "llvm/ADT/Statistic.h"
181 #include "llvm/Analysis/AliasAnalysis.h"
182 #include "llvm/Analysis/BranchProbabilityInfo.h"
183 #include "llvm/Analysis/GuardUtils.h"
184 #include "llvm/Analysis/LoopInfo.h"
185 #include "llvm/Analysis/LoopPass.h"
186 #include "llvm/Analysis/MemorySSA.h"
187 #include "llvm/Analysis/MemorySSAUpdater.h"
188 #include "llvm/Analysis/ScalarEvolution.h"
189 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
190 #include "llvm/IR/Function.h"
191 #include "llvm/IR/IntrinsicInst.h"
192 #include "llvm/IR/Module.h"
193 #include "llvm/IR/PatternMatch.h"
194 #include "llvm/IR/ProfDataUtils.h"
195 #include "llvm/InitializePasses.h"
196 #include "llvm/Pass.h"
197 #include "llvm/Support/CommandLine.h"
198 #include "llvm/Support/Debug.h"
199 #include "llvm/Transforms/Scalar.h"
200 #include "llvm/Transforms/Utils/GuardUtils.h"
201 #include "llvm/Transforms/Utils/Local.h"
202 #include "llvm/Transforms/Utils/LoopUtils.h"
203 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
204 #include <optional>
205 
206 #define DEBUG_TYPE "loop-predication"
207 
208 STATISTIC(TotalConsidered, "Number of guards considered");
209 STATISTIC(TotalWidened, "Number of checks widened");
210 
211 using namespace llvm;
212 
213 static cl::opt<bool> EnableIVTruncation("loop-predication-enable-iv-truncation",
214                                         cl::Hidden, cl::init(true));
215 
216 static cl::opt<bool> EnableCountDownLoop("loop-predication-enable-count-down-loop",
217                                         cl::Hidden, cl::init(true));
218 
219 static cl::opt<bool>
220     SkipProfitabilityChecks("loop-predication-skip-profitability-checks",
221                             cl::Hidden, cl::init(false));
222 
223 // This is the scale factor for the latch probability. We use this during
224 // profitability analysis to find other exiting blocks that have a much higher
225 // probability of exiting the loop instead of loop exiting via latch.
226 // This value should be greater than 1 for a sane profitability check.
227 static cl::opt<float> LatchExitProbabilityScale(
228     "loop-predication-latch-probability-scale", cl::Hidden, cl::init(2.0),
229     cl::desc("scale factor for the latch probability. Value should be greater "
230              "than 1. Lower values are ignored"));
231 
232 static cl::opt<bool> PredicateWidenableBranchGuards(
233     "loop-predication-predicate-widenable-branches-to-deopt", cl::Hidden,
234     cl::desc("Whether or not we should predicate guards "
235              "expressed as widenable branches to deoptimize blocks"),
236     cl::init(true));
237 
238 static cl::opt<bool> InsertAssumesOfPredicatedGuardsConditions(
239     "loop-predication-insert-assumes-of-predicated-guards-conditions",
240     cl::Hidden,
241     cl::desc("Whether or not we should insert assumes of conditions of "
242              "predicated guards"),
243     cl::init(true));
244 
245 namespace {
246 /// Represents an induction variable check:
247 ///   icmp Pred, <induction variable>, <loop invariant limit>
248 struct LoopICmp {
249   ICmpInst::Predicate Pred;
250   const SCEVAddRecExpr *IV;
251   const SCEV *Limit;
252   LoopICmp(ICmpInst::Predicate Pred, const SCEVAddRecExpr *IV,
253            const SCEV *Limit)
254     : Pred(Pred), IV(IV), Limit(Limit) {}
255   LoopICmp() = default;
256   void dump() {
257     dbgs() << "LoopICmp Pred = " << Pred << ", IV = " << *IV
258            << ", Limit = " << *Limit << "\n";
259   }
260 };
261 
262 class LoopPredication {
263   AliasAnalysis *AA;
264   DominatorTree *DT;
265   ScalarEvolution *SE;
266   LoopInfo *LI;
267   MemorySSAUpdater *MSSAU;
268 
269   Loop *L;
270   const DataLayout *DL;
271   BasicBlock *Preheader;
272   LoopICmp LatchCheck;
273 
274   bool isSupportedStep(const SCEV* Step);
275   std::optional<LoopICmp> parseLoopICmp(ICmpInst *ICI);
276   std::optional<LoopICmp> parseLoopLatchICmp();
277 
278   /// Return an insertion point suitable for inserting a safe to speculate
279   /// instruction whose only user will be 'User' which has operands 'Ops'.  A
280   /// trivial result would be the at the User itself, but we try to return a
281   /// loop invariant location if possible.
282   Instruction *findInsertPt(Instruction *User, ArrayRef<Value*> Ops);
283   /// Same as above, *except* that this uses the SCEV definition of invariant
284   /// which is that an expression *can be made* invariant via SCEVExpander.
285   /// Thus, this version is only suitable for finding an insert point to be be
286   /// passed to SCEVExpander!
287   Instruction *findInsertPt(const SCEVExpander &Expander, Instruction *User,
288                             ArrayRef<const SCEV *> Ops);
289 
290   /// Return true if the value is known to produce a single fixed value across
291   /// all iterations on which it executes.  Note that this does not imply
292   /// speculation safety.  That must be established separately.
293   bool isLoopInvariantValue(const SCEV* S);
294 
295   Value *expandCheck(SCEVExpander &Expander, Instruction *Guard,
296                      ICmpInst::Predicate Pred, const SCEV *LHS,
297                      const SCEV *RHS);
298 
299   std::optional<Value *> widenICmpRangeCheck(ICmpInst *ICI,
300                                              SCEVExpander &Expander,
301                                              Instruction *Guard);
302   std::optional<Value *>
303   widenICmpRangeCheckIncrementingLoop(LoopICmp LatchCheck, LoopICmp RangeCheck,
304                                       SCEVExpander &Expander,
305                                       Instruction *Guard);
306   std::optional<Value *>
307   widenICmpRangeCheckDecrementingLoop(LoopICmp LatchCheck, LoopICmp RangeCheck,
308                                       SCEVExpander &Expander,
309                                       Instruction *Guard);
310   unsigned collectChecks(SmallVectorImpl<Value *> &Checks, Value *Condition,
311                          SCEVExpander &Expander, Instruction *Guard);
312   bool widenGuardConditions(IntrinsicInst *II, SCEVExpander &Expander);
313   bool widenWidenableBranchGuardConditions(BranchInst *Guard, SCEVExpander &Expander);
314   // If the loop always exits through another block in the loop, we should not
315   // predicate based on the latch check. For example, the latch check can be a
316   // very coarse grained check and there can be more fine grained exit checks
317   // within the loop.
318   bool isLoopProfitableToPredicate();
319 
320   bool predicateLoopExits(Loop *L, SCEVExpander &Rewriter);
321 
322 public:
323   LoopPredication(AliasAnalysis *AA, DominatorTree *DT, ScalarEvolution *SE,
324                   LoopInfo *LI, MemorySSAUpdater *MSSAU)
325       : AA(AA), DT(DT), SE(SE), LI(LI), MSSAU(MSSAU){};
326   bool runOnLoop(Loop *L);
327 };
328 
329 class LoopPredicationLegacyPass : public LoopPass {
330 public:
331   static char ID;
332   LoopPredicationLegacyPass() : LoopPass(ID) {
333     initializeLoopPredicationLegacyPassPass(*PassRegistry::getPassRegistry());
334   }
335 
336   void getAnalysisUsage(AnalysisUsage &AU) const override {
337     AU.addRequired<BranchProbabilityInfoWrapperPass>();
338     getLoopAnalysisUsage(AU);
339     AU.addPreserved<MemorySSAWrapperPass>();
340   }
341 
342   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
343     if (skipLoop(L))
344       return false;
345     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
346     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
347     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
348     auto *MSSAWP = getAnalysisIfAvailable<MemorySSAWrapperPass>();
349     std::unique_ptr<MemorySSAUpdater> MSSAU;
350     if (MSSAWP)
351       MSSAU = std::make_unique<MemorySSAUpdater>(&MSSAWP->getMSSA());
352     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
353     LoopPredication LP(AA, DT, SE, LI, MSSAU ? MSSAU.get() : nullptr);
354     return LP.runOnLoop(L);
355   }
356 };
357 
358 char LoopPredicationLegacyPass::ID = 0;
359 } // end namespace
360 
361 INITIALIZE_PASS_BEGIN(LoopPredicationLegacyPass, "loop-predication",
362                       "Loop predication", false, false)
363 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
364 INITIALIZE_PASS_DEPENDENCY(LoopPass)
365 INITIALIZE_PASS_END(LoopPredicationLegacyPass, "loop-predication",
366                     "Loop predication", false, false)
367 
368 Pass *llvm::createLoopPredicationPass() {
369   return new LoopPredicationLegacyPass();
370 }
371 
372 PreservedAnalyses LoopPredicationPass::run(Loop &L, LoopAnalysisManager &AM,
373                                            LoopStandardAnalysisResults &AR,
374                                            LPMUpdater &U) {
375   std::unique_ptr<MemorySSAUpdater> MSSAU;
376   if (AR.MSSA)
377     MSSAU = std::make_unique<MemorySSAUpdater>(AR.MSSA);
378   LoopPredication LP(&AR.AA, &AR.DT, &AR.SE, &AR.LI,
379                      MSSAU ? MSSAU.get() : nullptr);
380   if (!LP.runOnLoop(&L))
381     return PreservedAnalyses::all();
382 
383   auto PA = getLoopPassPreservedAnalyses();
384   if (AR.MSSA)
385     PA.preserve<MemorySSAAnalysis>();
386   return PA;
387 }
388 
389 std::optional<LoopICmp> LoopPredication::parseLoopICmp(ICmpInst *ICI) {
390   auto Pred = ICI->getPredicate();
391   auto *LHS = ICI->getOperand(0);
392   auto *RHS = ICI->getOperand(1);
393 
394   const SCEV *LHSS = SE->getSCEV(LHS);
395   if (isa<SCEVCouldNotCompute>(LHSS))
396     return std::nullopt;
397   const SCEV *RHSS = SE->getSCEV(RHS);
398   if (isa<SCEVCouldNotCompute>(RHSS))
399     return std::nullopt;
400 
401   // Canonicalize RHS to be loop invariant bound, LHS - a loop computable IV
402   if (SE->isLoopInvariant(LHSS, L)) {
403     std::swap(LHS, RHS);
404     std::swap(LHSS, RHSS);
405     Pred = ICmpInst::getSwappedPredicate(Pred);
406   }
407 
408   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHSS);
409   if (!AR || AR->getLoop() != L)
410     return std::nullopt;
411 
412   return LoopICmp(Pred, AR, RHSS);
413 }
414 
415 Value *LoopPredication::expandCheck(SCEVExpander &Expander,
416                                     Instruction *Guard,
417                                     ICmpInst::Predicate Pred, const SCEV *LHS,
418                                     const SCEV *RHS) {
419   Type *Ty = LHS->getType();
420   assert(Ty == RHS->getType() && "expandCheck operands have different types?");
421 
422   if (SE->isLoopInvariant(LHS, L) && SE->isLoopInvariant(RHS, L)) {
423     IRBuilder<> Builder(Guard);
424     if (SE->isLoopEntryGuardedByCond(L, Pred, LHS, RHS))
425       return Builder.getTrue();
426     if (SE->isLoopEntryGuardedByCond(L, ICmpInst::getInversePredicate(Pred),
427                                      LHS, RHS))
428       return Builder.getFalse();
429   }
430 
431   Value *LHSV =
432       Expander.expandCodeFor(LHS, Ty, findInsertPt(Expander, Guard, {LHS}));
433   Value *RHSV =
434       Expander.expandCodeFor(RHS, Ty, findInsertPt(Expander, Guard, {RHS}));
435   IRBuilder<> Builder(findInsertPt(Guard, {LHSV, RHSV}));
436   return Builder.CreateICmp(Pred, LHSV, RHSV);
437 }
438 
439 // Returns true if its safe to truncate the IV to RangeCheckType.
440 // When the IV type is wider than the range operand type, we can still do loop
441 // predication, by generating SCEVs for the range and latch that are of the
442 // same type. We achieve this by generating a SCEV truncate expression for the
443 // latch IV. This is done iff truncation of the IV is a safe operation,
444 // without loss of information.
445 // Another way to achieve this is by generating a wider type SCEV for the
446 // range check operand, however, this needs a more involved check that
447 // operands do not overflow. This can lead to loss of information when the
448 // range operand is of the form: add i32 %offset, %iv. We need to prove that
449 // sext(x + y) is same as sext(x) + sext(y).
450 // This function returns true if we can safely represent the IV type in
451 // the RangeCheckType without loss of information.
452 static bool isSafeToTruncateWideIVType(const DataLayout &DL,
453                                        ScalarEvolution &SE,
454                                        const LoopICmp LatchCheck,
455                                        Type *RangeCheckType) {
456   if (!EnableIVTruncation)
457     return false;
458   assert(DL.getTypeSizeInBits(LatchCheck.IV->getType()).getFixedValue() >
459              DL.getTypeSizeInBits(RangeCheckType).getFixedValue() &&
460          "Expected latch check IV type to be larger than range check operand "
461          "type!");
462   // The start and end values of the IV should be known. This is to guarantee
463   // that truncating the wide type will not lose information.
464   auto *Limit = dyn_cast<SCEVConstant>(LatchCheck.Limit);
465   auto *Start = dyn_cast<SCEVConstant>(LatchCheck.IV->getStart());
466   if (!Limit || !Start)
467     return false;
468   // This check makes sure that the IV does not change sign during loop
469   // iterations. Consider latchType = i64, LatchStart = 5, Pred = ICMP_SGE,
470   // LatchEnd = 2, rangeCheckType = i32. If it's not a monotonic predicate, the
471   // IV wraps around, and the truncation of the IV would lose the range of
472   // iterations between 2^32 and 2^64.
473   if (!SE.getMonotonicPredicateType(LatchCheck.IV, LatchCheck.Pred))
474     return false;
475   // The active bits should be less than the bits in the RangeCheckType. This
476   // guarantees that truncating the latch check to RangeCheckType is a safe
477   // operation.
478   auto RangeCheckTypeBitSize =
479       DL.getTypeSizeInBits(RangeCheckType).getFixedValue();
480   return Start->getAPInt().getActiveBits() < RangeCheckTypeBitSize &&
481          Limit->getAPInt().getActiveBits() < RangeCheckTypeBitSize;
482 }
483 
484 
485 // Return an LoopICmp describing a latch check equivlent to LatchCheck but with
486 // the requested type if safe to do so.  May involve the use of a new IV.
487 static std::optional<LoopICmp> generateLoopLatchCheck(const DataLayout &DL,
488                                                       ScalarEvolution &SE,
489                                                       const LoopICmp LatchCheck,
490                                                       Type *RangeCheckType) {
491 
492   auto *LatchType = LatchCheck.IV->getType();
493   if (RangeCheckType == LatchType)
494     return LatchCheck;
495   // For now, bail out if latch type is narrower than range type.
496   if (DL.getTypeSizeInBits(LatchType).getFixedValue() <
497       DL.getTypeSizeInBits(RangeCheckType).getFixedValue())
498     return std::nullopt;
499   if (!isSafeToTruncateWideIVType(DL, SE, LatchCheck, RangeCheckType))
500     return std::nullopt;
501   // We can now safely identify the truncated version of the IV and limit for
502   // RangeCheckType.
503   LoopICmp NewLatchCheck;
504   NewLatchCheck.Pred = LatchCheck.Pred;
505   NewLatchCheck.IV = dyn_cast<SCEVAddRecExpr>(
506       SE.getTruncateExpr(LatchCheck.IV, RangeCheckType));
507   if (!NewLatchCheck.IV)
508     return std::nullopt;
509   NewLatchCheck.Limit = SE.getTruncateExpr(LatchCheck.Limit, RangeCheckType);
510   LLVM_DEBUG(dbgs() << "IV of type: " << *LatchType
511                     << "can be represented as range check type:"
512                     << *RangeCheckType << "\n");
513   LLVM_DEBUG(dbgs() << "LatchCheck.IV: " << *NewLatchCheck.IV << "\n");
514   LLVM_DEBUG(dbgs() << "LatchCheck.Limit: " << *NewLatchCheck.Limit << "\n");
515   return NewLatchCheck;
516 }
517 
518 bool LoopPredication::isSupportedStep(const SCEV* Step) {
519   return Step->isOne() || (Step->isAllOnesValue() && EnableCountDownLoop);
520 }
521 
522 Instruction *LoopPredication::findInsertPt(Instruction *Use,
523                                            ArrayRef<Value*> Ops) {
524   for (Value *Op : Ops)
525     if (!L->isLoopInvariant(Op))
526       return Use;
527   return Preheader->getTerminator();
528 }
529 
530 Instruction *LoopPredication::findInsertPt(const SCEVExpander &Expander,
531                                            Instruction *Use,
532                                            ArrayRef<const SCEV *> Ops) {
533   // Subtlety: SCEV considers things to be invariant if the value produced is
534   // the same across iterations.  This is not the same as being able to
535   // evaluate outside the loop, which is what we actually need here.
536   for (const SCEV *Op : Ops)
537     if (!SE->isLoopInvariant(Op, L) ||
538         !Expander.isSafeToExpandAt(Op, Preheader->getTerminator()))
539       return Use;
540   return Preheader->getTerminator();
541 }
542 
543 bool LoopPredication::isLoopInvariantValue(const SCEV* S) {
544   // Handling expressions which produce invariant results, but *haven't* yet
545   // been removed from the loop serves two important purposes.
546   // 1) Most importantly, it resolves a pass ordering cycle which would
547   // otherwise need us to iteration licm, loop-predication, and either
548   // loop-unswitch or loop-peeling to make progress on examples with lots of
549   // predicable range checks in a row.  (Since, in the general case,  we can't
550   // hoist the length checks until the dominating checks have been discharged
551   // as we can't prove doing so is safe.)
552   // 2) As a nice side effect, this exposes the value of peeling or unswitching
553   // much more obviously in the IR.  Otherwise, the cost modeling for other
554   // transforms would end up needing to duplicate all of this logic to model a
555   // check which becomes predictable based on a modeled peel or unswitch.
556   //
557   // The cost of doing so in the worst case is an extra fill from the stack  in
558   // the loop to materialize the loop invariant test value instead of checking
559   // against the original IV which is presumable in a register inside the loop.
560   // Such cases are presumably rare, and hint at missing oppurtunities for
561   // other passes.
562 
563   if (SE->isLoopInvariant(S, L))
564     // Note: This the SCEV variant, so the original Value* may be within the
565     // loop even though SCEV has proven it is loop invariant.
566     return true;
567 
568   // Handle a particular important case which SCEV doesn't yet know about which
569   // shows up in range checks on arrays with immutable lengths.
570   // TODO: This should be sunk inside SCEV.
571   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S))
572     if (const auto *LI = dyn_cast<LoadInst>(U->getValue()))
573       if (LI->isUnordered() && L->hasLoopInvariantOperands(LI))
574         if (!isModSet(AA->getModRefInfoMask(LI->getOperand(0))) ||
575             LI->hasMetadata(LLVMContext::MD_invariant_load))
576           return true;
577   return false;
578 }
579 
580 std::optional<Value *> LoopPredication::widenICmpRangeCheckIncrementingLoop(
581     LoopICmp LatchCheck, LoopICmp RangeCheck, SCEVExpander &Expander,
582     Instruction *Guard) {
583   auto *Ty = RangeCheck.IV->getType();
584   // Generate the widened condition for the forward loop:
585   //   guardStart u< guardLimit &&
586   //   latchLimit <pred> guardLimit - 1 - guardStart + latchStart
587   // where <pred> depends on the latch condition predicate. See the file
588   // header comment for the reasoning.
589   // guardLimit - guardStart + latchStart - 1
590   const SCEV *GuardStart = RangeCheck.IV->getStart();
591   const SCEV *GuardLimit = RangeCheck.Limit;
592   const SCEV *LatchStart = LatchCheck.IV->getStart();
593   const SCEV *LatchLimit = LatchCheck.Limit;
594   // Subtlety: We need all the values to be *invariant* across all iterations,
595   // but we only need to check expansion safety for those which *aren't*
596   // already guaranteed to dominate the guard.
597   if (!isLoopInvariantValue(GuardStart) ||
598       !isLoopInvariantValue(GuardLimit) ||
599       !isLoopInvariantValue(LatchStart) ||
600       !isLoopInvariantValue(LatchLimit)) {
601     LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
602     return std::nullopt;
603   }
604   if (!Expander.isSafeToExpandAt(LatchStart, Guard) ||
605       !Expander.isSafeToExpandAt(LatchLimit, Guard)) {
606     LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
607     return std::nullopt;
608   }
609 
610   // guardLimit - guardStart + latchStart - 1
611   const SCEV *RHS =
612       SE->getAddExpr(SE->getMinusSCEV(GuardLimit, GuardStart),
613                      SE->getMinusSCEV(LatchStart, SE->getOne(Ty)));
614   auto LimitCheckPred =
615       ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
616 
617   LLVM_DEBUG(dbgs() << "LHS: " << *LatchLimit << "\n");
618   LLVM_DEBUG(dbgs() << "RHS: " << *RHS << "\n");
619   LLVM_DEBUG(dbgs() << "Pred: " << LimitCheckPred << "\n");
620 
621   auto *LimitCheck =
622       expandCheck(Expander, Guard, LimitCheckPred, LatchLimit, RHS);
623   auto *FirstIterationCheck = expandCheck(Expander, Guard, RangeCheck.Pred,
624                                           GuardStart, GuardLimit);
625   IRBuilder<> Builder(findInsertPt(Guard, {FirstIterationCheck, LimitCheck}));
626   return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
627 }
628 
629 std::optional<Value *> LoopPredication::widenICmpRangeCheckDecrementingLoop(
630     LoopICmp LatchCheck, LoopICmp RangeCheck, SCEVExpander &Expander,
631     Instruction *Guard) {
632   auto *Ty = RangeCheck.IV->getType();
633   const SCEV *GuardStart = RangeCheck.IV->getStart();
634   const SCEV *GuardLimit = RangeCheck.Limit;
635   const SCEV *LatchStart = LatchCheck.IV->getStart();
636   const SCEV *LatchLimit = LatchCheck.Limit;
637   // Subtlety: We need all the values to be *invariant* across all iterations,
638   // but we only need to check expansion safety for those which *aren't*
639   // already guaranteed to dominate the guard.
640   if (!isLoopInvariantValue(GuardStart) ||
641       !isLoopInvariantValue(GuardLimit) ||
642       !isLoopInvariantValue(LatchStart) ||
643       !isLoopInvariantValue(LatchLimit)) {
644     LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
645     return std::nullopt;
646   }
647   if (!Expander.isSafeToExpandAt(LatchStart, Guard) ||
648       !Expander.isSafeToExpandAt(LatchLimit, Guard)) {
649     LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
650     return std::nullopt;
651   }
652   // The decrement of the latch check IV should be the same as the
653   // rangeCheckIV.
654   auto *PostDecLatchCheckIV = LatchCheck.IV->getPostIncExpr(*SE);
655   if (RangeCheck.IV != PostDecLatchCheckIV) {
656     LLVM_DEBUG(dbgs() << "Not the same. PostDecLatchCheckIV: "
657                       << *PostDecLatchCheckIV
658                       << "  and RangeCheckIV: " << *RangeCheck.IV << "\n");
659     return std::nullopt;
660   }
661 
662   // Generate the widened condition for CountDownLoop:
663   // guardStart u< guardLimit &&
664   // latchLimit <pred> 1.
665   // See the header comment for reasoning of the checks.
666   auto LimitCheckPred =
667       ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
668   auto *FirstIterationCheck = expandCheck(Expander, Guard,
669                                           ICmpInst::ICMP_ULT,
670                                           GuardStart, GuardLimit);
671   auto *LimitCheck = expandCheck(Expander, Guard, LimitCheckPred, LatchLimit,
672                                  SE->getOne(Ty));
673   IRBuilder<> Builder(findInsertPt(Guard, {FirstIterationCheck, LimitCheck}));
674   return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
675 }
676 
677 static void normalizePredicate(ScalarEvolution *SE, Loop *L,
678                                LoopICmp& RC) {
679   // LFTR canonicalizes checks to the ICMP_NE/EQ form; normalize back to the
680   // ULT/UGE form for ease of handling by our caller.
681   if (ICmpInst::isEquality(RC.Pred) &&
682       RC.IV->getStepRecurrence(*SE)->isOne() &&
683       SE->isKnownPredicate(ICmpInst::ICMP_ULE, RC.IV->getStart(), RC.Limit))
684     RC.Pred = RC.Pred == ICmpInst::ICMP_NE ?
685       ICmpInst::ICMP_ULT : ICmpInst::ICMP_UGE;
686 }
687 
688 /// If ICI can be widened to a loop invariant condition emits the loop
689 /// invariant condition in the loop preheader and return it, otherwise
690 /// returns std::nullopt.
691 std::optional<Value *>
692 LoopPredication::widenICmpRangeCheck(ICmpInst *ICI, SCEVExpander &Expander,
693                                      Instruction *Guard) {
694   LLVM_DEBUG(dbgs() << "Analyzing ICmpInst condition:\n");
695   LLVM_DEBUG(ICI->dump());
696 
697   // parseLoopStructure guarantees that the latch condition is:
698   //   ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=.
699   // We are looking for the range checks of the form:
700   //   i u< guardLimit
701   auto RangeCheck = parseLoopICmp(ICI);
702   if (!RangeCheck) {
703     LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
704     return std::nullopt;
705   }
706   LLVM_DEBUG(dbgs() << "Guard check:\n");
707   LLVM_DEBUG(RangeCheck->dump());
708   if (RangeCheck->Pred != ICmpInst::ICMP_ULT) {
709     LLVM_DEBUG(dbgs() << "Unsupported range check predicate("
710                       << RangeCheck->Pred << ")!\n");
711     return std::nullopt;
712   }
713   auto *RangeCheckIV = RangeCheck->IV;
714   if (!RangeCheckIV->isAffine()) {
715     LLVM_DEBUG(dbgs() << "Range check IV is not affine!\n");
716     return std::nullopt;
717   }
718   auto *Step = RangeCheckIV->getStepRecurrence(*SE);
719   // We cannot just compare with latch IV step because the latch and range IVs
720   // may have different types.
721   if (!isSupportedStep(Step)) {
722     LLVM_DEBUG(dbgs() << "Range check and latch have IVs different steps!\n");
723     return std::nullopt;
724   }
725   auto *Ty = RangeCheckIV->getType();
726   auto CurrLatchCheckOpt = generateLoopLatchCheck(*DL, *SE, LatchCheck, Ty);
727   if (!CurrLatchCheckOpt) {
728     LLVM_DEBUG(dbgs() << "Failed to generate a loop latch check "
729                          "corresponding to range type: "
730                       << *Ty << "\n");
731     return std::nullopt;
732   }
733 
734   LoopICmp CurrLatchCheck = *CurrLatchCheckOpt;
735   // At this point, the range and latch step should have the same type, but need
736   // not have the same value (we support both 1 and -1 steps).
737   assert(Step->getType() ==
738              CurrLatchCheck.IV->getStepRecurrence(*SE)->getType() &&
739          "Range and latch steps should be of same type!");
740   if (Step != CurrLatchCheck.IV->getStepRecurrence(*SE)) {
741     LLVM_DEBUG(dbgs() << "Range and latch have different step values!\n");
742     return std::nullopt;
743   }
744 
745   if (Step->isOne())
746     return widenICmpRangeCheckIncrementingLoop(CurrLatchCheck, *RangeCheck,
747                                                Expander, Guard);
748   else {
749     assert(Step->isAllOnesValue() && "Step should be -1!");
750     return widenICmpRangeCheckDecrementingLoop(CurrLatchCheck, *RangeCheck,
751                                                Expander, Guard);
752   }
753 }
754 
755 unsigned LoopPredication::collectChecks(SmallVectorImpl<Value *> &Checks,
756                                         Value *Condition,
757                                         SCEVExpander &Expander,
758                                         Instruction *Guard) {
759   unsigned NumWidened = 0;
760   // The guard condition is expected to be in form of:
761   //   cond1 && cond2 && cond3 ...
762   // Iterate over subconditions looking for icmp conditions which can be
763   // widened across loop iterations. Widening these conditions remember the
764   // resulting list of subconditions in Checks vector.
765   SmallVector<Value *, 4> Worklist(1, Condition);
766   SmallPtrSet<Value *, 4> Visited;
767   Visited.insert(Condition);
768   Value *WideableCond = nullptr;
769   do {
770     Value *Condition = Worklist.pop_back_val();
771     Value *LHS, *RHS;
772     using namespace llvm::PatternMatch;
773     if (match(Condition, m_And(m_Value(LHS), m_Value(RHS)))) {
774       if (Visited.insert(LHS).second)
775         Worklist.push_back(LHS);
776       if (Visited.insert(RHS).second)
777         Worklist.push_back(RHS);
778       continue;
779     }
780 
781     if (match(Condition,
782               m_Intrinsic<Intrinsic::experimental_widenable_condition>())) {
783       // Pick any, we don't care which
784       WideableCond = Condition;
785       continue;
786     }
787 
788     if (ICmpInst *ICI = dyn_cast<ICmpInst>(Condition)) {
789       if (auto NewRangeCheck = widenICmpRangeCheck(ICI, Expander,
790                                                    Guard)) {
791         Checks.push_back(*NewRangeCheck);
792         NumWidened++;
793         continue;
794       }
795     }
796 
797     // Save the condition as is if we can't widen it
798     Checks.push_back(Condition);
799   } while (!Worklist.empty());
800   // At the moment, our matching logic for wideable conditions implicitly
801   // assumes we preserve the form: (br (and Cond, WC())).  FIXME
802   // Note that if there were multiple calls to wideable condition in the
803   // traversal, we only need to keep one, and which one is arbitrary.
804   if (WideableCond)
805     Checks.push_back(WideableCond);
806   return NumWidened;
807 }
808 
809 bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard,
810                                            SCEVExpander &Expander) {
811   LLVM_DEBUG(dbgs() << "Processing guard:\n");
812   LLVM_DEBUG(Guard->dump());
813 
814   TotalConsidered++;
815   SmallVector<Value *, 4> Checks;
816   unsigned NumWidened = collectChecks(Checks, Guard->getOperand(0), Expander,
817                                       Guard);
818   if (NumWidened == 0)
819     return false;
820 
821   TotalWidened += NumWidened;
822 
823   // Emit the new guard condition
824   IRBuilder<> Builder(findInsertPt(Guard, Checks));
825   Value *AllChecks = Builder.CreateAnd(Checks);
826   auto *OldCond = Guard->getOperand(0);
827   Guard->setOperand(0, AllChecks);
828   if (InsertAssumesOfPredicatedGuardsConditions) {
829     Builder.SetInsertPoint(&*++BasicBlock::iterator(Guard));
830     Builder.CreateAssumption(OldCond);
831   }
832   RecursivelyDeleteTriviallyDeadInstructions(OldCond, nullptr /* TLI */, MSSAU);
833 
834   LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
835   return true;
836 }
837 
838 bool LoopPredication::widenWidenableBranchGuardConditions(
839     BranchInst *BI, SCEVExpander &Expander) {
840   assert(isGuardAsWidenableBranch(BI) && "Must be!");
841   LLVM_DEBUG(dbgs() << "Processing guard:\n");
842   LLVM_DEBUG(BI->dump());
843 
844   Value *Cond, *WC;
845   BasicBlock *IfTrueBB, *IfFalseBB;
846   bool Parsed = parseWidenableBranch(BI, Cond, WC, IfTrueBB, IfFalseBB);
847   assert(Parsed && "Must be able to parse widenable branch");
848   (void)Parsed;
849 
850   TotalConsidered++;
851   SmallVector<Value *, 4> Checks;
852   unsigned NumWidened = collectChecks(Checks, BI->getCondition(),
853                                       Expander, BI);
854   if (NumWidened == 0)
855     return false;
856 
857   TotalWidened += NumWidened;
858 
859   // Emit the new guard condition
860   IRBuilder<> Builder(findInsertPt(BI, Checks));
861   Value *AllChecks = Builder.CreateAnd(Checks);
862   auto *OldCond = BI->getCondition();
863   BI->setCondition(AllChecks);
864   if (InsertAssumesOfPredicatedGuardsConditions) {
865     Builder.SetInsertPoint(IfTrueBB, IfTrueBB->getFirstInsertionPt());
866     Builder.CreateAssumption(Cond);
867   }
868   RecursivelyDeleteTriviallyDeadInstructions(OldCond, nullptr /* TLI */, MSSAU);
869   assert(isGuardAsWidenableBranch(BI) &&
870          "Stopped being a guard after transform?");
871 
872   LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
873   return true;
874 }
875 
876 std::optional<LoopICmp> LoopPredication::parseLoopLatchICmp() {
877   using namespace PatternMatch;
878 
879   BasicBlock *LoopLatch = L->getLoopLatch();
880   if (!LoopLatch) {
881     LLVM_DEBUG(dbgs() << "The loop doesn't have a single latch!\n");
882     return std::nullopt;
883   }
884 
885   auto *BI = dyn_cast<BranchInst>(LoopLatch->getTerminator());
886   if (!BI || !BI->isConditional()) {
887     LLVM_DEBUG(dbgs() << "Failed to match the latch terminator!\n");
888     return std::nullopt;
889   }
890   BasicBlock *TrueDest = BI->getSuccessor(0);
891   assert(
892       (TrueDest == L->getHeader() || BI->getSuccessor(1) == L->getHeader()) &&
893       "One of the latch's destinations must be the header");
894 
895   auto *ICI = dyn_cast<ICmpInst>(BI->getCondition());
896   if (!ICI) {
897     LLVM_DEBUG(dbgs() << "Failed to match the latch condition!\n");
898     return std::nullopt;
899   }
900   auto Result = parseLoopICmp(ICI);
901   if (!Result) {
902     LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
903     return std::nullopt;
904   }
905 
906   if (TrueDest != L->getHeader())
907     Result->Pred = ICmpInst::getInversePredicate(Result->Pred);
908 
909   // Check affine first, so if it's not we don't try to compute the step
910   // recurrence.
911   if (!Result->IV->isAffine()) {
912     LLVM_DEBUG(dbgs() << "The induction variable is not affine!\n");
913     return std::nullopt;
914   }
915 
916   auto *Step = Result->IV->getStepRecurrence(*SE);
917   if (!isSupportedStep(Step)) {
918     LLVM_DEBUG(dbgs() << "Unsupported loop stride(" << *Step << ")!\n");
919     return std::nullopt;
920   }
921 
922   auto IsUnsupportedPredicate = [](const SCEV *Step, ICmpInst::Predicate Pred) {
923     if (Step->isOne()) {
924       return Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_SLT &&
925              Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_SLE;
926     } else {
927       assert(Step->isAllOnesValue() && "Step should be -1!");
928       return Pred != ICmpInst::ICMP_UGT && Pred != ICmpInst::ICMP_SGT &&
929              Pred != ICmpInst::ICMP_UGE && Pred != ICmpInst::ICMP_SGE;
930     }
931   };
932 
933   normalizePredicate(SE, L, *Result);
934   if (IsUnsupportedPredicate(Step, Result->Pred)) {
935     LLVM_DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result->Pred
936                       << ")!\n");
937     return std::nullopt;
938   }
939 
940   return Result;
941 }
942 
943 bool LoopPredication::isLoopProfitableToPredicate() {
944   if (SkipProfitabilityChecks)
945     return true;
946 
947   SmallVector<std::pair<BasicBlock *, BasicBlock *>, 8> ExitEdges;
948   L->getExitEdges(ExitEdges);
949   // If there is only one exiting edge in the loop, it is always profitable to
950   // predicate the loop.
951   if (ExitEdges.size() == 1)
952     return true;
953 
954   // Calculate the exiting probabilities of all exiting edges from the loop,
955   // starting with the LatchExitProbability.
956   // Heuristic for profitability: If any of the exiting blocks' probability of
957   // exiting the loop is larger than exiting through the latch block, it's not
958   // profitable to predicate the loop.
959   auto *LatchBlock = L->getLoopLatch();
960   assert(LatchBlock && "Should have a single latch at this point!");
961   auto *LatchTerm = LatchBlock->getTerminator();
962   assert(LatchTerm->getNumSuccessors() == 2 &&
963          "expected to be an exiting block with 2 succs!");
964   unsigned LatchBrExitIdx =
965       LatchTerm->getSuccessor(0) == L->getHeader() ? 1 : 0;
966   // We compute branch probabilities without BPI. We do not rely on BPI since
967   // Loop predication is usually run in an LPM and BPI is only preserved
968   // lossily within loop pass managers, while BPI has an inherent notion of
969   // being complete for an entire function.
970 
971   // If the latch exits into a deoptimize or an unreachable block, do not
972   // predicate on that latch check.
973   auto *LatchExitBlock = LatchTerm->getSuccessor(LatchBrExitIdx);
974   if (isa<UnreachableInst>(LatchTerm) ||
975       LatchExitBlock->getTerminatingDeoptimizeCall())
976     return false;
977 
978   // Latch terminator has no valid profile data, so nothing to check
979   // profitability on.
980   if (!hasValidBranchWeightMD(*LatchTerm))
981     return true;
982 
983   auto ComputeBranchProbability =
984       [&](const BasicBlock *ExitingBlock,
985           const BasicBlock *ExitBlock) -> BranchProbability {
986     auto *Term = ExitingBlock->getTerminator();
987     unsigned NumSucc = Term->getNumSuccessors();
988     if (MDNode *ProfileData = getValidBranchWeightMDNode(*Term)) {
989       SmallVector<uint32_t> Weights;
990       extractBranchWeights(ProfileData, Weights);
991       uint64_t Numerator = 0, Denominator = 0;
992       for (auto [i, Weight] : llvm::enumerate(Weights)) {
993         if (Term->getSuccessor(i) == ExitBlock)
994           Numerator += Weight;
995         Denominator += Weight;
996       }
997       return BranchProbability::getBranchProbability(Numerator, Denominator);
998     } else {
999       assert(LatchBlock != ExitingBlock &&
1000              "Latch term should always have profile data!");
1001       // No profile data, so we choose the weight as 1/num_of_succ(Src)
1002       return BranchProbability::getBranchProbability(1, NumSucc);
1003     }
1004   };
1005 
1006   BranchProbability LatchExitProbability =
1007       ComputeBranchProbability(LatchBlock, LatchExitBlock);
1008 
1009   // Protect against degenerate inputs provided by the user. Providing a value
1010   // less than one, can invert the definition of profitable loop predication.
1011   float ScaleFactor = LatchExitProbabilityScale;
1012   if (ScaleFactor < 1) {
1013     LLVM_DEBUG(
1014         dbgs()
1015         << "Ignored user setting for loop-predication-latch-probability-scale: "
1016         << LatchExitProbabilityScale << "\n");
1017     LLVM_DEBUG(dbgs() << "The value is set to 1.0\n");
1018     ScaleFactor = 1.0;
1019   }
1020   const auto LatchProbabilityThreshold = LatchExitProbability * ScaleFactor;
1021 
1022   for (const auto &ExitEdge : ExitEdges) {
1023     BranchProbability ExitingBlockProbability =
1024         ComputeBranchProbability(ExitEdge.first, ExitEdge.second);
1025     // Some exiting edge has higher probability than the latch exiting edge.
1026     // No longer profitable to predicate.
1027     if (ExitingBlockProbability > LatchProbabilityThreshold)
1028       return false;
1029   }
1030 
1031   // We have concluded that the most probable way to exit from the
1032   // loop is through the latch (or there's no profile information and all
1033   // exits are equally likely).
1034   return true;
1035 }
1036 
1037 /// If we can (cheaply) find a widenable branch which controls entry into the
1038 /// loop, return it.
1039 static BranchInst *FindWidenableTerminatorAboveLoop(Loop *L, LoopInfo &LI) {
1040   // Walk back through any unconditional executed blocks and see if we can find
1041   // a widenable condition which seems to control execution of this loop.  Note
1042   // that we predict that maythrow calls are likely untaken and thus that it's
1043   // profitable to widen a branch before a maythrow call with a condition
1044   // afterwards even though that may cause the slow path to run in a case where
1045   // it wouldn't have otherwise.
1046   BasicBlock *BB = L->getLoopPreheader();
1047   if (!BB)
1048     return nullptr;
1049   do {
1050     if (BasicBlock *Pred = BB->getSinglePredecessor())
1051       if (BB == Pred->getSingleSuccessor()) {
1052         BB = Pred;
1053         continue;
1054       }
1055     break;
1056   } while (true);
1057 
1058   if (BasicBlock *Pred = BB->getSinglePredecessor()) {
1059     auto *Term = Pred->getTerminator();
1060 
1061     Value *Cond, *WC;
1062     BasicBlock *IfTrueBB, *IfFalseBB;
1063     if (parseWidenableBranch(Term, Cond, WC, IfTrueBB, IfFalseBB) &&
1064         IfTrueBB == BB)
1065       return cast<BranchInst>(Term);
1066   }
1067   return nullptr;
1068 }
1069 
1070 /// Return the minimum of all analyzeable exit counts.  This is an upper bound
1071 /// on the actual exit count.  If there are not at least two analyzeable exits,
1072 /// returns SCEVCouldNotCompute.
1073 static const SCEV *getMinAnalyzeableBackedgeTakenCount(ScalarEvolution &SE,
1074                                                        DominatorTree &DT,
1075                                                        Loop *L) {
1076   SmallVector<BasicBlock *, 16> ExitingBlocks;
1077   L->getExitingBlocks(ExitingBlocks);
1078 
1079   SmallVector<const SCEV *, 4> ExitCounts;
1080   for (BasicBlock *ExitingBB : ExitingBlocks) {
1081     const SCEV *ExitCount = SE.getExitCount(L, ExitingBB);
1082     if (isa<SCEVCouldNotCompute>(ExitCount))
1083       continue;
1084     assert(DT.dominates(ExitingBB, L->getLoopLatch()) &&
1085            "We should only have known counts for exiting blocks that "
1086            "dominate latch!");
1087     ExitCounts.push_back(ExitCount);
1088   }
1089   if (ExitCounts.size() < 2)
1090     return SE.getCouldNotCompute();
1091   return SE.getUMinFromMismatchedTypes(ExitCounts);
1092 }
1093 
1094 /// This implements an analogous, but entirely distinct transform from the main
1095 /// loop predication transform.  This one is phrased in terms of using a
1096 /// widenable branch *outside* the loop to allow us to simplify loop exits in a
1097 /// following loop.  This is close in spirit to the IndVarSimplify transform
1098 /// of the same name, but is materially different widening loosens legality
1099 /// sharply.
1100 bool LoopPredication::predicateLoopExits(Loop *L, SCEVExpander &Rewriter) {
1101   // The transformation performed here aims to widen a widenable condition
1102   // above the loop such that all analyzeable exit leading to deopt are dead.
1103   // It assumes that the latch is the dominant exit for profitability and that
1104   // exits branching to deoptimizing blocks are rarely taken. It relies on the
1105   // semantics of widenable expressions for legality. (i.e. being able to fall
1106   // down the widenable path spuriously allows us to ignore exit order,
1107   // unanalyzeable exits, side effects, exceptional exits, and other challenges
1108   // which restrict the applicability of the non-WC based version of this
1109   // transform in IndVarSimplify.)
1110   //
1111   // NOTE ON POISON/UNDEF - We're hoisting an expression above guards which may
1112   // imply flags on the expression being hoisted and inserting new uses (flags
1113   // are only correct for current uses).  The result is that we may be
1114   // inserting a branch on the value which can be either poison or undef.  In
1115   // this case, the branch can legally go either way; we just need to avoid
1116   // introducing UB.  This is achieved through the use of the freeze
1117   // instruction.
1118 
1119   SmallVector<BasicBlock *, 16> ExitingBlocks;
1120   L->getExitingBlocks(ExitingBlocks);
1121 
1122   if (ExitingBlocks.empty())
1123     return false; // Nothing to do.
1124 
1125   auto *Latch = L->getLoopLatch();
1126   if (!Latch)
1127     return false;
1128 
1129   auto *WidenableBR = FindWidenableTerminatorAboveLoop(L, *LI);
1130   if (!WidenableBR)
1131     return false;
1132 
1133   const SCEV *LatchEC = SE->getExitCount(L, Latch);
1134   if (isa<SCEVCouldNotCompute>(LatchEC))
1135     return false; // profitability - want hot exit in analyzeable set
1136 
1137   // At this point, we have found an analyzeable latch, and a widenable
1138   // condition above the loop.  If we have a widenable exit within the loop
1139   // (for which we can't compute exit counts), drop the ability to further
1140   // widen so that we gain ability to analyze it's exit count and perform this
1141   // transform.  TODO: It'd be nice to know for sure the exit became
1142   // analyzeable after dropping widenability.
1143   bool ChangedLoop = false;
1144 
1145   for (auto *ExitingBB : ExitingBlocks) {
1146     if (LI->getLoopFor(ExitingBB) != L)
1147       continue;
1148 
1149     auto *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
1150     if (!BI)
1151       continue;
1152 
1153     Use *Cond, *WC;
1154     BasicBlock *IfTrueBB, *IfFalseBB;
1155     if (parseWidenableBranch(BI, Cond, WC, IfTrueBB, IfFalseBB) &&
1156         L->contains(IfTrueBB)) {
1157       WC->set(ConstantInt::getTrue(IfTrueBB->getContext()));
1158       ChangedLoop = true;
1159     }
1160   }
1161   if (ChangedLoop)
1162     SE->forgetLoop(L);
1163 
1164   // The use of umin(all analyzeable exits) instead of latch is subtle, but
1165   // important for profitability.  We may have a loop which hasn't been fully
1166   // canonicalized just yet.  If the exit we chose to widen is provably never
1167   // taken, we want the widened form to *also* be provably never taken.  We
1168   // can't guarantee this as a current unanalyzeable exit may later become
1169   // analyzeable, but we can at least avoid the obvious cases.
1170   const SCEV *MinEC = getMinAnalyzeableBackedgeTakenCount(*SE, *DT, L);
1171   if (isa<SCEVCouldNotCompute>(MinEC) || MinEC->getType()->isPointerTy() ||
1172       !SE->isLoopInvariant(MinEC, L) ||
1173       !Rewriter.isSafeToExpandAt(MinEC, WidenableBR))
1174     return ChangedLoop;
1175 
1176   // Subtlety: We need to avoid inserting additional uses of the WC.  We know
1177   // that it can only have one transitive use at the moment, and thus moving
1178   // that use to just before the branch and inserting code before it and then
1179   // modifying the operand is legal.
1180   auto *IP = cast<Instruction>(WidenableBR->getCondition());
1181   // Here we unconditionally modify the IR, so after this point we should return
1182   // only `true`!
1183   IP->moveBefore(WidenableBR);
1184   if (MSSAU)
1185     if (auto *MUD = MSSAU->getMemorySSA()->getMemoryAccess(IP))
1186        MSSAU->moveToPlace(MUD, WidenableBR->getParent(),
1187                           MemorySSA::BeforeTerminator);
1188   Rewriter.setInsertPoint(IP);
1189   IRBuilder<> B(IP);
1190 
1191   bool InvalidateLoop = false;
1192   Value *MinECV = nullptr; // lazily generated if needed
1193   for (BasicBlock *ExitingBB : ExitingBlocks) {
1194     // If our exiting block exits multiple loops, we can only rewrite the
1195     // innermost one.  Otherwise, we're changing how many times the innermost
1196     // loop runs before it exits.
1197     if (LI->getLoopFor(ExitingBB) != L)
1198       continue;
1199 
1200     // Can't rewrite non-branch yet.
1201     auto *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
1202     if (!BI)
1203       continue;
1204 
1205     // If already constant, nothing to do.
1206     if (isa<Constant>(BI->getCondition()))
1207       continue;
1208 
1209     const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
1210     if (isa<SCEVCouldNotCompute>(ExitCount) ||
1211         ExitCount->getType()->isPointerTy() ||
1212         !Rewriter.isSafeToExpandAt(ExitCount, WidenableBR))
1213       continue;
1214 
1215     const bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB));
1216     BasicBlock *ExitBB = BI->getSuccessor(ExitIfTrue ? 0 : 1);
1217     if (!ExitBB->getPostdominatingDeoptimizeCall())
1218       continue;
1219 
1220     /// Here we can be fairly sure that executing this exit will most likely
1221     /// lead to executing llvm.experimental.deoptimize.
1222     /// This is a profitability heuristic, not a legality constraint.
1223 
1224     // If we found a widenable exit condition, do two things:
1225     // 1) fold the widened exit test into the widenable condition
1226     // 2) fold the branch to untaken - avoids infinite looping
1227 
1228     Value *ECV = Rewriter.expandCodeFor(ExitCount);
1229     if (!MinECV)
1230       MinECV = Rewriter.expandCodeFor(MinEC);
1231     Value *RHS = MinECV;
1232     if (ECV->getType() != RHS->getType()) {
1233       Type *WiderTy = SE->getWiderType(ECV->getType(), RHS->getType());
1234       ECV = B.CreateZExt(ECV, WiderTy);
1235       RHS = B.CreateZExt(RHS, WiderTy);
1236     }
1237     assert(!Latch || DT->dominates(ExitingBB, Latch));
1238     Value *NewCond = B.CreateICmp(ICmpInst::ICMP_UGT, ECV, RHS);
1239     // Freeze poison or undef to an arbitrary bit pattern to ensure we can
1240     // branch without introducing UB.  See NOTE ON POISON/UNDEF above for
1241     // context.
1242     NewCond = B.CreateFreeze(NewCond);
1243 
1244     widenWidenableBranch(WidenableBR, NewCond);
1245 
1246     Value *OldCond = BI->getCondition();
1247     BI->setCondition(ConstantInt::get(OldCond->getType(), !ExitIfTrue));
1248     InvalidateLoop = true;
1249   }
1250 
1251   if (InvalidateLoop)
1252     // We just mutated a bunch of loop exits changing there exit counts
1253     // widely.  We need to force recomputation of the exit counts given these
1254     // changes.  Note that all of the inserted exits are never taken, and
1255     // should be removed next time the CFG is modified.
1256     SE->forgetLoop(L);
1257 
1258   // Always return `true` since we have moved the WidenableBR's condition.
1259   return true;
1260 }
1261 
1262 bool LoopPredication::runOnLoop(Loop *Loop) {
1263   L = Loop;
1264 
1265   LLVM_DEBUG(dbgs() << "Analyzing ");
1266   LLVM_DEBUG(L->dump());
1267 
1268   Module *M = L->getHeader()->getModule();
1269 
1270   // There is nothing to do if the module doesn't use guards
1271   auto *GuardDecl =
1272       M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard));
1273   bool HasIntrinsicGuards = GuardDecl && !GuardDecl->use_empty();
1274   auto *WCDecl = M->getFunction(
1275       Intrinsic::getName(Intrinsic::experimental_widenable_condition));
1276   bool HasWidenableConditions =
1277       PredicateWidenableBranchGuards && WCDecl && !WCDecl->use_empty();
1278   if (!HasIntrinsicGuards && !HasWidenableConditions)
1279     return false;
1280 
1281   DL = &M->getDataLayout();
1282 
1283   Preheader = L->getLoopPreheader();
1284   if (!Preheader)
1285     return false;
1286 
1287   auto LatchCheckOpt = parseLoopLatchICmp();
1288   if (!LatchCheckOpt)
1289     return false;
1290   LatchCheck = *LatchCheckOpt;
1291 
1292   LLVM_DEBUG(dbgs() << "Latch check:\n");
1293   LLVM_DEBUG(LatchCheck.dump());
1294 
1295   if (!isLoopProfitableToPredicate()) {
1296     LLVM_DEBUG(dbgs() << "Loop not profitable to predicate!\n");
1297     return false;
1298   }
1299   // Collect all the guards into a vector and process later, so as not
1300   // to invalidate the instruction iterator.
1301   SmallVector<IntrinsicInst *, 4> Guards;
1302   SmallVector<BranchInst *, 4> GuardsAsWidenableBranches;
1303   for (const auto BB : L->blocks()) {
1304     for (auto &I : *BB)
1305       if (isGuard(&I))
1306         Guards.push_back(cast<IntrinsicInst>(&I));
1307     if (PredicateWidenableBranchGuards &&
1308         isGuardAsWidenableBranch(BB->getTerminator()))
1309       GuardsAsWidenableBranches.push_back(
1310           cast<BranchInst>(BB->getTerminator()));
1311   }
1312 
1313   SCEVExpander Expander(*SE, *DL, "loop-predication");
1314   bool Changed = false;
1315   for (auto *Guard : Guards)
1316     Changed |= widenGuardConditions(Guard, Expander);
1317   for (auto *Guard : GuardsAsWidenableBranches)
1318     Changed |= widenWidenableBranchGuardConditions(Guard, Expander);
1319   Changed |= predicateLoopExits(L, Expander);
1320 
1321   if (MSSAU && VerifyMemorySSA)
1322     MSSAU->getMemorySSA()->verifyMemorySSA();
1323   return Changed;
1324 }
1325