1 //===--------- LoopSimplifyCFG.cpp - Loop CFG Simplification Pass ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Loop SimplifyCFG Pass. This pass is responsible for
10 // basic loop CFG cleanup, primarily to assist other loop passes. If you
11 // encounter a noncanonical CFG construct that causes another loop pass to
12 // perform suboptimally, this is the place to fix it up.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Transforms/Scalar/LoopSimplifyCFG.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/AliasAnalysis.h"
20 #include "llvm/Analysis/AssumptionCache.h"
21 #include "llvm/Analysis/BasicAliasAnalysis.h"
22 #include "llvm/Analysis/DependenceAnalysis.h"
23 #include "llvm/Analysis/DomTreeUpdater.h"
24 #include "llvm/Analysis/GlobalsModRef.h"
25 #include "llvm/Analysis/LoopInfo.h"
26 #include "llvm/Analysis/LoopPass.h"
27 #include "llvm/Analysis/MemorySSA.h"
28 #include "llvm/Analysis/MemorySSAUpdater.h"
29 #include "llvm/Analysis/ScalarEvolution.h"
30 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
31 #include "llvm/Analysis/TargetTransformInfo.h"
32 #include "llvm/IR/Dominators.h"
33 #include "llvm/InitializePasses.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Transforms/Scalar.h"
36 #include "llvm/Transforms/Scalar/LoopPassManager.h"
37 #include "llvm/Transforms/Utils.h"
38 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
39 #include "llvm/Transforms/Utils/Local.h"
40 #include "llvm/Transforms/Utils/LoopUtils.h"
41 using namespace llvm;
42 
43 #define DEBUG_TYPE "loop-simplifycfg"
44 
45 static cl::opt<bool> EnableTermFolding("enable-loop-simplifycfg-term-folding",
46                                        cl::init(true));
47 
48 STATISTIC(NumTerminatorsFolded,
49           "Number of terminators folded to unconditional branches");
50 STATISTIC(NumLoopBlocksDeleted,
51           "Number of loop blocks deleted");
52 STATISTIC(NumLoopExitsDeleted,
53           "Number of loop exiting edges deleted");
54 
55 /// If \p BB is a switch or a conditional branch, but only one of its successors
56 /// can be reached from this block in runtime, return this successor. Otherwise,
57 /// return nullptr.
58 static BasicBlock *getOnlyLiveSuccessor(BasicBlock *BB) {
59   Instruction *TI = BB->getTerminator();
60   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
61     if (BI->isUnconditional())
62       return nullptr;
63     if (BI->getSuccessor(0) == BI->getSuccessor(1))
64       return BI->getSuccessor(0);
65     ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
66     if (!Cond)
67       return nullptr;
68     return Cond->isZero() ? BI->getSuccessor(1) : BI->getSuccessor(0);
69   }
70 
71   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
72     auto *CI = dyn_cast<ConstantInt>(SI->getCondition());
73     if (!CI)
74       return nullptr;
75     for (auto Case : SI->cases())
76       if (Case.getCaseValue() == CI)
77         return Case.getCaseSuccessor();
78     return SI->getDefaultDest();
79   }
80 
81   return nullptr;
82 }
83 
84 /// Removes \p BB from all loops from [FirstLoop, LastLoop) in parent chain.
85 static void removeBlockFromLoops(BasicBlock *BB, Loop *FirstLoop,
86                                  Loop *LastLoop = nullptr) {
87   assert((!LastLoop || LastLoop->contains(FirstLoop->getHeader())) &&
88          "First loop is supposed to be inside of last loop!");
89   assert(FirstLoop->contains(BB) && "Must be a loop block!");
90   for (Loop *Current = FirstLoop; Current != LastLoop;
91        Current = Current->getParentLoop())
92     Current->removeBlockFromLoop(BB);
93 }
94 
95 /// Find innermost loop that contains at least one block from \p BBs and
96 /// contains the header of loop \p L.
97 static Loop *getInnermostLoopFor(SmallPtrSetImpl<BasicBlock *> &BBs,
98                                  Loop &L, LoopInfo &LI) {
99   Loop *Innermost = nullptr;
100   for (BasicBlock *BB : BBs) {
101     Loop *BBL = LI.getLoopFor(BB);
102     while (BBL && !BBL->contains(L.getHeader()))
103       BBL = BBL->getParentLoop();
104     if (BBL == &L)
105       BBL = BBL->getParentLoop();
106     if (!BBL)
107       continue;
108     if (!Innermost || BBL->getLoopDepth() > Innermost->getLoopDepth())
109       Innermost = BBL;
110   }
111   return Innermost;
112 }
113 
114 namespace {
115 /// Helper class that can turn branches and switches with constant conditions
116 /// into unconditional branches.
117 class ConstantTerminatorFoldingImpl {
118 private:
119   Loop &L;
120   LoopInfo &LI;
121   DominatorTree &DT;
122   ScalarEvolution &SE;
123   MemorySSAUpdater *MSSAU;
124   LoopBlocksDFS DFS;
125   DomTreeUpdater DTU;
126   SmallVector<DominatorTree::UpdateType, 16> DTUpdates;
127 
128   // Whether or not the current loop has irreducible CFG.
129   bool HasIrreducibleCFG = false;
130   // Whether or not the current loop will still exist after terminator constant
131   // folding will be done. In theory, there are two ways how it can happen:
132   // 1. Loop's latch(es) become unreachable from loop header;
133   // 2. Loop's header becomes unreachable from method entry.
134   // In practice, the second situation is impossible because we only modify the
135   // current loop and its preheader and do not affect preheader's reachibility
136   // from any other block. So this variable set to true means that loop's latch
137   // has become unreachable from loop header.
138   bool DeleteCurrentLoop = false;
139 
140   // The blocks of the original loop that will still be reachable from entry
141   // after the constant folding.
142   SmallPtrSet<BasicBlock *, 8> LiveLoopBlocks;
143   // The blocks of the original loop that will become unreachable from entry
144   // after the constant folding.
145   SmallVector<BasicBlock *, 8> DeadLoopBlocks;
146   // The exits of the original loop that will still be reachable from entry
147   // after the constant folding.
148   SmallPtrSet<BasicBlock *, 8> LiveExitBlocks;
149   // The exits of the original loop that will become unreachable from entry
150   // after the constant folding.
151   SmallVector<BasicBlock *, 8> DeadExitBlocks;
152   // The blocks that will still be a part of the current loop after folding.
153   SmallPtrSet<BasicBlock *, 8> BlocksInLoopAfterFolding;
154   // The blocks that have terminators with constant condition that can be
155   // folded. Note: fold candidates should be in L but not in any of its
156   // subloops to avoid complex LI updates.
157   SmallVector<BasicBlock *, 8> FoldCandidates;
158 
159   void dump() const {
160     dbgs() << "Constant terminator folding for loop " << L << "\n";
161     dbgs() << "After terminator constant-folding, the loop will";
162     if (!DeleteCurrentLoop)
163       dbgs() << " not";
164     dbgs() << " be destroyed\n";
165     auto PrintOutVector = [&](const char *Message,
166                            const SmallVectorImpl<BasicBlock *> &S) {
167       dbgs() << Message << "\n";
168       for (const BasicBlock *BB : S)
169         dbgs() << "\t" << BB->getName() << "\n";
170     };
171     auto PrintOutSet = [&](const char *Message,
172                            const SmallPtrSetImpl<BasicBlock *> &S) {
173       dbgs() << Message << "\n";
174       for (const BasicBlock *BB : S)
175         dbgs() << "\t" << BB->getName() << "\n";
176     };
177     PrintOutVector("Blocks in which we can constant-fold terminator:",
178                    FoldCandidates);
179     PrintOutSet("Live blocks from the original loop:", LiveLoopBlocks);
180     PrintOutVector("Dead blocks from the original loop:", DeadLoopBlocks);
181     PrintOutSet("Live exit blocks:", LiveExitBlocks);
182     PrintOutVector("Dead exit blocks:", DeadExitBlocks);
183     if (!DeleteCurrentLoop)
184       PrintOutSet("The following blocks will still be part of the loop:",
185                   BlocksInLoopAfterFolding);
186   }
187 
188   /// Whether or not the current loop has irreducible CFG.
189   bool hasIrreducibleCFG(LoopBlocksDFS &DFS) {
190     assert(DFS.isComplete() && "DFS is expected to be finished");
191     // Index of a basic block in RPO traversal.
192     DenseMap<const BasicBlock *, unsigned> RPO;
193     unsigned Current = 0;
194     for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I)
195       RPO[*I] = Current++;
196 
197     for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) {
198       BasicBlock *BB = *I;
199       for (auto *Succ : successors(BB))
200         if (L.contains(Succ) && !LI.isLoopHeader(Succ) && RPO[BB] > RPO[Succ])
201           // If an edge goes from a block with greater order number into a block
202           // with lesses number, and it is not a loop backedge, then it can only
203           // be a part of irreducible non-loop cycle.
204           return true;
205     }
206     return false;
207   }
208 
209   /// Fill all information about status of blocks and exits of the current loop
210   /// if constant folding of all branches will be done.
211   void analyze() {
212     DFS.perform(&LI);
213     assert(DFS.isComplete() && "DFS is expected to be finished");
214 
215     // TODO: The algorithm below relies on both RPO and Postorder traversals.
216     // When the loop has only reducible CFG inside, then the invariant "all
217     // predecessors of X are processed before X in RPO" is preserved. However
218     // an irreducible loop can break this invariant (e.g. latch does not have to
219     // be the last block in the traversal in this case, and the algorithm relies
220     // on this). We can later decide to support such cases by altering the
221     // algorithms, but so far we just give up analyzing them.
222     if (hasIrreducibleCFG(DFS)) {
223       HasIrreducibleCFG = true;
224       return;
225     }
226 
227     // Collect live and dead loop blocks and exits.
228     LiveLoopBlocks.insert(L.getHeader());
229     for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) {
230       BasicBlock *BB = *I;
231 
232       // If a loop block wasn't marked as live so far, then it's dead.
233       if (!LiveLoopBlocks.count(BB)) {
234         DeadLoopBlocks.push_back(BB);
235         continue;
236       }
237 
238       BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(BB);
239 
240       // If a block has only one live successor, it's a candidate on constant
241       // folding. Only handle blocks from current loop: branches in child loops
242       // are skipped because if they can be folded, they should be folded during
243       // the processing of child loops.
244       bool TakeFoldCandidate = TheOnlySucc && LI.getLoopFor(BB) == &L;
245       if (TakeFoldCandidate)
246         FoldCandidates.push_back(BB);
247 
248       // Handle successors.
249       for (BasicBlock *Succ : successors(BB))
250         if (!TakeFoldCandidate || TheOnlySucc == Succ) {
251           if (L.contains(Succ))
252             LiveLoopBlocks.insert(Succ);
253           else
254             LiveExitBlocks.insert(Succ);
255         }
256     }
257 
258     // Sanity check: amount of dead and live loop blocks should match the total
259     // number of blocks in loop.
260     assert(L.getNumBlocks() == LiveLoopBlocks.size() + DeadLoopBlocks.size() &&
261            "Malformed block sets?");
262 
263     // Now, all exit blocks that are not marked as live are dead.
264     SmallVector<BasicBlock *, 8> ExitBlocks;
265     L.getExitBlocks(ExitBlocks);
266     SmallPtrSet<BasicBlock *, 8> UniqueDeadExits;
267     for (auto *ExitBlock : ExitBlocks)
268       if (!LiveExitBlocks.count(ExitBlock) &&
269           UniqueDeadExits.insert(ExitBlock).second)
270         DeadExitBlocks.push_back(ExitBlock);
271 
272     // Whether or not the edge From->To will still be present in graph after the
273     // folding.
274     auto IsEdgeLive = [&](BasicBlock *From, BasicBlock *To) {
275       if (!LiveLoopBlocks.count(From))
276         return false;
277       BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(From);
278       return !TheOnlySucc || TheOnlySucc == To || LI.getLoopFor(From) != &L;
279     };
280 
281     // The loop will not be destroyed if its latch is live.
282     DeleteCurrentLoop = !IsEdgeLive(L.getLoopLatch(), L.getHeader());
283 
284     // If we are going to delete the current loop completely, no extra analysis
285     // is needed.
286     if (DeleteCurrentLoop)
287       return;
288 
289     // Otherwise, we should check which blocks will still be a part of the
290     // current loop after the transform.
291     BlocksInLoopAfterFolding.insert(L.getLoopLatch());
292     // If the loop is live, then we should compute what blocks are still in
293     // loop after all branch folding has been done. A block is in loop if
294     // it has a live edge to another block that is in the loop; by definition,
295     // latch is in the loop.
296     auto BlockIsInLoop = [&](BasicBlock *BB) {
297       return any_of(successors(BB), [&](BasicBlock *Succ) {
298         return BlocksInLoopAfterFolding.count(Succ) && IsEdgeLive(BB, Succ);
299       });
300     };
301     for (auto I = DFS.beginPostorder(), E = DFS.endPostorder(); I != E; ++I) {
302       BasicBlock *BB = *I;
303       if (BlockIsInLoop(BB))
304         BlocksInLoopAfterFolding.insert(BB);
305     }
306 
307     // Sanity check: header must be in loop.
308     assert(BlocksInLoopAfterFolding.count(L.getHeader()) &&
309            "Header not in loop?");
310     assert(BlocksInLoopAfterFolding.size() <= LiveLoopBlocks.size() &&
311            "All blocks that stay in loop should be live!");
312   }
313 
314   /// We need to preserve static reachibility of all loop exit blocks (this is)
315   /// required by loop pass manager. In order to do it, we make the following
316   /// trick:
317   ///
318   ///  preheader:
319   ///    <preheader code>
320   ///    br label %loop_header
321   ///
322   ///  loop_header:
323   ///    ...
324   ///    br i1 false, label %dead_exit, label %loop_block
325   ///    ...
326   ///
327   /// We cannot simply remove edge from the loop to dead exit because in this
328   /// case dead_exit (and its successors) may become unreachable. To avoid that,
329   /// we insert the following fictive preheader:
330   ///
331   ///  preheader:
332   ///    <preheader code>
333   ///    switch i32 0, label %preheader-split,
334   ///                  [i32 1, label %dead_exit_1],
335   ///                  [i32 2, label %dead_exit_2],
336   ///                  ...
337   ///                  [i32 N, label %dead_exit_N],
338   ///
339   ///  preheader-split:
340   ///    br label %loop_header
341   ///
342   ///  loop_header:
343   ///    ...
344   ///    br i1 false, label %dead_exit_N, label %loop_block
345   ///    ...
346   ///
347   /// Doing so, we preserve static reachibility of all dead exits and can later
348   /// remove edges from the loop to these blocks.
349   void handleDeadExits() {
350     // If no dead exits, nothing to do.
351     if (DeadExitBlocks.empty())
352       return;
353 
354     // Construct split preheader and the dummy switch to thread edges from it to
355     // dead exits.
356     BasicBlock *Preheader = L.getLoopPreheader();
357     BasicBlock *NewPreheader = llvm::SplitBlock(
358         Preheader, Preheader->getTerminator(), &DT, &LI, MSSAU);
359 
360     IRBuilder<> Builder(Preheader->getTerminator());
361     SwitchInst *DummySwitch =
362         Builder.CreateSwitch(Builder.getInt32(0), NewPreheader);
363     Preheader->getTerminator()->eraseFromParent();
364 
365     unsigned DummyIdx = 1;
366     for (BasicBlock *BB : DeadExitBlocks) {
367       SmallVector<Instruction *, 4> DeadPhis;
368       for (auto &PN : BB->phis())
369         DeadPhis.push_back(&PN);
370 
371       // Eliminate all Phis from dead exits.
372       for (Instruction *PN : DeadPhis) {
373         PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
374         PN->eraseFromParent();
375       }
376       assert(DummyIdx != 0 && "Too many dead exits!");
377       DummySwitch->addCase(Builder.getInt32(DummyIdx++), BB);
378       DTUpdates.push_back({DominatorTree::Insert, Preheader, BB});
379       ++NumLoopExitsDeleted;
380     }
381 
382     assert(L.getLoopPreheader() == NewPreheader && "Malformed CFG?");
383     if (Loop *OuterLoop = LI.getLoopFor(Preheader)) {
384       // When we break dead edges, the outer loop may become unreachable from
385       // the current loop. We need to fix loop info accordingly. For this, we
386       // find the most nested loop that still contains L and remove L from all
387       // loops that are inside of it.
388       Loop *StillReachable = getInnermostLoopFor(LiveExitBlocks, L, LI);
389 
390       // Okay, our loop is no longer in the outer loop (and maybe not in some of
391       // its parents as well). Make the fixup.
392       if (StillReachable != OuterLoop) {
393         LI.changeLoopFor(NewPreheader, StillReachable);
394         removeBlockFromLoops(NewPreheader, OuterLoop, StillReachable);
395         for (auto *BB : L.blocks())
396           removeBlockFromLoops(BB, OuterLoop, StillReachable);
397         OuterLoop->removeChildLoop(&L);
398         if (StillReachable)
399           StillReachable->addChildLoop(&L);
400         else
401           LI.addTopLevelLoop(&L);
402 
403         // Some values from loops in [OuterLoop, StillReachable) could be used
404         // in the current loop. Now it is not their child anymore, so such uses
405         // require LCSSA Phis.
406         Loop *FixLCSSALoop = OuterLoop;
407         while (FixLCSSALoop->getParentLoop() != StillReachable)
408           FixLCSSALoop = FixLCSSALoop->getParentLoop();
409         assert(FixLCSSALoop && "Should be a loop!");
410         // We need all DT updates to be done before forming LCSSA.
411         DTU.applyUpdates(DTUpdates);
412         if (MSSAU)
413           MSSAU->applyUpdates(DTUpdates, DT);
414         DTUpdates.clear();
415         formLCSSARecursively(*FixLCSSALoop, DT, &LI, &SE);
416       }
417     }
418 
419     if (MSSAU) {
420       // Clear all updates now. Facilitates deletes that follow.
421       DTU.applyUpdates(DTUpdates);
422       MSSAU->applyUpdates(DTUpdates, DT);
423       DTUpdates.clear();
424       if (VerifyMemorySSA)
425         MSSAU->getMemorySSA()->verifyMemorySSA();
426     }
427   }
428 
429   /// Delete loop blocks that have become unreachable after folding. Make all
430   /// relevant updates to DT and LI.
431   void deleteDeadLoopBlocks() {
432     if (MSSAU) {
433       SmallSetVector<BasicBlock *, 8> DeadLoopBlocksSet(DeadLoopBlocks.begin(),
434                                                         DeadLoopBlocks.end());
435       MSSAU->removeBlocks(DeadLoopBlocksSet);
436     }
437 
438     // The function LI.erase has some invariants that need to be preserved when
439     // it tries to remove a loop which is not the top-level loop. In particular,
440     // it requires loop's preheader to be strictly in loop's parent. We cannot
441     // just remove blocks one by one, because after removal of preheader we may
442     // break this invariant for the dead loop. So we detatch and erase all dead
443     // loops beforehand.
444     for (auto *BB : DeadLoopBlocks)
445       if (LI.isLoopHeader(BB)) {
446         assert(LI.getLoopFor(BB) != &L && "Attempt to remove current loop!");
447         Loop *DL = LI.getLoopFor(BB);
448         if (DL->getParentLoop()) {
449           for (auto *PL = DL->getParentLoop(); PL; PL = PL->getParentLoop())
450             for (auto *BB : DL->getBlocks())
451               PL->removeBlockFromLoop(BB);
452           DL->getParentLoop()->removeChildLoop(DL);
453           LI.addTopLevelLoop(DL);
454         }
455         LI.erase(DL);
456       }
457 
458     for (auto *BB : DeadLoopBlocks) {
459       assert(BB != L.getHeader() &&
460              "Header of the current loop cannot be dead!");
461       LLVM_DEBUG(dbgs() << "Deleting dead loop block " << BB->getName()
462                         << "\n");
463       LI.removeBlock(BB);
464     }
465 
466     DetatchDeadBlocks(DeadLoopBlocks, &DTUpdates, /*KeepOneInputPHIs*/true);
467     DTU.applyUpdates(DTUpdates);
468     DTUpdates.clear();
469     for (auto *BB : DeadLoopBlocks)
470       DTU.deleteBB(BB);
471 
472     NumLoopBlocksDeleted += DeadLoopBlocks.size();
473   }
474 
475   /// Constant-fold terminators of blocks acculumated in FoldCandidates into the
476   /// unconditional branches.
477   void foldTerminators() {
478     for (BasicBlock *BB : FoldCandidates) {
479       assert(LI.getLoopFor(BB) == &L && "Should be a loop block!");
480       BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(BB);
481       assert(TheOnlySucc && "Should have one live successor!");
482 
483       LLVM_DEBUG(dbgs() << "Replacing terminator of " << BB->getName()
484                         << " with an unconditional branch to the block "
485                         << TheOnlySucc->getName() << "\n");
486 
487       SmallPtrSet<BasicBlock *, 2> DeadSuccessors;
488       // Remove all BB's successors except for the live one.
489       unsigned TheOnlySuccDuplicates = 0;
490       for (auto *Succ : successors(BB))
491         if (Succ != TheOnlySucc) {
492           DeadSuccessors.insert(Succ);
493           // If our successor lies in a different loop, we don't want to remove
494           // the one-input Phi because it is a LCSSA Phi.
495           bool PreserveLCSSAPhi = !L.contains(Succ);
496           Succ->removePredecessor(BB, PreserveLCSSAPhi);
497           if (MSSAU)
498             MSSAU->removeEdge(BB, Succ);
499         } else
500           ++TheOnlySuccDuplicates;
501 
502       assert(TheOnlySuccDuplicates > 0 && "Should be!");
503       // If TheOnlySucc was BB's successor more than once, after transform it
504       // will be its successor only once. Remove redundant inputs from
505       // TheOnlySucc's Phis.
506       bool PreserveLCSSAPhi = !L.contains(TheOnlySucc);
507       for (unsigned Dup = 1; Dup < TheOnlySuccDuplicates; ++Dup)
508         TheOnlySucc->removePredecessor(BB, PreserveLCSSAPhi);
509       if (MSSAU && TheOnlySuccDuplicates > 1)
510         MSSAU->removeDuplicatePhiEdgesBetween(BB, TheOnlySucc);
511 
512       IRBuilder<> Builder(BB->getContext());
513       Instruction *Term = BB->getTerminator();
514       Builder.SetInsertPoint(Term);
515       Builder.CreateBr(TheOnlySucc);
516       Term->eraseFromParent();
517 
518       for (auto *DeadSucc : DeadSuccessors)
519         DTUpdates.push_back({DominatorTree::Delete, BB, DeadSucc});
520 
521       ++NumTerminatorsFolded;
522     }
523   }
524 
525 public:
526   ConstantTerminatorFoldingImpl(Loop &L, LoopInfo &LI, DominatorTree &DT,
527                                 ScalarEvolution &SE,
528                                 MemorySSAUpdater *MSSAU)
529       : L(L), LI(LI), DT(DT), SE(SE), MSSAU(MSSAU), DFS(&L),
530         DTU(DT, DomTreeUpdater::UpdateStrategy::Eager) {}
531   bool run() {
532     assert(L.getLoopLatch() && "Should be single latch!");
533 
534     // Collect all available information about status of blocks after constant
535     // folding.
536     analyze();
537     BasicBlock *Header = L.getHeader();
538     (void)Header;
539 
540     LLVM_DEBUG(dbgs() << "In function " << Header->getParent()->getName()
541                       << ": ");
542 
543     if (HasIrreducibleCFG) {
544       LLVM_DEBUG(dbgs() << "Loops with irreducible CFG are not supported!\n");
545       return false;
546     }
547 
548     // Nothing to constant-fold.
549     if (FoldCandidates.empty()) {
550       LLVM_DEBUG(
551           dbgs() << "No constant terminator folding candidates found in loop "
552                  << Header->getName() << "\n");
553       return false;
554     }
555 
556     // TODO: Support deletion of the current loop.
557     if (DeleteCurrentLoop) {
558       LLVM_DEBUG(
559           dbgs()
560           << "Give up constant terminator folding in loop " << Header->getName()
561           << ": we don't currently support deletion of the current loop.\n");
562       return false;
563     }
564 
565     // TODO: Support blocks that are not dead, but also not in loop after the
566     // folding.
567     if (BlocksInLoopAfterFolding.size() + DeadLoopBlocks.size() !=
568         L.getNumBlocks()) {
569       LLVM_DEBUG(
570           dbgs() << "Give up constant terminator folding in loop "
571                  << Header->getName() << ": we don't currently"
572                     " support blocks that are not dead, but will stop "
573                     "being a part of the loop after constant-folding.\n");
574       return false;
575     }
576 
577     SE.forgetTopmostLoop(&L);
578     // Dump analysis results.
579     LLVM_DEBUG(dump());
580 
581     LLVM_DEBUG(dbgs() << "Constant-folding " << FoldCandidates.size()
582                       << " terminators in loop " << Header->getName() << "\n");
583 
584     // Make the actual transforms.
585     handleDeadExits();
586     foldTerminators();
587 
588     if (!DeadLoopBlocks.empty()) {
589       LLVM_DEBUG(dbgs() << "Deleting " << DeadLoopBlocks.size()
590                     << " dead blocks in loop " << Header->getName() << "\n");
591       deleteDeadLoopBlocks();
592     } else {
593       // If we didn't do updates inside deleteDeadLoopBlocks, do them here.
594       DTU.applyUpdates(DTUpdates);
595       DTUpdates.clear();
596     }
597 
598     if (MSSAU && VerifyMemorySSA)
599       MSSAU->getMemorySSA()->verifyMemorySSA();
600 
601 #ifndef NDEBUG
602     // Make sure that we have preserved all data structures after the transform.
603 #if defined(EXPENSIVE_CHECKS)
604     assert(DT.verify(DominatorTree::VerificationLevel::Full) &&
605            "DT broken after transform!");
606 #else
607     assert(DT.verify(DominatorTree::VerificationLevel::Fast) &&
608            "DT broken after transform!");
609 #endif
610     assert(DT.isReachableFromEntry(Header));
611     LI.verify(DT);
612 #endif
613 
614     return true;
615   }
616 
617   bool foldingBreaksCurrentLoop() const {
618     return DeleteCurrentLoop;
619   }
620 };
621 } // namespace
622 
623 /// Turn branches and switches with known constant conditions into unconditional
624 /// branches.
625 static bool constantFoldTerminators(Loop &L, DominatorTree &DT, LoopInfo &LI,
626                                     ScalarEvolution &SE,
627                                     MemorySSAUpdater *MSSAU,
628                                     bool &IsLoopDeleted) {
629   if (!EnableTermFolding)
630     return false;
631 
632   // To keep things simple, only process loops with single latch. We
633   // canonicalize most loops to this form. We can support multi-latch if needed.
634   if (!L.getLoopLatch())
635     return false;
636 
637   ConstantTerminatorFoldingImpl BranchFolder(L, LI, DT, SE, MSSAU);
638   bool Changed = BranchFolder.run();
639   IsLoopDeleted = Changed && BranchFolder.foldingBreaksCurrentLoop();
640   return Changed;
641 }
642 
643 static bool mergeBlocksIntoPredecessors(Loop &L, DominatorTree &DT,
644                                         LoopInfo &LI, MemorySSAUpdater *MSSAU) {
645   bool Changed = false;
646   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
647   // Copy blocks into a temporary array to avoid iterator invalidation issues
648   // as we remove them.
649   SmallVector<WeakTrackingVH, 16> Blocks(L.blocks());
650 
651   for (auto &Block : Blocks) {
652     // Attempt to merge blocks in the trivial case. Don't modify blocks which
653     // belong to other loops.
654     BasicBlock *Succ = cast_or_null<BasicBlock>(Block);
655     if (!Succ)
656       continue;
657 
658     BasicBlock *Pred = Succ->getSinglePredecessor();
659     if (!Pred || !Pred->getSingleSuccessor() || LI.getLoopFor(Pred) != &L)
660       continue;
661 
662     // Merge Succ into Pred and delete it.
663     MergeBlockIntoPredecessor(Succ, &DTU, &LI, MSSAU);
664 
665     if (MSSAU && VerifyMemorySSA)
666       MSSAU->getMemorySSA()->verifyMemorySSA();
667 
668     Changed = true;
669   }
670 
671   return Changed;
672 }
673 
674 static bool simplifyLoopCFG(Loop &L, DominatorTree &DT, LoopInfo &LI,
675                             ScalarEvolution &SE, MemorySSAUpdater *MSSAU,
676                             bool &isLoopDeleted) {
677   bool Changed = false;
678 
679   // Constant-fold terminators with known constant conditions.
680   Changed |= constantFoldTerminators(L, DT, LI, SE, MSSAU, isLoopDeleted);
681 
682   if (isLoopDeleted)
683     return true;
684 
685   // Eliminate unconditional branches by merging blocks into their predecessors.
686   Changed |= mergeBlocksIntoPredecessors(L, DT, LI, MSSAU);
687 
688   if (Changed)
689     SE.forgetTopmostLoop(&L);
690 
691   return Changed;
692 }
693 
694 PreservedAnalyses LoopSimplifyCFGPass::run(Loop &L, LoopAnalysisManager &AM,
695                                            LoopStandardAnalysisResults &AR,
696                                            LPMUpdater &LPMU) {
697   Optional<MemorySSAUpdater> MSSAU;
698   if (AR.MSSA)
699     MSSAU = MemorySSAUpdater(AR.MSSA);
700   bool DeleteCurrentLoop = false;
701   if (!simplifyLoopCFG(L, AR.DT, AR.LI, AR.SE,
702                        MSSAU.hasValue() ? MSSAU.getPointer() : nullptr,
703                        DeleteCurrentLoop))
704     return PreservedAnalyses::all();
705 
706   if (DeleteCurrentLoop)
707     LPMU.markLoopAsDeleted(L, "loop-simplifycfg");
708 
709   auto PA = getLoopPassPreservedAnalyses();
710   if (AR.MSSA)
711     PA.preserve<MemorySSAAnalysis>();
712   return PA;
713 }
714 
715 namespace {
716 class LoopSimplifyCFGLegacyPass : public LoopPass {
717 public:
718   static char ID; // Pass ID, replacement for typeid
719   LoopSimplifyCFGLegacyPass() : LoopPass(ID) {
720     initializeLoopSimplifyCFGLegacyPassPass(*PassRegistry::getPassRegistry());
721   }
722 
723   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
724     if (skipLoop(L))
725       return false;
726 
727     DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
728     LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
729     ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
730     Optional<MemorySSAUpdater> MSSAU;
731     if (EnableMSSALoopDependency) {
732       MemorySSA *MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA();
733       MSSAU = MemorySSAUpdater(MSSA);
734       if (VerifyMemorySSA)
735         MSSA->verifyMemorySSA();
736     }
737     bool DeleteCurrentLoop = false;
738     bool Changed = simplifyLoopCFG(
739         *L, DT, LI, SE, MSSAU.hasValue() ? MSSAU.getPointer() : nullptr,
740         DeleteCurrentLoop);
741     if (DeleteCurrentLoop)
742       LPM.markLoopAsDeleted(*L);
743     return Changed;
744   }
745 
746   void getAnalysisUsage(AnalysisUsage &AU) const override {
747     if (EnableMSSALoopDependency) {
748       AU.addRequired<MemorySSAWrapperPass>();
749       AU.addPreserved<MemorySSAWrapperPass>();
750     }
751     AU.addPreserved<DependenceAnalysisWrapperPass>();
752     getLoopAnalysisUsage(AU);
753   }
754 };
755 }
756 
757 char LoopSimplifyCFGLegacyPass::ID = 0;
758 INITIALIZE_PASS_BEGIN(LoopSimplifyCFGLegacyPass, "loop-simplifycfg",
759                       "Simplify loop CFG", false, false)
760 INITIALIZE_PASS_DEPENDENCY(LoopPass)
761 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
762 INITIALIZE_PASS_END(LoopSimplifyCFGLegacyPass, "loop-simplifycfg",
763                     "Simplify loop CFG", false, false)
764 
765 Pass *llvm::createLoopSimplifyCFGPass() {
766   return new LoopSimplifyCFGLegacyPass();
767 }
768