1 //===- LoopReroll.cpp - Loop rerolling pass -------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements a simple loop reroller.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/BitVector.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/MapVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/AliasSetTracker.h"
24 #include "llvm/Analysis/LoopInfo.h"
25 #include "llvm/Analysis/LoopPass.h"
26 #include "llvm/Analysis/ScalarEvolution.h"
27 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/Constants.h"
32 #include "llvm/IR/Dominators.h"
33 #include "llvm/IR/InstrTypes.h"
34 #include "llvm/IR/Instruction.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/IntrinsicInst.h"
37 #include "llvm/IR/Module.h"
38 #include "llvm/IR/Type.h"
39 #include "llvm/IR/Use.h"
40 #include "llvm/IR/User.h"
41 #include "llvm/IR/Value.h"
42 #include "llvm/InitializePasses.h"
43 #include "llvm/Pass.h"
44 #include "llvm/Support/Casting.h"
45 #include "llvm/Support/CommandLine.h"
46 #include "llvm/Support/Debug.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include "llvm/Transforms/Scalar.h"
49 #include "llvm/Transforms/Scalar/LoopReroll.h"
50 #include "llvm/Transforms/Utils.h"
51 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
52 #include "llvm/Transforms/Utils/Local.h"
53 #include "llvm/Transforms/Utils/LoopUtils.h"
54 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
55 #include <cassert>
56 #include <cstddef>
57 #include <cstdint>
58 #include <iterator>
59 #include <map>
60 #include <utility>
61 
62 using namespace llvm;
63 
64 #define DEBUG_TYPE "loop-reroll"
65 
66 STATISTIC(NumRerolledLoops, "Number of rerolled loops");
67 
68 static cl::opt<unsigned>
69 NumToleratedFailedMatches("reroll-num-tolerated-failed-matches", cl::init(400),
70                           cl::Hidden,
71                           cl::desc("The maximum number of failures to tolerate"
72                                    " during fuzzy matching. (default: 400)"));
73 
74 // This loop re-rolling transformation aims to transform loops like this:
75 //
76 // int foo(int a);
77 // void bar(int *x) {
78 //   for (int i = 0; i < 500; i += 3) {
79 //     foo(i);
80 //     foo(i+1);
81 //     foo(i+2);
82 //   }
83 // }
84 //
85 // into a loop like this:
86 //
87 // void bar(int *x) {
88 //   for (int i = 0; i < 500; ++i)
89 //     foo(i);
90 // }
91 //
92 // It does this by looking for loops that, besides the latch code, are composed
93 // of isomorphic DAGs of instructions, with each DAG rooted at some increment
94 // to the induction variable, and where each DAG is isomorphic to the DAG
95 // rooted at the induction variable (excepting the sub-DAGs which root the
96 // other induction-variable increments). In other words, we're looking for loop
97 // bodies of the form:
98 //
99 // %iv = phi [ (preheader, ...), (body, %iv.next) ]
100 // f(%iv)
101 // %iv.1 = add %iv, 1                <-- a root increment
102 // f(%iv.1)
103 // %iv.2 = add %iv, 2                <-- a root increment
104 // f(%iv.2)
105 // %iv.scale_m_1 = add %iv, scale-1  <-- a root increment
106 // f(%iv.scale_m_1)
107 // ...
108 // %iv.next = add %iv, scale
109 // %cmp = icmp(%iv, ...)
110 // br %cmp, header, exit
111 //
112 // where each f(i) is a set of instructions that, collectively, are a function
113 // only of i (and other loop-invariant values).
114 //
115 // As a special case, we can also reroll loops like this:
116 //
117 // int foo(int);
118 // void bar(int *x) {
119 //   for (int i = 0; i < 500; ++i) {
120 //     x[3*i] = foo(0);
121 //     x[3*i+1] = foo(0);
122 //     x[3*i+2] = foo(0);
123 //   }
124 // }
125 //
126 // into this:
127 //
128 // void bar(int *x) {
129 //   for (int i = 0; i < 1500; ++i)
130 //     x[i] = foo(0);
131 // }
132 //
133 // in which case, we're looking for inputs like this:
134 //
135 // %iv = phi [ (preheader, ...), (body, %iv.next) ]
136 // %scaled.iv = mul %iv, scale
137 // f(%scaled.iv)
138 // %scaled.iv.1 = add %scaled.iv, 1
139 // f(%scaled.iv.1)
140 // %scaled.iv.2 = add %scaled.iv, 2
141 // f(%scaled.iv.2)
142 // %scaled.iv.scale_m_1 = add %scaled.iv, scale-1
143 // f(%scaled.iv.scale_m_1)
144 // ...
145 // %iv.next = add %iv, 1
146 // %cmp = icmp(%iv, ...)
147 // br %cmp, header, exit
148 
149 namespace {
150 
151   enum IterationLimits {
152     /// The maximum number of iterations that we'll try and reroll.
153     IL_MaxRerollIterations = 32,
154     /// The bitvector index used by loop induction variables and other
155     /// instructions that belong to all iterations.
156     IL_All,
157     IL_End
158   };
159 
160   class LoopRerollLegacyPass : public LoopPass {
161   public:
162     static char ID; // Pass ID, replacement for typeid
163 
164     LoopRerollLegacyPass() : LoopPass(ID) {
165       initializeLoopRerollLegacyPassPass(*PassRegistry::getPassRegistry());
166     }
167 
168     bool runOnLoop(Loop *L, LPPassManager &LPM) override;
169 
170     void getAnalysisUsage(AnalysisUsage &AU) const override {
171       AU.addRequired<TargetLibraryInfoWrapperPass>();
172       getLoopAnalysisUsage(AU);
173     }
174   };
175 
176   class LoopReroll {
177   public:
178     LoopReroll(AliasAnalysis *AA, LoopInfo *LI, ScalarEvolution *SE,
179                TargetLibraryInfo *TLI, DominatorTree *DT, bool PreserveLCSSA)
180         : AA(AA), LI(LI), SE(SE), TLI(TLI), DT(DT),
181           PreserveLCSSA(PreserveLCSSA) {}
182     bool runOnLoop(Loop *L);
183 
184   protected:
185     AliasAnalysis *AA;
186     LoopInfo *LI;
187     ScalarEvolution *SE;
188     TargetLibraryInfo *TLI;
189     DominatorTree *DT;
190     bool PreserveLCSSA;
191 
192     using SmallInstructionVector = SmallVector<Instruction *, 16>;
193     using SmallInstructionSet = SmallPtrSet<Instruction *, 16>;
194     using TinyInstructionVector = SmallVector<Instruction *, 1>;
195 
196     // Map between induction variable and its increment
197     DenseMap<Instruction *, int64_t> IVToIncMap;
198 
199     // For loop with multiple induction variables, remember the ones used only to
200     // control the loop.
201     TinyInstructionVector LoopControlIVs;
202 
203     // A chain of isomorphic instructions, identified by a single-use PHI
204     // representing a reduction. Only the last value may be used outside the
205     // loop.
206     struct SimpleLoopReduction {
207       SimpleLoopReduction(Instruction *P, Loop *L) : Instructions(1, P) {
208         assert(isa<PHINode>(P) && "First reduction instruction must be a PHI");
209         add(L);
210       }
211 
212       bool valid() const {
213         return Valid;
214       }
215 
216       Instruction *getPHI() const {
217         assert(Valid && "Using invalid reduction");
218         return Instructions.front();
219       }
220 
221       Instruction *getReducedValue() const {
222         assert(Valid && "Using invalid reduction");
223         return Instructions.back();
224       }
225 
226       Instruction *get(size_t i) const {
227         assert(Valid && "Using invalid reduction");
228         return Instructions[i+1];
229       }
230 
231       Instruction *operator [] (size_t i) const { return get(i); }
232 
233       // The size, ignoring the initial PHI.
234       size_t size() const {
235         assert(Valid && "Using invalid reduction");
236         return Instructions.size()-1;
237       }
238 
239       using iterator = SmallInstructionVector::iterator;
240       using const_iterator = SmallInstructionVector::const_iterator;
241 
242       iterator begin() {
243         assert(Valid && "Using invalid reduction");
244         return std::next(Instructions.begin());
245       }
246 
247       const_iterator begin() const {
248         assert(Valid && "Using invalid reduction");
249         return std::next(Instructions.begin());
250       }
251 
252       iterator end() { return Instructions.end(); }
253       const_iterator end() const { return Instructions.end(); }
254 
255     protected:
256       bool Valid = false;
257       SmallInstructionVector Instructions;
258 
259       void add(Loop *L);
260     };
261 
262     // The set of all reductions, and state tracking of possible reductions
263     // during loop instruction processing.
264     struct ReductionTracker {
265       using SmallReductionVector = SmallVector<SimpleLoopReduction, 16>;
266 
267       // Add a new possible reduction.
268       void addSLR(SimpleLoopReduction &SLR) { PossibleReds.push_back(SLR); }
269 
270       // Setup to track possible reductions corresponding to the provided
271       // rerolling scale. Only reductions with a number of non-PHI instructions
272       // that is divisible by the scale are considered. Three instructions sets
273       // are filled in:
274       //   - A set of all possible instructions in eligible reductions.
275       //   - A set of all PHIs in eligible reductions
276       //   - A set of all reduced values (last instructions) in eligible
277       //     reductions.
278       void restrictToScale(uint64_t Scale,
279                            SmallInstructionSet &PossibleRedSet,
280                            SmallInstructionSet &PossibleRedPHISet,
281                            SmallInstructionSet &PossibleRedLastSet) {
282         PossibleRedIdx.clear();
283         PossibleRedIter.clear();
284         Reds.clear();
285 
286         for (unsigned i = 0, e = PossibleReds.size(); i != e; ++i)
287           if (PossibleReds[i].size() % Scale == 0) {
288             PossibleRedLastSet.insert(PossibleReds[i].getReducedValue());
289             PossibleRedPHISet.insert(PossibleReds[i].getPHI());
290 
291             PossibleRedSet.insert(PossibleReds[i].getPHI());
292             PossibleRedIdx[PossibleReds[i].getPHI()] = i;
293             for (Instruction *J : PossibleReds[i]) {
294               PossibleRedSet.insert(J);
295               PossibleRedIdx[J] = i;
296             }
297           }
298       }
299 
300       // The functions below are used while processing the loop instructions.
301 
302       // Are the two instructions both from reductions, and furthermore, from
303       // the same reduction?
304       bool isPairInSame(Instruction *J1, Instruction *J2) {
305         DenseMap<Instruction *, int>::iterator J1I = PossibleRedIdx.find(J1);
306         if (J1I != PossibleRedIdx.end()) {
307           DenseMap<Instruction *, int>::iterator J2I = PossibleRedIdx.find(J2);
308           if (J2I != PossibleRedIdx.end() && J1I->second == J2I->second)
309             return true;
310         }
311 
312         return false;
313       }
314 
315       // The two provided instructions, the first from the base iteration, and
316       // the second from iteration i, form a matched pair. If these are part of
317       // a reduction, record that fact.
318       void recordPair(Instruction *J1, Instruction *J2, unsigned i) {
319         if (PossibleRedIdx.count(J1)) {
320           assert(PossibleRedIdx.count(J2) &&
321                  "Recording reduction vs. non-reduction instruction?");
322 
323           PossibleRedIter[J1] = 0;
324           PossibleRedIter[J2] = i;
325 
326           int Idx = PossibleRedIdx[J1];
327           assert(Idx == PossibleRedIdx[J2] &&
328                  "Recording pair from different reductions?");
329           Reds.insert(Idx);
330         }
331       }
332 
333       // The functions below can be called after we've finished processing all
334       // instructions in the loop, and we know which reductions were selected.
335 
336       bool validateSelected();
337       void replaceSelected();
338 
339     protected:
340       // The vector of all possible reductions (for any scale).
341       SmallReductionVector PossibleReds;
342 
343       DenseMap<Instruction *, int> PossibleRedIdx;
344       DenseMap<Instruction *, int> PossibleRedIter;
345       DenseSet<int> Reds;
346     };
347 
348     // A DAGRootSet models an induction variable being used in a rerollable
349     // loop. For example,
350     //
351     //   x[i*3+0] = y1
352     //   x[i*3+1] = y2
353     //   x[i*3+2] = y3
354     //
355     //   Base instruction -> i*3
356     //                    +---+----+
357     //                   /    |     \
358     //               ST[y1]  +1     +2  <-- Roots
359     //                        |      |
360     //                      ST[y2] ST[y3]
361     //
362     // There may be multiple DAGRoots, for example:
363     //
364     //   x[i*2+0] = ...   (1)
365     //   x[i*2+1] = ...   (1)
366     //   x[i*2+4] = ...   (2)
367     //   x[i*2+5] = ...   (2)
368     //   x[(i+1234)*2+5678] = ... (3)
369     //   x[(i+1234)*2+5679] = ... (3)
370     //
371     // The loop will be rerolled by adding a new loop induction variable,
372     // one for the Base instruction in each DAGRootSet.
373     //
374     struct DAGRootSet {
375       Instruction *BaseInst;
376       SmallInstructionVector Roots;
377 
378       // The instructions between IV and BaseInst (but not including BaseInst).
379       SmallInstructionSet SubsumedInsts;
380     };
381 
382     // The set of all DAG roots, and state tracking of all roots
383     // for a particular induction variable.
384     struct DAGRootTracker {
385       DAGRootTracker(LoopReroll *Parent, Loop *L, Instruction *IV,
386                      ScalarEvolution *SE, AliasAnalysis *AA,
387                      TargetLibraryInfo *TLI, DominatorTree *DT, LoopInfo *LI,
388                      bool PreserveLCSSA,
389                      DenseMap<Instruction *, int64_t> &IncrMap,
390                      TinyInstructionVector LoopCtrlIVs)
391           : Parent(Parent), L(L), SE(SE), AA(AA), TLI(TLI), DT(DT), LI(LI),
392             PreserveLCSSA(PreserveLCSSA), IV(IV), IVToIncMap(IncrMap),
393             LoopControlIVs(LoopCtrlIVs) {}
394 
395       /// Stage 1: Find all the DAG roots for the induction variable.
396       bool findRoots();
397 
398       /// Stage 2: Validate if the found roots are valid.
399       bool validate(ReductionTracker &Reductions);
400 
401       /// Stage 3: Assuming validate() returned true, perform the
402       /// replacement.
403       /// @param BackedgeTakenCount The backedge-taken count of L.
404       void replace(const SCEV *BackedgeTakenCount);
405 
406     protected:
407       using UsesTy = MapVector<Instruction *, BitVector>;
408 
409       void findRootsRecursive(Instruction *IVU,
410                               SmallInstructionSet SubsumedInsts);
411       bool findRootsBase(Instruction *IVU, SmallInstructionSet SubsumedInsts);
412       bool collectPossibleRoots(Instruction *Base,
413                                 std::map<int64_t,Instruction*> &Roots);
414       bool validateRootSet(DAGRootSet &DRS);
415 
416       bool collectUsedInstructions(SmallInstructionSet &PossibleRedSet);
417       void collectInLoopUserSet(const SmallInstructionVector &Roots,
418                                 const SmallInstructionSet &Exclude,
419                                 const SmallInstructionSet &Final,
420                                 DenseSet<Instruction *> &Users);
421       void collectInLoopUserSet(Instruction *Root,
422                                 const SmallInstructionSet &Exclude,
423                                 const SmallInstructionSet &Final,
424                                 DenseSet<Instruction *> &Users);
425 
426       UsesTy::iterator nextInstr(int Val, UsesTy &In,
427                                  const SmallInstructionSet &Exclude,
428                                  UsesTy::iterator *StartI=nullptr);
429       bool isBaseInst(Instruction *I);
430       bool isRootInst(Instruction *I);
431       bool instrDependsOn(Instruction *I,
432                           UsesTy::iterator Start,
433                           UsesTy::iterator End);
434       void replaceIV(DAGRootSet &DRS, const SCEV *Start, const SCEV *IncrExpr);
435 
436       LoopReroll *Parent;
437 
438       // Members of Parent, replicated here for brevity.
439       Loop *L;
440       ScalarEvolution *SE;
441       AliasAnalysis *AA;
442       TargetLibraryInfo *TLI;
443       DominatorTree *DT;
444       LoopInfo *LI;
445       bool PreserveLCSSA;
446 
447       // The loop induction variable.
448       Instruction *IV;
449 
450       // Loop step amount.
451       int64_t Inc;
452 
453       // Loop reroll count; if Inc == 1, this records the scaling applied
454       // to the indvar: a[i*2+0] = ...; a[i*2+1] = ... ;
455       // If Inc is not 1, Scale = Inc.
456       uint64_t Scale;
457 
458       // The roots themselves.
459       SmallVector<DAGRootSet,16> RootSets;
460 
461       // All increment instructions for IV.
462       SmallInstructionVector LoopIncs;
463 
464       // Map of all instructions in the loop (in order) to the iterations
465       // they are used in (or specially, IL_All for instructions
466       // used in the loop increment mechanism).
467       UsesTy Uses;
468 
469       // Map between induction variable and its increment
470       DenseMap<Instruction *, int64_t> &IVToIncMap;
471 
472       TinyInstructionVector LoopControlIVs;
473     };
474 
475     // Check if it is a compare-like instruction whose user is a branch
476     bool isCompareUsedByBranch(Instruction *I) {
477       auto *TI = I->getParent()->getTerminator();
478       if (!isa<BranchInst>(TI) || !isa<CmpInst>(I))
479         return false;
480       return I->hasOneUse() && TI->getOperand(0) == I;
481     };
482 
483     bool isLoopControlIV(Loop *L, Instruction *IV);
484     void collectPossibleIVs(Loop *L, SmallInstructionVector &PossibleIVs);
485     void collectPossibleReductions(Loop *L,
486            ReductionTracker &Reductions);
487     bool reroll(Instruction *IV, Loop *L, BasicBlock *Header,
488                 const SCEV *BackedgeTakenCount, ReductionTracker &Reductions);
489   };
490 
491 } // end anonymous namespace
492 
493 char LoopRerollLegacyPass::ID = 0;
494 
495 INITIALIZE_PASS_BEGIN(LoopRerollLegacyPass, "loop-reroll", "Reroll loops",
496                       false, false)
497 INITIALIZE_PASS_DEPENDENCY(LoopPass)
498 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
499 INITIALIZE_PASS_END(LoopRerollLegacyPass, "loop-reroll", "Reroll loops", false,
500                     false)
501 
502 Pass *llvm::createLoopRerollPass() { return new LoopRerollLegacyPass; }
503 
504 // Returns true if the provided instruction is used outside the given loop.
505 // This operates like Instruction::isUsedOutsideOfBlock, but considers PHIs in
506 // non-loop blocks to be outside the loop.
507 static bool hasUsesOutsideLoop(Instruction *I, Loop *L) {
508   for (User *U : I->users()) {
509     if (!L->contains(cast<Instruction>(U)))
510       return true;
511   }
512   return false;
513 }
514 
515 // Check if an IV is only used to control the loop. There are two cases:
516 // 1. It only has one use which is loop increment, and the increment is only
517 // used by comparison and the PHI (could has sext with nsw in between), and the
518 // comparison is only used by branch.
519 // 2. It is used by loop increment and the comparison, the loop increment is
520 // only used by the PHI, and the comparison is used only by the branch.
521 bool LoopReroll::isLoopControlIV(Loop *L, Instruction *IV) {
522   unsigned IVUses = IV->getNumUses();
523   if (IVUses != 2 && IVUses != 1)
524     return false;
525 
526   for (auto *User : IV->users()) {
527     int32_t IncOrCmpUses = User->getNumUses();
528     bool IsCompInst = isCompareUsedByBranch(cast<Instruction>(User));
529 
530     // User can only have one or two uses.
531     if (IncOrCmpUses != 2 && IncOrCmpUses != 1)
532       return false;
533 
534     // Case 1
535     if (IVUses == 1) {
536       // The only user must be the loop increment.
537       // The loop increment must have two uses.
538       if (IsCompInst || IncOrCmpUses != 2)
539         return false;
540     }
541 
542     // Case 2
543     if (IVUses == 2 && IncOrCmpUses != 1)
544       return false;
545 
546     // The users of the IV must be a binary operation or a comparison
547     if (auto *BO = dyn_cast<BinaryOperator>(User)) {
548       if (BO->getOpcode() == Instruction::Add) {
549         // Loop Increment
550         // User of Loop Increment should be either PHI or CMP
551         for (auto *UU : User->users()) {
552           if (PHINode *PN = dyn_cast<PHINode>(UU)) {
553             if (PN != IV)
554               return false;
555           }
556           // Must be a CMP or an ext (of a value with nsw) then CMP
557           else {
558             auto *UUser = cast<Instruction>(UU);
559             // Skip SExt if we are extending an nsw value
560             // TODO: Allow ZExt too
561             if (BO->hasNoSignedWrap() && UUser->hasOneUse() &&
562                 isa<SExtInst>(UUser))
563               UUser = cast<Instruction>(*(UUser->user_begin()));
564             if (!isCompareUsedByBranch(UUser))
565               return false;
566           }
567         }
568       } else
569         return false;
570       // Compare : can only have one use, and must be branch
571     } else if (!IsCompInst)
572       return false;
573   }
574   return true;
575 }
576 
577 // Collect the list of loop induction variables with respect to which it might
578 // be possible to reroll the loop.
579 void LoopReroll::collectPossibleIVs(Loop *L,
580                                     SmallInstructionVector &PossibleIVs) {
581   for (Instruction &IV : L->getHeader()->phis()) {
582     if (!IV.getType()->isIntegerTy() && !IV.getType()->isPointerTy())
583       continue;
584 
585     if (const SCEVAddRecExpr *PHISCEV =
586             dyn_cast<SCEVAddRecExpr>(SE->getSCEV(&IV))) {
587       if (PHISCEV->getLoop() != L)
588         continue;
589       if (!PHISCEV->isAffine())
590         continue;
591       const auto *IncSCEV = dyn_cast<SCEVConstant>(PHISCEV->getStepRecurrence(*SE));
592       if (IncSCEV) {
593         IVToIncMap[&IV] = IncSCEV->getValue()->getSExtValue();
594         LLVM_DEBUG(dbgs() << "LRR: Possible IV: " << IV << " = " << *PHISCEV
595                           << "\n");
596 
597         if (isLoopControlIV(L, &IV)) {
598           LoopControlIVs.push_back(&IV);
599           LLVM_DEBUG(dbgs() << "LRR: Loop control only IV: " << IV
600                             << " = " << *PHISCEV << "\n");
601         } else
602           PossibleIVs.push_back(&IV);
603       }
604     }
605   }
606 }
607 
608 // Add the remainder of the reduction-variable chain to the instruction vector
609 // (the initial PHINode has already been added). If successful, the object is
610 // marked as valid.
611 void LoopReroll::SimpleLoopReduction::add(Loop *L) {
612   assert(!Valid && "Cannot add to an already-valid chain");
613 
614   // The reduction variable must be a chain of single-use instructions
615   // (including the PHI), except for the last value (which is used by the PHI
616   // and also outside the loop).
617   Instruction *C = Instructions.front();
618   if (C->user_empty())
619     return;
620 
621   do {
622     C = cast<Instruction>(*C->user_begin());
623     if (C->hasOneUse()) {
624       if (!C->isBinaryOp())
625         return;
626 
627       if (!(isa<PHINode>(Instructions.back()) ||
628             C->isSameOperationAs(Instructions.back())))
629         return;
630 
631       Instructions.push_back(C);
632     }
633   } while (C->hasOneUse());
634 
635   if (Instructions.size() < 2 ||
636       !C->isSameOperationAs(Instructions.back()) ||
637       C->use_empty())
638     return;
639 
640   // C is now the (potential) last instruction in the reduction chain.
641   for (User *U : C->users()) {
642     // The only in-loop user can be the initial PHI.
643     if (L->contains(cast<Instruction>(U)))
644       if (cast<Instruction>(U) != Instructions.front())
645         return;
646   }
647 
648   Instructions.push_back(C);
649   Valid = true;
650 }
651 
652 // Collect the vector of possible reduction variables.
653 void LoopReroll::collectPossibleReductions(Loop *L,
654   ReductionTracker &Reductions) {
655   BasicBlock *Header = L->getHeader();
656   for (BasicBlock::iterator I = Header->begin(),
657        IE = Header->getFirstInsertionPt(); I != IE; ++I) {
658     if (!isa<PHINode>(I))
659       continue;
660     if (!I->getType()->isSingleValueType())
661       continue;
662 
663     SimpleLoopReduction SLR(&*I, L);
664     if (!SLR.valid())
665       continue;
666 
667     LLVM_DEBUG(dbgs() << "LRR: Possible reduction: " << *I << " (with "
668                       << SLR.size() << " chained instructions)\n");
669     Reductions.addSLR(SLR);
670   }
671 }
672 
673 // Collect the set of all users of the provided root instruction. This set of
674 // users contains not only the direct users of the root instruction, but also
675 // all users of those users, and so on. There are two exceptions:
676 //
677 //   1. Instructions in the set of excluded instructions are never added to the
678 //   use set (even if they are users). This is used, for example, to exclude
679 //   including root increments in the use set of the primary IV.
680 //
681 //   2. Instructions in the set of final instructions are added to the use set
682 //   if they are users, but their users are not added. This is used, for
683 //   example, to prevent a reduction update from forcing all later reduction
684 //   updates into the use set.
685 void LoopReroll::DAGRootTracker::collectInLoopUserSet(
686   Instruction *Root, const SmallInstructionSet &Exclude,
687   const SmallInstructionSet &Final,
688   DenseSet<Instruction *> &Users) {
689   SmallInstructionVector Queue(1, Root);
690   while (!Queue.empty()) {
691     Instruction *I = Queue.pop_back_val();
692     if (!Users.insert(I).second)
693       continue;
694 
695     if (!Final.count(I))
696       for (Use &U : I->uses()) {
697         Instruction *User = cast<Instruction>(U.getUser());
698         if (PHINode *PN = dyn_cast<PHINode>(User)) {
699           // Ignore "wrap-around" uses to PHIs of this loop's header.
700           if (PN->getIncomingBlock(U) == L->getHeader())
701             continue;
702         }
703 
704         if (L->contains(User) && !Exclude.count(User)) {
705           Queue.push_back(User);
706         }
707       }
708 
709     // We also want to collect single-user "feeder" values.
710     for (Use &U : I->operands()) {
711       if (Instruction *Op = dyn_cast<Instruction>(U))
712         if (Op->hasOneUse() && L->contains(Op) && !Exclude.count(Op) &&
713             !Final.count(Op))
714           Queue.push_back(Op);
715     }
716   }
717 }
718 
719 // Collect all of the users of all of the provided root instructions (combined
720 // into a single set).
721 void LoopReroll::DAGRootTracker::collectInLoopUserSet(
722   const SmallInstructionVector &Roots,
723   const SmallInstructionSet &Exclude,
724   const SmallInstructionSet &Final,
725   DenseSet<Instruction *> &Users) {
726   for (Instruction *Root : Roots)
727     collectInLoopUserSet(Root, Exclude, Final, Users);
728 }
729 
730 static bool isUnorderedLoadStore(Instruction *I) {
731   if (LoadInst *LI = dyn_cast<LoadInst>(I))
732     return LI->isUnordered();
733   if (StoreInst *SI = dyn_cast<StoreInst>(I))
734     return SI->isUnordered();
735   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
736     return !MI->isVolatile();
737   return false;
738 }
739 
740 /// Return true if IVU is a "simple" arithmetic operation.
741 /// This is used for narrowing the search space for DAGRoots; only arithmetic
742 /// and GEPs can be part of a DAGRoot.
743 static bool isSimpleArithmeticOp(User *IVU) {
744   if (Instruction *I = dyn_cast<Instruction>(IVU)) {
745     switch (I->getOpcode()) {
746     default: return false;
747     case Instruction::Add:
748     case Instruction::Sub:
749     case Instruction::Mul:
750     case Instruction::Shl:
751     case Instruction::AShr:
752     case Instruction::LShr:
753     case Instruction::GetElementPtr:
754     case Instruction::Trunc:
755     case Instruction::ZExt:
756     case Instruction::SExt:
757       return true;
758     }
759   }
760   return false;
761 }
762 
763 static bool isLoopIncrement(User *U, Instruction *IV) {
764   BinaryOperator *BO = dyn_cast<BinaryOperator>(U);
765 
766   if ((BO && BO->getOpcode() != Instruction::Add) ||
767       (!BO && !isa<GetElementPtrInst>(U)))
768     return false;
769 
770   for (auto *UU : U->users()) {
771     PHINode *PN = dyn_cast<PHINode>(UU);
772     if (PN && PN == IV)
773       return true;
774   }
775   return false;
776 }
777 
778 bool LoopReroll::DAGRootTracker::
779 collectPossibleRoots(Instruction *Base, std::map<int64_t,Instruction*> &Roots) {
780   SmallInstructionVector BaseUsers;
781 
782   for (auto *I : Base->users()) {
783     ConstantInt *CI = nullptr;
784 
785     if (isLoopIncrement(I, IV)) {
786       LoopIncs.push_back(cast<Instruction>(I));
787       continue;
788     }
789 
790     // The root nodes must be either GEPs, ORs or ADDs.
791     if (auto *BO = dyn_cast<BinaryOperator>(I)) {
792       if (BO->getOpcode() == Instruction::Add ||
793           BO->getOpcode() == Instruction::Or)
794         CI = dyn_cast<ConstantInt>(BO->getOperand(1));
795     } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
796       Value *LastOperand = GEP->getOperand(GEP->getNumOperands()-1);
797       CI = dyn_cast<ConstantInt>(LastOperand);
798     }
799 
800     if (!CI) {
801       if (Instruction *II = dyn_cast<Instruction>(I)) {
802         BaseUsers.push_back(II);
803         continue;
804       } else {
805         LLVM_DEBUG(dbgs() << "LRR: Aborting due to non-instruction: " << *I
806                           << "\n");
807         return false;
808       }
809     }
810 
811     int64_t V = std::abs(CI->getValue().getSExtValue());
812     if (Roots.find(V) != Roots.end())
813       // No duplicates, please.
814       return false;
815 
816     Roots[V] = cast<Instruction>(I);
817   }
818 
819   // Make sure we have at least two roots.
820   if (Roots.empty() || (Roots.size() == 1 && BaseUsers.empty()))
821     return false;
822 
823   // If we found non-loop-inc, non-root users of Base, assume they are
824   // for the zeroth root index. This is because "add %a, 0" gets optimized
825   // away.
826   if (BaseUsers.size()) {
827     if (Roots.find(0) != Roots.end()) {
828       LLVM_DEBUG(dbgs() << "LRR: Multiple roots found for base - aborting!\n");
829       return false;
830     }
831     Roots[0] = Base;
832   }
833 
834   // Calculate the number of users of the base, or lowest indexed, iteration.
835   unsigned NumBaseUses = BaseUsers.size();
836   if (NumBaseUses == 0)
837     NumBaseUses = Roots.begin()->second->getNumUses();
838 
839   // Check that every node has the same number of users.
840   for (auto &KV : Roots) {
841     if (KV.first == 0)
842       continue;
843     if (!KV.second->hasNUses(NumBaseUses)) {
844       LLVM_DEBUG(dbgs() << "LRR: Aborting - Root and Base #users not the same: "
845                         << "#Base=" << NumBaseUses
846                         << ", #Root=" << KV.second->getNumUses() << "\n");
847       return false;
848     }
849   }
850 
851   return true;
852 }
853 
854 void LoopReroll::DAGRootTracker::
855 findRootsRecursive(Instruction *I, SmallInstructionSet SubsumedInsts) {
856   // Does the user look like it could be part of a root set?
857   // All its users must be simple arithmetic ops.
858   if (I->hasNUsesOrMore(IL_MaxRerollIterations + 1))
859     return;
860 
861   if (I != IV && findRootsBase(I, SubsumedInsts))
862     return;
863 
864   SubsumedInsts.insert(I);
865 
866   for (User *V : I->users()) {
867     Instruction *I = cast<Instruction>(V);
868     if (is_contained(LoopIncs, I))
869       continue;
870 
871     if (!isSimpleArithmeticOp(I))
872       continue;
873 
874     // The recursive call makes a copy of SubsumedInsts.
875     findRootsRecursive(I, SubsumedInsts);
876   }
877 }
878 
879 bool LoopReroll::DAGRootTracker::validateRootSet(DAGRootSet &DRS) {
880   if (DRS.Roots.empty())
881     return false;
882 
883   // If the value of the base instruction is used outside the loop, we cannot
884   // reroll the loop. Check for other root instructions is unnecessary because
885   // they don't match any base instructions if their values are used outside.
886   if (hasUsesOutsideLoop(DRS.BaseInst, L))
887     return false;
888 
889   // Consider a DAGRootSet with N-1 roots (so N different values including
890   //   BaseInst).
891   // Define d = Roots[0] - BaseInst, which should be the same as
892   //   Roots[I] - Roots[I-1] for all I in [1..N).
893   // Define D = BaseInst@J - BaseInst@J-1, where "@J" means the value at the
894   //   loop iteration J.
895   //
896   // Now, For the loop iterations to be consecutive:
897   //   D = d * N
898   const auto *ADR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(DRS.BaseInst));
899   if (!ADR)
900     return false;
901 
902   // Check that the first root is evenly spaced.
903   unsigned N = DRS.Roots.size() + 1;
904   const SCEV *StepSCEV = SE->getMinusSCEV(SE->getSCEV(DRS.Roots[0]), ADR);
905   if (isa<SCEVCouldNotCompute>(StepSCEV) || StepSCEV->getType()->isPointerTy())
906     return false;
907   const SCEV *ScaleSCEV = SE->getConstant(StepSCEV->getType(), N);
908   if (ADR->getStepRecurrence(*SE) != SE->getMulExpr(StepSCEV, ScaleSCEV))
909     return false;
910 
911   // Check that the remainling roots are evenly spaced.
912   for (unsigned i = 1; i < N - 1; ++i) {
913     const SCEV *NewStepSCEV = SE->getMinusSCEV(SE->getSCEV(DRS.Roots[i]),
914                                                SE->getSCEV(DRS.Roots[i-1]));
915     if (NewStepSCEV != StepSCEV)
916       return false;
917   }
918 
919   return true;
920 }
921 
922 bool LoopReroll::DAGRootTracker::
923 findRootsBase(Instruction *IVU, SmallInstructionSet SubsumedInsts) {
924   // The base of a RootSet must be an AddRec, so it can be erased.
925   const auto *IVU_ADR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IVU));
926   if (!IVU_ADR || IVU_ADR->getLoop() != L)
927     return false;
928 
929   std::map<int64_t, Instruction*> V;
930   if (!collectPossibleRoots(IVU, V))
931     return false;
932 
933   // If we didn't get a root for index zero, then IVU must be
934   // subsumed.
935   if (V.find(0) == V.end())
936     SubsumedInsts.insert(IVU);
937 
938   // Partition the vector into monotonically increasing indexes.
939   DAGRootSet DRS;
940   DRS.BaseInst = nullptr;
941 
942   SmallVector<DAGRootSet, 16> PotentialRootSets;
943 
944   for (auto &KV : V) {
945     if (!DRS.BaseInst) {
946       DRS.BaseInst = KV.second;
947       DRS.SubsumedInsts = SubsumedInsts;
948     } else if (DRS.Roots.empty()) {
949       DRS.Roots.push_back(KV.second);
950     } else if (V.find(KV.first - 1) != V.end()) {
951       DRS.Roots.push_back(KV.second);
952     } else {
953       // Linear sequence terminated.
954       if (!validateRootSet(DRS))
955         return false;
956 
957       // Construct a new DAGRootSet with the next sequence.
958       PotentialRootSets.push_back(DRS);
959       DRS.BaseInst = KV.second;
960       DRS.Roots.clear();
961     }
962   }
963 
964   if (!validateRootSet(DRS))
965     return false;
966 
967   PotentialRootSets.push_back(DRS);
968 
969   RootSets.append(PotentialRootSets.begin(), PotentialRootSets.end());
970 
971   return true;
972 }
973 
974 bool LoopReroll::DAGRootTracker::findRoots() {
975   Inc = IVToIncMap[IV];
976 
977   assert(RootSets.empty() && "Unclean state!");
978   if (std::abs(Inc) == 1) {
979     for (auto *IVU : IV->users()) {
980       if (isLoopIncrement(IVU, IV))
981         LoopIncs.push_back(cast<Instruction>(IVU));
982     }
983     findRootsRecursive(IV, SmallInstructionSet());
984     LoopIncs.push_back(IV);
985   } else {
986     if (!findRootsBase(IV, SmallInstructionSet()))
987       return false;
988   }
989 
990   // Ensure all sets have the same size.
991   if (RootSets.empty()) {
992     LLVM_DEBUG(dbgs() << "LRR: Aborting because no root sets found!\n");
993     return false;
994   }
995   for (auto &V : RootSets) {
996     if (V.Roots.empty() || V.Roots.size() != RootSets[0].Roots.size()) {
997       LLVM_DEBUG(
998           dbgs()
999           << "LRR: Aborting because not all root sets have the same size\n");
1000       return false;
1001     }
1002   }
1003 
1004   Scale = RootSets[0].Roots.size() + 1;
1005 
1006   if (Scale > IL_MaxRerollIterations) {
1007     LLVM_DEBUG(dbgs() << "LRR: Aborting - too many iterations found. "
1008                       << "#Found=" << Scale
1009                       << ", #Max=" << IL_MaxRerollIterations << "\n");
1010     return false;
1011   }
1012 
1013   LLVM_DEBUG(dbgs() << "LRR: Successfully found roots: Scale=" << Scale
1014                     << "\n");
1015 
1016   return true;
1017 }
1018 
1019 bool LoopReroll::DAGRootTracker::collectUsedInstructions(SmallInstructionSet &PossibleRedSet) {
1020   // Populate the MapVector with all instructions in the block, in order first,
1021   // so we can iterate over the contents later in perfect order.
1022   for (auto &I : *L->getHeader()) {
1023     Uses[&I].resize(IL_End);
1024   }
1025 
1026   SmallInstructionSet Exclude;
1027   for (auto &DRS : RootSets) {
1028     Exclude.insert(DRS.Roots.begin(), DRS.Roots.end());
1029     Exclude.insert(DRS.SubsumedInsts.begin(), DRS.SubsumedInsts.end());
1030     Exclude.insert(DRS.BaseInst);
1031   }
1032   Exclude.insert(LoopIncs.begin(), LoopIncs.end());
1033 
1034   for (auto &DRS : RootSets) {
1035     DenseSet<Instruction*> VBase;
1036     collectInLoopUserSet(DRS.BaseInst, Exclude, PossibleRedSet, VBase);
1037     for (auto *I : VBase) {
1038       Uses[I].set(0);
1039     }
1040 
1041     unsigned Idx = 1;
1042     for (auto *Root : DRS.Roots) {
1043       DenseSet<Instruction*> V;
1044       collectInLoopUserSet(Root, Exclude, PossibleRedSet, V);
1045 
1046       // While we're here, check the use sets are the same size.
1047       if (V.size() != VBase.size()) {
1048         LLVM_DEBUG(dbgs() << "LRR: Aborting - use sets are different sizes\n");
1049         return false;
1050       }
1051 
1052       for (auto *I : V) {
1053         Uses[I].set(Idx);
1054       }
1055       ++Idx;
1056     }
1057 
1058     // Make sure our subsumed instructions are remembered too.
1059     for (auto *I : DRS.SubsumedInsts) {
1060       Uses[I].set(IL_All);
1061     }
1062   }
1063 
1064   // Make sure the loop increments are also accounted for.
1065 
1066   Exclude.clear();
1067   for (auto &DRS : RootSets) {
1068     Exclude.insert(DRS.Roots.begin(), DRS.Roots.end());
1069     Exclude.insert(DRS.SubsumedInsts.begin(), DRS.SubsumedInsts.end());
1070     Exclude.insert(DRS.BaseInst);
1071   }
1072 
1073   DenseSet<Instruction*> V;
1074   collectInLoopUserSet(LoopIncs, Exclude, PossibleRedSet, V);
1075   for (auto *I : V) {
1076     if (I->mayHaveSideEffects()) {
1077       LLVM_DEBUG(dbgs() << "LRR: Aborting - "
1078                         << "An instruction which does not belong to any root "
1079                         << "sets must not have side effects: " << *I);
1080       return false;
1081     }
1082     Uses[I].set(IL_All);
1083   }
1084 
1085   return true;
1086 }
1087 
1088 /// Get the next instruction in "In" that is a member of set Val.
1089 /// Start searching from StartI, and do not return anything in Exclude.
1090 /// If StartI is not given, start from In.begin().
1091 LoopReroll::DAGRootTracker::UsesTy::iterator
1092 LoopReroll::DAGRootTracker::nextInstr(int Val, UsesTy &In,
1093                                       const SmallInstructionSet &Exclude,
1094                                       UsesTy::iterator *StartI) {
1095   UsesTy::iterator I = StartI ? *StartI : In.begin();
1096   while (I != In.end() && (I->second.test(Val) == 0 ||
1097                            Exclude.contains(I->first)))
1098     ++I;
1099   return I;
1100 }
1101 
1102 bool LoopReroll::DAGRootTracker::isBaseInst(Instruction *I) {
1103   for (auto &DRS : RootSets) {
1104     if (DRS.BaseInst == I)
1105       return true;
1106   }
1107   return false;
1108 }
1109 
1110 bool LoopReroll::DAGRootTracker::isRootInst(Instruction *I) {
1111   for (auto &DRS : RootSets) {
1112     if (is_contained(DRS.Roots, I))
1113       return true;
1114   }
1115   return false;
1116 }
1117 
1118 /// Return true if instruction I depends on any instruction between
1119 /// Start and End.
1120 bool LoopReroll::DAGRootTracker::instrDependsOn(Instruction *I,
1121                                                 UsesTy::iterator Start,
1122                                                 UsesTy::iterator End) {
1123   for (auto *U : I->users()) {
1124     for (auto It = Start; It != End; ++It)
1125       if (U == It->first)
1126         return true;
1127   }
1128   return false;
1129 }
1130 
1131 static bool isIgnorableInst(const Instruction *I) {
1132   if (isa<DbgInfoIntrinsic>(I))
1133     return true;
1134   const IntrinsicInst* II = dyn_cast<IntrinsicInst>(I);
1135   if (!II)
1136     return false;
1137   switch (II->getIntrinsicID()) {
1138     default:
1139       return false;
1140     case Intrinsic::annotation:
1141     case Intrinsic::ptr_annotation:
1142     case Intrinsic::var_annotation:
1143     // TODO: the following intrinsics may also be allowed:
1144     //   lifetime_start, lifetime_end, invariant_start, invariant_end
1145       return true;
1146   }
1147   return false;
1148 }
1149 
1150 bool LoopReroll::DAGRootTracker::validate(ReductionTracker &Reductions) {
1151   // We now need to check for equivalence of the use graph of each root with
1152   // that of the primary induction variable (excluding the roots). Our goal
1153   // here is not to solve the full graph isomorphism problem, but rather to
1154   // catch common cases without a lot of work. As a result, we will assume
1155   // that the relative order of the instructions in each unrolled iteration
1156   // is the same (although we will not make an assumption about how the
1157   // different iterations are intermixed). Note that while the order must be
1158   // the same, the instructions may not be in the same basic block.
1159 
1160   // An array of just the possible reductions for this scale factor. When we
1161   // collect the set of all users of some root instructions, these reduction
1162   // instructions are treated as 'final' (their uses are not considered).
1163   // This is important because we don't want the root use set to search down
1164   // the reduction chain.
1165   SmallInstructionSet PossibleRedSet;
1166   SmallInstructionSet PossibleRedLastSet;
1167   SmallInstructionSet PossibleRedPHISet;
1168   Reductions.restrictToScale(Scale, PossibleRedSet,
1169                              PossibleRedPHISet, PossibleRedLastSet);
1170 
1171   // Populate "Uses" with where each instruction is used.
1172   if (!collectUsedInstructions(PossibleRedSet))
1173     return false;
1174 
1175   // Make sure we mark the reduction PHIs as used in all iterations.
1176   for (auto *I : PossibleRedPHISet) {
1177     Uses[I].set(IL_All);
1178   }
1179 
1180   // Make sure we mark loop-control-only PHIs as used in all iterations. See
1181   // comment above LoopReroll::isLoopControlIV for more information.
1182   BasicBlock *Header = L->getHeader();
1183   for (Instruction *LoopControlIV : LoopControlIVs) {
1184     for (auto *U : LoopControlIV->users()) {
1185       Instruction *IVUser = dyn_cast<Instruction>(U);
1186       // IVUser could be loop increment or compare
1187       Uses[IVUser].set(IL_All);
1188       for (auto *UU : IVUser->users()) {
1189         Instruction *UUser = dyn_cast<Instruction>(UU);
1190         // UUser could be compare, PHI or branch
1191         Uses[UUser].set(IL_All);
1192         // Skip SExt
1193         if (isa<SExtInst>(UUser)) {
1194           UUser = dyn_cast<Instruction>(*(UUser->user_begin()));
1195           Uses[UUser].set(IL_All);
1196         }
1197         // Is UUser a compare instruction?
1198         if (UU->hasOneUse()) {
1199           Instruction *BI = dyn_cast<BranchInst>(*UUser->user_begin());
1200           if (BI == cast<BranchInst>(Header->getTerminator()))
1201             Uses[BI].set(IL_All);
1202         }
1203       }
1204     }
1205   }
1206 
1207   // Make sure all instructions in the loop are in one and only one
1208   // set.
1209   for (auto &KV : Uses) {
1210     if (KV.second.count() != 1 && !isIgnorableInst(KV.first)) {
1211       LLVM_DEBUG(
1212           dbgs() << "LRR: Aborting - instruction is not used in 1 iteration: "
1213                  << *KV.first << " (#uses=" << KV.second.count() << ")\n");
1214       return false;
1215     }
1216   }
1217 
1218   LLVM_DEBUG(for (auto &KV
1219                   : Uses) {
1220     dbgs() << "LRR: " << KV.second.find_first() << "\t" << *KV.first << "\n";
1221   });
1222 
1223   BatchAAResults BatchAA(*AA);
1224   for (unsigned Iter = 1; Iter < Scale; ++Iter) {
1225     // In addition to regular aliasing information, we need to look for
1226     // instructions from later (future) iterations that have side effects
1227     // preventing us from reordering them past other instructions with side
1228     // effects.
1229     bool FutureSideEffects = false;
1230     AliasSetTracker AST(BatchAA);
1231     // The map between instructions in f(%iv.(i+1)) and f(%iv).
1232     DenseMap<Value *, Value *> BaseMap;
1233 
1234     // Compare iteration Iter to the base.
1235     SmallInstructionSet Visited;
1236     auto BaseIt = nextInstr(0, Uses, Visited);
1237     auto RootIt = nextInstr(Iter, Uses, Visited);
1238     auto LastRootIt = Uses.begin();
1239 
1240     while (BaseIt != Uses.end() && RootIt != Uses.end()) {
1241       Instruction *BaseInst = BaseIt->first;
1242       Instruction *RootInst = RootIt->first;
1243 
1244       // Skip over the IV or root instructions; only match their users.
1245       bool Continue = false;
1246       if (isBaseInst(BaseInst)) {
1247         Visited.insert(BaseInst);
1248         BaseIt = nextInstr(0, Uses, Visited);
1249         Continue = true;
1250       }
1251       if (isRootInst(RootInst)) {
1252         LastRootIt = RootIt;
1253         Visited.insert(RootInst);
1254         RootIt = nextInstr(Iter, Uses, Visited);
1255         Continue = true;
1256       }
1257       if (Continue) continue;
1258 
1259       if (!BaseInst->isSameOperationAs(RootInst)) {
1260         // Last chance saloon. We don't try and solve the full isomorphism
1261         // problem, but try and at least catch the case where two instructions
1262         // *of different types* are round the wrong way. We won't be able to
1263         // efficiently tell, given two ADD instructions, which way around we
1264         // should match them, but given an ADD and a SUB, we can at least infer
1265         // which one is which.
1266         //
1267         // This should allow us to deal with a greater subset of the isomorphism
1268         // problem. It does however change a linear algorithm into a quadratic
1269         // one, so limit the number of probes we do.
1270         auto TryIt = RootIt;
1271         unsigned N = NumToleratedFailedMatches;
1272         while (TryIt != Uses.end() &&
1273                !BaseInst->isSameOperationAs(TryIt->first) &&
1274                N--) {
1275           ++TryIt;
1276           TryIt = nextInstr(Iter, Uses, Visited, &TryIt);
1277         }
1278 
1279         if (TryIt == Uses.end() || TryIt == RootIt ||
1280             instrDependsOn(TryIt->first, RootIt, TryIt)) {
1281           LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at "
1282                             << *BaseInst << " vs. " << *RootInst << "\n");
1283           return false;
1284         }
1285 
1286         RootIt = TryIt;
1287         RootInst = TryIt->first;
1288       }
1289 
1290       // All instructions between the last root and this root
1291       // may belong to some other iteration. If they belong to a
1292       // future iteration, then they're dangerous to alias with.
1293       //
1294       // Note that because we allow a limited amount of flexibility in the order
1295       // that we visit nodes, LastRootIt might be *before* RootIt, in which
1296       // case we've already checked this set of instructions so we shouldn't
1297       // do anything.
1298       for (; LastRootIt < RootIt; ++LastRootIt) {
1299         Instruction *I = LastRootIt->first;
1300         if (LastRootIt->second.find_first() < (int)Iter)
1301           continue;
1302         if (I->mayWriteToMemory())
1303           AST.add(I);
1304         // Note: This is specifically guarded by a check on isa<PHINode>,
1305         // which while a valid (somewhat arbitrary) micro-optimization, is
1306         // needed because otherwise isSafeToSpeculativelyExecute returns
1307         // false on PHI nodes.
1308         if (!isa<PHINode>(I) && !isUnorderedLoadStore(I) &&
1309             !isSafeToSpeculativelyExecute(I))
1310           // Intervening instructions cause side effects.
1311           FutureSideEffects = true;
1312       }
1313 
1314       // Make sure that this instruction, which is in the use set of this
1315       // root instruction, does not also belong to the base set or the set of
1316       // some other root instruction.
1317       if (RootIt->second.count() > 1) {
1318         LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst
1319                           << " vs. " << *RootInst << " (prev. case overlap)\n");
1320         return false;
1321       }
1322 
1323       // Make sure that we don't alias with any instruction in the alias set
1324       // tracker. If we do, then we depend on a future iteration, and we
1325       // can't reroll.
1326       if (RootInst->mayReadFromMemory()) {
1327         for (auto &K : AST) {
1328           if (isModOrRefSet(K.aliasesUnknownInst(RootInst, BatchAA))) {
1329             LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at "
1330                               << *BaseInst << " vs. " << *RootInst
1331                               << " (depends on future store)\n");
1332             return false;
1333           }
1334         }
1335       }
1336 
1337       // If we've past an instruction from a future iteration that may have
1338       // side effects, and this instruction might also, then we can't reorder
1339       // them, and this matching fails. As an exception, we allow the alias
1340       // set tracker to handle regular (unordered) load/store dependencies.
1341       if (FutureSideEffects && ((!isUnorderedLoadStore(BaseInst) &&
1342                                  !isSafeToSpeculativelyExecute(BaseInst)) ||
1343                                 (!isUnorderedLoadStore(RootInst) &&
1344                                  !isSafeToSpeculativelyExecute(RootInst)))) {
1345         LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst
1346                           << " vs. " << *RootInst
1347                           << " (side effects prevent reordering)\n");
1348         return false;
1349       }
1350 
1351       // For instructions that are part of a reduction, if the operation is
1352       // associative, then don't bother matching the operands (because we
1353       // already know that the instructions are isomorphic, and the order
1354       // within the iteration does not matter). For non-associative reductions,
1355       // we do need to match the operands, because we need to reject
1356       // out-of-order instructions within an iteration!
1357       // For example (assume floating-point addition), we need to reject this:
1358       //   x += a[i]; x += b[i];
1359       //   x += a[i+1]; x += b[i+1];
1360       //   x += b[i+2]; x += a[i+2];
1361       bool InReduction = Reductions.isPairInSame(BaseInst, RootInst);
1362 
1363       if (!(InReduction && BaseInst->isAssociative())) {
1364         bool Swapped = false, SomeOpMatched = false;
1365         for (unsigned j = 0; j < BaseInst->getNumOperands(); ++j) {
1366           Value *Op2 = RootInst->getOperand(j);
1367 
1368           // If this is part of a reduction (and the operation is not
1369           // associatve), then we match all operands, but not those that are
1370           // part of the reduction.
1371           if (InReduction)
1372             if (Instruction *Op2I = dyn_cast<Instruction>(Op2))
1373               if (Reductions.isPairInSame(RootInst, Op2I))
1374                 continue;
1375 
1376           DenseMap<Value *, Value *>::iterator BMI = BaseMap.find(Op2);
1377           if (BMI != BaseMap.end()) {
1378             Op2 = BMI->second;
1379           } else {
1380             for (auto &DRS : RootSets) {
1381               if (DRS.Roots[Iter-1] == (Instruction*) Op2) {
1382                 Op2 = DRS.BaseInst;
1383                 break;
1384               }
1385             }
1386           }
1387 
1388           if (BaseInst->getOperand(Swapped ? unsigned(!j) : j) != Op2) {
1389             // If we've not already decided to swap the matched operands, and
1390             // we've not already matched our first operand (note that we could
1391             // have skipped matching the first operand because it is part of a
1392             // reduction above), and the instruction is commutative, then try
1393             // the swapped match.
1394             if (!Swapped && BaseInst->isCommutative() && !SomeOpMatched &&
1395                 BaseInst->getOperand(!j) == Op2) {
1396               Swapped = true;
1397             } else {
1398               LLVM_DEBUG(dbgs()
1399                          << "LRR: iteration root match failed at " << *BaseInst
1400                          << " vs. " << *RootInst << " (operand " << j << ")\n");
1401               return false;
1402             }
1403           }
1404 
1405           SomeOpMatched = true;
1406         }
1407       }
1408 
1409       if ((!PossibleRedLastSet.count(BaseInst) &&
1410            hasUsesOutsideLoop(BaseInst, L)) ||
1411           (!PossibleRedLastSet.count(RootInst) &&
1412            hasUsesOutsideLoop(RootInst, L))) {
1413         LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst
1414                           << " vs. " << *RootInst << " (uses outside loop)\n");
1415         return false;
1416       }
1417 
1418       Reductions.recordPair(BaseInst, RootInst, Iter);
1419       BaseMap.insert(std::make_pair(RootInst, BaseInst));
1420 
1421       LastRootIt = RootIt;
1422       Visited.insert(BaseInst);
1423       Visited.insert(RootInst);
1424       BaseIt = nextInstr(0, Uses, Visited);
1425       RootIt = nextInstr(Iter, Uses, Visited);
1426     }
1427     assert(BaseIt == Uses.end() && RootIt == Uses.end() &&
1428            "Mismatched set sizes!");
1429   }
1430 
1431   LLVM_DEBUG(dbgs() << "LRR: Matched all iteration increments for " << *IV
1432                     << "\n");
1433 
1434   return true;
1435 }
1436 
1437 void LoopReroll::DAGRootTracker::replace(const SCEV *BackedgeTakenCount) {
1438   BasicBlock *Header = L->getHeader();
1439 
1440   // Compute the start and increment for each BaseInst before we start erasing
1441   // instructions.
1442   SmallVector<const SCEV *, 8> StartExprs;
1443   SmallVector<const SCEV *, 8> IncrExprs;
1444   for (auto &DRS : RootSets) {
1445     const SCEVAddRecExpr *IVSCEV =
1446         cast<SCEVAddRecExpr>(SE->getSCEV(DRS.BaseInst));
1447     StartExprs.push_back(IVSCEV->getStart());
1448     IncrExprs.push_back(SE->getMinusSCEV(SE->getSCEV(DRS.Roots[0]), IVSCEV));
1449   }
1450 
1451   // Remove instructions associated with non-base iterations.
1452   for (Instruction &Inst : llvm::make_early_inc_range(llvm::reverse(*Header))) {
1453     unsigned I = Uses[&Inst].find_first();
1454     if (I > 0 && I < IL_All) {
1455       LLVM_DEBUG(dbgs() << "LRR: removing: " << Inst << "\n");
1456       Inst.eraseFromParent();
1457     }
1458   }
1459 
1460   // Rewrite each BaseInst using SCEV.
1461   for (size_t i = 0, e = RootSets.size(); i != e; ++i)
1462     // Insert the new induction variable.
1463     replaceIV(RootSets[i], StartExprs[i], IncrExprs[i]);
1464 
1465   { // Limit the lifetime of SCEVExpander.
1466     BranchInst *BI = cast<BranchInst>(Header->getTerminator());
1467     const DataLayout &DL = Header->getModule()->getDataLayout();
1468     SCEVExpander Expander(*SE, DL, "reroll");
1469     auto Zero = SE->getZero(BackedgeTakenCount->getType());
1470     auto One = SE->getOne(BackedgeTakenCount->getType());
1471     auto NewIVSCEV = SE->getAddRecExpr(Zero, One, L, SCEV::FlagAnyWrap);
1472     Value *NewIV =
1473         Expander.expandCodeFor(NewIVSCEV, BackedgeTakenCount->getType(),
1474                                Header->getFirstNonPHIOrDbg());
1475     // FIXME: This arithmetic can overflow.
1476     auto TripCount = SE->getAddExpr(BackedgeTakenCount, One);
1477     auto ScaledTripCount = SE->getMulExpr(
1478         TripCount, SE->getConstant(BackedgeTakenCount->getType(), Scale));
1479     auto ScaledBECount = SE->getMinusSCEV(ScaledTripCount, One);
1480     Value *TakenCount =
1481         Expander.expandCodeFor(ScaledBECount, BackedgeTakenCount->getType(),
1482                                Header->getFirstNonPHIOrDbg());
1483     Value *Cond =
1484         new ICmpInst(BI, CmpInst::ICMP_EQ, NewIV, TakenCount, "exitcond");
1485     BI->setCondition(Cond);
1486 
1487     if (BI->getSuccessor(1) != Header)
1488       BI->swapSuccessors();
1489   }
1490 
1491   SimplifyInstructionsInBlock(Header, TLI);
1492   DeleteDeadPHIs(Header, TLI);
1493 }
1494 
1495 void LoopReroll::DAGRootTracker::replaceIV(DAGRootSet &DRS,
1496                                            const SCEV *Start,
1497                                            const SCEV *IncrExpr) {
1498   BasicBlock *Header = L->getHeader();
1499   Instruction *Inst = DRS.BaseInst;
1500 
1501   const SCEV *NewIVSCEV =
1502       SE->getAddRecExpr(Start, IncrExpr, L, SCEV::FlagAnyWrap);
1503 
1504   { // Limit the lifetime of SCEVExpander.
1505     const DataLayout &DL = Header->getModule()->getDataLayout();
1506     SCEVExpander Expander(*SE, DL, "reroll");
1507     Value *NewIV = Expander.expandCodeFor(NewIVSCEV, Inst->getType(),
1508                                           Header->getFirstNonPHIOrDbg());
1509 
1510     for (auto &KV : Uses)
1511       if (KV.second.find_first() == 0)
1512         KV.first->replaceUsesOfWith(Inst, NewIV);
1513   }
1514 }
1515 
1516 // Validate the selected reductions. All iterations must have an isomorphic
1517 // part of the reduction chain and, for non-associative reductions, the chain
1518 // entries must appear in order.
1519 bool LoopReroll::ReductionTracker::validateSelected() {
1520   // For a non-associative reduction, the chain entries must appear in order.
1521   for (int i : Reds) {
1522     int PrevIter = 0, BaseCount = 0, Count = 0;
1523     for (Instruction *J : PossibleReds[i]) {
1524       // Note that all instructions in the chain must have been found because
1525       // all instructions in the function must have been assigned to some
1526       // iteration.
1527       int Iter = PossibleRedIter[J];
1528       if (Iter != PrevIter && Iter != PrevIter + 1 &&
1529           !PossibleReds[i].getReducedValue()->isAssociative()) {
1530         LLVM_DEBUG(dbgs() << "LRR: Out-of-order non-associative reduction: "
1531                           << J << "\n");
1532         return false;
1533       }
1534 
1535       if (Iter != PrevIter) {
1536         if (Count != BaseCount) {
1537           LLVM_DEBUG(dbgs()
1538                      << "LRR: Iteration " << PrevIter << " reduction use count "
1539                      << Count << " is not equal to the base use count "
1540                      << BaseCount << "\n");
1541           return false;
1542         }
1543 
1544         Count = 0;
1545       }
1546 
1547       ++Count;
1548       if (Iter == 0)
1549         ++BaseCount;
1550 
1551       PrevIter = Iter;
1552     }
1553   }
1554 
1555   return true;
1556 }
1557 
1558 // For all selected reductions, remove all parts except those in the first
1559 // iteration (and the PHI). Replace outside uses of the reduced value with uses
1560 // of the first-iteration reduced value (in other words, reroll the selected
1561 // reductions).
1562 void LoopReroll::ReductionTracker::replaceSelected() {
1563   // Fixup reductions to refer to the last instruction associated with the
1564   // first iteration (not the last).
1565   for (int i : Reds) {
1566     int j = 0;
1567     for (int e = PossibleReds[i].size(); j != e; ++j)
1568       if (PossibleRedIter[PossibleReds[i][j]] != 0) {
1569         --j;
1570         break;
1571       }
1572 
1573     // Replace users with the new end-of-chain value.
1574     SmallInstructionVector Users;
1575     for (User *U : PossibleReds[i].getReducedValue()->users()) {
1576       Users.push_back(cast<Instruction>(U));
1577     }
1578 
1579     for (Instruction *User : Users)
1580       User->replaceUsesOfWith(PossibleReds[i].getReducedValue(),
1581                               PossibleReds[i][j]);
1582   }
1583 }
1584 
1585 // Reroll the provided loop with respect to the provided induction variable.
1586 // Generally, we're looking for a loop like this:
1587 //
1588 // %iv = phi [ (preheader, ...), (body, %iv.next) ]
1589 // f(%iv)
1590 // %iv.1 = add %iv, 1                <-- a root increment
1591 // f(%iv.1)
1592 // %iv.2 = add %iv, 2                <-- a root increment
1593 // f(%iv.2)
1594 // %iv.scale_m_1 = add %iv, scale-1  <-- a root increment
1595 // f(%iv.scale_m_1)
1596 // ...
1597 // %iv.next = add %iv, scale
1598 // %cmp = icmp(%iv, ...)
1599 // br %cmp, header, exit
1600 //
1601 // Notably, we do not require that f(%iv), f(%iv.1), etc. be isolated groups of
1602 // instructions. In other words, the instructions in f(%iv), f(%iv.1), etc. can
1603 // be intermixed with eachother. The restriction imposed by this algorithm is
1604 // that the relative order of the isomorphic instructions in f(%iv), f(%iv.1),
1605 // etc. be the same.
1606 //
1607 // First, we collect the use set of %iv, excluding the other increment roots.
1608 // This gives us f(%iv). Then we iterate over the loop instructions (scale-1)
1609 // times, having collected the use set of f(%iv.(i+1)), during which we:
1610 //   - Ensure that the next unmatched instruction in f(%iv) is isomorphic to
1611 //     the next unmatched instruction in f(%iv.(i+1)).
1612 //   - Ensure that both matched instructions don't have any external users
1613 //     (with the exception of last-in-chain reduction instructions).
1614 //   - Track the (aliasing) write set, and other side effects, of all
1615 //     instructions that belong to future iterations that come before the matched
1616 //     instructions. If the matched instructions read from that write set, then
1617 //     f(%iv) or f(%iv.(i+1)) has some dependency on instructions in
1618 //     f(%iv.(j+1)) for some j > i, and we cannot reroll the loop. Similarly,
1619 //     if any of these future instructions had side effects (could not be
1620 //     speculatively executed), and so do the matched instructions, when we
1621 //     cannot reorder those side-effect-producing instructions, and rerolling
1622 //     fails.
1623 //
1624 // Finally, we make sure that all loop instructions are either loop increment
1625 // roots, belong to simple latch code, parts of validated reductions, part of
1626 // f(%iv) or part of some f(%iv.i). If all of that is true (and all reductions
1627 // have been validated), then we reroll the loop.
1628 bool LoopReroll::reroll(Instruction *IV, Loop *L, BasicBlock *Header,
1629                         const SCEV *BackedgeTakenCount,
1630                         ReductionTracker &Reductions) {
1631   DAGRootTracker DAGRoots(this, L, IV, SE, AA, TLI, DT, LI, PreserveLCSSA,
1632                           IVToIncMap, LoopControlIVs);
1633 
1634   if (!DAGRoots.findRoots())
1635     return false;
1636   LLVM_DEBUG(dbgs() << "LRR: Found all root induction increments for: " << *IV
1637                     << "\n");
1638 
1639   if (!DAGRoots.validate(Reductions))
1640     return false;
1641   if (!Reductions.validateSelected())
1642     return false;
1643   // At this point, we've validated the rerolling, and we're committed to
1644   // making changes!
1645 
1646   Reductions.replaceSelected();
1647   DAGRoots.replace(BackedgeTakenCount);
1648 
1649   ++NumRerolledLoops;
1650   return true;
1651 }
1652 
1653 bool LoopReroll::runOnLoop(Loop *L) {
1654   BasicBlock *Header = L->getHeader();
1655   LLVM_DEBUG(dbgs() << "LRR: F[" << Header->getParent()->getName() << "] Loop %"
1656                     << Header->getName() << " (" << L->getNumBlocks()
1657                     << " block(s))\n");
1658 
1659   // For now, we'll handle only single BB loops.
1660   if (L->getNumBlocks() > 1)
1661     return false;
1662 
1663   if (!SE->hasLoopInvariantBackedgeTakenCount(L))
1664     return false;
1665 
1666   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1667   LLVM_DEBUG(dbgs() << "\n Before Reroll:\n" << *(L->getHeader()) << "\n");
1668   LLVM_DEBUG(dbgs() << "LRR: backedge-taken count = " << *BackedgeTakenCount
1669                << "\n");
1670 
1671   // First, we need to find the induction variable with respect to which we can
1672   // reroll (there may be several possible options).
1673   SmallInstructionVector PossibleIVs;
1674   IVToIncMap.clear();
1675   LoopControlIVs.clear();
1676   collectPossibleIVs(L, PossibleIVs);
1677 
1678   if (PossibleIVs.empty()) {
1679     LLVM_DEBUG(dbgs() << "LRR: No possible IVs found\n");
1680     return false;
1681   }
1682 
1683   ReductionTracker Reductions;
1684   collectPossibleReductions(L, Reductions);
1685   bool Changed = false;
1686 
1687   // For each possible IV, collect the associated possible set of 'root' nodes
1688   // (i+1, i+2, etc.).
1689   for (Instruction *PossibleIV : PossibleIVs)
1690     if (reroll(PossibleIV, L, Header, BackedgeTakenCount, Reductions)) {
1691       Changed = true;
1692       break;
1693     }
1694   LLVM_DEBUG(dbgs() << "\n After Reroll:\n" << *(L->getHeader()) << "\n");
1695 
1696   // Trip count of L has changed so SE must be re-evaluated.
1697   if (Changed)
1698     SE->forgetLoop(L);
1699 
1700   return Changed;
1701 }
1702 
1703 bool LoopRerollLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) {
1704   if (skipLoop(L))
1705     return false;
1706 
1707   auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
1708   auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1709   auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1710   auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
1711       *L->getHeader()->getParent());
1712   auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1713   bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
1714 
1715   return LoopReroll(AA, LI, SE, TLI, DT, PreserveLCSSA).runOnLoop(L);
1716 }
1717 
1718 PreservedAnalyses LoopRerollPass::run(Loop &L, LoopAnalysisManager &AM,
1719                                       LoopStandardAnalysisResults &AR,
1720                                       LPMUpdater &U) {
1721   return LoopReroll(&AR.AA, &AR.LI, &AR.SE, &AR.TLI, &AR.DT, true).runOnLoop(&L)
1722              ? getLoopPassPreservedAnalyses()
1723              : PreservedAnalyses::all();
1724 }
1725