1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This transformation analyzes and transforms the induction variables (and
10 // computations derived from them) into forms suitable for efficient execution
11 // on the target.
12 //
13 // This pass performs a strength reduction on array references inside loops that
14 // have as one or more of their components the loop induction variable, it
15 // rewrites expressions to take advantage of scaled-index addressing modes
16 // available on the target, and it performs a variety of other optimizations
17 // related to loop induction variables.
18 //
19 // Terminology note: this code has a lot of handling for "post-increment" or
20 // "post-inc" users. This is not talking about post-increment addressing modes;
21 // it is instead talking about code like this:
22 //
23 //   %i = phi [ 0, %entry ], [ %i.next, %latch ]
24 //   ...
25 //   %i.next = add %i, 1
26 //   %c = icmp eq %i.next, %n
27 //
28 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
29 // it's useful to think about these as the same register, with some uses using
30 // the value of the register before the add and some using it after. In this
31 // example, the icmp is a post-increment user, since it uses %i.next, which is
32 // the value of the induction variable after the increment. The other common
33 // case of post-increment users is users outside the loop.
34 //
35 // TODO: More sophistication in the way Formulae are generated and filtered.
36 //
37 // TODO: Handle multiple loops at a time.
38 //
39 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead
40 //       of a GlobalValue?
41 //
42 // TODO: When truncation is free, truncate ICmp users' operands to make it a
43 //       smaller encoding (on x86 at least).
44 //
45 // TODO: When a negated register is used by an add (such as in a list of
46 //       multiple base registers, or as the increment expression in an addrec),
47 //       we may not actually need both reg and (-1 * reg) in registers; the
48 //       negation can be implemented by using a sub instead of an add. The
49 //       lack of support for taking this into consideration when making
50 //       register pressure decisions is partly worked around by the "Special"
51 //       use kind.
52 //
53 //===----------------------------------------------------------------------===//
54 
55 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h"
56 #include "llvm/ADT/APInt.h"
57 #include "llvm/ADT/DenseMap.h"
58 #include "llvm/ADT/DenseSet.h"
59 #include "llvm/ADT/Hashing.h"
60 #include "llvm/ADT/PointerIntPair.h"
61 #include "llvm/ADT/STLExtras.h"
62 #include "llvm/ADT/SetVector.h"
63 #include "llvm/ADT/SmallBitVector.h"
64 #include "llvm/ADT/SmallPtrSet.h"
65 #include "llvm/ADT/SmallSet.h"
66 #include "llvm/ADT/SmallVector.h"
67 #include "llvm/ADT/iterator_range.h"
68 #include "llvm/Analysis/AssumptionCache.h"
69 #include "llvm/Analysis/IVUsers.h"
70 #include "llvm/Analysis/LoopAnalysisManager.h"
71 #include "llvm/Analysis/LoopInfo.h"
72 #include "llvm/Analysis/LoopPass.h"
73 #include "llvm/Analysis/MemorySSA.h"
74 #include "llvm/Analysis/MemorySSAUpdater.h"
75 #include "llvm/Analysis/ScalarEvolution.h"
76 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
77 #include "llvm/Analysis/ScalarEvolutionNormalization.h"
78 #include "llvm/Analysis/TargetLibraryInfo.h"
79 #include "llvm/Analysis/TargetTransformInfo.h"
80 #include "llvm/Analysis/ValueTracking.h"
81 #include "llvm/BinaryFormat/Dwarf.h"
82 #include "llvm/Config/llvm-config.h"
83 #include "llvm/IR/BasicBlock.h"
84 #include "llvm/IR/Constant.h"
85 #include "llvm/IR/Constants.h"
86 #include "llvm/IR/DebugInfoMetadata.h"
87 #include "llvm/IR/DerivedTypes.h"
88 #include "llvm/IR/Dominators.h"
89 #include "llvm/IR/GlobalValue.h"
90 #include "llvm/IR/IRBuilder.h"
91 #include "llvm/IR/InstrTypes.h"
92 #include "llvm/IR/Instruction.h"
93 #include "llvm/IR/Instructions.h"
94 #include "llvm/IR/IntrinsicInst.h"
95 #include "llvm/IR/Module.h"
96 #include "llvm/IR/Operator.h"
97 #include "llvm/IR/PassManager.h"
98 #include "llvm/IR/Type.h"
99 #include "llvm/IR/Use.h"
100 #include "llvm/IR/User.h"
101 #include "llvm/IR/Value.h"
102 #include "llvm/IR/ValueHandle.h"
103 #include "llvm/InitializePasses.h"
104 #include "llvm/Pass.h"
105 #include "llvm/Support/Casting.h"
106 #include "llvm/Support/CommandLine.h"
107 #include "llvm/Support/Compiler.h"
108 #include "llvm/Support/Debug.h"
109 #include "llvm/Support/ErrorHandling.h"
110 #include "llvm/Support/MathExtras.h"
111 #include "llvm/Support/raw_ostream.h"
112 #include "llvm/Transforms/Scalar.h"
113 #include "llvm/Transforms/Utils.h"
114 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
115 #include "llvm/Transforms/Utils/Local.h"
116 #include "llvm/Transforms/Utils/LoopUtils.h"
117 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
118 #include <algorithm>
119 #include <cassert>
120 #include <cstddef>
121 #include <cstdint>
122 #include <iterator>
123 #include <limits>
124 #include <map>
125 #include <numeric>
126 #include <utility>
127 
128 using namespace llvm;
129 
130 #define DEBUG_TYPE "loop-reduce"
131 
132 /// MaxIVUsers is an arbitrary threshold that provides an early opportunity for
133 /// bail out. This threshold is far beyond the number of users that LSR can
134 /// conceivably solve, so it should not affect generated code, but catches the
135 /// worst cases before LSR burns too much compile time and stack space.
136 static const unsigned MaxIVUsers = 200;
137 
138 /// Limit the size of expression that SCEV-based salvaging will attempt to
139 /// translate into a DIExpression.
140 /// Choose a maximum size such that debuginfo is not excessively increased and
141 /// the salvaging is not too expensive for the compiler.
142 static const unsigned MaxSCEVSalvageExpressionSize = 64;
143 
144 // Cleanup congruent phis after LSR phi expansion.
145 static cl::opt<bool> EnablePhiElim(
146   "enable-lsr-phielim", cl::Hidden, cl::init(true),
147   cl::desc("Enable LSR phi elimination"));
148 
149 // The flag adds instruction count to solutions cost comparision.
150 static cl::opt<bool> InsnsCost(
151   "lsr-insns-cost", cl::Hidden, cl::init(true),
152   cl::desc("Add instruction count to a LSR cost model"));
153 
154 // Flag to choose how to narrow complex lsr solution
155 static cl::opt<bool> LSRExpNarrow(
156   "lsr-exp-narrow", cl::Hidden, cl::init(false),
157   cl::desc("Narrow LSR complex solution using"
158            " expectation of registers number"));
159 
160 // Flag to narrow search space by filtering non-optimal formulae with
161 // the same ScaledReg and Scale.
162 static cl::opt<bool> FilterSameScaledReg(
163     "lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true),
164     cl::desc("Narrow LSR search space by filtering non-optimal formulae"
165              " with the same ScaledReg and Scale"));
166 
167 static cl::opt<TTI::AddressingModeKind> PreferredAddresingMode(
168   "lsr-preferred-addressing-mode", cl::Hidden, cl::init(TTI::AMK_None),
169    cl::desc("A flag that overrides the target's preferred addressing mode."),
170    cl::values(clEnumValN(TTI::AMK_None,
171                          "none",
172                          "Don't prefer any addressing mode"),
173               clEnumValN(TTI::AMK_PreIndexed,
174                          "preindexed",
175                          "Prefer pre-indexed addressing mode"),
176               clEnumValN(TTI::AMK_PostIndexed,
177                          "postindexed",
178                          "Prefer post-indexed addressing mode")));
179 
180 static cl::opt<unsigned> ComplexityLimit(
181   "lsr-complexity-limit", cl::Hidden,
182   cl::init(std::numeric_limits<uint16_t>::max()),
183   cl::desc("LSR search space complexity limit"));
184 
185 static cl::opt<unsigned> SetupCostDepthLimit(
186     "lsr-setupcost-depth-limit", cl::Hidden, cl::init(7),
187     cl::desc("The limit on recursion depth for LSRs setup cost"));
188 
189 #ifndef NDEBUG
190 // Stress test IV chain generation.
191 static cl::opt<bool> StressIVChain(
192   "stress-ivchain", cl::Hidden, cl::init(false),
193   cl::desc("Stress test LSR IV chains"));
194 #else
195 static bool StressIVChain = false;
196 #endif
197 
198 namespace {
199 
200 struct MemAccessTy {
201   /// Used in situations where the accessed memory type is unknown.
202   static const unsigned UnknownAddressSpace =
203       std::numeric_limits<unsigned>::max();
204 
205   Type *MemTy = nullptr;
206   unsigned AddrSpace = UnknownAddressSpace;
207 
208   MemAccessTy() = default;
209   MemAccessTy(Type *Ty, unsigned AS) : MemTy(Ty), AddrSpace(AS) {}
210 
211   bool operator==(MemAccessTy Other) const {
212     return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace;
213   }
214 
215   bool operator!=(MemAccessTy Other) const { return !(*this == Other); }
216 
217   static MemAccessTy getUnknown(LLVMContext &Ctx,
218                                 unsigned AS = UnknownAddressSpace) {
219     return MemAccessTy(Type::getVoidTy(Ctx), AS);
220   }
221 
222   Type *getType() { return MemTy; }
223 };
224 
225 /// This class holds data which is used to order reuse candidates.
226 class RegSortData {
227 public:
228   /// This represents the set of LSRUse indices which reference
229   /// a particular register.
230   SmallBitVector UsedByIndices;
231 
232   void print(raw_ostream &OS) const;
233   void dump() const;
234 };
235 
236 } // end anonymous namespace
237 
238 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
239 void RegSortData::print(raw_ostream &OS) const {
240   OS << "[NumUses=" << UsedByIndices.count() << ']';
241 }
242 
243 LLVM_DUMP_METHOD void RegSortData::dump() const {
244   print(errs()); errs() << '\n';
245 }
246 #endif
247 
248 namespace {
249 
250 /// Map register candidates to information about how they are used.
251 class RegUseTracker {
252   using RegUsesTy = DenseMap<const SCEV *, RegSortData>;
253 
254   RegUsesTy RegUsesMap;
255   SmallVector<const SCEV *, 16> RegSequence;
256 
257 public:
258   void countRegister(const SCEV *Reg, size_t LUIdx);
259   void dropRegister(const SCEV *Reg, size_t LUIdx);
260   void swapAndDropUse(size_t LUIdx, size_t LastLUIdx);
261 
262   bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
263 
264   const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
265 
266   void clear();
267 
268   using iterator = SmallVectorImpl<const SCEV *>::iterator;
269   using const_iterator = SmallVectorImpl<const SCEV *>::const_iterator;
270 
271   iterator begin() { return RegSequence.begin(); }
272   iterator end()   { return RegSequence.end(); }
273   const_iterator begin() const { return RegSequence.begin(); }
274   const_iterator end() const   { return RegSequence.end(); }
275 };
276 
277 } // end anonymous namespace
278 
279 void
280 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) {
281   std::pair<RegUsesTy::iterator, bool> Pair =
282     RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
283   RegSortData &RSD = Pair.first->second;
284   if (Pair.second)
285     RegSequence.push_back(Reg);
286   RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
287   RSD.UsedByIndices.set(LUIdx);
288 }
289 
290 void
291 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) {
292   RegUsesTy::iterator It = RegUsesMap.find(Reg);
293   assert(It != RegUsesMap.end());
294   RegSortData &RSD = It->second;
295   assert(RSD.UsedByIndices.size() > LUIdx);
296   RSD.UsedByIndices.reset(LUIdx);
297 }
298 
299 void
300 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
301   assert(LUIdx <= LastLUIdx);
302 
303   // Update RegUses. The data structure is not optimized for this purpose;
304   // we must iterate through it and update each of the bit vectors.
305   for (auto &Pair : RegUsesMap) {
306     SmallBitVector &UsedByIndices = Pair.second.UsedByIndices;
307     if (LUIdx < UsedByIndices.size())
308       UsedByIndices[LUIdx] =
309         LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false;
310     UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx));
311   }
312 }
313 
314 bool
315 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
316   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
317   if (I == RegUsesMap.end())
318     return false;
319   const SmallBitVector &UsedByIndices = I->second.UsedByIndices;
320   int i = UsedByIndices.find_first();
321   if (i == -1) return false;
322   if ((size_t)i != LUIdx) return true;
323   return UsedByIndices.find_next(i) != -1;
324 }
325 
326 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
327   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
328   assert(I != RegUsesMap.end() && "Unknown register!");
329   return I->second.UsedByIndices;
330 }
331 
332 void RegUseTracker::clear() {
333   RegUsesMap.clear();
334   RegSequence.clear();
335 }
336 
337 namespace {
338 
339 /// This class holds information that describes a formula for computing
340 /// satisfying a use. It may include broken-out immediates and scaled registers.
341 struct Formula {
342   /// Global base address used for complex addressing.
343   GlobalValue *BaseGV = nullptr;
344 
345   /// Base offset for complex addressing.
346   int64_t BaseOffset = 0;
347 
348   /// Whether any complex addressing has a base register.
349   bool HasBaseReg = false;
350 
351   /// The scale of any complex addressing.
352   int64_t Scale = 0;
353 
354   /// The list of "base" registers for this use. When this is non-empty. The
355   /// canonical representation of a formula is
356   /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and
357   /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty().
358   /// 3. The reg containing recurrent expr related with currect loop in the
359   /// formula should be put in the ScaledReg.
360   /// #1 enforces that the scaled register is always used when at least two
361   /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2.
362   /// #2 enforces that 1 * reg is reg.
363   /// #3 ensures invariant regs with respect to current loop can be combined
364   /// together in LSR codegen.
365   /// This invariant can be temporarily broken while building a formula.
366   /// However, every formula inserted into the LSRInstance must be in canonical
367   /// form.
368   SmallVector<const SCEV *, 4> BaseRegs;
369 
370   /// The 'scaled' register for this use. This should be non-null when Scale is
371   /// not zero.
372   const SCEV *ScaledReg = nullptr;
373 
374   /// An additional constant offset which added near the use. This requires a
375   /// temporary register, but the offset itself can live in an add immediate
376   /// field rather than a register.
377   int64_t UnfoldedOffset = 0;
378 
379   Formula() = default;
380 
381   void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
382 
383   bool isCanonical(const Loop &L) const;
384 
385   void canonicalize(const Loop &L);
386 
387   bool unscale();
388 
389   bool hasZeroEnd() const;
390 
391   size_t getNumRegs() const;
392   Type *getType() const;
393 
394   void deleteBaseReg(const SCEV *&S);
395 
396   bool referencesReg(const SCEV *S) const;
397   bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
398                                   const RegUseTracker &RegUses) const;
399 
400   void print(raw_ostream &OS) const;
401   void dump() const;
402 };
403 
404 } // end anonymous namespace
405 
406 /// Recursion helper for initialMatch.
407 static void DoInitialMatch(const SCEV *S, Loop *L,
408                            SmallVectorImpl<const SCEV *> &Good,
409                            SmallVectorImpl<const SCEV *> &Bad,
410                            ScalarEvolution &SE) {
411   // Collect expressions which properly dominate the loop header.
412   if (SE.properlyDominates(S, L->getHeader())) {
413     Good.push_back(S);
414     return;
415   }
416 
417   // Look at add operands.
418   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
419     for (const SCEV *S : Add->operands())
420       DoInitialMatch(S, L, Good, Bad, SE);
421     return;
422   }
423 
424   // Look at addrec operands.
425   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
426     if (!AR->getStart()->isZero() && AR->isAffine()) {
427       DoInitialMatch(AR->getStart(), L, Good, Bad, SE);
428       DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
429                                       AR->getStepRecurrence(SE),
430                                       // FIXME: AR->getNoWrapFlags()
431                                       AR->getLoop(), SCEV::FlagAnyWrap),
432                      L, Good, Bad, SE);
433       return;
434     }
435 
436   // Handle a multiplication by -1 (negation) if it didn't fold.
437   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
438     if (Mul->getOperand(0)->isAllOnesValue()) {
439       SmallVector<const SCEV *, 4> Ops(drop_begin(Mul->operands()));
440       const SCEV *NewMul = SE.getMulExpr(Ops);
441 
442       SmallVector<const SCEV *, 4> MyGood;
443       SmallVector<const SCEV *, 4> MyBad;
444       DoInitialMatch(NewMul, L, MyGood, MyBad, SE);
445       const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
446         SE.getEffectiveSCEVType(NewMul->getType())));
447       for (const SCEV *S : MyGood)
448         Good.push_back(SE.getMulExpr(NegOne, S));
449       for (const SCEV *S : MyBad)
450         Bad.push_back(SE.getMulExpr(NegOne, S));
451       return;
452     }
453 
454   // Ok, we can't do anything interesting. Just stuff the whole thing into a
455   // register and hope for the best.
456   Bad.push_back(S);
457 }
458 
459 /// Incorporate loop-variant parts of S into this Formula, attempting to keep
460 /// all loop-invariant and loop-computable values in a single base register.
461 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
462   SmallVector<const SCEV *, 4> Good;
463   SmallVector<const SCEV *, 4> Bad;
464   DoInitialMatch(S, L, Good, Bad, SE);
465   if (!Good.empty()) {
466     const SCEV *Sum = SE.getAddExpr(Good);
467     if (!Sum->isZero())
468       BaseRegs.push_back(Sum);
469     HasBaseReg = true;
470   }
471   if (!Bad.empty()) {
472     const SCEV *Sum = SE.getAddExpr(Bad);
473     if (!Sum->isZero())
474       BaseRegs.push_back(Sum);
475     HasBaseReg = true;
476   }
477   canonicalize(*L);
478 }
479 
480 static bool containsAddRecDependentOnLoop(const SCEV *S, const Loop &L) {
481   return SCEVExprContains(S, [&L](const SCEV *S) {
482     return isa<SCEVAddRecExpr>(S) && (cast<SCEVAddRecExpr>(S)->getLoop() == &L);
483   });
484 }
485 
486 /// Check whether or not this formula satisfies the canonical
487 /// representation.
488 /// \see Formula::BaseRegs.
489 bool Formula::isCanonical(const Loop &L) const {
490   if (!ScaledReg)
491     return BaseRegs.size() <= 1;
492 
493   if (Scale != 1)
494     return true;
495 
496   if (Scale == 1 && BaseRegs.empty())
497     return false;
498 
499   if (containsAddRecDependentOnLoop(ScaledReg, L))
500     return true;
501 
502   // If ScaledReg is not a recurrent expr, or it is but its loop is not current
503   // loop, meanwhile BaseRegs contains a recurrent expr reg related with current
504   // loop, we want to swap the reg in BaseRegs with ScaledReg.
505   return none_of(BaseRegs, [&L](const SCEV *S) {
506     return containsAddRecDependentOnLoop(S, L);
507   });
508 }
509 
510 /// Helper method to morph a formula into its canonical representation.
511 /// \see Formula::BaseRegs.
512 /// Every formula having more than one base register, must use the ScaledReg
513 /// field. Otherwise, we would have to do special cases everywhere in LSR
514 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ...
515 /// On the other hand, 1*reg should be canonicalized into reg.
516 void Formula::canonicalize(const Loop &L) {
517   if (isCanonical(L))
518     return;
519 
520   if (BaseRegs.empty()) {
521     // No base reg? Use scale reg with scale = 1 as such.
522     assert(ScaledReg && "Expected 1*reg => reg");
523     assert(Scale == 1 && "Expected 1*reg => reg");
524     BaseRegs.push_back(ScaledReg);
525     Scale = 0;
526     ScaledReg = nullptr;
527     return;
528   }
529 
530   // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg.
531   if (!ScaledReg) {
532     ScaledReg = BaseRegs.pop_back_val();
533     Scale = 1;
534   }
535 
536   // If ScaledReg is an invariant with respect to L, find the reg from
537   // BaseRegs containing the recurrent expr related with Loop L. Swap the
538   // reg with ScaledReg.
539   if (!containsAddRecDependentOnLoop(ScaledReg, L)) {
540     auto I = find_if(BaseRegs, [&L](const SCEV *S) {
541       return containsAddRecDependentOnLoop(S, L);
542     });
543     if (I != BaseRegs.end())
544       std::swap(ScaledReg, *I);
545   }
546   assert(isCanonical(L) && "Failed to canonicalize?");
547 }
548 
549 /// Get rid of the scale in the formula.
550 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2.
551 /// \return true if it was possible to get rid of the scale, false otherwise.
552 /// \note After this operation the formula may not be in the canonical form.
553 bool Formula::unscale() {
554   if (Scale != 1)
555     return false;
556   Scale = 0;
557   BaseRegs.push_back(ScaledReg);
558   ScaledReg = nullptr;
559   return true;
560 }
561 
562 bool Formula::hasZeroEnd() const {
563   if (UnfoldedOffset || BaseOffset)
564     return false;
565   if (BaseRegs.size() != 1 || ScaledReg)
566     return false;
567   return true;
568 }
569 
570 /// Return the total number of register operands used by this formula. This does
571 /// not include register uses implied by non-constant addrec strides.
572 size_t Formula::getNumRegs() const {
573   return !!ScaledReg + BaseRegs.size();
574 }
575 
576 /// Return the type of this formula, if it has one, or null otherwise. This type
577 /// is meaningless except for the bit size.
578 Type *Formula::getType() const {
579   return !BaseRegs.empty() ? BaseRegs.front()->getType() :
580          ScaledReg ? ScaledReg->getType() :
581          BaseGV ? BaseGV->getType() :
582          nullptr;
583 }
584 
585 /// Delete the given base reg from the BaseRegs list.
586 void Formula::deleteBaseReg(const SCEV *&S) {
587   if (&S != &BaseRegs.back())
588     std::swap(S, BaseRegs.back());
589   BaseRegs.pop_back();
590 }
591 
592 /// Test if this formula references the given register.
593 bool Formula::referencesReg(const SCEV *S) const {
594   return S == ScaledReg || is_contained(BaseRegs, S);
595 }
596 
597 /// Test whether this formula uses registers which are used by uses other than
598 /// the use with the given index.
599 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
600                                          const RegUseTracker &RegUses) const {
601   if (ScaledReg)
602     if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
603       return true;
604   for (const SCEV *BaseReg : BaseRegs)
605     if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx))
606       return true;
607   return false;
608 }
609 
610 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
611 void Formula::print(raw_ostream &OS) const {
612   bool First = true;
613   if (BaseGV) {
614     if (!First) OS << " + "; else First = false;
615     BaseGV->printAsOperand(OS, /*PrintType=*/false);
616   }
617   if (BaseOffset != 0) {
618     if (!First) OS << " + "; else First = false;
619     OS << BaseOffset;
620   }
621   for (const SCEV *BaseReg : BaseRegs) {
622     if (!First) OS << " + "; else First = false;
623     OS << "reg(" << *BaseReg << ')';
624   }
625   if (HasBaseReg && BaseRegs.empty()) {
626     if (!First) OS << " + "; else First = false;
627     OS << "**error: HasBaseReg**";
628   } else if (!HasBaseReg && !BaseRegs.empty()) {
629     if (!First) OS << " + "; else First = false;
630     OS << "**error: !HasBaseReg**";
631   }
632   if (Scale != 0) {
633     if (!First) OS << " + "; else First = false;
634     OS << Scale << "*reg(";
635     if (ScaledReg)
636       OS << *ScaledReg;
637     else
638       OS << "<unknown>";
639     OS << ')';
640   }
641   if (UnfoldedOffset != 0) {
642     if (!First) OS << " + ";
643     OS << "imm(" << UnfoldedOffset << ')';
644   }
645 }
646 
647 LLVM_DUMP_METHOD void Formula::dump() const {
648   print(errs()); errs() << '\n';
649 }
650 #endif
651 
652 /// Return true if the given addrec can be sign-extended without changing its
653 /// value.
654 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
655   Type *WideTy =
656     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
657   return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
658 }
659 
660 /// Return true if the given add can be sign-extended without changing its
661 /// value.
662 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
663   Type *WideTy =
664     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
665   return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
666 }
667 
668 /// Return true if the given mul can be sign-extended without changing its
669 /// value.
670 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
671   Type *WideTy =
672     IntegerType::get(SE.getContext(),
673                      SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
674   return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
675 }
676 
677 /// Return an expression for LHS /s RHS, if it can be determined and if the
678 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits
679 /// is true, expressions like (X * Y) /s Y are simplified to X, ignoring that
680 /// the multiplication may overflow, which is useful when the result will be
681 /// used in a context where the most significant bits are ignored.
682 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
683                                 ScalarEvolution &SE,
684                                 bool IgnoreSignificantBits = false) {
685   // Handle the trivial case, which works for any SCEV type.
686   if (LHS == RHS)
687     return SE.getConstant(LHS->getType(), 1);
688 
689   // Handle a few RHS special cases.
690   const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
691   if (RC) {
692     const APInt &RA = RC->getAPInt();
693     // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
694     // some folding.
695     if (RA.isAllOnes()) {
696       if (LHS->getType()->isPointerTy())
697         return nullptr;
698       return SE.getMulExpr(LHS, RC);
699     }
700     // Handle x /s 1 as x.
701     if (RA == 1)
702       return LHS;
703   }
704 
705   // Check for a division of a constant by a constant.
706   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
707     if (!RC)
708       return nullptr;
709     const APInt &LA = C->getAPInt();
710     const APInt &RA = RC->getAPInt();
711     if (LA.srem(RA) != 0)
712       return nullptr;
713     return SE.getConstant(LA.sdiv(RA));
714   }
715 
716   // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
717   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
718     if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) {
719       const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
720                                       IgnoreSignificantBits);
721       if (!Step) return nullptr;
722       const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
723                                        IgnoreSignificantBits);
724       if (!Start) return nullptr;
725       // FlagNW is independent of the start value, step direction, and is
726       // preserved with smaller magnitude steps.
727       // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
728       return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap);
729     }
730     return nullptr;
731   }
732 
733   // Distribute the sdiv over add operands, if the add doesn't overflow.
734   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
735     if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
736       SmallVector<const SCEV *, 8> Ops;
737       for (const SCEV *S : Add->operands()) {
738         const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits);
739         if (!Op) return nullptr;
740         Ops.push_back(Op);
741       }
742       return SE.getAddExpr(Ops);
743     }
744     return nullptr;
745   }
746 
747   // Check for a multiply operand that we can pull RHS out of.
748   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
749     if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
750       // Handle special case C1*X*Y /s C2*X*Y.
751       if (const SCEVMulExpr *MulRHS = dyn_cast<SCEVMulExpr>(RHS)) {
752         if (IgnoreSignificantBits || isMulSExtable(MulRHS, SE)) {
753           const SCEVConstant *LC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
754           const SCEVConstant *RC =
755               dyn_cast<SCEVConstant>(MulRHS->getOperand(0));
756           if (LC && RC) {
757             SmallVector<const SCEV *, 4> LOps(drop_begin(Mul->operands()));
758             SmallVector<const SCEV *, 4> ROps(drop_begin(MulRHS->operands()));
759             if (LOps == ROps)
760               return getExactSDiv(LC, RC, SE, IgnoreSignificantBits);
761           }
762         }
763       }
764 
765       SmallVector<const SCEV *, 4> Ops;
766       bool Found = false;
767       for (const SCEV *S : Mul->operands()) {
768         if (!Found)
769           if (const SCEV *Q = getExactSDiv(S, RHS, SE,
770                                            IgnoreSignificantBits)) {
771             S = Q;
772             Found = true;
773           }
774         Ops.push_back(S);
775       }
776       return Found ? SE.getMulExpr(Ops) : nullptr;
777     }
778     return nullptr;
779   }
780 
781   // Otherwise we don't know.
782   return nullptr;
783 }
784 
785 /// If S involves the addition of a constant integer value, return that integer
786 /// value, and mutate S to point to a new SCEV with that value excluded.
787 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
788   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
789     if (C->getAPInt().getMinSignedBits() <= 64) {
790       S = SE.getConstant(C->getType(), 0);
791       return C->getValue()->getSExtValue();
792     }
793   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
794     SmallVector<const SCEV *, 8> NewOps(Add->operands());
795     int64_t Result = ExtractImmediate(NewOps.front(), SE);
796     if (Result != 0)
797       S = SE.getAddExpr(NewOps);
798     return Result;
799   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
800     SmallVector<const SCEV *, 8> NewOps(AR->operands());
801     int64_t Result = ExtractImmediate(NewOps.front(), SE);
802     if (Result != 0)
803       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
804                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
805                            SCEV::FlagAnyWrap);
806     return Result;
807   }
808   return 0;
809 }
810 
811 /// If S involves the addition of a GlobalValue address, return that symbol, and
812 /// mutate S to point to a new SCEV with that value excluded.
813 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
814   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
815     if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
816       S = SE.getConstant(GV->getType(), 0);
817       return GV;
818     }
819   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
820     SmallVector<const SCEV *, 8> NewOps(Add->operands());
821     GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
822     if (Result)
823       S = SE.getAddExpr(NewOps);
824     return Result;
825   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
826     SmallVector<const SCEV *, 8> NewOps(AR->operands());
827     GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
828     if (Result)
829       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
830                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
831                            SCEV::FlagAnyWrap);
832     return Result;
833   }
834   return nullptr;
835 }
836 
837 /// Returns true if the specified instruction is using the specified value as an
838 /// address.
839 static bool isAddressUse(const TargetTransformInfo &TTI,
840                          Instruction *Inst, Value *OperandVal) {
841   bool isAddress = isa<LoadInst>(Inst);
842   if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
843     if (SI->getPointerOperand() == OperandVal)
844       isAddress = true;
845   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
846     // Addressing modes can also be folded into prefetches and a variety
847     // of intrinsics.
848     switch (II->getIntrinsicID()) {
849     case Intrinsic::memset:
850     case Intrinsic::prefetch:
851     case Intrinsic::masked_load:
852       if (II->getArgOperand(0) == OperandVal)
853         isAddress = true;
854       break;
855     case Intrinsic::masked_store:
856       if (II->getArgOperand(1) == OperandVal)
857         isAddress = true;
858       break;
859     case Intrinsic::memmove:
860     case Intrinsic::memcpy:
861       if (II->getArgOperand(0) == OperandVal ||
862           II->getArgOperand(1) == OperandVal)
863         isAddress = true;
864       break;
865     default: {
866       MemIntrinsicInfo IntrInfo;
867       if (TTI.getTgtMemIntrinsic(II, IntrInfo)) {
868         if (IntrInfo.PtrVal == OperandVal)
869           isAddress = true;
870       }
871     }
872     }
873   } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
874     if (RMW->getPointerOperand() == OperandVal)
875       isAddress = true;
876   } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
877     if (CmpX->getPointerOperand() == OperandVal)
878       isAddress = true;
879   }
880   return isAddress;
881 }
882 
883 /// Return the type of the memory being accessed.
884 static MemAccessTy getAccessType(const TargetTransformInfo &TTI,
885                                  Instruction *Inst, Value *OperandVal) {
886   MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace);
887   if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
888     AccessTy.MemTy = SI->getOperand(0)->getType();
889     AccessTy.AddrSpace = SI->getPointerAddressSpace();
890   } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
891     AccessTy.AddrSpace = LI->getPointerAddressSpace();
892   } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
893     AccessTy.AddrSpace = RMW->getPointerAddressSpace();
894   } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
895     AccessTy.AddrSpace = CmpX->getPointerAddressSpace();
896   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
897     switch (II->getIntrinsicID()) {
898     case Intrinsic::prefetch:
899     case Intrinsic::memset:
900       AccessTy.AddrSpace = II->getArgOperand(0)->getType()->getPointerAddressSpace();
901       AccessTy.MemTy = OperandVal->getType();
902       break;
903     case Intrinsic::memmove:
904     case Intrinsic::memcpy:
905       AccessTy.AddrSpace = OperandVal->getType()->getPointerAddressSpace();
906       AccessTy.MemTy = OperandVal->getType();
907       break;
908     case Intrinsic::masked_load:
909       AccessTy.AddrSpace =
910           II->getArgOperand(0)->getType()->getPointerAddressSpace();
911       break;
912     case Intrinsic::masked_store:
913       AccessTy.MemTy = II->getOperand(0)->getType();
914       AccessTy.AddrSpace =
915           II->getArgOperand(1)->getType()->getPointerAddressSpace();
916       break;
917     default: {
918       MemIntrinsicInfo IntrInfo;
919       if (TTI.getTgtMemIntrinsic(II, IntrInfo) && IntrInfo.PtrVal) {
920         AccessTy.AddrSpace
921           = IntrInfo.PtrVal->getType()->getPointerAddressSpace();
922       }
923 
924       break;
925     }
926     }
927   }
928 
929   // All pointers have the same requirements, so canonicalize them to an
930   // arbitrary pointer type to minimize variation.
931   if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy))
932     AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
933                                       PTy->getAddressSpace());
934 
935   return AccessTy;
936 }
937 
938 /// Return true if this AddRec is already a phi in its loop.
939 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
940   for (PHINode &PN : AR->getLoop()->getHeader()->phis()) {
941     if (SE.isSCEVable(PN.getType()) &&
942         (SE.getEffectiveSCEVType(PN.getType()) ==
943          SE.getEffectiveSCEVType(AR->getType())) &&
944         SE.getSCEV(&PN) == AR)
945       return true;
946   }
947   return false;
948 }
949 
950 /// Check if expanding this expression is likely to incur significant cost. This
951 /// is tricky because SCEV doesn't track which expressions are actually computed
952 /// by the current IR.
953 ///
954 /// We currently allow expansion of IV increments that involve adds,
955 /// multiplication by constants, and AddRecs from existing phis.
956 ///
957 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an
958 /// obvious multiple of the UDivExpr.
959 static bool isHighCostExpansion(const SCEV *S,
960                                 SmallPtrSetImpl<const SCEV*> &Processed,
961                                 ScalarEvolution &SE) {
962   // Zero/One operand expressions
963   switch (S->getSCEVType()) {
964   case scUnknown:
965   case scConstant:
966     return false;
967   case scTruncate:
968     return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(),
969                                Processed, SE);
970   case scZeroExtend:
971     return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(),
972                                Processed, SE);
973   case scSignExtend:
974     return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(),
975                                Processed, SE);
976   default:
977     break;
978   }
979 
980   if (!Processed.insert(S).second)
981     return false;
982 
983   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
984     for (const SCEV *S : Add->operands()) {
985       if (isHighCostExpansion(S, Processed, SE))
986         return true;
987     }
988     return false;
989   }
990 
991   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
992     if (Mul->getNumOperands() == 2) {
993       // Multiplication by a constant is ok
994       if (isa<SCEVConstant>(Mul->getOperand(0)))
995         return isHighCostExpansion(Mul->getOperand(1), Processed, SE);
996 
997       // If we have the value of one operand, check if an existing
998       // multiplication already generates this expression.
999       if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) {
1000         Value *UVal = U->getValue();
1001         for (User *UR : UVal->users()) {
1002           // If U is a constant, it may be used by a ConstantExpr.
1003           Instruction *UI = dyn_cast<Instruction>(UR);
1004           if (UI && UI->getOpcode() == Instruction::Mul &&
1005               SE.isSCEVable(UI->getType())) {
1006             return SE.getSCEV(UI) == Mul;
1007           }
1008         }
1009       }
1010     }
1011   }
1012 
1013   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
1014     if (isExistingPhi(AR, SE))
1015       return false;
1016   }
1017 
1018   // Fow now, consider any other type of expression (div/mul/min/max) high cost.
1019   return true;
1020 }
1021 
1022 namespace {
1023 
1024 class LSRUse;
1025 
1026 } // end anonymous namespace
1027 
1028 /// Check if the addressing mode defined by \p F is completely
1029 /// folded in \p LU at isel time.
1030 /// This includes address-mode folding and special icmp tricks.
1031 /// This function returns true if \p LU can accommodate what \p F
1032 /// defines and up to 1 base + 1 scaled + offset.
1033 /// In other words, if \p F has several base registers, this function may
1034 /// still return true. Therefore, users still need to account for
1035 /// additional base registers and/or unfolded offsets to derive an
1036 /// accurate cost model.
1037 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1038                                  const LSRUse &LU, const Formula &F);
1039 
1040 // Get the cost of the scaling factor used in F for LU.
1041 static InstructionCost getScalingFactorCost(const TargetTransformInfo &TTI,
1042                                             const LSRUse &LU, const Formula &F,
1043                                             const Loop &L);
1044 
1045 namespace {
1046 
1047 /// This class is used to measure and compare candidate formulae.
1048 class Cost {
1049   const Loop *L = nullptr;
1050   ScalarEvolution *SE = nullptr;
1051   const TargetTransformInfo *TTI = nullptr;
1052   TargetTransformInfo::LSRCost C;
1053   TTI::AddressingModeKind AMK = TTI::AMK_None;
1054 
1055 public:
1056   Cost() = delete;
1057   Cost(const Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI,
1058        TTI::AddressingModeKind AMK) :
1059     L(L), SE(&SE), TTI(&TTI), AMK(AMK) {
1060     C.Insns = 0;
1061     C.NumRegs = 0;
1062     C.AddRecCost = 0;
1063     C.NumIVMuls = 0;
1064     C.NumBaseAdds = 0;
1065     C.ImmCost = 0;
1066     C.SetupCost = 0;
1067     C.ScaleCost = 0;
1068   }
1069 
1070   bool isLess(const Cost &Other);
1071 
1072   void Lose();
1073 
1074 #ifndef NDEBUG
1075   // Once any of the metrics loses, they must all remain losers.
1076   bool isValid() {
1077     return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds
1078              | C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u)
1079       || ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds
1080            & C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u);
1081   }
1082 #endif
1083 
1084   bool isLoser() {
1085     assert(isValid() && "invalid cost");
1086     return C.NumRegs == ~0u;
1087   }
1088 
1089   void RateFormula(const Formula &F,
1090                    SmallPtrSetImpl<const SCEV *> &Regs,
1091                    const DenseSet<const SCEV *> &VisitedRegs,
1092                    const LSRUse &LU,
1093                    SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr);
1094 
1095   void print(raw_ostream &OS) const;
1096   void dump() const;
1097 
1098 private:
1099   void RateRegister(const Formula &F, const SCEV *Reg,
1100                     SmallPtrSetImpl<const SCEV *> &Regs);
1101   void RatePrimaryRegister(const Formula &F, const SCEV *Reg,
1102                            SmallPtrSetImpl<const SCEV *> &Regs,
1103                            SmallPtrSetImpl<const SCEV *> *LoserRegs);
1104 };
1105 
1106 /// An operand value in an instruction which is to be replaced with some
1107 /// equivalent, possibly strength-reduced, replacement.
1108 struct LSRFixup {
1109   /// The instruction which will be updated.
1110   Instruction *UserInst = nullptr;
1111 
1112   /// The operand of the instruction which will be replaced. The operand may be
1113   /// used more than once; every instance will be replaced.
1114   Value *OperandValToReplace = nullptr;
1115 
1116   /// If this user is to use the post-incremented value of an induction
1117   /// variable, this set is non-empty and holds the loops associated with the
1118   /// induction variable.
1119   PostIncLoopSet PostIncLoops;
1120 
1121   /// A constant offset to be added to the LSRUse expression.  This allows
1122   /// multiple fixups to share the same LSRUse with different offsets, for
1123   /// example in an unrolled loop.
1124   int64_t Offset = 0;
1125 
1126   LSRFixup() = default;
1127 
1128   bool isUseFullyOutsideLoop(const Loop *L) const;
1129 
1130   void print(raw_ostream &OS) const;
1131   void dump() const;
1132 };
1133 
1134 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted
1135 /// SmallVectors of const SCEV*.
1136 struct UniquifierDenseMapInfo {
1137   static SmallVector<const SCEV *, 4> getEmptyKey() {
1138     SmallVector<const SCEV *, 4>  V;
1139     V.push_back(reinterpret_cast<const SCEV *>(-1));
1140     return V;
1141   }
1142 
1143   static SmallVector<const SCEV *, 4> getTombstoneKey() {
1144     SmallVector<const SCEV *, 4> V;
1145     V.push_back(reinterpret_cast<const SCEV *>(-2));
1146     return V;
1147   }
1148 
1149   static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) {
1150     return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
1151   }
1152 
1153   static bool isEqual(const SmallVector<const SCEV *, 4> &LHS,
1154                       const SmallVector<const SCEV *, 4> &RHS) {
1155     return LHS == RHS;
1156   }
1157 };
1158 
1159 /// This class holds the state that LSR keeps for each use in IVUsers, as well
1160 /// as uses invented by LSR itself. It includes information about what kinds of
1161 /// things can be folded into the user, information about the user itself, and
1162 /// information about how the use may be satisfied.  TODO: Represent multiple
1163 /// users of the same expression in common?
1164 class LSRUse {
1165   DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier;
1166 
1167 public:
1168   /// An enum for a kind of use, indicating what types of scaled and immediate
1169   /// operands it might support.
1170   enum KindType {
1171     Basic,   ///< A normal use, with no folding.
1172     Special, ///< A special case of basic, allowing -1 scales.
1173     Address, ///< An address use; folding according to TargetLowering
1174     ICmpZero ///< An equality icmp with both operands folded into one.
1175     // TODO: Add a generic icmp too?
1176   };
1177 
1178   using SCEVUseKindPair = PointerIntPair<const SCEV *, 2, KindType>;
1179 
1180   KindType Kind;
1181   MemAccessTy AccessTy;
1182 
1183   /// The list of operands which are to be replaced.
1184   SmallVector<LSRFixup, 8> Fixups;
1185 
1186   /// Keep track of the min and max offsets of the fixups.
1187   int64_t MinOffset = std::numeric_limits<int64_t>::max();
1188   int64_t MaxOffset = std::numeric_limits<int64_t>::min();
1189 
1190   /// This records whether all of the fixups using this LSRUse are outside of
1191   /// the loop, in which case some special-case heuristics may be used.
1192   bool AllFixupsOutsideLoop = true;
1193 
1194   /// RigidFormula is set to true to guarantee that this use will be associated
1195   /// with a single formula--the one that initially matched. Some SCEV
1196   /// expressions cannot be expanded. This allows LSR to consider the registers
1197   /// used by those expressions without the need to expand them later after
1198   /// changing the formula.
1199   bool RigidFormula = false;
1200 
1201   /// This records the widest use type for any fixup using this
1202   /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max
1203   /// fixup widths to be equivalent, because the narrower one may be relying on
1204   /// the implicit truncation to truncate away bogus bits.
1205   Type *WidestFixupType = nullptr;
1206 
1207   /// A list of ways to build a value that can satisfy this user.  After the
1208   /// list is populated, one of these is selected heuristically and used to
1209   /// formulate a replacement for OperandValToReplace in UserInst.
1210   SmallVector<Formula, 12> Formulae;
1211 
1212   /// The set of register candidates used by all formulae in this LSRUse.
1213   SmallPtrSet<const SCEV *, 4> Regs;
1214 
1215   LSRUse(KindType K, MemAccessTy AT) : Kind(K), AccessTy(AT) {}
1216 
1217   LSRFixup &getNewFixup() {
1218     Fixups.push_back(LSRFixup());
1219     return Fixups.back();
1220   }
1221 
1222   void pushFixup(LSRFixup &f) {
1223     Fixups.push_back(f);
1224     if (f.Offset > MaxOffset)
1225       MaxOffset = f.Offset;
1226     if (f.Offset < MinOffset)
1227       MinOffset = f.Offset;
1228   }
1229 
1230   bool HasFormulaWithSameRegs(const Formula &F) const;
1231   float getNotSelectedProbability(const SCEV *Reg) const;
1232   bool InsertFormula(const Formula &F, const Loop &L);
1233   void DeleteFormula(Formula &F);
1234   void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
1235 
1236   void print(raw_ostream &OS) const;
1237   void dump() const;
1238 };
1239 
1240 } // end anonymous namespace
1241 
1242 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1243                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1244                                  GlobalValue *BaseGV, int64_t BaseOffset,
1245                                  bool HasBaseReg, int64_t Scale,
1246                                  Instruction *Fixup = nullptr);
1247 
1248 static unsigned getSetupCost(const SCEV *Reg, unsigned Depth) {
1249   if (isa<SCEVUnknown>(Reg) || isa<SCEVConstant>(Reg))
1250     return 1;
1251   if (Depth == 0)
1252     return 0;
1253   if (const auto *S = dyn_cast<SCEVAddRecExpr>(Reg))
1254     return getSetupCost(S->getStart(), Depth - 1);
1255   if (auto S = dyn_cast<SCEVIntegralCastExpr>(Reg))
1256     return getSetupCost(S->getOperand(), Depth - 1);
1257   if (auto S = dyn_cast<SCEVNAryExpr>(Reg))
1258     return std::accumulate(S->op_begin(), S->op_end(), 0,
1259                            [&](unsigned i, const SCEV *Reg) {
1260                              return i + getSetupCost(Reg, Depth - 1);
1261                            });
1262   if (auto S = dyn_cast<SCEVUDivExpr>(Reg))
1263     return getSetupCost(S->getLHS(), Depth - 1) +
1264            getSetupCost(S->getRHS(), Depth - 1);
1265   return 0;
1266 }
1267 
1268 /// Tally up interesting quantities from the given register.
1269 void Cost::RateRegister(const Formula &F, const SCEV *Reg,
1270                         SmallPtrSetImpl<const SCEV *> &Regs) {
1271   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
1272     // If this is an addrec for another loop, it should be an invariant
1273     // with respect to L since L is the innermost loop (at least
1274     // for now LSR only handles innermost loops).
1275     if (AR->getLoop() != L) {
1276       // If the AddRec exists, consider it's register free and leave it alone.
1277       if (isExistingPhi(AR, *SE) && AMK != TTI::AMK_PostIndexed)
1278         return;
1279 
1280       // It is bad to allow LSR for current loop to add induction variables
1281       // for its sibling loops.
1282       if (!AR->getLoop()->contains(L)) {
1283         Lose();
1284         return;
1285       }
1286 
1287       // Otherwise, it will be an invariant with respect to Loop L.
1288       ++C.NumRegs;
1289       return;
1290     }
1291 
1292     unsigned LoopCost = 1;
1293     if (TTI->isIndexedLoadLegal(TTI->MIM_PostInc, AR->getType()) ||
1294         TTI->isIndexedStoreLegal(TTI->MIM_PostInc, AR->getType())) {
1295 
1296       // If the step size matches the base offset, we could use pre-indexed
1297       // addressing.
1298       if (AMK == TTI::AMK_PreIndexed) {
1299         if (auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)))
1300           if (Step->getAPInt() == F.BaseOffset)
1301             LoopCost = 0;
1302       } else if (AMK == TTI::AMK_PostIndexed) {
1303         const SCEV *LoopStep = AR->getStepRecurrence(*SE);
1304         if (isa<SCEVConstant>(LoopStep)) {
1305           const SCEV *LoopStart = AR->getStart();
1306           if (!isa<SCEVConstant>(LoopStart) &&
1307               SE->isLoopInvariant(LoopStart, L))
1308             LoopCost = 0;
1309         }
1310       }
1311     }
1312     C.AddRecCost += LoopCost;
1313 
1314     // Add the step value register, if it needs one.
1315     // TODO: The non-affine case isn't precisely modeled here.
1316     if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) {
1317       if (!Regs.count(AR->getOperand(1))) {
1318         RateRegister(F, AR->getOperand(1), Regs);
1319         if (isLoser())
1320           return;
1321       }
1322     }
1323   }
1324   ++C.NumRegs;
1325 
1326   // Rough heuristic; favor registers which don't require extra setup
1327   // instructions in the preheader.
1328   C.SetupCost += getSetupCost(Reg, SetupCostDepthLimit);
1329   // Ensure we don't, even with the recusion limit, produce invalid costs.
1330   C.SetupCost = std::min<unsigned>(C.SetupCost, 1 << 16);
1331 
1332   C.NumIVMuls += isa<SCEVMulExpr>(Reg) &&
1333                SE->hasComputableLoopEvolution(Reg, L);
1334 }
1335 
1336 /// Record this register in the set. If we haven't seen it before, rate
1337 /// it. Optional LoserRegs provides a way to declare any formula that refers to
1338 /// one of those regs an instant loser.
1339 void Cost::RatePrimaryRegister(const Formula &F, const SCEV *Reg,
1340                                SmallPtrSetImpl<const SCEV *> &Regs,
1341                                SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1342   if (LoserRegs && LoserRegs->count(Reg)) {
1343     Lose();
1344     return;
1345   }
1346   if (Regs.insert(Reg).second) {
1347     RateRegister(F, Reg, Regs);
1348     if (LoserRegs && isLoser())
1349       LoserRegs->insert(Reg);
1350   }
1351 }
1352 
1353 void Cost::RateFormula(const Formula &F,
1354                        SmallPtrSetImpl<const SCEV *> &Regs,
1355                        const DenseSet<const SCEV *> &VisitedRegs,
1356                        const LSRUse &LU,
1357                        SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1358   if (isLoser())
1359     return;
1360   assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula");
1361   // Tally up the registers.
1362   unsigned PrevAddRecCost = C.AddRecCost;
1363   unsigned PrevNumRegs = C.NumRegs;
1364   unsigned PrevNumBaseAdds = C.NumBaseAdds;
1365   if (const SCEV *ScaledReg = F.ScaledReg) {
1366     if (VisitedRegs.count(ScaledReg)) {
1367       Lose();
1368       return;
1369     }
1370     RatePrimaryRegister(F, ScaledReg, Regs, LoserRegs);
1371     if (isLoser())
1372       return;
1373   }
1374   for (const SCEV *BaseReg : F.BaseRegs) {
1375     if (VisitedRegs.count(BaseReg)) {
1376       Lose();
1377       return;
1378     }
1379     RatePrimaryRegister(F, BaseReg, Regs, LoserRegs);
1380     if (isLoser())
1381       return;
1382   }
1383 
1384   // Determine how many (unfolded) adds we'll need inside the loop.
1385   size_t NumBaseParts = F.getNumRegs();
1386   if (NumBaseParts > 1)
1387     // Do not count the base and a possible second register if the target
1388     // allows to fold 2 registers.
1389     C.NumBaseAdds +=
1390         NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(*TTI, LU, F)));
1391   C.NumBaseAdds += (F.UnfoldedOffset != 0);
1392 
1393   // Accumulate non-free scaling amounts.
1394   C.ScaleCost += *getScalingFactorCost(*TTI, LU, F, *L).getValue();
1395 
1396   // Tally up the non-zero immediates.
1397   for (const LSRFixup &Fixup : LU.Fixups) {
1398     int64_t O = Fixup.Offset;
1399     int64_t Offset = (uint64_t)O + F.BaseOffset;
1400     if (F.BaseGV)
1401       C.ImmCost += 64; // Handle symbolic values conservatively.
1402                      // TODO: This should probably be the pointer size.
1403     else if (Offset != 0)
1404       C.ImmCost += APInt(64, Offset, true).getMinSignedBits();
1405 
1406     // Check with target if this offset with this instruction is
1407     // specifically not supported.
1408     if (LU.Kind == LSRUse::Address && Offset != 0 &&
1409         !isAMCompletelyFolded(*TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
1410                               Offset, F.HasBaseReg, F.Scale, Fixup.UserInst))
1411       C.NumBaseAdds++;
1412   }
1413 
1414   // If we don't count instruction cost exit here.
1415   if (!InsnsCost) {
1416     assert(isValid() && "invalid cost");
1417     return;
1418   }
1419 
1420   // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as
1421   // additional instruction (at least fill).
1422   // TODO: Need distinguish register class?
1423   unsigned TTIRegNum = TTI->getNumberOfRegisters(
1424                        TTI->getRegisterClassForType(false, F.getType())) - 1;
1425   if (C.NumRegs > TTIRegNum) {
1426     // Cost already exceeded TTIRegNum, then only newly added register can add
1427     // new instructions.
1428     if (PrevNumRegs > TTIRegNum)
1429       C.Insns += (C.NumRegs - PrevNumRegs);
1430     else
1431       C.Insns += (C.NumRegs - TTIRegNum);
1432   }
1433 
1434   // If ICmpZero formula ends with not 0, it could not be replaced by
1435   // just add or sub. We'll need to compare final result of AddRec.
1436   // That means we'll need an additional instruction. But if the target can
1437   // macro-fuse a compare with a branch, don't count this extra instruction.
1438   // For -10 + {0, +, 1}:
1439   // i = i + 1;
1440   // cmp i, 10
1441   //
1442   // For {-10, +, 1}:
1443   // i = i + 1;
1444   if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd() &&
1445       !TTI->canMacroFuseCmp())
1446     C.Insns++;
1447   // Each new AddRec adds 1 instruction to calculation.
1448   C.Insns += (C.AddRecCost - PrevAddRecCost);
1449 
1450   // BaseAdds adds instructions for unfolded registers.
1451   if (LU.Kind != LSRUse::ICmpZero)
1452     C.Insns += C.NumBaseAdds - PrevNumBaseAdds;
1453   assert(isValid() && "invalid cost");
1454 }
1455 
1456 /// Set this cost to a losing value.
1457 void Cost::Lose() {
1458   C.Insns = std::numeric_limits<unsigned>::max();
1459   C.NumRegs = std::numeric_limits<unsigned>::max();
1460   C.AddRecCost = std::numeric_limits<unsigned>::max();
1461   C.NumIVMuls = std::numeric_limits<unsigned>::max();
1462   C.NumBaseAdds = std::numeric_limits<unsigned>::max();
1463   C.ImmCost = std::numeric_limits<unsigned>::max();
1464   C.SetupCost = std::numeric_limits<unsigned>::max();
1465   C.ScaleCost = std::numeric_limits<unsigned>::max();
1466 }
1467 
1468 /// Choose the lower cost.
1469 bool Cost::isLess(const Cost &Other) {
1470   if (InsnsCost.getNumOccurrences() > 0 && InsnsCost &&
1471       C.Insns != Other.C.Insns)
1472     return C.Insns < Other.C.Insns;
1473   return TTI->isLSRCostLess(C, Other.C);
1474 }
1475 
1476 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1477 void Cost::print(raw_ostream &OS) const {
1478   if (InsnsCost)
1479     OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s ");
1480   OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s");
1481   if (C.AddRecCost != 0)
1482     OS << ", with addrec cost " << C.AddRecCost;
1483   if (C.NumIVMuls != 0)
1484     OS << ", plus " << C.NumIVMuls << " IV mul"
1485        << (C.NumIVMuls == 1 ? "" : "s");
1486   if (C.NumBaseAdds != 0)
1487     OS << ", plus " << C.NumBaseAdds << " base add"
1488        << (C.NumBaseAdds == 1 ? "" : "s");
1489   if (C.ScaleCost != 0)
1490     OS << ", plus " << C.ScaleCost << " scale cost";
1491   if (C.ImmCost != 0)
1492     OS << ", plus " << C.ImmCost << " imm cost";
1493   if (C.SetupCost != 0)
1494     OS << ", plus " << C.SetupCost << " setup cost";
1495 }
1496 
1497 LLVM_DUMP_METHOD void Cost::dump() const {
1498   print(errs()); errs() << '\n';
1499 }
1500 #endif
1501 
1502 /// Test whether this fixup always uses its value outside of the given loop.
1503 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
1504   // PHI nodes use their value in their incoming blocks.
1505   if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
1506     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1507       if (PN->getIncomingValue(i) == OperandValToReplace &&
1508           L->contains(PN->getIncomingBlock(i)))
1509         return false;
1510     return true;
1511   }
1512 
1513   return !L->contains(UserInst);
1514 }
1515 
1516 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1517 void LSRFixup::print(raw_ostream &OS) const {
1518   OS << "UserInst=";
1519   // Store is common and interesting enough to be worth special-casing.
1520   if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
1521     OS << "store ";
1522     Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false);
1523   } else if (UserInst->getType()->isVoidTy())
1524     OS << UserInst->getOpcodeName();
1525   else
1526     UserInst->printAsOperand(OS, /*PrintType=*/false);
1527 
1528   OS << ", OperandValToReplace=";
1529   OperandValToReplace->printAsOperand(OS, /*PrintType=*/false);
1530 
1531   for (const Loop *PIL : PostIncLoops) {
1532     OS << ", PostIncLoop=";
1533     PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
1534   }
1535 
1536   if (Offset != 0)
1537     OS << ", Offset=" << Offset;
1538 }
1539 
1540 LLVM_DUMP_METHOD void LSRFixup::dump() const {
1541   print(errs()); errs() << '\n';
1542 }
1543 #endif
1544 
1545 /// Test whether this use as a formula which has the same registers as the given
1546 /// formula.
1547 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
1548   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1549   if (F.ScaledReg) Key.push_back(F.ScaledReg);
1550   // Unstable sort by host order ok, because this is only used for uniquifying.
1551   llvm::sort(Key);
1552   return Uniquifier.count(Key);
1553 }
1554 
1555 /// The function returns a probability of selecting formula without Reg.
1556 float LSRUse::getNotSelectedProbability(const SCEV *Reg) const {
1557   unsigned FNum = 0;
1558   for (const Formula &F : Formulae)
1559     if (F.referencesReg(Reg))
1560       FNum++;
1561   return ((float)(Formulae.size() - FNum)) / Formulae.size();
1562 }
1563 
1564 /// If the given formula has not yet been inserted, add it to the list, and
1565 /// return true. Return false otherwise.  The formula must be in canonical form.
1566 bool LSRUse::InsertFormula(const Formula &F, const Loop &L) {
1567   assert(F.isCanonical(L) && "Invalid canonical representation");
1568 
1569   if (!Formulae.empty() && RigidFormula)
1570     return false;
1571 
1572   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1573   if (F.ScaledReg) Key.push_back(F.ScaledReg);
1574   // Unstable sort by host order ok, because this is only used for uniquifying.
1575   llvm::sort(Key);
1576 
1577   if (!Uniquifier.insert(Key).second)
1578     return false;
1579 
1580   // Using a register to hold the value of 0 is not profitable.
1581   assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
1582          "Zero allocated in a scaled register!");
1583 #ifndef NDEBUG
1584   for (const SCEV *BaseReg : F.BaseRegs)
1585     assert(!BaseReg->isZero() && "Zero allocated in a base register!");
1586 #endif
1587 
1588   // Add the formula to the list.
1589   Formulae.push_back(F);
1590 
1591   // Record registers now being used by this use.
1592   Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1593   if (F.ScaledReg)
1594     Regs.insert(F.ScaledReg);
1595 
1596   return true;
1597 }
1598 
1599 /// Remove the given formula from this use's list.
1600 void LSRUse::DeleteFormula(Formula &F) {
1601   if (&F != &Formulae.back())
1602     std::swap(F, Formulae.back());
1603   Formulae.pop_back();
1604 }
1605 
1606 /// Recompute the Regs field, and update RegUses.
1607 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
1608   // Now that we've filtered out some formulae, recompute the Regs set.
1609   SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs);
1610   Regs.clear();
1611   for (const Formula &F : Formulae) {
1612     if (F.ScaledReg) Regs.insert(F.ScaledReg);
1613     Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1614   }
1615 
1616   // Update the RegTracker.
1617   for (const SCEV *S : OldRegs)
1618     if (!Regs.count(S))
1619       RegUses.dropRegister(S, LUIdx);
1620 }
1621 
1622 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1623 void LSRUse::print(raw_ostream &OS) const {
1624   OS << "LSR Use: Kind=";
1625   switch (Kind) {
1626   case Basic:    OS << "Basic"; break;
1627   case Special:  OS << "Special"; break;
1628   case ICmpZero: OS << "ICmpZero"; break;
1629   case Address:
1630     OS << "Address of ";
1631     if (AccessTy.MemTy->isPointerTy())
1632       OS << "pointer"; // the full pointer type could be really verbose
1633     else {
1634       OS << *AccessTy.MemTy;
1635     }
1636 
1637     OS << " in addrspace(" << AccessTy.AddrSpace << ')';
1638   }
1639 
1640   OS << ", Offsets={";
1641   bool NeedComma = false;
1642   for (const LSRFixup &Fixup : Fixups) {
1643     if (NeedComma) OS << ',';
1644     OS << Fixup.Offset;
1645     NeedComma = true;
1646   }
1647   OS << '}';
1648 
1649   if (AllFixupsOutsideLoop)
1650     OS << ", all-fixups-outside-loop";
1651 
1652   if (WidestFixupType)
1653     OS << ", widest fixup type: " << *WidestFixupType;
1654 }
1655 
1656 LLVM_DUMP_METHOD void LSRUse::dump() const {
1657   print(errs()); errs() << '\n';
1658 }
1659 #endif
1660 
1661 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1662                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1663                                  GlobalValue *BaseGV, int64_t BaseOffset,
1664                                  bool HasBaseReg, int64_t Scale,
1665                                  Instruction *Fixup/*= nullptr*/) {
1666   switch (Kind) {
1667   case LSRUse::Address:
1668     return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset,
1669                                      HasBaseReg, Scale, AccessTy.AddrSpace, Fixup);
1670 
1671   case LSRUse::ICmpZero:
1672     // There's not even a target hook for querying whether it would be legal to
1673     // fold a GV into an ICmp.
1674     if (BaseGV)
1675       return false;
1676 
1677     // ICmp only has two operands; don't allow more than two non-trivial parts.
1678     if (Scale != 0 && HasBaseReg && BaseOffset != 0)
1679       return false;
1680 
1681     // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1682     // putting the scaled register in the other operand of the icmp.
1683     if (Scale != 0 && Scale != -1)
1684       return false;
1685 
1686     // If we have low-level target information, ask the target if it can fold an
1687     // integer immediate on an icmp.
1688     if (BaseOffset != 0) {
1689       // We have one of:
1690       // ICmpZero     BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset
1691       // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset
1692       // Offs is the ICmp immediate.
1693       if (Scale == 0)
1694         // The cast does the right thing with
1695         // std::numeric_limits<int64_t>::min().
1696         BaseOffset = -(uint64_t)BaseOffset;
1697       return TTI.isLegalICmpImmediate(BaseOffset);
1698     }
1699 
1700     // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg
1701     return true;
1702 
1703   case LSRUse::Basic:
1704     // Only handle single-register values.
1705     return !BaseGV && Scale == 0 && BaseOffset == 0;
1706 
1707   case LSRUse::Special:
1708     // Special case Basic to handle -1 scales.
1709     return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0;
1710   }
1711 
1712   llvm_unreachable("Invalid LSRUse Kind!");
1713 }
1714 
1715 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1716                                  int64_t MinOffset, int64_t MaxOffset,
1717                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1718                                  GlobalValue *BaseGV, int64_t BaseOffset,
1719                                  bool HasBaseReg, int64_t Scale) {
1720   // Check for overflow.
1721   if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) !=
1722       (MinOffset > 0))
1723     return false;
1724   MinOffset = (uint64_t)BaseOffset + MinOffset;
1725   if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) !=
1726       (MaxOffset > 0))
1727     return false;
1728   MaxOffset = (uint64_t)BaseOffset + MaxOffset;
1729 
1730   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset,
1731                               HasBaseReg, Scale) &&
1732          isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset,
1733                               HasBaseReg, Scale);
1734 }
1735 
1736 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1737                                  int64_t MinOffset, int64_t MaxOffset,
1738                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1739                                  const Formula &F, const Loop &L) {
1740   // For the purpose of isAMCompletelyFolded either having a canonical formula
1741   // or a scale not equal to zero is correct.
1742   // Problems may arise from non canonical formulae having a scale == 0.
1743   // Strictly speaking it would best to just rely on canonical formulae.
1744   // However, when we generate the scaled formulae, we first check that the
1745   // scaling factor is profitable before computing the actual ScaledReg for
1746   // compile time sake.
1747   assert((F.isCanonical(L) || F.Scale != 0));
1748   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1749                               F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale);
1750 }
1751 
1752 /// Test whether we know how to expand the current formula.
1753 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1754                        int64_t MaxOffset, LSRUse::KindType Kind,
1755                        MemAccessTy AccessTy, GlobalValue *BaseGV,
1756                        int64_t BaseOffset, bool HasBaseReg, int64_t Scale) {
1757   // We know how to expand completely foldable formulae.
1758   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1759                               BaseOffset, HasBaseReg, Scale) ||
1760          // Or formulae that use a base register produced by a sum of base
1761          // registers.
1762          (Scale == 1 &&
1763           isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1764                                BaseGV, BaseOffset, true, 0));
1765 }
1766 
1767 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1768                        int64_t MaxOffset, LSRUse::KindType Kind,
1769                        MemAccessTy AccessTy, const Formula &F) {
1770   return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV,
1771                     F.BaseOffset, F.HasBaseReg, F.Scale);
1772 }
1773 
1774 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1775                                  const LSRUse &LU, const Formula &F) {
1776   // Target may want to look at the user instructions.
1777   if (LU.Kind == LSRUse::Address && TTI.LSRWithInstrQueries()) {
1778     for (const LSRFixup &Fixup : LU.Fixups)
1779       if (!isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
1780                                 (F.BaseOffset + Fixup.Offset), F.HasBaseReg,
1781                                 F.Scale, Fixup.UserInst))
1782         return false;
1783     return true;
1784   }
1785 
1786   return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1787                               LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg,
1788                               F.Scale);
1789 }
1790 
1791 static InstructionCost getScalingFactorCost(const TargetTransformInfo &TTI,
1792                                             const LSRUse &LU, const Formula &F,
1793                                             const Loop &L) {
1794   if (!F.Scale)
1795     return 0;
1796 
1797   // If the use is not completely folded in that instruction, we will have to
1798   // pay an extra cost only for scale != 1.
1799   if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1800                             LU.AccessTy, F, L))
1801     return F.Scale != 1;
1802 
1803   switch (LU.Kind) {
1804   case LSRUse::Address: {
1805     // Check the scaling factor cost with both the min and max offsets.
1806     InstructionCost ScaleCostMinOffset = TTI.getScalingFactorCost(
1807         LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg,
1808         F.Scale, LU.AccessTy.AddrSpace);
1809     InstructionCost ScaleCostMaxOffset = TTI.getScalingFactorCost(
1810         LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg,
1811         F.Scale, LU.AccessTy.AddrSpace);
1812 
1813     assert(ScaleCostMinOffset.isValid() && ScaleCostMaxOffset.isValid() &&
1814            "Legal addressing mode has an illegal cost!");
1815     return std::max(ScaleCostMinOffset, ScaleCostMaxOffset);
1816   }
1817   case LSRUse::ICmpZero:
1818   case LSRUse::Basic:
1819   case LSRUse::Special:
1820     // The use is completely folded, i.e., everything is folded into the
1821     // instruction.
1822     return 0;
1823   }
1824 
1825   llvm_unreachable("Invalid LSRUse Kind!");
1826 }
1827 
1828 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1829                              LSRUse::KindType Kind, MemAccessTy AccessTy,
1830                              GlobalValue *BaseGV, int64_t BaseOffset,
1831                              bool HasBaseReg) {
1832   // Fast-path: zero is always foldable.
1833   if (BaseOffset == 0 && !BaseGV) return true;
1834 
1835   // Conservatively, create an address with an immediate and a
1836   // base and a scale.
1837   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1838 
1839   // Canonicalize a scale of 1 to a base register if the formula doesn't
1840   // already have a base register.
1841   if (!HasBaseReg && Scale == 1) {
1842     Scale = 0;
1843     HasBaseReg = true;
1844   }
1845 
1846   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset,
1847                               HasBaseReg, Scale);
1848 }
1849 
1850 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1851                              ScalarEvolution &SE, int64_t MinOffset,
1852                              int64_t MaxOffset, LSRUse::KindType Kind,
1853                              MemAccessTy AccessTy, const SCEV *S,
1854                              bool HasBaseReg) {
1855   // Fast-path: zero is always foldable.
1856   if (S->isZero()) return true;
1857 
1858   // Conservatively, create an address with an immediate and a
1859   // base and a scale.
1860   int64_t BaseOffset = ExtractImmediate(S, SE);
1861   GlobalValue *BaseGV = ExtractSymbol(S, SE);
1862 
1863   // If there's anything else involved, it's not foldable.
1864   if (!S->isZero()) return false;
1865 
1866   // Fast-path: zero is always foldable.
1867   if (BaseOffset == 0 && !BaseGV) return true;
1868 
1869   // Conservatively, create an address with an immediate and a
1870   // base and a scale.
1871   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1872 
1873   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1874                               BaseOffset, HasBaseReg, Scale);
1875 }
1876 
1877 namespace {
1878 
1879 /// An individual increment in a Chain of IV increments.  Relate an IV user to
1880 /// an expression that computes the IV it uses from the IV used by the previous
1881 /// link in the Chain.
1882 ///
1883 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the
1884 /// original IVOperand. The head of the chain's IVOperand is only valid during
1885 /// chain collection, before LSR replaces IV users. During chain generation,
1886 /// IncExpr can be used to find the new IVOperand that computes the same
1887 /// expression.
1888 struct IVInc {
1889   Instruction *UserInst;
1890   Value* IVOperand;
1891   const SCEV *IncExpr;
1892 
1893   IVInc(Instruction *U, Value *O, const SCEV *E)
1894       : UserInst(U), IVOperand(O), IncExpr(E) {}
1895 };
1896 
1897 // The list of IV increments in program order.  We typically add the head of a
1898 // chain without finding subsequent links.
1899 struct IVChain {
1900   SmallVector<IVInc, 1> Incs;
1901   const SCEV *ExprBase = nullptr;
1902 
1903   IVChain() = default;
1904   IVChain(const IVInc &Head, const SCEV *Base)
1905       : Incs(1, Head), ExprBase(Base) {}
1906 
1907   using const_iterator = SmallVectorImpl<IVInc>::const_iterator;
1908 
1909   // Return the first increment in the chain.
1910   const_iterator begin() const {
1911     assert(!Incs.empty());
1912     return std::next(Incs.begin());
1913   }
1914   const_iterator end() const {
1915     return Incs.end();
1916   }
1917 
1918   // Returns true if this chain contains any increments.
1919   bool hasIncs() const { return Incs.size() >= 2; }
1920 
1921   // Add an IVInc to the end of this chain.
1922   void add(const IVInc &X) { Incs.push_back(X); }
1923 
1924   // Returns the last UserInst in the chain.
1925   Instruction *tailUserInst() const { return Incs.back().UserInst; }
1926 
1927   // Returns true if IncExpr can be profitably added to this chain.
1928   bool isProfitableIncrement(const SCEV *OperExpr,
1929                              const SCEV *IncExpr,
1930                              ScalarEvolution&);
1931 };
1932 
1933 /// Helper for CollectChains to track multiple IV increment uses.  Distinguish
1934 /// between FarUsers that definitely cross IV increments and NearUsers that may
1935 /// be used between IV increments.
1936 struct ChainUsers {
1937   SmallPtrSet<Instruction*, 4> FarUsers;
1938   SmallPtrSet<Instruction*, 4> NearUsers;
1939 };
1940 
1941 /// This class holds state for the main loop strength reduction logic.
1942 class LSRInstance {
1943   IVUsers &IU;
1944   ScalarEvolution &SE;
1945   DominatorTree &DT;
1946   LoopInfo &LI;
1947   AssumptionCache &AC;
1948   TargetLibraryInfo &TLI;
1949   const TargetTransformInfo &TTI;
1950   Loop *const L;
1951   MemorySSAUpdater *MSSAU;
1952   TTI::AddressingModeKind AMK;
1953   mutable SCEVExpander Rewriter;
1954   bool Changed = false;
1955 
1956   /// This is the insert position that the current loop's induction variable
1957   /// increment should be placed. In simple loops, this is the latch block's
1958   /// terminator. But in more complicated cases, this is a position which will
1959   /// dominate all the in-loop post-increment users.
1960   Instruction *IVIncInsertPos = nullptr;
1961 
1962   /// Interesting factors between use strides.
1963   ///
1964   /// We explicitly use a SetVector which contains a SmallSet, instead of the
1965   /// default, a SmallDenseSet, because we need to use the full range of
1966   /// int64_ts, and there's currently no good way of doing that with
1967   /// SmallDenseSet.
1968   SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors;
1969 
1970   /// Interesting use types, to facilitate truncation reuse.
1971   SmallSetVector<Type *, 4> Types;
1972 
1973   /// The list of interesting uses.
1974   mutable SmallVector<LSRUse, 16> Uses;
1975 
1976   /// Track which uses use which register candidates.
1977   RegUseTracker RegUses;
1978 
1979   // Limit the number of chains to avoid quadratic behavior. We don't expect to
1980   // have more than a few IV increment chains in a loop. Missing a Chain falls
1981   // back to normal LSR behavior for those uses.
1982   static const unsigned MaxChains = 8;
1983 
1984   /// IV users can form a chain of IV increments.
1985   SmallVector<IVChain, MaxChains> IVChainVec;
1986 
1987   /// IV users that belong to profitable IVChains.
1988   SmallPtrSet<Use*, MaxChains> IVIncSet;
1989 
1990   /// Induction variables that were generated and inserted by the SCEV Expander.
1991   SmallVector<llvm::WeakVH, 2> ScalarEvolutionIVs;
1992 
1993   void OptimizeShadowIV();
1994   bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
1995   ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
1996   void OptimizeLoopTermCond();
1997 
1998   void ChainInstruction(Instruction *UserInst, Instruction *IVOper,
1999                         SmallVectorImpl<ChainUsers> &ChainUsersVec);
2000   void FinalizeChain(IVChain &Chain);
2001   void CollectChains();
2002   void GenerateIVChain(const IVChain &Chain,
2003                        SmallVectorImpl<WeakTrackingVH> &DeadInsts);
2004 
2005   void CollectInterestingTypesAndFactors();
2006   void CollectFixupsAndInitialFormulae();
2007 
2008   // Support for sharing of LSRUses between LSRFixups.
2009   using UseMapTy = DenseMap<LSRUse::SCEVUseKindPair, size_t>;
2010   UseMapTy UseMap;
2011 
2012   bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
2013                           LSRUse::KindType Kind, MemAccessTy AccessTy);
2014 
2015   std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind,
2016                                     MemAccessTy AccessTy);
2017 
2018   void DeleteUse(LSRUse &LU, size_t LUIdx);
2019 
2020   LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
2021 
2022   void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
2023   void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
2024   void CountRegisters(const Formula &F, size_t LUIdx);
2025   bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
2026 
2027   void CollectLoopInvariantFixupsAndFormulae();
2028 
2029   void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
2030                               unsigned Depth = 0);
2031 
2032   void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
2033                                   const Formula &Base, unsigned Depth,
2034                                   size_t Idx, bool IsScaledReg = false);
2035   void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
2036   void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
2037                                    const Formula &Base, size_t Idx,
2038                                    bool IsScaledReg = false);
2039   void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
2040   void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx,
2041                                    const Formula &Base,
2042                                    const SmallVectorImpl<int64_t> &Worklist,
2043                                    size_t Idx, bool IsScaledReg = false);
2044   void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
2045   void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
2046   void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
2047   void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
2048   void GenerateCrossUseConstantOffsets();
2049   void GenerateAllReuseFormulae();
2050 
2051   void FilterOutUndesirableDedicatedRegisters();
2052 
2053   size_t EstimateSearchSpaceComplexity() const;
2054   void NarrowSearchSpaceByDetectingSupersets();
2055   void NarrowSearchSpaceByCollapsingUnrolledCode();
2056   void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
2057   void NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
2058   void NarrowSearchSpaceByFilterPostInc();
2059   void NarrowSearchSpaceByDeletingCostlyFormulas();
2060   void NarrowSearchSpaceByPickingWinnerRegs();
2061   void NarrowSearchSpaceUsingHeuristics();
2062 
2063   void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
2064                     Cost &SolutionCost,
2065                     SmallVectorImpl<const Formula *> &Workspace,
2066                     const Cost &CurCost,
2067                     const SmallPtrSet<const SCEV *, 16> &CurRegs,
2068                     DenseSet<const SCEV *> &VisitedRegs) const;
2069   void Solve(SmallVectorImpl<const Formula *> &Solution) const;
2070 
2071   BasicBlock::iterator
2072   HoistInsertPosition(BasicBlock::iterator IP,
2073                       const SmallVectorImpl<Instruction *> &Inputs) const;
2074   BasicBlock::iterator AdjustInsertPositionForExpand(BasicBlock::iterator IP,
2075                                                      const LSRFixup &LF,
2076                                                      const LSRUse &LU) const;
2077 
2078   Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
2079                 BasicBlock::iterator IP,
2080                 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2081   void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF,
2082                      const Formula &F,
2083                      SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2084   void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
2085                SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2086   void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution);
2087 
2088 public:
2089   LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT,
2090               LoopInfo &LI, const TargetTransformInfo &TTI, AssumptionCache &AC,
2091               TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU);
2092 
2093   bool getChanged() const { return Changed; }
2094   const SmallVectorImpl<WeakVH> &getScalarEvolutionIVs() const {
2095     return ScalarEvolutionIVs;
2096   }
2097 
2098   void print_factors_and_types(raw_ostream &OS) const;
2099   void print_fixups(raw_ostream &OS) const;
2100   void print_uses(raw_ostream &OS) const;
2101   void print(raw_ostream &OS) const;
2102   void dump() const;
2103 };
2104 
2105 } // end anonymous namespace
2106 
2107 /// If IV is used in a int-to-float cast inside the loop then try to eliminate
2108 /// the cast operation.
2109 void LSRInstance::OptimizeShadowIV() {
2110   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2111   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2112     return;
2113 
2114   for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
2115        UI != E; /* empty */) {
2116     IVUsers::const_iterator CandidateUI = UI;
2117     ++UI;
2118     Instruction *ShadowUse = CandidateUI->getUser();
2119     Type *DestTy = nullptr;
2120     bool IsSigned = false;
2121 
2122     /* If shadow use is a int->float cast then insert a second IV
2123        to eliminate this cast.
2124 
2125          for (unsigned i = 0; i < n; ++i)
2126            foo((double)i);
2127 
2128        is transformed into
2129 
2130          double d = 0.0;
2131          for (unsigned i = 0; i < n; ++i, ++d)
2132            foo(d);
2133     */
2134     if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) {
2135       IsSigned = false;
2136       DestTy = UCast->getDestTy();
2137     }
2138     else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) {
2139       IsSigned = true;
2140       DestTy = SCast->getDestTy();
2141     }
2142     if (!DestTy) continue;
2143 
2144     // If target does not support DestTy natively then do not apply
2145     // this transformation.
2146     if (!TTI.isTypeLegal(DestTy)) continue;
2147 
2148     PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
2149     if (!PH) continue;
2150     if (PH->getNumIncomingValues() != 2) continue;
2151 
2152     // If the calculation in integers overflows, the result in FP type will
2153     // differ. So we only can do this transformation if we are guaranteed to not
2154     // deal with overflowing values
2155     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PH));
2156     if (!AR) continue;
2157     if (IsSigned && !AR->hasNoSignedWrap()) continue;
2158     if (!IsSigned && !AR->hasNoUnsignedWrap()) continue;
2159 
2160     Type *SrcTy = PH->getType();
2161     int Mantissa = DestTy->getFPMantissaWidth();
2162     if (Mantissa == -1) continue;
2163     if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
2164       continue;
2165 
2166     unsigned Entry, Latch;
2167     if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
2168       Entry = 0;
2169       Latch = 1;
2170     } else {
2171       Entry = 1;
2172       Latch = 0;
2173     }
2174 
2175     ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
2176     if (!Init) continue;
2177     Constant *NewInit = ConstantFP::get(DestTy, IsSigned ?
2178                                         (double)Init->getSExtValue() :
2179                                         (double)Init->getZExtValue());
2180 
2181     BinaryOperator *Incr =
2182       dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
2183     if (!Incr) continue;
2184     if (Incr->getOpcode() != Instruction::Add
2185         && Incr->getOpcode() != Instruction::Sub)
2186       continue;
2187 
2188     /* Initialize new IV, double d = 0.0 in above example. */
2189     ConstantInt *C = nullptr;
2190     if (Incr->getOperand(0) == PH)
2191       C = dyn_cast<ConstantInt>(Incr->getOperand(1));
2192     else if (Incr->getOperand(1) == PH)
2193       C = dyn_cast<ConstantInt>(Incr->getOperand(0));
2194     else
2195       continue;
2196 
2197     if (!C) continue;
2198 
2199     // Ignore negative constants, as the code below doesn't handle them
2200     // correctly. TODO: Remove this restriction.
2201     if (!C->getValue().isStrictlyPositive()) continue;
2202 
2203     /* Add new PHINode. */
2204     PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH);
2205 
2206     /* create new increment. '++d' in above example. */
2207     Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
2208     BinaryOperator *NewIncr =
2209       BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
2210                                Instruction::FAdd : Instruction::FSub,
2211                              NewPH, CFP, "IV.S.next.", Incr);
2212 
2213     NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
2214     NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
2215 
2216     /* Remove cast operation */
2217     ShadowUse->replaceAllUsesWith(NewPH);
2218     ShadowUse->eraseFromParent();
2219     Changed = true;
2220     break;
2221   }
2222 }
2223 
2224 /// If Cond has an operand that is an expression of an IV, set the IV user and
2225 /// stride information and return true, otherwise return false.
2226 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
2227   for (IVStrideUse &U : IU)
2228     if (U.getUser() == Cond) {
2229       // NOTE: we could handle setcc instructions with multiple uses here, but
2230       // InstCombine does it as well for simple uses, it's not clear that it
2231       // occurs enough in real life to handle.
2232       CondUse = &U;
2233       return true;
2234     }
2235   return false;
2236 }
2237 
2238 /// Rewrite the loop's terminating condition if it uses a max computation.
2239 ///
2240 /// This is a narrow solution to a specific, but acute, problem. For loops
2241 /// like this:
2242 ///
2243 ///   i = 0;
2244 ///   do {
2245 ///     p[i] = 0.0;
2246 ///   } while (++i < n);
2247 ///
2248 /// the trip count isn't just 'n', because 'n' might not be positive. And
2249 /// unfortunately this can come up even for loops where the user didn't use
2250 /// a C do-while loop. For example, seemingly well-behaved top-test loops
2251 /// will commonly be lowered like this:
2252 ///
2253 ///   if (n > 0) {
2254 ///     i = 0;
2255 ///     do {
2256 ///       p[i] = 0.0;
2257 ///     } while (++i < n);
2258 ///   }
2259 ///
2260 /// and then it's possible for subsequent optimization to obscure the if
2261 /// test in such a way that indvars can't find it.
2262 ///
2263 /// When indvars can't find the if test in loops like this, it creates a
2264 /// max expression, which allows it to give the loop a canonical
2265 /// induction variable:
2266 ///
2267 ///   i = 0;
2268 ///   max = n < 1 ? 1 : n;
2269 ///   do {
2270 ///     p[i] = 0.0;
2271 ///   } while (++i != max);
2272 ///
2273 /// Canonical induction variables are necessary because the loop passes
2274 /// are designed around them. The most obvious example of this is the
2275 /// LoopInfo analysis, which doesn't remember trip count values. It
2276 /// expects to be able to rediscover the trip count each time it is
2277 /// needed, and it does this using a simple analysis that only succeeds if
2278 /// the loop has a canonical induction variable.
2279 ///
2280 /// However, when it comes time to generate code, the maximum operation
2281 /// can be quite costly, especially if it's inside of an outer loop.
2282 ///
2283 /// This function solves this problem by detecting this type of loop and
2284 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
2285 /// the instructions for the maximum computation.
2286 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
2287   // Check that the loop matches the pattern we're looking for.
2288   if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
2289       Cond->getPredicate() != CmpInst::ICMP_NE)
2290     return Cond;
2291 
2292   SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
2293   if (!Sel || !Sel->hasOneUse()) return Cond;
2294 
2295   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2296   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2297     return Cond;
2298   const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
2299 
2300   // Add one to the backedge-taken count to get the trip count.
2301   const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount);
2302   if (IterationCount != SE.getSCEV(Sel)) return Cond;
2303 
2304   // Check for a max calculation that matches the pattern. There's no check
2305   // for ICMP_ULE here because the comparison would be with zero, which
2306   // isn't interesting.
2307   CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
2308   const SCEVNAryExpr *Max = nullptr;
2309   if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
2310     Pred = ICmpInst::ICMP_SLE;
2311     Max = S;
2312   } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
2313     Pred = ICmpInst::ICMP_SLT;
2314     Max = S;
2315   } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
2316     Pred = ICmpInst::ICMP_ULT;
2317     Max = U;
2318   } else {
2319     // No match; bail.
2320     return Cond;
2321   }
2322 
2323   // To handle a max with more than two operands, this optimization would
2324   // require additional checking and setup.
2325   if (Max->getNumOperands() != 2)
2326     return Cond;
2327 
2328   const SCEV *MaxLHS = Max->getOperand(0);
2329   const SCEV *MaxRHS = Max->getOperand(1);
2330 
2331   // ScalarEvolution canonicalizes constants to the left. For < and >, look
2332   // for a comparison with 1. For <= and >=, a comparison with zero.
2333   if (!MaxLHS ||
2334       (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
2335     return Cond;
2336 
2337   // Check the relevant induction variable for conformance to
2338   // the pattern.
2339   const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
2340   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
2341   if (!AR || !AR->isAffine() ||
2342       AR->getStart() != One ||
2343       AR->getStepRecurrence(SE) != One)
2344     return Cond;
2345 
2346   assert(AR->getLoop() == L &&
2347          "Loop condition operand is an addrec in a different loop!");
2348 
2349   // Check the right operand of the select, and remember it, as it will
2350   // be used in the new comparison instruction.
2351   Value *NewRHS = nullptr;
2352   if (ICmpInst::isTrueWhenEqual(Pred)) {
2353     // Look for n+1, and grab n.
2354     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
2355       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2356          if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2357            NewRHS = BO->getOperand(0);
2358     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
2359       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2360         if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2361           NewRHS = BO->getOperand(0);
2362     if (!NewRHS)
2363       return Cond;
2364   } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
2365     NewRHS = Sel->getOperand(1);
2366   else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
2367     NewRHS = Sel->getOperand(2);
2368   else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
2369     NewRHS = SU->getValue();
2370   else
2371     // Max doesn't match expected pattern.
2372     return Cond;
2373 
2374   // Determine the new comparison opcode. It may be signed or unsigned,
2375   // and the original comparison may be either equality or inequality.
2376   if (Cond->getPredicate() == CmpInst::ICMP_EQ)
2377     Pred = CmpInst::getInversePredicate(Pred);
2378 
2379   // Ok, everything looks ok to change the condition into an SLT or SGE and
2380   // delete the max calculation.
2381   ICmpInst *NewCond =
2382     new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
2383 
2384   // Delete the max calculation instructions.
2385   NewCond->setDebugLoc(Cond->getDebugLoc());
2386   Cond->replaceAllUsesWith(NewCond);
2387   CondUse->setUser(NewCond);
2388   Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
2389   Cond->eraseFromParent();
2390   Sel->eraseFromParent();
2391   if (Cmp->use_empty())
2392     Cmp->eraseFromParent();
2393   return NewCond;
2394 }
2395 
2396 /// Change loop terminating condition to use the postinc iv when possible.
2397 void
2398 LSRInstance::OptimizeLoopTermCond() {
2399   SmallPtrSet<Instruction *, 4> PostIncs;
2400 
2401   // We need a different set of heuristics for rotated and non-rotated loops.
2402   // If a loop is rotated then the latch is also the backedge, so inserting
2403   // post-inc expressions just before the latch is ideal. To reduce live ranges
2404   // it also makes sense to rewrite terminating conditions to use post-inc
2405   // expressions.
2406   //
2407   // If the loop is not rotated then the latch is not a backedge; the latch
2408   // check is done in the loop head. Adding post-inc expressions before the
2409   // latch will cause overlapping live-ranges of pre-inc and post-inc expressions
2410   // in the loop body. In this case we do *not* want to use post-inc expressions
2411   // in the latch check, and we want to insert post-inc expressions before
2412   // the backedge.
2413   BasicBlock *LatchBlock = L->getLoopLatch();
2414   SmallVector<BasicBlock*, 8> ExitingBlocks;
2415   L->getExitingBlocks(ExitingBlocks);
2416   if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) {
2417         return LatchBlock != BB;
2418       })) {
2419     // The backedge doesn't exit the loop; treat this as a head-tested loop.
2420     IVIncInsertPos = LatchBlock->getTerminator();
2421     return;
2422   }
2423 
2424   // Otherwise treat this as a rotated loop.
2425   for (BasicBlock *ExitingBlock : ExitingBlocks) {
2426     // Get the terminating condition for the loop if possible.  If we
2427     // can, we want to change it to use a post-incremented version of its
2428     // induction variable, to allow coalescing the live ranges for the IV into
2429     // one register value.
2430 
2431     BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2432     if (!TermBr)
2433       continue;
2434     // FIXME: Overly conservative, termination condition could be an 'or' etc..
2435     if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
2436       continue;
2437 
2438     // Search IVUsesByStride to find Cond's IVUse if there is one.
2439     IVStrideUse *CondUse = nullptr;
2440     ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
2441     if (!FindIVUserForCond(Cond, CondUse))
2442       continue;
2443 
2444     // If the trip count is computed in terms of a max (due to ScalarEvolution
2445     // being unable to find a sufficient guard, for example), change the loop
2446     // comparison to use SLT or ULT instead of NE.
2447     // One consequence of doing this now is that it disrupts the count-down
2448     // optimization. That's not always a bad thing though, because in such
2449     // cases it may still be worthwhile to avoid a max.
2450     Cond = OptimizeMax(Cond, CondUse);
2451 
2452     // If this exiting block dominates the latch block, it may also use
2453     // the post-inc value if it won't be shared with other uses.
2454     // Check for dominance.
2455     if (!DT.dominates(ExitingBlock, LatchBlock))
2456       continue;
2457 
2458     // Conservatively avoid trying to use the post-inc value in non-latch
2459     // exits if there may be pre-inc users in intervening blocks.
2460     if (LatchBlock != ExitingBlock)
2461       for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
2462         // Test if the use is reachable from the exiting block. This dominator
2463         // query is a conservative approximation of reachability.
2464         if (&*UI != CondUse &&
2465             !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
2466           // Conservatively assume there may be reuse if the quotient of their
2467           // strides could be a legal scale.
2468           const SCEV *A = IU.getStride(*CondUse, L);
2469           const SCEV *B = IU.getStride(*UI, L);
2470           if (!A || !B) continue;
2471           if (SE.getTypeSizeInBits(A->getType()) !=
2472               SE.getTypeSizeInBits(B->getType())) {
2473             if (SE.getTypeSizeInBits(A->getType()) >
2474                 SE.getTypeSizeInBits(B->getType()))
2475               B = SE.getSignExtendExpr(B, A->getType());
2476             else
2477               A = SE.getSignExtendExpr(A, B->getType());
2478           }
2479           if (const SCEVConstant *D =
2480                 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
2481             const ConstantInt *C = D->getValue();
2482             // Stride of one or negative one can have reuse with non-addresses.
2483             if (C->isOne() || C->isMinusOne())
2484               goto decline_post_inc;
2485             // Avoid weird situations.
2486             if (C->getValue().getMinSignedBits() >= 64 ||
2487                 C->getValue().isMinSignedValue())
2488               goto decline_post_inc;
2489             // Check for possible scaled-address reuse.
2490             if (isAddressUse(TTI, UI->getUser(), UI->getOperandValToReplace())) {
2491               MemAccessTy AccessTy = getAccessType(
2492                   TTI, UI->getUser(), UI->getOperandValToReplace());
2493               int64_t Scale = C->getSExtValue();
2494               if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2495                                             /*BaseOffset=*/0,
2496                                             /*HasBaseReg=*/false, Scale,
2497                                             AccessTy.AddrSpace))
2498                 goto decline_post_inc;
2499               Scale = -Scale;
2500               if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2501                                             /*BaseOffset=*/0,
2502                                             /*HasBaseReg=*/false, Scale,
2503                                             AccessTy.AddrSpace))
2504                 goto decline_post_inc;
2505             }
2506           }
2507         }
2508 
2509     LLVM_DEBUG(dbgs() << "  Change loop exiting icmp to use postinc iv: "
2510                       << *Cond << '\n');
2511 
2512     // It's possible for the setcc instruction to be anywhere in the loop, and
2513     // possible for it to have multiple users.  If it is not immediately before
2514     // the exiting block branch, move it.
2515     if (Cond->getNextNonDebugInstruction() != TermBr) {
2516       if (Cond->hasOneUse()) {
2517         Cond->moveBefore(TermBr);
2518       } else {
2519         // Clone the terminating condition and insert into the loopend.
2520         ICmpInst *OldCond = Cond;
2521         Cond = cast<ICmpInst>(Cond->clone());
2522         Cond->setName(L->getHeader()->getName() + ".termcond");
2523         ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond);
2524 
2525         // Clone the IVUse, as the old use still exists!
2526         CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
2527         TermBr->replaceUsesOfWith(OldCond, Cond);
2528       }
2529     }
2530 
2531     // If we get to here, we know that we can transform the setcc instruction to
2532     // use the post-incremented version of the IV, allowing us to coalesce the
2533     // live ranges for the IV correctly.
2534     CondUse->transformToPostInc(L);
2535     Changed = true;
2536 
2537     PostIncs.insert(Cond);
2538   decline_post_inc:;
2539   }
2540 
2541   // Determine an insertion point for the loop induction variable increment. It
2542   // must dominate all the post-inc comparisons we just set up, and it must
2543   // dominate the loop latch edge.
2544   IVIncInsertPos = L->getLoopLatch()->getTerminator();
2545   for (Instruction *Inst : PostIncs) {
2546     BasicBlock *BB =
2547       DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
2548                                     Inst->getParent());
2549     if (BB == Inst->getParent())
2550       IVIncInsertPos = Inst;
2551     else if (BB != IVIncInsertPos->getParent())
2552       IVIncInsertPos = BB->getTerminator();
2553   }
2554 }
2555 
2556 /// Determine if the given use can accommodate a fixup at the given offset and
2557 /// other details. If so, update the use and return true.
2558 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset,
2559                                      bool HasBaseReg, LSRUse::KindType Kind,
2560                                      MemAccessTy AccessTy) {
2561   int64_t NewMinOffset = LU.MinOffset;
2562   int64_t NewMaxOffset = LU.MaxOffset;
2563   MemAccessTy NewAccessTy = AccessTy;
2564 
2565   // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
2566   // something conservative, however this can pessimize in the case that one of
2567   // the uses will have all its uses outside the loop, for example.
2568   if (LU.Kind != Kind)
2569     return false;
2570 
2571   // Check for a mismatched access type, and fall back conservatively as needed.
2572   // TODO: Be less conservative when the type is similar and can use the same
2573   // addressing modes.
2574   if (Kind == LSRUse::Address) {
2575     if (AccessTy.MemTy != LU.AccessTy.MemTy) {
2576       NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(),
2577                                             AccessTy.AddrSpace);
2578     }
2579   }
2580 
2581   // Conservatively assume HasBaseReg is true for now.
2582   if (NewOffset < LU.MinOffset) {
2583     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2584                           LU.MaxOffset - NewOffset, HasBaseReg))
2585       return false;
2586     NewMinOffset = NewOffset;
2587   } else if (NewOffset > LU.MaxOffset) {
2588     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2589                           NewOffset - LU.MinOffset, HasBaseReg))
2590       return false;
2591     NewMaxOffset = NewOffset;
2592   }
2593 
2594   // Update the use.
2595   LU.MinOffset = NewMinOffset;
2596   LU.MaxOffset = NewMaxOffset;
2597   LU.AccessTy = NewAccessTy;
2598   return true;
2599 }
2600 
2601 /// Return an LSRUse index and an offset value for a fixup which needs the given
2602 /// expression, with the given kind and optional access type.  Either reuse an
2603 /// existing use or create a new one, as needed.
2604 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr,
2605                                                LSRUse::KindType Kind,
2606                                                MemAccessTy AccessTy) {
2607   const SCEV *Copy = Expr;
2608   int64_t Offset = ExtractImmediate(Expr, SE);
2609 
2610   // Basic uses can't accept any offset, for example.
2611   if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr,
2612                         Offset, /*HasBaseReg=*/ true)) {
2613     Expr = Copy;
2614     Offset = 0;
2615   }
2616 
2617   std::pair<UseMapTy::iterator, bool> P =
2618     UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0));
2619   if (!P.second) {
2620     // A use already existed with this base.
2621     size_t LUIdx = P.first->second;
2622     LSRUse &LU = Uses[LUIdx];
2623     if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
2624       // Reuse this use.
2625       return std::make_pair(LUIdx, Offset);
2626   }
2627 
2628   // Create a new use.
2629   size_t LUIdx = Uses.size();
2630   P.first->second = LUIdx;
2631   Uses.push_back(LSRUse(Kind, AccessTy));
2632   LSRUse &LU = Uses[LUIdx];
2633 
2634   LU.MinOffset = Offset;
2635   LU.MaxOffset = Offset;
2636   return std::make_pair(LUIdx, Offset);
2637 }
2638 
2639 /// Delete the given use from the Uses list.
2640 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) {
2641   if (&LU != &Uses.back())
2642     std::swap(LU, Uses.back());
2643   Uses.pop_back();
2644 
2645   // Update RegUses.
2646   RegUses.swapAndDropUse(LUIdx, Uses.size());
2647 }
2648 
2649 /// Look for a use distinct from OrigLU which is has a formula that has the same
2650 /// registers as the given formula.
2651 LSRUse *
2652 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
2653                                        const LSRUse &OrigLU) {
2654   // Search all uses for the formula. This could be more clever.
2655   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2656     LSRUse &LU = Uses[LUIdx];
2657     // Check whether this use is close enough to OrigLU, to see whether it's
2658     // worthwhile looking through its formulae.
2659     // Ignore ICmpZero uses because they may contain formulae generated by
2660     // GenerateICmpZeroScales, in which case adding fixup offsets may
2661     // be invalid.
2662     if (&LU != &OrigLU &&
2663         LU.Kind != LSRUse::ICmpZero &&
2664         LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
2665         LU.WidestFixupType == OrigLU.WidestFixupType &&
2666         LU.HasFormulaWithSameRegs(OrigF)) {
2667       // Scan through this use's formulae.
2668       for (const Formula &F : LU.Formulae) {
2669         // Check to see if this formula has the same registers and symbols
2670         // as OrigF.
2671         if (F.BaseRegs == OrigF.BaseRegs &&
2672             F.ScaledReg == OrigF.ScaledReg &&
2673             F.BaseGV == OrigF.BaseGV &&
2674             F.Scale == OrigF.Scale &&
2675             F.UnfoldedOffset == OrigF.UnfoldedOffset) {
2676           if (F.BaseOffset == 0)
2677             return &LU;
2678           // This is the formula where all the registers and symbols matched;
2679           // there aren't going to be any others. Since we declined it, we
2680           // can skip the rest of the formulae and proceed to the next LSRUse.
2681           break;
2682         }
2683       }
2684     }
2685   }
2686 
2687   // Nothing looked good.
2688   return nullptr;
2689 }
2690 
2691 void LSRInstance::CollectInterestingTypesAndFactors() {
2692   SmallSetVector<const SCEV *, 4> Strides;
2693 
2694   // Collect interesting types and strides.
2695   SmallVector<const SCEV *, 4> Worklist;
2696   for (const IVStrideUse &U : IU) {
2697     const SCEV *Expr = IU.getExpr(U);
2698 
2699     // Collect interesting types.
2700     Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
2701 
2702     // Add strides for mentioned loops.
2703     Worklist.push_back(Expr);
2704     do {
2705       const SCEV *S = Worklist.pop_back_val();
2706       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2707         if (AR->getLoop() == L)
2708           Strides.insert(AR->getStepRecurrence(SE));
2709         Worklist.push_back(AR->getStart());
2710       } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2711         Worklist.append(Add->op_begin(), Add->op_end());
2712       }
2713     } while (!Worklist.empty());
2714   }
2715 
2716   // Compute interesting factors from the set of interesting strides.
2717   for (SmallSetVector<const SCEV *, 4>::const_iterator
2718        I = Strides.begin(), E = Strides.end(); I != E; ++I)
2719     for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
2720          std::next(I); NewStrideIter != E; ++NewStrideIter) {
2721       const SCEV *OldStride = *I;
2722       const SCEV *NewStride = *NewStrideIter;
2723 
2724       if (SE.getTypeSizeInBits(OldStride->getType()) !=
2725           SE.getTypeSizeInBits(NewStride->getType())) {
2726         if (SE.getTypeSizeInBits(OldStride->getType()) >
2727             SE.getTypeSizeInBits(NewStride->getType()))
2728           NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
2729         else
2730           OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
2731       }
2732       if (const SCEVConstant *Factor =
2733             dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
2734                                                         SE, true))) {
2735         if (Factor->getAPInt().getMinSignedBits() <= 64 && !Factor->isZero())
2736           Factors.insert(Factor->getAPInt().getSExtValue());
2737       } else if (const SCEVConstant *Factor =
2738                    dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
2739                                                                NewStride,
2740                                                                SE, true))) {
2741         if (Factor->getAPInt().getMinSignedBits() <= 64 && !Factor->isZero())
2742           Factors.insert(Factor->getAPInt().getSExtValue());
2743       }
2744     }
2745 
2746   // If all uses use the same type, don't bother looking for truncation-based
2747   // reuse.
2748   if (Types.size() == 1)
2749     Types.clear();
2750 
2751   LLVM_DEBUG(print_factors_and_types(dbgs()));
2752 }
2753 
2754 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in
2755 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to
2756 /// IVStrideUses, we could partially skip this.
2757 static User::op_iterator
2758 findIVOperand(User::op_iterator OI, User::op_iterator OE,
2759               Loop *L, ScalarEvolution &SE) {
2760   for(; OI != OE; ++OI) {
2761     if (Instruction *Oper = dyn_cast<Instruction>(*OI)) {
2762       if (!SE.isSCEVable(Oper->getType()))
2763         continue;
2764 
2765       if (const SCEVAddRecExpr *AR =
2766           dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) {
2767         if (AR->getLoop() == L)
2768           break;
2769       }
2770     }
2771   }
2772   return OI;
2773 }
2774 
2775 /// IVChain logic must consistently peek base TruncInst operands, so wrap it in
2776 /// a convenient helper.
2777 static Value *getWideOperand(Value *Oper) {
2778   if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper))
2779     return Trunc->getOperand(0);
2780   return Oper;
2781 }
2782 
2783 /// Return true if we allow an IV chain to include both types.
2784 static bool isCompatibleIVType(Value *LVal, Value *RVal) {
2785   Type *LType = LVal->getType();
2786   Type *RType = RVal->getType();
2787   return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy() &&
2788                               // Different address spaces means (possibly)
2789                               // different types of the pointer implementation,
2790                               // e.g. i16 vs i32 so disallow that.
2791                               (LType->getPointerAddressSpace() ==
2792                                RType->getPointerAddressSpace()));
2793 }
2794 
2795 /// Return an approximation of this SCEV expression's "base", or NULL for any
2796 /// constant. Returning the expression itself is conservative. Returning a
2797 /// deeper subexpression is more precise and valid as long as it isn't less
2798 /// complex than another subexpression. For expressions involving multiple
2799 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids
2800 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i],
2801 /// IVInc==b-a.
2802 ///
2803 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost
2804 /// SCEVUnknown, we simply return the rightmost SCEV operand.
2805 static const SCEV *getExprBase(const SCEV *S) {
2806   switch (S->getSCEVType()) {
2807   default: // uncluding scUnknown.
2808     return S;
2809   case scConstant:
2810     return nullptr;
2811   case scTruncate:
2812     return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand());
2813   case scZeroExtend:
2814     return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand());
2815   case scSignExtend:
2816     return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand());
2817   case scAddExpr: {
2818     // Skip over scaled operands (scMulExpr) to follow add operands as long as
2819     // there's nothing more complex.
2820     // FIXME: not sure if we want to recognize negation.
2821     const SCEVAddExpr *Add = cast<SCEVAddExpr>(S);
2822     for (const SCEV *SubExpr : reverse(Add->operands())) {
2823       if (SubExpr->getSCEVType() == scAddExpr)
2824         return getExprBase(SubExpr);
2825 
2826       if (SubExpr->getSCEVType() != scMulExpr)
2827         return SubExpr;
2828     }
2829     return S; // all operands are scaled, be conservative.
2830   }
2831   case scAddRecExpr:
2832     return getExprBase(cast<SCEVAddRecExpr>(S)->getStart());
2833   }
2834   llvm_unreachable("Unknown SCEV kind!");
2835 }
2836 
2837 /// Return true if the chain increment is profitable to expand into a loop
2838 /// invariant value, which may require its own register. A profitable chain
2839 /// increment will be an offset relative to the same base. We allow such offsets
2840 /// to potentially be used as chain increment as long as it's not obviously
2841 /// expensive to expand using real instructions.
2842 bool IVChain::isProfitableIncrement(const SCEV *OperExpr,
2843                                     const SCEV *IncExpr,
2844                                     ScalarEvolution &SE) {
2845   // Aggressively form chains when -stress-ivchain.
2846   if (StressIVChain)
2847     return true;
2848 
2849   // Do not replace a constant offset from IV head with a nonconstant IV
2850   // increment.
2851   if (!isa<SCEVConstant>(IncExpr)) {
2852     const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand));
2853     if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr)))
2854       return false;
2855   }
2856 
2857   SmallPtrSet<const SCEV*, 8> Processed;
2858   return !isHighCostExpansion(IncExpr, Processed, SE);
2859 }
2860 
2861 /// Return true if the number of registers needed for the chain is estimated to
2862 /// be less than the number required for the individual IV users. First prohibit
2863 /// any IV users that keep the IV live across increments (the Users set should
2864 /// be empty). Next count the number and type of increments in the chain.
2865 ///
2866 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't
2867 /// effectively use postinc addressing modes. Only consider it profitable it the
2868 /// increments can be computed in fewer registers when chained.
2869 ///
2870 /// TODO: Consider IVInc free if it's already used in another chains.
2871 static bool isProfitableChain(IVChain &Chain,
2872                               SmallPtrSetImpl<Instruction *> &Users,
2873                               ScalarEvolution &SE,
2874                               const TargetTransformInfo &TTI) {
2875   if (StressIVChain)
2876     return true;
2877 
2878   if (!Chain.hasIncs())
2879     return false;
2880 
2881   if (!Users.empty()) {
2882     LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n";
2883                for (Instruction *Inst
2884                     : Users) { dbgs() << "  " << *Inst << "\n"; });
2885     return false;
2886   }
2887   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
2888 
2889   // The chain itself may require a register, so intialize cost to 1.
2890   int cost = 1;
2891 
2892   // A complete chain likely eliminates the need for keeping the original IV in
2893   // a register. LSR does not currently know how to form a complete chain unless
2894   // the header phi already exists.
2895   if (isa<PHINode>(Chain.tailUserInst())
2896       && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) {
2897     --cost;
2898   }
2899   const SCEV *LastIncExpr = nullptr;
2900   unsigned NumConstIncrements = 0;
2901   unsigned NumVarIncrements = 0;
2902   unsigned NumReusedIncrements = 0;
2903 
2904   if (TTI.isProfitableLSRChainElement(Chain.Incs[0].UserInst))
2905     return true;
2906 
2907   for (const IVInc &Inc : Chain) {
2908     if (TTI.isProfitableLSRChainElement(Inc.UserInst))
2909       return true;
2910     if (Inc.IncExpr->isZero())
2911       continue;
2912 
2913     // Incrementing by zero or some constant is neutral. We assume constants can
2914     // be folded into an addressing mode or an add's immediate operand.
2915     if (isa<SCEVConstant>(Inc.IncExpr)) {
2916       ++NumConstIncrements;
2917       continue;
2918     }
2919 
2920     if (Inc.IncExpr == LastIncExpr)
2921       ++NumReusedIncrements;
2922     else
2923       ++NumVarIncrements;
2924 
2925     LastIncExpr = Inc.IncExpr;
2926   }
2927   // An IV chain with a single increment is handled by LSR's postinc
2928   // uses. However, a chain with multiple increments requires keeping the IV's
2929   // value live longer than it needs to be if chained.
2930   if (NumConstIncrements > 1)
2931     --cost;
2932 
2933   // Materializing increment expressions in the preheader that didn't exist in
2934   // the original code may cost a register. For example, sign-extended array
2935   // indices can produce ridiculous increments like this:
2936   // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
2937   cost += NumVarIncrements;
2938 
2939   // Reusing variable increments likely saves a register to hold the multiple of
2940   // the stride.
2941   cost -= NumReusedIncrements;
2942 
2943   LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost
2944                     << "\n");
2945 
2946   return cost < 0;
2947 }
2948 
2949 /// Add this IV user to an existing chain or make it the head of a new chain.
2950 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper,
2951                                    SmallVectorImpl<ChainUsers> &ChainUsersVec) {
2952   // When IVs are used as types of varying widths, they are generally converted
2953   // to a wider type with some uses remaining narrow under a (free) trunc.
2954   Value *const NextIV = getWideOperand(IVOper);
2955   const SCEV *const OperExpr = SE.getSCEV(NextIV);
2956   const SCEV *const OperExprBase = getExprBase(OperExpr);
2957 
2958   // Visit all existing chains. Check if its IVOper can be computed as a
2959   // profitable loop invariant increment from the last link in the Chain.
2960   unsigned ChainIdx = 0, NChains = IVChainVec.size();
2961   const SCEV *LastIncExpr = nullptr;
2962   for (; ChainIdx < NChains; ++ChainIdx) {
2963     IVChain &Chain = IVChainVec[ChainIdx];
2964 
2965     // Prune the solution space aggressively by checking that both IV operands
2966     // are expressions that operate on the same unscaled SCEVUnknown. This
2967     // "base" will be canceled by the subsequent getMinusSCEV call. Checking
2968     // first avoids creating extra SCEV expressions.
2969     if (!StressIVChain && Chain.ExprBase != OperExprBase)
2970       continue;
2971 
2972     Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand);
2973     if (!isCompatibleIVType(PrevIV, NextIV))
2974       continue;
2975 
2976     // A phi node terminates a chain.
2977     if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst()))
2978       continue;
2979 
2980     // The increment must be loop-invariant so it can be kept in a register.
2981     const SCEV *PrevExpr = SE.getSCEV(PrevIV);
2982     const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr);
2983     if (isa<SCEVCouldNotCompute>(IncExpr) || !SE.isLoopInvariant(IncExpr, L))
2984       continue;
2985 
2986     if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) {
2987       LastIncExpr = IncExpr;
2988       break;
2989     }
2990   }
2991   // If we haven't found a chain, create a new one, unless we hit the max. Don't
2992   // bother for phi nodes, because they must be last in the chain.
2993   if (ChainIdx == NChains) {
2994     if (isa<PHINode>(UserInst))
2995       return;
2996     if (NChains >= MaxChains && !StressIVChain) {
2997       LLVM_DEBUG(dbgs() << "IV Chain Limit\n");
2998       return;
2999     }
3000     LastIncExpr = OperExpr;
3001     // IVUsers may have skipped over sign/zero extensions. We don't currently
3002     // attempt to form chains involving extensions unless they can be hoisted
3003     // into this loop's AddRec.
3004     if (!isa<SCEVAddRecExpr>(LastIncExpr))
3005       return;
3006     ++NChains;
3007     IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr),
3008                                  OperExprBase));
3009     ChainUsersVec.resize(NChains);
3010     LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst
3011                       << ") IV=" << *LastIncExpr << "\n");
3012   } else {
3013     LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << "  Inc: (" << *UserInst
3014                       << ") IV+" << *LastIncExpr << "\n");
3015     // Add this IV user to the end of the chain.
3016     IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr));
3017   }
3018   IVChain &Chain = IVChainVec[ChainIdx];
3019 
3020   SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers;
3021   // This chain's NearUsers become FarUsers.
3022   if (!LastIncExpr->isZero()) {
3023     ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(),
3024                                             NearUsers.end());
3025     NearUsers.clear();
3026   }
3027 
3028   // All other uses of IVOperand become near uses of the chain.
3029   // We currently ignore intermediate values within SCEV expressions, assuming
3030   // they will eventually be used be the current chain, or can be computed
3031   // from one of the chain increments. To be more precise we could
3032   // transitively follow its user and only add leaf IV users to the set.
3033   for (User *U : IVOper->users()) {
3034     Instruction *OtherUse = dyn_cast<Instruction>(U);
3035     if (!OtherUse)
3036       continue;
3037     // Uses in the chain will no longer be uses if the chain is formed.
3038     // Include the head of the chain in this iteration (not Chain.begin()).
3039     IVChain::const_iterator IncIter = Chain.Incs.begin();
3040     IVChain::const_iterator IncEnd = Chain.Incs.end();
3041     for( ; IncIter != IncEnd; ++IncIter) {
3042       if (IncIter->UserInst == OtherUse)
3043         break;
3044     }
3045     if (IncIter != IncEnd)
3046       continue;
3047 
3048     if (SE.isSCEVable(OtherUse->getType())
3049         && !isa<SCEVUnknown>(SE.getSCEV(OtherUse))
3050         && IU.isIVUserOrOperand(OtherUse)) {
3051       continue;
3052     }
3053     NearUsers.insert(OtherUse);
3054   }
3055 
3056   // Since this user is part of the chain, it's no longer considered a use
3057   // of the chain.
3058   ChainUsersVec[ChainIdx].FarUsers.erase(UserInst);
3059 }
3060 
3061 /// Populate the vector of Chains.
3062 ///
3063 /// This decreases ILP at the architecture level. Targets with ample registers,
3064 /// multiple memory ports, and no register renaming probably don't want
3065 /// this. However, such targets should probably disable LSR altogether.
3066 ///
3067 /// The job of LSR is to make a reasonable choice of induction variables across
3068 /// the loop. Subsequent passes can easily "unchain" computation exposing more
3069 /// ILP *within the loop* if the target wants it.
3070 ///
3071 /// Finding the best IV chain is potentially a scheduling problem. Since LSR
3072 /// will not reorder memory operations, it will recognize this as a chain, but
3073 /// will generate redundant IV increments. Ideally this would be corrected later
3074 /// by a smart scheduler:
3075 ///        = A[i]
3076 ///        = A[i+x]
3077 /// A[i]   =
3078 /// A[i+x] =
3079 ///
3080 /// TODO: Walk the entire domtree within this loop, not just the path to the
3081 /// loop latch. This will discover chains on side paths, but requires
3082 /// maintaining multiple copies of the Chains state.
3083 void LSRInstance::CollectChains() {
3084   LLVM_DEBUG(dbgs() << "Collecting IV Chains.\n");
3085   SmallVector<ChainUsers, 8> ChainUsersVec;
3086 
3087   SmallVector<BasicBlock *,8> LatchPath;
3088   BasicBlock *LoopHeader = L->getHeader();
3089   for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch());
3090        Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) {
3091     LatchPath.push_back(Rung->getBlock());
3092   }
3093   LatchPath.push_back(LoopHeader);
3094 
3095   // Walk the instruction stream from the loop header to the loop latch.
3096   for (BasicBlock *BB : reverse(LatchPath)) {
3097     for (Instruction &I : *BB) {
3098       // Skip instructions that weren't seen by IVUsers analysis.
3099       if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I))
3100         continue;
3101 
3102       // Ignore users that are part of a SCEV expression. This way we only
3103       // consider leaf IV Users. This effectively rediscovers a portion of
3104       // IVUsers analysis but in program order this time.
3105       if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I)))
3106           continue;
3107 
3108       // Remove this instruction from any NearUsers set it may be in.
3109       for (unsigned ChainIdx = 0, NChains = IVChainVec.size();
3110            ChainIdx < NChains; ++ChainIdx) {
3111         ChainUsersVec[ChainIdx].NearUsers.erase(&I);
3112       }
3113       // Search for operands that can be chained.
3114       SmallPtrSet<Instruction*, 4> UniqueOperands;
3115       User::op_iterator IVOpEnd = I.op_end();
3116       User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE);
3117       while (IVOpIter != IVOpEnd) {
3118         Instruction *IVOpInst = cast<Instruction>(*IVOpIter);
3119         if (UniqueOperands.insert(IVOpInst).second)
3120           ChainInstruction(&I, IVOpInst, ChainUsersVec);
3121         IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
3122       }
3123     } // Continue walking down the instructions.
3124   } // Continue walking down the domtree.
3125   // Visit phi backedges to determine if the chain can generate the IV postinc.
3126   for (PHINode &PN : L->getHeader()->phis()) {
3127     if (!SE.isSCEVable(PN.getType()))
3128       continue;
3129 
3130     Instruction *IncV =
3131         dyn_cast<Instruction>(PN.getIncomingValueForBlock(L->getLoopLatch()));
3132     if (IncV)
3133       ChainInstruction(&PN, IncV, ChainUsersVec);
3134   }
3135   // Remove any unprofitable chains.
3136   unsigned ChainIdx = 0;
3137   for (unsigned UsersIdx = 0, NChains = IVChainVec.size();
3138        UsersIdx < NChains; ++UsersIdx) {
3139     if (!isProfitableChain(IVChainVec[UsersIdx],
3140                            ChainUsersVec[UsersIdx].FarUsers, SE, TTI))
3141       continue;
3142     // Preserve the chain at UsesIdx.
3143     if (ChainIdx != UsersIdx)
3144       IVChainVec[ChainIdx] = IVChainVec[UsersIdx];
3145     FinalizeChain(IVChainVec[ChainIdx]);
3146     ++ChainIdx;
3147   }
3148   IVChainVec.resize(ChainIdx);
3149 }
3150 
3151 void LSRInstance::FinalizeChain(IVChain &Chain) {
3152   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
3153   LLVM_DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n");
3154 
3155   for (const IVInc &Inc : Chain) {
3156     LLVM_DEBUG(dbgs() << "        Inc: " << *Inc.UserInst << "\n");
3157     auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand);
3158     assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand");
3159     IVIncSet.insert(UseI);
3160   }
3161 }
3162 
3163 /// Return true if the IVInc can be folded into an addressing mode.
3164 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
3165                              Value *Operand, const TargetTransformInfo &TTI) {
3166   const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr);
3167   if (!IncConst || !isAddressUse(TTI, UserInst, Operand))
3168     return false;
3169 
3170   if (IncConst->getAPInt().getMinSignedBits() > 64)
3171     return false;
3172 
3173   MemAccessTy AccessTy = getAccessType(TTI, UserInst, Operand);
3174   int64_t IncOffset = IncConst->getValue()->getSExtValue();
3175   if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr,
3176                         IncOffset, /*HasBaseReg=*/false))
3177     return false;
3178 
3179   return true;
3180 }
3181 
3182 /// Generate an add or subtract for each IVInc in a chain to materialize the IV
3183 /// user's operand from the previous IV user's operand.
3184 void LSRInstance::GenerateIVChain(const IVChain &Chain,
3185                                   SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
3186   // Find the new IVOperand for the head of the chain. It may have been replaced
3187   // by LSR.
3188   const IVInc &Head = Chain.Incs[0];
3189   User::op_iterator IVOpEnd = Head.UserInst->op_end();
3190   // findIVOperand returns IVOpEnd if it can no longer find a valid IV user.
3191   User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(),
3192                                              IVOpEnd, L, SE);
3193   Value *IVSrc = nullptr;
3194   while (IVOpIter != IVOpEnd) {
3195     IVSrc = getWideOperand(*IVOpIter);
3196 
3197     // If this operand computes the expression that the chain needs, we may use
3198     // it. (Check this after setting IVSrc which is used below.)
3199     //
3200     // Note that if Head.IncExpr is wider than IVSrc, then this phi is too
3201     // narrow for the chain, so we can no longer use it. We do allow using a
3202     // wider phi, assuming the LSR checked for free truncation. In that case we
3203     // should already have a truncate on this operand such that
3204     // getSCEV(IVSrc) == IncExpr.
3205     if (SE.getSCEV(*IVOpIter) == Head.IncExpr
3206         || SE.getSCEV(IVSrc) == Head.IncExpr) {
3207       break;
3208     }
3209     IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
3210   }
3211   if (IVOpIter == IVOpEnd) {
3212     // Gracefully give up on this chain.
3213     LLVM_DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n");
3214     return;
3215   }
3216   assert(IVSrc && "Failed to find IV chain source");
3217 
3218   LLVM_DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n");
3219   Type *IVTy = IVSrc->getType();
3220   Type *IntTy = SE.getEffectiveSCEVType(IVTy);
3221   const SCEV *LeftOverExpr = nullptr;
3222   for (const IVInc &Inc : Chain) {
3223     Instruction *InsertPt = Inc.UserInst;
3224     if (isa<PHINode>(InsertPt))
3225       InsertPt = L->getLoopLatch()->getTerminator();
3226 
3227     // IVOper will replace the current IV User's operand. IVSrc is the IV
3228     // value currently held in a register.
3229     Value *IVOper = IVSrc;
3230     if (!Inc.IncExpr->isZero()) {
3231       // IncExpr was the result of subtraction of two narrow values, so must
3232       // be signed.
3233       const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy);
3234       LeftOverExpr = LeftOverExpr ?
3235         SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr;
3236     }
3237     if (LeftOverExpr && !LeftOverExpr->isZero()) {
3238       // Expand the IV increment.
3239       Rewriter.clearPostInc();
3240       Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt);
3241       const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc),
3242                                              SE.getUnknown(IncV));
3243       IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt);
3244 
3245       // If an IV increment can't be folded, use it as the next IV value.
3246       if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) {
3247         assert(IVTy == IVOper->getType() && "inconsistent IV increment type");
3248         IVSrc = IVOper;
3249         LeftOverExpr = nullptr;
3250       }
3251     }
3252     Type *OperTy = Inc.IVOperand->getType();
3253     if (IVTy != OperTy) {
3254       assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) &&
3255              "cannot extend a chained IV");
3256       IRBuilder<> Builder(InsertPt);
3257       IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain");
3258     }
3259     Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper);
3260     if (auto *OperandIsInstr = dyn_cast<Instruction>(Inc.IVOperand))
3261       DeadInsts.emplace_back(OperandIsInstr);
3262   }
3263   // If LSR created a new, wider phi, we may also replace its postinc. We only
3264   // do this if we also found a wide value for the head of the chain.
3265   if (isa<PHINode>(Chain.tailUserInst())) {
3266     for (PHINode &Phi : L->getHeader()->phis()) {
3267       if (!isCompatibleIVType(&Phi, IVSrc))
3268         continue;
3269       Instruction *PostIncV = dyn_cast<Instruction>(
3270           Phi.getIncomingValueForBlock(L->getLoopLatch()));
3271       if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc)))
3272         continue;
3273       Value *IVOper = IVSrc;
3274       Type *PostIncTy = PostIncV->getType();
3275       if (IVTy != PostIncTy) {
3276         assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types");
3277         IRBuilder<> Builder(L->getLoopLatch()->getTerminator());
3278         Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc());
3279         IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain");
3280       }
3281       Phi.replaceUsesOfWith(PostIncV, IVOper);
3282       DeadInsts.emplace_back(PostIncV);
3283     }
3284   }
3285 }
3286 
3287 void LSRInstance::CollectFixupsAndInitialFormulae() {
3288   BranchInst *ExitBranch = nullptr;
3289   bool SaveCmp = TTI.canSaveCmp(L, &ExitBranch, &SE, &LI, &DT, &AC, &TLI);
3290 
3291   for (const IVStrideUse &U : IU) {
3292     Instruction *UserInst = U.getUser();
3293     // Skip IV users that are part of profitable IV Chains.
3294     User::op_iterator UseI =
3295         find(UserInst->operands(), U.getOperandValToReplace());
3296     assert(UseI != UserInst->op_end() && "cannot find IV operand");
3297     if (IVIncSet.count(UseI)) {
3298       LLVM_DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n');
3299       continue;
3300     }
3301 
3302     LSRUse::KindType Kind = LSRUse::Basic;
3303     MemAccessTy AccessTy;
3304     if (isAddressUse(TTI, UserInst, U.getOperandValToReplace())) {
3305       Kind = LSRUse::Address;
3306       AccessTy = getAccessType(TTI, UserInst, U.getOperandValToReplace());
3307     }
3308 
3309     const SCEV *S = IU.getExpr(U);
3310     PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops();
3311 
3312     // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
3313     // (N - i == 0), and this allows (N - i) to be the expression that we work
3314     // with rather than just N or i, so we can consider the register
3315     // requirements for both N and i at the same time. Limiting this code to
3316     // equality icmps is not a problem because all interesting loops use
3317     // equality icmps, thanks to IndVarSimplify.
3318     if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst)) {
3319       // If CI can be saved in some target, like replaced inside hardware loop
3320       // in PowerPC, no need to generate initial formulae for it.
3321       if (SaveCmp && CI == dyn_cast<ICmpInst>(ExitBranch->getCondition()))
3322         continue;
3323       if (CI->isEquality()) {
3324         // Swap the operands if needed to put the OperandValToReplace on the
3325         // left, for consistency.
3326         Value *NV = CI->getOperand(1);
3327         if (NV == U.getOperandValToReplace()) {
3328           CI->setOperand(1, CI->getOperand(0));
3329           CI->setOperand(0, NV);
3330           NV = CI->getOperand(1);
3331           Changed = true;
3332         }
3333 
3334         // x == y  -->  x - y == 0
3335         const SCEV *N = SE.getSCEV(NV);
3336         if (SE.isLoopInvariant(N, L) && Rewriter.isSafeToExpand(N) &&
3337             (!NV->getType()->isPointerTy() ||
3338              SE.getPointerBase(N) == SE.getPointerBase(S))) {
3339           // S is normalized, so normalize N before folding it into S
3340           // to keep the result normalized.
3341           N = normalizeForPostIncUse(N, TmpPostIncLoops, SE);
3342           Kind = LSRUse::ICmpZero;
3343           S = SE.getMinusSCEV(N, S);
3344         } else if (L->isLoopInvariant(NV) &&
3345                    (!isa<Instruction>(NV) ||
3346                     DT.dominates(cast<Instruction>(NV), L->getHeader())) &&
3347                    !NV->getType()->isPointerTy()) {
3348           // If we can't generally expand the expression (e.g. it contains
3349           // a divide), but it is already at a loop invariant point before the
3350           // loop, wrap it in an unknown (to prevent the expander from trying
3351           // to re-expand in a potentially unsafe way.)  The restriction to
3352           // integer types is required because the unknown hides the base, and
3353           // SCEV can't compute the difference of two unknown pointers.
3354           N = SE.getUnknown(NV);
3355           N = normalizeForPostIncUse(N, TmpPostIncLoops, SE);
3356           Kind = LSRUse::ICmpZero;
3357           S = SE.getMinusSCEV(N, S);
3358           assert(!isa<SCEVCouldNotCompute>(S));
3359         }
3360 
3361         // -1 and the negations of all interesting strides (except the negation
3362         // of -1) are now also interesting.
3363         for (size_t i = 0, e = Factors.size(); i != e; ++i)
3364           if (Factors[i] != -1)
3365             Factors.insert(-(uint64_t)Factors[i]);
3366         Factors.insert(-1);
3367       }
3368     }
3369 
3370     // Get or create an LSRUse.
3371     std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
3372     size_t LUIdx = P.first;
3373     int64_t Offset = P.second;
3374     LSRUse &LU = Uses[LUIdx];
3375 
3376     // Record the fixup.
3377     LSRFixup &LF = LU.getNewFixup();
3378     LF.UserInst = UserInst;
3379     LF.OperandValToReplace = U.getOperandValToReplace();
3380     LF.PostIncLoops = TmpPostIncLoops;
3381     LF.Offset = Offset;
3382     LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3383 
3384     if (!LU.WidestFixupType ||
3385         SE.getTypeSizeInBits(LU.WidestFixupType) <
3386         SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3387       LU.WidestFixupType = LF.OperandValToReplace->getType();
3388 
3389     // If this is the first use of this LSRUse, give it a formula.
3390     if (LU.Formulae.empty()) {
3391       InsertInitialFormula(S, LU, LUIdx);
3392       CountRegisters(LU.Formulae.back(), LUIdx);
3393     }
3394   }
3395 
3396   LLVM_DEBUG(print_fixups(dbgs()));
3397 }
3398 
3399 /// Insert a formula for the given expression into the given use, separating out
3400 /// loop-variant portions from loop-invariant and loop-computable portions.
3401 void LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU,
3402                                        size_t LUIdx) {
3403   // Mark uses whose expressions cannot be expanded.
3404   if (!Rewriter.isSafeToExpand(S))
3405     LU.RigidFormula = true;
3406 
3407   Formula F;
3408   F.initialMatch(S, L, SE);
3409   bool Inserted = InsertFormula(LU, LUIdx, F);
3410   assert(Inserted && "Initial formula already exists!"); (void)Inserted;
3411 }
3412 
3413 /// Insert a simple single-register formula for the given expression into the
3414 /// given use.
3415 void
3416 LSRInstance::InsertSupplementalFormula(const SCEV *S,
3417                                        LSRUse &LU, size_t LUIdx) {
3418   Formula F;
3419   F.BaseRegs.push_back(S);
3420   F.HasBaseReg = true;
3421   bool Inserted = InsertFormula(LU, LUIdx, F);
3422   assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
3423 }
3424 
3425 /// Note which registers are used by the given formula, updating RegUses.
3426 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
3427   if (F.ScaledReg)
3428     RegUses.countRegister(F.ScaledReg, LUIdx);
3429   for (const SCEV *BaseReg : F.BaseRegs)
3430     RegUses.countRegister(BaseReg, LUIdx);
3431 }
3432 
3433 /// If the given formula has not yet been inserted, add it to the list, and
3434 /// return true. Return false otherwise.
3435 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
3436   // Do not insert formula that we will not be able to expand.
3437   assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) &&
3438          "Formula is illegal");
3439 
3440   if (!LU.InsertFormula(F, *L))
3441     return false;
3442 
3443   CountRegisters(F, LUIdx);
3444   return true;
3445 }
3446 
3447 /// Check for other uses of loop-invariant values which we're tracking. These
3448 /// other uses will pin these values in registers, making them less profitable
3449 /// for elimination.
3450 /// TODO: This currently misses non-constant addrec step registers.
3451 /// TODO: Should this give more weight to users inside the loop?
3452 void
3453 LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
3454   SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
3455   SmallPtrSet<const SCEV *, 32> Visited;
3456 
3457   while (!Worklist.empty()) {
3458     const SCEV *S = Worklist.pop_back_val();
3459 
3460     // Don't process the same SCEV twice
3461     if (!Visited.insert(S).second)
3462       continue;
3463 
3464     if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
3465       Worklist.append(N->op_begin(), N->op_end());
3466     else if (const SCEVIntegralCastExpr *C = dyn_cast<SCEVIntegralCastExpr>(S))
3467       Worklist.push_back(C->getOperand());
3468     else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
3469       Worklist.push_back(D->getLHS());
3470       Worklist.push_back(D->getRHS());
3471     } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) {
3472       const Value *V = US->getValue();
3473       if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
3474         // Look for instructions defined outside the loop.
3475         if (L->contains(Inst)) continue;
3476       } else if (isa<UndefValue>(V))
3477         // Undef doesn't have a live range, so it doesn't matter.
3478         continue;
3479       for (const Use &U : V->uses()) {
3480         const Instruction *UserInst = dyn_cast<Instruction>(U.getUser());
3481         // Ignore non-instructions.
3482         if (!UserInst)
3483           continue;
3484         // Don't bother if the instruction is an EHPad.
3485         if (UserInst->isEHPad())
3486           continue;
3487         // Ignore instructions in other functions (as can happen with
3488         // Constants).
3489         if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
3490           continue;
3491         // Ignore instructions not dominated by the loop.
3492         const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
3493           UserInst->getParent() :
3494           cast<PHINode>(UserInst)->getIncomingBlock(
3495             PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
3496         if (!DT.dominates(L->getHeader(), UseBB))
3497           continue;
3498         // Don't bother if the instruction is in a BB which ends in an EHPad.
3499         if (UseBB->getTerminator()->isEHPad())
3500           continue;
3501 
3502         // Ignore cases in which the currently-examined value could come from
3503         // a basic block terminated with an EHPad. This checks all incoming
3504         // blocks of the phi node since it is possible that the same incoming
3505         // value comes from multiple basic blocks, only some of which may end
3506         // in an EHPad. If any of them do, a subsequent rewrite attempt by this
3507         // pass would try to insert instructions into an EHPad, hitting an
3508         // assertion.
3509         if (isa<PHINode>(UserInst)) {
3510           const auto *PhiNode = cast<PHINode>(UserInst);
3511           bool HasIncompatibleEHPTerminatedBlock = false;
3512           llvm::Value *ExpectedValue = U;
3513           for (unsigned int I = 0; I < PhiNode->getNumIncomingValues(); I++) {
3514             if (PhiNode->getIncomingValue(I) == ExpectedValue) {
3515               if (PhiNode->getIncomingBlock(I)->getTerminator()->isEHPad()) {
3516                 HasIncompatibleEHPTerminatedBlock = true;
3517                 break;
3518               }
3519             }
3520           }
3521           if (HasIncompatibleEHPTerminatedBlock) {
3522             continue;
3523           }
3524         }
3525 
3526         // Don't bother rewriting PHIs in catchswitch blocks.
3527         if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator()))
3528           continue;
3529         // Ignore uses which are part of other SCEV expressions, to avoid
3530         // analyzing them multiple times.
3531         if (SE.isSCEVable(UserInst->getType())) {
3532           const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
3533           // If the user is a no-op, look through to its uses.
3534           if (!isa<SCEVUnknown>(UserS))
3535             continue;
3536           if (UserS == US) {
3537             Worklist.push_back(
3538               SE.getUnknown(const_cast<Instruction *>(UserInst)));
3539             continue;
3540           }
3541         }
3542         // Ignore icmp instructions which are already being analyzed.
3543         if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
3544           unsigned OtherIdx = !U.getOperandNo();
3545           Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
3546           if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L))
3547             continue;
3548         }
3549 
3550         std::pair<size_t, int64_t> P = getUse(
3551             S, LSRUse::Basic, MemAccessTy());
3552         size_t LUIdx = P.first;
3553         int64_t Offset = P.second;
3554         LSRUse &LU = Uses[LUIdx];
3555         LSRFixup &LF = LU.getNewFixup();
3556         LF.UserInst = const_cast<Instruction *>(UserInst);
3557         LF.OperandValToReplace = U;
3558         LF.Offset = Offset;
3559         LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3560         if (!LU.WidestFixupType ||
3561             SE.getTypeSizeInBits(LU.WidestFixupType) <
3562             SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3563           LU.WidestFixupType = LF.OperandValToReplace->getType();
3564         InsertSupplementalFormula(US, LU, LUIdx);
3565         CountRegisters(LU.Formulae.back(), Uses.size() - 1);
3566         break;
3567       }
3568     }
3569   }
3570 }
3571 
3572 /// Split S into subexpressions which can be pulled out into separate
3573 /// registers. If C is non-null, multiply each subexpression by C.
3574 ///
3575 /// Return remainder expression after factoring the subexpressions captured by
3576 /// Ops. If Ops is complete, return NULL.
3577 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C,
3578                                    SmallVectorImpl<const SCEV *> &Ops,
3579                                    const Loop *L,
3580                                    ScalarEvolution &SE,
3581                                    unsigned Depth = 0) {
3582   // Arbitrarily cap recursion to protect compile time.
3583   if (Depth >= 3)
3584     return S;
3585 
3586   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3587     // Break out add operands.
3588     for (const SCEV *S : Add->operands()) {
3589       const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1);
3590       if (Remainder)
3591         Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3592     }
3593     return nullptr;
3594   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
3595     // Split a non-zero base out of an addrec.
3596     if (AR->getStart()->isZero() || !AR->isAffine())
3597       return S;
3598 
3599     const SCEV *Remainder = CollectSubexprs(AR->getStart(),
3600                                             C, Ops, L, SE, Depth+1);
3601     // Split the non-zero AddRec unless it is part of a nested recurrence that
3602     // does not pertain to this loop.
3603     if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) {
3604       Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3605       Remainder = nullptr;
3606     }
3607     if (Remainder != AR->getStart()) {
3608       if (!Remainder)
3609         Remainder = SE.getConstant(AR->getType(), 0);
3610       return SE.getAddRecExpr(Remainder,
3611                               AR->getStepRecurrence(SE),
3612                               AR->getLoop(),
3613                               //FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
3614                               SCEV::FlagAnyWrap);
3615     }
3616   } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3617     // Break (C * (a + b + c)) into C*a + C*b + C*c.
3618     if (Mul->getNumOperands() != 2)
3619       return S;
3620     if (const SCEVConstant *Op0 =
3621         dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3622       C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0;
3623       const SCEV *Remainder =
3624         CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1);
3625       if (Remainder)
3626         Ops.push_back(SE.getMulExpr(C, Remainder));
3627       return nullptr;
3628     }
3629   }
3630   return S;
3631 }
3632 
3633 /// Return true if the SCEV represents a value that may end up as a
3634 /// post-increment operation.
3635 static bool mayUsePostIncMode(const TargetTransformInfo &TTI,
3636                               LSRUse &LU, const SCEV *S, const Loop *L,
3637                               ScalarEvolution &SE) {
3638   if (LU.Kind != LSRUse::Address ||
3639       !LU.AccessTy.getType()->isIntOrIntVectorTy())
3640     return false;
3641   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
3642   if (!AR)
3643     return false;
3644   const SCEV *LoopStep = AR->getStepRecurrence(SE);
3645   if (!isa<SCEVConstant>(LoopStep))
3646     return false;
3647   // Check if a post-indexed load/store can be used.
3648   if (TTI.isIndexedLoadLegal(TTI.MIM_PostInc, AR->getType()) ||
3649       TTI.isIndexedStoreLegal(TTI.MIM_PostInc, AR->getType())) {
3650     const SCEV *LoopStart = AR->getStart();
3651     if (!isa<SCEVConstant>(LoopStart) && SE.isLoopInvariant(LoopStart, L))
3652       return true;
3653   }
3654   return false;
3655 }
3656 
3657 /// Helper function for LSRInstance::GenerateReassociations.
3658 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
3659                                              const Formula &Base,
3660                                              unsigned Depth, size_t Idx,
3661                                              bool IsScaledReg) {
3662   const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3663   // Don't generate reassociations for the base register of a value that
3664   // may generate a post-increment operator. The reason is that the
3665   // reassociations cause extra base+register formula to be created,
3666   // and possibly chosen, but the post-increment is more efficient.
3667   if (AMK == TTI::AMK_PostIndexed && mayUsePostIncMode(TTI, LU, BaseReg, L, SE))
3668     return;
3669   SmallVector<const SCEV *, 8> AddOps;
3670   const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE);
3671   if (Remainder)
3672     AddOps.push_back(Remainder);
3673 
3674   if (AddOps.size() == 1)
3675     return;
3676 
3677   for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
3678                                                      JE = AddOps.end();
3679        J != JE; ++J) {
3680     // Loop-variant "unknown" values are uninteresting; we won't be able to
3681     // do anything meaningful with them.
3682     if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L))
3683       continue;
3684 
3685     // Don't pull a constant into a register if the constant could be folded
3686     // into an immediate field.
3687     if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3688                          LU.AccessTy, *J, Base.getNumRegs() > 1))
3689       continue;
3690 
3691     // Collect all operands except *J.
3692     SmallVector<const SCEV *, 8> InnerAddOps(
3693         ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
3694     InnerAddOps.append(std::next(J),
3695                        ((const SmallVector<const SCEV *, 8> &)AddOps).end());
3696 
3697     // Don't leave just a constant behind in a register if the constant could
3698     // be folded into an immediate field.
3699     if (InnerAddOps.size() == 1 &&
3700         isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3701                          LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1))
3702       continue;
3703 
3704     const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
3705     if (InnerSum->isZero())
3706       continue;
3707     Formula F = Base;
3708 
3709     // Add the remaining pieces of the add back into the new formula.
3710     const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum);
3711     if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 &&
3712         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3713                                 InnerSumSC->getValue()->getZExtValue())) {
3714       F.UnfoldedOffset =
3715           (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue();
3716       if (IsScaledReg)
3717         F.ScaledReg = nullptr;
3718       else
3719         F.BaseRegs.erase(F.BaseRegs.begin() + Idx);
3720     } else if (IsScaledReg)
3721       F.ScaledReg = InnerSum;
3722     else
3723       F.BaseRegs[Idx] = InnerSum;
3724 
3725     // Add J as its own register, or an unfolded immediate.
3726     const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J);
3727     if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
3728         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3729                                 SC->getValue()->getZExtValue()))
3730       F.UnfoldedOffset =
3731           (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue();
3732     else
3733       F.BaseRegs.push_back(*J);
3734     // We may have changed the number of register in base regs, adjust the
3735     // formula accordingly.
3736     F.canonicalize(*L);
3737 
3738     if (InsertFormula(LU, LUIdx, F))
3739       // If that formula hadn't been seen before, recurse to find more like
3740       // it.
3741       // Add check on Log16(AddOps.size()) - same as Log2_32(AddOps.size()) >> 2)
3742       // Because just Depth is not enough to bound compile time.
3743       // This means that every time AddOps.size() is greater 16^x we will add
3744       // x to Depth.
3745       GenerateReassociations(LU, LUIdx, LU.Formulae.back(),
3746                              Depth + 1 + (Log2_32(AddOps.size()) >> 2));
3747   }
3748 }
3749 
3750 /// Split out subexpressions from adds and the bases of addrecs.
3751 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
3752                                          Formula Base, unsigned Depth) {
3753   assert(Base.isCanonical(*L) && "Input must be in the canonical form");
3754   // Arbitrarily cap recursion to protect compile time.
3755   if (Depth >= 3)
3756     return;
3757 
3758   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3759     GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i);
3760 
3761   if (Base.Scale == 1)
3762     GenerateReassociationsImpl(LU, LUIdx, Base, Depth,
3763                                /* Idx */ -1, /* IsScaledReg */ true);
3764 }
3765 
3766 ///  Generate a formula consisting of all of the loop-dominating registers added
3767 /// into a single register.
3768 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
3769                                        Formula Base) {
3770   // This method is only interesting on a plurality of registers.
3771   if (Base.BaseRegs.size() + (Base.Scale == 1) +
3772       (Base.UnfoldedOffset != 0) <= 1)
3773     return;
3774 
3775   // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before
3776   // processing the formula.
3777   Base.unscale();
3778   SmallVector<const SCEV *, 4> Ops;
3779   Formula NewBase = Base;
3780   NewBase.BaseRegs.clear();
3781   Type *CombinedIntegerType = nullptr;
3782   for (const SCEV *BaseReg : Base.BaseRegs) {
3783     if (SE.properlyDominates(BaseReg, L->getHeader()) &&
3784         !SE.hasComputableLoopEvolution(BaseReg, L)) {
3785       if (!CombinedIntegerType)
3786         CombinedIntegerType = SE.getEffectiveSCEVType(BaseReg->getType());
3787       Ops.push_back(BaseReg);
3788     }
3789     else
3790       NewBase.BaseRegs.push_back(BaseReg);
3791   }
3792 
3793   // If no register is relevant, we're done.
3794   if (Ops.size() == 0)
3795     return;
3796 
3797   // Utility function for generating the required variants of the combined
3798   // registers.
3799   auto GenerateFormula = [&](const SCEV *Sum) {
3800     Formula F = NewBase;
3801 
3802     // TODO: If Sum is zero, it probably means ScalarEvolution missed an
3803     // opportunity to fold something. For now, just ignore such cases
3804     // rather than proceed with zero in a register.
3805     if (Sum->isZero())
3806       return;
3807 
3808     F.BaseRegs.push_back(Sum);
3809     F.canonicalize(*L);
3810     (void)InsertFormula(LU, LUIdx, F);
3811   };
3812 
3813   // If we collected at least two registers, generate a formula combining them.
3814   if (Ops.size() > 1) {
3815     SmallVector<const SCEV *, 4> OpsCopy(Ops); // Don't let SE modify Ops.
3816     GenerateFormula(SE.getAddExpr(OpsCopy));
3817   }
3818 
3819   // If we have an unfolded offset, generate a formula combining it with the
3820   // registers collected.
3821   if (NewBase.UnfoldedOffset) {
3822     assert(CombinedIntegerType && "Missing a type for the unfolded offset");
3823     Ops.push_back(SE.getConstant(CombinedIntegerType, NewBase.UnfoldedOffset,
3824                                  true));
3825     NewBase.UnfoldedOffset = 0;
3826     GenerateFormula(SE.getAddExpr(Ops));
3827   }
3828 }
3829 
3830 /// Helper function for LSRInstance::GenerateSymbolicOffsets.
3831 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
3832                                               const Formula &Base, size_t Idx,
3833                                               bool IsScaledReg) {
3834   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3835   GlobalValue *GV = ExtractSymbol(G, SE);
3836   if (G->isZero() || !GV)
3837     return;
3838   Formula F = Base;
3839   F.BaseGV = GV;
3840   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3841     return;
3842   if (IsScaledReg)
3843     F.ScaledReg = G;
3844   else
3845     F.BaseRegs[Idx] = G;
3846   (void)InsertFormula(LU, LUIdx, F);
3847 }
3848 
3849 /// Generate reuse formulae using symbolic offsets.
3850 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
3851                                           Formula Base) {
3852   // We can't add a symbolic offset if the address already contains one.
3853   if (Base.BaseGV) return;
3854 
3855   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3856     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i);
3857   if (Base.Scale == 1)
3858     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1,
3859                                 /* IsScaledReg */ true);
3860 }
3861 
3862 /// Helper function for LSRInstance::GenerateConstantOffsets.
3863 void LSRInstance::GenerateConstantOffsetsImpl(
3864     LSRUse &LU, unsigned LUIdx, const Formula &Base,
3865     const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) {
3866 
3867   auto GenerateOffset = [&](const SCEV *G, int64_t Offset) {
3868     Formula F = Base;
3869     F.BaseOffset = (uint64_t)Base.BaseOffset - Offset;
3870 
3871     if (isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) {
3872       // Add the offset to the base register.
3873       const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G);
3874       // If it cancelled out, drop the base register, otherwise update it.
3875       if (NewG->isZero()) {
3876         if (IsScaledReg) {
3877           F.Scale = 0;
3878           F.ScaledReg = nullptr;
3879         } else
3880           F.deleteBaseReg(F.BaseRegs[Idx]);
3881         F.canonicalize(*L);
3882       } else if (IsScaledReg)
3883         F.ScaledReg = NewG;
3884       else
3885         F.BaseRegs[Idx] = NewG;
3886 
3887       (void)InsertFormula(LU, LUIdx, F);
3888     }
3889   };
3890 
3891   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3892 
3893   // With constant offsets and constant steps, we can generate pre-inc
3894   // accesses by having the offset equal the step. So, for access #0 with a
3895   // step of 8, we generate a G - 8 base which would require the first access
3896   // to be ((G - 8) + 8),+,8. The pre-indexed access then updates the pointer
3897   // for itself and hopefully becomes the base for other accesses. This means
3898   // means that a single pre-indexed access can be generated to become the new
3899   // base pointer for each iteration of the loop, resulting in no extra add/sub
3900   // instructions for pointer updating.
3901   if (AMK == TTI::AMK_PreIndexed && LU.Kind == LSRUse::Address) {
3902     if (auto *GAR = dyn_cast<SCEVAddRecExpr>(G)) {
3903       if (auto *StepRec =
3904           dyn_cast<SCEVConstant>(GAR->getStepRecurrence(SE))) {
3905         const APInt &StepInt = StepRec->getAPInt();
3906         int64_t Step = StepInt.isNegative() ?
3907           StepInt.getSExtValue() : StepInt.getZExtValue();
3908 
3909         for (int64_t Offset : Worklist) {
3910           Offset -= Step;
3911           GenerateOffset(G, Offset);
3912         }
3913       }
3914     }
3915   }
3916   for (int64_t Offset : Worklist)
3917     GenerateOffset(G, Offset);
3918 
3919   int64_t Imm = ExtractImmediate(G, SE);
3920   if (G->isZero() || Imm == 0)
3921     return;
3922   Formula F = Base;
3923   F.BaseOffset = (uint64_t)F.BaseOffset + Imm;
3924   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3925     return;
3926   if (IsScaledReg) {
3927     F.ScaledReg = G;
3928   } else {
3929     F.BaseRegs[Idx] = G;
3930     // We may generate non canonical Formula if G is a recurrent expr reg
3931     // related with current loop while F.ScaledReg is not.
3932     F.canonicalize(*L);
3933   }
3934   (void)InsertFormula(LU, LUIdx, F);
3935 }
3936 
3937 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
3938 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
3939                                           Formula Base) {
3940   // TODO: For now, just add the min and max offset, because it usually isn't
3941   // worthwhile looking at everything inbetween.
3942   SmallVector<int64_t, 2> Worklist;
3943   Worklist.push_back(LU.MinOffset);
3944   if (LU.MaxOffset != LU.MinOffset)
3945     Worklist.push_back(LU.MaxOffset);
3946 
3947   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3948     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i);
3949   if (Base.Scale == 1)
3950     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1,
3951                                 /* IsScaledReg */ true);
3952 }
3953 
3954 /// For ICmpZero, check to see if we can scale up the comparison. For example, x
3955 /// == y -> x*c == y*c.
3956 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
3957                                          Formula Base) {
3958   if (LU.Kind != LSRUse::ICmpZero) return;
3959 
3960   // Determine the integer type for the base formula.
3961   Type *IntTy = Base.getType();
3962   if (!IntTy) return;
3963   if (SE.getTypeSizeInBits(IntTy) > 64) return;
3964 
3965   // Don't do this if there is more than one offset.
3966   if (LU.MinOffset != LU.MaxOffset) return;
3967 
3968   // Check if transformation is valid. It is illegal to multiply pointer.
3969   if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy())
3970     return;
3971   for (const SCEV *BaseReg : Base.BaseRegs)
3972     if (BaseReg->getType()->isPointerTy())
3973       return;
3974   assert(!Base.BaseGV && "ICmpZero use is not legal!");
3975 
3976   // Check each interesting stride.
3977   for (int64_t Factor : Factors) {
3978     // Check that Factor can be represented by IntTy
3979     if (!ConstantInt::isValueValidForType(IntTy, Factor))
3980       continue;
3981     // Check that the multiplication doesn't overflow.
3982     if (Base.BaseOffset == std::numeric_limits<int64_t>::min() && Factor == -1)
3983       continue;
3984     int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor;
3985     assert(Factor != 0 && "Zero factor not expected!");
3986     if (NewBaseOffset / Factor != Base.BaseOffset)
3987       continue;
3988     // If the offset will be truncated at this use, check that it is in bounds.
3989     if (!IntTy->isPointerTy() &&
3990         !ConstantInt::isValueValidForType(IntTy, NewBaseOffset))
3991       continue;
3992 
3993     // Check that multiplying with the use offset doesn't overflow.
3994     int64_t Offset = LU.MinOffset;
3995     if (Offset == std::numeric_limits<int64_t>::min() && Factor == -1)
3996       continue;
3997     Offset = (uint64_t)Offset * Factor;
3998     if (Offset / Factor != LU.MinOffset)
3999       continue;
4000     // If the offset will be truncated at this use, check that it is in bounds.
4001     if (!IntTy->isPointerTy() &&
4002         !ConstantInt::isValueValidForType(IntTy, Offset))
4003       continue;
4004 
4005     Formula F = Base;
4006     F.BaseOffset = NewBaseOffset;
4007 
4008     // Check that this scale is legal.
4009     if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F))
4010       continue;
4011 
4012     // Compensate for the use having MinOffset built into it.
4013     F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset;
4014 
4015     const SCEV *FactorS = SE.getConstant(IntTy, Factor);
4016 
4017     // Check that multiplying with each base register doesn't overflow.
4018     for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
4019       F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
4020       if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
4021         goto next;
4022     }
4023 
4024     // Check that multiplying with the scaled register doesn't overflow.
4025     if (F.ScaledReg) {
4026       F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
4027       if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
4028         continue;
4029     }
4030 
4031     // Check that multiplying with the unfolded offset doesn't overflow.
4032     if (F.UnfoldedOffset != 0) {
4033       if (F.UnfoldedOffset == std::numeric_limits<int64_t>::min() &&
4034           Factor == -1)
4035         continue;
4036       F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor;
4037       if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset)
4038         continue;
4039       // If the offset will be truncated, check that it is in bounds.
4040       if (!IntTy->isPointerTy() &&
4041           !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset))
4042         continue;
4043     }
4044 
4045     // If we make it here and it's legal, add it.
4046     (void)InsertFormula(LU, LUIdx, F);
4047   next:;
4048   }
4049 }
4050 
4051 /// Generate stride factor reuse formulae by making use of scaled-offset address
4052 /// modes, for example.
4053 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
4054   // Determine the integer type for the base formula.
4055   Type *IntTy = Base.getType();
4056   if (!IntTy) return;
4057 
4058   // If this Formula already has a scaled register, we can't add another one.
4059   // Try to unscale the formula to generate a better scale.
4060   if (Base.Scale != 0 && !Base.unscale())
4061     return;
4062 
4063   assert(Base.Scale == 0 && "unscale did not did its job!");
4064 
4065   // Check each interesting stride.
4066   for (int64_t Factor : Factors) {
4067     Base.Scale = Factor;
4068     Base.HasBaseReg = Base.BaseRegs.size() > 1;
4069     // Check whether this scale is going to be legal.
4070     if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
4071                     Base)) {
4072       // As a special-case, handle special out-of-loop Basic users specially.
4073       // TODO: Reconsider this special case.
4074       if (LU.Kind == LSRUse::Basic &&
4075           isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special,
4076                      LU.AccessTy, Base) &&
4077           LU.AllFixupsOutsideLoop)
4078         LU.Kind = LSRUse::Special;
4079       else
4080         continue;
4081     }
4082     // For an ICmpZero, negating a solitary base register won't lead to
4083     // new solutions.
4084     if (LU.Kind == LSRUse::ICmpZero &&
4085         !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV)
4086       continue;
4087     // For each addrec base reg, if its loop is current loop, apply the scale.
4088     for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
4089       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]);
4090       if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) {
4091         const SCEV *FactorS = SE.getConstant(IntTy, Factor);
4092         if (FactorS->isZero())
4093           continue;
4094         // Divide out the factor, ignoring high bits, since we'll be
4095         // scaling the value back up in the end.
4096         if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true))
4097           if (!Quotient->isZero()) {
4098             // TODO: This could be optimized to avoid all the copying.
4099             Formula F = Base;
4100             F.ScaledReg = Quotient;
4101             F.deleteBaseReg(F.BaseRegs[i]);
4102             // The canonical representation of 1*reg is reg, which is already in
4103             // Base. In that case, do not try to insert the formula, it will be
4104             // rejected anyway.
4105             if (F.Scale == 1 && (F.BaseRegs.empty() ||
4106                                  (AR->getLoop() != L && LU.AllFixupsOutsideLoop)))
4107               continue;
4108             // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate
4109             // non canonical Formula with ScaledReg's loop not being L.
4110             if (F.Scale == 1 && LU.AllFixupsOutsideLoop)
4111               F.canonicalize(*L);
4112             (void)InsertFormula(LU, LUIdx, F);
4113           }
4114       }
4115     }
4116   }
4117 }
4118 
4119 /// Generate reuse formulae from different IV types.
4120 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
4121   // Don't bother truncating symbolic values.
4122   if (Base.BaseGV) return;
4123 
4124   // Determine the integer type for the base formula.
4125   Type *DstTy = Base.getType();
4126   if (!DstTy) return;
4127   if (DstTy->isPointerTy())
4128     return;
4129 
4130   // It is invalid to extend a pointer type so exit early if ScaledReg or
4131   // any of the BaseRegs are pointers.
4132   if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy())
4133     return;
4134   if (any_of(Base.BaseRegs,
4135              [](const SCEV *S) { return S->getType()->isPointerTy(); }))
4136     return;
4137 
4138   for (Type *SrcTy : Types) {
4139     if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) {
4140       Formula F = Base;
4141 
4142       // Sometimes SCEV is able to prove zero during ext transform. It may
4143       // happen if SCEV did not do all possible transforms while creating the
4144       // initial node (maybe due to depth limitations), but it can do them while
4145       // taking ext.
4146       if (F.ScaledReg) {
4147         const SCEV *NewScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy);
4148         if (NewScaledReg->isZero())
4149          continue;
4150         F.ScaledReg = NewScaledReg;
4151       }
4152       bool HasZeroBaseReg = false;
4153       for (const SCEV *&BaseReg : F.BaseRegs) {
4154         const SCEV *NewBaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy);
4155         if (NewBaseReg->isZero()) {
4156           HasZeroBaseReg = true;
4157           break;
4158         }
4159         BaseReg = NewBaseReg;
4160       }
4161       if (HasZeroBaseReg)
4162         continue;
4163 
4164       // TODO: This assumes we've done basic processing on all uses and
4165       // have an idea what the register usage is.
4166       if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
4167         continue;
4168 
4169       F.canonicalize(*L);
4170       (void)InsertFormula(LU, LUIdx, F);
4171     }
4172   }
4173 }
4174 
4175 namespace {
4176 
4177 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer
4178 /// modifications so that the search phase doesn't have to worry about the data
4179 /// structures moving underneath it.
4180 struct WorkItem {
4181   size_t LUIdx;
4182   int64_t Imm;
4183   const SCEV *OrigReg;
4184 
4185   WorkItem(size_t LI, int64_t I, const SCEV *R)
4186       : LUIdx(LI), Imm(I), OrigReg(R) {}
4187 
4188   void print(raw_ostream &OS) const;
4189   void dump() const;
4190 };
4191 
4192 } // end anonymous namespace
4193 
4194 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4195 void WorkItem::print(raw_ostream &OS) const {
4196   OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
4197      << " , add offset " << Imm;
4198 }
4199 
4200 LLVM_DUMP_METHOD void WorkItem::dump() const {
4201   print(errs()); errs() << '\n';
4202 }
4203 #endif
4204 
4205 /// Look for registers which are a constant distance apart and try to form reuse
4206 /// opportunities between them.
4207 void LSRInstance::GenerateCrossUseConstantOffsets() {
4208   // Group the registers by their value without any added constant offset.
4209   using ImmMapTy = std::map<int64_t, const SCEV *>;
4210 
4211   DenseMap<const SCEV *, ImmMapTy> Map;
4212   DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
4213   SmallVector<const SCEV *, 8> Sequence;
4214   for (const SCEV *Use : RegUses) {
4215     const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify.
4216     int64_t Imm = ExtractImmediate(Reg, SE);
4217     auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy()));
4218     if (Pair.second)
4219       Sequence.push_back(Reg);
4220     Pair.first->second.insert(std::make_pair(Imm, Use));
4221     UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use);
4222   }
4223 
4224   // Now examine each set of registers with the same base value. Build up
4225   // a list of work to do and do the work in a separate step so that we're
4226   // not adding formulae and register counts while we're searching.
4227   SmallVector<WorkItem, 32> WorkItems;
4228   SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
4229   for (const SCEV *Reg : Sequence) {
4230     const ImmMapTy &Imms = Map.find(Reg)->second;
4231 
4232     // It's not worthwhile looking for reuse if there's only one offset.
4233     if (Imms.size() == 1)
4234       continue;
4235 
4236     LLVM_DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
4237                for (const auto &Entry
4238                     : Imms) dbgs()
4239                << ' ' << Entry.first;
4240                dbgs() << '\n');
4241 
4242     // Examine each offset.
4243     for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
4244          J != JE; ++J) {
4245       const SCEV *OrigReg = J->second;
4246 
4247       int64_t JImm = J->first;
4248       const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
4249 
4250       if (!isa<SCEVConstant>(OrigReg) &&
4251           UsedByIndicesMap[Reg].count() == 1) {
4252         LLVM_DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg
4253                           << '\n');
4254         continue;
4255       }
4256 
4257       // Conservatively examine offsets between this orig reg a few selected
4258       // other orig regs.
4259       int64_t First = Imms.begin()->first;
4260       int64_t Last = std::prev(Imms.end())->first;
4261       // Compute (First + Last)  / 2 without overflow using the fact that
4262       // First + Last = 2 * (First + Last) + (First ^ Last).
4263       int64_t Avg = (First & Last) + ((First ^ Last) >> 1);
4264       // If the result is negative and First is odd and Last even (or vice versa),
4265       // we rounded towards -inf. Add 1 in that case, to round towards 0.
4266       Avg = Avg + ((First ^ Last) & ((uint64_t)Avg >> 63));
4267       ImmMapTy::const_iterator OtherImms[] = {
4268           Imms.begin(), std::prev(Imms.end()),
4269          Imms.lower_bound(Avg)};
4270       for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
4271         ImmMapTy::const_iterator M = OtherImms[i];
4272         if (M == J || M == JE) continue;
4273 
4274         // Compute the difference between the two.
4275         int64_t Imm = (uint64_t)JImm - M->first;
4276         for (unsigned LUIdx : UsedByIndices.set_bits())
4277           // Make a memo of this use, offset, and register tuple.
4278           if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second)
4279             WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
4280       }
4281     }
4282   }
4283 
4284   Map.clear();
4285   Sequence.clear();
4286   UsedByIndicesMap.clear();
4287   UniqueItems.clear();
4288 
4289   // Now iterate through the worklist and add new formulae.
4290   for (const WorkItem &WI : WorkItems) {
4291     size_t LUIdx = WI.LUIdx;
4292     LSRUse &LU = Uses[LUIdx];
4293     int64_t Imm = WI.Imm;
4294     const SCEV *OrigReg = WI.OrigReg;
4295 
4296     Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
4297     const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
4298     unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
4299 
4300     // TODO: Use a more targeted data structure.
4301     for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
4302       Formula F = LU.Formulae[L];
4303       // FIXME: The code for the scaled and unscaled registers looks
4304       // very similar but slightly different. Investigate if they
4305       // could be merged. That way, we would not have to unscale the
4306       // Formula.
4307       F.unscale();
4308       // Use the immediate in the scaled register.
4309       if (F.ScaledReg == OrigReg) {
4310         int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale;
4311         // Don't create 50 + reg(-50).
4312         if (F.referencesReg(SE.getSCEV(
4313                    ConstantInt::get(IntTy, -(uint64_t)Offset))))
4314           continue;
4315         Formula NewF = F;
4316         NewF.BaseOffset = Offset;
4317         if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
4318                         NewF))
4319           continue;
4320         NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
4321 
4322         // If the new scale is a constant in a register, and adding the constant
4323         // value to the immediate would produce a value closer to zero than the
4324         // immediate itself, then the formula isn't worthwhile.
4325         if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
4326           if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) &&
4327               (C->getAPInt().abs() * APInt(BitWidth, F.Scale))
4328                   .ule(std::abs(NewF.BaseOffset)))
4329             continue;
4330 
4331         // OK, looks good.
4332         NewF.canonicalize(*this->L);
4333         (void)InsertFormula(LU, LUIdx, NewF);
4334       } else {
4335         // Use the immediate in a base register.
4336         for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
4337           const SCEV *BaseReg = F.BaseRegs[N];
4338           if (BaseReg != OrigReg)
4339             continue;
4340           Formula NewF = F;
4341           NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm;
4342           if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset,
4343                           LU.Kind, LU.AccessTy, NewF)) {
4344             if (AMK == TTI::AMK_PostIndexed &&
4345                 mayUsePostIncMode(TTI, LU, OrigReg, this->L, SE))
4346               continue;
4347             if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
4348               continue;
4349             NewF = F;
4350             NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm;
4351           }
4352           NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
4353 
4354           // If the new formula has a constant in a register, and adding the
4355           // constant value to the immediate would produce a value closer to
4356           // zero than the immediate itself, then the formula isn't worthwhile.
4357           for (const SCEV *NewReg : NewF.BaseRegs)
4358             if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg))
4359               if ((C->getAPInt() + NewF.BaseOffset)
4360                       .abs()
4361                       .slt(std::abs(NewF.BaseOffset)) &&
4362                   (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >=
4363                       countTrailingZeros<uint64_t>(NewF.BaseOffset))
4364                 goto skip_formula;
4365 
4366           // Ok, looks good.
4367           NewF.canonicalize(*this->L);
4368           (void)InsertFormula(LU, LUIdx, NewF);
4369           break;
4370         skip_formula:;
4371         }
4372       }
4373     }
4374   }
4375 }
4376 
4377 /// Generate formulae for each use.
4378 void
4379 LSRInstance::GenerateAllReuseFormulae() {
4380   // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
4381   // queries are more precise.
4382   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4383     LSRUse &LU = Uses[LUIdx];
4384     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4385       GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
4386     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4387       GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
4388   }
4389   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4390     LSRUse &LU = Uses[LUIdx];
4391     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4392       GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
4393     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4394       GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
4395     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4396       GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
4397     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4398       GenerateScales(LU, LUIdx, LU.Formulae[i]);
4399   }
4400   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4401     LSRUse &LU = Uses[LUIdx];
4402     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4403       GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
4404   }
4405 
4406   GenerateCrossUseConstantOffsets();
4407 
4408   LLVM_DEBUG(dbgs() << "\n"
4409                        "After generating reuse formulae:\n";
4410              print_uses(dbgs()));
4411 }
4412 
4413 /// If there are multiple formulae with the same set of registers used
4414 /// by other uses, pick the best one and delete the others.
4415 void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
4416   DenseSet<const SCEV *> VisitedRegs;
4417   SmallPtrSet<const SCEV *, 16> Regs;
4418   SmallPtrSet<const SCEV *, 16> LoserRegs;
4419 #ifndef NDEBUG
4420   bool ChangedFormulae = false;
4421 #endif
4422 
4423   // Collect the best formula for each unique set of shared registers. This
4424   // is reset for each use.
4425   using BestFormulaeTy =
4426       DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>;
4427 
4428   BestFormulaeTy BestFormulae;
4429 
4430   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4431     LSRUse &LU = Uses[LUIdx];
4432     LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs());
4433                dbgs() << '\n');
4434 
4435     bool Any = false;
4436     for (size_t FIdx = 0, NumForms = LU.Formulae.size();
4437          FIdx != NumForms; ++FIdx) {
4438       Formula &F = LU.Formulae[FIdx];
4439 
4440       // Some formulas are instant losers. For example, they may depend on
4441       // nonexistent AddRecs from other loops. These need to be filtered
4442       // immediately, otherwise heuristics could choose them over others leading
4443       // to an unsatisfactory solution. Passing LoserRegs into RateFormula here
4444       // avoids the need to recompute this information across formulae using the
4445       // same bad AddRec. Passing LoserRegs is also essential unless we remove
4446       // the corresponding bad register from the Regs set.
4447       Cost CostF(L, SE, TTI, AMK);
4448       Regs.clear();
4449       CostF.RateFormula(F, Regs, VisitedRegs, LU, &LoserRegs);
4450       if (CostF.isLoser()) {
4451         // During initial formula generation, undesirable formulae are generated
4452         // by uses within other loops that have some non-trivial address mode or
4453         // use the postinc form of the IV. LSR needs to provide these formulae
4454         // as the basis of rediscovering the desired formula that uses an AddRec
4455         // corresponding to the existing phi. Once all formulae have been
4456         // generated, these initial losers may be pruned.
4457         LLVM_DEBUG(dbgs() << "  Filtering loser "; F.print(dbgs());
4458                    dbgs() << "\n");
4459       }
4460       else {
4461         SmallVector<const SCEV *, 4> Key;
4462         for (const SCEV *Reg : F.BaseRegs) {
4463           if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
4464             Key.push_back(Reg);
4465         }
4466         if (F.ScaledReg &&
4467             RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
4468           Key.push_back(F.ScaledReg);
4469         // Unstable sort by host order ok, because this is only used for
4470         // uniquifying.
4471         llvm::sort(Key);
4472 
4473         std::pair<BestFormulaeTy::const_iterator, bool> P =
4474           BestFormulae.insert(std::make_pair(Key, FIdx));
4475         if (P.second)
4476           continue;
4477 
4478         Formula &Best = LU.Formulae[P.first->second];
4479 
4480         Cost CostBest(L, SE, TTI, AMK);
4481         Regs.clear();
4482         CostBest.RateFormula(Best, Regs, VisitedRegs, LU);
4483         if (CostF.isLess(CostBest))
4484           std::swap(F, Best);
4485         LLVM_DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
4486                    dbgs() << "\n"
4487                              "    in favor of formula ";
4488                    Best.print(dbgs()); dbgs() << '\n');
4489       }
4490 #ifndef NDEBUG
4491       ChangedFormulae = true;
4492 #endif
4493       LU.DeleteFormula(F);
4494       --FIdx;
4495       --NumForms;
4496       Any = true;
4497     }
4498 
4499     // Now that we've filtered out some formulae, recompute the Regs set.
4500     if (Any)
4501       LU.RecomputeRegs(LUIdx, RegUses);
4502 
4503     // Reset this to prepare for the next use.
4504     BestFormulae.clear();
4505   }
4506 
4507   LLVM_DEBUG(if (ChangedFormulae) {
4508     dbgs() << "\n"
4509               "After filtering out undesirable candidates:\n";
4510     print_uses(dbgs());
4511   });
4512 }
4513 
4514 /// Estimate the worst-case number of solutions the solver might have to
4515 /// consider. It almost never considers this many solutions because it prune the
4516 /// search space, but the pruning isn't always sufficient.
4517 size_t LSRInstance::EstimateSearchSpaceComplexity() const {
4518   size_t Power = 1;
4519   for (const LSRUse &LU : Uses) {
4520     size_t FSize = LU.Formulae.size();
4521     if (FSize >= ComplexityLimit) {
4522       Power = ComplexityLimit;
4523       break;
4524     }
4525     Power *= FSize;
4526     if (Power >= ComplexityLimit)
4527       break;
4528   }
4529   return Power;
4530 }
4531 
4532 /// When one formula uses a superset of the registers of another formula, it
4533 /// won't help reduce register pressure (though it may not necessarily hurt
4534 /// register pressure); remove it to simplify the system.
4535 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
4536   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4537     LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4538 
4539     LLVM_DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
4540                          "which use a superset of registers used by other "
4541                          "formulae.\n");
4542 
4543     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4544       LSRUse &LU = Uses[LUIdx];
4545       bool Any = false;
4546       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4547         Formula &F = LU.Formulae[i];
4548         // Look for a formula with a constant or GV in a register. If the use
4549         // also has a formula with that same value in an immediate field,
4550         // delete the one that uses a register.
4551         for (SmallVectorImpl<const SCEV *>::const_iterator
4552              I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
4553           if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
4554             Formula NewF = F;
4555             //FIXME: Formulas should store bitwidth to do wrapping properly.
4556             //       See PR41034.
4557             NewF.BaseOffset += (uint64_t)C->getValue()->getSExtValue();
4558             NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4559                                 (I - F.BaseRegs.begin()));
4560             if (LU.HasFormulaWithSameRegs(NewF)) {
4561               LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4562                          dbgs() << '\n');
4563               LU.DeleteFormula(F);
4564               --i;
4565               --e;
4566               Any = true;
4567               break;
4568             }
4569           } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
4570             if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
4571               if (!F.BaseGV) {
4572                 Formula NewF = F;
4573                 NewF.BaseGV = GV;
4574                 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4575                                     (I - F.BaseRegs.begin()));
4576                 if (LU.HasFormulaWithSameRegs(NewF)) {
4577                   LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4578                              dbgs() << '\n');
4579                   LU.DeleteFormula(F);
4580                   --i;
4581                   --e;
4582                   Any = true;
4583                   break;
4584                 }
4585               }
4586           }
4587         }
4588       }
4589       if (Any)
4590         LU.RecomputeRegs(LUIdx, RegUses);
4591     }
4592 
4593     LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4594   }
4595 }
4596 
4597 /// When there are many registers for expressions like A, A+1, A+2, etc.,
4598 /// allocate a single register for them.
4599 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
4600   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4601     return;
4602 
4603   LLVM_DEBUG(
4604       dbgs() << "The search space is too complex.\n"
4605                 "Narrowing the search space by assuming that uses separated "
4606                 "by a constant offset will use the same registers.\n");
4607 
4608   // This is especially useful for unrolled loops.
4609 
4610   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4611     LSRUse &LU = Uses[LUIdx];
4612     for (const Formula &F : LU.Formulae) {
4613       if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1))
4614         continue;
4615 
4616       LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU);
4617       if (!LUThatHas)
4618         continue;
4619 
4620       if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false,
4621                               LU.Kind, LU.AccessTy))
4622         continue;
4623 
4624       LLVM_DEBUG(dbgs() << "  Deleting use "; LU.print(dbgs()); dbgs() << '\n');
4625 
4626       LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
4627 
4628       // Transfer the fixups of LU to LUThatHas.
4629       for (LSRFixup &Fixup : LU.Fixups) {
4630         Fixup.Offset += F.BaseOffset;
4631         LUThatHas->pushFixup(Fixup);
4632         LLVM_DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n');
4633       }
4634 
4635       // Delete formulae from the new use which are no longer legal.
4636       bool Any = false;
4637       for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
4638         Formula &F = LUThatHas->Formulae[i];
4639         if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset,
4640                         LUThatHas->Kind, LUThatHas->AccessTy, F)) {
4641           LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4642           LUThatHas->DeleteFormula(F);
4643           --i;
4644           --e;
4645           Any = true;
4646         }
4647       }
4648 
4649       if (Any)
4650         LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
4651 
4652       // Delete the old use.
4653       DeleteUse(LU, LUIdx);
4654       --LUIdx;
4655       --NumUses;
4656       break;
4657     }
4658   }
4659 
4660   LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4661 }
4662 
4663 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that
4664 /// we've done more filtering, as it may be able to find more formulae to
4665 /// eliminate.
4666 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
4667   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4668     LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4669 
4670     LLVM_DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
4671                          "undesirable dedicated registers.\n");
4672 
4673     FilterOutUndesirableDedicatedRegisters();
4674 
4675     LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4676   }
4677 }
4678 
4679 /// If a LSRUse has multiple formulae with the same ScaledReg and Scale.
4680 /// Pick the best one and delete the others.
4681 /// This narrowing heuristic is to keep as many formulae with different
4682 /// Scale and ScaledReg pair as possible while narrowing the search space.
4683 /// The benefit is that it is more likely to find out a better solution
4684 /// from a formulae set with more Scale and ScaledReg variations than
4685 /// a formulae set with the same Scale and ScaledReg. The picking winner
4686 /// reg heuristic will often keep the formulae with the same Scale and
4687 /// ScaledReg and filter others, and we want to avoid that if possible.
4688 void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() {
4689   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4690     return;
4691 
4692   LLVM_DEBUG(
4693       dbgs() << "The search space is too complex.\n"
4694                 "Narrowing the search space by choosing the best Formula "
4695                 "from the Formulae with the same Scale and ScaledReg.\n");
4696 
4697   // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse.
4698   using BestFormulaeTy = DenseMap<std::pair<const SCEV *, int64_t>, size_t>;
4699 
4700   BestFormulaeTy BestFormulae;
4701 #ifndef NDEBUG
4702   bool ChangedFormulae = false;
4703 #endif
4704   DenseSet<const SCEV *> VisitedRegs;
4705   SmallPtrSet<const SCEV *, 16> Regs;
4706 
4707   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4708     LSRUse &LU = Uses[LUIdx];
4709     LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs());
4710                dbgs() << '\n');
4711 
4712     // Return true if Formula FA is better than Formula FB.
4713     auto IsBetterThan = [&](Formula &FA, Formula &FB) {
4714       // First we will try to choose the Formula with fewer new registers.
4715       // For a register used by current Formula, the more the register is
4716       // shared among LSRUses, the less we increase the register number
4717       // counter of the formula.
4718       size_t FARegNum = 0;
4719       for (const SCEV *Reg : FA.BaseRegs) {
4720         const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
4721         FARegNum += (NumUses - UsedByIndices.count() + 1);
4722       }
4723       size_t FBRegNum = 0;
4724       for (const SCEV *Reg : FB.BaseRegs) {
4725         const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
4726         FBRegNum += (NumUses - UsedByIndices.count() + 1);
4727       }
4728       if (FARegNum != FBRegNum)
4729         return FARegNum < FBRegNum;
4730 
4731       // If the new register numbers are the same, choose the Formula with
4732       // less Cost.
4733       Cost CostFA(L, SE, TTI, AMK);
4734       Cost CostFB(L, SE, TTI, AMK);
4735       Regs.clear();
4736       CostFA.RateFormula(FA, Regs, VisitedRegs, LU);
4737       Regs.clear();
4738       CostFB.RateFormula(FB, Regs, VisitedRegs, LU);
4739       return CostFA.isLess(CostFB);
4740     };
4741 
4742     bool Any = false;
4743     for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms;
4744          ++FIdx) {
4745       Formula &F = LU.Formulae[FIdx];
4746       if (!F.ScaledReg)
4747         continue;
4748       auto P = BestFormulae.insert({{F.ScaledReg, F.Scale}, FIdx});
4749       if (P.second)
4750         continue;
4751 
4752       Formula &Best = LU.Formulae[P.first->second];
4753       if (IsBetterThan(F, Best))
4754         std::swap(F, Best);
4755       LLVM_DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
4756                  dbgs() << "\n"
4757                            "    in favor of formula ";
4758                  Best.print(dbgs()); dbgs() << '\n');
4759 #ifndef NDEBUG
4760       ChangedFormulae = true;
4761 #endif
4762       LU.DeleteFormula(F);
4763       --FIdx;
4764       --NumForms;
4765       Any = true;
4766     }
4767     if (Any)
4768       LU.RecomputeRegs(LUIdx, RegUses);
4769 
4770     // Reset this to prepare for the next use.
4771     BestFormulae.clear();
4772   }
4773 
4774   LLVM_DEBUG(if (ChangedFormulae) {
4775     dbgs() << "\n"
4776               "After filtering out undesirable candidates:\n";
4777     print_uses(dbgs());
4778   });
4779 }
4780 
4781 /// If we are over the complexity limit, filter out any post-inc prefering
4782 /// variables to only post-inc values.
4783 void LSRInstance::NarrowSearchSpaceByFilterPostInc() {
4784   if (AMK != TTI::AMK_PostIndexed)
4785     return;
4786   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4787     return;
4788 
4789   LLVM_DEBUG(dbgs() << "The search space is too complex.\n"
4790                        "Narrowing the search space by choosing the lowest "
4791                        "register Formula for PostInc Uses.\n");
4792 
4793   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4794     LSRUse &LU = Uses[LUIdx];
4795 
4796     if (LU.Kind != LSRUse::Address)
4797       continue;
4798     if (!TTI.isIndexedLoadLegal(TTI.MIM_PostInc, LU.AccessTy.getType()) &&
4799         !TTI.isIndexedStoreLegal(TTI.MIM_PostInc, LU.AccessTy.getType()))
4800       continue;
4801 
4802     size_t MinRegs = std::numeric_limits<size_t>::max();
4803     for (const Formula &F : LU.Formulae)
4804       MinRegs = std::min(F.getNumRegs(), MinRegs);
4805 
4806     bool Any = false;
4807     for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms;
4808          ++FIdx) {
4809       Formula &F = LU.Formulae[FIdx];
4810       if (F.getNumRegs() > MinRegs) {
4811         LLVM_DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
4812                    dbgs() << "\n");
4813         LU.DeleteFormula(F);
4814         --FIdx;
4815         --NumForms;
4816         Any = true;
4817       }
4818     }
4819     if (Any)
4820       LU.RecomputeRegs(LUIdx, RegUses);
4821 
4822     if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4823       break;
4824   }
4825 
4826   LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4827 }
4828 
4829 /// The function delete formulas with high registers number expectation.
4830 /// Assuming we don't know the value of each formula (already delete
4831 /// all inefficient), generate probability of not selecting for each
4832 /// register.
4833 /// For example,
4834 /// Use1:
4835 ///  reg(a) + reg({0,+,1})
4836 ///  reg(a) + reg({-1,+,1}) + 1
4837 ///  reg({a,+,1})
4838 /// Use2:
4839 ///  reg(b) + reg({0,+,1})
4840 ///  reg(b) + reg({-1,+,1}) + 1
4841 ///  reg({b,+,1})
4842 /// Use3:
4843 ///  reg(c) + reg(b) + reg({0,+,1})
4844 ///  reg(c) + reg({b,+,1})
4845 ///
4846 /// Probability of not selecting
4847 ///                 Use1   Use2    Use3
4848 /// reg(a)         (1/3) *   1   *   1
4849 /// reg(b)           1   * (1/3) * (1/2)
4850 /// reg({0,+,1})   (2/3) * (2/3) * (1/2)
4851 /// reg({-1,+,1})  (2/3) * (2/3) *   1
4852 /// reg({a,+,1})   (2/3) *   1   *   1
4853 /// reg({b,+,1})     1   * (2/3) * (2/3)
4854 /// reg(c)           1   *   1   *   0
4855 ///
4856 /// Now count registers number mathematical expectation for each formula:
4857 /// Note that for each use we exclude probability if not selecting for the use.
4858 /// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding
4859 /// probabilty 1/3 of not selecting for Use1).
4860 /// Use1:
4861 ///  reg(a) + reg({0,+,1})          1 + 1/3       -- to be deleted
4862 ///  reg(a) + reg({-1,+,1}) + 1     1 + 4/9       -- to be deleted
4863 ///  reg({a,+,1})                   1
4864 /// Use2:
4865 ///  reg(b) + reg({0,+,1})          1/2 + 1/3     -- to be deleted
4866 ///  reg(b) + reg({-1,+,1}) + 1     1/2 + 2/3     -- to be deleted
4867 ///  reg({b,+,1})                   2/3
4868 /// Use3:
4869 ///  reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted
4870 ///  reg(c) + reg({b,+,1})          1 + 2/3
4871 void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() {
4872   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4873     return;
4874   // Ok, we have too many of formulae on our hands to conveniently handle.
4875   // Use a rough heuristic to thin out the list.
4876 
4877   // Set of Regs wich will be 100% used in final solution.
4878   // Used in each formula of a solution (in example above this is reg(c)).
4879   // We can skip them in calculations.
4880   SmallPtrSet<const SCEV *, 4> UniqRegs;
4881   LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4882 
4883   // Map each register to probability of not selecting
4884   DenseMap <const SCEV *, float> RegNumMap;
4885   for (const SCEV *Reg : RegUses) {
4886     if (UniqRegs.count(Reg))
4887       continue;
4888     float PNotSel = 1;
4889     for (const LSRUse &LU : Uses) {
4890       if (!LU.Regs.count(Reg))
4891         continue;
4892       float P = LU.getNotSelectedProbability(Reg);
4893       if (P != 0.0)
4894         PNotSel *= P;
4895       else
4896         UniqRegs.insert(Reg);
4897     }
4898     RegNumMap.insert(std::make_pair(Reg, PNotSel));
4899   }
4900 
4901   LLVM_DEBUG(
4902       dbgs() << "Narrowing the search space by deleting costly formulas\n");
4903 
4904   // Delete formulas where registers number expectation is high.
4905   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4906     LSRUse &LU = Uses[LUIdx];
4907     // If nothing to delete - continue.
4908     if (LU.Formulae.size() < 2)
4909       continue;
4910     // This is temporary solution to test performance. Float should be
4911     // replaced with round independent type (based on integers) to avoid
4912     // different results for different target builds.
4913     float FMinRegNum = LU.Formulae[0].getNumRegs();
4914     float FMinARegNum = LU.Formulae[0].getNumRegs();
4915     size_t MinIdx = 0;
4916     for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4917       Formula &F = LU.Formulae[i];
4918       float FRegNum = 0;
4919       float FARegNum = 0;
4920       for (const SCEV *BaseReg : F.BaseRegs) {
4921         if (UniqRegs.count(BaseReg))
4922           continue;
4923         FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
4924         if (isa<SCEVAddRecExpr>(BaseReg))
4925           FARegNum +=
4926               RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
4927       }
4928       if (const SCEV *ScaledReg = F.ScaledReg) {
4929         if (!UniqRegs.count(ScaledReg)) {
4930           FRegNum +=
4931               RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
4932           if (isa<SCEVAddRecExpr>(ScaledReg))
4933             FARegNum +=
4934                 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
4935         }
4936       }
4937       if (FMinRegNum > FRegNum ||
4938           (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) {
4939         FMinRegNum = FRegNum;
4940         FMinARegNum = FARegNum;
4941         MinIdx = i;
4942       }
4943     }
4944     LLVM_DEBUG(dbgs() << "  The formula "; LU.Formulae[MinIdx].print(dbgs());
4945                dbgs() << " with min reg num " << FMinRegNum << '\n');
4946     if (MinIdx != 0)
4947       std::swap(LU.Formulae[MinIdx], LU.Formulae[0]);
4948     while (LU.Formulae.size() != 1) {
4949       LLVM_DEBUG(dbgs() << "  Deleting "; LU.Formulae.back().print(dbgs());
4950                  dbgs() << '\n');
4951       LU.Formulae.pop_back();
4952     }
4953     LU.RecomputeRegs(LUIdx, RegUses);
4954     assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula");
4955     Formula &F = LU.Formulae[0];
4956     LLVM_DEBUG(dbgs() << "  Leaving only "; F.print(dbgs()); dbgs() << '\n');
4957     // When we choose the formula, the regs become unique.
4958     UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
4959     if (F.ScaledReg)
4960       UniqRegs.insert(F.ScaledReg);
4961   }
4962   LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4963 }
4964 
4965 /// Pick a register which seems likely to be profitable, and then in any use
4966 /// which has any reference to that register, delete all formulae which do not
4967 /// reference that register.
4968 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
4969   // With all other options exhausted, loop until the system is simple
4970   // enough to handle.
4971   SmallPtrSet<const SCEV *, 4> Taken;
4972   while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4973     // Ok, we have too many of formulae on our hands to conveniently handle.
4974     // Use a rough heuristic to thin out the list.
4975     LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4976 
4977     // Pick the register which is used by the most LSRUses, which is likely
4978     // to be a good reuse register candidate.
4979     const SCEV *Best = nullptr;
4980     unsigned BestNum = 0;
4981     for (const SCEV *Reg : RegUses) {
4982       if (Taken.count(Reg))
4983         continue;
4984       if (!Best) {
4985         Best = Reg;
4986         BestNum = RegUses.getUsedByIndices(Reg).count();
4987       } else {
4988         unsigned Count = RegUses.getUsedByIndices(Reg).count();
4989         if (Count > BestNum) {
4990           Best = Reg;
4991           BestNum = Count;
4992         }
4993       }
4994     }
4995     assert(Best && "Failed to find best LSRUse candidate");
4996 
4997     LLVM_DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
4998                       << " will yield profitable reuse.\n");
4999     Taken.insert(Best);
5000 
5001     // In any use with formulae which references this register, delete formulae
5002     // which don't reference it.
5003     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
5004       LSRUse &LU = Uses[LUIdx];
5005       if (!LU.Regs.count(Best)) continue;
5006 
5007       bool Any = false;
5008       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
5009         Formula &F = LU.Formulae[i];
5010         if (!F.referencesReg(Best)) {
5011           LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
5012           LU.DeleteFormula(F);
5013           --e;
5014           --i;
5015           Any = true;
5016           assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
5017           continue;
5018         }
5019       }
5020 
5021       if (Any)
5022         LU.RecomputeRegs(LUIdx, RegUses);
5023     }
5024 
5025     LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
5026   }
5027 }
5028 
5029 /// If there are an extraordinary number of formulae to choose from, use some
5030 /// rough heuristics to prune down the number of formulae. This keeps the main
5031 /// solver from taking an extraordinary amount of time in some worst-case
5032 /// scenarios.
5033 void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
5034   NarrowSearchSpaceByDetectingSupersets();
5035   NarrowSearchSpaceByCollapsingUnrolledCode();
5036   NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
5037   if (FilterSameScaledReg)
5038     NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
5039   NarrowSearchSpaceByFilterPostInc();
5040   if (LSRExpNarrow)
5041     NarrowSearchSpaceByDeletingCostlyFormulas();
5042   else
5043     NarrowSearchSpaceByPickingWinnerRegs();
5044 }
5045 
5046 /// This is the recursive solver.
5047 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
5048                                Cost &SolutionCost,
5049                                SmallVectorImpl<const Formula *> &Workspace,
5050                                const Cost &CurCost,
5051                                const SmallPtrSet<const SCEV *, 16> &CurRegs,
5052                                DenseSet<const SCEV *> &VisitedRegs) const {
5053   // Some ideas:
5054   //  - prune more:
5055   //    - use more aggressive filtering
5056   //    - sort the formula so that the most profitable solutions are found first
5057   //    - sort the uses too
5058   //  - search faster:
5059   //    - don't compute a cost, and then compare. compare while computing a cost
5060   //      and bail early.
5061   //    - track register sets with SmallBitVector
5062 
5063   const LSRUse &LU = Uses[Workspace.size()];
5064 
5065   // If this use references any register that's already a part of the
5066   // in-progress solution, consider it a requirement that a formula must
5067   // reference that register in order to be considered. This prunes out
5068   // unprofitable searching.
5069   SmallSetVector<const SCEV *, 4> ReqRegs;
5070   for (const SCEV *S : CurRegs)
5071     if (LU.Regs.count(S))
5072       ReqRegs.insert(S);
5073 
5074   SmallPtrSet<const SCEV *, 16> NewRegs;
5075   Cost NewCost(L, SE, TTI, AMK);
5076   for (const Formula &F : LU.Formulae) {
5077     // Ignore formulae which may not be ideal in terms of register reuse of
5078     // ReqRegs.  The formula should use all required registers before
5079     // introducing new ones.
5080     // This can sometimes (notably when trying to favour postinc) lead to
5081     // sub-optimial decisions. There it is best left to the cost modelling to
5082     // get correct.
5083     if (AMK != TTI::AMK_PostIndexed || LU.Kind != LSRUse::Address) {
5084       int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size());
5085       for (const SCEV *Reg : ReqRegs) {
5086         if ((F.ScaledReg && F.ScaledReg == Reg) ||
5087             is_contained(F.BaseRegs, Reg)) {
5088           --NumReqRegsToFind;
5089           if (NumReqRegsToFind == 0)
5090             break;
5091         }
5092       }
5093       if (NumReqRegsToFind != 0) {
5094         // If none of the formulae satisfied the required registers, then we could
5095         // clear ReqRegs and try again. Currently, we simply give up in this case.
5096         continue;
5097       }
5098     }
5099 
5100     // Evaluate the cost of the current formula. If it's already worse than
5101     // the current best, prune the search at that point.
5102     NewCost = CurCost;
5103     NewRegs = CurRegs;
5104     NewCost.RateFormula(F, NewRegs, VisitedRegs, LU);
5105     if (NewCost.isLess(SolutionCost)) {
5106       Workspace.push_back(&F);
5107       if (Workspace.size() != Uses.size()) {
5108         SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
5109                      NewRegs, VisitedRegs);
5110         if (F.getNumRegs() == 1 && Workspace.size() == 1)
5111           VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
5112       } else {
5113         LLVM_DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
5114                    dbgs() << ".\nRegs:\n";
5115                    for (const SCEV *S : NewRegs) dbgs()
5116                       << "- " << *S << "\n";
5117                    dbgs() << '\n');
5118 
5119         SolutionCost = NewCost;
5120         Solution = Workspace;
5121       }
5122       Workspace.pop_back();
5123     }
5124   }
5125 }
5126 
5127 /// Choose one formula from each use. Return the results in the given Solution
5128 /// vector.
5129 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
5130   SmallVector<const Formula *, 8> Workspace;
5131   Cost SolutionCost(L, SE, TTI, AMK);
5132   SolutionCost.Lose();
5133   Cost CurCost(L, SE, TTI, AMK);
5134   SmallPtrSet<const SCEV *, 16> CurRegs;
5135   DenseSet<const SCEV *> VisitedRegs;
5136   Workspace.reserve(Uses.size());
5137 
5138   // SolveRecurse does all the work.
5139   SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
5140                CurRegs, VisitedRegs);
5141   if (Solution.empty()) {
5142     LLVM_DEBUG(dbgs() << "\nNo Satisfactory Solution\n");
5143     return;
5144   }
5145 
5146   // Ok, we've now made all our decisions.
5147   LLVM_DEBUG(dbgs() << "\n"
5148                        "The chosen solution requires ";
5149              SolutionCost.print(dbgs()); dbgs() << ":\n";
5150              for (size_t i = 0, e = Uses.size(); i != e; ++i) {
5151                dbgs() << "  ";
5152                Uses[i].print(dbgs());
5153                dbgs() << "\n"
5154                          "    ";
5155                Solution[i]->print(dbgs());
5156                dbgs() << '\n';
5157              });
5158 
5159   assert(Solution.size() == Uses.size() && "Malformed solution!");
5160 }
5161 
5162 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as
5163 /// we can go while still being dominated by the input positions. This helps
5164 /// canonicalize the insert position, which encourages sharing.
5165 BasicBlock::iterator
5166 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
5167                                  const SmallVectorImpl<Instruction *> &Inputs)
5168                                                                          const {
5169   Instruction *Tentative = &*IP;
5170   while (true) {
5171     bool AllDominate = true;
5172     Instruction *BetterPos = nullptr;
5173     // Don't bother attempting to insert before a catchswitch, their basic block
5174     // cannot have other non-PHI instructions.
5175     if (isa<CatchSwitchInst>(Tentative))
5176       return IP;
5177 
5178     for (Instruction *Inst : Inputs) {
5179       if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
5180         AllDominate = false;
5181         break;
5182       }
5183       // Attempt to find an insert position in the middle of the block,
5184       // instead of at the end, so that it can be used for other expansions.
5185       if (Tentative->getParent() == Inst->getParent() &&
5186           (!BetterPos || !DT.dominates(Inst, BetterPos)))
5187         BetterPos = &*std::next(BasicBlock::iterator(Inst));
5188     }
5189     if (!AllDominate)
5190       break;
5191     if (BetterPos)
5192       IP = BetterPos->getIterator();
5193     else
5194       IP = Tentative->getIterator();
5195 
5196     const Loop *IPLoop = LI.getLoopFor(IP->getParent());
5197     unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
5198 
5199     BasicBlock *IDom;
5200     for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
5201       if (!Rung) return IP;
5202       Rung = Rung->getIDom();
5203       if (!Rung) return IP;
5204       IDom = Rung->getBlock();
5205 
5206       // Don't climb into a loop though.
5207       const Loop *IDomLoop = LI.getLoopFor(IDom);
5208       unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
5209       if (IDomDepth <= IPLoopDepth &&
5210           (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
5211         break;
5212     }
5213 
5214     Tentative = IDom->getTerminator();
5215   }
5216 
5217   return IP;
5218 }
5219 
5220 /// Determine an input position which will be dominated by the operands and
5221 /// which will dominate the result.
5222 BasicBlock::iterator LSRInstance::AdjustInsertPositionForExpand(
5223     BasicBlock::iterator LowestIP, const LSRFixup &LF, const LSRUse &LU) const {
5224   // Collect some instructions which must be dominated by the
5225   // expanding replacement. These must be dominated by any operands that
5226   // will be required in the expansion.
5227   SmallVector<Instruction *, 4> Inputs;
5228   if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
5229     Inputs.push_back(I);
5230   if (LU.Kind == LSRUse::ICmpZero)
5231     if (Instruction *I =
5232           dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
5233       Inputs.push_back(I);
5234   if (LF.PostIncLoops.count(L)) {
5235     if (LF.isUseFullyOutsideLoop(L))
5236       Inputs.push_back(L->getLoopLatch()->getTerminator());
5237     else
5238       Inputs.push_back(IVIncInsertPos);
5239   }
5240   // The expansion must also be dominated by the increment positions of any
5241   // loops it for which it is using post-inc mode.
5242   for (const Loop *PIL : LF.PostIncLoops) {
5243     if (PIL == L) continue;
5244 
5245     // Be dominated by the loop exit.
5246     SmallVector<BasicBlock *, 4> ExitingBlocks;
5247     PIL->getExitingBlocks(ExitingBlocks);
5248     if (!ExitingBlocks.empty()) {
5249       BasicBlock *BB = ExitingBlocks[0];
5250       for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
5251         BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
5252       Inputs.push_back(BB->getTerminator());
5253     }
5254   }
5255 
5256   assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad()
5257          && !isa<DbgInfoIntrinsic>(LowestIP) &&
5258          "Insertion point must be a normal instruction");
5259 
5260   // Then, climb up the immediate dominator tree as far as we can go while
5261   // still being dominated by the input positions.
5262   BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs);
5263 
5264   // Don't insert instructions before PHI nodes.
5265   while (isa<PHINode>(IP)) ++IP;
5266 
5267   // Ignore landingpad instructions.
5268   while (IP->isEHPad()) ++IP;
5269 
5270   // Ignore debug intrinsics.
5271   while (isa<DbgInfoIntrinsic>(IP)) ++IP;
5272 
5273   // Set IP below instructions recently inserted by SCEVExpander. This keeps the
5274   // IP consistent across expansions and allows the previously inserted
5275   // instructions to be reused by subsequent expansion.
5276   while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP)
5277     ++IP;
5278 
5279   return IP;
5280 }
5281 
5282 /// Emit instructions for the leading candidate expression for this LSRUse (this
5283 /// is called "expanding").
5284 Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF,
5285                            const Formula &F, BasicBlock::iterator IP,
5286                            SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5287   if (LU.RigidFormula)
5288     return LF.OperandValToReplace;
5289 
5290   // Determine an input position which will be dominated by the operands and
5291   // which will dominate the result.
5292   IP = AdjustInsertPositionForExpand(IP, LF, LU);
5293   Rewriter.setInsertPoint(&*IP);
5294 
5295   // Inform the Rewriter if we have a post-increment use, so that it can
5296   // perform an advantageous expansion.
5297   Rewriter.setPostInc(LF.PostIncLoops);
5298 
5299   // This is the type that the user actually needs.
5300   Type *OpTy = LF.OperandValToReplace->getType();
5301   // This will be the type that we'll initially expand to.
5302   Type *Ty = F.getType();
5303   if (!Ty)
5304     // No type known; just expand directly to the ultimate type.
5305     Ty = OpTy;
5306   else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
5307     // Expand directly to the ultimate type if it's the right size.
5308     Ty = OpTy;
5309   // This is the type to do integer arithmetic in.
5310   Type *IntTy = SE.getEffectiveSCEVType(Ty);
5311 
5312   // Build up a list of operands to add together to form the full base.
5313   SmallVector<const SCEV *, 8> Ops;
5314 
5315   // Expand the BaseRegs portion.
5316   for (const SCEV *Reg : F.BaseRegs) {
5317     assert(!Reg->isZero() && "Zero allocated in a base register!");
5318 
5319     // If we're expanding for a post-inc user, make the post-inc adjustment.
5320     Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE);
5321     Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr)));
5322   }
5323 
5324   // Expand the ScaledReg portion.
5325   Value *ICmpScaledV = nullptr;
5326   if (F.Scale != 0) {
5327     const SCEV *ScaledS = F.ScaledReg;
5328 
5329     // If we're expanding for a post-inc user, make the post-inc adjustment.
5330     PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
5331     ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE);
5332 
5333     if (LU.Kind == LSRUse::ICmpZero) {
5334       // Expand ScaleReg as if it was part of the base regs.
5335       if (F.Scale == 1)
5336         Ops.push_back(
5337             SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)));
5338       else {
5339         // An interesting way of "folding" with an icmp is to use a negated
5340         // scale, which we'll implement by inserting it into the other operand
5341         // of the icmp.
5342         assert(F.Scale == -1 &&
5343                "The only scale supported by ICmpZero uses is -1!");
5344         ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr);
5345       }
5346     } else {
5347       // Otherwise just expand the scaled register and an explicit scale,
5348       // which is expected to be matched as part of the address.
5349 
5350       // Flush the operand list to suppress SCEVExpander hoisting address modes.
5351       // Unless the addressing mode will not be folded.
5352       if (!Ops.empty() && LU.Kind == LSRUse::Address &&
5353           isAMCompletelyFolded(TTI, LU, F)) {
5354         Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), nullptr);
5355         Ops.clear();
5356         Ops.push_back(SE.getUnknown(FullV));
5357       }
5358       ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr));
5359       if (F.Scale != 1)
5360         ScaledS =
5361             SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale));
5362       Ops.push_back(ScaledS);
5363     }
5364   }
5365 
5366   // Expand the GV portion.
5367   if (F.BaseGV) {
5368     // Flush the operand list to suppress SCEVExpander hoisting.
5369     if (!Ops.empty()) {
5370       Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), IntTy);
5371       Ops.clear();
5372       Ops.push_back(SE.getUnknown(FullV));
5373     }
5374     Ops.push_back(SE.getUnknown(F.BaseGV));
5375   }
5376 
5377   // Flush the operand list to suppress SCEVExpander hoisting of both folded and
5378   // unfolded offsets. LSR assumes they both live next to their uses.
5379   if (!Ops.empty()) {
5380     Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
5381     Ops.clear();
5382     Ops.push_back(SE.getUnknown(FullV));
5383   }
5384 
5385   // Expand the immediate portion.
5386   int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset;
5387   if (Offset != 0) {
5388     if (LU.Kind == LSRUse::ICmpZero) {
5389       // The other interesting way of "folding" with an ICmpZero is to use a
5390       // negated immediate.
5391       if (!ICmpScaledV)
5392         ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset);
5393       else {
5394         Ops.push_back(SE.getUnknown(ICmpScaledV));
5395         ICmpScaledV = ConstantInt::get(IntTy, Offset);
5396       }
5397     } else {
5398       // Just add the immediate values. These again are expected to be matched
5399       // as part of the address.
5400       Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
5401     }
5402   }
5403 
5404   // Expand the unfolded offset portion.
5405   int64_t UnfoldedOffset = F.UnfoldedOffset;
5406   if (UnfoldedOffset != 0) {
5407     // Just add the immediate values.
5408     Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy,
5409                                                        UnfoldedOffset)));
5410   }
5411 
5412   // Emit instructions summing all the operands.
5413   const SCEV *FullS = Ops.empty() ?
5414                       SE.getConstant(IntTy, 0) :
5415                       SE.getAddExpr(Ops);
5416   Value *FullV = Rewriter.expandCodeFor(FullS, Ty);
5417 
5418   // We're done expanding now, so reset the rewriter.
5419   Rewriter.clearPostInc();
5420 
5421   // An ICmpZero Formula represents an ICmp which we're handling as a
5422   // comparison against zero. Now that we've expanded an expression for that
5423   // form, update the ICmp's other operand.
5424   if (LU.Kind == LSRUse::ICmpZero) {
5425     ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
5426     if (auto *OperandIsInstr = dyn_cast<Instruction>(CI->getOperand(1)))
5427       DeadInsts.emplace_back(OperandIsInstr);
5428     assert(!F.BaseGV && "ICmp does not support folding a global value and "
5429                            "a scale at the same time!");
5430     if (F.Scale == -1) {
5431       if (ICmpScaledV->getType() != OpTy) {
5432         Instruction *Cast =
5433           CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
5434                                                    OpTy, false),
5435                            ICmpScaledV, OpTy, "tmp", CI);
5436         ICmpScaledV = Cast;
5437       }
5438       CI->setOperand(1, ICmpScaledV);
5439     } else {
5440       // A scale of 1 means that the scale has been expanded as part of the
5441       // base regs.
5442       assert((F.Scale == 0 || F.Scale == 1) &&
5443              "ICmp does not support folding a global value and "
5444              "a scale at the same time!");
5445       Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
5446                                            -(uint64_t)Offset);
5447       if (C->getType() != OpTy)
5448         C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5449                                                           OpTy, false),
5450                                   C, OpTy);
5451 
5452       CI->setOperand(1, C);
5453     }
5454   }
5455 
5456   return FullV;
5457 }
5458 
5459 /// Helper for Rewrite. PHI nodes are special because the use of their operands
5460 /// effectively happens in their predecessor blocks, so the expression may need
5461 /// to be expanded in multiple places.
5462 void LSRInstance::RewriteForPHI(
5463     PHINode *PN, const LSRUse &LU, const LSRFixup &LF, const Formula &F,
5464     SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5465   DenseMap<BasicBlock *, Value *> Inserted;
5466   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5467     if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
5468       bool needUpdateFixups = false;
5469       BasicBlock *BB = PN->getIncomingBlock(i);
5470 
5471       // If this is a critical edge, split the edge so that we do not insert
5472       // the code on all predecessor/successor paths.  We do this unless this
5473       // is the canonical backedge for this loop, which complicates post-inc
5474       // users.
5475       if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
5476           !isa<IndirectBrInst>(BB->getTerminator()) &&
5477           !isa<CatchSwitchInst>(BB->getTerminator())) {
5478         BasicBlock *Parent = PN->getParent();
5479         Loop *PNLoop = LI.getLoopFor(Parent);
5480         if (!PNLoop || Parent != PNLoop->getHeader()) {
5481           // Split the critical edge.
5482           BasicBlock *NewBB = nullptr;
5483           if (!Parent->isLandingPad()) {
5484             NewBB =
5485                 SplitCriticalEdge(BB, Parent,
5486                                   CriticalEdgeSplittingOptions(&DT, &LI, MSSAU)
5487                                       .setMergeIdenticalEdges()
5488                                       .setKeepOneInputPHIs());
5489           } else {
5490             SmallVector<BasicBlock*, 2> NewBBs;
5491             SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI);
5492             NewBB = NewBBs[0];
5493           }
5494           // If NewBB==NULL, then SplitCriticalEdge refused to split because all
5495           // phi predecessors are identical. The simple thing to do is skip
5496           // splitting in this case rather than complicate the API.
5497           if (NewBB) {
5498             // If PN is outside of the loop and BB is in the loop, we want to
5499             // move the block to be immediately before the PHI block, not
5500             // immediately after BB.
5501             if (L->contains(BB) && !L->contains(PN))
5502               NewBB->moveBefore(PN->getParent());
5503 
5504             // Splitting the edge can reduce the number of PHI entries we have.
5505             e = PN->getNumIncomingValues();
5506             BB = NewBB;
5507             i = PN->getBasicBlockIndex(BB);
5508 
5509             needUpdateFixups = true;
5510           }
5511         }
5512       }
5513 
5514       std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
5515         Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr)));
5516       if (!Pair.second)
5517         PN->setIncomingValue(i, Pair.first->second);
5518       else {
5519         Value *FullV =
5520             Expand(LU, LF, F, BB->getTerminator()->getIterator(), DeadInsts);
5521 
5522         // If this is reuse-by-noop-cast, insert the noop cast.
5523         Type *OpTy = LF.OperandValToReplace->getType();
5524         if (FullV->getType() != OpTy)
5525           FullV =
5526             CastInst::Create(CastInst::getCastOpcode(FullV, false,
5527                                                      OpTy, false),
5528                              FullV, LF.OperandValToReplace->getType(),
5529                              "tmp", BB->getTerminator());
5530 
5531         PN->setIncomingValue(i, FullV);
5532         Pair.first->second = FullV;
5533       }
5534 
5535       // If LSR splits critical edge and phi node has other pending
5536       // fixup operands, we need to update those pending fixups. Otherwise
5537       // formulae will not be implemented completely and some instructions
5538       // will not be eliminated.
5539       if (needUpdateFixups) {
5540         for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx)
5541           for (LSRFixup &Fixup : Uses[LUIdx].Fixups)
5542             // If fixup is supposed to rewrite some operand in the phi
5543             // that was just updated, it may be already moved to
5544             // another phi node. Such fixup requires update.
5545             if (Fixup.UserInst == PN) {
5546               // Check if the operand we try to replace still exists in the
5547               // original phi.
5548               bool foundInOriginalPHI = false;
5549               for (const auto &val : PN->incoming_values())
5550                 if (val == Fixup.OperandValToReplace) {
5551                   foundInOriginalPHI = true;
5552                   break;
5553                 }
5554 
5555               // If fixup operand found in original PHI - nothing to do.
5556               if (foundInOriginalPHI)
5557                 continue;
5558 
5559               // Otherwise it might be moved to another PHI and requires update.
5560               // If fixup operand not found in any of the incoming blocks that
5561               // means we have already rewritten it - nothing to do.
5562               for (const auto &Block : PN->blocks())
5563                 for (BasicBlock::iterator I = Block->begin(); isa<PHINode>(I);
5564                      ++I) {
5565                   PHINode *NewPN = cast<PHINode>(I);
5566                   for (const auto &val : NewPN->incoming_values())
5567                     if (val == Fixup.OperandValToReplace)
5568                       Fixup.UserInst = NewPN;
5569                 }
5570             }
5571       }
5572     }
5573 }
5574 
5575 /// Emit instructions for the leading candidate expression for this LSRUse (this
5576 /// is called "expanding"), and update the UserInst to reference the newly
5577 /// expanded value.
5578 void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF,
5579                           const Formula &F,
5580                           SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5581   // First, find an insertion point that dominates UserInst. For PHI nodes,
5582   // find the nearest block which dominates all the relevant uses.
5583   if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
5584     RewriteForPHI(PN, LU, LF, F, DeadInsts);
5585   } else {
5586     Value *FullV = Expand(LU, LF, F, LF.UserInst->getIterator(), DeadInsts);
5587 
5588     // If this is reuse-by-noop-cast, insert the noop cast.
5589     Type *OpTy = LF.OperandValToReplace->getType();
5590     if (FullV->getType() != OpTy) {
5591       Instruction *Cast =
5592         CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
5593                          FullV, OpTy, "tmp", LF.UserInst);
5594       FullV = Cast;
5595     }
5596 
5597     // Update the user. ICmpZero is handled specially here (for now) because
5598     // Expand may have updated one of the operands of the icmp already, and
5599     // its new value may happen to be equal to LF.OperandValToReplace, in
5600     // which case doing replaceUsesOfWith leads to replacing both operands
5601     // with the same value. TODO: Reorganize this.
5602     if (LU.Kind == LSRUse::ICmpZero)
5603       LF.UserInst->setOperand(0, FullV);
5604     else
5605       LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
5606   }
5607 
5608   if (auto *OperandIsInstr = dyn_cast<Instruction>(LF.OperandValToReplace))
5609     DeadInsts.emplace_back(OperandIsInstr);
5610 }
5611 
5612 /// Rewrite all the fixup locations with new values, following the chosen
5613 /// solution.
5614 void LSRInstance::ImplementSolution(
5615     const SmallVectorImpl<const Formula *> &Solution) {
5616   // Keep track of instructions we may have made dead, so that
5617   // we can remove them after we are done working.
5618   SmallVector<WeakTrackingVH, 16> DeadInsts;
5619 
5620   Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
5621 
5622   // Mark phi nodes that terminate chains so the expander tries to reuse them.
5623   for (const IVChain &Chain : IVChainVec) {
5624     if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst()))
5625       Rewriter.setChainedPhi(PN);
5626   }
5627 
5628   // Expand the new value definitions and update the users.
5629   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx)
5630     for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) {
5631       Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], DeadInsts);
5632       Changed = true;
5633     }
5634 
5635   for (const IVChain &Chain : IVChainVec) {
5636     GenerateIVChain(Chain, DeadInsts);
5637     Changed = true;
5638   }
5639 
5640   for (const WeakVH &IV : Rewriter.getInsertedIVs())
5641     if (IV && dyn_cast<Instruction>(&*IV)->getParent())
5642       ScalarEvolutionIVs.push_back(IV);
5643 
5644   // Clean up after ourselves. This must be done before deleting any
5645   // instructions.
5646   Rewriter.clear();
5647 
5648   Changed |= RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts,
5649                                                                   &TLI, MSSAU);
5650 
5651   // In our cost analysis above, we assume that each addrec consumes exactly
5652   // one register, and arrange to have increments inserted just before the
5653   // latch to maximimize the chance this is true.  However, if we reused
5654   // existing IVs, we now need to move the increments to match our
5655   // expectations.  Otherwise, our cost modeling results in us having a
5656   // chosen a non-optimal result for the actual schedule.  (And yes, this
5657   // scheduling decision does impact later codegen.)
5658   for (PHINode &PN : L->getHeader()->phis()) {
5659     BinaryOperator *BO = nullptr;
5660     Value *Start = nullptr, *Step = nullptr;
5661     if (!matchSimpleRecurrence(&PN, BO, Start, Step))
5662       continue;
5663 
5664     switch (BO->getOpcode()) {
5665     case Instruction::Sub:
5666       if (BO->getOperand(0) != &PN)
5667         // sub is non-commutative - match handling elsewhere in LSR
5668         continue;
5669       break;
5670     case Instruction::Add:
5671       break;
5672     default:
5673       continue;
5674     };
5675 
5676     if (!isa<Constant>(Step))
5677       // If not a constant step, might increase register pressure
5678       // (We assume constants have been canonicalized to RHS)
5679       continue;
5680 
5681     if (BO->getParent() == IVIncInsertPos->getParent())
5682       // Only bother moving across blocks.  Isel can handle block local case.
5683       continue;
5684 
5685     // Can we legally schedule inc at the desired point?
5686     if (!llvm::all_of(BO->uses(),
5687                       [&](Use &U) {return DT.dominates(IVIncInsertPos, U);}))
5688       continue;
5689     BO->moveBefore(IVIncInsertPos);
5690     Changed = true;
5691   }
5692 
5693 
5694 }
5695 
5696 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE,
5697                          DominatorTree &DT, LoopInfo &LI,
5698                          const TargetTransformInfo &TTI, AssumptionCache &AC,
5699                          TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU)
5700     : IU(IU), SE(SE), DT(DT), LI(LI), AC(AC), TLI(TLI), TTI(TTI), L(L),
5701       MSSAU(MSSAU), AMK(PreferredAddresingMode.getNumOccurrences() > 0
5702                             ? PreferredAddresingMode
5703                             : TTI.getPreferredAddressingMode(L, &SE)),
5704       Rewriter(SE, L->getHeader()->getModule()->getDataLayout(), "lsr", false) {
5705   // If LoopSimplify form is not available, stay out of trouble.
5706   if (!L->isLoopSimplifyForm())
5707     return;
5708 
5709   // If there's no interesting work to be done, bail early.
5710   if (IU.empty()) return;
5711 
5712   // If there's too much analysis to be done, bail early. We won't be able to
5713   // model the problem anyway.
5714   unsigned NumUsers = 0;
5715   for (const IVStrideUse &U : IU) {
5716     if (++NumUsers > MaxIVUsers) {
5717       (void)U;
5718       LLVM_DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U
5719                         << "\n");
5720       return;
5721     }
5722     // Bail out if we have a PHI on an EHPad that gets a value from a
5723     // CatchSwitchInst.  Because the CatchSwitchInst cannot be split, there is
5724     // no good place to stick any instructions.
5725     if (auto *PN = dyn_cast<PHINode>(U.getUser())) {
5726        auto *FirstNonPHI = PN->getParent()->getFirstNonPHI();
5727        if (isa<FuncletPadInst>(FirstNonPHI) ||
5728            isa<CatchSwitchInst>(FirstNonPHI))
5729          for (BasicBlock *PredBB : PN->blocks())
5730            if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI()))
5731              return;
5732     }
5733   }
5734 
5735   LLVM_DEBUG(dbgs() << "\nLSR on loop ";
5736              L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false);
5737              dbgs() << ":\n");
5738 
5739   // Configure SCEVExpander already now, so the correct mode is used for
5740   // isSafeToExpand() checks.
5741 #ifndef NDEBUG
5742   Rewriter.setDebugType(DEBUG_TYPE);
5743 #endif
5744   Rewriter.disableCanonicalMode();
5745   Rewriter.enableLSRMode();
5746 
5747   // First, perform some low-level loop optimizations.
5748   OptimizeShadowIV();
5749   OptimizeLoopTermCond();
5750 
5751   // If loop preparation eliminates all interesting IV users, bail.
5752   if (IU.empty()) return;
5753 
5754   // Skip nested loops until we can model them better with formulae.
5755   if (!L->isInnermost()) {
5756     LLVM_DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n");
5757     return;
5758   }
5759 
5760   // Start collecting data and preparing for the solver.
5761   // If number of registers is not the major cost, we cannot benefit from the
5762   // current profitable chain optimization which is based on number of
5763   // registers.
5764   // FIXME: add profitable chain optimization for other kinds major cost, for
5765   // example number of instructions.
5766   if (TTI.isNumRegsMajorCostOfLSR() || StressIVChain)
5767     CollectChains();
5768   CollectInterestingTypesAndFactors();
5769   CollectFixupsAndInitialFormulae();
5770   CollectLoopInvariantFixupsAndFormulae();
5771 
5772   if (Uses.empty())
5773     return;
5774 
5775   LLVM_DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
5776              print_uses(dbgs()));
5777 
5778   // Now use the reuse data to generate a bunch of interesting ways
5779   // to formulate the values needed for the uses.
5780   GenerateAllReuseFormulae();
5781 
5782   FilterOutUndesirableDedicatedRegisters();
5783   NarrowSearchSpaceUsingHeuristics();
5784 
5785   SmallVector<const Formula *, 8> Solution;
5786   Solve(Solution);
5787 
5788   // Release memory that is no longer needed.
5789   Factors.clear();
5790   Types.clear();
5791   RegUses.clear();
5792 
5793   if (Solution.empty())
5794     return;
5795 
5796 #ifndef NDEBUG
5797   // Formulae should be legal.
5798   for (const LSRUse &LU : Uses) {
5799     for (const Formula &F : LU.Formulae)
5800       assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
5801                         F) && "Illegal formula generated!");
5802   };
5803 #endif
5804 
5805   // Now that we've decided what we want, make it so.
5806   ImplementSolution(Solution);
5807 }
5808 
5809 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
5810 void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
5811   if (Factors.empty() && Types.empty()) return;
5812 
5813   OS << "LSR has identified the following interesting factors and types: ";
5814   bool First = true;
5815 
5816   for (int64_t Factor : Factors) {
5817     if (!First) OS << ", ";
5818     First = false;
5819     OS << '*' << Factor;
5820   }
5821 
5822   for (Type *Ty : Types) {
5823     if (!First) OS << ", ";
5824     First = false;
5825     OS << '(' << *Ty << ')';
5826   }
5827   OS << '\n';
5828 }
5829 
5830 void LSRInstance::print_fixups(raw_ostream &OS) const {
5831   OS << "LSR is examining the following fixup sites:\n";
5832   for (const LSRUse &LU : Uses)
5833     for (const LSRFixup &LF : LU.Fixups) {
5834       dbgs() << "  ";
5835       LF.print(OS);
5836       OS << '\n';
5837     }
5838 }
5839 
5840 void LSRInstance::print_uses(raw_ostream &OS) const {
5841   OS << "LSR is examining the following uses:\n";
5842   for (const LSRUse &LU : Uses) {
5843     dbgs() << "  ";
5844     LU.print(OS);
5845     OS << '\n';
5846     for (const Formula &F : LU.Formulae) {
5847       OS << "    ";
5848       F.print(OS);
5849       OS << '\n';
5850     }
5851   }
5852 }
5853 
5854 void LSRInstance::print(raw_ostream &OS) const {
5855   print_factors_and_types(OS);
5856   print_fixups(OS);
5857   print_uses(OS);
5858 }
5859 
5860 LLVM_DUMP_METHOD void LSRInstance::dump() const {
5861   print(errs()); errs() << '\n';
5862 }
5863 #endif
5864 
5865 namespace {
5866 
5867 class LoopStrengthReduce : public LoopPass {
5868 public:
5869   static char ID; // Pass ID, replacement for typeid
5870 
5871   LoopStrengthReduce();
5872 
5873 private:
5874   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
5875   void getAnalysisUsage(AnalysisUsage &AU) const override;
5876 };
5877 
5878 } // end anonymous namespace
5879 
5880 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) {
5881   initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
5882 }
5883 
5884 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
5885   // We split critical edges, so we change the CFG.  However, we do update
5886   // many analyses if they are around.
5887   AU.addPreservedID(LoopSimplifyID);
5888 
5889   AU.addRequired<LoopInfoWrapperPass>();
5890   AU.addPreserved<LoopInfoWrapperPass>();
5891   AU.addRequiredID(LoopSimplifyID);
5892   AU.addRequired<DominatorTreeWrapperPass>();
5893   AU.addPreserved<DominatorTreeWrapperPass>();
5894   AU.addRequired<ScalarEvolutionWrapperPass>();
5895   AU.addPreserved<ScalarEvolutionWrapperPass>();
5896   AU.addRequired<AssumptionCacheTracker>();
5897   AU.addRequired<TargetLibraryInfoWrapperPass>();
5898   // Requiring LoopSimplify a second time here prevents IVUsers from running
5899   // twice, since LoopSimplify was invalidated by running ScalarEvolution.
5900   AU.addRequiredID(LoopSimplifyID);
5901   AU.addRequired<IVUsersWrapperPass>();
5902   AU.addPreserved<IVUsersWrapperPass>();
5903   AU.addRequired<TargetTransformInfoWrapperPass>();
5904   AU.addPreserved<MemorySSAWrapperPass>();
5905 }
5906 
5907 namespace {
5908 
5909 /// Enables more convenient iteration over a DWARF expression vector.
5910 static iterator_range<llvm::DIExpression::expr_op_iterator>
5911 ToDwarfOpIter(SmallVectorImpl<uint64_t> &Expr) {
5912   llvm::DIExpression::expr_op_iterator Begin =
5913       llvm::DIExpression::expr_op_iterator(Expr.begin());
5914   llvm::DIExpression::expr_op_iterator End =
5915       llvm::DIExpression::expr_op_iterator(Expr.end());
5916   return {Begin, End};
5917 }
5918 
5919 struct SCEVDbgValueBuilder {
5920   SCEVDbgValueBuilder() = default;
5921   SCEVDbgValueBuilder(const SCEVDbgValueBuilder &Base) { clone(Base); }
5922 
5923   void clone(const SCEVDbgValueBuilder &Base) {
5924     LocationOps = Base.LocationOps;
5925     Expr = Base.Expr;
5926   }
5927 
5928   void clear() {
5929     LocationOps.clear();
5930     Expr.clear();
5931   }
5932 
5933   /// The DIExpression as we translate the SCEV.
5934   SmallVector<uint64_t, 6> Expr;
5935   /// The location ops of the DIExpression.
5936   SmallVector<Value *, 2> LocationOps;
5937 
5938   void pushOperator(uint64_t Op) { Expr.push_back(Op); }
5939   void pushUInt(uint64_t Operand) { Expr.push_back(Operand); }
5940 
5941   /// Add a DW_OP_LLVM_arg to the expression, followed by the index of the value
5942   /// in the set of values referenced by the expression.
5943   void pushLocation(llvm::Value *V) {
5944     Expr.push_back(llvm::dwarf::DW_OP_LLVM_arg);
5945     auto *It = std::find(LocationOps.begin(), LocationOps.end(), V);
5946     unsigned ArgIndex = 0;
5947     if (It != LocationOps.end()) {
5948       ArgIndex = std::distance(LocationOps.begin(), It);
5949     } else {
5950       ArgIndex = LocationOps.size();
5951       LocationOps.push_back(V);
5952     }
5953     Expr.push_back(ArgIndex);
5954   }
5955 
5956   void pushValue(const SCEVUnknown *U) {
5957     llvm::Value *V = cast<SCEVUnknown>(U)->getValue();
5958     pushLocation(V);
5959   }
5960 
5961   bool pushConst(const SCEVConstant *C) {
5962     if (C->getAPInt().getMinSignedBits() > 64)
5963       return false;
5964     Expr.push_back(llvm::dwarf::DW_OP_consts);
5965     Expr.push_back(C->getAPInt().getSExtValue());
5966     return true;
5967   }
5968 
5969   // Iterating the expression as DWARF ops is convenient when updating
5970   // DWARF_OP_LLVM_args.
5971   iterator_range<llvm::DIExpression::expr_op_iterator> expr_ops() {
5972     return ToDwarfOpIter(Expr);
5973   }
5974 
5975   /// Several SCEV types are sequences of the same arithmetic operator applied
5976   /// to constants and values that may be extended or truncated.
5977   bool pushArithmeticExpr(const llvm::SCEVCommutativeExpr *CommExpr,
5978                           uint64_t DwarfOp) {
5979     assert((isa<llvm::SCEVAddExpr>(CommExpr) || isa<SCEVMulExpr>(CommExpr)) &&
5980            "Expected arithmetic SCEV type");
5981     bool Success = true;
5982     unsigned EmitOperator = 0;
5983     for (auto &Op : CommExpr->operands()) {
5984       Success &= pushSCEV(Op);
5985 
5986       if (EmitOperator >= 1)
5987         pushOperator(DwarfOp);
5988       ++EmitOperator;
5989     }
5990     return Success;
5991   }
5992 
5993   // TODO: Identify and omit noop casts.
5994   bool pushCast(const llvm::SCEVCastExpr *C, bool IsSigned) {
5995     const llvm::SCEV *Inner = C->getOperand(0);
5996     const llvm::Type *Type = C->getType();
5997     uint64_t ToWidth = Type->getIntegerBitWidth();
5998     bool Success = pushSCEV(Inner);
5999     uint64_t CastOps[] = {dwarf::DW_OP_LLVM_convert, ToWidth,
6000                           IsSigned ? llvm::dwarf::DW_ATE_signed
6001                                    : llvm::dwarf::DW_ATE_unsigned};
6002     for (const auto &Op : CastOps)
6003       pushOperator(Op);
6004     return Success;
6005   }
6006 
6007   // TODO: MinMax - although these haven't been encountered in the test suite.
6008   bool pushSCEV(const llvm::SCEV *S) {
6009     bool Success = true;
6010     if (const SCEVConstant *StartInt = dyn_cast<SCEVConstant>(S)) {
6011       Success &= pushConst(StartInt);
6012 
6013     } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
6014       if (!U->getValue())
6015         return false;
6016       pushLocation(U->getValue());
6017 
6018     } else if (const SCEVMulExpr *MulRec = dyn_cast<SCEVMulExpr>(S)) {
6019       Success &= pushArithmeticExpr(MulRec, llvm::dwarf::DW_OP_mul);
6020 
6021     } else if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
6022       Success &= pushSCEV(UDiv->getLHS());
6023       Success &= pushSCEV(UDiv->getRHS());
6024       pushOperator(llvm::dwarf::DW_OP_div);
6025 
6026     } else if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(S)) {
6027       // Assert if a new and unknown SCEVCastEXpr type is encountered.
6028       assert((isa<SCEVZeroExtendExpr>(Cast) || isa<SCEVTruncateExpr>(Cast) ||
6029               isa<SCEVPtrToIntExpr>(Cast) || isa<SCEVSignExtendExpr>(Cast)) &&
6030              "Unexpected cast type in SCEV.");
6031       Success &= pushCast(Cast, (isa<SCEVSignExtendExpr>(Cast)));
6032 
6033     } else if (const SCEVAddExpr *AddExpr = dyn_cast<SCEVAddExpr>(S)) {
6034       Success &= pushArithmeticExpr(AddExpr, llvm::dwarf::DW_OP_plus);
6035 
6036     } else if (isa<SCEVAddRecExpr>(S)) {
6037       // Nested SCEVAddRecExpr are generated by nested loops and are currently
6038       // unsupported.
6039       return false;
6040 
6041     } else {
6042       return false;
6043     }
6044     return Success;
6045   }
6046 
6047   /// Return true if the combination of arithmetic operator and underlying
6048   /// SCEV constant value is an identity function.
6049   bool isIdentityFunction(uint64_t Op, const SCEV *S) {
6050     if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
6051       if (C->getAPInt().getMinSignedBits() > 64)
6052         return false;
6053       int64_t I = C->getAPInt().getSExtValue();
6054       switch (Op) {
6055       case llvm::dwarf::DW_OP_plus:
6056       case llvm::dwarf::DW_OP_minus:
6057         return I == 0;
6058       case llvm::dwarf::DW_OP_mul:
6059       case llvm::dwarf::DW_OP_div:
6060         return I == 1;
6061       }
6062     }
6063     return false;
6064   }
6065 
6066   /// Convert a SCEV of a value to a DIExpression that is pushed onto the
6067   /// builder's expression stack. The stack should already contain an
6068   /// expression for the iteration count, so that it can be multiplied by
6069   /// the stride and added to the start.
6070   /// Components of the expression are omitted if they are an identity function.
6071   /// Chain (non-affine) SCEVs are not supported.
6072   bool SCEVToValueExpr(const llvm::SCEVAddRecExpr &SAR, ScalarEvolution &SE) {
6073     assert(SAR.isAffine() && "Expected affine SCEV");
6074     // TODO: Is this check needed?
6075     if (isa<SCEVAddRecExpr>(SAR.getStart()))
6076       return false;
6077 
6078     const SCEV *Start = SAR.getStart();
6079     const SCEV *Stride = SAR.getStepRecurrence(SE);
6080 
6081     // Skip pushing arithmetic noops.
6082     if (!isIdentityFunction(llvm::dwarf::DW_OP_mul, Stride)) {
6083       if (!pushSCEV(Stride))
6084         return false;
6085       pushOperator(llvm::dwarf::DW_OP_mul);
6086     }
6087     if (!isIdentityFunction(llvm::dwarf::DW_OP_plus, Start)) {
6088       if (!pushSCEV(Start))
6089         return false;
6090       pushOperator(llvm::dwarf::DW_OP_plus);
6091     }
6092     return true;
6093   }
6094 
6095   /// Create an expression that is an offset from a value (usually the IV).
6096   void createOffsetExpr(int64_t Offset, Value *OffsetValue) {
6097     pushLocation(OffsetValue);
6098     DIExpression::appendOffset(Expr, Offset);
6099     LLVM_DEBUG(
6100         dbgs() << "scev-salvage: Generated IV offset expression. Offset: "
6101                << std::to_string(Offset) << "\n");
6102   }
6103 
6104   /// Combine a translation of the SCEV and the IV to create an expression that
6105   /// recovers a location's value.
6106   /// returns true if an expression was created.
6107   bool createIterCountExpr(const SCEV *S,
6108                            const SCEVDbgValueBuilder &IterationCount,
6109                            ScalarEvolution &SE) {
6110     // SCEVs for SSA values are most frquently of the form
6111     // {start,+,stride}, but sometimes they are ({start,+,stride} + %a + ..).
6112     // This is because %a is a PHI node that is not the IV. However, these
6113     // SCEVs have not been observed to result in debuginfo-lossy optimisations,
6114     // so its not expected this point will be reached.
6115     if (!isa<SCEVAddRecExpr>(S))
6116       return false;
6117 
6118     LLVM_DEBUG(dbgs() << "scev-salvage: Location to salvage SCEV: " << *S
6119                       << '\n');
6120 
6121     const auto *Rec = cast<SCEVAddRecExpr>(S);
6122     if (!Rec->isAffine())
6123       return false;
6124 
6125     if (S->getExpressionSize() > MaxSCEVSalvageExpressionSize)
6126       return false;
6127 
6128     // Initialise a new builder with the iteration count expression. In
6129     // combination with the value's SCEV this enables recovery.
6130     clone(IterationCount);
6131     if (!SCEVToValueExpr(*Rec, SE))
6132       return false;
6133 
6134     return true;
6135   }
6136 
6137   /// Convert a SCEV of a value to a DIExpression that is pushed onto the
6138   /// builder's expression stack. The stack should already contain an
6139   /// expression for the iteration count, so that it can be multiplied by
6140   /// the stride and added to the start.
6141   /// Components of the expression are omitted if they are an identity function.
6142   bool SCEVToIterCountExpr(const llvm::SCEVAddRecExpr &SAR,
6143                            ScalarEvolution &SE) {
6144     assert(SAR.isAffine() && "Expected affine SCEV");
6145     if (isa<SCEVAddRecExpr>(SAR.getStart())) {
6146       LLVM_DEBUG(dbgs() << "scev-salvage: IV SCEV. Unsupported nested AddRec: "
6147                         << SAR << '\n');
6148       return false;
6149     }
6150     const SCEV *Start = SAR.getStart();
6151     const SCEV *Stride = SAR.getStepRecurrence(SE);
6152 
6153     // Skip pushing arithmetic noops.
6154     if (!isIdentityFunction(llvm::dwarf::DW_OP_minus, Start)) {
6155       if (!pushSCEV(Start))
6156         return false;
6157       pushOperator(llvm::dwarf::DW_OP_minus);
6158     }
6159     if (!isIdentityFunction(llvm::dwarf::DW_OP_div, Stride)) {
6160       if (!pushSCEV(Stride))
6161         return false;
6162       pushOperator(llvm::dwarf::DW_OP_div);
6163     }
6164     return true;
6165   }
6166 
6167   // Append the current expression and locations to a location list and an
6168   // expression list. Modify the DW_OP_LLVM_arg indexes to account for
6169   // the locations already present in the destination list.
6170   void appendToVectors(SmallVectorImpl<uint64_t> &DestExpr,
6171                        SmallVectorImpl<Value *> &DestLocations) {
6172     assert(!DestLocations.empty() &&
6173            "Expected the locations vector to contain the IV");
6174     // The DWARF_OP_LLVM_arg arguments of the expression being appended must be
6175     // modified to account for the locations already in the destination vector.
6176     // All builders contain the IV as the first location op.
6177     assert(!LocationOps.empty() &&
6178            "Expected the location ops to contain the IV.");
6179     // DestIndexMap[n] contains the index in DestLocations for the nth
6180     // location in this SCEVDbgValueBuilder.
6181     SmallVector<uint64_t, 2> DestIndexMap;
6182     for (const auto &Op : LocationOps) {
6183       auto It = find(DestLocations, Op);
6184       if (It != DestLocations.end()) {
6185         // Location already exists in DestLocations, reuse existing ArgIndex.
6186         DestIndexMap.push_back(std::distance(DestLocations.begin(), It));
6187         continue;
6188       }
6189       // Location is not in DestLocations, add it.
6190       DestIndexMap.push_back(DestLocations.size());
6191       DestLocations.push_back(Op);
6192     }
6193 
6194     for (const auto &Op : expr_ops()) {
6195       if (Op.getOp() != dwarf::DW_OP_LLVM_arg) {
6196         Op.appendToVector(DestExpr);
6197         continue;
6198       }
6199 
6200       DestExpr.push_back(dwarf::DW_OP_LLVM_arg);
6201       // `DW_OP_LLVM_arg n` represents the nth LocationOp in this SCEV,
6202       // DestIndexMap[n] contains its new index in DestLocations.
6203       uint64_t NewIndex = DestIndexMap[Op.getArg(0)];
6204       DestExpr.push_back(NewIndex);
6205     }
6206   }
6207 };
6208 
6209 /// Holds all the required data to salvage a dbg.value using the pre-LSR SCEVs
6210 /// and DIExpression.
6211 struct DVIRecoveryRec {
6212   DVIRecoveryRec(DbgValueInst *DbgValue)
6213       : DVI(DbgValue), Expr(DbgValue->getExpression()),
6214         HadLocationArgList(false) {}
6215 
6216   DbgValueInst *DVI;
6217   DIExpression *Expr;
6218   bool HadLocationArgList;
6219   SmallVector<WeakVH, 2> LocationOps;
6220   SmallVector<const llvm::SCEV *, 2> SCEVs;
6221   SmallVector<std::unique_ptr<SCEVDbgValueBuilder>, 2> RecoveryExprs;
6222 
6223   void clear() {
6224     for (auto &RE : RecoveryExprs)
6225       RE.reset();
6226     RecoveryExprs.clear();
6227   }
6228 
6229   ~DVIRecoveryRec() { clear(); }
6230 };
6231 } // namespace
6232 
6233 /// Returns the total number of DW_OP_llvm_arg operands in the expression.
6234 /// This helps in determining if a DIArglist is necessary or can be omitted from
6235 /// the dbg.value.
6236 static unsigned numLLVMArgOps(SmallVectorImpl<uint64_t> &Expr) {
6237   auto expr_ops = ToDwarfOpIter(Expr);
6238   unsigned Count = 0;
6239   for (auto Op : expr_ops)
6240     if (Op.getOp() == dwarf::DW_OP_LLVM_arg)
6241       Count++;
6242   return Count;
6243 }
6244 
6245 /// Overwrites DVI with the location and Ops as the DIExpression. This will
6246 /// create an invalid expression if Ops has any dwarf::DW_OP_llvm_arg operands,
6247 /// because a DIArglist is not created for the first argument of the dbg.value.
6248 static void updateDVIWithLocation(DbgValueInst &DVI, Value *Location,
6249                                   SmallVectorImpl<uint64_t> &Ops) {
6250   assert(
6251       numLLVMArgOps(Ops) == 0 &&
6252       "Expected expression that does not contain any DW_OP_llvm_arg operands.");
6253   DVI.setRawLocation(ValueAsMetadata::get(Location));
6254   DVI.setExpression(DIExpression::get(DVI.getContext(), Ops));
6255 }
6256 
6257 /// Overwrite DVI with locations placed into a DIArglist.
6258 static void updateDVIWithLocations(DbgValueInst &DVI,
6259                                    SmallVectorImpl<Value *> &Locations,
6260                                    SmallVectorImpl<uint64_t> &Ops) {
6261   assert(numLLVMArgOps(Ops) != 0 &&
6262          "Expected expression that references DIArglist locations using "
6263          "DW_OP_llvm_arg operands.");
6264   SmallVector<ValueAsMetadata *, 3> MetadataLocs;
6265   for (Value *V : Locations)
6266     MetadataLocs.push_back(ValueAsMetadata::get(V));
6267   auto ValArrayRef = llvm::ArrayRef<llvm::ValueAsMetadata *>(MetadataLocs);
6268   DVI.setRawLocation(llvm::DIArgList::get(DVI.getContext(), ValArrayRef));
6269   DVI.setExpression(DIExpression::get(DVI.getContext(), Ops));
6270 }
6271 
6272 /// Write the new expression and new location ops for the dbg.value. If possible
6273 /// reduce the szie of the dbg.value intrinsic by omitting DIArglist. This
6274 /// can be omitted if:
6275 /// 1. There is only a single location, refenced by a single DW_OP_llvm_arg.
6276 /// 2. The DW_OP_LLVM_arg is the first operand in the expression.
6277 static void UpdateDbgValueInst(DVIRecoveryRec &DVIRec,
6278                                SmallVectorImpl<Value *> &NewLocationOps,
6279                                SmallVectorImpl<uint64_t> &NewExpr) {
6280   unsigned NumLLVMArgs = numLLVMArgOps(NewExpr);
6281   if (NumLLVMArgs == 0) {
6282     // Location assumed to be on the stack.
6283     updateDVIWithLocation(*DVIRec.DVI, NewLocationOps[0], NewExpr);
6284   } else if (NumLLVMArgs == 1 && NewExpr[0] == dwarf::DW_OP_LLVM_arg) {
6285     // There is only a single DW_OP_llvm_arg at the start of the expression,
6286     // so it can be omitted along with DIArglist.
6287     assert(NewExpr[1] == 0 &&
6288            "Lone LLVM_arg in a DIExpression should refer to location-op 0.");
6289     llvm::SmallVector<uint64_t, 6> ShortenedOps(llvm::drop_begin(NewExpr, 2));
6290     updateDVIWithLocation(*DVIRec.DVI, NewLocationOps[0], ShortenedOps);
6291   } else {
6292     // Multiple DW_OP_llvm_arg, so DIArgList is strictly necessary.
6293     updateDVIWithLocations(*DVIRec.DVI, NewLocationOps, NewExpr);
6294   }
6295 
6296   // If the DIExpression was previously empty then add the stack terminator.
6297   // Non-empty expressions have only had elements inserted into them and so the
6298   // terminator should already be present e.g. stack_value or fragment.
6299   DIExpression *SalvageExpr = DVIRec.DVI->getExpression();
6300   if (!DVIRec.Expr->isComplex() && SalvageExpr->isComplex()) {
6301     SalvageExpr = DIExpression::append(SalvageExpr, {dwarf::DW_OP_stack_value});
6302     DVIRec.DVI->setExpression(SalvageExpr);
6303   }
6304 }
6305 
6306 /// Cached location ops may be erased during LSR, in which case an undef is
6307 /// required when restoring from the cache. The type of that location is no
6308 /// longer available, so just use int8. The undef will be replaced by one or
6309 /// more locations later when a SCEVDbgValueBuilder selects alternative
6310 /// locations to use for the salvage.
6311 static Value *getValueOrUndef(WeakVH &VH, LLVMContext &C) {
6312   return (VH) ? VH : UndefValue::get(llvm::Type::getInt8Ty(C));
6313 }
6314 
6315 /// Restore the DVI's pre-LSR arguments. Substitute undef for any erased values.
6316 static void restorePreTransformState(DVIRecoveryRec &DVIRec) {
6317   LLVM_DEBUG(dbgs() << "scev-salvage: restore dbg.value to pre-LSR state\n"
6318                     << "scev-salvage: post-LSR: " << *DVIRec.DVI << '\n');
6319   assert(DVIRec.Expr && "Expected an expression");
6320   DVIRec.DVI->setExpression(DVIRec.Expr);
6321 
6322   // Even a single location-op may be inside a DIArgList and referenced with
6323   // DW_OP_LLVM_arg, which is valid only with a DIArgList.
6324   if (!DVIRec.HadLocationArgList) {
6325     assert(DVIRec.LocationOps.size() == 1 &&
6326            "Unexpected number of location ops.");
6327     // LSR's unsuccessful salvage attempt may have added DIArgList, which in
6328     // this case was not present before, so force the location back to a single
6329     // uncontained Value.
6330     Value *CachedValue =
6331         getValueOrUndef(DVIRec.LocationOps[0], DVIRec.DVI->getContext());
6332     DVIRec.DVI->setRawLocation(ValueAsMetadata::get(CachedValue));
6333   } else {
6334     SmallVector<ValueAsMetadata *, 3> MetadataLocs;
6335     for (WeakVH VH : DVIRec.LocationOps) {
6336       Value *CachedValue = getValueOrUndef(VH, DVIRec.DVI->getContext());
6337       MetadataLocs.push_back(ValueAsMetadata::get(CachedValue));
6338     }
6339     auto ValArrayRef = llvm::ArrayRef<llvm::ValueAsMetadata *>(MetadataLocs);
6340     DVIRec.DVI->setRawLocation(
6341         llvm::DIArgList::get(DVIRec.DVI->getContext(), ValArrayRef));
6342   }
6343   LLVM_DEBUG(dbgs() << "scev-salvage: pre-LSR: " << *DVIRec.DVI << '\n');
6344 }
6345 
6346 static bool SalvageDVI(llvm::Loop *L, ScalarEvolution &SE,
6347                        llvm::PHINode *LSRInductionVar, DVIRecoveryRec &DVIRec,
6348                        const SCEV *SCEVInductionVar,
6349                        SCEVDbgValueBuilder IterCountExpr) {
6350   if (!DVIRec.DVI->isUndef())
6351     return false;
6352 
6353   // LSR may have caused several changes to the dbg.value in the failed salvage
6354   // attempt. So restore the DIExpression, the location ops and also the
6355   // location ops format, which is always DIArglist for multiple ops, but only
6356   // sometimes for a single op.
6357   restorePreTransformState(DVIRec);
6358 
6359   // LocationOpIndexMap[i] will store the post-LSR location index of
6360   // the non-optimised out location at pre-LSR index i.
6361   SmallVector<int64_t, 2> LocationOpIndexMap;
6362   LocationOpIndexMap.assign(DVIRec.LocationOps.size(), -1);
6363   SmallVector<Value *, 2> NewLocationOps;
6364   NewLocationOps.push_back(LSRInductionVar);
6365 
6366   for (unsigned i = 0; i < DVIRec.LocationOps.size(); i++) {
6367     WeakVH VH = DVIRec.LocationOps[i];
6368     // Place the locations not optimised out in the list first, avoiding
6369     // inserts later. The map is used to update the DIExpression's
6370     // DW_OP_LLVM_arg arguments as the expression is updated.
6371     if (VH && !isa<UndefValue>(VH)) {
6372       NewLocationOps.push_back(VH);
6373       LocationOpIndexMap[i] = NewLocationOps.size() - 1;
6374       LLVM_DEBUG(dbgs() << "scev-salvage: Location index " << i
6375                         << " now at index " << LocationOpIndexMap[i] << "\n");
6376       continue;
6377     }
6378 
6379     // It's possible that a value referred to in the SCEV may have been
6380     // optimised out by LSR.
6381     if (SE.containsErasedValue(DVIRec.SCEVs[i]) ||
6382         SE.containsUndefs(DVIRec.SCEVs[i])) {
6383       LLVM_DEBUG(dbgs() << "scev-salvage: SCEV for location at index: " << i
6384                         << " refers to a location that is now undef or erased. "
6385                            "Salvage abandoned.\n");
6386       return false;
6387     }
6388 
6389     LLVM_DEBUG(dbgs() << "scev-salvage: salvaging location at index " << i
6390                       << " with SCEV: " << *DVIRec.SCEVs[i] << "\n");
6391 
6392     DVIRec.RecoveryExprs[i] = std::make_unique<SCEVDbgValueBuilder>();
6393     SCEVDbgValueBuilder *SalvageExpr = DVIRec.RecoveryExprs[i].get();
6394 
6395     // Create an offset-based salvage expression if possible, as it requires
6396     // less DWARF ops than an iteration count-based expression.
6397     if (Optional<APInt> Offset =
6398             SE.computeConstantDifference(DVIRec.SCEVs[i], SCEVInductionVar)) {
6399       if (Offset.value().getMinSignedBits() <= 64)
6400         SalvageExpr->createOffsetExpr(Offset.value().getSExtValue(),
6401                                       LSRInductionVar);
6402     } else if (!SalvageExpr->createIterCountExpr(DVIRec.SCEVs[i], IterCountExpr,
6403                                                  SE))
6404       return false;
6405   }
6406 
6407   // Merge the DbgValueBuilder generated expressions and the original
6408   // DIExpression, place the result into an new vector.
6409   SmallVector<uint64_t, 3> NewExpr;
6410   if (DVIRec.Expr->getNumElements() == 0) {
6411     assert(DVIRec.RecoveryExprs.size() == 1 &&
6412            "Expected only a single recovery expression for an empty "
6413            "DIExpression.");
6414     assert(DVIRec.RecoveryExprs[0] &&
6415            "Expected a SCEVDbgSalvageBuilder for location 0");
6416     SCEVDbgValueBuilder *B = DVIRec.RecoveryExprs[0].get();
6417     B->appendToVectors(NewExpr, NewLocationOps);
6418   }
6419   for (const auto &Op : DVIRec.Expr->expr_ops()) {
6420     // Most Ops needn't be updated.
6421     if (Op.getOp() != dwarf::DW_OP_LLVM_arg) {
6422       Op.appendToVector(NewExpr);
6423       continue;
6424     }
6425 
6426     uint64_t LocationArgIndex = Op.getArg(0);
6427     SCEVDbgValueBuilder *DbgBuilder =
6428         DVIRec.RecoveryExprs[LocationArgIndex].get();
6429     // The location doesn't have s SCEVDbgValueBuilder, so LSR did not
6430     // optimise it away. So just translate the argument to the updated
6431     // location index.
6432     if (!DbgBuilder) {
6433       NewExpr.push_back(dwarf::DW_OP_LLVM_arg);
6434       assert(LocationOpIndexMap[Op.getArg(0)] != -1 &&
6435              "Expected a positive index for the location-op position.");
6436       NewExpr.push_back(LocationOpIndexMap[Op.getArg(0)]);
6437       continue;
6438     }
6439     // The location has a recovery expression.
6440     DbgBuilder->appendToVectors(NewExpr, NewLocationOps);
6441   }
6442 
6443   UpdateDbgValueInst(DVIRec, NewLocationOps, NewExpr);
6444   LLVM_DEBUG(dbgs() << "scev-salvage: Updated DVI: " << *DVIRec.DVI << "\n");
6445   return true;
6446 }
6447 
6448 /// Obtain an expression for the iteration count, then attempt to salvage the
6449 /// dbg.value intrinsics.
6450 static void
6451 DbgRewriteSalvageableDVIs(llvm::Loop *L, ScalarEvolution &SE,
6452                           llvm::PHINode *LSRInductionVar,
6453                           SmallVector<std::unique_ptr<DVIRecoveryRec>, 2> &DVIToUpdate) {
6454   if (DVIToUpdate.empty())
6455     return;
6456 
6457   const llvm::SCEV *SCEVInductionVar = SE.getSCEV(LSRInductionVar);
6458   assert(SCEVInductionVar &&
6459          "Anticipated a SCEV for the post-LSR induction variable");
6460 
6461   if (const SCEVAddRecExpr *IVAddRec =
6462           dyn_cast<SCEVAddRecExpr>(SCEVInductionVar)) {
6463     if (!IVAddRec->isAffine())
6464       return;
6465 
6466     // Prevent translation using excessive resources.
6467     if (IVAddRec->getExpressionSize() > MaxSCEVSalvageExpressionSize)
6468       return;
6469 
6470     // The iteration count is required to recover location values.
6471     SCEVDbgValueBuilder IterCountExpr;
6472     IterCountExpr.pushLocation(LSRInductionVar);
6473     if (!IterCountExpr.SCEVToIterCountExpr(*IVAddRec, SE))
6474       return;
6475 
6476     LLVM_DEBUG(dbgs() << "scev-salvage: IV SCEV: " << *SCEVInductionVar
6477                       << '\n');
6478 
6479     for (auto &DVIRec : DVIToUpdate) {
6480       SalvageDVI(L, SE, LSRInductionVar, *DVIRec, SCEVInductionVar,
6481                  IterCountExpr);
6482     }
6483   }
6484 }
6485 
6486 /// Identify and cache salvageable DVI locations and expressions along with the
6487 /// corresponding SCEV(s). Also ensure that the DVI is not deleted between
6488 /// cacheing and salvaging.
6489 static void DbgGatherSalvagableDVI(
6490     Loop *L, ScalarEvolution &SE,
6491     SmallVector<std::unique_ptr<DVIRecoveryRec>, 2> &SalvageableDVISCEVs,
6492     SmallSet<AssertingVH<DbgValueInst>, 2> &DVIHandles) {
6493   for (auto &B : L->getBlocks()) {
6494     for (auto &I : *B) {
6495       auto DVI = dyn_cast<DbgValueInst>(&I);
6496       if (!DVI)
6497         continue;
6498       // Ensure that if any location op is undef that the dbg.vlue is not
6499       // cached.
6500       if (DVI->isUndef())
6501         continue;
6502 
6503       // Check that the location op SCEVs are suitable for translation to
6504       // DIExpression.
6505       const auto &HasTranslatableLocationOps =
6506           [&](const DbgValueInst *DVI) -> bool {
6507         for (const auto LocOp : DVI->location_ops()) {
6508           if (!LocOp)
6509             return false;
6510 
6511           if (!SE.isSCEVable(LocOp->getType()))
6512             return false;
6513 
6514           const SCEV *S = SE.getSCEV(LocOp);
6515           if (SE.containsUndefs(S))
6516             return false;
6517         }
6518         return true;
6519       };
6520 
6521       if (!HasTranslatableLocationOps(DVI))
6522         continue;
6523 
6524       std::unique_ptr<DVIRecoveryRec> NewRec =
6525           std::make_unique<DVIRecoveryRec>(DVI);
6526       // Each location Op may need a SCEVDbgValueBuilder in order to recover it.
6527       // Pre-allocating a vector will enable quick lookups of the builder later
6528       // during the salvage.
6529       NewRec->RecoveryExprs.resize(DVI->getNumVariableLocationOps());
6530       for (const auto LocOp : DVI->location_ops()) {
6531         NewRec->SCEVs.push_back(SE.getSCEV(LocOp));
6532         NewRec->LocationOps.push_back(LocOp);
6533         NewRec->HadLocationArgList = DVI->hasArgList();
6534       }
6535       SalvageableDVISCEVs.push_back(std::move(NewRec));
6536       DVIHandles.insert(DVI);
6537     }
6538   }
6539 }
6540 
6541 /// Ideally pick the PHI IV inserted by ScalarEvolutionExpander. As a fallback
6542 /// any PHi from the loop header is usable, but may have less chance of
6543 /// surviving subsequent transforms.
6544 static llvm::PHINode *GetInductionVariable(const Loop &L, ScalarEvolution &SE,
6545                                            const LSRInstance &LSR) {
6546 
6547   auto IsSuitableIV = [&](PHINode *P) {
6548     if (!SE.isSCEVable(P->getType()))
6549       return false;
6550     if (const SCEVAddRecExpr *Rec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(P)))
6551       return Rec->isAffine() && !SE.containsUndefs(SE.getSCEV(P));
6552     return false;
6553   };
6554 
6555   // For now, just pick the first IV that was generated and inserted by
6556   // ScalarEvolution. Ideally pick an IV that is unlikely to be optimised away
6557   // by subsequent transforms.
6558   for (const WeakVH &IV : LSR.getScalarEvolutionIVs()) {
6559     if (!IV)
6560       continue;
6561 
6562     // There should only be PHI node IVs.
6563     PHINode *P = cast<PHINode>(&*IV);
6564 
6565     if (IsSuitableIV(P))
6566       return P;
6567   }
6568 
6569   for (PHINode &P : L.getHeader()->phis()) {
6570     if (IsSuitableIV(&P))
6571       return &P;
6572   }
6573   return nullptr;
6574 }
6575 
6576 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE,
6577                                DominatorTree &DT, LoopInfo &LI,
6578                                const TargetTransformInfo &TTI,
6579                                AssumptionCache &AC, TargetLibraryInfo &TLI,
6580                                MemorySSA *MSSA) {
6581 
6582   // Debug preservation - before we start removing anything identify which DVI
6583   // meet the salvageable criteria and store their DIExpression and SCEVs.
6584   SmallVector<std::unique_ptr<DVIRecoveryRec>, 2> SalvageableDVIRecords;
6585   SmallSet<AssertingVH<DbgValueInst>, 2> DVIHandles;
6586   DbgGatherSalvagableDVI(L, SE, SalvageableDVIRecords, DVIHandles);
6587 
6588   bool Changed = false;
6589   std::unique_ptr<MemorySSAUpdater> MSSAU;
6590   if (MSSA)
6591     MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
6592 
6593   // Run the main LSR transformation.
6594   const LSRInstance &Reducer =
6595       LSRInstance(L, IU, SE, DT, LI, TTI, AC, TLI, MSSAU.get());
6596   Changed |= Reducer.getChanged();
6597 
6598   // Remove any extra phis created by processing inner loops.
6599   Changed |= DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get());
6600   if (EnablePhiElim && L->isLoopSimplifyForm()) {
6601     SmallVector<WeakTrackingVH, 16> DeadInsts;
6602     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
6603     SCEVExpander Rewriter(SE, DL, "lsr", false);
6604 #ifndef NDEBUG
6605     Rewriter.setDebugType(DEBUG_TYPE);
6606 #endif
6607     unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI);
6608     if (numFolded) {
6609       Changed = true;
6610       RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, &TLI,
6611                                                            MSSAU.get());
6612       DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get());
6613     }
6614   }
6615   // LSR may at times remove all uses of an induction variable from a loop.
6616   // The only remaining use is the PHI in the exit block.
6617   // When this is the case, if the exit value of the IV can be calculated using
6618   // SCEV, we can replace the exit block PHI with the final value of the IV and
6619   // skip the updates in each loop iteration.
6620   if (L->isRecursivelyLCSSAForm(DT, LI) && L->getExitBlock()) {
6621     SmallVector<WeakTrackingVH, 16> DeadInsts;
6622     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
6623     SCEVExpander Rewriter(SE, DL, "lsr", false);
6624     int Rewrites = rewriteLoopExitValues(L, &LI, &TLI, &SE, &TTI, Rewriter, &DT,
6625                                          UnusedIndVarInLoop, DeadInsts);
6626     if (Rewrites) {
6627       Changed = true;
6628       RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, &TLI,
6629                                                            MSSAU.get());
6630       DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get());
6631     }
6632   }
6633 
6634   if (SalvageableDVIRecords.empty())
6635     return Changed;
6636 
6637   // Obtain relevant IVs and attempt to rewrite the salvageable DVIs with
6638   // expressions composed using the derived iteration count.
6639   // TODO: Allow for multiple IV references for nested AddRecSCEVs
6640   for (auto &L : LI) {
6641     if (llvm::PHINode *IV = GetInductionVariable(*L, SE, Reducer))
6642       DbgRewriteSalvageableDVIs(L, SE, IV, SalvageableDVIRecords);
6643     else {
6644       LLVM_DEBUG(dbgs() << "scev-salvage: SCEV salvaging not possible. An IV "
6645                            "could not be identified.\n");
6646     }
6647   }
6648 
6649   for (auto &Rec : SalvageableDVIRecords)
6650     Rec->clear();
6651   SalvageableDVIRecords.clear();
6652   DVIHandles.clear();
6653   return Changed;
6654 }
6655 
6656 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
6657   if (skipLoop(L))
6658     return false;
6659 
6660   auto &IU = getAnalysis<IVUsersWrapperPass>().getIU();
6661   auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
6662   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
6663   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
6664   const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
6665       *L->getHeader()->getParent());
6666   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
6667       *L->getHeader()->getParent());
6668   auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
6669       *L->getHeader()->getParent());
6670   auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>();
6671   MemorySSA *MSSA = nullptr;
6672   if (MSSAAnalysis)
6673     MSSA = &MSSAAnalysis->getMSSA();
6674   return ReduceLoopStrength(L, IU, SE, DT, LI, TTI, AC, TLI, MSSA);
6675 }
6676 
6677 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM,
6678                                               LoopStandardAnalysisResults &AR,
6679                                               LPMUpdater &) {
6680   if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE,
6681                           AR.DT, AR.LI, AR.TTI, AR.AC, AR.TLI, AR.MSSA))
6682     return PreservedAnalyses::all();
6683 
6684   auto PA = getLoopPassPreservedAnalyses();
6685   if (AR.MSSA)
6686     PA.preserve<MemorySSAAnalysis>();
6687   return PA;
6688 }
6689 
6690 char LoopStrengthReduce::ID = 0;
6691 
6692 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",
6693                       "Loop Strength Reduction", false, false)
6694 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
6695 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
6696 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
6697 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass)
6698 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
6699 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
6700 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce",
6701                     "Loop Strength Reduction", false, false)
6702 
6703 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); }
6704