1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This transformation analyzes and transforms the induction variables (and
10 // computations derived from them) into forms suitable for efficient execution
11 // on the target.
12 //
13 // This pass performs a strength reduction on array references inside loops that
14 // have as one or more of their components the loop induction variable, it
15 // rewrites expressions to take advantage of scaled-index addressing modes
16 // available on the target, and it performs a variety of other optimizations
17 // related to loop induction variables.
18 //
19 // Terminology note: this code has a lot of handling for "post-increment" or
20 // "post-inc" users. This is not talking about post-increment addressing modes;
21 // it is instead talking about code like this:
22 //
23 //   %i = phi [ 0, %entry ], [ %i.next, %latch ]
24 //   ...
25 //   %i.next = add %i, 1
26 //   %c = icmp eq %i.next, %n
27 //
28 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
29 // it's useful to think about these as the same register, with some uses using
30 // the value of the register before the add and some using it after. In this
31 // example, the icmp is a post-increment user, since it uses %i.next, which is
32 // the value of the induction variable after the increment. The other common
33 // case of post-increment users is users outside the loop.
34 //
35 // TODO: More sophistication in the way Formulae are generated and filtered.
36 //
37 // TODO: Handle multiple loops at a time.
38 //
39 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead
40 //       of a GlobalValue?
41 //
42 // TODO: When truncation is free, truncate ICmp users' operands to make it a
43 //       smaller encoding (on x86 at least).
44 //
45 // TODO: When a negated register is used by an add (such as in a list of
46 //       multiple base registers, or as the increment expression in an addrec),
47 //       we may not actually need both reg and (-1 * reg) in registers; the
48 //       negation can be implemented by using a sub instead of an add. The
49 //       lack of support for taking this into consideration when making
50 //       register pressure decisions is partly worked around by the "Special"
51 //       use kind.
52 //
53 //===----------------------------------------------------------------------===//
54 
55 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h"
56 #include "llvm/ADT/APInt.h"
57 #include "llvm/ADT/DenseMap.h"
58 #include "llvm/ADT/DenseSet.h"
59 #include "llvm/ADT/Hashing.h"
60 #include "llvm/ADT/PointerIntPair.h"
61 #include "llvm/ADT/STLExtras.h"
62 #include "llvm/ADT/SetVector.h"
63 #include "llvm/ADT/SmallBitVector.h"
64 #include "llvm/ADT/SmallPtrSet.h"
65 #include "llvm/ADT/SmallSet.h"
66 #include "llvm/ADT/SmallVector.h"
67 #include "llvm/ADT/Statistic.h"
68 #include "llvm/ADT/iterator_range.h"
69 #include "llvm/Analysis/AssumptionCache.h"
70 #include "llvm/Analysis/IVUsers.h"
71 #include "llvm/Analysis/LoopAnalysisManager.h"
72 #include "llvm/Analysis/LoopInfo.h"
73 #include "llvm/Analysis/LoopPass.h"
74 #include "llvm/Analysis/MemorySSA.h"
75 #include "llvm/Analysis/MemorySSAUpdater.h"
76 #include "llvm/Analysis/ScalarEvolution.h"
77 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
78 #include "llvm/Analysis/ScalarEvolutionNormalization.h"
79 #include "llvm/Analysis/TargetLibraryInfo.h"
80 #include "llvm/Analysis/TargetTransformInfo.h"
81 #include "llvm/Analysis/ValueTracking.h"
82 #include "llvm/BinaryFormat/Dwarf.h"
83 #include "llvm/Config/llvm-config.h"
84 #include "llvm/IR/BasicBlock.h"
85 #include "llvm/IR/Constant.h"
86 #include "llvm/IR/Constants.h"
87 #include "llvm/IR/DebugInfoMetadata.h"
88 #include "llvm/IR/DerivedTypes.h"
89 #include "llvm/IR/Dominators.h"
90 #include "llvm/IR/GlobalValue.h"
91 #include "llvm/IR/IRBuilder.h"
92 #include "llvm/IR/InstrTypes.h"
93 #include "llvm/IR/Instruction.h"
94 #include "llvm/IR/Instructions.h"
95 #include "llvm/IR/IntrinsicInst.h"
96 #include "llvm/IR/Module.h"
97 #include "llvm/IR/Operator.h"
98 #include "llvm/IR/PassManager.h"
99 #include "llvm/IR/Type.h"
100 #include "llvm/IR/Use.h"
101 #include "llvm/IR/User.h"
102 #include "llvm/IR/Value.h"
103 #include "llvm/IR/ValueHandle.h"
104 #include "llvm/InitializePasses.h"
105 #include "llvm/Pass.h"
106 #include "llvm/Support/Casting.h"
107 #include "llvm/Support/CommandLine.h"
108 #include "llvm/Support/Compiler.h"
109 #include "llvm/Support/Debug.h"
110 #include "llvm/Support/ErrorHandling.h"
111 #include "llvm/Support/MathExtras.h"
112 #include "llvm/Support/raw_ostream.h"
113 #include "llvm/Transforms/Scalar.h"
114 #include "llvm/Transforms/Utils.h"
115 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
116 #include "llvm/Transforms/Utils/Local.h"
117 #include "llvm/Transforms/Utils/LoopUtils.h"
118 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
119 #include <algorithm>
120 #include <cassert>
121 #include <cstddef>
122 #include <cstdint>
123 #include <iterator>
124 #include <limits>
125 #include <map>
126 #include <numeric>
127 #include <optional>
128 #include <utility>
129 
130 using namespace llvm;
131 
132 #define DEBUG_TYPE "loop-reduce"
133 
134 /// MaxIVUsers is an arbitrary threshold that provides an early opportunity for
135 /// bail out. This threshold is far beyond the number of users that LSR can
136 /// conceivably solve, so it should not affect generated code, but catches the
137 /// worst cases before LSR burns too much compile time and stack space.
138 static const unsigned MaxIVUsers = 200;
139 
140 /// Limit the size of expression that SCEV-based salvaging will attempt to
141 /// translate into a DIExpression.
142 /// Choose a maximum size such that debuginfo is not excessively increased and
143 /// the salvaging is not too expensive for the compiler.
144 static const unsigned MaxSCEVSalvageExpressionSize = 64;
145 
146 // Cleanup congruent phis after LSR phi expansion.
147 static cl::opt<bool> EnablePhiElim(
148   "enable-lsr-phielim", cl::Hidden, cl::init(true),
149   cl::desc("Enable LSR phi elimination"));
150 
151 // The flag adds instruction count to solutions cost comparison.
152 static cl::opt<bool> InsnsCost(
153   "lsr-insns-cost", cl::Hidden, cl::init(true),
154   cl::desc("Add instruction count to a LSR cost model"));
155 
156 // Flag to choose how to narrow complex lsr solution
157 static cl::opt<bool> LSRExpNarrow(
158   "lsr-exp-narrow", cl::Hidden, cl::init(false),
159   cl::desc("Narrow LSR complex solution using"
160            " expectation of registers number"));
161 
162 // Flag to narrow search space by filtering non-optimal formulae with
163 // the same ScaledReg and Scale.
164 static cl::opt<bool> FilterSameScaledReg(
165     "lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true),
166     cl::desc("Narrow LSR search space by filtering non-optimal formulae"
167              " with the same ScaledReg and Scale"));
168 
169 static cl::opt<TTI::AddressingModeKind> PreferredAddresingMode(
170   "lsr-preferred-addressing-mode", cl::Hidden, cl::init(TTI::AMK_None),
171    cl::desc("A flag that overrides the target's preferred addressing mode."),
172    cl::values(clEnumValN(TTI::AMK_None,
173                          "none",
174                          "Don't prefer any addressing mode"),
175               clEnumValN(TTI::AMK_PreIndexed,
176                          "preindexed",
177                          "Prefer pre-indexed addressing mode"),
178               clEnumValN(TTI::AMK_PostIndexed,
179                          "postindexed",
180                          "Prefer post-indexed addressing mode")));
181 
182 static cl::opt<unsigned> ComplexityLimit(
183   "lsr-complexity-limit", cl::Hidden,
184   cl::init(std::numeric_limits<uint16_t>::max()),
185   cl::desc("LSR search space complexity limit"));
186 
187 static cl::opt<unsigned> SetupCostDepthLimit(
188     "lsr-setupcost-depth-limit", cl::Hidden, cl::init(7),
189     cl::desc("The limit on recursion depth for LSRs setup cost"));
190 
191 static cl::opt<bool> AllowTerminatingConditionFoldingAfterLSR(
192     "lsr-term-fold", cl::Hidden, cl::init(false),
193     cl::desc("Attempt to replace primary IV with other IV."));
194 
195 static cl::opt<bool> AllowDropSolutionIfLessProfitable(
196     "lsr-drop-solution", cl::Hidden, cl::init(false),
197     cl::desc("Attempt to drop solution if it is less profitable"));
198 
199 STATISTIC(NumTermFold,
200           "Number of terminating condition fold recognized and performed");
201 
202 #ifndef NDEBUG
203 // Stress test IV chain generation.
204 static cl::opt<bool> StressIVChain(
205   "stress-ivchain", cl::Hidden, cl::init(false),
206   cl::desc("Stress test LSR IV chains"));
207 #else
208 static bool StressIVChain = false;
209 #endif
210 
211 namespace {
212 
213 struct MemAccessTy {
214   /// Used in situations where the accessed memory type is unknown.
215   static const unsigned UnknownAddressSpace =
216       std::numeric_limits<unsigned>::max();
217 
218   Type *MemTy = nullptr;
219   unsigned AddrSpace = UnknownAddressSpace;
220 
221   MemAccessTy() = default;
222   MemAccessTy(Type *Ty, unsigned AS) : MemTy(Ty), AddrSpace(AS) {}
223 
224   bool operator==(MemAccessTy Other) const {
225     return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace;
226   }
227 
228   bool operator!=(MemAccessTy Other) const { return !(*this == Other); }
229 
230   static MemAccessTy getUnknown(LLVMContext &Ctx,
231                                 unsigned AS = UnknownAddressSpace) {
232     return MemAccessTy(Type::getVoidTy(Ctx), AS);
233   }
234 
235   Type *getType() { return MemTy; }
236 };
237 
238 /// This class holds data which is used to order reuse candidates.
239 class RegSortData {
240 public:
241   /// This represents the set of LSRUse indices which reference
242   /// a particular register.
243   SmallBitVector UsedByIndices;
244 
245   void print(raw_ostream &OS) const;
246   void dump() const;
247 };
248 
249 } // end anonymous namespace
250 
251 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
252 void RegSortData::print(raw_ostream &OS) const {
253   OS << "[NumUses=" << UsedByIndices.count() << ']';
254 }
255 
256 LLVM_DUMP_METHOD void RegSortData::dump() const {
257   print(errs()); errs() << '\n';
258 }
259 #endif
260 
261 namespace {
262 
263 /// Map register candidates to information about how they are used.
264 class RegUseTracker {
265   using RegUsesTy = DenseMap<const SCEV *, RegSortData>;
266 
267   RegUsesTy RegUsesMap;
268   SmallVector<const SCEV *, 16> RegSequence;
269 
270 public:
271   void countRegister(const SCEV *Reg, size_t LUIdx);
272   void dropRegister(const SCEV *Reg, size_t LUIdx);
273   void swapAndDropUse(size_t LUIdx, size_t LastLUIdx);
274 
275   bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
276 
277   const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
278 
279   void clear();
280 
281   using iterator = SmallVectorImpl<const SCEV *>::iterator;
282   using const_iterator = SmallVectorImpl<const SCEV *>::const_iterator;
283 
284   iterator begin() { return RegSequence.begin(); }
285   iterator end()   { return RegSequence.end(); }
286   const_iterator begin() const { return RegSequence.begin(); }
287   const_iterator end() const   { return RegSequence.end(); }
288 };
289 
290 } // end anonymous namespace
291 
292 void
293 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) {
294   std::pair<RegUsesTy::iterator, bool> Pair =
295     RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
296   RegSortData &RSD = Pair.first->second;
297   if (Pair.second)
298     RegSequence.push_back(Reg);
299   RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
300   RSD.UsedByIndices.set(LUIdx);
301 }
302 
303 void
304 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) {
305   RegUsesTy::iterator It = RegUsesMap.find(Reg);
306   assert(It != RegUsesMap.end());
307   RegSortData &RSD = It->second;
308   assert(RSD.UsedByIndices.size() > LUIdx);
309   RSD.UsedByIndices.reset(LUIdx);
310 }
311 
312 void
313 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
314   assert(LUIdx <= LastLUIdx);
315 
316   // Update RegUses. The data structure is not optimized for this purpose;
317   // we must iterate through it and update each of the bit vectors.
318   for (auto &Pair : RegUsesMap) {
319     SmallBitVector &UsedByIndices = Pair.second.UsedByIndices;
320     if (LUIdx < UsedByIndices.size())
321       UsedByIndices[LUIdx] =
322         LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false;
323     UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx));
324   }
325 }
326 
327 bool
328 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
329   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
330   if (I == RegUsesMap.end())
331     return false;
332   const SmallBitVector &UsedByIndices = I->second.UsedByIndices;
333   int i = UsedByIndices.find_first();
334   if (i == -1) return false;
335   if ((size_t)i != LUIdx) return true;
336   return UsedByIndices.find_next(i) != -1;
337 }
338 
339 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
340   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
341   assert(I != RegUsesMap.end() && "Unknown register!");
342   return I->second.UsedByIndices;
343 }
344 
345 void RegUseTracker::clear() {
346   RegUsesMap.clear();
347   RegSequence.clear();
348 }
349 
350 namespace {
351 
352 /// This class holds information that describes a formula for computing
353 /// satisfying a use. It may include broken-out immediates and scaled registers.
354 struct Formula {
355   /// Global base address used for complex addressing.
356   GlobalValue *BaseGV = nullptr;
357 
358   /// Base offset for complex addressing.
359   int64_t BaseOffset = 0;
360 
361   /// Whether any complex addressing has a base register.
362   bool HasBaseReg = false;
363 
364   /// The scale of any complex addressing.
365   int64_t Scale = 0;
366 
367   /// The list of "base" registers for this use. When this is non-empty. The
368   /// canonical representation of a formula is
369   /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and
370   /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty().
371   /// 3. The reg containing recurrent expr related with currect loop in the
372   /// formula should be put in the ScaledReg.
373   /// #1 enforces that the scaled register is always used when at least two
374   /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2.
375   /// #2 enforces that 1 * reg is reg.
376   /// #3 ensures invariant regs with respect to current loop can be combined
377   /// together in LSR codegen.
378   /// This invariant can be temporarily broken while building a formula.
379   /// However, every formula inserted into the LSRInstance must be in canonical
380   /// form.
381   SmallVector<const SCEV *, 4> BaseRegs;
382 
383   /// The 'scaled' register for this use. This should be non-null when Scale is
384   /// not zero.
385   const SCEV *ScaledReg = nullptr;
386 
387   /// An additional constant offset which added near the use. This requires a
388   /// temporary register, but the offset itself can live in an add immediate
389   /// field rather than a register.
390   int64_t UnfoldedOffset = 0;
391 
392   Formula() = default;
393 
394   void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
395 
396   bool isCanonical(const Loop &L) const;
397 
398   void canonicalize(const Loop &L);
399 
400   bool unscale();
401 
402   bool hasZeroEnd() const;
403 
404   size_t getNumRegs() const;
405   Type *getType() const;
406 
407   void deleteBaseReg(const SCEV *&S);
408 
409   bool referencesReg(const SCEV *S) const;
410   bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
411                                   const RegUseTracker &RegUses) const;
412 
413   void print(raw_ostream &OS) const;
414   void dump() const;
415 };
416 
417 } // end anonymous namespace
418 
419 /// Recursion helper for initialMatch.
420 static void DoInitialMatch(const SCEV *S, Loop *L,
421                            SmallVectorImpl<const SCEV *> &Good,
422                            SmallVectorImpl<const SCEV *> &Bad,
423                            ScalarEvolution &SE) {
424   // Collect expressions which properly dominate the loop header.
425   if (SE.properlyDominates(S, L->getHeader())) {
426     Good.push_back(S);
427     return;
428   }
429 
430   // Look at add operands.
431   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
432     for (const SCEV *S : Add->operands())
433       DoInitialMatch(S, L, Good, Bad, SE);
434     return;
435   }
436 
437   // Look at addrec operands.
438   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
439     if (!AR->getStart()->isZero() && AR->isAffine()) {
440       DoInitialMatch(AR->getStart(), L, Good, Bad, SE);
441       DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
442                                       AR->getStepRecurrence(SE),
443                                       // FIXME: AR->getNoWrapFlags()
444                                       AR->getLoop(), SCEV::FlagAnyWrap),
445                      L, Good, Bad, SE);
446       return;
447     }
448 
449   // Handle a multiplication by -1 (negation) if it didn't fold.
450   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
451     if (Mul->getOperand(0)->isAllOnesValue()) {
452       SmallVector<const SCEV *, 4> Ops(drop_begin(Mul->operands()));
453       const SCEV *NewMul = SE.getMulExpr(Ops);
454 
455       SmallVector<const SCEV *, 4> MyGood;
456       SmallVector<const SCEV *, 4> MyBad;
457       DoInitialMatch(NewMul, L, MyGood, MyBad, SE);
458       const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
459         SE.getEffectiveSCEVType(NewMul->getType())));
460       for (const SCEV *S : MyGood)
461         Good.push_back(SE.getMulExpr(NegOne, S));
462       for (const SCEV *S : MyBad)
463         Bad.push_back(SE.getMulExpr(NegOne, S));
464       return;
465     }
466 
467   // Ok, we can't do anything interesting. Just stuff the whole thing into a
468   // register and hope for the best.
469   Bad.push_back(S);
470 }
471 
472 /// Incorporate loop-variant parts of S into this Formula, attempting to keep
473 /// all loop-invariant and loop-computable values in a single base register.
474 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
475   SmallVector<const SCEV *, 4> Good;
476   SmallVector<const SCEV *, 4> Bad;
477   DoInitialMatch(S, L, Good, Bad, SE);
478   if (!Good.empty()) {
479     const SCEV *Sum = SE.getAddExpr(Good);
480     if (!Sum->isZero())
481       BaseRegs.push_back(Sum);
482     HasBaseReg = true;
483   }
484   if (!Bad.empty()) {
485     const SCEV *Sum = SE.getAddExpr(Bad);
486     if (!Sum->isZero())
487       BaseRegs.push_back(Sum);
488     HasBaseReg = true;
489   }
490   canonicalize(*L);
491 }
492 
493 static bool containsAddRecDependentOnLoop(const SCEV *S, const Loop &L) {
494   return SCEVExprContains(S, [&L](const SCEV *S) {
495     return isa<SCEVAddRecExpr>(S) && (cast<SCEVAddRecExpr>(S)->getLoop() == &L);
496   });
497 }
498 
499 /// Check whether or not this formula satisfies the canonical
500 /// representation.
501 /// \see Formula::BaseRegs.
502 bool Formula::isCanonical(const Loop &L) const {
503   if (!ScaledReg)
504     return BaseRegs.size() <= 1;
505 
506   if (Scale != 1)
507     return true;
508 
509   if (Scale == 1 && BaseRegs.empty())
510     return false;
511 
512   if (containsAddRecDependentOnLoop(ScaledReg, L))
513     return true;
514 
515   // If ScaledReg is not a recurrent expr, or it is but its loop is not current
516   // loop, meanwhile BaseRegs contains a recurrent expr reg related with current
517   // loop, we want to swap the reg in BaseRegs with ScaledReg.
518   return none_of(BaseRegs, [&L](const SCEV *S) {
519     return containsAddRecDependentOnLoop(S, L);
520   });
521 }
522 
523 /// Helper method to morph a formula into its canonical representation.
524 /// \see Formula::BaseRegs.
525 /// Every formula having more than one base register, must use the ScaledReg
526 /// field. Otherwise, we would have to do special cases everywhere in LSR
527 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ...
528 /// On the other hand, 1*reg should be canonicalized into reg.
529 void Formula::canonicalize(const Loop &L) {
530   if (isCanonical(L))
531     return;
532 
533   if (BaseRegs.empty()) {
534     // No base reg? Use scale reg with scale = 1 as such.
535     assert(ScaledReg && "Expected 1*reg => reg");
536     assert(Scale == 1 && "Expected 1*reg => reg");
537     BaseRegs.push_back(ScaledReg);
538     Scale = 0;
539     ScaledReg = nullptr;
540     return;
541   }
542 
543   // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg.
544   if (!ScaledReg) {
545     ScaledReg = BaseRegs.pop_back_val();
546     Scale = 1;
547   }
548 
549   // If ScaledReg is an invariant with respect to L, find the reg from
550   // BaseRegs containing the recurrent expr related with Loop L. Swap the
551   // reg with ScaledReg.
552   if (!containsAddRecDependentOnLoop(ScaledReg, L)) {
553     auto I = find_if(BaseRegs, [&L](const SCEV *S) {
554       return containsAddRecDependentOnLoop(S, L);
555     });
556     if (I != BaseRegs.end())
557       std::swap(ScaledReg, *I);
558   }
559   assert(isCanonical(L) && "Failed to canonicalize?");
560 }
561 
562 /// Get rid of the scale in the formula.
563 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2.
564 /// \return true if it was possible to get rid of the scale, false otherwise.
565 /// \note After this operation the formula may not be in the canonical form.
566 bool Formula::unscale() {
567   if (Scale != 1)
568     return false;
569   Scale = 0;
570   BaseRegs.push_back(ScaledReg);
571   ScaledReg = nullptr;
572   return true;
573 }
574 
575 bool Formula::hasZeroEnd() const {
576   if (UnfoldedOffset || BaseOffset)
577     return false;
578   if (BaseRegs.size() != 1 || ScaledReg)
579     return false;
580   return true;
581 }
582 
583 /// Return the total number of register operands used by this formula. This does
584 /// not include register uses implied by non-constant addrec strides.
585 size_t Formula::getNumRegs() const {
586   return !!ScaledReg + BaseRegs.size();
587 }
588 
589 /// Return the type of this formula, if it has one, or null otherwise. This type
590 /// is meaningless except for the bit size.
591 Type *Formula::getType() const {
592   return !BaseRegs.empty() ? BaseRegs.front()->getType() :
593          ScaledReg ? ScaledReg->getType() :
594          BaseGV ? BaseGV->getType() :
595          nullptr;
596 }
597 
598 /// Delete the given base reg from the BaseRegs list.
599 void Formula::deleteBaseReg(const SCEV *&S) {
600   if (&S != &BaseRegs.back())
601     std::swap(S, BaseRegs.back());
602   BaseRegs.pop_back();
603 }
604 
605 /// Test if this formula references the given register.
606 bool Formula::referencesReg(const SCEV *S) const {
607   return S == ScaledReg || is_contained(BaseRegs, S);
608 }
609 
610 /// Test whether this formula uses registers which are used by uses other than
611 /// the use with the given index.
612 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
613                                          const RegUseTracker &RegUses) const {
614   if (ScaledReg)
615     if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
616       return true;
617   for (const SCEV *BaseReg : BaseRegs)
618     if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx))
619       return true;
620   return false;
621 }
622 
623 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
624 void Formula::print(raw_ostream &OS) const {
625   bool First = true;
626   if (BaseGV) {
627     if (!First) OS << " + "; else First = false;
628     BaseGV->printAsOperand(OS, /*PrintType=*/false);
629   }
630   if (BaseOffset != 0) {
631     if (!First) OS << " + "; else First = false;
632     OS << BaseOffset;
633   }
634   for (const SCEV *BaseReg : BaseRegs) {
635     if (!First) OS << " + "; else First = false;
636     OS << "reg(" << *BaseReg << ')';
637   }
638   if (HasBaseReg && BaseRegs.empty()) {
639     if (!First) OS << " + "; else First = false;
640     OS << "**error: HasBaseReg**";
641   } else if (!HasBaseReg && !BaseRegs.empty()) {
642     if (!First) OS << " + "; else First = false;
643     OS << "**error: !HasBaseReg**";
644   }
645   if (Scale != 0) {
646     if (!First) OS << " + "; else First = false;
647     OS << Scale << "*reg(";
648     if (ScaledReg)
649       OS << *ScaledReg;
650     else
651       OS << "<unknown>";
652     OS << ')';
653   }
654   if (UnfoldedOffset != 0) {
655     if (!First) OS << " + ";
656     OS << "imm(" << UnfoldedOffset << ')';
657   }
658 }
659 
660 LLVM_DUMP_METHOD void Formula::dump() const {
661   print(errs()); errs() << '\n';
662 }
663 #endif
664 
665 /// Return true if the given addrec can be sign-extended without changing its
666 /// value.
667 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
668   Type *WideTy =
669     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
670   return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
671 }
672 
673 /// Return true if the given add can be sign-extended without changing its
674 /// value.
675 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
676   Type *WideTy =
677     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
678   return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
679 }
680 
681 /// Return true if the given mul can be sign-extended without changing its
682 /// value.
683 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
684   Type *WideTy =
685     IntegerType::get(SE.getContext(),
686                      SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
687   return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
688 }
689 
690 /// Return an expression for LHS /s RHS, if it can be determined and if the
691 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits
692 /// is true, expressions like (X * Y) /s Y are simplified to X, ignoring that
693 /// the multiplication may overflow, which is useful when the result will be
694 /// used in a context where the most significant bits are ignored.
695 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
696                                 ScalarEvolution &SE,
697                                 bool IgnoreSignificantBits = false) {
698   // Handle the trivial case, which works for any SCEV type.
699   if (LHS == RHS)
700     return SE.getConstant(LHS->getType(), 1);
701 
702   // Handle a few RHS special cases.
703   const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
704   if (RC) {
705     const APInt &RA = RC->getAPInt();
706     // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
707     // some folding.
708     if (RA.isAllOnes()) {
709       if (LHS->getType()->isPointerTy())
710         return nullptr;
711       return SE.getMulExpr(LHS, RC);
712     }
713     // Handle x /s 1 as x.
714     if (RA == 1)
715       return LHS;
716   }
717 
718   // Check for a division of a constant by a constant.
719   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
720     if (!RC)
721       return nullptr;
722     const APInt &LA = C->getAPInt();
723     const APInt &RA = RC->getAPInt();
724     if (LA.srem(RA) != 0)
725       return nullptr;
726     return SE.getConstant(LA.sdiv(RA));
727   }
728 
729   // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
730   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
731     if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) {
732       const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
733                                       IgnoreSignificantBits);
734       if (!Step) return nullptr;
735       const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
736                                        IgnoreSignificantBits);
737       if (!Start) return nullptr;
738       // FlagNW is independent of the start value, step direction, and is
739       // preserved with smaller magnitude steps.
740       // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
741       return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap);
742     }
743     return nullptr;
744   }
745 
746   // Distribute the sdiv over add operands, if the add doesn't overflow.
747   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
748     if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
749       SmallVector<const SCEV *, 8> Ops;
750       for (const SCEV *S : Add->operands()) {
751         const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits);
752         if (!Op) return nullptr;
753         Ops.push_back(Op);
754       }
755       return SE.getAddExpr(Ops);
756     }
757     return nullptr;
758   }
759 
760   // Check for a multiply operand that we can pull RHS out of.
761   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
762     if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
763       // Handle special case C1*X*Y /s C2*X*Y.
764       if (const SCEVMulExpr *MulRHS = dyn_cast<SCEVMulExpr>(RHS)) {
765         if (IgnoreSignificantBits || isMulSExtable(MulRHS, SE)) {
766           const SCEVConstant *LC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
767           const SCEVConstant *RC =
768               dyn_cast<SCEVConstant>(MulRHS->getOperand(0));
769           if (LC && RC) {
770             SmallVector<const SCEV *, 4> LOps(drop_begin(Mul->operands()));
771             SmallVector<const SCEV *, 4> ROps(drop_begin(MulRHS->operands()));
772             if (LOps == ROps)
773               return getExactSDiv(LC, RC, SE, IgnoreSignificantBits);
774           }
775         }
776       }
777 
778       SmallVector<const SCEV *, 4> Ops;
779       bool Found = false;
780       for (const SCEV *S : Mul->operands()) {
781         if (!Found)
782           if (const SCEV *Q = getExactSDiv(S, RHS, SE,
783                                            IgnoreSignificantBits)) {
784             S = Q;
785             Found = true;
786           }
787         Ops.push_back(S);
788       }
789       return Found ? SE.getMulExpr(Ops) : nullptr;
790     }
791     return nullptr;
792   }
793 
794   // Otherwise we don't know.
795   return nullptr;
796 }
797 
798 /// If S involves the addition of a constant integer value, return that integer
799 /// value, and mutate S to point to a new SCEV with that value excluded.
800 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
801   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
802     if (C->getAPInt().getSignificantBits() <= 64) {
803       S = SE.getConstant(C->getType(), 0);
804       return C->getValue()->getSExtValue();
805     }
806   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
807     SmallVector<const SCEV *, 8> NewOps(Add->operands());
808     int64_t Result = ExtractImmediate(NewOps.front(), SE);
809     if (Result != 0)
810       S = SE.getAddExpr(NewOps);
811     return Result;
812   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
813     SmallVector<const SCEV *, 8> NewOps(AR->operands());
814     int64_t Result = ExtractImmediate(NewOps.front(), SE);
815     if (Result != 0)
816       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
817                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
818                            SCEV::FlagAnyWrap);
819     return Result;
820   }
821   return 0;
822 }
823 
824 /// If S involves the addition of a GlobalValue address, return that symbol, and
825 /// mutate S to point to a new SCEV with that value excluded.
826 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
827   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
828     if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
829       S = SE.getConstant(GV->getType(), 0);
830       return GV;
831     }
832   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
833     SmallVector<const SCEV *, 8> NewOps(Add->operands());
834     GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
835     if (Result)
836       S = SE.getAddExpr(NewOps);
837     return Result;
838   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
839     SmallVector<const SCEV *, 8> NewOps(AR->operands());
840     GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
841     if (Result)
842       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
843                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
844                            SCEV::FlagAnyWrap);
845     return Result;
846   }
847   return nullptr;
848 }
849 
850 /// Returns true if the specified instruction is using the specified value as an
851 /// address.
852 static bool isAddressUse(const TargetTransformInfo &TTI,
853                          Instruction *Inst, Value *OperandVal) {
854   bool isAddress = isa<LoadInst>(Inst);
855   if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
856     if (SI->getPointerOperand() == OperandVal)
857       isAddress = true;
858   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
859     // Addressing modes can also be folded into prefetches and a variety
860     // of intrinsics.
861     switch (II->getIntrinsicID()) {
862     case Intrinsic::memset:
863     case Intrinsic::prefetch:
864     case Intrinsic::masked_load:
865       if (II->getArgOperand(0) == OperandVal)
866         isAddress = true;
867       break;
868     case Intrinsic::masked_store:
869       if (II->getArgOperand(1) == OperandVal)
870         isAddress = true;
871       break;
872     case Intrinsic::memmove:
873     case Intrinsic::memcpy:
874       if (II->getArgOperand(0) == OperandVal ||
875           II->getArgOperand(1) == OperandVal)
876         isAddress = true;
877       break;
878     default: {
879       MemIntrinsicInfo IntrInfo;
880       if (TTI.getTgtMemIntrinsic(II, IntrInfo)) {
881         if (IntrInfo.PtrVal == OperandVal)
882           isAddress = true;
883       }
884     }
885     }
886   } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
887     if (RMW->getPointerOperand() == OperandVal)
888       isAddress = true;
889   } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
890     if (CmpX->getPointerOperand() == OperandVal)
891       isAddress = true;
892   }
893   return isAddress;
894 }
895 
896 /// Return the type of the memory being accessed.
897 static MemAccessTy getAccessType(const TargetTransformInfo &TTI,
898                                  Instruction *Inst, Value *OperandVal) {
899   MemAccessTy AccessTy = MemAccessTy::getUnknown(Inst->getContext());
900 
901   // First get the type of memory being accessed.
902   if (Type *Ty = Inst->getAccessType())
903     AccessTy.MemTy = Ty;
904 
905   // Then get the pointer address space.
906   if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
907     AccessTy.AddrSpace = SI->getPointerAddressSpace();
908   } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
909     AccessTy.AddrSpace = LI->getPointerAddressSpace();
910   } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
911     AccessTy.AddrSpace = RMW->getPointerAddressSpace();
912   } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
913     AccessTy.AddrSpace = CmpX->getPointerAddressSpace();
914   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
915     switch (II->getIntrinsicID()) {
916     case Intrinsic::prefetch:
917     case Intrinsic::memset:
918       AccessTy.AddrSpace = II->getArgOperand(0)->getType()->getPointerAddressSpace();
919       AccessTy.MemTy = OperandVal->getType();
920       break;
921     case Intrinsic::memmove:
922     case Intrinsic::memcpy:
923       AccessTy.AddrSpace = OperandVal->getType()->getPointerAddressSpace();
924       AccessTy.MemTy = OperandVal->getType();
925       break;
926     case Intrinsic::masked_load:
927       AccessTy.AddrSpace =
928           II->getArgOperand(0)->getType()->getPointerAddressSpace();
929       break;
930     case Intrinsic::masked_store:
931       AccessTy.AddrSpace =
932           II->getArgOperand(1)->getType()->getPointerAddressSpace();
933       break;
934     default: {
935       MemIntrinsicInfo IntrInfo;
936       if (TTI.getTgtMemIntrinsic(II, IntrInfo) && IntrInfo.PtrVal) {
937         AccessTy.AddrSpace
938           = IntrInfo.PtrVal->getType()->getPointerAddressSpace();
939       }
940 
941       break;
942     }
943     }
944   }
945 
946   // All pointers have the same requirements, so canonicalize them to an
947   // arbitrary pointer type to minimize variation.
948   if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy))
949     AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
950                                       PTy->getAddressSpace());
951 
952   return AccessTy;
953 }
954 
955 /// Return true if this AddRec is already a phi in its loop.
956 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
957   for (PHINode &PN : AR->getLoop()->getHeader()->phis()) {
958     if (SE.isSCEVable(PN.getType()) &&
959         (SE.getEffectiveSCEVType(PN.getType()) ==
960          SE.getEffectiveSCEVType(AR->getType())) &&
961         SE.getSCEV(&PN) == AR)
962       return true;
963   }
964   return false;
965 }
966 
967 /// Check if expanding this expression is likely to incur significant cost. This
968 /// is tricky because SCEV doesn't track which expressions are actually computed
969 /// by the current IR.
970 ///
971 /// We currently allow expansion of IV increments that involve adds,
972 /// multiplication by constants, and AddRecs from existing phis.
973 ///
974 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an
975 /// obvious multiple of the UDivExpr.
976 static bool isHighCostExpansion(const SCEV *S,
977                                 SmallPtrSetImpl<const SCEV*> &Processed,
978                                 ScalarEvolution &SE) {
979   // Zero/One operand expressions
980   switch (S->getSCEVType()) {
981   case scUnknown:
982   case scConstant:
983   case scVScale:
984     return false;
985   case scTruncate:
986     return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(),
987                                Processed, SE);
988   case scZeroExtend:
989     return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(),
990                                Processed, SE);
991   case scSignExtend:
992     return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(),
993                                Processed, SE);
994   default:
995     break;
996   }
997 
998   if (!Processed.insert(S).second)
999     return false;
1000 
1001   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
1002     for (const SCEV *S : Add->operands()) {
1003       if (isHighCostExpansion(S, Processed, SE))
1004         return true;
1005     }
1006     return false;
1007   }
1008 
1009   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
1010     if (Mul->getNumOperands() == 2) {
1011       // Multiplication by a constant is ok
1012       if (isa<SCEVConstant>(Mul->getOperand(0)))
1013         return isHighCostExpansion(Mul->getOperand(1), Processed, SE);
1014 
1015       // If we have the value of one operand, check if an existing
1016       // multiplication already generates this expression.
1017       if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) {
1018         Value *UVal = U->getValue();
1019         for (User *UR : UVal->users()) {
1020           // If U is a constant, it may be used by a ConstantExpr.
1021           Instruction *UI = dyn_cast<Instruction>(UR);
1022           if (UI && UI->getOpcode() == Instruction::Mul &&
1023               SE.isSCEVable(UI->getType())) {
1024             return SE.getSCEV(UI) == Mul;
1025           }
1026         }
1027       }
1028     }
1029   }
1030 
1031   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
1032     if (isExistingPhi(AR, SE))
1033       return false;
1034   }
1035 
1036   // Fow now, consider any other type of expression (div/mul/min/max) high cost.
1037   return true;
1038 }
1039 
1040 namespace {
1041 
1042 class LSRUse;
1043 
1044 } // end anonymous namespace
1045 
1046 /// Check if the addressing mode defined by \p F is completely
1047 /// folded in \p LU at isel time.
1048 /// This includes address-mode folding and special icmp tricks.
1049 /// This function returns true if \p LU can accommodate what \p F
1050 /// defines and up to 1 base + 1 scaled + offset.
1051 /// In other words, if \p F has several base registers, this function may
1052 /// still return true. Therefore, users still need to account for
1053 /// additional base registers and/or unfolded offsets to derive an
1054 /// accurate cost model.
1055 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1056                                  const LSRUse &LU, const Formula &F);
1057 
1058 // Get the cost of the scaling factor used in F for LU.
1059 static InstructionCost getScalingFactorCost(const TargetTransformInfo &TTI,
1060                                             const LSRUse &LU, const Formula &F,
1061                                             const Loop &L);
1062 
1063 namespace {
1064 
1065 /// This class is used to measure and compare candidate formulae.
1066 class Cost {
1067   const Loop *L = nullptr;
1068   ScalarEvolution *SE = nullptr;
1069   const TargetTransformInfo *TTI = nullptr;
1070   TargetTransformInfo::LSRCost C;
1071   TTI::AddressingModeKind AMK = TTI::AMK_None;
1072 
1073 public:
1074   Cost() = delete;
1075   Cost(const Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI,
1076        TTI::AddressingModeKind AMK) :
1077     L(L), SE(&SE), TTI(&TTI), AMK(AMK) {
1078     C.Insns = 0;
1079     C.NumRegs = 0;
1080     C.AddRecCost = 0;
1081     C.NumIVMuls = 0;
1082     C.NumBaseAdds = 0;
1083     C.ImmCost = 0;
1084     C.SetupCost = 0;
1085     C.ScaleCost = 0;
1086   }
1087 
1088   bool isLess(const Cost &Other) const;
1089 
1090   void Lose();
1091 
1092 #ifndef NDEBUG
1093   // Once any of the metrics loses, they must all remain losers.
1094   bool isValid() {
1095     return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds
1096              | C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u)
1097       || ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds
1098            & C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u);
1099   }
1100 #endif
1101 
1102   bool isLoser() {
1103     assert(isValid() && "invalid cost");
1104     return C.NumRegs == ~0u;
1105   }
1106 
1107   void RateFormula(const Formula &F,
1108                    SmallPtrSetImpl<const SCEV *> &Regs,
1109                    const DenseSet<const SCEV *> &VisitedRegs,
1110                    const LSRUse &LU,
1111                    SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr);
1112 
1113   void print(raw_ostream &OS) const;
1114   void dump() const;
1115 
1116 private:
1117   void RateRegister(const Formula &F, const SCEV *Reg,
1118                     SmallPtrSetImpl<const SCEV *> &Regs);
1119   void RatePrimaryRegister(const Formula &F, const SCEV *Reg,
1120                            SmallPtrSetImpl<const SCEV *> &Regs,
1121                            SmallPtrSetImpl<const SCEV *> *LoserRegs);
1122 };
1123 
1124 /// An operand value in an instruction which is to be replaced with some
1125 /// equivalent, possibly strength-reduced, replacement.
1126 struct LSRFixup {
1127   /// The instruction which will be updated.
1128   Instruction *UserInst = nullptr;
1129 
1130   /// The operand of the instruction which will be replaced. The operand may be
1131   /// used more than once; every instance will be replaced.
1132   Value *OperandValToReplace = nullptr;
1133 
1134   /// If this user is to use the post-incremented value of an induction
1135   /// variable, this set is non-empty and holds the loops associated with the
1136   /// induction variable.
1137   PostIncLoopSet PostIncLoops;
1138 
1139   /// A constant offset to be added to the LSRUse expression.  This allows
1140   /// multiple fixups to share the same LSRUse with different offsets, for
1141   /// example in an unrolled loop.
1142   int64_t Offset = 0;
1143 
1144   LSRFixup() = default;
1145 
1146   bool isUseFullyOutsideLoop(const Loop *L) const;
1147 
1148   void print(raw_ostream &OS) const;
1149   void dump() const;
1150 };
1151 
1152 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted
1153 /// SmallVectors of const SCEV*.
1154 struct UniquifierDenseMapInfo {
1155   static SmallVector<const SCEV *, 4> getEmptyKey() {
1156     SmallVector<const SCEV *, 4>  V;
1157     V.push_back(reinterpret_cast<const SCEV *>(-1));
1158     return V;
1159   }
1160 
1161   static SmallVector<const SCEV *, 4> getTombstoneKey() {
1162     SmallVector<const SCEV *, 4> V;
1163     V.push_back(reinterpret_cast<const SCEV *>(-2));
1164     return V;
1165   }
1166 
1167   static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) {
1168     return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
1169   }
1170 
1171   static bool isEqual(const SmallVector<const SCEV *, 4> &LHS,
1172                       const SmallVector<const SCEV *, 4> &RHS) {
1173     return LHS == RHS;
1174   }
1175 };
1176 
1177 /// This class holds the state that LSR keeps for each use in IVUsers, as well
1178 /// as uses invented by LSR itself. It includes information about what kinds of
1179 /// things can be folded into the user, information about the user itself, and
1180 /// information about how the use may be satisfied.  TODO: Represent multiple
1181 /// users of the same expression in common?
1182 class LSRUse {
1183   DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier;
1184 
1185 public:
1186   /// An enum for a kind of use, indicating what types of scaled and immediate
1187   /// operands it might support.
1188   enum KindType {
1189     Basic,   ///< A normal use, with no folding.
1190     Special, ///< A special case of basic, allowing -1 scales.
1191     Address, ///< An address use; folding according to TargetLowering
1192     ICmpZero ///< An equality icmp with both operands folded into one.
1193     // TODO: Add a generic icmp too?
1194   };
1195 
1196   using SCEVUseKindPair = PointerIntPair<const SCEV *, 2, KindType>;
1197 
1198   KindType Kind;
1199   MemAccessTy AccessTy;
1200 
1201   /// The list of operands which are to be replaced.
1202   SmallVector<LSRFixup, 8> Fixups;
1203 
1204   /// Keep track of the min and max offsets of the fixups.
1205   int64_t MinOffset = std::numeric_limits<int64_t>::max();
1206   int64_t MaxOffset = std::numeric_limits<int64_t>::min();
1207 
1208   /// This records whether all of the fixups using this LSRUse are outside of
1209   /// the loop, in which case some special-case heuristics may be used.
1210   bool AllFixupsOutsideLoop = true;
1211 
1212   /// RigidFormula is set to true to guarantee that this use will be associated
1213   /// with a single formula--the one that initially matched. Some SCEV
1214   /// expressions cannot be expanded. This allows LSR to consider the registers
1215   /// used by those expressions without the need to expand them later after
1216   /// changing the formula.
1217   bool RigidFormula = false;
1218 
1219   /// This records the widest use type for any fixup using this
1220   /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max
1221   /// fixup widths to be equivalent, because the narrower one may be relying on
1222   /// the implicit truncation to truncate away bogus bits.
1223   Type *WidestFixupType = nullptr;
1224 
1225   /// A list of ways to build a value that can satisfy this user.  After the
1226   /// list is populated, one of these is selected heuristically and used to
1227   /// formulate a replacement for OperandValToReplace in UserInst.
1228   SmallVector<Formula, 12> Formulae;
1229 
1230   /// The set of register candidates used by all formulae in this LSRUse.
1231   SmallPtrSet<const SCEV *, 4> Regs;
1232 
1233   LSRUse(KindType K, MemAccessTy AT) : Kind(K), AccessTy(AT) {}
1234 
1235   LSRFixup &getNewFixup() {
1236     Fixups.push_back(LSRFixup());
1237     return Fixups.back();
1238   }
1239 
1240   void pushFixup(LSRFixup &f) {
1241     Fixups.push_back(f);
1242     if (f.Offset > MaxOffset)
1243       MaxOffset = f.Offset;
1244     if (f.Offset < MinOffset)
1245       MinOffset = f.Offset;
1246   }
1247 
1248   bool HasFormulaWithSameRegs(const Formula &F) const;
1249   float getNotSelectedProbability(const SCEV *Reg) const;
1250   bool InsertFormula(const Formula &F, const Loop &L);
1251   void DeleteFormula(Formula &F);
1252   void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
1253 
1254   void print(raw_ostream &OS) const;
1255   void dump() const;
1256 };
1257 
1258 } // end anonymous namespace
1259 
1260 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1261                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1262                                  GlobalValue *BaseGV, int64_t BaseOffset,
1263                                  bool HasBaseReg, int64_t Scale,
1264                                  Instruction *Fixup = nullptr);
1265 
1266 static unsigned getSetupCost(const SCEV *Reg, unsigned Depth) {
1267   if (isa<SCEVUnknown>(Reg) || isa<SCEVConstant>(Reg))
1268     return 1;
1269   if (Depth == 0)
1270     return 0;
1271   if (const auto *S = dyn_cast<SCEVAddRecExpr>(Reg))
1272     return getSetupCost(S->getStart(), Depth - 1);
1273   if (auto S = dyn_cast<SCEVIntegralCastExpr>(Reg))
1274     return getSetupCost(S->getOperand(), Depth - 1);
1275   if (auto S = dyn_cast<SCEVNAryExpr>(Reg))
1276     return std::accumulate(S->operands().begin(), S->operands().end(), 0,
1277                            [&](unsigned i, const SCEV *Reg) {
1278                              return i + getSetupCost(Reg, Depth - 1);
1279                            });
1280   if (auto S = dyn_cast<SCEVUDivExpr>(Reg))
1281     return getSetupCost(S->getLHS(), Depth - 1) +
1282            getSetupCost(S->getRHS(), Depth - 1);
1283   return 0;
1284 }
1285 
1286 /// Tally up interesting quantities from the given register.
1287 void Cost::RateRegister(const Formula &F, const SCEV *Reg,
1288                         SmallPtrSetImpl<const SCEV *> &Regs) {
1289   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
1290     // If this is an addrec for another loop, it should be an invariant
1291     // with respect to L since L is the innermost loop (at least
1292     // for now LSR only handles innermost loops).
1293     if (AR->getLoop() != L) {
1294       // If the AddRec exists, consider it's register free and leave it alone.
1295       if (isExistingPhi(AR, *SE) && AMK != TTI::AMK_PostIndexed)
1296         return;
1297 
1298       // It is bad to allow LSR for current loop to add induction variables
1299       // for its sibling loops.
1300       if (!AR->getLoop()->contains(L)) {
1301         Lose();
1302         return;
1303       }
1304 
1305       // Otherwise, it will be an invariant with respect to Loop L.
1306       ++C.NumRegs;
1307       return;
1308     }
1309 
1310     unsigned LoopCost = 1;
1311     if (TTI->isIndexedLoadLegal(TTI->MIM_PostInc, AR->getType()) ||
1312         TTI->isIndexedStoreLegal(TTI->MIM_PostInc, AR->getType())) {
1313 
1314       // If the step size matches the base offset, we could use pre-indexed
1315       // addressing.
1316       if (AMK == TTI::AMK_PreIndexed) {
1317         if (auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)))
1318           if (Step->getAPInt() == F.BaseOffset)
1319             LoopCost = 0;
1320       } else if (AMK == TTI::AMK_PostIndexed) {
1321         const SCEV *LoopStep = AR->getStepRecurrence(*SE);
1322         if (isa<SCEVConstant>(LoopStep)) {
1323           const SCEV *LoopStart = AR->getStart();
1324           if (!isa<SCEVConstant>(LoopStart) &&
1325               SE->isLoopInvariant(LoopStart, L))
1326             LoopCost = 0;
1327         }
1328       }
1329     }
1330     C.AddRecCost += LoopCost;
1331 
1332     // Add the step value register, if it needs one.
1333     // TODO: The non-affine case isn't precisely modeled here.
1334     if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) {
1335       if (!Regs.count(AR->getOperand(1))) {
1336         RateRegister(F, AR->getOperand(1), Regs);
1337         if (isLoser())
1338           return;
1339       }
1340     }
1341   }
1342   ++C.NumRegs;
1343 
1344   // Rough heuristic; favor registers which don't require extra setup
1345   // instructions in the preheader.
1346   C.SetupCost += getSetupCost(Reg, SetupCostDepthLimit);
1347   // Ensure we don't, even with the recusion limit, produce invalid costs.
1348   C.SetupCost = std::min<unsigned>(C.SetupCost, 1 << 16);
1349 
1350   C.NumIVMuls += isa<SCEVMulExpr>(Reg) &&
1351                SE->hasComputableLoopEvolution(Reg, L);
1352 }
1353 
1354 /// Record this register in the set. If we haven't seen it before, rate
1355 /// it. Optional LoserRegs provides a way to declare any formula that refers to
1356 /// one of those regs an instant loser.
1357 void Cost::RatePrimaryRegister(const Formula &F, const SCEV *Reg,
1358                                SmallPtrSetImpl<const SCEV *> &Regs,
1359                                SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1360   if (LoserRegs && LoserRegs->count(Reg)) {
1361     Lose();
1362     return;
1363   }
1364   if (Regs.insert(Reg).second) {
1365     RateRegister(F, Reg, Regs);
1366     if (LoserRegs && isLoser())
1367       LoserRegs->insert(Reg);
1368   }
1369 }
1370 
1371 void Cost::RateFormula(const Formula &F,
1372                        SmallPtrSetImpl<const SCEV *> &Regs,
1373                        const DenseSet<const SCEV *> &VisitedRegs,
1374                        const LSRUse &LU,
1375                        SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1376   if (isLoser())
1377     return;
1378   assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula");
1379   // Tally up the registers.
1380   unsigned PrevAddRecCost = C.AddRecCost;
1381   unsigned PrevNumRegs = C.NumRegs;
1382   unsigned PrevNumBaseAdds = C.NumBaseAdds;
1383   if (const SCEV *ScaledReg = F.ScaledReg) {
1384     if (VisitedRegs.count(ScaledReg)) {
1385       Lose();
1386       return;
1387     }
1388     RatePrimaryRegister(F, ScaledReg, Regs, LoserRegs);
1389     if (isLoser())
1390       return;
1391   }
1392   for (const SCEV *BaseReg : F.BaseRegs) {
1393     if (VisitedRegs.count(BaseReg)) {
1394       Lose();
1395       return;
1396     }
1397     RatePrimaryRegister(F, BaseReg, Regs, LoserRegs);
1398     if (isLoser())
1399       return;
1400   }
1401 
1402   // Determine how many (unfolded) adds we'll need inside the loop.
1403   size_t NumBaseParts = F.getNumRegs();
1404   if (NumBaseParts > 1)
1405     // Do not count the base and a possible second register if the target
1406     // allows to fold 2 registers.
1407     C.NumBaseAdds +=
1408         NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(*TTI, LU, F)));
1409   C.NumBaseAdds += (F.UnfoldedOffset != 0);
1410 
1411   // Accumulate non-free scaling amounts.
1412   C.ScaleCost += *getScalingFactorCost(*TTI, LU, F, *L).getValue();
1413 
1414   // Tally up the non-zero immediates.
1415   for (const LSRFixup &Fixup : LU.Fixups) {
1416     int64_t O = Fixup.Offset;
1417     int64_t Offset = (uint64_t)O + F.BaseOffset;
1418     if (F.BaseGV)
1419       C.ImmCost += 64; // Handle symbolic values conservatively.
1420                      // TODO: This should probably be the pointer size.
1421     else if (Offset != 0)
1422       C.ImmCost += APInt(64, Offset, true).getSignificantBits();
1423 
1424     // Check with target if this offset with this instruction is
1425     // specifically not supported.
1426     if (LU.Kind == LSRUse::Address && Offset != 0 &&
1427         !isAMCompletelyFolded(*TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
1428                               Offset, F.HasBaseReg, F.Scale, Fixup.UserInst))
1429       C.NumBaseAdds++;
1430   }
1431 
1432   // If we don't count instruction cost exit here.
1433   if (!InsnsCost) {
1434     assert(isValid() && "invalid cost");
1435     return;
1436   }
1437 
1438   // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as
1439   // additional instruction (at least fill).
1440   // TODO: Need distinguish register class?
1441   unsigned TTIRegNum = TTI->getNumberOfRegisters(
1442                        TTI->getRegisterClassForType(false, F.getType())) - 1;
1443   if (C.NumRegs > TTIRegNum) {
1444     // Cost already exceeded TTIRegNum, then only newly added register can add
1445     // new instructions.
1446     if (PrevNumRegs > TTIRegNum)
1447       C.Insns += (C.NumRegs - PrevNumRegs);
1448     else
1449       C.Insns += (C.NumRegs - TTIRegNum);
1450   }
1451 
1452   // If ICmpZero formula ends with not 0, it could not be replaced by
1453   // just add or sub. We'll need to compare final result of AddRec.
1454   // That means we'll need an additional instruction. But if the target can
1455   // macro-fuse a compare with a branch, don't count this extra instruction.
1456   // For -10 + {0, +, 1}:
1457   // i = i + 1;
1458   // cmp i, 10
1459   //
1460   // For {-10, +, 1}:
1461   // i = i + 1;
1462   if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd() &&
1463       !TTI->canMacroFuseCmp())
1464     C.Insns++;
1465   // Each new AddRec adds 1 instruction to calculation.
1466   C.Insns += (C.AddRecCost - PrevAddRecCost);
1467 
1468   // BaseAdds adds instructions for unfolded registers.
1469   if (LU.Kind != LSRUse::ICmpZero)
1470     C.Insns += C.NumBaseAdds - PrevNumBaseAdds;
1471   assert(isValid() && "invalid cost");
1472 }
1473 
1474 /// Set this cost to a losing value.
1475 void Cost::Lose() {
1476   C.Insns = std::numeric_limits<unsigned>::max();
1477   C.NumRegs = std::numeric_limits<unsigned>::max();
1478   C.AddRecCost = std::numeric_limits<unsigned>::max();
1479   C.NumIVMuls = std::numeric_limits<unsigned>::max();
1480   C.NumBaseAdds = std::numeric_limits<unsigned>::max();
1481   C.ImmCost = std::numeric_limits<unsigned>::max();
1482   C.SetupCost = std::numeric_limits<unsigned>::max();
1483   C.ScaleCost = std::numeric_limits<unsigned>::max();
1484 }
1485 
1486 /// Choose the lower cost.
1487 bool Cost::isLess(const Cost &Other) const {
1488   if (InsnsCost.getNumOccurrences() > 0 && InsnsCost &&
1489       C.Insns != Other.C.Insns)
1490     return C.Insns < Other.C.Insns;
1491   return TTI->isLSRCostLess(C, Other.C);
1492 }
1493 
1494 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1495 void Cost::print(raw_ostream &OS) const {
1496   if (InsnsCost)
1497     OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s ");
1498   OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s");
1499   if (C.AddRecCost != 0)
1500     OS << ", with addrec cost " << C.AddRecCost;
1501   if (C.NumIVMuls != 0)
1502     OS << ", plus " << C.NumIVMuls << " IV mul"
1503        << (C.NumIVMuls == 1 ? "" : "s");
1504   if (C.NumBaseAdds != 0)
1505     OS << ", plus " << C.NumBaseAdds << " base add"
1506        << (C.NumBaseAdds == 1 ? "" : "s");
1507   if (C.ScaleCost != 0)
1508     OS << ", plus " << C.ScaleCost << " scale cost";
1509   if (C.ImmCost != 0)
1510     OS << ", plus " << C.ImmCost << " imm cost";
1511   if (C.SetupCost != 0)
1512     OS << ", plus " << C.SetupCost << " setup cost";
1513 }
1514 
1515 LLVM_DUMP_METHOD void Cost::dump() const {
1516   print(errs()); errs() << '\n';
1517 }
1518 #endif
1519 
1520 /// Test whether this fixup always uses its value outside of the given loop.
1521 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
1522   // PHI nodes use their value in their incoming blocks.
1523   if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
1524     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1525       if (PN->getIncomingValue(i) == OperandValToReplace &&
1526           L->contains(PN->getIncomingBlock(i)))
1527         return false;
1528     return true;
1529   }
1530 
1531   return !L->contains(UserInst);
1532 }
1533 
1534 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1535 void LSRFixup::print(raw_ostream &OS) const {
1536   OS << "UserInst=";
1537   // Store is common and interesting enough to be worth special-casing.
1538   if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
1539     OS << "store ";
1540     Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false);
1541   } else if (UserInst->getType()->isVoidTy())
1542     OS << UserInst->getOpcodeName();
1543   else
1544     UserInst->printAsOperand(OS, /*PrintType=*/false);
1545 
1546   OS << ", OperandValToReplace=";
1547   OperandValToReplace->printAsOperand(OS, /*PrintType=*/false);
1548 
1549   for (const Loop *PIL : PostIncLoops) {
1550     OS << ", PostIncLoop=";
1551     PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
1552   }
1553 
1554   if (Offset != 0)
1555     OS << ", Offset=" << Offset;
1556 }
1557 
1558 LLVM_DUMP_METHOD void LSRFixup::dump() const {
1559   print(errs()); errs() << '\n';
1560 }
1561 #endif
1562 
1563 /// Test whether this use as a formula which has the same registers as the given
1564 /// formula.
1565 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
1566   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1567   if (F.ScaledReg) Key.push_back(F.ScaledReg);
1568   // Unstable sort by host order ok, because this is only used for uniquifying.
1569   llvm::sort(Key);
1570   return Uniquifier.count(Key);
1571 }
1572 
1573 /// The function returns a probability of selecting formula without Reg.
1574 float LSRUse::getNotSelectedProbability(const SCEV *Reg) const {
1575   unsigned FNum = 0;
1576   for (const Formula &F : Formulae)
1577     if (F.referencesReg(Reg))
1578       FNum++;
1579   return ((float)(Formulae.size() - FNum)) / Formulae.size();
1580 }
1581 
1582 /// If the given formula has not yet been inserted, add it to the list, and
1583 /// return true. Return false otherwise.  The formula must be in canonical form.
1584 bool LSRUse::InsertFormula(const Formula &F, const Loop &L) {
1585   assert(F.isCanonical(L) && "Invalid canonical representation");
1586 
1587   if (!Formulae.empty() && RigidFormula)
1588     return false;
1589 
1590   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1591   if (F.ScaledReg) Key.push_back(F.ScaledReg);
1592   // Unstable sort by host order ok, because this is only used for uniquifying.
1593   llvm::sort(Key);
1594 
1595   if (!Uniquifier.insert(Key).second)
1596     return false;
1597 
1598   // Using a register to hold the value of 0 is not profitable.
1599   assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
1600          "Zero allocated in a scaled register!");
1601 #ifndef NDEBUG
1602   for (const SCEV *BaseReg : F.BaseRegs)
1603     assert(!BaseReg->isZero() && "Zero allocated in a base register!");
1604 #endif
1605 
1606   // Add the formula to the list.
1607   Formulae.push_back(F);
1608 
1609   // Record registers now being used by this use.
1610   Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1611   if (F.ScaledReg)
1612     Regs.insert(F.ScaledReg);
1613 
1614   return true;
1615 }
1616 
1617 /// Remove the given formula from this use's list.
1618 void LSRUse::DeleteFormula(Formula &F) {
1619   if (&F != &Formulae.back())
1620     std::swap(F, Formulae.back());
1621   Formulae.pop_back();
1622 }
1623 
1624 /// Recompute the Regs field, and update RegUses.
1625 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
1626   // Now that we've filtered out some formulae, recompute the Regs set.
1627   SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs);
1628   Regs.clear();
1629   for (const Formula &F : Formulae) {
1630     if (F.ScaledReg) Regs.insert(F.ScaledReg);
1631     Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1632   }
1633 
1634   // Update the RegTracker.
1635   for (const SCEV *S : OldRegs)
1636     if (!Regs.count(S))
1637       RegUses.dropRegister(S, LUIdx);
1638 }
1639 
1640 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1641 void LSRUse::print(raw_ostream &OS) const {
1642   OS << "LSR Use: Kind=";
1643   switch (Kind) {
1644   case Basic:    OS << "Basic"; break;
1645   case Special:  OS << "Special"; break;
1646   case ICmpZero: OS << "ICmpZero"; break;
1647   case Address:
1648     OS << "Address of ";
1649     if (AccessTy.MemTy->isPointerTy())
1650       OS << "pointer"; // the full pointer type could be really verbose
1651     else {
1652       OS << *AccessTy.MemTy;
1653     }
1654 
1655     OS << " in addrspace(" << AccessTy.AddrSpace << ')';
1656   }
1657 
1658   OS << ", Offsets={";
1659   bool NeedComma = false;
1660   for (const LSRFixup &Fixup : Fixups) {
1661     if (NeedComma) OS << ',';
1662     OS << Fixup.Offset;
1663     NeedComma = true;
1664   }
1665   OS << '}';
1666 
1667   if (AllFixupsOutsideLoop)
1668     OS << ", all-fixups-outside-loop";
1669 
1670   if (WidestFixupType)
1671     OS << ", widest fixup type: " << *WidestFixupType;
1672 }
1673 
1674 LLVM_DUMP_METHOD void LSRUse::dump() const {
1675   print(errs()); errs() << '\n';
1676 }
1677 #endif
1678 
1679 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1680                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1681                                  GlobalValue *BaseGV, int64_t BaseOffset,
1682                                  bool HasBaseReg, int64_t Scale,
1683                                  Instruction *Fixup/*= nullptr*/) {
1684   switch (Kind) {
1685   case LSRUse::Address:
1686     return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset,
1687                                      HasBaseReg, Scale, AccessTy.AddrSpace, Fixup);
1688 
1689   case LSRUse::ICmpZero:
1690     // There's not even a target hook for querying whether it would be legal to
1691     // fold a GV into an ICmp.
1692     if (BaseGV)
1693       return false;
1694 
1695     // ICmp only has two operands; don't allow more than two non-trivial parts.
1696     if (Scale != 0 && HasBaseReg && BaseOffset != 0)
1697       return false;
1698 
1699     // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1700     // putting the scaled register in the other operand of the icmp.
1701     if (Scale != 0 && Scale != -1)
1702       return false;
1703 
1704     // If we have low-level target information, ask the target if it can fold an
1705     // integer immediate on an icmp.
1706     if (BaseOffset != 0) {
1707       // We have one of:
1708       // ICmpZero     BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset
1709       // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset
1710       // Offs is the ICmp immediate.
1711       if (Scale == 0)
1712         // The cast does the right thing with
1713         // std::numeric_limits<int64_t>::min().
1714         BaseOffset = -(uint64_t)BaseOffset;
1715       return TTI.isLegalICmpImmediate(BaseOffset);
1716     }
1717 
1718     // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg
1719     return true;
1720 
1721   case LSRUse::Basic:
1722     // Only handle single-register values.
1723     return !BaseGV && Scale == 0 && BaseOffset == 0;
1724 
1725   case LSRUse::Special:
1726     // Special case Basic to handle -1 scales.
1727     return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0;
1728   }
1729 
1730   llvm_unreachable("Invalid LSRUse Kind!");
1731 }
1732 
1733 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1734                                  int64_t MinOffset, int64_t MaxOffset,
1735                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1736                                  GlobalValue *BaseGV, int64_t BaseOffset,
1737                                  bool HasBaseReg, int64_t Scale) {
1738   // Check for overflow.
1739   if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) !=
1740       (MinOffset > 0))
1741     return false;
1742   MinOffset = (uint64_t)BaseOffset + MinOffset;
1743   if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) !=
1744       (MaxOffset > 0))
1745     return false;
1746   MaxOffset = (uint64_t)BaseOffset + MaxOffset;
1747 
1748   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset,
1749                               HasBaseReg, Scale) &&
1750          isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset,
1751                               HasBaseReg, Scale);
1752 }
1753 
1754 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1755                                  int64_t MinOffset, int64_t MaxOffset,
1756                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1757                                  const Formula &F, const Loop &L) {
1758   // For the purpose of isAMCompletelyFolded either having a canonical formula
1759   // or a scale not equal to zero is correct.
1760   // Problems may arise from non canonical formulae having a scale == 0.
1761   // Strictly speaking it would best to just rely on canonical formulae.
1762   // However, when we generate the scaled formulae, we first check that the
1763   // scaling factor is profitable before computing the actual ScaledReg for
1764   // compile time sake.
1765   assert((F.isCanonical(L) || F.Scale != 0));
1766   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1767                               F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale);
1768 }
1769 
1770 /// Test whether we know how to expand the current formula.
1771 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1772                        int64_t MaxOffset, LSRUse::KindType Kind,
1773                        MemAccessTy AccessTy, GlobalValue *BaseGV,
1774                        int64_t BaseOffset, bool HasBaseReg, int64_t Scale) {
1775   // We know how to expand completely foldable formulae.
1776   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1777                               BaseOffset, HasBaseReg, Scale) ||
1778          // Or formulae that use a base register produced by a sum of base
1779          // registers.
1780          (Scale == 1 &&
1781           isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1782                                BaseGV, BaseOffset, true, 0));
1783 }
1784 
1785 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1786                        int64_t MaxOffset, LSRUse::KindType Kind,
1787                        MemAccessTy AccessTy, const Formula &F) {
1788   return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV,
1789                     F.BaseOffset, F.HasBaseReg, F.Scale);
1790 }
1791 
1792 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1793                                  const LSRUse &LU, const Formula &F) {
1794   // Target may want to look at the user instructions.
1795   if (LU.Kind == LSRUse::Address && TTI.LSRWithInstrQueries()) {
1796     for (const LSRFixup &Fixup : LU.Fixups)
1797       if (!isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
1798                                 (F.BaseOffset + Fixup.Offset), F.HasBaseReg,
1799                                 F.Scale, Fixup.UserInst))
1800         return false;
1801     return true;
1802   }
1803 
1804   return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1805                               LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg,
1806                               F.Scale);
1807 }
1808 
1809 static InstructionCost getScalingFactorCost(const TargetTransformInfo &TTI,
1810                                             const LSRUse &LU, const Formula &F,
1811                                             const Loop &L) {
1812   if (!F.Scale)
1813     return 0;
1814 
1815   // If the use is not completely folded in that instruction, we will have to
1816   // pay an extra cost only for scale != 1.
1817   if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1818                             LU.AccessTy, F, L))
1819     return F.Scale != 1;
1820 
1821   switch (LU.Kind) {
1822   case LSRUse::Address: {
1823     // Check the scaling factor cost with both the min and max offsets.
1824     InstructionCost ScaleCostMinOffset = TTI.getScalingFactorCost(
1825         LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg,
1826         F.Scale, LU.AccessTy.AddrSpace);
1827     InstructionCost ScaleCostMaxOffset = TTI.getScalingFactorCost(
1828         LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg,
1829         F.Scale, LU.AccessTy.AddrSpace);
1830 
1831     assert(ScaleCostMinOffset.isValid() && ScaleCostMaxOffset.isValid() &&
1832            "Legal addressing mode has an illegal cost!");
1833     return std::max(ScaleCostMinOffset, ScaleCostMaxOffset);
1834   }
1835   case LSRUse::ICmpZero:
1836   case LSRUse::Basic:
1837   case LSRUse::Special:
1838     // The use is completely folded, i.e., everything is folded into the
1839     // instruction.
1840     return 0;
1841   }
1842 
1843   llvm_unreachable("Invalid LSRUse Kind!");
1844 }
1845 
1846 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1847                              LSRUse::KindType Kind, MemAccessTy AccessTy,
1848                              GlobalValue *BaseGV, int64_t BaseOffset,
1849                              bool HasBaseReg) {
1850   // Fast-path: zero is always foldable.
1851   if (BaseOffset == 0 && !BaseGV) return true;
1852 
1853   // Conservatively, create an address with an immediate and a
1854   // base and a scale.
1855   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1856 
1857   // Canonicalize a scale of 1 to a base register if the formula doesn't
1858   // already have a base register.
1859   if (!HasBaseReg && Scale == 1) {
1860     Scale = 0;
1861     HasBaseReg = true;
1862   }
1863 
1864   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset,
1865                               HasBaseReg, Scale);
1866 }
1867 
1868 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1869                              ScalarEvolution &SE, int64_t MinOffset,
1870                              int64_t MaxOffset, LSRUse::KindType Kind,
1871                              MemAccessTy AccessTy, const SCEV *S,
1872                              bool HasBaseReg) {
1873   // Fast-path: zero is always foldable.
1874   if (S->isZero()) return true;
1875 
1876   // Conservatively, create an address with an immediate and a
1877   // base and a scale.
1878   int64_t BaseOffset = ExtractImmediate(S, SE);
1879   GlobalValue *BaseGV = ExtractSymbol(S, SE);
1880 
1881   // If there's anything else involved, it's not foldable.
1882   if (!S->isZero()) return false;
1883 
1884   // Fast-path: zero is always foldable.
1885   if (BaseOffset == 0 && !BaseGV) return true;
1886 
1887   // Conservatively, create an address with an immediate and a
1888   // base and a scale.
1889   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1890 
1891   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1892                               BaseOffset, HasBaseReg, Scale);
1893 }
1894 
1895 namespace {
1896 
1897 /// An individual increment in a Chain of IV increments.  Relate an IV user to
1898 /// an expression that computes the IV it uses from the IV used by the previous
1899 /// link in the Chain.
1900 ///
1901 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the
1902 /// original IVOperand. The head of the chain's IVOperand is only valid during
1903 /// chain collection, before LSR replaces IV users. During chain generation,
1904 /// IncExpr can be used to find the new IVOperand that computes the same
1905 /// expression.
1906 struct IVInc {
1907   Instruction *UserInst;
1908   Value* IVOperand;
1909   const SCEV *IncExpr;
1910 
1911   IVInc(Instruction *U, Value *O, const SCEV *E)
1912       : UserInst(U), IVOperand(O), IncExpr(E) {}
1913 };
1914 
1915 // The list of IV increments in program order.  We typically add the head of a
1916 // chain without finding subsequent links.
1917 struct IVChain {
1918   SmallVector<IVInc, 1> Incs;
1919   const SCEV *ExprBase = nullptr;
1920 
1921   IVChain() = default;
1922   IVChain(const IVInc &Head, const SCEV *Base)
1923       : Incs(1, Head), ExprBase(Base) {}
1924 
1925   using const_iterator = SmallVectorImpl<IVInc>::const_iterator;
1926 
1927   // Return the first increment in the chain.
1928   const_iterator begin() const {
1929     assert(!Incs.empty());
1930     return std::next(Incs.begin());
1931   }
1932   const_iterator end() const {
1933     return Incs.end();
1934   }
1935 
1936   // Returns true if this chain contains any increments.
1937   bool hasIncs() const { return Incs.size() >= 2; }
1938 
1939   // Add an IVInc to the end of this chain.
1940   void add(const IVInc &X) { Incs.push_back(X); }
1941 
1942   // Returns the last UserInst in the chain.
1943   Instruction *tailUserInst() const { return Incs.back().UserInst; }
1944 
1945   // Returns true if IncExpr can be profitably added to this chain.
1946   bool isProfitableIncrement(const SCEV *OperExpr,
1947                              const SCEV *IncExpr,
1948                              ScalarEvolution&);
1949 };
1950 
1951 /// Helper for CollectChains to track multiple IV increment uses.  Distinguish
1952 /// between FarUsers that definitely cross IV increments and NearUsers that may
1953 /// be used between IV increments.
1954 struct ChainUsers {
1955   SmallPtrSet<Instruction*, 4> FarUsers;
1956   SmallPtrSet<Instruction*, 4> NearUsers;
1957 };
1958 
1959 /// This class holds state for the main loop strength reduction logic.
1960 class LSRInstance {
1961   IVUsers &IU;
1962   ScalarEvolution &SE;
1963   DominatorTree &DT;
1964   LoopInfo &LI;
1965   AssumptionCache &AC;
1966   TargetLibraryInfo &TLI;
1967   const TargetTransformInfo &TTI;
1968   Loop *const L;
1969   MemorySSAUpdater *MSSAU;
1970   TTI::AddressingModeKind AMK;
1971   mutable SCEVExpander Rewriter;
1972   bool Changed = false;
1973 
1974   /// This is the insert position that the current loop's induction variable
1975   /// increment should be placed. In simple loops, this is the latch block's
1976   /// terminator. But in more complicated cases, this is a position which will
1977   /// dominate all the in-loop post-increment users.
1978   Instruction *IVIncInsertPos = nullptr;
1979 
1980   /// Interesting factors between use strides.
1981   ///
1982   /// We explicitly use a SetVector which contains a SmallSet, instead of the
1983   /// default, a SmallDenseSet, because we need to use the full range of
1984   /// int64_ts, and there's currently no good way of doing that with
1985   /// SmallDenseSet.
1986   SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors;
1987 
1988   /// The cost of the current SCEV, the best solution by LSR will be dropped if
1989   /// the solution is not profitable.
1990   Cost BaselineCost;
1991 
1992   /// Interesting use types, to facilitate truncation reuse.
1993   SmallSetVector<Type *, 4> Types;
1994 
1995   /// The list of interesting uses.
1996   mutable SmallVector<LSRUse, 16> Uses;
1997 
1998   /// Track which uses use which register candidates.
1999   RegUseTracker RegUses;
2000 
2001   // Limit the number of chains to avoid quadratic behavior. We don't expect to
2002   // have more than a few IV increment chains in a loop. Missing a Chain falls
2003   // back to normal LSR behavior for those uses.
2004   static const unsigned MaxChains = 8;
2005 
2006   /// IV users can form a chain of IV increments.
2007   SmallVector<IVChain, MaxChains> IVChainVec;
2008 
2009   /// IV users that belong to profitable IVChains.
2010   SmallPtrSet<Use*, MaxChains> IVIncSet;
2011 
2012   /// Induction variables that were generated and inserted by the SCEV Expander.
2013   SmallVector<llvm::WeakVH, 2> ScalarEvolutionIVs;
2014 
2015   void OptimizeShadowIV();
2016   bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
2017   ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
2018   void OptimizeLoopTermCond();
2019 
2020   void ChainInstruction(Instruction *UserInst, Instruction *IVOper,
2021                         SmallVectorImpl<ChainUsers> &ChainUsersVec);
2022   void FinalizeChain(IVChain &Chain);
2023   void CollectChains();
2024   void GenerateIVChain(const IVChain &Chain,
2025                        SmallVectorImpl<WeakTrackingVH> &DeadInsts);
2026 
2027   void CollectInterestingTypesAndFactors();
2028   void CollectFixupsAndInitialFormulae();
2029 
2030   // Support for sharing of LSRUses between LSRFixups.
2031   using UseMapTy = DenseMap<LSRUse::SCEVUseKindPair, size_t>;
2032   UseMapTy UseMap;
2033 
2034   bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
2035                           LSRUse::KindType Kind, MemAccessTy AccessTy);
2036 
2037   std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind,
2038                                     MemAccessTy AccessTy);
2039 
2040   void DeleteUse(LSRUse &LU, size_t LUIdx);
2041 
2042   LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
2043 
2044   void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
2045   void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
2046   void CountRegisters(const Formula &F, size_t LUIdx);
2047   bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
2048 
2049   void CollectLoopInvariantFixupsAndFormulae();
2050 
2051   void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
2052                               unsigned Depth = 0);
2053 
2054   void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
2055                                   const Formula &Base, unsigned Depth,
2056                                   size_t Idx, bool IsScaledReg = false);
2057   void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
2058   void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
2059                                    const Formula &Base, size_t Idx,
2060                                    bool IsScaledReg = false);
2061   void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
2062   void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx,
2063                                    const Formula &Base,
2064                                    const SmallVectorImpl<int64_t> &Worklist,
2065                                    size_t Idx, bool IsScaledReg = false);
2066   void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
2067   void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
2068   void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
2069   void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
2070   void GenerateCrossUseConstantOffsets();
2071   void GenerateAllReuseFormulae();
2072 
2073   void FilterOutUndesirableDedicatedRegisters();
2074 
2075   size_t EstimateSearchSpaceComplexity() const;
2076   void NarrowSearchSpaceByDetectingSupersets();
2077   void NarrowSearchSpaceByCollapsingUnrolledCode();
2078   void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
2079   void NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
2080   void NarrowSearchSpaceByFilterPostInc();
2081   void NarrowSearchSpaceByDeletingCostlyFormulas();
2082   void NarrowSearchSpaceByPickingWinnerRegs();
2083   void NarrowSearchSpaceUsingHeuristics();
2084 
2085   void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
2086                     Cost &SolutionCost,
2087                     SmallVectorImpl<const Formula *> &Workspace,
2088                     const Cost &CurCost,
2089                     const SmallPtrSet<const SCEV *, 16> &CurRegs,
2090                     DenseSet<const SCEV *> &VisitedRegs) const;
2091   void Solve(SmallVectorImpl<const Formula *> &Solution) const;
2092 
2093   BasicBlock::iterator
2094   HoistInsertPosition(BasicBlock::iterator IP,
2095                       const SmallVectorImpl<Instruction *> &Inputs) const;
2096   BasicBlock::iterator AdjustInsertPositionForExpand(BasicBlock::iterator IP,
2097                                                      const LSRFixup &LF,
2098                                                      const LSRUse &LU) const;
2099 
2100   Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
2101                 BasicBlock::iterator IP,
2102                 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2103   void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF,
2104                      const Formula &F,
2105                      SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2106   void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
2107                SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2108   void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution);
2109 
2110 public:
2111   LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT,
2112               LoopInfo &LI, const TargetTransformInfo &TTI, AssumptionCache &AC,
2113               TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU);
2114 
2115   bool getChanged() const { return Changed; }
2116   const SmallVectorImpl<WeakVH> &getScalarEvolutionIVs() const {
2117     return ScalarEvolutionIVs;
2118   }
2119 
2120   void print_factors_and_types(raw_ostream &OS) const;
2121   void print_fixups(raw_ostream &OS) const;
2122   void print_uses(raw_ostream &OS) const;
2123   void print(raw_ostream &OS) const;
2124   void dump() const;
2125 };
2126 
2127 } // end anonymous namespace
2128 
2129 /// If IV is used in a int-to-float cast inside the loop then try to eliminate
2130 /// the cast operation.
2131 void LSRInstance::OptimizeShadowIV() {
2132   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2133   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2134     return;
2135 
2136   for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
2137        UI != E; /* empty */) {
2138     IVUsers::const_iterator CandidateUI = UI;
2139     ++UI;
2140     Instruction *ShadowUse = CandidateUI->getUser();
2141     Type *DestTy = nullptr;
2142     bool IsSigned = false;
2143 
2144     /* If shadow use is a int->float cast then insert a second IV
2145        to eliminate this cast.
2146 
2147          for (unsigned i = 0; i < n; ++i)
2148            foo((double)i);
2149 
2150        is transformed into
2151 
2152          double d = 0.0;
2153          for (unsigned i = 0; i < n; ++i, ++d)
2154            foo(d);
2155     */
2156     if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) {
2157       IsSigned = false;
2158       DestTy = UCast->getDestTy();
2159     }
2160     else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) {
2161       IsSigned = true;
2162       DestTy = SCast->getDestTy();
2163     }
2164     if (!DestTy) continue;
2165 
2166     // If target does not support DestTy natively then do not apply
2167     // this transformation.
2168     if (!TTI.isTypeLegal(DestTy)) continue;
2169 
2170     PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
2171     if (!PH) continue;
2172     if (PH->getNumIncomingValues() != 2) continue;
2173 
2174     // If the calculation in integers overflows, the result in FP type will
2175     // differ. So we only can do this transformation if we are guaranteed to not
2176     // deal with overflowing values
2177     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PH));
2178     if (!AR) continue;
2179     if (IsSigned && !AR->hasNoSignedWrap()) continue;
2180     if (!IsSigned && !AR->hasNoUnsignedWrap()) continue;
2181 
2182     Type *SrcTy = PH->getType();
2183     int Mantissa = DestTy->getFPMantissaWidth();
2184     if (Mantissa == -1) continue;
2185     if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
2186       continue;
2187 
2188     unsigned Entry, Latch;
2189     if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
2190       Entry = 0;
2191       Latch = 1;
2192     } else {
2193       Entry = 1;
2194       Latch = 0;
2195     }
2196 
2197     ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
2198     if (!Init) continue;
2199     Constant *NewInit = ConstantFP::get(DestTy, IsSigned ?
2200                                         (double)Init->getSExtValue() :
2201                                         (double)Init->getZExtValue());
2202 
2203     BinaryOperator *Incr =
2204       dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
2205     if (!Incr) continue;
2206     if (Incr->getOpcode() != Instruction::Add
2207         && Incr->getOpcode() != Instruction::Sub)
2208       continue;
2209 
2210     /* Initialize new IV, double d = 0.0 in above example. */
2211     ConstantInt *C = nullptr;
2212     if (Incr->getOperand(0) == PH)
2213       C = dyn_cast<ConstantInt>(Incr->getOperand(1));
2214     else if (Incr->getOperand(1) == PH)
2215       C = dyn_cast<ConstantInt>(Incr->getOperand(0));
2216     else
2217       continue;
2218 
2219     if (!C) continue;
2220 
2221     // Ignore negative constants, as the code below doesn't handle them
2222     // correctly. TODO: Remove this restriction.
2223     if (!C->getValue().isStrictlyPositive()) continue;
2224 
2225     /* Add new PHINode. */
2226     PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH);
2227 
2228     /* create new increment. '++d' in above example. */
2229     Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
2230     BinaryOperator *NewIncr =
2231       BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
2232                                Instruction::FAdd : Instruction::FSub,
2233                              NewPH, CFP, "IV.S.next.", Incr);
2234 
2235     NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
2236     NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
2237 
2238     /* Remove cast operation */
2239     ShadowUse->replaceAllUsesWith(NewPH);
2240     ShadowUse->eraseFromParent();
2241     Changed = true;
2242     break;
2243   }
2244 }
2245 
2246 /// If Cond has an operand that is an expression of an IV, set the IV user and
2247 /// stride information and return true, otherwise return false.
2248 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
2249   for (IVStrideUse &U : IU)
2250     if (U.getUser() == Cond) {
2251       // NOTE: we could handle setcc instructions with multiple uses here, but
2252       // InstCombine does it as well for simple uses, it's not clear that it
2253       // occurs enough in real life to handle.
2254       CondUse = &U;
2255       return true;
2256     }
2257   return false;
2258 }
2259 
2260 /// Rewrite the loop's terminating condition if it uses a max computation.
2261 ///
2262 /// This is a narrow solution to a specific, but acute, problem. For loops
2263 /// like this:
2264 ///
2265 ///   i = 0;
2266 ///   do {
2267 ///     p[i] = 0.0;
2268 ///   } while (++i < n);
2269 ///
2270 /// the trip count isn't just 'n', because 'n' might not be positive. And
2271 /// unfortunately this can come up even for loops where the user didn't use
2272 /// a C do-while loop. For example, seemingly well-behaved top-test loops
2273 /// will commonly be lowered like this:
2274 ///
2275 ///   if (n > 0) {
2276 ///     i = 0;
2277 ///     do {
2278 ///       p[i] = 0.0;
2279 ///     } while (++i < n);
2280 ///   }
2281 ///
2282 /// and then it's possible for subsequent optimization to obscure the if
2283 /// test in such a way that indvars can't find it.
2284 ///
2285 /// When indvars can't find the if test in loops like this, it creates a
2286 /// max expression, which allows it to give the loop a canonical
2287 /// induction variable:
2288 ///
2289 ///   i = 0;
2290 ///   max = n < 1 ? 1 : n;
2291 ///   do {
2292 ///     p[i] = 0.0;
2293 ///   } while (++i != max);
2294 ///
2295 /// Canonical induction variables are necessary because the loop passes
2296 /// are designed around them. The most obvious example of this is the
2297 /// LoopInfo analysis, which doesn't remember trip count values. It
2298 /// expects to be able to rediscover the trip count each time it is
2299 /// needed, and it does this using a simple analysis that only succeeds if
2300 /// the loop has a canonical induction variable.
2301 ///
2302 /// However, when it comes time to generate code, the maximum operation
2303 /// can be quite costly, especially if it's inside of an outer loop.
2304 ///
2305 /// This function solves this problem by detecting this type of loop and
2306 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
2307 /// the instructions for the maximum computation.
2308 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
2309   // Check that the loop matches the pattern we're looking for.
2310   if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
2311       Cond->getPredicate() != CmpInst::ICMP_NE)
2312     return Cond;
2313 
2314   SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
2315   if (!Sel || !Sel->hasOneUse()) return Cond;
2316 
2317   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2318   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2319     return Cond;
2320   const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
2321 
2322   // Add one to the backedge-taken count to get the trip count.
2323   const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount);
2324   if (IterationCount != SE.getSCEV(Sel)) return Cond;
2325 
2326   // Check for a max calculation that matches the pattern. There's no check
2327   // for ICMP_ULE here because the comparison would be with zero, which
2328   // isn't interesting.
2329   CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
2330   const SCEVNAryExpr *Max = nullptr;
2331   if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
2332     Pred = ICmpInst::ICMP_SLE;
2333     Max = S;
2334   } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
2335     Pred = ICmpInst::ICMP_SLT;
2336     Max = S;
2337   } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
2338     Pred = ICmpInst::ICMP_ULT;
2339     Max = U;
2340   } else {
2341     // No match; bail.
2342     return Cond;
2343   }
2344 
2345   // To handle a max with more than two operands, this optimization would
2346   // require additional checking and setup.
2347   if (Max->getNumOperands() != 2)
2348     return Cond;
2349 
2350   const SCEV *MaxLHS = Max->getOperand(0);
2351   const SCEV *MaxRHS = Max->getOperand(1);
2352 
2353   // ScalarEvolution canonicalizes constants to the left. For < and >, look
2354   // for a comparison with 1. For <= and >=, a comparison with zero.
2355   if (!MaxLHS ||
2356       (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
2357     return Cond;
2358 
2359   // Check the relevant induction variable for conformance to
2360   // the pattern.
2361   const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
2362   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
2363   if (!AR || !AR->isAffine() ||
2364       AR->getStart() != One ||
2365       AR->getStepRecurrence(SE) != One)
2366     return Cond;
2367 
2368   assert(AR->getLoop() == L &&
2369          "Loop condition operand is an addrec in a different loop!");
2370 
2371   // Check the right operand of the select, and remember it, as it will
2372   // be used in the new comparison instruction.
2373   Value *NewRHS = nullptr;
2374   if (ICmpInst::isTrueWhenEqual(Pred)) {
2375     // Look for n+1, and grab n.
2376     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
2377       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2378          if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2379            NewRHS = BO->getOperand(0);
2380     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
2381       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2382         if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2383           NewRHS = BO->getOperand(0);
2384     if (!NewRHS)
2385       return Cond;
2386   } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
2387     NewRHS = Sel->getOperand(1);
2388   else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
2389     NewRHS = Sel->getOperand(2);
2390   else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
2391     NewRHS = SU->getValue();
2392   else
2393     // Max doesn't match expected pattern.
2394     return Cond;
2395 
2396   // Determine the new comparison opcode. It may be signed or unsigned,
2397   // and the original comparison may be either equality or inequality.
2398   if (Cond->getPredicate() == CmpInst::ICMP_EQ)
2399     Pred = CmpInst::getInversePredicate(Pred);
2400 
2401   // Ok, everything looks ok to change the condition into an SLT or SGE and
2402   // delete the max calculation.
2403   ICmpInst *NewCond =
2404     new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
2405 
2406   // Delete the max calculation instructions.
2407   NewCond->setDebugLoc(Cond->getDebugLoc());
2408   Cond->replaceAllUsesWith(NewCond);
2409   CondUse->setUser(NewCond);
2410   Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
2411   Cond->eraseFromParent();
2412   Sel->eraseFromParent();
2413   if (Cmp->use_empty())
2414     Cmp->eraseFromParent();
2415   return NewCond;
2416 }
2417 
2418 /// Change loop terminating condition to use the postinc iv when possible.
2419 void
2420 LSRInstance::OptimizeLoopTermCond() {
2421   SmallPtrSet<Instruction *, 4> PostIncs;
2422 
2423   // We need a different set of heuristics for rotated and non-rotated loops.
2424   // If a loop is rotated then the latch is also the backedge, so inserting
2425   // post-inc expressions just before the latch is ideal. To reduce live ranges
2426   // it also makes sense to rewrite terminating conditions to use post-inc
2427   // expressions.
2428   //
2429   // If the loop is not rotated then the latch is not a backedge; the latch
2430   // check is done in the loop head. Adding post-inc expressions before the
2431   // latch will cause overlapping live-ranges of pre-inc and post-inc expressions
2432   // in the loop body. In this case we do *not* want to use post-inc expressions
2433   // in the latch check, and we want to insert post-inc expressions before
2434   // the backedge.
2435   BasicBlock *LatchBlock = L->getLoopLatch();
2436   SmallVector<BasicBlock*, 8> ExitingBlocks;
2437   L->getExitingBlocks(ExitingBlocks);
2438   if (!llvm::is_contained(ExitingBlocks, LatchBlock)) {
2439     // The backedge doesn't exit the loop; treat this as a head-tested loop.
2440     IVIncInsertPos = LatchBlock->getTerminator();
2441     return;
2442   }
2443 
2444   // Otherwise treat this as a rotated loop.
2445   for (BasicBlock *ExitingBlock : ExitingBlocks) {
2446     // Get the terminating condition for the loop if possible.  If we
2447     // can, we want to change it to use a post-incremented version of its
2448     // induction variable, to allow coalescing the live ranges for the IV into
2449     // one register value.
2450 
2451     BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2452     if (!TermBr)
2453       continue;
2454     // FIXME: Overly conservative, termination condition could be an 'or' etc..
2455     if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
2456       continue;
2457 
2458     // Search IVUsesByStride to find Cond's IVUse if there is one.
2459     IVStrideUse *CondUse = nullptr;
2460     ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
2461     if (!FindIVUserForCond(Cond, CondUse))
2462       continue;
2463 
2464     // If the trip count is computed in terms of a max (due to ScalarEvolution
2465     // being unable to find a sufficient guard, for example), change the loop
2466     // comparison to use SLT or ULT instead of NE.
2467     // One consequence of doing this now is that it disrupts the count-down
2468     // optimization. That's not always a bad thing though, because in such
2469     // cases it may still be worthwhile to avoid a max.
2470     Cond = OptimizeMax(Cond, CondUse);
2471 
2472     // If this exiting block dominates the latch block, it may also use
2473     // the post-inc value if it won't be shared with other uses.
2474     // Check for dominance.
2475     if (!DT.dominates(ExitingBlock, LatchBlock))
2476       continue;
2477 
2478     // Conservatively avoid trying to use the post-inc value in non-latch
2479     // exits if there may be pre-inc users in intervening blocks.
2480     if (LatchBlock != ExitingBlock)
2481       for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
2482         // Test if the use is reachable from the exiting block. This dominator
2483         // query is a conservative approximation of reachability.
2484         if (&*UI != CondUse &&
2485             !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
2486           // Conservatively assume there may be reuse if the quotient of their
2487           // strides could be a legal scale.
2488           const SCEV *A = IU.getStride(*CondUse, L);
2489           const SCEV *B = IU.getStride(*UI, L);
2490           if (!A || !B) continue;
2491           if (SE.getTypeSizeInBits(A->getType()) !=
2492               SE.getTypeSizeInBits(B->getType())) {
2493             if (SE.getTypeSizeInBits(A->getType()) >
2494                 SE.getTypeSizeInBits(B->getType()))
2495               B = SE.getSignExtendExpr(B, A->getType());
2496             else
2497               A = SE.getSignExtendExpr(A, B->getType());
2498           }
2499           if (const SCEVConstant *D =
2500                 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
2501             const ConstantInt *C = D->getValue();
2502             // Stride of one or negative one can have reuse with non-addresses.
2503             if (C->isOne() || C->isMinusOne())
2504               goto decline_post_inc;
2505             // Avoid weird situations.
2506             if (C->getValue().getSignificantBits() >= 64 ||
2507                 C->getValue().isMinSignedValue())
2508               goto decline_post_inc;
2509             // Check for possible scaled-address reuse.
2510             if (isAddressUse(TTI, UI->getUser(), UI->getOperandValToReplace())) {
2511               MemAccessTy AccessTy = getAccessType(
2512                   TTI, UI->getUser(), UI->getOperandValToReplace());
2513               int64_t Scale = C->getSExtValue();
2514               if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2515                                             /*BaseOffset=*/0,
2516                                             /*HasBaseReg=*/true, Scale,
2517                                             AccessTy.AddrSpace))
2518                 goto decline_post_inc;
2519               Scale = -Scale;
2520               if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2521                                             /*BaseOffset=*/0,
2522                                             /*HasBaseReg=*/true, Scale,
2523                                             AccessTy.AddrSpace))
2524                 goto decline_post_inc;
2525             }
2526           }
2527         }
2528 
2529     LLVM_DEBUG(dbgs() << "  Change loop exiting icmp to use postinc iv: "
2530                       << *Cond << '\n');
2531 
2532     // It's possible for the setcc instruction to be anywhere in the loop, and
2533     // possible for it to have multiple users.  If it is not immediately before
2534     // the exiting block branch, move it.
2535     if (Cond->getNextNonDebugInstruction() != TermBr) {
2536       if (Cond->hasOneUse()) {
2537         Cond->moveBefore(TermBr);
2538       } else {
2539         // Clone the terminating condition and insert into the loopend.
2540         ICmpInst *OldCond = Cond;
2541         Cond = cast<ICmpInst>(Cond->clone());
2542         Cond->setName(L->getHeader()->getName() + ".termcond");
2543         Cond->insertInto(ExitingBlock, TermBr->getIterator());
2544 
2545         // Clone the IVUse, as the old use still exists!
2546         CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
2547         TermBr->replaceUsesOfWith(OldCond, Cond);
2548       }
2549     }
2550 
2551     // If we get to here, we know that we can transform the setcc instruction to
2552     // use the post-incremented version of the IV, allowing us to coalesce the
2553     // live ranges for the IV correctly.
2554     CondUse->transformToPostInc(L);
2555     Changed = true;
2556 
2557     PostIncs.insert(Cond);
2558   decline_post_inc:;
2559   }
2560 
2561   // Determine an insertion point for the loop induction variable increment. It
2562   // must dominate all the post-inc comparisons we just set up, and it must
2563   // dominate the loop latch edge.
2564   IVIncInsertPos = L->getLoopLatch()->getTerminator();
2565   for (Instruction *Inst : PostIncs)
2566     IVIncInsertPos = DT.findNearestCommonDominator(IVIncInsertPos, Inst);
2567 }
2568 
2569 /// Determine if the given use can accommodate a fixup at the given offset and
2570 /// other details. If so, update the use and return true.
2571 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset,
2572                                      bool HasBaseReg, LSRUse::KindType Kind,
2573                                      MemAccessTy AccessTy) {
2574   int64_t NewMinOffset = LU.MinOffset;
2575   int64_t NewMaxOffset = LU.MaxOffset;
2576   MemAccessTy NewAccessTy = AccessTy;
2577 
2578   // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
2579   // something conservative, however this can pessimize in the case that one of
2580   // the uses will have all its uses outside the loop, for example.
2581   if (LU.Kind != Kind)
2582     return false;
2583 
2584   // Check for a mismatched access type, and fall back conservatively as needed.
2585   // TODO: Be less conservative when the type is similar and can use the same
2586   // addressing modes.
2587   if (Kind == LSRUse::Address) {
2588     if (AccessTy.MemTy != LU.AccessTy.MemTy) {
2589       NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(),
2590                                             AccessTy.AddrSpace);
2591     }
2592   }
2593 
2594   // Conservatively assume HasBaseReg is true for now.
2595   if (NewOffset < LU.MinOffset) {
2596     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2597                           LU.MaxOffset - NewOffset, HasBaseReg))
2598       return false;
2599     NewMinOffset = NewOffset;
2600   } else if (NewOffset > LU.MaxOffset) {
2601     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2602                           NewOffset - LU.MinOffset, HasBaseReg))
2603       return false;
2604     NewMaxOffset = NewOffset;
2605   }
2606 
2607   // Update the use.
2608   LU.MinOffset = NewMinOffset;
2609   LU.MaxOffset = NewMaxOffset;
2610   LU.AccessTy = NewAccessTy;
2611   return true;
2612 }
2613 
2614 /// Return an LSRUse index and an offset value for a fixup which needs the given
2615 /// expression, with the given kind and optional access type.  Either reuse an
2616 /// existing use or create a new one, as needed.
2617 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr,
2618                                                LSRUse::KindType Kind,
2619                                                MemAccessTy AccessTy) {
2620   const SCEV *Copy = Expr;
2621   int64_t Offset = ExtractImmediate(Expr, SE);
2622 
2623   // Basic uses can't accept any offset, for example.
2624   if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr,
2625                         Offset, /*HasBaseReg=*/ true)) {
2626     Expr = Copy;
2627     Offset = 0;
2628   }
2629 
2630   std::pair<UseMapTy::iterator, bool> P =
2631     UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0));
2632   if (!P.second) {
2633     // A use already existed with this base.
2634     size_t LUIdx = P.first->second;
2635     LSRUse &LU = Uses[LUIdx];
2636     if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
2637       // Reuse this use.
2638       return std::make_pair(LUIdx, Offset);
2639   }
2640 
2641   // Create a new use.
2642   size_t LUIdx = Uses.size();
2643   P.first->second = LUIdx;
2644   Uses.push_back(LSRUse(Kind, AccessTy));
2645   LSRUse &LU = Uses[LUIdx];
2646 
2647   LU.MinOffset = Offset;
2648   LU.MaxOffset = Offset;
2649   return std::make_pair(LUIdx, Offset);
2650 }
2651 
2652 /// Delete the given use from the Uses list.
2653 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) {
2654   if (&LU != &Uses.back())
2655     std::swap(LU, Uses.back());
2656   Uses.pop_back();
2657 
2658   // Update RegUses.
2659   RegUses.swapAndDropUse(LUIdx, Uses.size());
2660 }
2661 
2662 /// Look for a use distinct from OrigLU which is has a formula that has the same
2663 /// registers as the given formula.
2664 LSRUse *
2665 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
2666                                        const LSRUse &OrigLU) {
2667   // Search all uses for the formula. This could be more clever.
2668   for (LSRUse &LU : Uses) {
2669     // Check whether this use is close enough to OrigLU, to see whether it's
2670     // worthwhile looking through its formulae.
2671     // Ignore ICmpZero uses because they may contain formulae generated by
2672     // GenerateICmpZeroScales, in which case adding fixup offsets may
2673     // be invalid.
2674     if (&LU != &OrigLU &&
2675         LU.Kind != LSRUse::ICmpZero &&
2676         LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
2677         LU.WidestFixupType == OrigLU.WidestFixupType &&
2678         LU.HasFormulaWithSameRegs(OrigF)) {
2679       // Scan through this use's formulae.
2680       for (const Formula &F : LU.Formulae) {
2681         // Check to see if this formula has the same registers and symbols
2682         // as OrigF.
2683         if (F.BaseRegs == OrigF.BaseRegs &&
2684             F.ScaledReg == OrigF.ScaledReg &&
2685             F.BaseGV == OrigF.BaseGV &&
2686             F.Scale == OrigF.Scale &&
2687             F.UnfoldedOffset == OrigF.UnfoldedOffset) {
2688           if (F.BaseOffset == 0)
2689             return &LU;
2690           // This is the formula where all the registers and symbols matched;
2691           // there aren't going to be any others. Since we declined it, we
2692           // can skip the rest of the formulae and proceed to the next LSRUse.
2693           break;
2694         }
2695       }
2696     }
2697   }
2698 
2699   // Nothing looked good.
2700   return nullptr;
2701 }
2702 
2703 void LSRInstance::CollectInterestingTypesAndFactors() {
2704   SmallSetVector<const SCEV *, 4> Strides;
2705 
2706   // Collect interesting types and strides.
2707   SmallVector<const SCEV *, 4> Worklist;
2708   for (const IVStrideUse &U : IU) {
2709     const SCEV *Expr = IU.getExpr(U);
2710     if (!Expr)
2711       continue;
2712 
2713     // Collect interesting types.
2714     Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
2715 
2716     // Add strides for mentioned loops.
2717     Worklist.push_back(Expr);
2718     do {
2719       const SCEV *S = Worklist.pop_back_val();
2720       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2721         if (AR->getLoop() == L)
2722           Strides.insert(AR->getStepRecurrence(SE));
2723         Worklist.push_back(AR->getStart());
2724       } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2725         append_range(Worklist, Add->operands());
2726       }
2727     } while (!Worklist.empty());
2728   }
2729 
2730   // Compute interesting factors from the set of interesting strides.
2731   for (SmallSetVector<const SCEV *, 4>::const_iterator
2732        I = Strides.begin(), E = Strides.end(); I != E; ++I)
2733     for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
2734          std::next(I); NewStrideIter != E; ++NewStrideIter) {
2735       const SCEV *OldStride = *I;
2736       const SCEV *NewStride = *NewStrideIter;
2737 
2738       if (SE.getTypeSizeInBits(OldStride->getType()) !=
2739           SE.getTypeSizeInBits(NewStride->getType())) {
2740         if (SE.getTypeSizeInBits(OldStride->getType()) >
2741             SE.getTypeSizeInBits(NewStride->getType()))
2742           NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
2743         else
2744           OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
2745       }
2746       if (const SCEVConstant *Factor =
2747             dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
2748                                                         SE, true))) {
2749         if (Factor->getAPInt().getSignificantBits() <= 64 && !Factor->isZero())
2750           Factors.insert(Factor->getAPInt().getSExtValue());
2751       } else if (const SCEVConstant *Factor =
2752                    dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
2753                                                                NewStride,
2754                                                                SE, true))) {
2755         if (Factor->getAPInt().getSignificantBits() <= 64 && !Factor->isZero())
2756           Factors.insert(Factor->getAPInt().getSExtValue());
2757       }
2758     }
2759 
2760   // If all uses use the same type, don't bother looking for truncation-based
2761   // reuse.
2762   if (Types.size() == 1)
2763     Types.clear();
2764 
2765   LLVM_DEBUG(print_factors_and_types(dbgs()));
2766 }
2767 
2768 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in
2769 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to
2770 /// IVStrideUses, we could partially skip this.
2771 static User::op_iterator
2772 findIVOperand(User::op_iterator OI, User::op_iterator OE,
2773               Loop *L, ScalarEvolution &SE) {
2774   for(; OI != OE; ++OI) {
2775     if (Instruction *Oper = dyn_cast<Instruction>(*OI)) {
2776       if (!SE.isSCEVable(Oper->getType()))
2777         continue;
2778 
2779       if (const SCEVAddRecExpr *AR =
2780           dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) {
2781         if (AR->getLoop() == L)
2782           break;
2783       }
2784     }
2785   }
2786   return OI;
2787 }
2788 
2789 /// IVChain logic must consistently peek base TruncInst operands, so wrap it in
2790 /// a convenient helper.
2791 static Value *getWideOperand(Value *Oper) {
2792   if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper))
2793     return Trunc->getOperand(0);
2794   return Oper;
2795 }
2796 
2797 /// Return true if we allow an IV chain to include both types.
2798 static bool isCompatibleIVType(Value *LVal, Value *RVal) {
2799   Type *LType = LVal->getType();
2800   Type *RType = RVal->getType();
2801   return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy() &&
2802                               // Different address spaces means (possibly)
2803                               // different types of the pointer implementation,
2804                               // e.g. i16 vs i32 so disallow that.
2805                               (LType->getPointerAddressSpace() ==
2806                                RType->getPointerAddressSpace()));
2807 }
2808 
2809 /// Return an approximation of this SCEV expression's "base", or NULL for any
2810 /// constant. Returning the expression itself is conservative. Returning a
2811 /// deeper subexpression is more precise and valid as long as it isn't less
2812 /// complex than another subexpression. For expressions involving multiple
2813 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids
2814 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i],
2815 /// IVInc==b-a.
2816 ///
2817 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost
2818 /// SCEVUnknown, we simply return the rightmost SCEV operand.
2819 static const SCEV *getExprBase(const SCEV *S) {
2820   switch (S->getSCEVType()) {
2821   default: // including scUnknown.
2822     return S;
2823   case scConstant:
2824   case scVScale:
2825     return nullptr;
2826   case scTruncate:
2827     return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand());
2828   case scZeroExtend:
2829     return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand());
2830   case scSignExtend:
2831     return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand());
2832   case scAddExpr: {
2833     // Skip over scaled operands (scMulExpr) to follow add operands as long as
2834     // there's nothing more complex.
2835     // FIXME: not sure if we want to recognize negation.
2836     const SCEVAddExpr *Add = cast<SCEVAddExpr>(S);
2837     for (const SCEV *SubExpr : reverse(Add->operands())) {
2838       if (SubExpr->getSCEVType() == scAddExpr)
2839         return getExprBase(SubExpr);
2840 
2841       if (SubExpr->getSCEVType() != scMulExpr)
2842         return SubExpr;
2843     }
2844     return S; // all operands are scaled, be conservative.
2845   }
2846   case scAddRecExpr:
2847     return getExprBase(cast<SCEVAddRecExpr>(S)->getStart());
2848   }
2849   llvm_unreachable("Unknown SCEV kind!");
2850 }
2851 
2852 /// Return true if the chain increment is profitable to expand into a loop
2853 /// invariant value, which may require its own register. A profitable chain
2854 /// increment will be an offset relative to the same base. We allow such offsets
2855 /// to potentially be used as chain increment as long as it's not obviously
2856 /// expensive to expand using real instructions.
2857 bool IVChain::isProfitableIncrement(const SCEV *OperExpr,
2858                                     const SCEV *IncExpr,
2859                                     ScalarEvolution &SE) {
2860   // Aggressively form chains when -stress-ivchain.
2861   if (StressIVChain)
2862     return true;
2863 
2864   // Do not replace a constant offset from IV head with a nonconstant IV
2865   // increment.
2866   if (!isa<SCEVConstant>(IncExpr)) {
2867     const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand));
2868     if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr)))
2869       return false;
2870   }
2871 
2872   SmallPtrSet<const SCEV*, 8> Processed;
2873   return !isHighCostExpansion(IncExpr, Processed, SE);
2874 }
2875 
2876 /// Return true if the number of registers needed for the chain is estimated to
2877 /// be less than the number required for the individual IV users. First prohibit
2878 /// any IV users that keep the IV live across increments (the Users set should
2879 /// be empty). Next count the number and type of increments in the chain.
2880 ///
2881 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't
2882 /// effectively use postinc addressing modes. Only consider it profitable it the
2883 /// increments can be computed in fewer registers when chained.
2884 ///
2885 /// TODO: Consider IVInc free if it's already used in another chains.
2886 static bool isProfitableChain(IVChain &Chain,
2887                               SmallPtrSetImpl<Instruction *> &Users,
2888                               ScalarEvolution &SE,
2889                               const TargetTransformInfo &TTI) {
2890   if (StressIVChain)
2891     return true;
2892 
2893   if (!Chain.hasIncs())
2894     return false;
2895 
2896   if (!Users.empty()) {
2897     LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n";
2898                for (Instruction *Inst
2899                     : Users) { dbgs() << "  " << *Inst << "\n"; });
2900     return false;
2901   }
2902   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
2903 
2904   // The chain itself may require a register, so intialize cost to 1.
2905   int cost = 1;
2906 
2907   // A complete chain likely eliminates the need for keeping the original IV in
2908   // a register. LSR does not currently know how to form a complete chain unless
2909   // the header phi already exists.
2910   if (isa<PHINode>(Chain.tailUserInst())
2911       && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) {
2912     --cost;
2913   }
2914   const SCEV *LastIncExpr = nullptr;
2915   unsigned NumConstIncrements = 0;
2916   unsigned NumVarIncrements = 0;
2917   unsigned NumReusedIncrements = 0;
2918 
2919   if (TTI.isProfitableLSRChainElement(Chain.Incs[0].UserInst))
2920     return true;
2921 
2922   for (const IVInc &Inc : Chain) {
2923     if (TTI.isProfitableLSRChainElement(Inc.UserInst))
2924       return true;
2925     if (Inc.IncExpr->isZero())
2926       continue;
2927 
2928     // Incrementing by zero or some constant is neutral. We assume constants can
2929     // be folded into an addressing mode or an add's immediate operand.
2930     if (isa<SCEVConstant>(Inc.IncExpr)) {
2931       ++NumConstIncrements;
2932       continue;
2933     }
2934 
2935     if (Inc.IncExpr == LastIncExpr)
2936       ++NumReusedIncrements;
2937     else
2938       ++NumVarIncrements;
2939 
2940     LastIncExpr = Inc.IncExpr;
2941   }
2942   // An IV chain with a single increment is handled by LSR's postinc
2943   // uses. However, a chain with multiple increments requires keeping the IV's
2944   // value live longer than it needs to be if chained.
2945   if (NumConstIncrements > 1)
2946     --cost;
2947 
2948   // Materializing increment expressions in the preheader that didn't exist in
2949   // the original code may cost a register. For example, sign-extended array
2950   // indices can produce ridiculous increments like this:
2951   // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
2952   cost += NumVarIncrements;
2953 
2954   // Reusing variable increments likely saves a register to hold the multiple of
2955   // the stride.
2956   cost -= NumReusedIncrements;
2957 
2958   LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost
2959                     << "\n");
2960 
2961   return cost < 0;
2962 }
2963 
2964 /// Add this IV user to an existing chain or make it the head of a new chain.
2965 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper,
2966                                    SmallVectorImpl<ChainUsers> &ChainUsersVec) {
2967   // When IVs are used as types of varying widths, they are generally converted
2968   // to a wider type with some uses remaining narrow under a (free) trunc.
2969   Value *const NextIV = getWideOperand(IVOper);
2970   const SCEV *const OperExpr = SE.getSCEV(NextIV);
2971   const SCEV *const OperExprBase = getExprBase(OperExpr);
2972 
2973   // Visit all existing chains. Check if its IVOper can be computed as a
2974   // profitable loop invariant increment from the last link in the Chain.
2975   unsigned ChainIdx = 0, NChains = IVChainVec.size();
2976   const SCEV *LastIncExpr = nullptr;
2977   for (; ChainIdx < NChains; ++ChainIdx) {
2978     IVChain &Chain = IVChainVec[ChainIdx];
2979 
2980     // Prune the solution space aggressively by checking that both IV operands
2981     // are expressions that operate on the same unscaled SCEVUnknown. This
2982     // "base" will be canceled by the subsequent getMinusSCEV call. Checking
2983     // first avoids creating extra SCEV expressions.
2984     if (!StressIVChain && Chain.ExprBase != OperExprBase)
2985       continue;
2986 
2987     Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand);
2988     if (!isCompatibleIVType(PrevIV, NextIV))
2989       continue;
2990 
2991     // A phi node terminates a chain.
2992     if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst()))
2993       continue;
2994 
2995     // The increment must be loop-invariant so it can be kept in a register.
2996     const SCEV *PrevExpr = SE.getSCEV(PrevIV);
2997     const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr);
2998     if (isa<SCEVCouldNotCompute>(IncExpr) || !SE.isLoopInvariant(IncExpr, L))
2999       continue;
3000 
3001     if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) {
3002       LastIncExpr = IncExpr;
3003       break;
3004     }
3005   }
3006   // If we haven't found a chain, create a new one, unless we hit the max. Don't
3007   // bother for phi nodes, because they must be last in the chain.
3008   if (ChainIdx == NChains) {
3009     if (isa<PHINode>(UserInst))
3010       return;
3011     if (NChains >= MaxChains && !StressIVChain) {
3012       LLVM_DEBUG(dbgs() << "IV Chain Limit\n");
3013       return;
3014     }
3015     LastIncExpr = OperExpr;
3016     // IVUsers may have skipped over sign/zero extensions. We don't currently
3017     // attempt to form chains involving extensions unless they can be hoisted
3018     // into this loop's AddRec.
3019     if (!isa<SCEVAddRecExpr>(LastIncExpr))
3020       return;
3021     ++NChains;
3022     IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr),
3023                                  OperExprBase));
3024     ChainUsersVec.resize(NChains);
3025     LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst
3026                       << ") IV=" << *LastIncExpr << "\n");
3027   } else {
3028     LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << "  Inc: (" << *UserInst
3029                       << ") IV+" << *LastIncExpr << "\n");
3030     // Add this IV user to the end of the chain.
3031     IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr));
3032   }
3033   IVChain &Chain = IVChainVec[ChainIdx];
3034 
3035   SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers;
3036   // This chain's NearUsers become FarUsers.
3037   if (!LastIncExpr->isZero()) {
3038     ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(),
3039                                             NearUsers.end());
3040     NearUsers.clear();
3041   }
3042 
3043   // All other uses of IVOperand become near uses of the chain.
3044   // We currently ignore intermediate values within SCEV expressions, assuming
3045   // they will eventually be used be the current chain, or can be computed
3046   // from one of the chain increments. To be more precise we could
3047   // transitively follow its user and only add leaf IV users to the set.
3048   for (User *U : IVOper->users()) {
3049     Instruction *OtherUse = dyn_cast<Instruction>(U);
3050     if (!OtherUse)
3051       continue;
3052     // Uses in the chain will no longer be uses if the chain is formed.
3053     // Include the head of the chain in this iteration (not Chain.begin()).
3054     IVChain::const_iterator IncIter = Chain.Incs.begin();
3055     IVChain::const_iterator IncEnd = Chain.Incs.end();
3056     for( ; IncIter != IncEnd; ++IncIter) {
3057       if (IncIter->UserInst == OtherUse)
3058         break;
3059     }
3060     if (IncIter != IncEnd)
3061       continue;
3062 
3063     if (SE.isSCEVable(OtherUse->getType())
3064         && !isa<SCEVUnknown>(SE.getSCEV(OtherUse))
3065         && IU.isIVUserOrOperand(OtherUse)) {
3066       continue;
3067     }
3068     NearUsers.insert(OtherUse);
3069   }
3070 
3071   // Since this user is part of the chain, it's no longer considered a use
3072   // of the chain.
3073   ChainUsersVec[ChainIdx].FarUsers.erase(UserInst);
3074 }
3075 
3076 /// Populate the vector of Chains.
3077 ///
3078 /// This decreases ILP at the architecture level. Targets with ample registers,
3079 /// multiple memory ports, and no register renaming probably don't want
3080 /// this. However, such targets should probably disable LSR altogether.
3081 ///
3082 /// The job of LSR is to make a reasonable choice of induction variables across
3083 /// the loop. Subsequent passes can easily "unchain" computation exposing more
3084 /// ILP *within the loop* if the target wants it.
3085 ///
3086 /// Finding the best IV chain is potentially a scheduling problem. Since LSR
3087 /// will not reorder memory operations, it will recognize this as a chain, but
3088 /// will generate redundant IV increments. Ideally this would be corrected later
3089 /// by a smart scheduler:
3090 ///        = A[i]
3091 ///        = A[i+x]
3092 /// A[i]   =
3093 /// A[i+x] =
3094 ///
3095 /// TODO: Walk the entire domtree within this loop, not just the path to the
3096 /// loop latch. This will discover chains on side paths, but requires
3097 /// maintaining multiple copies of the Chains state.
3098 void LSRInstance::CollectChains() {
3099   LLVM_DEBUG(dbgs() << "Collecting IV Chains.\n");
3100   SmallVector<ChainUsers, 8> ChainUsersVec;
3101 
3102   SmallVector<BasicBlock *,8> LatchPath;
3103   BasicBlock *LoopHeader = L->getHeader();
3104   for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch());
3105        Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) {
3106     LatchPath.push_back(Rung->getBlock());
3107   }
3108   LatchPath.push_back(LoopHeader);
3109 
3110   // Walk the instruction stream from the loop header to the loop latch.
3111   for (BasicBlock *BB : reverse(LatchPath)) {
3112     for (Instruction &I : *BB) {
3113       // Skip instructions that weren't seen by IVUsers analysis.
3114       if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I))
3115         continue;
3116 
3117       // Ignore users that are part of a SCEV expression. This way we only
3118       // consider leaf IV Users. This effectively rediscovers a portion of
3119       // IVUsers analysis but in program order this time.
3120       if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I)))
3121           continue;
3122 
3123       // Remove this instruction from any NearUsers set it may be in.
3124       for (unsigned ChainIdx = 0, NChains = IVChainVec.size();
3125            ChainIdx < NChains; ++ChainIdx) {
3126         ChainUsersVec[ChainIdx].NearUsers.erase(&I);
3127       }
3128       // Search for operands that can be chained.
3129       SmallPtrSet<Instruction*, 4> UniqueOperands;
3130       User::op_iterator IVOpEnd = I.op_end();
3131       User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE);
3132       while (IVOpIter != IVOpEnd) {
3133         Instruction *IVOpInst = cast<Instruction>(*IVOpIter);
3134         if (UniqueOperands.insert(IVOpInst).second)
3135           ChainInstruction(&I, IVOpInst, ChainUsersVec);
3136         IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
3137       }
3138     } // Continue walking down the instructions.
3139   } // Continue walking down the domtree.
3140   // Visit phi backedges to determine if the chain can generate the IV postinc.
3141   for (PHINode &PN : L->getHeader()->phis()) {
3142     if (!SE.isSCEVable(PN.getType()))
3143       continue;
3144 
3145     Instruction *IncV =
3146         dyn_cast<Instruction>(PN.getIncomingValueForBlock(L->getLoopLatch()));
3147     if (IncV)
3148       ChainInstruction(&PN, IncV, ChainUsersVec);
3149   }
3150   // Remove any unprofitable chains.
3151   unsigned ChainIdx = 0;
3152   for (unsigned UsersIdx = 0, NChains = IVChainVec.size();
3153        UsersIdx < NChains; ++UsersIdx) {
3154     if (!isProfitableChain(IVChainVec[UsersIdx],
3155                            ChainUsersVec[UsersIdx].FarUsers, SE, TTI))
3156       continue;
3157     // Preserve the chain at UsesIdx.
3158     if (ChainIdx != UsersIdx)
3159       IVChainVec[ChainIdx] = IVChainVec[UsersIdx];
3160     FinalizeChain(IVChainVec[ChainIdx]);
3161     ++ChainIdx;
3162   }
3163   IVChainVec.resize(ChainIdx);
3164 }
3165 
3166 void LSRInstance::FinalizeChain(IVChain &Chain) {
3167   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
3168   LLVM_DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n");
3169 
3170   for (const IVInc &Inc : Chain) {
3171     LLVM_DEBUG(dbgs() << "        Inc: " << *Inc.UserInst << "\n");
3172     auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand);
3173     assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand");
3174     IVIncSet.insert(UseI);
3175   }
3176 }
3177 
3178 /// Return true if the IVInc can be folded into an addressing mode.
3179 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
3180                              Value *Operand, const TargetTransformInfo &TTI) {
3181   const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr);
3182   if (!IncConst || !isAddressUse(TTI, UserInst, Operand))
3183     return false;
3184 
3185   if (IncConst->getAPInt().getSignificantBits() > 64)
3186     return false;
3187 
3188   MemAccessTy AccessTy = getAccessType(TTI, UserInst, Operand);
3189   int64_t IncOffset = IncConst->getValue()->getSExtValue();
3190   if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr,
3191                         IncOffset, /*HasBaseReg=*/false))
3192     return false;
3193 
3194   return true;
3195 }
3196 
3197 /// Generate an add or subtract for each IVInc in a chain to materialize the IV
3198 /// user's operand from the previous IV user's operand.
3199 void LSRInstance::GenerateIVChain(const IVChain &Chain,
3200                                   SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
3201   // Find the new IVOperand for the head of the chain. It may have been replaced
3202   // by LSR.
3203   const IVInc &Head = Chain.Incs[0];
3204   User::op_iterator IVOpEnd = Head.UserInst->op_end();
3205   // findIVOperand returns IVOpEnd if it can no longer find a valid IV user.
3206   User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(),
3207                                              IVOpEnd, L, SE);
3208   Value *IVSrc = nullptr;
3209   while (IVOpIter != IVOpEnd) {
3210     IVSrc = getWideOperand(*IVOpIter);
3211 
3212     // If this operand computes the expression that the chain needs, we may use
3213     // it. (Check this after setting IVSrc which is used below.)
3214     //
3215     // Note that if Head.IncExpr is wider than IVSrc, then this phi is too
3216     // narrow for the chain, so we can no longer use it. We do allow using a
3217     // wider phi, assuming the LSR checked for free truncation. In that case we
3218     // should already have a truncate on this operand such that
3219     // getSCEV(IVSrc) == IncExpr.
3220     if (SE.getSCEV(*IVOpIter) == Head.IncExpr
3221         || SE.getSCEV(IVSrc) == Head.IncExpr) {
3222       break;
3223     }
3224     IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
3225   }
3226   if (IVOpIter == IVOpEnd) {
3227     // Gracefully give up on this chain.
3228     LLVM_DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n");
3229     return;
3230   }
3231   assert(IVSrc && "Failed to find IV chain source");
3232 
3233   LLVM_DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n");
3234   Type *IVTy = IVSrc->getType();
3235   Type *IntTy = SE.getEffectiveSCEVType(IVTy);
3236   const SCEV *LeftOverExpr = nullptr;
3237   for (const IVInc &Inc : Chain) {
3238     Instruction *InsertPt = Inc.UserInst;
3239     if (isa<PHINode>(InsertPt))
3240       InsertPt = L->getLoopLatch()->getTerminator();
3241 
3242     // IVOper will replace the current IV User's operand. IVSrc is the IV
3243     // value currently held in a register.
3244     Value *IVOper = IVSrc;
3245     if (!Inc.IncExpr->isZero()) {
3246       // IncExpr was the result of subtraction of two narrow values, so must
3247       // be signed.
3248       const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy);
3249       LeftOverExpr = LeftOverExpr ?
3250         SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr;
3251     }
3252     if (LeftOverExpr && !LeftOverExpr->isZero()) {
3253       // Expand the IV increment.
3254       Rewriter.clearPostInc();
3255       Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt);
3256       const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc),
3257                                              SE.getUnknown(IncV));
3258       IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt);
3259 
3260       // If an IV increment can't be folded, use it as the next IV value.
3261       if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) {
3262         assert(IVTy == IVOper->getType() && "inconsistent IV increment type");
3263         IVSrc = IVOper;
3264         LeftOverExpr = nullptr;
3265       }
3266     }
3267     Type *OperTy = Inc.IVOperand->getType();
3268     if (IVTy != OperTy) {
3269       assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) &&
3270              "cannot extend a chained IV");
3271       IRBuilder<> Builder(InsertPt);
3272       IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain");
3273     }
3274     Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper);
3275     if (auto *OperandIsInstr = dyn_cast<Instruction>(Inc.IVOperand))
3276       DeadInsts.emplace_back(OperandIsInstr);
3277   }
3278   // If LSR created a new, wider phi, we may also replace its postinc. We only
3279   // do this if we also found a wide value for the head of the chain.
3280   if (isa<PHINode>(Chain.tailUserInst())) {
3281     for (PHINode &Phi : L->getHeader()->phis()) {
3282       if (!isCompatibleIVType(&Phi, IVSrc))
3283         continue;
3284       Instruction *PostIncV = dyn_cast<Instruction>(
3285           Phi.getIncomingValueForBlock(L->getLoopLatch()));
3286       if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc)))
3287         continue;
3288       Value *IVOper = IVSrc;
3289       Type *PostIncTy = PostIncV->getType();
3290       if (IVTy != PostIncTy) {
3291         assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types");
3292         IRBuilder<> Builder(L->getLoopLatch()->getTerminator());
3293         Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc());
3294         IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain");
3295       }
3296       Phi.replaceUsesOfWith(PostIncV, IVOper);
3297       DeadInsts.emplace_back(PostIncV);
3298     }
3299   }
3300 }
3301 
3302 void LSRInstance::CollectFixupsAndInitialFormulae() {
3303   BranchInst *ExitBranch = nullptr;
3304   bool SaveCmp = TTI.canSaveCmp(L, &ExitBranch, &SE, &LI, &DT, &AC, &TLI);
3305 
3306   // For calculating baseline cost
3307   SmallPtrSet<const SCEV *, 16> Regs;
3308   DenseSet<const SCEV *> VisitedRegs;
3309   DenseSet<size_t> VisitedLSRUse;
3310 
3311   for (const IVStrideUse &U : IU) {
3312     Instruction *UserInst = U.getUser();
3313     // Skip IV users that are part of profitable IV Chains.
3314     User::op_iterator UseI =
3315         find(UserInst->operands(), U.getOperandValToReplace());
3316     assert(UseI != UserInst->op_end() && "cannot find IV operand");
3317     if (IVIncSet.count(UseI)) {
3318       LLVM_DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n');
3319       continue;
3320     }
3321 
3322     LSRUse::KindType Kind = LSRUse::Basic;
3323     MemAccessTy AccessTy;
3324     if (isAddressUse(TTI, UserInst, U.getOperandValToReplace())) {
3325       Kind = LSRUse::Address;
3326       AccessTy = getAccessType(TTI, UserInst, U.getOperandValToReplace());
3327     }
3328 
3329     const SCEV *S = IU.getExpr(U);
3330     if (!S)
3331       continue;
3332     PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops();
3333 
3334     // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
3335     // (N - i == 0), and this allows (N - i) to be the expression that we work
3336     // with rather than just N or i, so we can consider the register
3337     // requirements for both N and i at the same time. Limiting this code to
3338     // equality icmps is not a problem because all interesting loops use
3339     // equality icmps, thanks to IndVarSimplify.
3340     if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst)) {
3341       // If CI can be saved in some target, like replaced inside hardware loop
3342       // in PowerPC, no need to generate initial formulae for it.
3343       if (SaveCmp && CI == dyn_cast<ICmpInst>(ExitBranch->getCondition()))
3344         continue;
3345       if (CI->isEquality()) {
3346         // Swap the operands if needed to put the OperandValToReplace on the
3347         // left, for consistency.
3348         Value *NV = CI->getOperand(1);
3349         if (NV == U.getOperandValToReplace()) {
3350           CI->setOperand(1, CI->getOperand(0));
3351           CI->setOperand(0, NV);
3352           NV = CI->getOperand(1);
3353           Changed = true;
3354         }
3355 
3356         // x == y  -->  x - y == 0
3357         const SCEV *N = SE.getSCEV(NV);
3358         if (SE.isLoopInvariant(N, L) && Rewriter.isSafeToExpand(N) &&
3359             (!NV->getType()->isPointerTy() ||
3360              SE.getPointerBase(N) == SE.getPointerBase(S))) {
3361           // S is normalized, so normalize N before folding it into S
3362           // to keep the result normalized.
3363           N = normalizeForPostIncUse(N, TmpPostIncLoops, SE);
3364           if (!N)
3365             continue;
3366           Kind = LSRUse::ICmpZero;
3367           S = SE.getMinusSCEV(N, S);
3368         } else if (L->isLoopInvariant(NV) &&
3369                    (!isa<Instruction>(NV) ||
3370                     DT.dominates(cast<Instruction>(NV), L->getHeader())) &&
3371                    !NV->getType()->isPointerTy()) {
3372           // If we can't generally expand the expression (e.g. it contains
3373           // a divide), but it is already at a loop invariant point before the
3374           // loop, wrap it in an unknown (to prevent the expander from trying
3375           // to re-expand in a potentially unsafe way.)  The restriction to
3376           // integer types is required because the unknown hides the base, and
3377           // SCEV can't compute the difference of two unknown pointers.
3378           N = SE.getUnknown(NV);
3379           N = normalizeForPostIncUse(N, TmpPostIncLoops, SE);
3380           if (!N)
3381             continue;
3382           Kind = LSRUse::ICmpZero;
3383           S = SE.getMinusSCEV(N, S);
3384           assert(!isa<SCEVCouldNotCompute>(S));
3385         }
3386 
3387         // -1 and the negations of all interesting strides (except the negation
3388         // of -1) are now also interesting.
3389         for (size_t i = 0, e = Factors.size(); i != e; ++i)
3390           if (Factors[i] != -1)
3391             Factors.insert(-(uint64_t)Factors[i]);
3392         Factors.insert(-1);
3393       }
3394     }
3395 
3396     // Get or create an LSRUse.
3397     std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
3398     size_t LUIdx = P.first;
3399     int64_t Offset = P.second;
3400     LSRUse &LU = Uses[LUIdx];
3401 
3402     // Record the fixup.
3403     LSRFixup &LF = LU.getNewFixup();
3404     LF.UserInst = UserInst;
3405     LF.OperandValToReplace = U.getOperandValToReplace();
3406     LF.PostIncLoops = TmpPostIncLoops;
3407     LF.Offset = Offset;
3408     LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3409 
3410     // Create SCEV as Formula for calculating baseline cost
3411     if (!VisitedLSRUse.count(LUIdx) && !LF.isUseFullyOutsideLoop(L)) {
3412       Formula F;
3413       F.initialMatch(S, L, SE);
3414       BaselineCost.RateFormula(F, Regs, VisitedRegs, LU);
3415       VisitedLSRUse.insert(LUIdx);
3416     }
3417 
3418     if (!LU.WidestFixupType ||
3419         SE.getTypeSizeInBits(LU.WidestFixupType) <
3420         SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3421       LU.WidestFixupType = LF.OperandValToReplace->getType();
3422 
3423     // If this is the first use of this LSRUse, give it a formula.
3424     if (LU.Formulae.empty()) {
3425       InsertInitialFormula(S, LU, LUIdx);
3426       CountRegisters(LU.Formulae.back(), LUIdx);
3427     }
3428   }
3429 
3430   LLVM_DEBUG(print_fixups(dbgs()));
3431 }
3432 
3433 /// Insert a formula for the given expression into the given use, separating out
3434 /// loop-variant portions from loop-invariant and loop-computable portions.
3435 void LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU,
3436                                        size_t LUIdx) {
3437   // Mark uses whose expressions cannot be expanded.
3438   if (!Rewriter.isSafeToExpand(S))
3439     LU.RigidFormula = true;
3440 
3441   Formula F;
3442   F.initialMatch(S, L, SE);
3443   bool Inserted = InsertFormula(LU, LUIdx, F);
3444   assert(Inserted && "Initial formula already exists!"); (void)Inserted;
3445 }
3446 
3447 /// Insert a simple single-register formula for the given expression into the
3448 /// given use.
3449 void
3450 LSRInstance::InsertSupplementalFormula(const SCEV *S,
3451                                        LSRUse &LU, size_t LUIdx) {
3452   Formula F;
3453   F.BaseRegs.push_back(S);
3454   F.HasBaseReg = true;
3455   bool Inserted = InsertFormula(LU, LUIdx, F);
3456   assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
3457 }
3458 
3459 /// Note which registers are used by the given formula, updating RegUses.
3460 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
3461   if (F.ScaledReg)
3462     RegUses.countRegister(F.ScaledReg, LUIdx);
3463   for (const SCEV *BaseReg : F.BaseRegs)
3464     RegUses.countRegister(BaseReg, LUIdx);
3465 }
3466 
3467 /// If the given formula has not yet been inserted, add it to the list, and
3468 /// return true. Return false otherwise.
3469 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
3470   // Do not insert formula that we will not be able to expand.
3471   assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) &&
3472          "Formula is illegal");
3473 
3474   if (!LU.InsertFormula(F, *L))
3475     return false;
3476 
3477   CountRegisters(F, LUIdx);
3478   return true;
3479 }
3480 
3481 /// Check for other uses of loop-invariant values which we're tracking. These
3482 /// other uses will pin these values in registers, making them less profitable
3483 /// for elimination.
3484 /// TODO: This currently misses non-constant addrec step registers.
3485 /// TODO: Should this give more weight to users inside the loop?
3486 void
3487 LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
3488   SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
3489   SmallPtrSet<const SCEV *, 32> Visited;
3490 
3491   while (!Worklist.empty()) {
3492     const SCEV *S = Worklist.pop_back_val();
3493 
3494     // Don't process the same SCEV twice
3495     if (!Visited.insert(S).second)
3496       continue;
3497 
3498     if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
3499       append_range(Worklist, N->operands());
3500     else if (const SCEVIntegralCastExpr *C = dyn_cast<SCEVIntegralCastExpr>(S))
3501       Worklist.push_back(C->getOperand());
3502     else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
3503       Worklist.push_back(D->getLHS());
3504       Worklist.push_back(D->getRHS());
3505     } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) {
3506       const Value *V = US->getValue();
3507       if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
3508         // Look for instructions defined outside the loop.
3509         if (L->contains(Inst)) continue;
3510       } else if (isa<Constant>(V))
3511         // Constants can be re-materialized.
3512         continue;
3513       for (const Use &U : V->uses()) {
3514         const Instruction *UserInst = dyn_cast<Instruction>(U.getUser());
3515         // Ignore non-instructions.
3516         if (!UserInst)
3517           continue;
3518         // Don't bother if the instruction is an EHPad.
3519         if (UserInst->isEHPad())
3520           continue;
3521         // Ignore instructions in other functions (as can happen with
3522         // Constants).
3523         if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
3524           continue;
3525         // Ignore instructions not dominated by the loop.
3526         const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
3527           UserInst->getParent() :
3528           cast<PHINode>(UserInst)->getIncomingBlock(
3529             PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
3530         if (!DT.dominates(L->getHeader(), UseBB))
3531           continue;
3532         // Don't bother if the instruction is in a BB which ends in an EHPad.
3533         if (UseBB->getTerminator()->isEHPad())
3534           continue;
3535 
3536         // Ignore cases in which the currently-examined value could come from
3537         // a basic block terminated with an EHPad. This checks all incoming
3538         // blocks of the phi node since it is possible that the same incoming
3539         // value comes from multiple basic blocks, only some of which may end
3540         // in an EHPad. If any of them do, a subsequent rewrite attempt by this
3541         // pass would try to insert instructions into an EHPad, hitting an
3542         // assertion.
3543         if (isa<PHINode>(UserInst)) {
3544           const auto *PhiNode = cast<PHINode>(UserInst);
3545           bool HasIncompatibleEHPTerminatedBlock = false;
3546           llvm::Value *ExpectedValue = U;
3547           for (unsigned int I = 0; I < PhiNode->getNumIncomingValues(); I++) {
3548             if (PhiNode->getIncomingValue(I) == ExpectedValue) {
3549               if (PhiNode->getIncomingBlock(I)->getTerminator()->isEHPad()) {
3550                 HasIncompatibleEHPTerminatedBlock = true;
3551                 break;
3552               }
3553             }
3554           }
3555           if (HasIncompatibleEHPTerminatedBlock) {
3556             continue;
3557           }
3558         }
3559 
3560         // Don't bother rewriting PHIs in catchswitch blocks.
3561         if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator()))
3562           continue;
3563         // Ignore uses which are part of other SCEV expressions, to avoid
3564         // analyzing them multiple times.
3565         if (SE.isSCEVable(UserInst->getType())) {
3566           const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
3567           // If the user is a no-op, look through to its uses.
3568           if (!isa<SCEVUnknown>(UserS))
3569             continue;
3570           if (UserS == US) {
3571             Worklist.push_back(
3572               SE.getUnknown(const_cast<Instruction *>(UserInst)));
3573             continue;
3574           }
3575         }
3576         // Ignore icmp instructions which are already being analyzed.
3577         if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
3578           unsigned OtherIdx = !U.getOperandNo();
3579           Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
3580           if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L))
3581             continue;
3582         }
3583 
3584         std::pair<size_t, int64_t> P = getUse(
3585             S, LSRUse::Basic, MemAccessTy());
3586         size_t LUIdx = P.first;
3587         int64_t Offset = P.second;
3588         LSRUse &LU = Uses[LUIdx];
3589         LSRFixup &LF = LU.getNewFixup();
3590         LF.UserInst = const_cast<Instruction *>(UserInst);
3591         LF.OperandValToReplace = U;
3592         LF.Offset = Offset;
3593         LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3594         if (!LU.WidestFixupType ||
3595             SE.getTypeSizeInBits(LU.WidestFixupType) <
3596             SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3597           LU.WidestFixupType = LF.OperandValToReplace->getType();
3598         InsertSupplementalFormula(US, LU, LUIdx);
3599         CountRegisters(LU.Formulae.back(), Uses.size() - 1);
3600         break;
3601       }
3602     }
3603   }
3604 }
3605 
3606 /// Split S into subexpressions which can be pulled out into separate
3607 /// registers. If C is non-null, multiply each subexpression by C.
3608 ///
3609 /// Return remainder expression after factoring the subexpressions captured by
3610 /// Ops. If Ops is complete, return NULL.
3611 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C,
3612                                    SmallVectorImpl<const SCEV *> &Ops,
3613                                    const Loop *L,
3614                                    ScalarEvolution &SE,
3615                                    unsigned Depth = 0) {
3616   // Arbitrarily cap recursion to protect compile time.
3617   if (Depth >= 3)
3618     return S;
3619 
3620   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3621     // Break out add operands.
3622     for (const SCEV *S : Add->operands()) {
3623       const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1);
3624       if (Remainder)
3625         Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3626     }
3627     return nullptr;
3628   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
3629     // Split a non-zero base out of an addrec.
3630     if (AR->getStart()->isZero() || !AR->isAffine())
3631       return S;
3632 
3633     const SCEV *Remainder = CollectSubexprs(AR->getStart(),
3634                                             C, Ops, L, SE, Depth+1);
3635     // Split the non-zero AddRec unless it is part of a nested recurrence that
3636     // does not pertain to this loop.
3637     if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) {
3638       Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3639       Remainder = nullptr;
3640     }
3641     if (Remainder != AR->getStart()) {
3642       if (!Remainder)
3643         Remainder = SE.getConstant(AR->getType(), 0);
3644       return SE.getAddRecExpr(Remainder,
3645                               AR->getStepRecurrence(SE),
3646                               AR->getLoop(),
3647                               //FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
3648                               SCEV::FlagAnyWrap);
3649     }
3650   } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3651     // Break (C * (a + b + c)) into C*a + C*b + C*c.
3652     if (Mul->getNumOperands() != 2)
3653       return S;
3654     if (const SCEVConstant *Op0 =
3655         dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3656       C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0;
3657       const SCEV *Remainder =
3658         CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1);
3659       if (Remainder)
3660         Ops.push_back(SE.getMulExpr(C, Remainder));
3661       return nullptr;
3662     }
3663   }
3664   return S;
3665 }
3666 
3667 /// Return true if the SCEV represents a value that may end up as a
3668 /// post-increment operation.
3669 static bool mayUsePostIncMode(const TargetTransformInfo &TTI,
3670                               LSRUse &LU, const SCEV *S, const Loop *L,
3671                               ScalarEvolution &SE) {
3672   if (LU.Kind != LSRUse::Address ||
3673       !LU.AccessTy.getType()->isIntOrIntVectorTy())
3674     return false;
3675   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
3676   if (!AR)
3677     return false;
3678   const SCEV *LoopStep = AR->getStepRecurrence(SE);
3679   if (!isa<SCEVConstant>(LoopStep))
3680     return false;
3681   // Check if a post-indexed load/store can be used.
3682   if (TTI.isIndexedLoadLegal(TTI.MIM_PostInc, AR->getType()) ||
3683       TTI.isIndexedStoreLegal(TTI.MIM_PostInc, AR->getType())) {
3684     const SCEV *LoopStart = AR->getStart();
3685     if (!isa<SCEVConstant>(LoopStart) && SE.isLoopInvariant(LoopStart, L))
3686       return true;
3687   }
3688   return false;
3689 }
3690 
3691 /// Helper function for LSRInstance::GenerateReassociations.
3692 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
3693                                              const Formula &Base,
3694                                              unsigned Depth, size_t Idx,
3695                                              bool IsScaledReg) {
3696   const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3697   // Don't generate reassociations for the base register of a value that
3698   // may generate a post-increment operator. The reason is that the
3699   // reassociations cause extra base+register formula to be created,
3700   // and possibly chosen, but the post-increment is more efficient.
3701   if (AMK == TTI::AMK_PostIndexed && mayUsePostIncMode(TTI, LU, BaseReg, L, SE))
3702     return;
3703   SmallVector<const SCEV *, 8> AddOps;
3704   const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE);
3705   if (Remainder)
3706     AddOps.push_back(Remainder);
3707 
3708   if (AddOps.size() == 1)
3709     return;
3710 
3711   for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
3712                                                      JE = AddOps.end();
3713        J != JE; ++J) {
3714     // Loop-variant "unknown" values are uninteresting; we won't be able to
3715     // do anything meaningful with them.
3716     if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L))
3717       continue;
3718 
3719     // Don't pull a constant into a register if the constant could be folded
3720     // into an immediate field.
3721     if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3722                          LU.AccessTy, *J, Base.getNumRegs() > 1))
3723       continue;
3724 
3725     // Collect all operands except *J.
3726     SmallVector<const SCEV *, 8> InnerAddOps(
3727         ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
3728     InnerAddOps.append(std::next(J),
3729                        ((const SmallVector<const SCEV *, 8> &)AddOps).end());
3730 
3731     // Don't leave just a constant behind in a register if the constant could
3732     // be folded into an immediate field.
3733     if (InnerAddOps.size() == 1 &&
3734         isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3735                          LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1))
3736       continue;
3737 
3738     const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
3739     if (InnerSum->isZero())
3740       continue;
3741     Formula F = Base;
3742 
3743     // Add the remaining pieces of the add back into the new formula.
3744     const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum);
3745     if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 &&
3746         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3747                                 InnerSumSC->getValue()->getZExtValue())) {
3748       F.UnfoldedOffset =
3749           (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue();
3750       if (IsScaledReg)
3751         F.ScaledReg = nullptr;
3752       else
3753         F.BaseRegs.erase(F.BaseRegs.begin() + Idx);
3754     } else if (IsScaledReg)
3755       F.ScaledReg = InnerSum;
3756     else
3757       F.BaseRegs[Idx] = InnerSum;
3758 
3759     // Add J as its own register, or an unfolded immediate.
3760     const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J);
3761     if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
3762         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3763                                 SC->getValue()->getZExtValue()))
3764       F.UnfoldedOffset =
3765           (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue();
3766     else
3767       F.BaseRegs.push_back(*J);
3768     // We may have changed the number of register in base regs, adjust the
3769     // formula accordingly.
3770     F.canonicalize(*L);
3771 
3772     if (InsertFormula(LU, LUIdx, F))
3773       // If that formula hadn't been seen before, recurse to find more like
3774       // it.
3775       // Add check on Log16(AddOps.size()) - same as Log2_32(AddOps.size()) >> 2)
3776       // Because just Depth is not enough to bound compile time.
3777       // This means that every time AddOps.size() is greater 16^x we will add
3778       // x to Depth.
3779       GenerateReassociations(LU, LUIdx, LU.Formulae.back(),
3780                              Depth + 1 + (Log2_32(AddOps.size()) >> 2));
3781   }
3782 }
3783 
3784 /// Split out subexpressions from adds and the bases of addrecs.
3785 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
3786                                          Formula Base, unsigned Depth) {
3787   assert(Base.isCanonical(*L) && "Input must be in the canonical form");
3788   // Arbitrarily cap recursion to protect compile time.
3789   if (Depth >= 3)
3790     return;
3791 
3792   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3793     GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i);
3794 
3795   if (Base.Scale == 1)
3796     GenerateReassociationsImpl(LU, LUIdx, Base, Depth,
3797                                /* Idx */ -1, /* IsScaledReg */ true);
3798 }
3799 
3800 ///  Generate a formula consisting of all of the loop-dominating registers added
3801 /// into a single register.
3802 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
3803                                        Formula Base) {
3804   // This method is only interesting on a plurality of registers.
3805   if (Base.BaseRegs.size() + (Base.Scale == 1) +
3806       (Base.UnfoldedOffset != 0) <= 1)
3807     return;
3808 
3809   // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before
3810   // processing the formula.
3811   Base.unscale();
3812   SmallVector<const SCEV *, 4> Ops;
3813   Formula NewBase = Base;
3814   NewBase.BaseRegs.clear();
3815   Type *CombinedIntegerType = nullptr;
3816   for (const SCEV *BaseReg : Base.BaseRegs) {
3817     if (SE.properlyDominates(BaseReg, L->getHeader()) &&
3818         !SE.hasComputableLoopEvolution(BaseReg, L)) {
3819       if (!CombinedIntegerType)
3820         CombinedIntegerType = SE.getEffectiveSCEVType(BaseReg->getType());
3821       Ops.push_back(BaseReg);
3822     }
3823     else
3824       NewBase.BaseRegs.push_back(BaseReg);
3825   }
3826 
3827   // If no register is relevant, we're done.
3828   if (Ops.size() == 0)
3829     return;
3830 
3831   // Utility function for generating the required variants of the combined
3832   // registers.
3833   auto GenerateFormula = [&](const SCEV *Sum) {
3834     Formula F = NewBase;
3835 
3836     // TODO: If Sum is zero, it probably means ScalarEvolution missed an
3837     // opportunity to fold something. For now, just ignore such cases
3838     // rather than proceed with zero in a register.
3839     if (Sum->isZero())
3840       return;
3841 
3842     F.BaseRegs.push_back(Sum);
3843     F.canonicalize(*L);
3844     (void)InsertFormula(LU, LUIdx, F);
3845   };
3846 
3847   // If we collected at least two registers, generate a formula combining them.
3848   if (Ops.size() > 1) {
3849     SmallVector<const SCEV *, 4> OpsCopy(Ops); // Don't let SE modify Ops.
3850     GenerateFormula(SE.getAddExpr(OpsCopy));
3851   }
3852 
3853   // If we have an unfolded offset, generate a formula combining it with the
3854   // registers collected.
3855   if (NewBase.UnfoldedOffset) {
3856     assert(CombinedIntegerType && "Missing a type for the unfolded offset");
3857     Ops.push_back(SE.getConstant(CombinedIntegerType, NewBase.UnfoldedOffset,
3858                                  true));
3859     NewBase.UnfoldedOffset = 0;
3860     GenerateFormula(SE.getAddExpr(Ops));
3861   }
3862 }
3863 
3864 /// Helper function for LSRInstance::GenerateSymbolicOffsets.
3865 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
3866                                               const Formula &Base, size_t Idx,
3867                                               bool IsScaledReg) {
3868   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3869   GlobalValue *GV = ExtractSymbol(G, SE);
3870   if (G->isZero() || !GV)
3871     return;
3872   Formula F = Base;
3873   F.BaseGV = GV;
3874   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3875     return;
3876   if (IsScaledReg)
3877     F.ScaledReg = G;
3878   else
3879     F.BaseRegs[Idx] = G;
3880   (void)InsertFormula(LU, LUIdx, F);
3881 }
3882 
3883 /// Generate reuse formulae using symbolic offsets.
3884 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
3885                                           Formula Base) {
3886   // We can't add a symbolic offset if the address already contains one.
3887   if (Base.BaseGV) return;
3888 
3889   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3890     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i);
3891   if (Base.Scale == 1)
3892     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1,
3893                                 /* IsScaledReg */ true);
3894 }
3895 
3896 /// Helper function for LSRInstance::GenerateConstantOffsets.
3897 void LSRInstance::GenerateConstantOffsetsImpl(
3898     LSRUse &LU, unsigned LUIdx, const Formula &Base,
3899     const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) {
3900 
3901   auto GenerateOffset = [&](const SCEV *G, int64_t Offset) {
3902     Formula F = Base;
3903     F.BaseOffset = (uint64_t)Base.BaseOffset - Offset;
3904 
3905     if (isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) {
3906       // Add the offset to the base register.
3907       const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G);
3908       // If it cancelled out, drop the base register, otherwise update it.
3909       if (NewG->isZero()) {
3910         if (IsScaledReg) {
3911           F.Scale = 0;
3912           F.ScaledReg = nullptr;
3913         } else
3914           F.deleteBaseReg(F.BaseRegs[Idx]);
3915         F.canonicalize(*L);
3916       } else if (IsScaledReg)
3917         F.ScaledReg = NewG;
3918       else
3919         F.BaseRegs[Idx] = NewG;
3920 
3921       (void)InsertFormula(LU, LUIdx, F);
3922     }
3923   };
3924 
3925   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3926 
3927   // With constant offsets and constant steps, we can generate pre-inc
3928   // accesses by having the offset equal the step. So, for access #0 with a
3929   // step of 8, we generate a G - 8 base which would require the first access
3930   // to be ((G - 8) + 8),+,8. The pre-indexed access then updates the pointer
3931   // for itself and hopefully becomes the base for other accesses. This means
3932   // means that a single pre-indexed access can be generated to become the new
3933   // base pointer for each iteration of the loop, resulting in no extra add/sub
3934   // instructions for pointer updating.
3935   if (AMK == TTI::AMK_PreIndexed && LU.Kind == LSRUse::Address) {
3936     if (auto *GAR = dyn_cast<SCEVAddRecExpr>(G)) {
3937       if (auto *StepRec =
3938           dyn_cast<SCEVConstant>(GAR->getStepRecurrence(SE))) {
3939         const APInt &StepInt = StepRec->getAPInt();
3940         int64_t Step = StepInt.isNegative() ?
3941           StepInt.getSExtValue() : StepInt.getZExtValue();
3942 
3943         for (int64_t Offset : Worklist) {
3944           Offset -= Step;
3945           GenerateOffset(G, Offset);
3946         }
3947       }
3948     }
3949   }
3950   for (int64_t Offset : Worklist)
3951     GenerateOffset(G, Offset);
3952 
3953   int64_t Imm = ExtractImmediate(G, SE);
3954   if (G->isZero() || Imm == 0)
3955     return;
3956   Formula F = Base;
3957   F.BaseOffset = (uint64_t)F.BaseOffset + Imm;
3958   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3959     return;
3960   if (IsScaledReg) {
3961     F.ScaledReg = G;
3962   } else {
3963     F.BaseRegs[Idx] = G;
3964     // We may generate non canonical Formula if G is a recurrent expr reg
3965     // related with current loop while F.ScaledReg is not.
3966     F.canonicalize(*L);
3967   }
3968   (void)InsertFormula(LU, LUIdx, F);
3969 }
3970 
3971 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
3972 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
3973                                           Formula Base) {
3974   // TODO: For now, just add the min and max offset, because it usually isn't
3975   // worthwhile looking at everything inbetween.
3976   SmallVector<int64_t, 2> Worklist;
3977   Worklist.push_back(LU.MinOffset);
3978   if (LU.MaxOffset != LU.MinOffset)
3979     Worklist.push_back(LU.MaxOffset);
3980 
3981   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3982     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i);
3983   if (Base.Scale == 1)
3984     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1,
3985                                 /* IsScaledReg */ true);
3986 }
3987 
3988 /// For ICmpZero, check to see if we can scale up the comparison. For example, x
3989 /// == y -> x*c == y*c.
3990 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
3991                                          Formula Base) {
3992   if (LU.Kind != LSRUse::ICmpZero) return;
3993 
3994   // Determine the integer type for the base formula.
3995   Type *IntTy = Base.getType();
3996   if (!IntTy) return;
3997   if (SE.getTypeSizeInBits(IntTy) > 64) return;
3998 
3999   // Don't do this if there is more than one offset.
4000   if (LU.MinOffset != LU.MaxOffset) return;
4001 
4002   // Check if transformation is valid. It is illegal to multiply pointer.
4003   if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy())
4004     return;
4005   for (const SCEV *BaseReg : Base.BaseRegs)
4006     if (BaseReg->getType()->isPointerTy())
4007       return;
4008   assert(!Base.BaseGV && "ICmpZero use is not legal!");
4009 
4010   // Check each interesting stride.
4011   for (int64_t Factor : Factors) {
4012     // Check that Factor can be represented by IntTy
4013     if (!ConstantInt::isValueValidForType(IntTy, Factor))
4014       continue;
4015     // Check that the multiplication doesn't overflow.
4016     if (Base.BaseOffset == std::numeric_limits<int64_t>::min() && Factor == -1)
4017       continue;
4018     int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor;
4019     assert(Factor != 0 && "Zero factor not expected!");
4020     if (NewBaseOffset / Factor != Base.BaseOffset)
4021       continue;
4022     // If the offset will be truncated at this use, check that it is in bounds.
4023     if (!IntTy->isPointerTy() &&
4024         !ConstantInt::isValueValidForType(IntTy, NewBaseOffset))
4025       continue;
4026 
4027     // Check that multiplying with the use offset doesn't overflow.
4028     int64_t Offset = LU.MinOffset;
4029     if (Offset == std::numeric_limits<int64_t>::min() && Factor == -1)
4030       continue;
4031     Offset = (uint64_t)Offset * Factor;
4032     if (Offset / Factor != LU.MinOffset)
4033       continue;
4034     // If the offset will be truncated at this use, check that it is in bounds.
4035     if (!IntTy->isPointerTy() &&
4036         !ConstantInt::isValueValidForType(IntTy, Offset))
4037       continue;
4038 
4039     Formula F = Base;
4040     F.BaseOffset = NewBaseOffset;
4041 
4042     // Check that this scale is legal.
4043     if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F))
4044       continue;
4045 
4046     // Compensate for the use having MinOffset built into it.
4047     F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset;
4048 
4049     const SCEV *FactorS = SE.getConstant(IntTy, Factor);
4050 
4051     // Check that multiplying with each base register doesn't overflow.
4052     for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
4053       F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
4054       if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
4055         goto next;
4056     }
4057 
4058     // Check that multiplying with the scaled register doesn't overflow.
4059     if (F.ScaledReg) {
4060       F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
4061       if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
4062         continue;
4063     }
4064 
4065     // Check that multiplying with the unfolded offset doesn't overflow.
4066     if (F.UnfoldedOffset != 0) {
4067       if (F.UnfoldedOffset == std::numeric_limits<int64_t>::min() &&
4068           Factor == -1)
4069         continue;
4070       F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor;
4071       if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset)
4072         continue;
4073       // If the offset will be truncated, check that it is in bounds.
4074       if (!IntTy->isPointerTy() &&
4075           !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset))
4076         continue;
4077     }
4078 
4079     // If we make it here and it's legal, add it.
4080     (void)InsertFormula(LU, LUIdx, F);
4081   next:;
4082   }
4083 }
4084 
4085 /// Generate stride factor reuse formulae by making use of scaled-offset address
4086 /// modes, for example.
4087 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
4088   // Determine the integer type for the base formula.
4089   Type *IntTy = Base.getType();
4090   if (!IntTy) return;
4091 
4092   // If this Formula already has a scaled register, we can't add another one.
4093   // Try to unscale the formula to generate a better scale.
4094   if (Base.Scale != 0 && !Base.unscale())
4095     return;
4096 
4097   assert(Base.Scale == 0 && "unscale did not did its job!");
4098 
4099   // Check each interesting stride.
4100   for (int64_t Factor : Factors) {
4101     Base.Scale = Factor;
4102     Base.HasBaseReg = Base.BaseRegs.size() > 1;
4103     // Check whether this scale is going to be legal.
4104     if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
4105                     Base)) {
4106       // As a special-case, handle special out-of-loop Basic users specially.
4107       // TODO: Reconsider this special case.
4108       if (LU.Kind == LSRUse::Basic &&
4109           isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special,
4110                      LU.AccessTy, Base) &&
4111           LU.AllFixupsOutsideLoop)
4112         LU.Kind = LSRUse::Special;
4113       else
4114         continue;
4115     }
4116     // For an ICmpZero, negating a solitary base register won't lead to
4117     // new solutions.
4118     if (LU.Kind == LSRUse::ICmpZero &&
4119         !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV)
4120       continue;
4121     // For each addrec base reg, if its loop is current loop, apply the scale.
4122     for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
4123       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]);
4124       if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) {
4125         const SCEV *FactorS = SE.getConstant(IntTy, Factor);
4126         if (FactorS->isZero())
4127           continue;
4128         // Divide out the factor, ignoring high bits, since we'll be
4129         // scaling the value back up in the end.
4130         if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true))
4131           if (!Quotient->isZero()) {
4132             // TODO: This could be optimized to avoid all the copying.
4133             Formula F = Base;
4134             F.ScaledReg = Quotient;
4135             F.deleteBaseReg(F.BaseRegs[i]);
4136             // The canonical representation of 1*reg is reg, which is already in
4137             // Base. In that case, do not try to insert the formula, it will be
4138             // rejected anyway.
4139             if (F.Scale == 1 && (F.BaseRegs.empty() ||
4140                                  (AR->getLoop() != L && LU.AllFixupsOutsideLoop)))
4141               continue;
4142             // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate
4143             // non canonical Formula with ScaledReg's loop not being L.
4144             if (F.Scale == 1 && LU.AllFixupsOutsideLoop)
4145               F.canonicalize(*L);
4146             (void)InsertFormula(LU, LUIdx, F);
4147           }
4148       }
4149     }
4150   }
4151 }
4152 
4153 /// Extend/Truncate \p Expr to \p ToTy considering post-inc uses in \p Loops.
4154 /// For all PostIncLoopSets in \p Loops, first de-normalize \p Expr, then
4155 /// perform the extension/truncate and normalize again, as the normalized form
4156 /// can result in folds that are not valid in the post-inc use contexts. The
4157 /// expressions for all PostIncLoopSets must match, otherwise return nullptr.
4158 static const SCEV *
4159 getAnyExtendConsideringPostIncUses(ArrayRef<PostIncLoopSet> Loops,
4160                                    const SCEV *Expr, Type *ToTy,
4161                                    ScalarEvolution &SE) {
4162   const SCEV *Result = nullptr;
4163   for (auto &L : Loops) {
4164     auto *DenormExpr = denormalizeForPostIncUse(Expr, L, SE);
4165     const SCEV *NewDenormExpr = SE.getAnyExtendExpr(DenormExpr, ToTy);
4166     const SCEV *New = normalizeForPostIncUse(NewDenormExpr, L, SE);
4167     if (!New || (Result && New != Result))
4168       return nullptr;
4169     Result = New;
4170   }
4171 
4172   assert(Result && "failed to create expression");
4173   return Result;
4174 }
4175 
4176 /// Generate reuse formulae from different IV types.
4177 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
4178   // Don't bother truncating symbolic values.
4179   if (Base.BaseGV) return;
4180 
4181   // Determine the integer type for the base formula.
4182   Type *DstTy = Base.getType();
4183   if (!DstTy) return;
4184   if (DstTy->isPointerTy())
4185     return;
4186 
4187   // It is invalid to extend a pointer type so exit early if ScaledReg or
4188   // any of the BaseRegs are pointers.
4189   if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy())
4190     return;
4191   if (any_of(Base.BaseRegs,
4192              [](const SCEV *S) { return S->getType()->isPointerTy(); }))
4193     return;
4194 
4195   SmallVector<PostIncLoopSet> Loops;
4196   for (auto &LF : LU.Fixups)
4197     Loops.push_back(LF.PostIncLoops);
4198 
4199   for (Type *SrcTy : Types) {
4200     if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) {
4201       Formula F = Base;
4202 
4203       // Sometimes SCEV is able to prove zero during ext transform. It may
4204       // happen if SCEV did not do all possible transforms while creating the
4205       // initial node (maybe due to depth limitations), but it can do them while
4206       // taking ext.
4207       if (F.ScaledReg) {
4208         const SCEV *NewScaledReg =
4209             getAnyExtendConsideringPostIncUses(Loops, F.ScaledReg, SrcTy, SE);
4210         if (!NewScaledReg || NewScaledReg->isZero())
4211           continue;
4212         F.ScaledReg = NewScaledReg;
4213       }
4214       bool HasZeroBaseReg = false;
4215       for (const SCEV *&BaseReg : F.BaseRegs) {
4216         const SCEV *NewBaseReg =
4217             getAnyExtendConsideringPostIncUses(Loops, BaseReg, SrcTy, SE);
4218         if (!NewBaseReg || NewBaseReg->isZero()) {
4219           HasZeroBaseReg = true;
4220           break;
4221         }
4222         BaseReg = NewBaseReg;
4223       }
4224       if (HasZeroBaseReg)
4225         continue;
4226 
4227       // TODO: This assumes we've done basic processing on all uses and
4228       // have an idea what the register usage is.
4229       if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
4230         continue;
4231 
4232       F.canonicalize(*L);
4233       (void)InsertFormula(LU, LUIdx, F);
4234     }
4235   }
4236 }
4237 
4238 namespace {
4239 
4240 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer
4241 /// modifications so that the search phase doesn't have to worry about the data
4242 /// structures moving underneath it.
4243 struct WorkItem {
4244   size_t LUIdx;
4245   int64_t Imm;
4246   const SCEV *OrigReg;
4247 
4248   WorkItem(size_t LI, int64_t I, const SCEV *R)
4249       : LUIdx(LI), Imm(I), OrigReg(R) {}
4250 
4251   void print(raw_ostream &OS) const;
4252   void dump() const;
4253 };
4254 
4255 } // end anonymous namespace
4256 
4257 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4258 void WorkItem::print(raw_ostream &OS) const {
4259   OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
4260      << " , add offset " << Imm;
4261 }
4262 
4263 LLVM_DUMP_METHOD void WorkItem::dump() const {
4264   print(errs()); errs() << '\n';
4265 }
4266 #endif
4267 
4268 /// Look for registers which are a constant distance apart and try to form reuse
4269 /// opportunities between them.
4270 void LSRInstance::GenerateCrossUseConstantOffsets() {
4271   // Group the registers by their value without any added constant offset.
4272   using ImmMapTy = std::map<int64_t, const SCEV *>;
4273 
4274   DenseMap<const SCEV *, ImmMapTy> Map;
4275   DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
4276   SmallVector<const SCEV *, 8> Sequence;
4277   for (const SCEV *Use : RegUses) {
4278     const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify.
4279     int64_t Imm = ExtractImmediate(Reg, SE);
4280     auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy()));
4281     if (Pair.second)
4282       Sequence.push_back(Reg);
4283     Pair.first->second.insert(std::make_pair(Imm, Use));
4284     UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use);
4285   }
4286 
4287   // Now examine each set of registers with the same base value. Build up
4288   // a list of work to do and do the work in a separate step so that we're
4289   // not adding formulae and register counts while we're searching.
4290   SmallVector<WorkItem, 32> WorkItems;
4291   SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
4292   for (const SCEV *Reg : Sequence) {
4293     const ImmMapTy &Imms = Map.find(Reg)->second;
4294 
4295     // It's not worthwhile looking for reuse if there's only one offset.
4296     if (Imms.size() == 1)
4297       continue;
4298 
4299     LLVM_DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
4300                for (const auto &Entry
4301                     : Imms) dbgs()
4302                << ' ' << Entry.first;
4303                dbgs() << '\n');
4304 
4305     // Examine each offset.
4306     for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
4307          J != JE; ++J) {
4308       const SCEV *OrigReg = J->second;
4309 
4310       int64_t JImm = J->first;
4311       const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
4312 
4313       if (!isa<SCEVConstant>(OrigReg) &&
4314           UsedByIndicesMap[Reg].count() == 1) {
4315         LLVM_DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg
4316                           << '\n');
4317         continue;
4318       }
4319 
4320       // Conservatively examine offsets between this orig reg a few selected
4321       // other orig regs.
4322       int64_t First = Imms.begin()->first;
4323       int64_t Last = std::prev(Imms.end())->first;
4324       // Compute (First + Last)  / 2 without overflow using the fact that
4325       // First + Last = 2 * (First + Last) + (First ^ Last).
4326       int64_t Avg = (First & Last) + ((First ^ Last) >> 1);
4327       // If the result is negative and First is odd and Last even (or vice versa),
4328       // we rounded towards -inf. Add 1 in that case, to round towards 0.
4329       Avg = Avg + ((First ^ Last) & ((uint64_t)Avg >> 63));
4330       ImmMapTy::const_iterator OtherImms[] = {
4331           Imms.begin(), std::prev(Imms.end()),
4332          Imms.lower_bound(Avg)};
4333       for (const auto &M : OtherImms) {
4334         if (M == J || M == JE) continue;
4335 
4336         // Compute the difference between the two.
4337         int64_t Imm = (uint64_t)JImm - M->first;
4338         for (unsigned LUIdx : UsedByIndices.set_bits())
4339           // Make a memo of this use, offset, and register tuple.
4340           if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second)
4341             WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
4342       }
4343     }
4344   }
4345 
4346   Map.clear();
4347   Sequence.clear();
4348   UsedByIndicesMap.clear();
4349   UniqueItems.clear();
4350 
4351   // Now iterate through the worklist and add new formulae.
4352   for (const WorkItem &WI : WorkItems) {
4353     size_t LUIdx = WI.LUIdx;
4354     LSRUse &LU = Uses[LUIdx];
4355     int64_t Imm = WI.Imm;
4356     const SCEV *OrigReg = WI.OrigReg;
4357 
4358     Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
4359     const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
4360     unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
4361 
4362     // TODO: Use a more targeted data structure.
4363     for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
4364       Formula F = LU.Formulae[L];
4365       // FIXME: The code for the scaled and unscaled registers looks
4366       // very similar but slightly different. Investigate if they
4367       // could be merged. That way, we would not have to unscale the
4368       // Formula.
4369       F.unscale();
4370       // Use the immediate in the scaled register.
4371       if (F.ScaledReg == OrigReg) {
4372         int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale;
4373         // Don't create 50 + reg(-50).
4374         if (F.referencesReg(SE.getSCEV(
4375                    ConstantInt::get(IntTy, -(uint64_t)Offset))))
4376           continue;
4377         Formula NewF = F;
4378         NewF.BaseOffset = Offset;
4379         if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
4380                         NewF))
4381           continue;
4382         NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
4383 
4384         // If the new scale is a constant in a register, and adding the constant
4385         // value to the immediate would produce a value closer to zero than the
4386         // immediate itself, then the formula isn't worthwhile.
4387         if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
4388           if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) &&
4389               (C->getAPInt().abs() * APInt(BitWidth, F.Scale))
4390                   .ule(std::abs(NewF.BaseOffset)))
4391             continue;
4392 
4393         // OK, looks good.
4394         NewF.canonicalize(*this->L);
4395         (void)InsertFormula(LU, LUIdx, NewF);
4396       } else {
4397         // Use the immediate in a base register.
4398         for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
4399           const SCEV *BaseReg = F.BaseRegs[N];
4400           if (BaseReg != OrigReg)
4401             continue;
4402           Formula NewF = F;
4403           NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm;
4404           if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset,
4405                           LU.Kind, LU.AccessTy, NewF)) {
4406             if (AMK == TTI::AMK_PostIndexed &&
4407                 mayUsePostIncMode(TTI, LU, OrigReg, this->L, SE))
4408               continue;
4409             if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
4410               continue;
4411             NewF = F;
4412             NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm;
4413           }
4414           NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
4415 
4416           // If the new formula has a constant in a register, and adding the
4417           // constant value to the immediate would produce a value closer to
4418           // zero than the immediate itself, then the formula isn't worthwhile.
4419           for (const SCEV *NewReg : NewF.BaseRegs)
4420             if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg))
4421               if ((C->getAPInt() + NewF.BaseOffset)
4422                       .abs()
4423                       .slt(std::abs(NewF.BaseOffset)) &&
4424                   (C->getAPInt() + NewF.BaseOffset).countr_zero() >=
4425                       (unsigned)llvm::countr_zero<uint64_t>(NewF.BaseOffset))
4426                 goto skip_formula;
4427 
4428           // Ok, looks good.
4429           NewF.canonicalize(*this->L);
4430           (void)InsertFormula(LU, LUIdx, NewF);
4431           break;
4432         skip_formula:;
4433         }
4434       }
4435     }
4436   }
4437 }
4438 
4439 /// Generate formulae for each use.
4440 void
4441 LSRInstance::GenerateAllReuseFormulae() {
4442   // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
4443   // queries are more precise.
4444   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4445     LSRUse &LU = Uses[LUIdx];
4446     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4447       GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
4448     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4449       GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
4450   }
4451   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4452     LSRUse &LU = Uses[LUIdx];
4453     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4454       GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
4455     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4456       GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
4457     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4458       GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
4459     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4460       GenerateScales(LU, LUIdx, LU.Formulae[i]);
4461   }
4462   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4463     LSRUse &LU = Uses[LUIdx];
4464     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4465       GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
4466   }
4467 
4468   GenerateCrossUseConstantOffsets();
4469 
4470   LLVM_DEBUG(dbgs() << "\n"
4471                        "After generating reuse formulae:\n";
4472              print_uses(dbgs()));
4473 }
4474 
4475 /// If there are multiple formulae with the same set of registers used
4476 /// by other uses, pick the best one and delete the others.
4477 void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
4478   DenseSet<const SCEV *> VisitedRegs;
4479   SmallPtrSet<const SCEV *, 16> Regs;
4480   SmallPtrSet<const SCEV *, 16> LoserRegs;
4481 #ifndef NDEBUG
4482   bool ChangedFormulae = false;
4483 #endif
4484 
4485   // Collect the best formula for each unique set of shared registers. This
4486   // is reset for each use.
4487   using BestFormulaeTy =
4488       DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>;
4489 
4490   BestFormulaeTy BestFormulae;
4491 
4492   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4493     LSRUse &LU = Uses[LUIdx];
4494     LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs());
4495                dbgs() << '\n');
4496 
4497     bool Any = false;
4498     for (size_t FIdx = 0, NumForms = LU.Formulae.size();
4499          FIdx != NumForms; ++FIdx) {
4500       Formula &F = LU.Formulae[FIdx];
4501 
4502       // Some formulas are instant losers. For example, they may depend on
4503       // nonexistent AddRecs from other loops. These need to be filtered
4504       // immediately, otherwise heuristics could choose them over others leading
4505       // to an unsatisfactory solution. Passing LoserRegs into RateFormula here
4506       // avoids the need to recompute this information across formulae using the
4507       // same bad AddRec. Passing LoserRegs is also essential unless we remove
4508       // the corresponding bad register from the Regs set.
4509       Cost CostF(L, SE, TTI, AMK);
4510       Regs.clear();
4511       CostF.RateFormula(F, Regs, VisitedRegs, LU, &LoserRegs);
4512       if (CostF.isLoser()) {
4513         // During initial formula generation, undesirable formulae are generated
4514         // by uses within other loops that have some non-trivial address mode or
4515         // use the postinc form of the IV. LSR needs to provide these formulae
4516         // as the basis of rediscovering the desired formula that uses an AddRec
4517         // corresponding to the existing phi. Once all formulae have been
4518         // generated, these initial losers may be pruned.
4519         LLVM_DEBUG(dbgs() << "  Filtering loser "; F.print(dbgs());
4520                    dbgs() << "\n");
4521       }
4522       else {
4523         SmallVector<const SCEV *, 4> Key;
4524         for (const SCEV *Reg : F.BaseRegs) {
4525           if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
4526             Key.push_back(Reg);
4527         }
4528         if (F.ScaledReg &&
4529             RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
4530           Key.push_back(F.ScaledReg);
4531         // Unstable sort by host order ok, because this is only used for
4532         // uniquifying.
4533         llvm::sort(Key);
4534 
4535         std::pair<BestFormulaeTy::const_iterator, bool> P =
4536           BestFormulae.insert(std::make_pair(Key, FIdx));
4537         if (P.second)
4538           continue;
4539 
4540         Formula &Best = LU.Formulae[P.first->second];
4541 
4542         Cost CostBest(L, SE, TTI, AMK);
4543         Regs.clear();
4544         CostBest.RateFormula(Best, Regs, VisitedRegs, LU);
4545         if (CostF.isLess(CostBest))
4546           std::swap(F, Best);
4547         LLVM_DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
4548                    dbgs() << "\n"
4549                              "    in favor of formula ";
4550                    Best.print(dbgs()); dbgs() << '\n');
4551       }
4552 #ifndef NDEBUG
4553       ChangedFormulae = true;
4554 #endif
4555       LU.DeleteFormula(F);
4556       --FIdx;
4557       --NumForms;
4558       Any = true;
4559     }
4560 
4561     // Now that we've filtered out some formulae, recompute the Regs set.
4562     if (Any)
4563       LU.RecomputeRegs(LUIdx, RegUses);
4564 
4565     // Reset this to prepare for the next use.
4566     BestFormulae.clear();
4567   }
4568 
4569   LLVM_DEBUG(if (ChangedFormulae) {
4570     dbgs() << "\n"
4571               "After filtering out undesirable candidates:\n";
4572     print_uses(dbgs());
4573   });
4574 }
4575 
4576 /// Estimate the worst-case number of solutions the solver might have to
4577 /// consider. It almost never considers this many solutions because it prune the
4578 /// search space, but the pruning isn't always sufficient.
4579 size_t LSRInstance::EstimateSearchSpaceComplexity() const {
4580   size_t Power = 1;
4581   for (const LSRUse &LU : Uses) {
4582     size_t FSize = LU.Formulae.size();
4583     if (FSize >= ComplexityLimit) {
4584       Power = ComplexityLimit;
4585       break;
4586     }
4587     Power *= FSize;
4588     if (Power >= ComplexityLimit)
4589       break;
4590   }
4591   return Power;
4592 }
4593 
4594 /// When one formula uses a superset of the registers of another formula, it
4595 /// won't help reduce register pressure (though it may not necessarily hurt
4596 /// register pressure); remove it to simplify the system.
4597 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
4598   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4599     LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4600 
4601     LLVM_DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
4602                          "which use a superset of registers used by other "
4603                          "formulae.\n");
4604 
4605     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4606       LSRUse &LU = Uses[LUIdx];
4607       bool Any = false;
4608       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4609         Formula &F = LU.Formulae[i];
4610         // Look for a formula with a constant or GV in a register. If the use
4611         // also has a formula with that same value in an immediate field,
4612         // delete the one that uses a register.
4613         for (SmallVectorImpl<const SCEV *>::const_iterator
4614              I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
4615           if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
4616             Formula NewF = F;
4617             //FIXME: Formulas should store bitwidth to do wrapping properly.
4618             //       See PR41034.
4619             NewF.BaseOffset += (uint64_t)C->getValue()->getSExtValue();
4620             NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4621                                 (I - F.BaseRegs.begin()));
4622             if (LU.HasFormulaWithSameRegs(NewF)) {
4623               LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4624                          dbgs() << '\n');
4625               LU.DeleteFormula(F);
4626               --i;
4627               --e;
4628               Any = true;
4629               break;
4630             }
4631           } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
4632             if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
4633               if (!F.BaseGV) {
4634                 Formula NewF = F;
4635                 NewF.BaseGV = GV;
4636                 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4637                                     (I - F.BaseRegs.begin()));
4638                 if (LU.HasFormulaWithSameRegs(NewF)) {
4639                   LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4640                              dbgs() << '\n');
4641                   LU.DeleteFormula(F);
4642                   --i;
4643                   --e;
4644                   Any = true;
4645                   break;
4646                 }
4647               }
4648           }
4649         }
4650       }
4651       if (Any)
4652         LU.RecomputeRegs(LUIdx, RegUses);
4653     }
4654 
4655     LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4656   }
4657 }
4658 
4659 /// When there are many registers for expressions like A, A+1, A+2, etc.,
4660 /// allocate a single register for them.
4661 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
4662   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4663     return;
4664 
4665   LLVM_DEBUG(
4666       dbgs() << "The search space is too complex.\n"
4667                 "Narrowing the search space by assuming that uses separated "
4668                 "by a constant offset will use the same registers.\n");
4669 
4670   // This is especially useful for unrolled loops.
4671 
4672   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4673     LSRUse &LU = Uses[LUIdx];
4674     for (const Formula &F : LU.Formulae) {
4675       if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1))
4676         continue;
4677 
4678       LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU);
4679       if (!LUThatHas)
4680         continue;
4681 
4682       if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false,
4683                               LU.Kind, LU.AccessTy))
4684         continue;
4685 
4686       LLVM_DEBUG(dbgs() << "  Deleting use "; LU.print(dbgs()); dbgs() << '\n');
4687 
4688       LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
4689 
4690       // Transfer the fixups of LU to LUThatHas.
4691       for (LSRFixup &Fixup : LU.Fixups) {
4692         Fixup.Offset += F.BaseOffset;
4693         LUThatHas->pushFixup(Fixup);
4694         LLVM_DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n');
4695       }
4696 
4697       // Delete formulae from the new use which are no longer legal.
4698       bool Any = false;
4699       for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
4700         Formula &F = LUThatHas->Formulae[i];
4701         if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset,
4702                         LUThatHas->Kind, LUThatHas->AccessTy, F)) {
4703           LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4704           LUThatHas->DeleteFormula(F);
4705           --i;
4706           --e;
4707           Any = true;
4708         }
4709       }
4710 
4711       if (Any)
4712         LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
4713 
4714       // Delete the old use.
4715       DeleteUse(LU, LUIdx);
4716       --LUIdx;
4717       --NumUses;
4718       break;
4719     }
4720   }
4721 
4722   LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4723 }
4724 
4725 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that
4726 /// we've done more filtering, as it may be able to find more formulae to
4727 /// eliminate.
4728 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
4729   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4730     LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4731 
4732     LLVM_DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
4733                          "undesirable dedicated registers.\n");
4734 
4735     FilterOutUndesirableDedicatedRegisters();
4736 
4737     LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4738   }
4739 }
4740 
4741 /// If a LSRUse has multiple formulae with the same ScaledReg and Scale.
4742 /// Pick the best one and delete the others.
4743 /// This narrowing heuristic is to keep as many formulae with different
4744 /// Scale and ScaledReg pair as possible while narrowing the search space.
4745 /// The benefit is that it is more likely to find out a better solution
4746 /// from a formulae set with more Scale and ScaledReg variations than
4747 /// a formulae set with the same Scale and ScaledReg. The picking winner
4748 /// reg heuristic will often keep the formulae with the same Scale and
4749 /// ScaledReg and filter others, and we want to avoid that if possible.
4750 void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() {
4751   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4752     return;
4753 
4754   LLVM_DEBUG(
4755       dbgs() << "The search space is too complex.\n"
4756                 "Narrowing the search space by choosing the best Formula "
4757                 "from the Formulae with the same Scale and ScaledReg.\n");
4758 
4759   // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse.
4760   using BestFormulaeTy = DenseMap<std::pair<const SCEV *, int64_t>, size_t>;
4761 
4762   BestFormulaeTy BestFormulae;
4763 #ifndef NDEBUG
4764   bool ChangedFormulae = false;
4765 #endif
4766   DenseSet<const SCEV *> VisitedRegs;
4767   SmallPtrSet<const SCEV *, 16> Regs;
4768 
4769   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4770     LSRUse &LU = Uses[LUIdx];
4771     LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs());
4772                dbgs() << '\n');
4773 
4774     // Return true if Formula FA is better than Formula FB.
4775     auto IsBetterThan = [&](Formula &FA, Formula &FB) {
4776       // First we will try to choose the Formula with fewer new registers.
4777       // For a register used by current Formula, the more the register is
4778       // shared among LSRUses, the less we increase the register number
4779       // counter of the formula.
4780       size_t FARegNum = 0;
4781       for (const SCEV *Reg : FA.BaseRegs) {
4782         const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
4783         FARegNum += (NumUses - UsedByIndices.count() + 1);
4784       }
4785       size_t FBRegNum = 0;
4786       for (const SCEV *Reg : FB.BaseRegs) {
4787         const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
4788         FBRegNum += (NumUses - UsedByIndices.count() + 1);
4789       }
4790       if (FARegNum != FBRegNum)
4791         return FARegNum < FBRegNum;
4792 
4793       // If the new register numbers are the same, choose the Formula with
4794       // less Cost.
4795       Cost CostFA(L, SE, TTI, AMK);
4796       Cost CostFB(L, SE, TTI, AMK);
4797       Regs.clear();
4798       CostFA.RateFormula(FA, Regs, VisitedRegs, LU);
4799       Regs.clear();
4800       CostFB.RateFormula(FB, Regs, VisitedRegs, LU);
4801       return CostFA.isLess(CostFB);
4802     };
4803 
4804     bool Any = false;
4805     for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms;
4806          ++FIdx) {
4807       Formula &F = LU.Formulae[FIdx];
4808       if (!F.ScaledReg)
4809         continue;
4810       auto P = BestFormulae.insert({{F.ScaledReg, F.Scale}, FIdx});
4811       if (P.second)
4812         continue;
4813 
4814       Formula &Best = LU.Formulae[P.first->second];
4815       if (IsBetterThan(F, Best))
4816         std::swap(F, Best);
4817       LLVM_DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
4818                  dbgs() << "\n"
4819                            "    in favor of formula ";
4820                  Best.print(dbgs()); dbgs() << '\n');
4821 #ifndef NDEBUG
4822       ChangedFormulae = true;
4823 #endif
4824       LU.DeleteFormula(F);
4825       --FIdx;
4826       --NumForms;
4827       Any = true;
4828     }
4829     if (Any)
4830       LU.RecomputeRegs(LUIdx, RegUses);
4831 
4832     // Reset this to prepare for the next use.
4833     BestFormulae.clear();
4834   }
4835 
4836   LLVM_DEBUG(if (ChangedFormulae) {
4837     dbgs() << "\n"
4838               "After filtering out undesirable candidates:\n";
4839     print_uses(dbgs());
4840   });
4841 }
4842 
4843 /// If we are over the complexity limit, filter out any post-inc prefering
4844 /// variables to only post-inc values.
4845 void LSRInstance::NarrowSearchSpaceByFilterPostInc() {
4846   if (AMK != TTI::AMK_PostIndexed)
4847     return;
4848   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4849     return;
4850 
4851   LLVM_DEBUG(dbgs() << "The search space is too complex.\n"
4852                        "Narrowing the search space by choosing the lowest "
4853                        "register Formula for PostInc Uses.\n");
4854 
4855   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4856     LSRUse &LU = Uses[LUIdx];
4857 
4858     if (LU.Kind != LSRUse::Address)
4859       continue;
4860     if (!TTI.isIndexedLoadLegal(TTI.MIM_PostInc, LU.AccessTy.getType()) &&
4861         !TTI.isIndexedStoreLegal(TTI.MIM_PostInc, LU.AccessTy.getType()))
4862       continue;
4863 
4864     size_t MinRegs = std::numeric_limits<size_t>::max();
4865     for (const Formula &F : LU.Formulae)
4866       MinRegs = std::min(F.getNumRegs(), MinRegs);
4867 
4868     bool Any = false;
4869     for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms;
4870          ++FIdx) {
4871       Formula &F = LU.Formulae[FIdx];
4872       if (F.getNumRegs() > MinRegs) {
4873         LLVM_DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
4874                    dbgs() << "\n");
4875         LU.DeleteFormula(F);
4876         --FIdx;
4877         --NumForms;
4878         Any = true;
4879       }
4880     }
4881     if (Any)
4882       LU.RecomputeRegs(LUIdx, RegUses);
4883 
4884     if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4885       break;
4886   }
4887 
4888   LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4889 }
4890 
4891 /// The function delete formulas with high registers number expectation.
4892 /// Assuming we don't know the value of each formula (already delete
4893 /// all inefficient), generate probability of not selecting for each
4894 /// register.
4895 /// For example,
4896 /// Use1:
4897 ///  reg(a) + reg({0,+,1})
4898 ///  reg(a) + reg({-1,+,1}) + 1
4899 ///  reg({a,+,1})
4900 /// Use2:
4901 ///  reg(b) + reg({0,+,1})
4902 ///  reg(b) + reg({-1,+,1}) + 1
4903 ///  reg({b,+,1})
4904 /// Use3:
4905 ///  reg(c) + reg(b) + reg({0,+,1})
4906 ///  reg(c) + reg({b,+,1})
4907 ///
4908 /// Probability of not selecting
4909 ///                 Use1   Use2    Use3
4910 /// reg(a)         (1/3) *   1   *   1
4911 /// reg(b)           1   * (1/3) * (1/2)
4912 /// reg({0,+,1})   (2/3) * (2/3) * (1/2)
4913 /// reg({-1,+,1})  (2/3) * (2/3) *   1
4914 /// reg({a,+,1})   (2/3) *   1   *   1
4915 /// reg({b,+,1})     1   * (2/3) * (2/3)
4916 /// reg(c)           1   *   1   *   0
4917 ///
4918 /// Now count registers number mathematical expectation for each formula:
4919 /// Note that for each use we exclude probability if not selecting for the use.
4920 /// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding
4921 /// probabilty 1/3 of not selecting for Use1).
4922 /// Use1:
4923 ///  reg(a) + reg({0,+,1})          1 + 1/3       -- to be deleted
4924 ///  reg(a) + reg({-1,+,1}) + 1     1 + 4/9       -- to be deleted
4925 ///  reg({a,+,1})                   1
4926 /// Use2:
4927 ///  reg(b) + reg({0,+,1})          1/2 + 1/3     -- to be deleted
4928 ///  reg(b) + reg({-1,+,1}) + 1     1/2 + 2/3     -- to be deleted
4929 ///  reg({b,+,1})                   2/3
4930 /// Use3:
4931 ///  reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted
4932 ///  reg(c) + reg({b,+,1})          1 + 2/3
4933 void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() {
4934   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4935     return;
4936   // Ok, we have too many of formulae on our hands to conveniently handle.
4937   // Use a rough heuristic to thin out the list.
4938 
4939   // Set of Regs wich will be 100% used in final solution.
4940   // Used in each formula of a solution (in example above this is reg(c)).
4941   // We can skip them in calculations.
4942   SmallPtrSet<const SCEV *, 4> UniqRegs;
4943   LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4944 
4945   // Map each register to probability of not selecting
4946   DenseMap <const SCEV *, float> RegNumMap;
4947   for (const SCEV *Reg : RegUses) {
4948     if (UniqRegs.count(Reg))
4949       continue;
4950     float PNotSel = 1;
4951     for (const LSRUse &LU : Uses) {
4952       if (!LU.Regs.count(Reg))
4953         continue;
4954       float P = LU.getNotSelectedProbability(Reg);
4955       if (P != 0.0)
4956         PNotSel *= P;
4957       else
4958         UniqRegs.insert(Reg);
4959     }
4960     RegNumMap.insert(std::make_pair(Reg, PNotSel));
4961   }
4962 
4963   LLVM_DEBUG(
4964       dbgs() << "Narrowing the search space by deleting costly formulas\n");
4965 
4966   // Delete formulas where registers number expectation is high.
4967   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4968     LSRUse &LU = Uses[LUIdx];
4969     // If nothing to delete - continue.
4970     if (LU.Formulae.size() < 2)
4971       continue;
4972     // This is temporary solution to test performance. Float should be
4973     // replaced with round independent type (based on integers) to avoid
4974     // different results for different target builds.
4975     float FMinRegNum = LU.Formulae[0].getNumRegs();
4976     float FMinARegNum = LU.Formulae[0].getNumRegs();
4977     size_t MinIdx = 0;
4978     for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4979       Formula &F = LU.Formulae[i];
4980       float FRegNum = 0;
4981       float FARegNum = 0;
4982       for (const SCEV *BaseReg : F.BaseRegs) {
4983         if (UniqRegs.count(BaseReg))
4984           continue;
4985         FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
4986         if (isa<SCEVAddRecExpr>(BaseReg))
4987           FARegNum +=
4988               RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
4989       }
4990       if (const SCEV *ScaledReg = F.ScaledReg) {
4991         if (!UniqRegs.count(ScaledReg)) {
4992           FRegNum +=
4993               RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
4994           if (isa<SCEVAddRecExpr>(ScaledReg))
4995             FARegNum +=
4996                 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
4997         }
4998       }
4999       if (FMinRegNum > FRegNum ||
5000           (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) {
5001         FMinRegNum = FRegNum;
5002         FMinARegNum = FARegNum;
5003         MinIdx = i;
5004       }
5005     }
5006     LLVM_DEBUG(dbgs() << "  The formula "; LU.Formulae[MinIdx].print(dbgs());
5007                dbgs() << " with min reg num " << FMinRegNum << '\n');
5008     if (MinIdx != 0)
5009       std::swap(LU.Formulae[MinIdx], LU.Formulae[0]);
5010     while (LU.Formulae.size() != 1) {
5011       LLVM_DEBUG(dbgs() << "  Deleting "; LU.Formulae.back().print(dbgs());
5012                  dbgs() << '\n');
5013       LU.Formulae.pop_back();
5014     }
5015     LU.RecomputeRegs(LUIdx, RegUses);
5016     assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula");
5017     Formula &F = LU.Formulae[0];
5018     LLVM_DEBUG(dbgs() << "  Leaving only "; F.print(dbgs()); dbgs() << '\n');
5019     // When we choose the formula, the regs become unique.
5020     UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
5021     if (F.ScaledReg)
5022       UniqRegs.insert(F.ScaledReg);
5023   }
5024   LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
5025 }
5026 
5027 // Check if Best and Reg are SCEVs separated by a constant amount C, and if so
5028 // would the addressing offset +C would be legal where the negative offset -C is
5029 // not.
5030 static bool IsSimplerBaseSCEVForTarget(const TargetTransformInfo &TTI,
5031                                        ScalarEvolution &SE, const SCEV *Best,
5032                                        const SCEV *Reg,
5033                                        MemAccessTy AccessType) {
5034   if (Best->getType() != Reg->getType() ||
5035       (isa<SCEVAddRecExpr>(Best) && isa<SCEVAddRecExpr>(Reg) &&
5036        cast<SCEVAddRecExpr>(Best)->getLoop() !=
5037            cast<SCEVAddRecExpr>(Reg)->getLoop()))
5038     return false;
5039   const auto *Diff = dyn_cast<SCEVConstant>(SE.getMinusSCEV(Best, Reg));
5040   if (!Diff)
5041     return false;
5042 
5043   return TTI.isLegalAddressingMode(
5044              AccessType.MemTy, /*BaseGV=*/nullptr,
5045              /*BaseOffset=*/Diff->getAPInt().getSExtValue(),
5046              /*HasBaseReg=*/true, /*Scale=*/0, AccessType.AddrSpace) &&
5047          !TTI.isLegalAddressingMode(
5048              AccessType.MemTy, /*BaseGV=*/nullptr,
5049              /*BaseOffset=*/-Diff->getAPInt().getSExtValue(),
5050              /*HasBaseReg=*/true, /*Scale=*/0, AccessType.AddrSpace);
5051 }
5052 
5053 /// Pick a register which seems likely to be profitable, and then in any use
5054 /// which has any reference to that register, delete all formulae which do not
5055 /// reference that register.
5056 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
5057   // With all other options exhausted, loop until the system is simple
5058   // enough to handle.
5059   SmallPtrSet<const SCEV *, 4> Taken;
5060   while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
5061     // Ok, we have too many of formulae on our hands to conveniently handle.
5062     // Use a rough heuristic to thin out the list.
5063     LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
5064 
5065     // Pick the register which is used by the most LSRUses, which is likely
5066     // to be a good reuse register candidate.
5067     const SCEV *Best = nullptr;
5068     unsigned BestNum = 0;
5069     for (const SCEV *Reg : RegUses) {
5070       if (Taken.count(Reg))
5071         continue;
5072       if (!Best) {
5073         Best = Reg;
5074         BestNum = RegUses.getUsedByIndices(Reg).count();
5075       } else {
5076         unsigned Count = RegUses.getUsedByIndices(Reg).count();
5077         if (Count > BestNum) {
5078           Best = Reg;
5079           BestNum = Count;
5080         }
5081 
5082         // If the scores are the same, but the Reg is simpler for the target
5083         // (for example {x,+,1} as opposed to {x+C,+,1}, where the target can
5084         // handle +C but not -C), opt for the simpler formula.
5085         if (Count == BestNum) {
5086           int LUIdx = RegUses.getUsedByIndices(Reg).find_first();
5087           if (LUIdx >= 0 && Uses[LUIdx].Kind == LSRUse::Address &&
5088               IsSimplerBaseSCEVForTarget(TTI, SE, Best, Reg,
5089                                          Uses[LUIdx].AccessTy)) {
5090             Best = Reg;
5091             BestNum = Count;
5092           }
5093         }
5094       }
5095     }
5096     assert(Best && "Failed to find best LSRUse candidate");
5097 
5098     LLVM_DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
5099                       << " will yield profitable reuse.\n");
5100     Taken.insert(Best);
5101 
5102     // In any use with formulae which references this register, delete formulae
5103     // which don't reference it.
5104     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
5105       LSRUse &LU = Uses[LUIdx];
5106       if (!LU.Regs.count(Best)) continue;
5107 
5108       bool Any = false;
5109       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
5110         Formula &F = LU.Formulae[i];
5111         if (!F.referencesReg(Best)) {
5112           LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
5113           LU.DeleteFormula(F);
5114           --e;
5115           --i;
5116           Any = true;
5117           assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
5118           continue;
5119         }
5120       }
5121 
5122       if (Any)
5123         LU.RecomputeRegs(LUIdx, RegUses);
5124     }
5125 
5126     LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
5127   }
5128 }
5129 
5130 /// If there are an extraordinary number of formulae to choose from, use some
5131 /// rough heuristics to prune down the number of formulae. This keeps the main
5132 /// solver from taking an extraordinary amount of time in some worst-case
5133 /// scenarios.
5134 void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
5135   NarrowSearchSpaceByDetectingSupersets();
5136   NarrowSearchSpaceByCollapsingUnrolledCode();
5137   NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
5138   if (FilterSameScaledReg)
5139     NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
5140   NarrowSearchSpaceByFilterPostInc();
5141   if (LSRExpNarrow)
5142     NarrowSearchSpaceByDeletingCostlyFormulas();
5143   else
5144     NarrowSearchSpaceByPickingWinnerRegs();
5145 }
5146 
5147 /// This is the recursive solver.
5148 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
5149                                Cost &SolutionCost,
5150                                SmallVectorImpl<const Formula *> &Workspace,
5151                                const Cost &CurCost,
5152                                const SmallPtrSet<const SCEV *, 16> &CurRegs,
5153                                DenseSet<const SCEV *> &VisitedRegs) const {
5154   // Some ideas:
5155   //  - prune more:
5156   //    - use more aggressive filtering
5157   //    - sort the formula so that the most profitable solutions are found first
5158   //    - sort the uses too
5159   //  - search faster:
5160   //    - don't compute a cost, and then compare. compare while computing a cost
5161   //      and bail early.
5162   //    - track register sets with SmallBitVector
5163 
5164   const LSRUse &LU = Uses[Workspace.size()];
5165 
5166   // If this use references any register that's already a part of the
5167   // in-progress solution, consider it a requirement that a formula must
5168   // reference that register in order to be considered. This prunes out
5169   // unprofitable searching.
5170   SmallSetVector<const SCEV *, 4> ReqRegs;
5171   for (const SCEV *S : CurRegs)
5172     if (LU.Regs.count(S))
5173       ReqRegs.insert(S);
5174 
5175   SmallPtrSet<const SCEV *, 16> NewRegs;
5176   Cost NewCost(L, SE, TTI, AMK);
5177   for (const Formula &F : LU.Formulae) {
5178     // Ignore formulae which may not be ideal in terms of register reuse of
5179     // ReqRegs.  The formula should use all required registers before
5180     // introducing new ones.
5181     // This can sometimes (notably when trying to favour postinc) lead to
5182     // sub-optimial decisions. There it is best left to the cost modelling to
5183     // get correct.
5184     if (AMK != TTI::AMK_PostIndexed || LU.Kind != LSRUse::Address) {
5185       int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size());
5186       for (const SCEV *Reg : ReqRegs) {
5187         if ((F.ScaledReg && F.ScaledReg == Reg) ||
5188             is_contained(F.BaseRegs, Reg)) {
5189           --NumReqRegsToFind;
5190           if (NumReqRegsToFind == 0)
5191             break;
5192         }
5193       }
5194       if (NumReqRegsToFind != 0) {
5195         // If none of the formulae satisfied the required registers, then we could
5196         // clear ReqRegs and try again. Currently, we simply give up in this case.
5197         continue;
5198       }
5199     }
5200 
5201     // Evaluate the cost of the current formula. If it's already worse than
5202     // the current best, prune the search at that point.
5203     NewCost = CurCost;
5204     NewRegs = CurRegs;
5205     NewCost.RateFormula(F, NewRegs, VisitedRegs, LU);
5206     if (NewCost.isLess(SolutionCost)) {
5207       Workspace.push_back(&F);
5208       if (Workspace.size() != Uses.size()) {
5209         SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
5210                      NewRegs, VisitedRegs);
5211         if (F.getNumRegs() == 1 && Workspace.size() == 1)
5212           VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
5213       } else {
5214         LLVM_DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
5215                    dbgs() << ".\nRegs:\n";
5216                    for (const SCEV *S : NewRegs) dbgs()
5217                       << "- " << *S << "\n";
5218                    dbgs() << '\n');
5219 
5220         SolutionCost = NewCost;
5221         Solution = Workspace;
5222       }
5223       Workspace.pop_back();
5224     }
5225   }
5226 }
5227 
5228 /// Choose one formula from each use. Return the results in the given Solution
5229 /// vector.
5230 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
5231   SmallVector<const Formula *, 8> Workspace;
5232   Cost SolutionCost(L, SE, TTI, AMK);
5233   SolutionCost.Lose();
5234   Cost CurCost(L, SE, TTI, AMK);
5235   SmallPtrSet<const SCEV *, 16> CurRegs;
5236   DenseSet<const SCEV *> VisitedRegs;
5237   Workspace.reserve(Uses.size());
5238 
5239   // SolveRecurse does all the work.
5240   SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
5241                CurRegs, VisitedRegs);
5242   if (Solution.empty()) {
5243     LLVM_DEBUG(dbgs() << "\nNo Satisfactory Solution\n");
5244     return;
5245   }
5246 
5247   // Ok, we've now made all our decisions.
5248   LLVM_DEBUG(dbgs() << "\n"
5249                        "The chosen solution requires ";
5250              SolutionCost.print(dbgs()); dbgs() << ":\n";
5251              for (size_t i = 0, e = Uses.size(); i != e; ++i) {
5252                dbgs() << "  ";
5253                Uses[i].print(dbgs());
5254                dbgs() << "\n"
5255                          "    ";
5256                Solution[i]->print(dbgs());
5257                dbgs() << '\n';
5258              });
5259 
5260   assert(Solution.size() == Uses.size() && "Malformed solution!");
5261 
5262   if (BaselineCost.isLess(SolutionCost)) {
5263     LLVM_DEBUG(dbgs() << "The baseline solution requires ";
5264                BaselineCost.print(dbgs()); dbgs() << "\n");
5265     if (!AllowDropSolutionIfLessProfitable)
5266       LLVM_DEBUG(
5267           dbgs() << "Baseline is more profitable than chosen solution, "
5268                     "add option 'lsr-drop-solution' to drop LSR solution.\n");
5269     else {
5270       LLVM_DEBUG(dbgs() << "Baseline is more profitable than chosen "
5271                            "solution, dropping LSR solution.\n";);
5272       Solution.clear();
5273     }
5274   }
5275 }
5276 
5277 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as
5278 /// we can go while still being dominated by the input positions. This helps
5279 /// canonicalize the insert position, which encourages sharing.
5280 BasicBlock::iterator
5281 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
5282                                  const SmallVectorImpl<Instruction *> &Inputs)
5283                                                                          const {
5284   Instruction *Tentative = &*IP;
5285   while (true) {
5286     bool AllDominate = true;
5287     Instruction *BetterPos = nullptr;
5288     // Don't bother attempting to insert before a catchswitch, their basic block
5289     // cannot have other non-PHI instructions.
5290     if (isa<CatchSwitchInst>(Tentative))
5291       return IP;
5292 
5293     for (Instruction *Inst : Inputs) {
5294       if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
5295         AllDominate = false;
5296         break;
5297       }
5298       // Attempt to find an insert position in the middle of the block,
5299       // instead of at the end, so that it can be used for other expansions.
5300       if (Tentative->getParent() == Inst->getParent() &&
5301           (!BetterPos || !DT.dominates(Inst, BetterPos)))
5302         BetterPos = &*std::next(BasicBlock::iterator(Inst));
5303     }
5304     if (!AllDominate)
5305       break;
5306     if (BetterPos)
5307       IP = BetterPos->getIterator();
5308     else
5309       IP = Tentative->getIterator();
5310 
5311     const Loop *IPLoop = LI.getLoopFor(IP->getParent());
5312     unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
5313 
5314     BasicBlock *IDom;
5315     for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
5316       if (!Rung) return IP;
5317       Rung = Rung->getIDom();
5318       if (!Rung) return IP;
5319       IDom = Rung->getBlock();
5320 
5321       // Don't climb into a loop though.
5322       const Loop *IDomLoop = LI.getLoopFor(IDom);
5323       unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
5324       if (IDomDepth <= IPLoopDepth &&
5325           (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
5326         break;
5327     }
5328 
5329     Tentative = IDom->getTerminator();
5330   }
5331 
5332   return IP;
5333 }
5334 
5335 /// Determine an input position which will be dominated by the operands and
5336 /// which will dominate the result.
5337 BasicBlock::iterator LSRInstance::AdjustInsertPositionForExpand(
5338     BasicBlock::iterator LowestIP, const LSRFixup &LF, const LSRUse &LU) const {
5339   // Collect some instructions which must be dominated by the
5340   // expanding replacement. These must be dominated by any operands that
5341   // will be required in the expansion.
5342   SmallVector<Instruction *, 4> Inputs;
5343   if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
5344     Inputs.push_back(I);
5345   if (LU.Kind == LSRUse::ICmpZero)
5346     if (Instruction *I =
5347           dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
5348       Inputs.push_back(I);
5349   if (LF.PostIncLoops.count(L)) {
5350     if (LF.isUseFullyOutsideLoop(L))
5351       Inputs.push_back(L->getLoopLatch()->getTerminator());
5352     else
5353       Inputs.push_back(IVIncInsertPos);
5354   }
5355   // The expansion must also be dominated by the increment positions of any
5356   // loops it for which it is using post-inc mode.
5357   for (const Loop *PIL : LF.PostIncLoops) {
5358     if (PIL == L) continue;
5359 
5360     // Be dominated by the loop exit.
5361     SmallVector<BasicBlock *, 4> ExitingBlocks;
5362     PIL->getExitingBlocks(ExitingBlocks);
5363     if (!ExitingBlocks.empty()) {
5364       BasicBlock *BB = ExitingBlocks[0];
5365       for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
5366         BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
5367       Inputs.push_back(BB->getTerminator());
5368     }
5369   }
5370 
5371   assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad()
5372          && !isa<DbgInfoIntrinsic>(LowestIP) &&
5373          "Insertion point must be a normal instruction");
5374 
5375   // Then, climb up the immediate dominator tree as far as we can go while
5376   // still being dominated by the input positions.
5377   BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs);
5378 
5379   // Don't insert instructions before PHI nodes.
5380   while (isa<PHINode>(IP)) ++IP;
5381 
5382   // Ignore landingpad instructions.
5383   while (IP->isEHPad()) ++IP;
5384 
5385   // Ignore debug intrinsics.
5386   while (isa<DbgInfoIntrinsic>(IP)) ++IP;
5387 
5388   // Set IP below instructions recently inserted by SCEVExpander. This keeps the
5389   // IP consistent across expansions and allows the previously inserted
5390   // instructions to be reused by subsequent expansion.
5391   while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP)
5392     ++IP;
5393 
5394   return IP;
5395 }
5396 
5397 /// Emit instructions for the leading candidate expression for this LSRUse (this
5398 /// is called "expanding").
5399 Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF,
5400                            const Formula &F, BasicBlock::iterator IP,
5401                            SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5402   if (LU.RigidFormula)
5403     return LF.OperandValToReplace;
5404 
5405   // Determine an input position which will be dominated by the operands and
5406   // which will dominate the result.
5407   IP = AdjustInsertPositionForExpand(IP, LF, LU);
5408   Rewriter.setInsertPoint(&*IP);
5409 
5410   // Inform the Rewriter if we have a post-increment use, so that it can
5411   // perform an advantageous expansion.
5412   Rewriter.setPostInc(LF.PostIncLoops);
5413 
5414   // This is the type that the user actually needs.
5415   Type *OpTy = LF.OperandValToReplace->getType();
5416   // This will be the type that we'll initially expand to.
5417   Type *Ty = F.getType();
5418   if (!Ty)
5419     // No type known; just expand directly to the ultimate type.
5420     Ty = OpTy;
5421   else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
5422     // Expand directly to the ultimate type if it's the right size.
5423     Ty = OpTy;
5424   // This is the type to do integer arithmetic in.
5425   Type *IntTy = SE.getEffectiveSCEVType(Ty);
5426 
5427   // Build up a list of operands to add together to form the full base.
5428   SmallVector<const SCEV *, 8> Ops;
5429 
5430   // Expand the BaseRegs portion.
5431   for (const SCEV *Reg : F.BaseRegs) {
5432     assert(!Reg->isZero() && "Zero allocated in a base register!");
5433 
5434     // If we're expanding for a post-inc user, make the post-inc adjustment.
5435     Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE);
5436     Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr)));
5437   }
5438 
5439   // Expand the ScaledReg portion.
5440   Value *ICmpScaledV = nullptr;
5441   if (F.Scale != 0) {
5442     const SCEV *ScaledS = F.ScaledReg;
5443 
5444     // If we're expanding for a post-inc user, make the post-inc adjustment.
5445     PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
5446     ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE);
5447 
5448     if (LU.Kind == LSRUse::ICmpZero) {
5449       // Expand ScaleReg as if it was part of the base regs.
5450       if (F.Scale == 1)
5451         Ops.push_back(
5452             SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)));
5453       else {
5454         // An interesting way of "folding" with an icmp is to use a negated
5455         // scale, which we'll implement by inserting it into the other operand
5456         // of the icmp.
5457         assert(F.Scale == -1 &&
5458                "The only scale supported by ICmpZero uses is -1!");
5459         ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr);
5460       }
5461     } else {
5462       // Otherwise just expand the scaled register and an explicit scale,
5463       // which is expected to be matched as part of the address.
5464 
5465       // Flush the operand list to suppress SCEVExpander hoisting address modes.
5466       // Unless the addressing mode will not be folded.
5467       if (!Ops.empty() && LU.Kind == LSRUse::Address &&
5468           isAMCompletelyFolded(TTI, LU, F)) {
5469         Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), nullptr);
5470         Ops.clear();
5471         Ops.push_back(SE.getUnknown(FullV));
5472       }
5473       ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr));
5474       if (F.Scale != 1)
5475         ScaledS =
5476             SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale));
5477       Ops.push_back(ScaledS);
5478     }
5479   }
5480 
5481   // Expand the GV portion.
5482   if (F.BaseGV) {
5483     // Flush the operand list to suppress SCEVExpander hoisting.
5484     if (!Ops.empty()) {
5485       Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), IntTy);
5486       Ops.clear();
5487       Ops.push_back(SE.getUnknown(FullV));
5488     }
5489     Ops.push_back(SE.getUnknown(F.BaseGV));
5490   }
5491 
5492   // Flush the operand list to suppress SCEVExpander hoisting of both folded and
5493   // unfolded offsets. LSR assumes they both live next to their uses.
5494   if (!Ops.empty()) {
5495     Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
5496     Ops.clear();
5497     Ops.push_back(SE.getUnknown(FullV));
5498   }
5499 
5500   // Expand the immediate portion.
5501   int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset;
5502   if (Offset != 0) {
5503     if (LU.Kind == LSRUse::ICmpZero) {
5504       // The other interesting way of "folding" with an ICmpZero is to use a
5505       // negated immediate.
5506       if (!ICmpScaledV)
5507         ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset);
5508       else {
5509         Ops.push_back(SE.getUnknown(ICmpScaledV));
5510         ICmpScaledV = ConstantInt::get(IntTy, Offset);
5511       }
5512     } else {
5513       // Just add the immediate values. These again are expected to be matched
5514       // as part of the address.
5515       Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
5516     }
5517   }
5518 
5519   // Expand the unfolded offset portion.
5520   int64_t UnfoldedOffset = F.UnfoldedOffset;
5521   if (UnfoldedOffset != 0) {
5522     // Just add the immediate values.
5523     Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy,
5524                                                        UnfoldedOffset)));
5525   }
5526 
5527   // Emit instructions summing all the operands.
5528   const SCEV *FullS = Ops.empty() ?
5529                       SE.getConstant(IntTy, 0) :
5530                       SE.getAddExpr(Ops);
5531   Value *FullV = Rewriter.expandCodeFor(FullS, Ty);
5532 
5533   // We're done expanding now, so reset the rewriter.
5534   Rewriter.clearPostInc();
5535 
5536   // An ICmpZero Formula represents an ICmp which we're handling as a
5537   // comparison against zero. Now that we've expanded an expression for that
5538   // form, update the ICmp's other operand.
5539   if (LU.Kind == LSRUse::ICmpZero) {
5540     ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
5541     if (auto *OperandIsInstr = dyn_cast<Instruction>(CI->getOperand(1)))
5542       DeadInsts.emplace_back(OperandIsInstr);
5543     assert(!F.BaseGV && "ICmp does not support folding a global value and "
5544                            "a scale at the same time!");
5545     if (F.Scale == -1) {
5546       if (ICmpScaledV->getType() != OpTy) {
5547         Instruction *Cast =
5548           CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
5549                                                    OpTy, false),
5550                            ICmpScaledV, OpTy, "tmp", CI);
5551         ICmpScaledV = Cast;
5552       }
5553       CI->setOperand(1, ICmpScaledV);
5554     } else {
5555       // A scale of 1 means that the scale has been expanded as part of the
5556       // base regs.
5557       assert((F.Scale == 0 || F.Scale == 1) &&
5558              "ICmp does not support folding a global value and "
5559              "a scale at the same time!");
5560       Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
5561                                            -(uint64_t)Offset);
5562       if (C->getType() != OpTy)
5563         C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5564                                                           OpTy, false),
5565                                   C, OpTy);
5566 
5567       CI->setOperand(1, C);
5568     }
5569   }
5570 
5571   return FullV;
5572 }
5573 
5574 /// Helper for Rewrite. PHI nodes are special because the use of their operands
5575 /// effectively happens in their predecessor blocks, so the expression may need
5576 /// to be expanded in multiple places.
5577 void LSRInstance::RewriteForPHI(
5578     PHINode *PN, const LSRUse &LU, const LSRFixup &LF, const Formula &F,
5579     SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5580   DenseMap<BasicBlock *, Value *> Inserted;
5581 
5582   // Inserting instructions in the loop and using them as PHI's input could
5583   // break LCSSA in case if PHI's parent block is not a loop exit (i.e. the
5584   // corresponding incoming block is not loop exiting). So collect all such
5585   // instructions to form LCSSA for them later.
5586   SmallVector<Instruction *, 4> InsertedNonLCSSAInsts;
5587 
5588   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5589     if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
5590       bool needUpdateFixups = false;
5591       BasicBlock *BB = PN->getIncomingBlock(i);
5592 
5593       // If this is a critical edge, split the edge so that we do not insert
5594       // the code on all predecessor/successor paths.  We do this unless this
5595       // is the canonical backedge for this loop, which complicates post-inc
5596       // users.
5597       if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
5598           !isa<IndirectBrInst>(BB->getTerminator()) &&
5599           !isa<CatchSwitchInst>(BB->getTerminator())) {
5600         BasicBlock *Parent = PN->getParent();
5601         Loop *PNLoop = LI.getLoopFor(Parent);
5602         if (!PNLoop || Parent != PNLoop->getHeader()) {
5603           // Split the critical edge.
5604           BasicBlock *NewBB = nullptr;
5605           if (!Parent->isLandingPad()) {
5606             NewBB =
5607                 SplitCriticalEdge(BB, Parent,
5608                                   CriticalEdgeSplittingOptions(&DT, &LI, MSSAU)
5609                                       .setMergeIdenticalEdges()
5610                                       .setKeepOneInputPHIs());
5611           } else {
5612             SmallVector<BasicBlock*, 2> NewBBs;
5613             SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI);
5614             NewBB = NewBBs[0];
5615           }
5616           // If NewBB==NULL, then SplitCriticalEdge refused to split because all
5617           // phi predecessors are identical. The simple thing to do is skip
5618           // splitting in this case rather than complicate the API.
5619           if (NewBB) {
5620             // If PN is outside of the loop and BB is in the loop, we want to
5621             // move the block to be immediately before the PHI block, not
5622             // immediately after BB.
5623             if (L->contains(BB) && !L->contains(PN))
5624               NewBB->moveBefore(PN->getParent());
5625 
5626             // Splitting the edge can reduce the number of PHI entries we have.
5627             e = PN->getNumIncomingValues();
5628             BB = NewBB;
5629             i = PN->getBasicBlockIndex(BB);
5630 
5631             needUpdateFixups = true;
5632           }
5633         }
5634       }
5635 
5636       std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
5637         Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr)));
5638       if (!Pair.second)
5639         PN->setIncomingValue(i, Pair.first->second);
5640       else {
5641         Value *FullV =
5642             Expand(LU, LF, F, BB->getTerminator()->getIterator(), DeadInsts);
5643 
5644         // If this is reuse-by-noop-cast, insert the noop cast.
5645         Type *OpTy = LF.OperandValToReplace->getType();
5646         if (FullV->getType() != OpTy)
5647           FullV =
5648             CastInst::Create(CastInst::getCastOpcode(FullV, false,
5649                                                      OpTy, false),
5650                              FullV, LF.OperandValToReplace->getType(),
5651                              "tmp", BB->getTerminator());
5652 
5653         // If the incoming block for this value is not in the loop, it means the
5654         // current PHI is not in a loop exit, so we must create a LCSSA PHI for
5655         // the inserted value.
5656         if (auto *I = dyn_cast<Instruction>(FullV))
5657           if (L->contains(I) && !L->contains(BB))
5658             InsertedNonLCSSAInsts.push_back(I);
5659 
5660         PN->setIncomingValue(i, FullV);
5661         Pair.first->second = FullV;
5662       }
5663 
5664       // If LSR splits critical edge and phi node has other pending
5665       // fixup operands, we need to update those pending fixups. Otherwise
5666       // formulae will not be implemented completely and some instructions
5667       // will not be eliminated.
5668       if (needUpdateFixups) {
5669         for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx)
5670           for (LSRFixup &Fixup : Uses[LUIdx].Fixups)
5671             // If fixup is supposed to rewrite some operand in the phi
5672             // that was just updated, it may be already moved to
5673             // another phi node. Such fixup requires update.
5674             if (Fixup.UserInst == PN) {
5675               // Check if the operand we try to replace still exists in the
5676               // original phi.
5677               bool foundInOriginalPHI = false;
5678               for (const auto &val : PN->incoming_values())
5679                 if (val == Fixup.OperandValToReplace) {
5680                   foundInOriginalPHI = true;
5681                   break;
5682                 }
5683 
5684               // If fixup operand found in original PHI - nothing to do.
5685               if (foundInOriginalPHI)
5686                 continue;
5687 
5688               // Otherwise it might be moved to another PHI and requires update.
5689               // If fixup operand not found in any of the incoming blocks that
5690               // means we have already rewritten it - nothing to do.
5691               for (const auto &Block : PN->blocks())
5692                 for (BasicBlock::iterator I = Block->begin(); isa<PHINode>(I);
5693                      ++I) {
5694                   PHINode *NewPN = cast<PHINode>(I);
5695                   for (const auto &val : NewPN->incoming_values())
5696                     if (val == Fixup.OperandValToReplace)
5697                       Fixup.UserInst = NewPN;
5698                 }
5699             }
5700       }
5701     }
5702 
5703   formLCSSAForInstructions(InsertedNonLCSSAInsts, DT, LI, &SE);
5704 }
5705 
5706 /// Emit instructions for the leading candidate expression for this LSRUse (this
5707 /// is called "expanding"), and update the UserInst to reference the newly
5708 /// expanded value.
5709 void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF,
5710                           const Formula &F,
5711                           SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5712   // First, find an insertion point that dominates UserInst. For PHI nodes,
5713   // find the nearest block which dominates all the relevant uses.
5714   if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
5715     RewriteForPHI(PN, LU, LF, F, DeadInsts);
5716   } else {
5717     Value *FullV = Expand(LU, LF, F, LF.UserInst->getIterator(), DeadInsts);
5718 
5719     // If this is reuse-by-noop-cast, insert the noop cast.
5720     Type *OpTy = LF.OperandValToReplace->getType();
5721     if (FullV->getType() != OpTy) {
5722       Instruction *Cast =
5723         CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
5724                          FullV, OpTy, "tmp", LF.UserInst);
5725       FullV = Cast;
5726     }
5727 
5728     // Update the user. ICmpZero is handled specially here (for now) because
5729     // Expand may have updated one of the operands of the icmp already, and
5730     // its new value may happen to be equal to LF.OperandValToReplace, in
5731     // which case doing replaceUsesOfWith leads to replacing both operands
5732     // with the same value. TODO: Reorganize this.
5733     if (LU.Kind == LSRUse::ICmpZero)
5734       LF.UserInst->setOperand(0, FullV);
5735     else
5736       LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
5737   }
5738 
5739   if (auto *OperandIsInstr = dyn_cast<Instruction>(LF.OperandValToReplace))
5740     DeadInsts.emplace_back(OperandIsInstr);
5741 }
5742 
5743 // Trying to hoist the IVInc to loop header if all IVInc users are in
5744 // the loop header. It will help backend to generate post index load/store
5745 // when the latch block is different from loop header block.
5746 static bool canHoistIVInc(const TargetTransformInfo &TTI, const LSRFixup &Fixup,
5747                           const LSRUse &LU, Instruction *IVIncInsertPos,
5748                           Loop *L) {
5749   if (LU.Kind != LSRUse::Address)
5750     return false;
5751 
5752   // For now this code do the conservative optimization, only work for
5753   // the header block. Later we can hoist the IVInc to the block post
5754   // dominate all users.
5755   BasicBlock *LHeader = L->getHeader();
5756   if (IVIncInsertPos->getParent() == LHeader)
5757     return false;
5758 
5759   if (!Fixup.OperandValToReplace ||
5760       any_of(Fixup.OperandValToReplace->users(), [&LHeader](User *U) {
5761         Instruction *UI = cast<Instruction>(U);
5762         return UI->getParent() != LHeader;
5763       }))
5764     return false;
5765 
5766   Instruction *I = Fixup.UserInst;
5767   Type *Ty = I->getType();
5768   return Ty->isIntegerTy() &&
5769          ((isa<LoadInst>(I) && TTI.isIndexedLoadLegal(TTI.MIM_PostInc, Ty)) ||
5770           (isa<StoreInst>(I) && TTI.isIndexedStoreLegal(TTI.MIM_PostInc, Ty)));
5771 }
5772 
5773 /// Rewrite all the fixup locations with new values, following the chosen
5774 /// solution.
5775 void LSRInstance::ImplementSolution(
5776     const SmallVectorImpl<const Formula *> &Solution) {
5777   // Keep track of instructions we may have made dead, so that
5778   // we can remove them after we are done working.
5779   SmallVector<WeakTrackingVH, 16> DeadInsts;
5780 
5781   // Mark phi nodes that terminate chains so the expander tries to reuse them.
5782   for (const IVChain &Chain : IVChainVec) {
5783     if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst()))
5784       Rewriter.setChainedPhi(PN);
5785   }
5786 
5787   // Expand the new value definitions and update the users.
5788   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx)
5789     for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) {
5790       Instruction *InsertPos =
5791           canHoistIVInc(TTI, Fixup, Uses[LUIdx], IVIncInsertPos, L)
5792               ? L->getHeader()->getTerminator()
5793               : IVIncInsertPos;
5794       Rewriter.setIVIncInsertPos(L, InsertPos);
5795       Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], DeadInsts);
5796       Changed = true;
5797     }
5798 
5799   for (const IVChain &Chain : IVChainVec) {
5800     GenerateIVChain(Chain, DeadInsts);
5801     Changed = true;
5802   }
5803 
5804   for (const WeakVH &IV : Rewriter.getInsertedIVs())
5805     if (IV && dyn_cast<Instruction>(&*IV)->getParent())
5806       ScalarEvolutionIVs.push_back(IV);
5807 
5808   // Clean up after ourselves. This must be done before deleting any
5809   // instructions.
5810   Rewriter.clear();
5811 
5812   Changed |= RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts,
5813                                                                   &TLI, MSSAU);
5814 
5815   // In our cost analysis above, we assume that each addrec consumes exactly
5816   // one register, and arrange to have increments inserted just before the
5817   // latch to maximimize the chance this is true.  However, if we reused
5818   // existing IVs, we now need to move the increments to match our
5819   // expectations.  Otherwise, our cost modeling results in us having a
5820   // chosen a non-optimal result for the actual schedule.  (And yes, this
5821   // scheduling decision does impact later codegen.)
5822   for (PHINode &PN : L->getHeader()->phis()) {
5823     BinaryOperator *BO = nullptr;
5824     Value *Start = nullptr, *Step = nullptr;
5825     if (!matchSimpleRecurrence(&PN, BO, Start, Step))
5826       continue;
5827 
5828     switch (BO->getOpcode()) {
5829     case Instruction::Sub:
5830       if (BO->getOperand(0) != &PN)
5831         // sub is non-commutative - match handling elsewhere in LSR
5832         continue;
5833       break;
5834     case Instruction::Add:
5835       break;
5836     default:
5837       continue;
5838     };
5839 
5840     if (!isa<Constant>(Step))
5841       // If not a constant step, might increase register pressure
5842       // (We assume constants have been canonicalized to RHS)
5843       continue;
5844 
5845     if (BO->getParent() == IVIncInsertPos->getParent())
5846       // Only bother moving across blocks.  Isel can handle block local case.
5847       continue;
5848 
5849     // Can we legally schedule inc at the desired point?
5850     if (!llvm::all_of(BO->uses(),
5851                       [&](Use &U) {return DT.dominates(IVIncInsertPos, U);}))
5852       continue;
5853     BO->moveBefore(IVIncInsertPos);
5854     Changed = true;
5855   }
5856 
5857 
5858 }
5859 
5860 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE,
5861                          DominatorTree &DT, LoopInfo &LI,
5862                          const TargetTransformInfo &TTI, AssumptionCache &AC,
5863                          TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU)
5864     : IU(IU), SE(SE), DT(DT), LI(LI), AC(AC), TLI(TLI), TTI(TTI), L(L),
5865       MSSAU(MSSAU), AMK(PreferredAddresingMode.getNumOccurrences() > 0
5866                             ? PreferredAddresingMode
5867                             : TTI.getPreferredAddressingMode(L, &SE)),
5868       Rewriter(SE, L->getHeader()->getModule()->getDataLayout(), "lsr", false),
5869       BaselineCost(L, SE, TTI, AMK) {
5870   // If LoopSimplify form is not available, stay out of trouble.
5871   if (!L->isLoopSimplifyForm())
5872     return;
5873 
5874   // If there's no interesting work to be done, bail early.
5875   if (IU.empty()) return;
5876 
5877   // If there's too much analysis to be done, bail early. We won't be able to
5878   // model the problem anyway.
5879   unsigned NumUsers = 0;
5880   for (const IVStrideUse &U : IU) {
5881     if (++NumUsers > MaxIVUsers) {
5882       (void)U;
5883       LLVM_DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U
5884                         << "\n");
5885       return;
5886     }
5887     // Bail out if we have a PHI on an EHPad that gets a value from a
5888     // CatchSwitchInst.  Because the CatchSwitchInst cannot be split, there is
5889     // no good place to stick any instructions.
5890     if (auto *PN = dyn_cast<PHINode>(U.getUser())) {
5891        auto *FirstNonPHI = PN->getParent()->getFirstNonPHI();
5892        if (isa<FuncletPadInst>(FirstNonPHI) ||
5893            isa<CatchSwitchInst>(FirstNonPHI))
5894          for (BasicBlock *PredBB : PN->blocks())
5895            if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI()))
5896              return;
5897     }
5898   }
5899 
5900   LLVM_DEBUG(dbgs() << "\nLSR on loop ";
5901              L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false);
5902              dbgs() << ":\n");
5903 
5904   // Configure SCEVExpander already now, so the correct mode is used for
5905   // isSafeToExpand() checks.
5906 #ifndef NDEBUG
5907   Rewriter.setDebugType(DEBUG_TYPE);
5908 #endif
5909   Rewriter.disableCanonicalMode();
5910   Rewriter.enableLSRMode();
5911 
5912   // First, perform some low-level loop optimizations.
5913   OptimizeShadowIV();
5914   OptimizeLoopTermCond();
5915 
5916   // If loop preparation eliminates all interesting IV users, bail.
5917   if (IU.empty()) return;
5918 
5919   // Skip nested loops until we can model them better with formulae.
5920   if (!L->isInnermost()) {
5921     LLVM_DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n");
5922     return;
5923   }
5924 
5925   // Start collecting data and preparing for the solver.
5926   // If number of registers is not the major cost, we cannot benefit from the
5927   // current profitable chain optimization which is based on number of
5928   // registers.
5929   // FIXME: add profitable chain optimization for other kinds major cost, for
5930   // example number of instructions.
5931   if (TTI.isNumRegsMajorCostOfLSR() || StressIVChain)
5932     CollectChains();
5933   CollectInterestingTypesAndFactors();
5934   CollectFixupsAndInitialFormulae();
5935   CollectLoopInvariantFixupsAndFormulae();
5936 
5937   if (Uses.empty())
5938     return;
5939 
5940   LLVM_DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
5941              print_uses(dbgs()));
5942 
5943   // Now use the reuse data to generate a bunch of interesting ways
5944   // to formulate the values needed for the uses.
5945   GenerateAllReuseFormulae();
5946 
5947   FilterOutUndesirableDedicatedRegisters();
5948   NarrowSearchSpaceUsingHeuristics();
5949 
5950   SmallVector<const Formula *, 8> Solution;
5951   Solve(Solution);
5952 
5953   // Release memory that is no longer needed.
5954   Factors.clear();
5955   Types.clear();
5956   RegUses.clear();
5957 
5958   if (Solution.empty())
5959     return;
5960 
5961 #ifndef NDEBUG
5962   // Formulae should be legal.
5963   for (const LSRUse &LU : Uses) {
5964     for (const Formula &F : LU.Formulae)
5965       assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
5966                         F) && "Illegal formula generated!");
5967   };
5968 #endif
5969 
5970   // Now that we've decided what we want, make it so.
5971   ImplementSolution(Solution);
5972 }
5973 
5974 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
5975 void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
5976   if (Factors.empty() && Types.empty()) return;
5977 
5978   OS << "LSR has identified the following interesting factors and types: ";
5979   bool First = true;
5980 
5981   for (int64_t Factor : Factors) {
5982     if (!First) OS << ", ";
5983     First = false;
5984     OS << '*' << Factor;
5985   }
5986 
5987   for (Type *Ty : Types) {
5988     if (!First) OS << ", ";
5989     First = false;
5990     OS << '(' << *Ty << ')';
5991   }
5992   OS << '\n';
5993 }
5994 
5995 void LSRInstance::print_fixups(raw_ostream &OS) const {
5996   OS << "LSR is examining the following fixup sites:\n";
5997   for (const LSRUse &LU : Uses)
5998     for (const LSRFixup &LF : LU.Fixups) {
5999       dbgs() << "  ";
6000       LF.print(OS);
6001       OS << '\n';
6002     }
6003 }
6004 
6005 void LSRInstance::print_uses(raw_ostream &OS) const {
6006   OS << "LSR is examining the following uses:\n";
6007   for (const LSRUse &LU : Uses) {
6008     dbgs() << "  ";
6009     LU.print(OS);
6010     OS << '\n';
6011     for (const Formula &F : LU.Formulae) {
6012       OS << "    ";
6013       F.print(OS);
6014       OS << '\n';
6015     }
6016   }
6017 }
6018 
6019 void LSRInstance::print(raw_ostream &OS) const {
6020   print_factors_and_types(OS);
6021   print_fixups(OS);
6022   print_uses(OS);
6023 }
6024 
6025 LLVM_DUMP_METHOD void LSRInstance::dump() const {
6026   print(errs()); errs() << '\n';
6027 }
6028 #endif
6029 
6030 namespace {
6031 
6032 class LoopStrengthReduce : public LoopPass {
6033 public:
6034   static char ID; // Pass ID, replacement for typeid
6035 
6036   LoopStrengthReduce();
6037 
6038 private:
6039   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
6040   void getAnalysisUsage(AnalysisUsage &AU) const override;
6041 };
6042 
6043 } // end anonymous namespace
6044 
6045 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) {
6046   initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
6047 }
6048 
6049 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
6050   // We split critical edges, so we change the CFG.  However, we do update
6051   // many analyses if they are around.
6052   AU.addPreservedID(LoopSimplifyID);
6053 
6054   AU.addRequired<LoopInfoWrapperPass>();
6055   AU.addPreserved<LoopInfoWrapperPass>();
6056   AU.addRequiredID(LoopSimplifyID);
6057   AU.addRequired<DominatorTreeWrapperPass>();
6058   AU.addPreserved<DominatorTreeWrapperPass>();
6059   AU.addRequired<ScalarEvolutionWrapperPass>();
6060   AU.addPreserved<ScalarEvolutionWrapperPass>();
6061   AU.addRequired<AssumptionCacheTracker>();
6062   AU.addRequired<TargetLibraryInfoWrapperPass>();
6063   // Requiring LoopSimplify a second time here prevents IVUsers from running
6064   // twice, since LoopSimplify was invalidated by running ScalarEvolution.
6065   AU.addRequiredID(LoopSimplifyID);
6066   AU.addRequired<IVUsersWrapperPass>();
6067   AU.addPreserved<IVUsersWrapperPass>();
6068   AU.addRequired<TargetTransformInfoWrapperPass>();
6069   AU.addPreserved<MemorySSAWrapperPass>();
6070 }
6071 
6072 namespace {
6073 
6074 /// Enables more convenient iteration over a DWARF expression vector.
6075 static iterator_range<llvm::DIExpression::expr_op_iterator>
6076 ToDwarfOpIter(SmallVectorImpl<uint64_t> &Expr) {
6077   llvm::DIExpression::expr_op_iterator Begin =
6078       llvm::DIExpression::expr_op_iterator(Expr.begin());
6079   llvm::DIExpression::expr_op_iterator End =
6080       llvm::DIExpression::expr_op_iterator(Expr.end());
6081   return {Begin, End};
6082 }
6083 
6084 struct SCEVDbgValueBuilder {
6085   SCEVDbgValueBuilder() = default;
6086   SCEVDbgValueBuilder(const SCEVDbgValueBuilder &Base) { clone(Base); }
6087 
6088   void clone(const SCEVDbgValueBuilder &Base) {
6089     LocationOps = Base.LocationOps;
6090     Expr = Base.Expr;
6091   }
6092 
6093   void clear() {
6094     LocationOps.clear();
6095     Expr.clear();
6096   }
6097 
6098   /// The DIExpression as we translate the SCEV.
6099   SmallVector<uint64_t, 6> Expr;
6100   /// The location ops of the DIExpression.
6101   SmallVector<Value *, 2> LocationOps;
6102 
6103   void pushOperator(uint64_t Op) { Expr.push_back(Op); }
6104   void pushUInt(uint64_t Operand) { Expr.push_back(Operand); }
6105 
6106   /// Add a DW_OP_LLVM_arg to the expression, followed by the index of the value
6107   /// in the set of values referenced by the expression.
6108   void pushLocation(llvm::Value *V) {
6109     Expr.push_back(llvm::dwarf::DW_OP_LLVM_arg);
6110     auto *It = llvm::find(LocationOps, V);
6111     unsigned ArgIndex = 0;
6112     if (It != LocationOps.end()) {
6113       ArgIndex = std::distance(LocationOps.begin(), It);
6114     } else {
6115       ArgIndex = LocationOps.size();
6116       LocationOps.push_back(V);
6117     }
6118     Expr.push_back(ArgIndex);
6119   }
6120 
6121   void pushValue(const SCEVUnknown *U) {
6122     llvm::Value *V = cast<SCEVUnknown>(U)->getValue();
6123     pushLocation(V);
6124   }
6125 
6126   bool pushConst(const SCEVConstant *C) {
6127     if (C->getAPInt().getSignificantBits() > 64)
6128       return false;
6129     Expr.push_back(llvm::dwarf::DW_OP_consts);
6130     Expr.push_back(C->getAPInt().getSExtValue());
6131     return true;
6132   }
6133 
6134   // Iterating the expression as DWARF ops is convenient when updating
6135   // DWARF_OP_LLVM_args.
6136   iterator_range<llvm::DIExpression::expr_op_iterator> expr_ops() {
6137     return ToDwarfOpIter(Expr);
6138   }
6139 
6140   /// Several SCEV types are sequences of the same arithmetic operator applied
6141   /// to constants and values that may be extended or truncated.
6142   bool pushArithmeticExpr(const llvm::SCEVCommutativeExpr *CommExpr,
6143                           uint64_t DwarfOp) {
6144     assert((isa<llvm::SCEVAddExpr>(CommExpr) || isa<SCEVMulExpr>(CommExpr)) &&
6145            "Expected arithmetic SCEV type");
6146     bool Success = true;
6147     unsigned EmitOperator = 0;
6148     for (const auto &Op : CommExpr->operands()) {
6149       Success &= pushSCEV(Op);
6150 
6151       if (EmitOperator >= 1)
6152         pushOperator(DwarfOp);
6153       ++EmitOperator;
6154     }
6155     return Success;
6156   }
6157 
6158   // TODO: Identify and omit noop casts.
6159   bool pushCast(const llvm::SCEVCastExpr *C, bool IsSigned) {
6160     const llvm::SCEV *Inner = C->getOperand(0);
6161     const llvm::Type *Type = C->getType();
6162     uint64_t ToWidth = Type->getIntegerBitWidth();
6163     bool Success = pushSCEV(Inner);
6164     uint64_t CastOps[] = {dwarf::DW_OP_LLVM_convert, ToWidth,
6165                           IsSigned ? llvm::dwarf::DW_ATE_signed
6166                                    : llvm::dwarf::DW_ATE_unsigned};
6167     for (const auto &Op : CastOps)
6168       pushOperator(Op);
6169     return Success;
6170   }
6171 
6172   // TODO: MinMax - although these haven't been encountered in the test suite.
6173   bool pushSCEV(const llvm::SCEV *S) {
6174     bool Success = true;
6175     if (const SCEVConstant *StartInt = dyn_cast<SCEVConstant>(S)) {
6176       Success &= pushConst(StartInt);
6177 
6178     } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
6179       if (!U->getValue())
6180         return false;
6181       pushLocation(U->getValue());
6182 
6183     } else if (const SCEVMulExpr *MulRec = dyn_cast<SCEVMulExpr>(S)) {
6184       Success &= pushArithmeticExpr(MulRec, llvm::dwarf::DW_OP_mul);
6185 
6186     } else if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
6187       Success &= pushSCEV(UDiv->getLHS());
6188       Success &= pushSCEV(UDiv->getRHS());
6189       pushOperator(llvm::dwarf::DW_OP_div);
6190 
6191     } else if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(S)) {
6192       // Assert if a new and unknown SCEVCastEXpr type is encountered.
6193       assert((isa<SCEVZeroExtendExpr>(Cast) || isa<SCEVTruncateExpr>(Cast) ||
6194               isa<SCEVPtrToIntExpr>(Cast) || isa<SCEVSignExtendExpr>(Cast)) &&
6195              "Unexpected cast type in SCEV.");
6196       Success &= pushCast(Cast, (isa<SCEVSignExtendExpr>(Cast)));
6197 
6198     } else if (const SCEVAddExpr *AddExpr = dyn_cast<SCEVAddExpr>(S)) {
6199       Success &= pushArithmeticExpr(AddExpr, llvm::dwarf::DW_OP_plus);
6200 
6201     } else if (isa<SCEVAddRecExpr>(S)) {
6202       // Nested SCEVAddRecExpr are generated by nested loops and are currently
6203       // unsupported.
6204       return false;
6205 
6206     } else {
6207       return false;
6208     }
6209     return Success;
6210   }
6211 
6212   /// Return true if the combination of arithmetic operator and underlying
6213   /// SCEV constant value is an identity function.
6214   bool isIdentityFunction(uint64_t Op, const SCEV *S) {
6215     if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
6216       if (C->getAPInt().getSignificantBits() > 64)
6217         return false;
6218       int64_t I = C->getAPInt().getSExtValue();
6219       switch (Op) {
6220       case llvm::dwarf::DW_OP_plus:
6221       case llvm::dwarf::DW_OP_minus:
6222         return I == 0;
6223       case llvm::dwarf::DW_OP_mul:
6224       case llvm::dwarf::DW_OP_div:
6225         return I == 1;
6226       }
6227     }
6228     return false;
6229   }
6230 
6231   /// Convert a SCEV of a value to a DIExpression that is pushed onto the
6232   /// builder's expression stack. The stack should already contain an
6233   /// expression for the iteration count, so that it can be multiplied by
6234   /// the stride and added to the start.
6235   /// Components of the expression are omitted if they are an identity function.
6236   /// Chain (non-affine) SCEVs are not supported.
6237   bool SCEVToValueExpr(const llvm::SCEVAddRecExpr &SAR, ScalarEvolution &SE) {
6238     assert(SAR.isAffine() && "Expected affine SCEV");
6239     // TODO: Is this check needed?
6240     if (isa<SCEVAddRecExpr>(SAR.getStart()))
6241       return false;
6242 
6243     const SCEV *Start = SAR.getStart();
6244     const SCEV *Stride = SAR.getStepRecurrence(SE);
6245 
6246     // Skip pushing arithmetic noops.
6247     if (!isIdentityFunction(llvm::dwarf::DW_OP_mul, Stride)) {
6248       if (!pushSCEV(Stride))
6249         return false;
6250       pushOperator(llvm::dwarf::DW_OP_mul);
6251     }
6252     if (!isIdentityFunction(llvm::dwarf::DW_OP_plus, Start)) {
6253       if (!pushSCEV(Start))
6254         return false;
6255       pushOperator(llvm::dwarf::DW_OP_plus);
6256     }
6257     return true;
6258   }
6259 
6260   /// Create an expression that is an offset from a value (usually the IV).
6261   void createOffsetExpr(int64_t Offset, Value *OffsetValue) {
6262     pushLocation(OffsetValue);
6263     DIExpression::appendOffset(Expr, Offset);
6264     LLVM_DEBUG(
6265         dbgs() << "scev-salvage: Generated IV offset expression. Offset: "
6266                << std::to_string(Offset) << "\n");
6267   }
6268 
6269   /// Combine a translation of the SCEV and the IV to create an expression that
6270   /// recovers a location's value.
6271   /// returns true if an expression was created.
6272   bool createIterCountExpr(const SCEV *S,
6273                            const SCEVDbgValueBuilder &IterationCount,
6274                            ScalarEvolution &SE) {
6275     // SCEVs for SSA values are most frquently of the form
6276     // {start,+,stride}, but sometimes they are ({start,+,stride} + %a + ..).
6277     // This is because %a is a PHI node that is not the IV. However, these
6278     // SCEVs have not been observed to result in debuginfo-lossy optimisations,
6279     // so its not expected this point will be reached.
6280     if (!isa<SCEVAddRecExpr>(S))
6281       return false;
6282 
6283     LLVM_DEBUG(dbgs() << "scev-salvage: Location to salvage SCEV: " << *S
6284                       << '\n');
6285 
6286     const auto *Rec = cast<SCEVAddRecExpr>(S);
6287     if (!Rec->isAffine())
6288       return false;
6289 
6290     if (S->getExpressionSize() > MaxSCEVSalvageExpressionSize)
6291       return false;
6292 
6293     // Initialise a new builder with the iteration count expression. In
6294     // combination with the value's SCEV this enables recovery.
6295     clone(IterationCount);
6296     if (!SCEVToValueExpr(*Rec, SE))
6297       return false;
6298 
6299     return true;
6300   }
6301 
6302   /// Convert a SCEV of a value to a DIExpression that is pushed onto the
6303   /// builder's expression stack. The stack should already contain an
6304   /// expression for the iteration count, so that it can be multiplied by
6305   /// the stride and added to the start.
6306   /// Components of the expression are omitted if they are an identity function.
6307   bool SCEVToIterCountExpr(const llvm::SCEVAddRecExpr &SAR,
6308                            ScalarEvolution &SE) {
6309     assert(SAR.isAffine() && "Expected affine SCEV");
6310     if (isa<SCEVAddRecExpr>(SAR.getStart())) {
6311       LLVM_DEBUG(dbgs() << "scev-salvage: IV SCEV. Unsupported nested AddRec: "
6312                         << SAR << '\n');
6313       return false;
6314     }
6315     const SCEV *Start = SAR.getStart();
6316     const SCEV *Stride = SAR.getStepRecurrence(SE);
6317 
6318     // Skip pushing arithmetic noops.
6319     if (!isIdentityFunction(llvm::dwarf::DW_OP_minus, Start)) {
6320       if (!pushSCEV(Start))
6321         return false;
6322       pushOperator(llvm::dwarf::DW_OP_minus);
6323     }
6324     if (!isIdentityFunction(llvm::dwarf::DW_OP_div, Stride)) {
6325       if (!pushSCEV(Stride))
6326         return false;
6327       pushOperator(llvm::dwarf::DW_OP_div);
6328     }
6329     return true;
6330   }
6331 
6332   // Append the current expression and locations to a location list and an
6333   // expression list. Modify the DW_OP_LLVM_arg indexes to account for
6334   // the locations already present in the destination list.
6335   void appendToVectors(SmallVectorImpl<uint64_t> &DestExpr,
6336                        SmallVectorImpl<Value *> &DestLocations) {
6337     assert(!DestLocations.empty() &&
6338            "Expected the locations vector to contain the IV");
6339     // The DWARF_OP_LLVM_arg arguments of the expression being appended must be
6340     // modified to account for the locations already in the destination vector.
6341     // All builders contain the IV as the first location op.
6342     assert(!LocationOps.empty() &&
6343            "Expected the location ops to contain the IV.");
6344     // DestIndexMap[n] contains the index in DestLocations for the nth
6345     // location in this SCEVDbgValueBuilder.
6346     SmallVector<uint64_t, 2> DestIndexMap;
6347     for (const auto &Op : LocationOps) {
6348       auto It = find(DestLocations, Op);
6349       if (It != DestLocations.end()) {
6350         // Location already exists in DestLocations, reuse existing ArgIndex.
6351         DestIndexMap.push_back(std::distance(DestLocations.begin(), It));
6352         continue;
6353       }
6354       // Location is not in DestLocations, add it.
6355       DestIndexMap.push_back(DestLocations.size());
6356       DestLocations.push_back(Op);
6357     }
6358 
6359     for (const auto &Op : expr_ops()) {
6360       if (Op.getOp() != dwarf::DW_OP_LLVM_arg) {
6361         Op.appendToVector(DestExpr);
6362         continue;
6363       }
6364 
6365       DestExpr.push_back(dwarf::DW_OP_LLVM_arg);
6366       // `DW_OP_LLVM_arg n` represents the nth LocationOp in this SCEV,
6367       // DestIndexMap[n] contains its new index in DestLocations.
6368       uint64_t NewIndex = DestIndexMap[Op.getArg(0)];
6369       DestExpr.push_back(NewIndex);
6370     }
6371   }
6372 };
6373 
6374 /// Holds all the required data to salvage a dbg.value using the pre-LSR SCEVs
6375 /// and DIExpression.
6376 struct DVIRecoveryRec {
6377   DVIRecoveryRec(DbgValueInst *DbgValue)
6378       : DVI(DbgValue), Expr(DbgValue->getExpression()),
6379         HadLocationArgList(false) {}
6380 
6381   DbgValueInst *DVI;
6382   DIExpression *Expr;
6383   bool HadLocationArgList;
6384   SmallVector<WeakVH, 2> LocationOps;
6385   SmallVector<const llvm::SCEV *, 2> SCEVs;
6386   SmallVector<std::unique_ptr<SCEVDbgValueBuilder>, 2> RecoveryExprs;
6387 
6388   void clear() {
6389     for (auto &RE : RecoveryExprs)
6390       RE.reset();
6391     RecoveryExprs.clear();
6392   }
6393 
6394   ~DVIRecoveryRec() { clear(); }
6395 };
6396 } // namespace
6397 
6398 /// Returns the total number of DW_OP_llvm_arg operands in the expression.
6399 /// This helps in determining if a DIArglist is necessary or can be omitted from
6400 /// the dbg.value.
6401 static unsigned numLLVMArgOps(SmallVectorImpl<uint64_t> &Expr) {
6402   auto expr_ops = ToDwarfOpIter(Expr);
6403   unsigned Count = 0;
6404   for (auto Op : expr_ops)
6405     if (Op.getOp() == dwarf::DW_OP_LLVM_arg)
6406       Count++;
6407   return Count;
6408 }
6409 
6410 /// Overwrites DVI with the location and Ops as the DIExpression. This will
6411 /// create an invalid expression if Ops has any dwarf::DW_OP_llvm_arg operands,
6412 /// because a DIArglist is not created for the first argument of the dbg.value.
6413 static void updateDVIWithLocation(DbgValueInst &DVI, Value *Location,
6414                                   SmallVectorImpl<uint64_t> &Ops) {
6415   assert(
6416       numLLVMArgOps(Ops) == 0 &&
6417       "Expected expression that does not contain any DW_OP_llvm_arg operands.");
6418   DVI.setRawLocation(ValueAsMetadata::get(Location));
6419   DVI.setExpression(DIExpression::get(DVI.getContext(), Ops));
6420 }
6421 
6422 /// Overwrite DVI with locations placed into a DIArglist.
6423 static void updateDVIWithLocations(DbgValueInst &DVI,
6424                                    SmallVectorImpl<Value *> &Locations,
6425                                    SmallVectorImpl<uint64_t> &Ops) {
6426   assert(numLLVMArgOps(Ops) != 0 &&
6427          "Expected expression that references DIArglist locations using "
6428          "DW_OP_llvm_arg operands.");
6429   SmallVector<ValueAsMetadata *, 3> MetadataLocs;
6430   for (Value *V : Locations)
6431     MetadataLocs.push_back(ValueAsMetadata::get(V));
6432   auto ValArrayRef = llvm::ArrayRef<llvm::ValueAsMetadata *>(MetadataLocs);
6433   DVI.setRawLocation(llvm::DIArgList::get(DVI.getContext(), ValArrayRef));
6434   DVI.setExpression(DIExpression::get(DVI.getContext(), Ops));
6435 }
6436 
6437 /// Write the new expression and new location ops for the dbg.value. If possible
6438 /// reduce the szie of the dbg.value intrinsic by omitting DIArglist. This
6439 /// can be omitted if:
6440 /// 1. There is only a single location, refenced by a single DW_OP_llvm_arg.
6441 /// 2. The DW_OP_LLVM_arg is the first operand in the expression.
6442 static void UpdateDbgValueInst(DVIRecoveryRec &DVIRec,
6443                                SmallVectorImpl<Value *> &NewLocationOps,
6444                                SmallVectorImpl<uint64_t> &NewExpr) {
6445   unsigned NumLLVMArgs = numLLVMArgOps(NewExpr);
6446   if (NumLLVMArgs == 0) {
6447     // Location assumed to be on the stack.
6448     updateDVIWithLocation(*DVIRec.DVI, NewLocationOps[0], NewExpr);
6449   } else if (NumLLVMArgs == 1 && NewExpr[0] == dwarf::DW_OP_LLVM_arg) {
6450     // There is only a single DW_OP_llvm_arg at the start of the expression,
6451     // so it can be omitted along with DIArglist.
6452     assert(NewExpr[1] == 0 &&
6453            "Lone LLVM_arg in a DIExpression should refer to location-op 0.");
6454     llvm::SmallVector<uint64_t, 6> ShortenedOps(llvm::drop_begin(NewExpr, 2));
6455     updateDVIWithLocation(*DVIRec.DVI, NewLocationOps[0], ShortenedOps);
6456   } else {
6457     // Multiple DW_OP_llvm_arg, so DIArgList is strictly necessary.
6458     updateDVIWithLocations(*DVIRec.DVI, NewLocationOps, NewExpr);
6459   }
6460 
6461   // If the DIExpression was previously empty then add the stack terminator.
6462   // Non-empty expressions have only had elements inserted into them and so the
6463   // terminator should already be present e.g. stack_value or fragment.
6464   DIExpression *SalvageExpr = DVIRec.DVI->getExpression();
6465   if (!DVIRec.Expr->isComplex() && SalvageExpr->isComplex()) {
6466     SalvageExpr = DIExpression::append(SalvageExpr, {dwarf::DW_OP_stack_value});
6467     DVIRec.DVI->setExpression(SalvageExpr);
6468   }
6469 }
6470 
6471 /// Cached location ops may be erased during LSR, in which case a poison is
6472 /// required when restoring from the cache. The type of that location is no
6473 /// longer available, so just use int8. The poison will be replaced by one or
6474 /// more locations later when a SCEVDbgValueBuilder selects alternative
6475 /// locations to use for the salvage.
6476 static Value *getValueOrPoison(WeakVH &VH, LLVMContext &C) {
6477   return (VH) ? VH : PoisonValue::get(llvm::Type::getInt8Ty(C));
6478 }
6479 
6480 /// Restore the DVI's pre-LSR arguments. Substitute undef for any erased values.
6481 static void restorePreTransformState(DVIRecoveryRec &DVIRec) {
6482   LLVM_DEBUG(dbgs() << "scev-salvage: restore dbg.value to pre-LSR state\n"
6483                     << "scev-salvage: post-LSR: " << *DVIRec.DVI << '\n');
6484   assert(DVIRec.Expr && "Expected an expression");
6485   DVIRec.DVI->setExpression(DVIRec.Expr);
6486 
6487   // Even a single location-op may be inside a DIArgList and referenced with
6488   // DW_OP_LLVM_arg, which is valid only with a DIArgList.
6489   if (!DVIRec.HadLocationArgList) {
6490     assert(DVIRec.LocationOps.size() == 1 &&
6491            "Unexpected number of location ops.");
6492     // LSR's unsuccessful salvage attempt may have added DIArgList, which in
6493     // this case was not present before, so force the location back to a single
6494     // uncontained Value.
6495     Value *CachedValue =
6496         getValueOrPoison(DVIRec.LocationOps[0], DVIRec.DVI->getContext());
6497     DVIRec.DVI->setRawLocation(ValueAsMetadata::get(CachedValue));
6498   } else {
6499     SmallVector<ValueAsMetadata *, 3> MetadataLocs;
6500     for (WeakVH VH : DVIRec.LocationOps) {
6501       Value *CachedValue = getValueOrPoison(VH, DVIRec.DVI->getContext());
6502       MetadataLocs.push_back(ValueAsMetadata::get(CachedValue));
6503     }
6504     auto ValArrayRef = llvm::ArrayRef<llvm::ValueAsMetadata *>(MetadataLocs);
6505     DVIRec.DVI->setRawLocation(
6506         llvm::DIArgList::get(DVIRec.DVI->getContext(), ValArrayRef));
6507   }
6508   LLVM_DEBUG(dbgs() << "scev-salvage: pre-LSR: " << *DVIRec.DVI << '\n');
6509 }
6510 
6511 static bool SalvageDVI(llvm::Loop *L, ScalarEvolution &SE,
6512                        llvm::PHINode *LSRInductionVar, DVIRecoveryRec &DVIRec,
6513                        const SCEV *SCEVInductionVar,
6514                        SCEVDbgValueBuilder IterCountExpr) {
6515   if (!DVIRec.DVI->isKillLocation())
6516     return false;
6517 
6518   // LSR may have caused several changes to the dbg.value in the failed salvage
6519   // attempt. So restore the DIExpression, the location ops and also the
6520   // location ops format, which is always DIArglist for multiple ops, but only
6521   // sometimes for a single op.
6522   restorePreTransformState(DVIRec);
6523 
6524   // LocationOpIndexMap[i] will store the post-LSR location index of
6525   // the non-optimised out location at pre-LSR index i.
6526   SmallVector<int64_t, 2> LocationOpIndexMap;
6527   LocationOpIndexMap.assign(DVIRec.LocationOps.size(), -1);
6528   SmallVector<Value *, 2> NewLocationOps;
6529   NewLocationOps.push_back(LSRInductionVar);
6530 
6531   for (unsigned i = 0; i < DVIRec.LocationOps.size(); i++) {
6532     WeakVH VH = DVIRec.LocationOps[i];
6533     // Place the locations not optimised out in the list first, avoiding
6534     // inserts later. The map is used to update the DIExpression's
6535     // DW_OP_LLVM_arg arguments as the expression is updated.
6536     if (VH && !isa<UndefValue>(VH)) {
6537       NewLocationOps.push_back(VH);
6538       LocationOpIndexMap[i] = NewLocationOps.size() - 1;
6539       LLVM_DEBUG(dbgs() << "scev-salvage: Location index " << i
6540                         << " now at index " << LocationOpIndexMap[i] << "\n");
6541       continue;
6542     }
6543 
6544     // It's possible that a value referred to in the SCEV may have been
6545     // optimised out by LSR.
6546     if (SE.containsErasedValue(DVIRec.SCEVs[i]) ||
6547         SE.containsUndefs(DVIRec.SCEVs[i])) {
6548       LLVM_DEBUG(dbgs() << "scev-salvage: SCEV for location at index: " << i
6549                         << " refers to a location that is now undef or erased. "
6550                            "Salvage abandoned.\n");
6551       return false;
6552     }
6553 
6554     LLVM_DEBUG(dbgs() << "scev-salvage: salvaging location at index " << i
6555                       << " with SCEV: " << *DVIRec.SCEVs[i] << "\n");
6556 
6557     DVIRec.RecoveryExprs[i] = std::make_unique<SCEVDbgValueBuilder>();
6558     SCEVDbgValueBuilder *SalvageExpr = DVIRec.RecoveryExprs[i].get();
6559 
6560     // Create an offset-based salvage expression if possible, as it requires
6561     // less DWARF ops than an iteration count-based expression.
6562     if (std::optional<APInt> Offset =
6563             SE.computeConstantDifference(DVIRec.SCEVs[i], SCEVInductionVar)) {
6564       if (Offset->getSignificantBits() <= 64)
6565         SalvageExpr->createOffsetExpr(Offset->getSExtValue(), LSRInductionVar);
6566     } else if (!SalvageExpr->createIterCountExpr(DVIRec.SCEVs[i], IterCountExpr,
6567                                                  SE))
6568       return false;
6569   }
6570 
6571   // Merge the DbgValueBuilder generated expressions and the original
6572   // DIExpression, place the result into an new vector.
6573   SmallVector<uint64_t, 3> NewExpr;
6574   if (DVIRec.Expr->getNumElements() == 0) {
6575     assert(DVIRec.RecoveryExprs.size() == 1 &&
6576            "Expected only a single recovery expression for an empty "
6577            "DIExpression.");
6578     assert(DVIRec.RecoveryExprs[0] &&
6579            "Expected a SCEVDbgSalvageBuilder for location 0");
6580     SCEVDbgValueBuilder *B = DVIRec.RecoveryExprs[0].get();
6581     B->appendToVectors(NewExpr, NewLocationOps);
6582   }
6583   for (const auto &Op : DVIRec.Expr->expr_ops()) {
6584     // Most Ops needn't be updated.
6585     if (Op.getOp() != dwarf::DW_OP_LLVM_arg) {
6586       Op.appendToVector(NewExpr);
6587       continue;
6588     }
6589 
6590     uint64_t LocationArgIndex = Op.getArg(0);
6591     SCEVDbgValueBuilder *DbgBuilder =
6592         DVIRec.RecoveryExprs[LocationArgIndex].get();
6593     // The location doesn't have s SCEVDbgValueBuilder, so LSR did not
6594     // optimise it away. So just translate the argument to the updated
6595     // location index.
6596     if (!DbgBuilder) {
6597       NewExpr.push_back(dwarf::DW_OP_LLVM_arg);
6598       assert(LocationOpIndexMap[Op.getArg(0)] != -1 &&
6599              "Expected a positive index for the location-op position.");
6600       NewExpr.push_back(LocationOpIndexMap[Op.getArg(0)]);
6601       continue;
6602     }
6603     // The location has a recovery expression.
6604     DbgBuilder->appendToVectors(NewExpr, NewLocationOps);
6605   }
6606 
6607   UpdateDbgValueInst(DVIRec, NewLocationOps, NewExpr);
6608   LLVM_DEBUG(dbgs() << "scev-salvage: Updated DVI: " << *DVIRec.DVI << "\n");
6609   return true;
6610 }
6611 
6612 /// Obtain an expression for the iteration count, then attempt to salvage the
6613 /// dbg.value intrinsics.
6614 static void
6615 DbgRewriteSalvageableDVIs(llvm::Loop *L, ScalarEvolution &SE,
6616                           llvm::PHINode *LSRInductionVar,
6617                           SmallVector<std::unique_ptr<DVIRecoveryRec>, 2> &DVIToUpdate) {
6618   if (DVIToUpdate.empty())
6619     return;
6620 
6621   const llvm::SCEV *SCEVInductionVar = SE.getSCEV(LSRInductionVar);
6622   assert(SCEVInductionVar &&
6623          "Anticipated a SCEV for the post-LSR induction variable");
6624 
6625   if (const SCEVAddRecExpr *IVAddRec =
6626           dyn_cast<SCEVAddRecExpr>(SCEVInductionVar)) {
6627     if (!IVAddRec->isAffine())
6628       return;
6629 
6630     // Prevent translation using excessive resources.
6631     if (IVAddRec->getExpressionSize() > MaxSCEVSalvageExpressionSize)
6632       return;
6633 
6634     // The iteration count is required to recover location values.
6635     SCEVDbgValueBuilder IterCountExpr;
6636     IterCountExpr.pushLocation(LSRInductionVar);
6637     if (!IterCountExpr.SCEVToIterCountExpr(*IVAddRec, SE))
6638       return;
6639 
6640     LLVM_DEBUG(dbgs() << "scev-salvage: IV SCEV: " << *SCEVInductionVar
6641                       << '\n');
6642 
6643     for (auto &DVIRec : DVIToUpdate) {
6644       SalvageDVI(L, SE, LSRInductionVar, *DVIRec, SCEVInductionVar,
6645                  IterCountExpr);
6646     }
6647   }
6648 }
6649 
6650 /// Identify and cache salvageable DVI locations and expressions along with the
6651 /// corresponding SCEV(s). Also ensure that the DVI is not deleted between
6652 /// cacheing and salvaging.
6653 static void DbgGatherSalvagableDVI(
6654     Loop *L, ScalarEvolution &SE,
6655     SmallVector<std::unique_ptr<DVIRecoveryRec>, 2> &SalvageableDVISCEVs,
6656     SmallSet<AssertingVH<DbgValueInst>, 2> &DVIHandles) {
6657   for (const auto &B : L->getBlocks()) {
6658     for (auto &I : *B) {
6659       auto DVI = dyn_cast<DbgValueInst>(&I);
6660       if (!DVI)
6661         continue;
6662       // Ensure that if any location op is undef that the dbg.vlue is not
6663       // cached.
6664       if (DVI->isKillLocation())
6665         continue;
6666 
6667       // Check that the location op SCEVs are suitable for translation to
6668       // DIExpression.
6669       const auto &HasTranslatableLocationOps =
6670           [&](const DbgValueInst *DVI) -> bool {
6671         for (const auto LocOp : DVI->location_ops()) {
6672           if (!LocOp)
6673             return false;
6674 
6675           if (!SE.isSCEVable(LocOp->getType()))
6676             return false;
6677 
6678           const SCEV *S = SE.getSCEV(LocOp);
6679           if (SE.containsUndefs(S))
6680             return false;
6681         }
6682         return true;
6683       };
6684 
6685       if (!HasTranslatableLocationOps(DVI))
6686         continue;
6687 
6688       std::unique_ptr<DVIRecoveryRec> NewRec =
6689           std::make_unique<DVIRecoveryRec>(DVI);
6690       // Each location Op may need a SCEVDbgValueBuilder in order to recover it.
6691       // Pre-allocating a vector will enable quick lookups of the builder later
6692       // during the salvage.
6693       NewRec->RecoveryExprs.resize(DVI->getNumVariableLocationOps());
6694       for (const auto LocOp : DVI->location_ops()) {
6695         NewRec->SCEVs.push_back(SE.getSCEV(LocOp));
6696         NewRec->LocationOps.push_back(LocOp);
6697         NewRec->HadLocationArgList = DVI->hasArgList();
6698       }
6699       SalvageableDVISCEVs.push_back(std::move(NewRec));
6700       DVIHandles.insert(DVI);
6701     }
6702   }
6703 }
6704 
6705 /// Ideally pick the PHI IV inserted by ScalarEvolutionExpander. As a fallback
6706 /// any PHi from the loop header is usable, but may have less chance of
6707 /// surviving subsequent transforms.
6708 static llvm::PHINode *GetInductionVariable(const Loop &L, ScalarEvolution &SE,
6709                                            const LSRInstance &LSR) {
6710 
6711   auto IsSuitableIV = [&](PHINode *P) {
6712     if (!SE.isSCEVable(P->getType()))
6713       return false;
6714     if (const SCEVAddRecExpr *Rec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(P)))
6715       return Rec->isAffine() && !SE.containsUndefs(SE.getSCEV(P));
6716     return false;
6717   };
6718 
6719   // For now, just pick the first IV that was generated and inserted by
6720   // ScalarEvolution. Ideally pick an IV that is unlikely to be optimised away
6721   // by subsequent transforms.
6722   for (const WeakVH &IV : LSR.getScalarEvolutionIVs()) {
6723     if (!IV)
6724       continue;
6725 
6726     // There should only be PHI node IVs.
6727     PHINode *P = cast<PHINode>(&*IV);
6728 
6729     if (IsSuitableIV(P))
6730       return P;
6731   }
6732 
6733   for (PHINode &P : L.getHeader()->phis()) {
6734     if (IsSuitableIV(&P))
6735       return &P;
6736   }
6737   return nullptr;
6738 }
6739 
6740 static std::optional<std::tuple<PHINode *, PHINode *, const SCEV *, bool>>
6741 canFoldTermCondOfLoop(Loop *L, ScalarEvolution &SE, DominatorTree &DT,
6742                       const LoopInfo &LI) {
6743   if (!L->isInnermost()) {
6744     LLVM_DEBUG(dbgs() << "Cannot fold on non-innermost loop\n");
6745     return std::nullopt;
6746   }
6747   // Only inspect on simple loop structure
6748   if (!L->isLoopSimplifyForm()) {
6749     LLVM_DEBUG(dbgs() << "Cannot fold on non-simple loop\n");
6750     return std::nullopt;
6751   }
6752 
6753   if (!SE.hasLoopInvariantBackedgeTakenCount(L)) {
6754     LLVM_DEBUG(dbgs() << "Cannot fold on backedge that is loop variant\n");
6755     return std::nullopt;
6756   }
6757 
6758   BasicBlock *LoopLatch = L->getLoopLatch();
6759   BranchInst *BI = dyn_cast<BranchInst>(LoopLatch->getTerminator());
6760   if (!BI || BI->isUnconditional())
6761     return std::nullopt;
6762   auto *TermCond = dyn_cast<ICmpInst>(BI->getCondition());
6763   if (!TermCond) {
6764     LLVM_DEBUG(
6765         dbgs() << "Cannot fold on branching condition that is not an ICmpInst");
6766     return std::nullopt;
6767   }
6768   if (!TermCond->hasOneUse()) {
6769     LLVM_DEBUG(
6770         dbgs()
6771         << "Cannot replace terminating condition with more than one use\n");
6772     return std::nullopt;
6773   }
6774 
6775   BinaryOperator *LHS = dyn_cast<BinaryOperator>(TermCond->getOperand(0));
6776   Value *RHS = TermCond->getOperand(1);
6777   if (!LHS || !L->isLoopInvariant(RHS))
6778     // We could pattern match the inverse form of the icmp, but that is
6779     // non-canonical, and this pass is running *very* late in the pipeline.
6780     return std::nullopt;
6781 
6782   // Find the IV used by the current exit condition.
6783   PHINode *ToFold;
6784   Value *ToFoldStart, *ToFoldStep;
6785   if (!matchSimpleRecurrence(LHS, ToFold, ToFoldStart, ToFoldStep))
6786     return std::nullopt;
6787 
6788   // If that IV isn't dead after we rewrite the exit condition in terms of
6789   // another IV, there's no point in doing the transform.
6790   if (!isAlmostDeadIV(ToFold, LoopLatch, TermCond))
6791     return std::nullopt;
6792 
6793   const SCEV *BECount = SE.getBackedgeTakenCount(L);
6794   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
6795   SCEVExpander Expander(SE, DL, "lsr_fold_term_cond");
6796 
6797   PHINode *ToHelpFold = nullptr;
6798   const SCEV *TermValueS = nullptr;
6799   bool MustDropPoison = false;
6800   for (PHINode &PN : L->getHeader()->phis()) {
6801     if (ToFold == &PN)
6802       continue;
6803 
6804     if (!SE.isSCEVable(PN.getType())) {
6805       LLVM_DEBUG(dbgs() << "IV of phi '" << PN
6806                         << "' is not SCEV-able, not qualified for the "
6807                            "terminating condition folding.\n");
6808       continue;
6809     }
6810     const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&PN));
6811     // Only speculate on affine AddRec
6812     if (!AddRec || !AddRec->isAffine()) {
6813       LLVM_DEBUG(dbgs() << "SCEV of phi '" << PN
6814                         << "' is not an affine add recursion, not qualified "
6815                            "for the terminating condition folding.\n");
6816       continue;
6817     }
6818 
6819     // Check that we can compute the value of AddRec on the exiting iteration
6820     // without soundness problems.  evaluateAtIteration internally needs
6821     // to multiply the stride of the iteration number - which may wrap around.
6822     // The issue here is subtle because computing the result accounting for
6823     // wrap is insufficient. In order to use the result in an exit test, we
6824     // must also know that AddRec doesn't take the same value on any previous
6825     // iteration. The simplest case to consider is a candidate IV which is
6826     // narrower than the trip count (and thus original IV), but this can
6827     // also happen due to non-unit strides on the candidate IVs.
6828     if (!AddRec->hasNoSelfWrap())
6829       continue;
6830 
6831     const SCEVAddRecExpr *PostInc = AddRec->getPostIncExpr(SE);
6832     const SCEV *TermValueSLocal = PostInc->evaluateAtIteration(BECount, SE);
6833     if (!Expander.isSafeToExpand(TermValueSLocal)) {
6834       LLVM_DEBUG(
6835           dbgs() << "Is not safe to expand terminating value for phi node" << PN
6836                  << "\n");
6837       continue;
6838     }
6839 
6840     // The candidate IV may have been otherwise dead and poison from the
6841     // very first iteration.  If we can't disprove that, we can't use the IV.
6842     if (!mustExecuteUBIfPoisonOnPathTo(&PN, LoopLatch->getTerminator(), &DT)) {
6843       LLVM_DEBUG(dbgs() << "Can not prove poison safety for IV "
6844                         << PN << "\n");
6845       continue;
6846     }
6847 
6848     // The candidate IV may become poison on the last iteration.  If this
6849     // value is not branched on, this is a well defined program.  We're
6850     // about to add a new use to this IV, and we have to ensure we don't
6851     // insert UB which didn't previously exist.
6852     bool MustDropPoisonLocal = false;
6853     Instruction *PostIncV =
6854       cast<Instruction>(PN.getIncomingValueForBlock(LoopLatch));
6855     if (!mustExecuteUBIfPoisonOnPathTo(PostIncV, LoopLatch->getTerminator(),
6856                                        &DT)) {
6857       LLVM_DEBUG(dbgs() << "Can not prove poison safety to insert use"
6858                         << PN << "\n");
6859 
6860       // If this is a complex recurrance with multiple instructions computing
6861       // the backedge value, we might need to strip poison flags from all of
6862       // them.
6863       if (PostIncV->getOperand(0) != &PN)
6864         continue;
6865 
6866       // In order to perform the transform, we need to drop the poison generating
6867       // flags on this instruction (if any).
6868       MustDropPoisonLocal = PostIncV->hasPoisonGeneratingFlags();
6869     }
6870 
6871     // We pick the last legal alternate IV.  We could expore choosing an optimal
6872     // alternate IV if we had a decent heuristic to do so.
6873     ToHelpFold = &PN;
6874     TermValueS = TermValueSLocal;
6875     MustDropPoison = MustDropPoisonLocal;
6876   }
6877 
6878   LLVM_DEBUG(if (ToFold && !ToHelpFold) dbgs()
6879                  << "Cannot find other AddRec IV to help folding\n";);
6880 
6881   LLVM_DEBUG(if (ToFold && ToHelpFold) dbgs()
6882              << "\nFound loop that can fold terminating condition\n"
6883              << "  BECount (SCEV): " << *SE.getBackedgeTakenCount(L) << "\n"
6884              << "  TermCond: " << *TermCond << "\n"
6885              << "  BrandInst: " << *BI << "\n"
6886              << "  ToFold: " << *ToFold << "\n"
6887              << "  ToHelpFold: " << *ToHelpFold << "\n");
6888 
6889   if (!ToFold || !ToHelpFold)
6890     return std::nullopt;
6891   return std::make_tuple(ToFold, ToHelpFold, TermValueS, MustDropPoison);
6892 }
6893 
6894 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE,
6895                                DominatorTree &DT, LoopInfo &LI,
6896                                const TargetTransformInfo &TTI,
6897                                AssumptionCache &AC, TargetLibraryInfo &TLI,
6898                                MemorySSA *MSSA) {
6899 
6900   // Debug preservation - before we start removing anything identify which DVI
6901   // meet the salvageable criteria and store their DIExpression and SCEVs.
6902   SmallVector<std::unique_ptr<DVIRecoveryRec>, 2> SalvageableDVIRecords;
6903   SmallSet<AssertingVH<DbgValueInst>, 2> DVIHandles;
6904   DbgGatherSalvagableDVI(L, SE, SalvageableDVIRecords, DVIHandles);
6905 
6906   bool Changed = false;
6907   std::unique_ptr<MemorySSAUpdater> MSSAU;
6908   if (MSSA)
6909     MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
6910 
6911   // Run the main LSR transformation.
6912   const LSRInstance &Reducer =
6913       LSRInstance(L, IU, SE, DT, LI, TTI, AC, TLI, MSSAU.get());
6914   Changed |= Reducer.getChanged();
6915 
6916   // Remove any extra phis created by processing inner loops.
6917   Changed |= DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get());
6918   if (EnablePhiElim && L->isLoopSimplifyForm()) {
6919     SmallVector<WeakTrackingVH, 16> DeadInsts;
6920     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
6921     SCEVExpander Rewriter(SE, DL, "lsr", false);
6922 #ifndef NDEBUG
6923     Rewriter.setDebugType(DEBUG_TYPE);
6924 #endif
6925     unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI);
6926     if (numFolded) {
6927       Changed = true;
6928       RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, &TLI,
6929                                                            MSSAU.get());
6930       DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get());
6931     }
6932   }
6933   // LSR may at times remove all uses of an induction variable from a loop.
6934   // The only remaining use is the PHI in the exit block.
6935   // When this is the case, if the exit value of the IV can be calculated using
6936   // SCEV, we can replace the exit block PHI with the final value of the IV and
6937   // skip the updates in each loop iteration.
6938   if (L->isRecursivelyLCSSAForm(DT, LI) && L->getExitBlock()) {
6939     SmallVector<WeakTrackingVH, 16> DeadInsts;
6940     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
6941     SCEVExpander Rewriter(SE, DL, "lsr", true);
6942     int Rewrites = rewriteLoopExitValues(L, &LI, &TLI, &SE, &TTI, Rewriter, &DT,
6943                                          UnusedIndVarInLoop, DeadInsts);
6944     if (Rewrites) {
6945       Changed = true;
6946       RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, &TLI,
6947                                                            MSSAU.get());
6948       DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get());
6949     }
6950   }
6951 
6952   if (AllowTerminatingConditionFoldingAfterLSR) {
6953     if (auto Opt = canFoldTermCondOfLoop(L, SE, DT, LI)) {
6954       auto [ToFold, ToHelpFold, TermValueS, MustDrop] = *Opt;
6955 
6956       Changed = true;
6957       NumTermFold++;
6958 
6959       BasicBlock *LoopPreheader = L->getLoopPreheader();
6960       BasicBlock *LoopLatch = L->getLoopLatch();
6961 
6962       (void)ToFold;
6963       LLVM_DEBUG(dbgs() << "To fold phi-node:\n"
6964                         << *ToFold << "\n"
6965                         << "New term-cond phi-node:\n"
6966                         << *ToHelpFold << "\n");
6967 
6968       Value *StartValue = ToHelpFold->getIncomingValueForBlock(LoopPreheader);
6969       (void)StartValue;
6970       Value *LoopValue = ToHelpFold->getIncomingValueForBlock(LoopLatch);
6971 
6972       // See comment in canFoldTermCondOfLoop on why this is sufficient.
6973       if (MustDrop)
6974         cast<Instruction>(LoopValue)->dropPoisonGeneratingFlags();
6975 
6976       // SCEVExpander for both use in preheader and latch
6977       const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
6978       SCEVExpander Expander(SE, DL, "lsr_fold_term_cond");
6979       SCEVExpanderCleaner ExpCleaner(Expander);
6980 
6981       assert(Expander.isSafeToExpand(TermValueS) &&
6982              "Terminating value was checked safe in canFoldTerminatingCondition");
6983 
6984       // Create new terminating value at loop header
6985       Value *TermValue = Expander.expandCodeFor(TermValueS, ToHelpFold->getType(),
6986                                                 LoopPreheader->getTerminator());
6987 
6988       LLVM_DEBUG(dbgs() << "Start value of new term-cond phi-node:\n"
6989                         << *StartValue << "\n"
6990                         << "Terminating value of new term-cond phi-node:\n"
6991                         << *TermValue << "\n");
6992 
6993       // Create new terminating condition at loop latch
6994       BranchInst *BI = cast<BranchInst>(LoopLatch->getTerminator());
6995       ICmpInst *OldTermCond = cast<ICmpInst>(BI->getCondition());
6996       IRBuilder<> LatchBuilder(LoopLatch->getTerminator());
6997       Value *NewTermCond =
6998           LatchBuilder.CreateICmp(CmpInst::ICMP_EQ, LoopValue, TermValue,
6999                                   "lsr_fold_term_cond.replaced_term_cond");
7000       // Swap successors to exit loop body if IV equals to new TermValue
7001       if (BI->getSuccessor(0) == L->getHeader())
7002         BI->swapSuccessors();
7003 
7004       LLVM_DEBUG(dbgs() << "Old term-cond:\n"
7005                         << *OldTermCond << "\n"
7006                         << "New term-cond:\b" << *NewTermCond << "\n");
7007 
7008       BI->setCondition(NewTermCond);
7009 
7010       OldTermCond->eraseFromParent();
7011       DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get());
7012 
7013       ExpCleaner.markResultUsed();
7014     }
7015   }
7016 
7017   if (SalvageableDVIRecords.empty())
7018     return Changed;
7019 
7020   // Obtain relevant IVs and attempt to rewrite the salvageable DVIs with
7021   // expressions composed using the derived iteration count.
7022   // TODO: Allow for multiple IV references for nested AddRecSCEVs
7023   for (const auto &L : LI) {
7024     if (llvm::PHINode *IV = GetInductionVariable(*L, SE, Reducer))
7025       DbgRewriteSalvageableDVIs(L, SE, IV, SalvageableDVIRecords);
7026     else {
7027       LLVM_DEBUG(dbgs() << "scev-salvage: SCEV salvaging not possible. An IV "
7028                            "could not be identified.\n");
7029     }
7030   }
7031 
7032   for (auto &Rec : SalvageableDVIRecords)
7033     Rec->clear();
7034   SalvageableDVIRecords.clear();
7035   DVIHandles.clear();
7036   return Changed;
7037 }
7038 
7039 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
7040   if (skipLoop(L))
7041     return false;
7042 
7043   auto &IU = getAnalysis<IVUsersWrapperPass>().getIU();
7044   auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
7045   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
7046   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
7047   const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
7048       *L->getHeader()->getParent());
7049   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
7050       *L->getHeader()->getParent());
7051   auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
7052       *L->getHeader()->getParent());
7053   auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>();
7054   MemorySSA *MSSA = nullptr;
7055   if (MSSAAnalysis)
7056     MSSA = &MSSAAnalysis->getMSSA();
7057   return ReduceLoopStrength(L, IU, SE, DT, LI, TTI, AC, TLI, MSSA);
7058 }
7059 
7060 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM,
7061                                               LoopStandardAnalysisResults &AR,
7062                                               LPMUpdater &) {
7063   if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE,
7064                           AR.DT, AR.LI, AR.TTI, AR.AC, AR.TLI, AR.MSSA))
7065     return PreservedAnalyses::all();
7066 
7067   auto PA = getLoopPassPreservedAnalyses();
7068   if (AR.MSSA)
7069     PA.preserve<MemorySSAAnalysis>();
7070   return PA;
7071 }
7072 
7073 char LoopStrengthReduce::ID = 0;
7074 
7075 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",
7076                       "Loop Strength Reduction", false, false)
7077 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
7078 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
7079 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
7080 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass)
7081 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
7082 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
7083 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce",
7084                     "Loop Strength Reduction", false, false)
7085 
7086 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); }
7087