1 //===-- LoopSink.cpp - Loop Sink Pass -------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass does the inverse transformation of what LICM does.
10 // It traverses all of the instructions in the loop's preheader and sinks
11 // them to the loop body where frequency is lower than the loop's preheader.
12 // This pass is a reverse-transformation of LICM. It differs from the Sink
13 // pass in the following ways:
14 //
15 // * It only handles sinking of instructions from the loop's preheader to the
16 //   loop's body
17 // * It uses alias set tracker to get more accurate alias info
18 // * It uses block frequency info to find the optimal sinking locations
19 //
20 // Overall algorithm:
21 //
22 // For I in Preheader:
23 //   InsertBBs = BBs that uses I
24 //   For BB in sorted(LoopBBs):
25 //     DomBBs = BBs in InsertBBs that are dominated by BB
26 //     if freq(DomBBs) > freq(BB)
27 //       InsertBBs = UseBBs - DomBBs + BB
28 //   For BB in InsertBBs:
29 //     Insert I at BB's beginning
30 //
31 //===----------------------------------------------------------------------===//
32 
33 #include "llvm/Transforms/Scalar/LoopSink.h"
34 #include "llvm/ADT/SetOperations.h"
35 #include "llvm/ADT/Statistic.h"
36 #include "llvm/Analysis/AliasAnalysis.h"
37 #include "llvm/Analysis/BlockFrequencyInfo.h"
38 #include "llvm/Analysis/LoopInfo.h"
39 #include "llvm/Analysis/LoopPass.h"
40 #include "llvm/Analysis/MemorySSA.h"
41 #include "llvm/Analysis/MemorySSAUpdater.h"
42 #include "llvm/Analysis/ScalarEvolution.h"
43 #include "llvm/IR/Dominators.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/InitializePasses.h"
46 #include "llvm/Support/BranchProbability.h"
47 #include "llvm/Support/CommandLine.h"
48 #include "llvm/Transforms/Scalar.h"
49 #include "llvm/Transforms/Utils/Local.h"
50 #include "llvm/Transforms/Utils/LoopUtils.h"
51 using namespace llvm;
52 
53 #define DEBUG_TYPE "loopsink"
54 
55 STATISTIC(NumLoopSunk, "Number of instructions sunk into loop");
56 STATISTIC(NumLoopSunkCloned, "Number of cloned instructions sunk into loop");
57 
58 static cl::opt<unsigned> SinkFrequencyPercentThreshold(
59     "sink-freq-percent-threshold", cl::Hidden, cl::init(90),
60     cl::desc("Do not sink instructions that require cloning unless they "
61              "execute less than this percent of the time."));
62 
63 static cl::opt<unsigned> MaxNumberOfUseBBsForSinking(
64     "max-uses-for-sinking", cl::Hidden, cl::init(30),
65     cl::desc("Do not sink instructions that have too many uses."));
66 
67 /// Return adjusted total frequency of \p BBs.
68 ///
69 /// * If there is only one BB, sinking instruction will not introduce code
70 ///   size increase. Thus there is no need to adjust the frequency.
71 /// * If there are more than one BB, sinking would lead to code size increase.
72 ///   In this case, we add some "tax" to the total frequency to make it harder
73 ///   to sink. E.g.
74 ///     Freq(Preheader) = 100
75 ///     Freq(BBs) = sum(50, 49) = 99
76 ///   Even if Freq(BBs) < Freq(Preheader), we will not sink from Preheade to
77 ///   BBs as the difference is too small to justify the code size increase.
78 ///   To model this, The adjusted Freq(BBs) will be:
79 ///     AdjustedFreq(BBs) = 99 / SinkFrequencyPercentThreshold%
80 static BlockFrequency adjustedSumFreq(SmallPtrSetImpl<BasicBlock *> &BBs,
81                                       BlockFrequencyInfo &BFI) {
82   BlockFrequency T = 0;
83   for (BasicBlock *B : BBs)
84     T += BFI.getBlockFreq(B);
85   if (BBs.size() > 1)
86     T /= BranchProbability(SinkFrequencyPercentThreshold, 100);
87   return T;
88 }
89 
90 /// Return a set of basic blocks to insert sinked instructions.
91 ///
92 /// The returned set of basic blocks (BBsToSinkInto) should satisfy:
93 ///
94 /// * Inside the loop \p L
95 /// * For each UseBB in \p UseBBs, there is at least one BB in BBsToSinkInto
96 ///   that domintates the UseBB
97 /// * Has minimum total frequency that is no greater than preheader frequency
98 ///
99 /// The purpose of the function is to find the optimal sinking points to
100 /// minimize execution cost, which is defined as "sum of frequency of
101 /// BBsToSinkInto".
102 /// As a result, the returned BBsToSinkInto needs to have minimum total
103 /// frequency.
104 /// Additionally, if the total frequency of BBsToSinkInto exceeds preheader
105 /// frequency, the optimal solution is not sinking (return empty set).
106 ///
107 /// \p ColdLoopBBs is used to help find the optimal sinking locations.
108 /// It stores a list of BBs that is:
109 ///
110 /// * Inside the loop \p L
111 /// * Has a frequency no larger than the loop's preheader
112 /// * Sorted by BB frequency
113 ///
114 /// The complexity of the function is O(UseBBs.size() * ColdLoopBBs.size()).
115 /// To avoid expensive computation, we cap the maximum UseBBs.size() in its
116 /// caller.
117 static SmallPtrSet<BasicBlock *, 2>
118 findBBsToSinkInto(const Loop &L, const SmallPtrSetImpl<BasicBlock *> &UseBBs,
119                   const SmallVectorImpl<BasicBlock *> &ColdLoopBBs,
120                   DominatorTree &DT, BlockFrequencyInfo &BFI) {
121   SmallPtrSet<BasicBlock *, 2> BBsToSinkInto;
122   if (UseBBs.size() == 0)
123     return BBsToSinkInto;
124 
125   BBsToSinkInto.insert(UseBBs.begin(), UseBBs.end());
126   SmallPtrSet<BasicBlock *, 2> BBsDominatedByColdestBB;
127 
128   // For every iteration:
129   //   * Pick the ColdestBB from ColdLoopBBs
130   //   * Find the set BBsDominatedByColdestBB that satisfy:
131   //     - BBsDominatedByColdestBB is a subset of BBsToSinkInto
132   //     - Every BB in BBsDominatedByColdestBB is dominated by ColdestBB
133   //   * If Freq(ColdestBB) < Freq(BBsDominatedByColdestBB), remove
134   //     BBsDominatedByColdestBB from BBsToSinkInto, add ColdestBB to
135   //     BBsToSinkInto
136   for (BasicBlock *ColdestBB : ColdLoopBBs) {
137     BBsDominatedByColdestBB.clear();
138     for (BasicBlock *SinkedBB : BBsToSinkInto)
139       if (DT.dominates(ColdestBB, SinkedBB))
140         BBsDominatedByColdestBB.insert(SinkedBB);
141     if (BBsDominatedByColdestBB.size() == 0)
142       continue;
143     if (adjustedSumFreq(BBsDominatedByColdestBB, BFI) >
144         BFI.getBlockFreq(ColdestBB)) {
145       for (BasicBlock *DominatedBB : BBsDominatedByColdestBB) {
146         BBsToSinkInto.erase(DominatedBB);
147       }
148       BBsToSinkInto.insert(ColdestBB);
149     }
150   }
151 
152   // Can't sink into blocks that have no valid insertion point.
153   for (BasicBlock *BB : BBsToSinkInto) {
154     if (BB->getFirstInsertionPt() == BB->end()) {
155       BBsToSinkInto.clear();
156       break;
157     }
158   }
159 
160   // If the total frequency of BBsToSinkInto is larger than preheader frequency,
161   // do not sink.
162   if (adjustedSumFreq(BBsToSinkInto, BFI) >
163       BFI.getBlockFreq(L.getLoopPreheader()))
164     BBsToSinkInto.clear();
165   return BBsToSinkInto;
166 }
167 
168 // Sinks \p I from the loop \p L's preheader to its uses. Returns true if
169 // sinking is successful.
170 // \p LoopBlockNumber is used to sort the insertion blocks to ensure
171 // determinism.
172 static bool sinkInstruction(
173     Loop &L, Instruction &I, const SmallVectorImpl<BasicBlock *> &ColdLoopBBs,
174     const SmallDenseMap<BasicBlock *, int, 16> &LoopBlockNumber, LoopInfo &LI,
175     DominatorTree &DT, BlockFrequencyInfo &BFI, MemorySSAUpdater *MSSAU) {
176   // Compute the set of blocks in loop L which contain a use of I.
177   SmallPtrSet<BasicBlock *, 2> BBs;
178   for (auto &U : I.uses()) {
179     Instruction *UI = cast<Instruction>(U.getUser());
180     // We cannot sink I to PHI-uses.
181     if (isa<PHINode>(UI))
182       return false;
183     // We cannot sink I if it has uses outside of the loop.
184     if (!L.contains(LI.getLoopFor(UI->getParent())))
185       return false;
186     BBs.insert(UI->getParent());
187   }
188 
189   // findBBsToSinkInto is O(BBs.size() * ColdLoopBBs.size()). We cap the max
190   // BBs.size() to avoid expensive computation.
191   // FIXME: Handle code size growth for min_size and opt_size.
192   if (BBs.size() > MaxNumberOfUseBBsForSinking)
193     return false;
194 
195   // Find the set of BBs that we should insert a copy of I.
196   SmallPtrSet<BasicBlock *, 2> BBsToSinkInto =
197       findBBsToSinkInto(L, BBs, ColdLoopBBs, DT, BFI);
198   if (BBsToSinkInto.empty())
199     return false;
200 
201   // Return if any of the candidate blocks to sink into is non-cold.
202   if (BBsToSinkInto.size() > 1 &&
203       !llvm::set_is_subset(BBsToSinkInto, LoopBlockNumber))
204     return false;
205 
206   // Copy the final BBs into a vector and sort them using the total ordering
207   // of the loop block numbers as iterating the set doesn't give a useful
208   // order. No need to stable sort as the block numbers are a total ordering.
209   SmallVector<BasicBlock *, 2> SortedBBsToSinkInto;
210   llvm::append_range(SortedBBsToSinkInto, BBsToSinkInto);
211   llvm::sort(SortedBBsToSinkInto, [&](BasicBlock *A, BasicBlock *B) {
212     return LoopBlockNumber.find(A)->second < LoopBlockNumber.find(B)->second;
213   });
214 
215   BasicBlock *MoveBB = *SortedBBsToSinkInto.begin();
216   // FIXME: Optimize the efficiency for cloned value replacement. The current
217   //        implementation is O(SortedBBsToSinkInto.size() * I.num_uses()).
218   for (BasicBlock *N : makeArrayRef(SortedBBsToSinkInto).drop_front(1)) {
219     assert(LoopBlockNumber.find(N)->second >
220                LoopBlockNumber.find(MoveBB)->second &&
221            "BBs not sorted!");
222     // Clone I and replace its uses.
223     Instruction *IC = I.clone();
224     IC->setName(I.getName());
225     IC->insertBefore(&*N->getFirstInsertionPt());
226 
227     if (MSSAU && MSSAU->getMemorySSA()->getMemoryAccess(&I)) {
228       // Create a new MemoryAccess and let MemorySSA set its defining access.
229       MemoryAccess *NewMemAcc =
230           MSSAU->createMemoryAccessInBB(IC, nullptr, N, MemorySSA::Beginning);
231       if (NewMemAcc) {
232         if (auto *MemDef = dyn_cast<MemoryDef>(NewMemAcc))
233           MSSAU->insertDef(MemDef, /*RenameUses=*/true);
234         else {
235           auto *MemUse = cast<MemoryUse>(NewMemAcc);
236           MSSAU->insertUse(MemUse, /*RenameUses=*/true);
237         }
238       }
239     }
240 
241     // Replaces uses of I with IC in N
242     I.replaceUsesWithIf(IC, [N](Use &U) {
243       return cast<Instruction>(U.getUser())->getParent() == N;
244     });
245     // Replaces uses of I with IC in blocks dominated by N
246     replaceDominatedUsesWith(&I, IC, DT, N);
247     LLVM_DEBUG(dbgs() << "Sinking a clone of " << I << " To: " << N->getName()
248                       << '\n');
249     NumLoopSunkCloned++;
250   }
251   LLVM_DEBUG(dbgs() << "Sinking " << I << " To: " << MoveBB->getName() << '\n');
252   NumLoopSunk++;
253   I.moveBefore(&*MoveBB->getFirstInsertionPt());
254 
255   if (MSSAU)
256     if (MemoryUseOrDef *OldMemAcc = cast_or_null<MemoryUseOrDef>(
257             MSSAU->getMemorySSA()->getMemoryAccess(&I)))
258       MSSAU->moveToPlace(OldMemAcc, MoveBB, MemorySSA::Beginning);
259 
260   return true;
261 }
262 
263 /// Sinks instructions from loop's preheader to the loop body if the
264 /// sum frequency of inserted copy is smaller than preheader's frequency.
265 static bool sinkLoopInvariantInstructions(Loop &L, AAResults &AA, LoopInfo &LI,
266                                           DominatorTree &DT,
267                                           BlockFrequencyInfo &BFI,
268                                           MemorySSA &MSSA,
269                                           ScalarEvolution *SE) {
270   BasicBlock *Preheader = L.getLoopPreheader();
271   assert(Preheader && "Expected loop to have preheader");
272 
273   assert(Preheader->getParent()->hasProfileData() &&
274          "Unexpected call when profile data unavailable.");
275 
276   const BlockFrequency PreheaderFreq = BFI.getBlockFreq(Preheader);
277   // If there are no basic blocks with lower frequency than the preheader then
278   // we can avoid the detailed analysis as we will never find profitable sinking
279   // opportunities.
280   if (all_of(L.blocks(), [&](const BasicBlock *BB) {
281         return BFI.getBlockFreq(BB) > PreheaderFreq;
282       }))
283     return false;
284 
285   MemorySSAUpdater MSSAU(&MSSA);
286   SinkAndHoistLICMFlags LICMFlags(/*IsSink=*/true, &L, &MSSA);
287 
288   bool Changed = false;
289 
290   // Sort loop's basic blocks by frequency
291   SmallVector<BasicBlock *, 10> ColdLoopBBs;
292   SmallDenseMap<BasicBlock *, int, 16> LoopBlockNumber;
293   int i = 0;
294   for (BasicBlock *B : L.blocks())
295     if (BFI.getBlockFreq(B) < BFI.getBlockFreq(L.getLoopPreheader())) {
296       ColdLoopBBs.push_back(B);
297       LoopBlockNumber[B] = ++i;
298     }
299   llvm::stable_sort(ColdLoopBBs, [&](BasicBlock *A, BasicBlock *B) {
300     return BFI.getBlockFreq(A) < BFI.getBlockFreq(B);
301   });
302 
303   // Traverse preheader's instructions in reverse order becaue if A depends
304   // on B (A appears after B), A needs to be sinked first before B can be
305   // sinked.
306   for (Instruction &I : llvm::make_early_inc_range(llvm::reverse(*Preheader))) {
307     if (isa<PHINode>(&I))
308       continue;
309     // No need to check for instruction's operands are loop invariant.
310     assert(L.hasLoopInvariantOperands(&I) &&
311            "Insts in a loop's preheader should have loop invariant operands!");
312     if (!canSinkOrHoistInst(I, &AA, &DT, &L, MSSAU, false, LICMFlags))
313       continue;
314     if (sinkInstruction(L, I, ColdLoopBBs, LoopBlockNumber, LI, DT, BFI,
315                         &MSSAU))
316       Changed = true;
317   }
318 
319   if (Changed && SE)
320     SE->forgetLoopDispositions(&L);
321   return Changed;
322 }
323 
324 PreservedAnalyses LoopSinkPass::run(Function &F, FunctionAnalysisManager &FAM) {
325   LoopInfo &LI = FAM.getResult<LoopAnalysis>(F);
326   // Nothing to do if there are no loops.
327   if (LI.empty())
328     return PreservedAnalyses::all();
329 
330   AAResults &AA = FAM.getResult<AAManager>(F);
331   DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F);
332   BlockFrequencyInfo &BFI = FAM.getResult<BlockFrequencyAnalysis>(F);
333   MemorySSA &MSSA = FAM.getResult<MemorySSAAnalysis>(F).getMSSA();
334 
335   // We want to do a postorder walk over the loops. Since loops are a tree this
336   // is equivalent to a reversed preorder walk and preorder is easy to compute
337   // without recursion. Since we reverse the preorder, we will visit siblings
338   // in reverse program order. This isn't expected to matter at all but is more
339   // consistent with sinking algorithms which generally work bottom-up.
340   SmallVector<Loop *, 4> PreorderLoops = LI.getLoopsInPreorder();
341 
342   bool Changed = false;
343   do {
344     Loop &L = *PreorderLoops.pop_back_val();
345 
346     BasicBlock *Preheader = L.getLoopPreheader();
347     if (!Preheader)
348       continue;
349 
350     // Enable LoopSink only when runtime profile is available.
351     // With static profile, the sinking decision may be sub-optimal.
352     if (!Preheader->getParent()->hasProfileData())
353       continue;
354 
355     // Note that we don't pass SCEV here because it is only used to invalidate
356     // loops in SCEV and we don't preserve (or request) SCEV at all making that
357     // unnecessary.
358     Changed |= sinkLoopInvariantInstructions(L, AA, LI, DT, BFI, MSSA,
359                                              /*ScalarEvolution*/ nullptr);
360   } while (!PreorderLoops.empty());
361 
362   if (!Changed)
363     return PreservedAnalyses::all();
364 
365   PreservedAnalyses PA;
366   PA.preserveSet<CFGAnalyses>();
367   PA.preserve<MemorySSAAnalysis>();
368 
369   if (VerifyMemorySSA)
370     MSSA.verifyMemorySSA();
371 
372   return PA;
373 }
374 
375 namespace {
376 struct LegacyLoopSinkPass : public LoopPass {
377   static char ID;
378   LegacyLoopSinkPass() : LoopPass(ID) {
379     initializeLegacyLoopSinkPassPass(*PassRegistry::getPassRegistry());
380   }
381 
382   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
383     if (skipLoop(L))
384       return false;
385 
386     BasicBlock *Preheader = L->getLoopPreheader();
387     if (!Preheader)
388       return false;
389 
390     // Enable LoopSink only when runtime profile is available.
391     // With static profile, the sinking decision may be sub-optimal.
392     if (!Preheader->getParent()->hasProfileData())
393       return false;
394 
395     AAResults &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
396     MemorySSA &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA();
397     auto *SE = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
398     bool Changed = sinkLoopInvariantInstructions(
399         *L, AA, getAnalysis<LoopInfoWrapperPass>().getLoopInfo(),
400         getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
401         getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(),
402         MSSA, SE ? &SE->getSE() : nullptr);
403 
404     if (VerifyMemorySSA)
405       MSSA.verifyMemorySSA();
406 
407     return Changed;
408   }
409 
410   void getAnalysisUsage(AnalysisUsage &AU) const override {
411     AU.setPreservesCFG();
412     AU.addRequired<BlockFrequencyInfoWrapperPass>();
413     getLoopAnalysisUsage(AU);
414     AU.addRequired<MemorySSAWrapperPass>();
415     AU.addPreserved<MemorySSAWrapperPass>();
416   }
417 };
418 }
419 
420 char LegacyLoopSinkPass::ID = 0;
421 INITIALIZE_PASS_BEGIN(LegacyLoopSinkPass, "loop-sink", "Loop Sink", false,
422                       false)
423 INITIALIZE_PASS_DEPENDENCY(LoopPass)
424 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
425 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
426 INITIALIZE_PASS_END(LegacyLoopSinkPass, "loop-sink", "Loop Sink", false, false)
427 
428 Pass *llvm::createLoopSinkPass() { return new LegacyLoopSinkPass(); }
429