1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This transformation analyzes and transforms the induction variables (and
10 // computations derived from them) into forms suitable for efficient execution
11 // on the target.
12 //
13 // This pass performs a strength reduction on array references inside loops that
14 // have as one or more of their components the loop induction variable, it
15 // rewrites expressions to take advantage of scaled-index addressing modes
16 // available on the target, and it performs a variety of other optimizations
17 // related to loop induction variables.
18 //
19 // Terminology note: this code has a lot of handling for "post-increment" or
20 // "post-inc" users. This is not talking about post-increment addressing modes;
21 // it is instead talking about code like this:
22 //
23 //   %i = phi [ 0, %entry ], [ %i.next, %latch ]
24 //   ...
25 //   %i.next = add %i, 1
26 //   %c = icmp eq %i.next, %n
27 //
28 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
29 // it's useful to think about these as the same register, with some uses using
30 // the value of the register before the add and some using it after. In this
31 // example, the icmp is a post-increment user, since it uses %i.next, which is
32 // the value of the induction variable after the increment. The other common
33 // case of post-increment users is users outside the loop.
34 //
35 // TODO: More sophistication in the way Formulae are generated and filtered.
36 //
37 // TODO: Handle multiple loops at a time.
38 //
39 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead
40 //       of a GlobalValue?
41 //
42 // TODO: When truncation is free, truncate ICmp users' operands to make it a
43 //       smaller encoding (on x86 at least).
44 //
45 // TODO: When a negated register is used by an add (such as in a list of
46 //       multiple base registers, or as the increment expression in an addrec),
47 //       we may not actually need both reg and (-1 * reg) in registers; the
48 //       negation can be implemented by using a sub instead of an add. The
49 //       lack of support for taking this into consideration when making
50 //       register pressure decisions is partly worked around by the "Special"
51 //       use kind.
52 //
53 //===----------------------------------------------------------------------===//
54 
55 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h"
56 #include "llvm/ADT/APInt.h"
57 #include "llvm/ADT/DenseMap.h"
58 #include "llvm/ADT/DenseSet.h"
59 #include "llvm/ADT/Hashing.h"
60 #include "llvm/ADT/PointerIntPair.h"
61 #include "llvm/ADT/STLExtras.h"
62 #include "llvm/ADT/SetVector.h"
63 #include "llvm/ADT/SmallBitVector.h"
64 #include "llvm/ADT/SmallPtrSet.h"
65 #include "llvm/ADT/SmallSet.h"
66 #include "llvm/ADT/SmallVector.h"
67 #include "llvm/ADT/iterator_range.h"
68 #include "llvm/Analysis/IVUsers.h"
69 #include "llvm/Analysis/LoopAnalysisManager.h"
70 #include "llvm/Analysis/LoopInfo.h"
71 #include "llvm/Analysis/LoopPass.h"
72 #include "llvm/Analysis/ScalarEvolution.h"
73 #include "llvm/Analysis/ScalarEvolutionExpander.h"
74 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
75 #include "llvm/Analysis/ScalarEvolutionNormalization.h"
76 #include "llvm/Analysis/TargetTransformInfo.h"
77 #include "llvm/Config/llvm-config.h"
78 #include "llvm/IR/BasicBlock.h"
79 #include "llvm/IR/Constant.h"
80 #include "llvm/IR/Constants.h"
81 #include "llvm/IR/DerivedTypes.h"
82 #include "llvm/IR/Dominators.h"
83 #include "llvm/IR/GlobalValue.h"
84 #include "llvm/IR/IRBuilder.h"
85 #include "llvm/IR/InstrTypes.h"
86 #include "llvm/IR/Instruction.h"
87 #include "llvm/IR/Instructions.h"
88 #include "llvm/IR/IntrinsicInst.h"
89 #include "llvm/IR/Intrinsics.h"
90 #include "llvm/IR/Module.h"
91 #include "llvm/IR/OperandTraits.h"
92 #include "llvm/IR/Operator.h"
93 #include "llvm/IR/PassManager.h"
94 #include "llvm/IR/Type.h"
95 #include "llvm/IR/Use.h"
96 #include "llvm/IR/User.h"
97 #include "llvm/IR/Value.h"
98 #include "llvm/IR/ValueHandle.h"
99 #include "llvm/InitializePasses.h"
100 #include "llvm/Pass.h"
101 #include "llvm/Support/Casting.h"
102 #include "llvm/Support/CommandLine.h"
103 #include "llvm/Support/Compiler.h"
104 #include "llvm/Support/Debug.h"
105 #include "llvm/Support/ErrorHandling.h"
106 #include "llvm/Support/MathExtras.h"
107 #include "llvm/Support/raw_ostream.h"
108 #include "llvm/Transforms/Scalar.h"
109 #include "llvm/Transforms/Utils.h"
110 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
111 #include "llvm/Transforms/Utils/Local.h"
112 #include <algorithm>
113 #include <cassert>
114 #include <cstddef>
115 #include <cstdint>
116 #include <cstdlib>
117 #include <iterator>
118 #include <limits>
119 #include <map>
120 #include <numeric>
121 #include <utility>
122 
123 using namespace llvm;
124 
125 #define DEBUG_TYPE "loop-reduce"
126 
127 /// MaxIVUsers is an arbitrary threshold that provides an early opportunity for
128 /// bail out. This threshold is far beyond the number of users that LSR can
129 /// conceivably solve, so it should not affect generated code, but catches the
130 /// worst cases before LSR burns too much compile time and stack space.
131 static const unsigned MaxIVUsers = 200;
132 
133 // Temporary flag to cleanup congruent phis after LSR phi expansion.
134 // It's currently disabled until we can determine whether it's truly useful or
135 // not. The flag should be removed after the v3.0 release.
136 // This is now needed for ivchains.
137 static cl::opt<bool> EnablePhiElim(
138   "enable-lsr-phielim", cl::Hidden, cl::init(true),
139   cl::desc("Enable LSR phi elimination"));
140 
141 // The flag adds instruction count to solutions cost comparision.
142 static cl::opt<bool> InsnsCost(
143   "lsr-insns-cost", cl::Hidden, cl::init(true),
144   cl::desc("Add instruction count to a LSR cost model"));
145 
146 // Flag to choose how to narrow complex lsr solution
147 static cl::opt<bool> LSRExpNarrow(
148   "lsr-exp-narrow", cl::Hidden, cl::init(false),
149   cl::desc("Narrow LSR complex solution using"
150            " expectation of registers number"));
151 
152 // Flag to narrow search space by filtering non-optimal formulae with
153 // the same ScaledReg and Scale.
154 static cl::opt<bool> FilterSameScaledReg(
155     "lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true),
156     cl::desc("Narrow LSR search space by filtering non-optimal formulae"
157              " with the same ScaledReg and Scale"));
158 
159 static cl::opt<bool> EnableBackedgeIndexing(
160   "lsr-backedge-indexing", cl::Hidden, cl::init(true),
161   cl::desc("Enable the generation of cross iteration indexed memops"));
162 
163 static cl::opt<unsigned> ComplexityLimit(
164   "lsr-complexity-limit", cl::Hidden,
165   cl::init(std::numeric_limits<uint16_t>::max()),
166   cl::desc("LSR search space complexity limit"));
167 
168 static cl::opt<unsigned> SetupCostDepthLimit(
169     "lsr-setupcost-depth-limit", cl::Hidden, cl::init(7),
170     cl::desc("The limit on recursion depth for LSRs setup cost"));
171 
172 #ifndef NDEBUG
173 // Stress test IV chain generation.
174 static cl::opt<bool> StressIVChain(
175   "stress-ivchain", cl::Hidden, cl::init(false),
176   cl::desc("Stress test LSR IV chains"));
177 #else
178 static bool StressIVChain = false;
179 #endif
180 
181 namespace {
182 
183 struct MemAccessTy {
184   /// Used in situations where the accessed memory type is unknown.
185   static const unsigned UnknownAddressSpace =
186       std::numeric_limits<unsigned>::max();
187 
188   Type *MemTy = nullptr;
189   unsigned AddrSpace = UnknownAddressSpace;
190 
191   MemAccessTy() = default;
192   MemAccessTy(Type *Ty, unsigned AS) : MemTy(Ty), AddrSpace(AS) {}
193 
194   bool operator==(MemAccessTy Other) const {
195     return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace;
196   }
197 
198   bool operator!=(MemAccessTy Other) const { return !(*this == Other); }
199 
200   static MemAccessTy getUnknown(LLVMContext &Ctx,
201                                 unsigned AS = UnknownAddressSpace) {
202     return MemAccessTy(Type::getVoidTy(Ctx), AS);
203   }
204 
205   Type *getType() { return MemTy; }
206 };
207 
208 /// This class holds data which is used to order reuse candidates.
209 class RegSortData {
210 public:
211   /// This represents the set of LSRUse indices which reference
212   /// a particular register.
213   SmallBitVector UsedByIndices;
214 
215   void print(raw_ostream &OS) const;
216   void dump() const;
217 };
218 
219 } // end anonymous namespace
220 
221 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
222 void RegSortData::print(raw_ostream &OS) const {
223   OS << "[NumUses=" << UsedByIndices.count() << ']';
224 }
225 
226 LLVM_DUMP_METHOD void RegSortData::dump() const {
227   print(errs()); errs() << '\n';
228 }
229 #endif
230 
231 namespace {
232 
233 /// Map register candidates to information about how they are used.
234 class RegUseTracker {
235   using RegUsesTy = DenseMap<const SCEV *, RegSortData>;
236 
237   RegUsesTy RegUsesMap;
238   SmallVector<const SCEV *, 16> RegSequence;
239 
240 public:
241   void countRegister(const SCEV *Reg, size_t LUIdx);
242   void dropRegister(const SCEV *Reg, size_t LUIdx);
243   void swapAndDropUse(size_t LUIdx, size_t LastLUIdx);
244 
245   bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
246 
247   const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
248 
249   void clear();
250 
251   using iterator = SmallVectorImpl<const SCEV *>::iterator;
252   using const_iterator = SmallVectorImpl<const SCEV *>::const_iterator;
253 
254   iterator begin() { return RegSequence.begin(); }
255   iterator end()   { return RegSequence.end(); }
256   const_iterator begin() const { return RegSequence.begin(); }
257   const_iterator end() const   { return RegSequence.end(); }
258 };
259 
260 } // end anonymous namespace
261 
262 void
263 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) {
264   std::pair<RegUsesTy::iterator, bool> Pair =
265     RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
266   RegSortData &RSD = Pair.first->second;
267   if (Pair.second)
268     RegSequence.push_back(Reg);
269   RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
270   RSD.UsedByIndices.set(LUIdx);
271 }
272 
273 void
274 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) {
275   RegUsesTy::iterator It = RegUsesMap.find(Reg);
276   assert(It != RegUsesMap.end());
277   RegSortData &RSD = It->second;
278   assert(RSD.UsedByIndices.size() > LUIdx);
279   RSD.UsedByIndices.reset(LUIdx);
280 }
281 
282 void
283 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
284   assert(LUIdx <= LastLUIdx);
285 
286   // Update RegUses. The data structure is not optimized for this purpose;
287   // we must iterate through it and update each of the bit vectors.
288   for (auto &Pair : RegUsesMap) {
289     SmallBitVector &UsedByIndices = Pair.second.UsedByIndices;
290     if (LUIdx < UsedByIndices.size())
291       UsedByIndices[LUIdx] =
292         LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false;
293     UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx));
294   }
295 }
296 
297 bool
298 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
299   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
300   if (I == RegUsesMap.end())
301     return false;
302   const SmallBitVector &UsedByIndices = I->second.UsedByIndices;
303   int i = UsedByIndices.find_first();
304   if (i == -1) return false;
305   if ((size_t)i != LUIdx) return true;
306   return UsedByIndices.find_next(i) != -1;
307 }
308 
309 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
310   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
311   assert(I != RegUsesMap.end() && "Unknown register!");
312   return I->second.UsedByIndices;
313 }
314 
315 void RegUseTracker::clear() {
316   RegUsesMap.clear();
317   RegSequence.clear();
318 }
319 
320 namespace {
321 
322 /// This class holds information that describes a formula for computing
323 /// satisfying a use. It may include broken-out immediates and scaled registers.
324 struct Formula {
325   /// Global base address used for complex addressing.
326   GlobalValue *BaseGV = nullptr;
327 
328   /// Base offset for complex addressing.
329   int64_t BaseOffset = 0;
330 
331   /// Whether any complex addressing has a base register.
332   bool HasBaseReg = false;
333 
334   /// The scale of any complex addressing.
335   int64_t Scale = 0;
336 
337   /// The list of "base" registers for this use. When this is non-empty. The
338   /// canonical representation of a formula is
339   /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and
340   /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty().
341   /// 3. The reg containing recurrent expr related with currect loop in the
342   /// formula should be put in the ScaledReg.
343   /// #1 enforces that the scaled register is always used when at least two
344   /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2.
345   /// #2 enforces that 1 * reg is reg.
346   /// #3 ensures invariant regs with respect to current loop can be combined
347   /// together in LSR codegen.
348   /// This invariant can be temporarily broken while building a formula.
349   /// However, every formula inserted into the LSRInstance must be in canonical
350   /// form.
351   SmallVector<const SCEV *, 4> BaseRegs;
352 
353   /// The 'scaled' register for this use. This should be non-null when Scale is
354   /// not zero.
355   const SCEV *ScaledReg = nullptr;
356 
357   /// An additional constant offset which added near the use. This requires a
358   /// temporary register, but the offset itself can live in an add immediate
359   /// field rather than a register.
360   int64_t UnfoldedOffset = 0;
361 
362   Formula() = default;
363 
364   void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
365 
366   bool isCanonical(const Loop &L) const;
367 
368   void canonicalize(const Loop &L);
369 
370   bool unscale();
371 
372   bool hasZeroEnd() const;
373 
374   size_t getNumRegs() const;
375   Type *getType() const;
376 
377   void deleteBaseReg(const SCEV *&S);
378 
379   bool referencesReg(const SCEV *S) const;
380   bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
381                                   const RegUseTracker &RegUses) const;
382 
383   void print(raw_ostream &OS) const;
384   void dump() const;
385 };
386 
387 } // end anonymous namespace
388 
389 /// Recursion helper for initialMatch.
390 static void DoInitialMatch(const SCEV *S, Loop *L,
391                            SmallVectorImpl<const SCEV *> &Good,
392                            SmallVectorImpl<const SCEV *> &Bad,
393                            ScalarEvolution &SE) {
394   // Collect expressions which properly dominate the loop header.
395   if (SE.properlyDominates(S, L->getHeader())) {
396     Good.push_back(S);
397     return;
398   }
399 
400   // Look at add operands.
401   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
402     for (const SCEV *S : Add->operands())
403       DoInitialMatch(S, L, Good, Bad, SE);
404     return;
405   }
406 
407   // Look at addrec operands.
408   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
409     if (!AR->getStart()->isZero() && AR->isAffine()) {
410       DoInitialMatch(AR->getStart(), L, Good, Bad, SE);
411       DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
412                                       AR->getStepRecurrence(SE),
413                                       // FIXME: AR->getNoWrapFlags()
414                                       AR->getLoop(), SCEV::FlagAnyWrap),
415                      L, Good, Bad, SE);
416       return;
417     }
418 
419   // Handle a multiplication by -1 (negation) if it didn't fold.
420   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
421     if (Mul->getOperand(0)->isAllOnesValue()) {
422       SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end());
423       const SCEV *NewMul = SE.getMulExpr(Ops);
424 
425       SmallVector<const SCEV *, 4> MyGood;
426       SmallVector<const SCEV *, 4> MyBad;
427       DoInitialMatch(NewMul, L, MyGood, MyBad, SE);
428       const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
429         SE.getEffectiveSCEVType(NewMul->getType())));
430       for (const SCEV *S : MyGood)
431         Good.push_back(SE.getMulExpr(NegOne, S));
432       for (const SCEV *S : MyBad)
433         Bad.push_back(SE.getMulExpr(NegOne, S));
434       return;
435     }
436 
437   // Ok, we can't do anything interesting. Just stuff the whole thing into a
438   // register and hope for the best.
439   Bad.push_back(S);
440 }
441 
442 /// Incorporate loop-variant parts of S into this Formula, attempting to keep
443 /// all loop-invariant and loop-computable values in a single base register.
444 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
445   SmallVector<const SCEV *, 4> Good;
446   SmallVector<const SCEV *, 4> Bad;
447   DoInitialMatch(S, L, Good, Bad, SE);
448   if (!Good.empty()) {
449     const SCEV *Sum = SE.getAddExpr(Good);
450     if (!Sum->isZero())
451       BaseRegs.push_back(Sum);
452     HasBaseReg = true;
453   }
454   if (!Bad.empty()) {
455     const SCEV *Sum = SE.getAddExpr(Bad);
456     if (!Sum->isZero())
457       BaseRegs.push_back(Sum);
458     HasBaseReg = true;
459   }
460   canonicalize(*L);
461 }
462 
463 /// Check whether or not this formula satisfies the canonical
464 /// representation.
465 /// \see Formula::BaseRegs.
466 bool Formula::isCanonical(const Loop &L) const {
467   if (!ScaledReg)
468     return BaseRegs.size() <= 1;
469 
470   if (Scale != 1)
471     return true;
472 
473   if (Scale == 1 && BaseRegs.empty())
474     return false;
475 
476   const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg);
477   if (SAR && SAR->getLoop() == &L)
478     return true;
479 
480   // If ScaledReg is not a recurrent expr, or it is but its loop is not current
481   // loop, meanwhile BaseRegs contains a recurrent expr reg related with current
482   // loop, we want to swap the reg in BaseRegs with ScaledReg.
483   auto I =
484       find_if(make_range(BaseRegs.begin(), BaseRegs.end()), [&](const SCEV *S) {
485         return isa<const SCEVAddRecExpr>(S) &&
486                (cast<SCEVAddRecExpr>(S)->getLoop() == &L);
487       });
488   return I == BaseRegs.end();
489 }
490 
491 /// Helper method to morph a formula into its canonical representation.
492 /// \see Formula::BaseRegs.
493 /// Every formula having more than one base register, must use the ScaledReg
494 /// field. Otherwise, we would have to do special cases everywhere in LSR
495 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ...
496 /// On the other hand, 1*reg should be canonicalized into reg.
497 void Formula::canonicalize(const Loop &L) {
498   if (isCanonical(L))
499     return;
500   // So far we did not need this case. This is easy to implement but it is
501   // useless to maintain dead code. Beside it could hurt compile time.
502   assert(!BaseRegs.empty() && "1*reg => reg, should not be needed.");
503 
504   // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg.
505   if (!ScaledReg) {
506     ScaledReg = BaseRegs.back();
507     BaseRegs.pop_back();
508     Scale = 1;
509   }
510 
511   // If ScaledReg is an invariant with respect to L, find the reg from
512   // BaseRegs containing the recurrent expr related with Loop L. Swap the
513   // reg with ScaledReg.
514   const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg);
515   if (!SAR || SAR->getLoop() != &L) {
516     auto I = find_if(make_range(BaseRegs.begin(), BaseRegs.end()),
517                      [&](const SCEV *S) {
518                        return isa<const SCEVAddRecExpr>(S) &&
519                               (cast<SCEVAddRecExpr>(S)->getLoop() == &L);
520                      });
521     if (I != BaseRegs.end())
522       std::swap(ScaledReg, *I);
523   }
524 }
525 
526 /// Get rid of the scale in the formula.
527 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2.
528 /// \return true if it was possible to get rid of the scale, false otherwise.
529 /// \note After this operation the formula may not be in the canonical form.
530 bool Formula::unscale() {
531   if (Scale != 1)
532     return false;
533   Scale = 0;
534   BaseRegs.push_back(ScaledReg);
535   ScaledReg = nullptr;
536   return true;
537 }
538 
539 bool Formula::hasZeroEnd() const {
540   if (UnfoldedOffset || BaseOffset)
541     return false;
542   if (BaseRegs.size() != 1 || ScaledReg)
543     return false;
544   return true;
545 }
546 
547 /// Return the total number of register operands used by this formula. This does
548 /// not include register uses implied by non-constant addrec strides.
549 size_t Formula::getNumRegs() const {
550   return !!ScaledReg + BaseRegs.size();
551 }
552 
553 /// Return the type of this formula, if it has one, or null otherwise. This type
554 /// is meaningless except for the bit size.
555 Type *Formula::getType() const {
556   return !BaseRegs.empty() ? BaseRegs.front()->getType() :
557          ScaledReg ? ScaledReg->getType() :
558          BaseGV ? BaseGV->getType() :
559          nullptr;
560 }
561 
562 /// Delete the given base reg from the BaseRegs list.
563 void Formula::deleteBaseReg(const SCEV *&S) {
564   if (&S != &BaseRegs.back())
565     std::swap(S, BaseRegs.back());
566   BaseRegs.pop_back();
567 }
568 
569 /// Test if this formula references the given register.
570 bool Formula::referencesReg(const SCEV *S) const {
571   return S == ScaledReg || is_contained(BaseRegs, S);
572 }
573 
574 /// Test whether this formula uses registers which are used by uses other than
575 /// the use with the given index.
576 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
577                                          const RegUseTracker &RegUses) const {
578   if (ScaledReg)
579     if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
580       return true;
581   for (const SCEV *BaseReg : BaseRegs)
582     if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx))
583       return true;
584   return false;
585 }
586 
587 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
588 void Formula::print(raw_ostream &OS) const {
589   bool First = true;
590   if (BaseGV) {
591     if (!First) OS << " + "; else First = false;
592     BaseGV->printAsOperand(OS, /*PrintType=*/false);
593   }
594   if (BaseOffset != 0) {
595     if (!First) OS << " + "; else First = false;
596     OS << BaseOffset;
597   }
598   for (const SCEV *BaseReg : BaseRegs) {
599     if (!First) OS << " + "; else First = false;
600     OS << "reg(" << *BaseReg << ')';
601   }
602   if (HasBaseReg && BaseRegs.empty()) {
603     if (!First) OS << " + "; else First = false;
604     OS << "**error: HasBaseReg**";
605   } else if (!HasBaseReg && !BaseRegs.empty()) {
606     if (!First) OS << " + "; else First = false;
607     OS << "**error: !HasBaseReg**";
608   }
609   if (Scale != 0) {
610     if (!First) OS << " + "; else First = false;
611     OS << Scale << "*reg(";
612     if (ScaledReg)
613       OS << *ScaledReg;
614     else
615       OS << "<unknown>";
616     OS << ')';
617   }
618   if (UnfoldedOffset != 0) {
619     if (!First) OS << " + ";
620     OS << "imm(" << UnfoldedOffset << ')';
621   }
622 }
623 
624 LLVM_DUMP_METHOD void Formula::dump() const {
625   print(errs()); errs() << '\n';
626 }
627 #endif
628 
629 /// Return true if the given addrec can be sign-extended without changing its
630 /// value.
631 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
632   Type *WideTy =
633     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
634   return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
635 }
636 
637 /// Return true if the given add can be sign-extended without changing its
638 /// value.
639 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
640   Type *WideTy =
641     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
642   return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
643 }
644 
645 /// Return true if the given mul can be sign-extended without changing its
646 /// value.
647 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
648   Type *WideTy =
649     IntegerType::get(SE.getContext(),
650                      SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
651   return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
652 }
653 
654 /// Return an expression for LHS /s RHS, if it can be determined and if the
655 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits
656 /// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that
657 /// the multiplication may overflow, which is useful when the result will be
658 /// used in a context where the most significant bits are ignored.
659 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
660                                 ScalarEvolution &SE,
661                                 bool IgnoreSignificantBits = false) {
662   // Handle the trivial case, which works for any SCEV type.
663   if (LHS == RHS)
664     return SE.getConstant(LHS->getType(), 1);
665 
666   // Handle a few RHS special cases.
667   const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
668   if (RC) {
669     const APInt &RA = RC->getAPInt();
670     // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
671     // some folding.
672     if (RA.isAllOnesValue())
673       return SE.getMulExpr(LHS, RC);
674     // Handle x /s 1 as x.
675     if (RA == 1)
676       return LHS;
677   }
678 
679   // Check for a division of a constant by a constant.
680   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
681     if (!RC)
682       return nullptr;
683     const APInt &LA = C->getAPInt();
684     const APInt &RA = RC->getAPInt();
685     if (LA.srem(RA) != 0)
686       return nullptr;
687     return SE.getConstant(LA.sdiv(RA));
688   }
689 
690   // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
691   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
692     if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) {
693       const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
694                                       IgnoreSignificantBits);
695       if (!Step) return nullptr;
696       const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
697                                        IgnoreSignificantBits);
698       if (!Start) return nullptr;
699       // FlagNW is independent of the start value, step direction, and is
700       // preserved with smaller magnitude steps.
701       // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
702       return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap);
703     }
704     return nullptr;
705   }
706 
707   // Distribute the sdiv over add operands, if the add doesn't overflow.
708   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
709     if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
710       SmallVector<const SCEV *, 8> Ops;
711       for (const SCEV *S : Add->operands()) {
712         const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits);
713         if (!Op) return nullptr;
714         Ops.push_back(Op);
715       }
716       return SE.getAddExpr(Ops);
717     }
718     return nullptr;
719   }
720 
721   // Check for a multiply operand that we can pull RHS out of.
722   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
723     if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
724       SmallVector<const SCEV *, 4> Ops;
725       bool Found = false;
726       for (const SCEV *S : Mul->operands()) {
727         if (!Found)
728           if (const SCEV *Q = getExactSDiv(S, RHS, SE,
729                                            IgnoreSignificantBits)) {
730             S = Q;
731             Found = true;
732           }
733         Ops.push_back(S);
734       }
735       return Found ? SE.getMulExpr(Ops) : nullptr;
736     }
737     return nullptr;
738   }
739 
740   // Otherwise we don't know.
741   return nullptr;
742 }
743 
744 /// If S involves the addition of a constant integer value, return that integer
745 /// value, and mutate S to point to a new SCEV with that value excluded.
746 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
747   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
748     if (C->getAPInt().getMinSignedBits() <= 64) {
749       S = SE.getConstant(C->getType(), 0);
750       return C->getValue()->getSExtValue();
751     }
752   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
753     SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
754     int64_t Result = ExtractImmediate(NewOps.front(), SE);
755     if (Result != 0)
756       S = SE.getAddExpr(NewOps);
757     return Result;
758   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
759     SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
760     int64_t Result = ExtractImmediate(NewOps.front(), SE);
761     if (Result != 0)
762       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
763                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
764                            SCEV::FlagAnyWrap);
765     return Result;
766   }
767   return 0;
768 }
769 
770 /// If S involves the addition of a GlobalValue address, return that symbol, and
771 /// mutate S to point to a new SCEV with that value excluded.
772 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
773   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
774     if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
775       S = SE.getConstant(GV->getType(), 0);
776       return GV;
777     }
778   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
779     SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
780     GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
781     if (Result)
782       S = SE.getAddExpr(NewOps);
783     return Result;
784   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
785     SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
786     GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
787     if (Result)
788       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
789                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
790                            SCEV::FlagAnyWrap);
791     return Result;
792   }
793   return nullptr;
794 }
795 
796 /// Returns true if the specified instruction is using the specified value as an
797 /// address.
798 static bool isAddressUse(const TargetTransformInfo &TTI,
799                          Instruction *Inst, Value *OperandVal) {
800   bool isAddress = isa<LoadInst>(Inst);
801   if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
802     if (SI->getPointerOperand() == OperandVal)
803       isAddress = true;
804   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
805     // Addressing modes can also be folded into prefetches and a variety
806     // of intrinsics.
807     switch (II->getIntrinsicID()) {
808     case Intrinsic::memset:
809     case Intrinsic::prefetch:
810       if (II->getArgOperand(0) == OperandVal)
811         isAddress = true;
812       break;
813     case Intrinsic::memmove:
814     case Intrinsic::memcpy:
815       if (II->getArgOperand(0) == OperandVal ||
816           II->getArgOperand(1) == OperandVal)
817         isAddress = true;
818       break;
819     default: {
820       MemIntrinsicInfo IntrInfo;
821       if (TTI.getTgtMemIntrinsic(II, IntrInfo)) {
822         if (IntrInfo.PtrVal == OperandVal)
823           isAddress = true;
824       }
825     }
826     }
827   } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
828     if (RMW->getPointerOperand() == OperandVal)
829       isAddress = true;
830   } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
831     if (CmpX->getPointerOperand() == OperandVal)
832       isAddress = true;
833   }
834   return isAddress;
835 }
836 
837 /// Return the type of the memory being accessed.
838 static MemAccessTy getAccessType(const TargetTransformInfo &TTI,
839                                  Instruction *Inst, Value *OperandVal) {
840   MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace);
841   if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
842     AccessTy.MemTy = SI->getOperand(0)->getType();
843     AccessTy.AddrSpace = SI->getPointerAddressSpace();
844   } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
845     AccessTy.AddrSpace = LI->getPointerAddressSpace();
846   } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
847     AccessTy.AddrSpace = RMW->getPointerAddressSpace();
848   } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
849     AccessTy.AddrSpace = CmpX->getPointerAddressSpace();
850   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
851     switch (II->getIntrinsicID()) {
852     case Intrinsic::prefetch:
853     case Intrinsic::memset:
854       AccessTy.AddrSpace = II->getArgOperand(0)->getType()->getPointerAddressSpace();
855       AccessTy.MemTy = OperandVal->getType();
856       break;
857     case Intrinsic::memmove:
858     case Intrinsic::memcpy:
859       AccessTy.AddrSpace = OperandVal->getType()->getPointerAddressSpace();
860       AccessTy.MemTy = OperandVal->getType();
861       break;
862     default: {
863       MemIntrinsicInfo IntrInfo;
864       if (TTI.getTgtMemIntrinsic(II, IntrInfo) && IntrInfo.PtrVal) {
865         AccessTy.AddrSpace
866           = IntrInfo.PtrVal->getType()->getPointerAddressSpace();
867       }
868 
869       break;
870     }
871     }
872   }
873 
874   // All pointers have the same requirements, so canonicalize them to an
875   // arbitrary pointer type to minimize variation.
876   if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy))
877     AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
878                                       PTy->getAddressSpace());
879 
880   return AccessTy;
881 }
882 
883 /// Return true if this AddRec is already a phi in its loop.
884 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
885   for (PHINode &PN : AR->getLoop()->getHeader()->phis()) {
886     if (SE.isSCEVable(PN.getType()) &&
887         (SE.getEffectiveSCEVType(PN.getType()) ==
888          SE.getEffectiveSCEVType(AR->getType())) &&
889         SE.getSCEV(&PN) == AR)
890       return true;
891   }
892   return false;
893 }
894 
895 /// Check if expanding this expression is likely to incur significant cost. This
896 /// is tricky because SCEV doesn't track which expressions are actually computed
897 /// by the current IR.
898 ///
899 /// We currently allow expansion of IV increments that involve adds,
900 /// multiplication by constants, and AddRecs from existing phis.
901 ///
902 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an
903 /// obvious multiple of the UDivExpr.
904 static bool isHighCostExpansion(const SCEV *S,
905                                 SmallPtrSetImpl<const SCEV*> &Processed,
906                                 ScalarEvolution &SE) {
907   // Zero/One operand expressions
908   switch (S->getSCEVType()) {
909   case scUnknown:
910   case scConstant:
911     return false;
912   case scTruncate:
913     return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(),
914                                Processed, SE);
915   case scZeroExtend:
916     return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(),
917                                Processed, SE);
918   case scSignExtend:
919     return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(),
920                                Processed, SE);
921   }
922 
923   if (!Processed.insert(S).second)
924     return false;
925 
926   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
927     for (const SCEV *S : Add->operands()) {
928       if (isHighCostExpansion(S, Processed, SE))
929         return true;
930     }
931     return false;
932   }
933 
934   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
935     if (Mul->getNumOperands() == 2) {
936       // Multiplication by a constant is ok
937       if (isa<SCEVConstant>(Mul->getOperand(0)))
938         return isHighCostExpansion(Mul->getOperand(1), Processed, SE);
939 
940       // If we have the value of one operand, check if an existing
941       // multiplication already generates this expression.
942       if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) {
943         Value *UVal = U->getValue();
944         for (User *UR : UVal->users()) {
945           // If U is a constant, it may be used by a ConstantExpr.
946           Instruction *UI = dyn_cast<Instruction>(UR);
947           if (UI && UI->getOpcode() == Instruction::Mul &&
948               SE.isSCEVable(UI->getType())) {
949             return SE.getSCEV(UI) == Mul;
950           }
951         }
952       }
953     }
954   }
955 
956   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
957     if (isExistingPhi(AR, SE))
958       return false;
959   }
960 
961   // Fow now, consider any other type of expression (div/mul/min/max) high cost.
962   return true;
963 }
964 
965 /// If any of the instructions in the specified set are trivially dead, delete
966 /// them and see if this makes any of their operands subsequently dead.
967 static bool
968 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
969   bool Changed = false;
970 
971   while (!DeadInsts.empty()) {
972     Value *V = DeadInsts.pop_back_val();
973     Instruction *I = dyn_cast_or_null<Instruction>(V);
974 
975     if (!I || !isInstructionTriviallyDead(I))
976       continue;
977 
978     for (Use &O : I->operands())
979       if (Instruction *U = dyn_cast<Instruction>(O)) {
980         O = nullptr;
981         if (U->use_empty())
982           DeadInsts.emplace_back(U);
983       }
984 
985     I->eraseFromParent();
986     Changed = true;
987   }
988 
989   return Changed;
990 }
991 
992 namespace {
993 
994 class LSRUse;
995 
996 } // end anonymous namespace
997 
998 /// Check if the addressing mode defined by \p F is completely
999 /// folded in \p LU at isel time.
1000 /// This includes address-mode folding and special icmp tricks.
1001 /// This function returns true if \p LU can accommodate what \p F
1002 /// defines and up to 1 base + 1 scaled + offset.
1003 /// In other words, if \p F has several base registers, this function may
1004 /// still return true. Therefore, users still need to account for
1005 /// additional base registers and/or unfolded offsets to derive an
1006 /// accurate cost model.
1007 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1008                                  const LSRUse &LU, const Formula &F);
1009 
1010 // Get the cost of the scaling factor used in F for LU.
1011 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
1012                                      const LSRUse &LU, const Formula &F,
1013                                      const Loop &L);
1014 
1015 namespace {
1016 
1017 /// This class is used to measure and compare candidate formulae.
1018 class Cost {
1019   const Loop *L = nullptr;
1020   ScalarEvolution *SE = nullptr;
1021   const TargetTransformInfo *TTI = nullptr;
1022   TargetTransformInfo::LSRCost C;
1023 
1024 public:
1025   Cost() = delete;
1026   Cost(const Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI) :
1027     L(L), SE(&SE), TTI(&TTI) {
1028     C.Insns = 0;
1029     C.NumRegs = 0;
1030     C.AddRecCost = 0;
1031     C.NumIVMuls = 0;
1032     C.NumBaseAdds = 0;
1033     C.ImmCost = 0;
1034     C.SetupCost = 0;
1035     C.ScaleCost = 0;
1036   }
1037 
1038   bool isLess(Cost &Other);
1039 
1040   void Lose();
1041 
1042 #ifndef NDEBUG
1043   // Once any of the metrics loses, they must all remain losers.
1044   bool isValid() {
1045     return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds
1046              | C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u)
1047       || ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds
1048            & C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u);
1049   }
1050 #endif
1051 
1052   bool isLoser() {
1053     assert(isValid() && "invalid cost");
1054     return C.NumRegs == ~0u;
1055   }
1056 
1057   void RateFormula(const Formula &F,
1058                    SmallPtrSetImpl<const SCEV *> &Regs,
1059                    const DenseSet<const SCEV *> &VisitedRegs,
1060                    const LSRUse &LU,
1061                    SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr);
1062 
1063   void print(raw_ostream &OS) const;
1064   void dump() const;
1065 
1066 private:
1067   void RateRegister(const Formula &F, const SCEV *Reg,
1068                     SmallPtrSetImpl<const SCEV *> &Regs);
1069   void RatePrimaryRegister(const Formula &F, const SCEV *Reg,
1070                            SmallPtrSetImpl<const SCEV *> &Regs,
1071                            SmallPtrSetImpl<const SCEV *> *LoserRegs);
1072 };
1073 
1074 /// An operand value in an instruction which is to be replaced with some
1075 /// equivalent, possibly strength-reduced, replacement.
1076 struct LSRFixup {
1077   /// The instruction which will be updated.
1078   Instruction *UserInst = nullptr;
1079 
1080   /// The operand of the instruction which will be replaced. The operand may be
1081   /// used more than once; every instance will be replaced.
1082   Value *OperandValToReplace = nullptr;
1083 
1084   /// If this user is to use the post-incremented value of an induction
1085   /// variable, this set is non-empty and holds the loops associated with the
1086   /// induction variable.
1087   PostIncLoopSet PostIncLoops;
1088 
1089   /// A constant offset to be added to the LSRUse expression.  This allows
1090   /// multiple fixups to share the same LSRUse with different offsets, for
1091   /// example in an unrolled loop.
1092   int64_t Offset = 0;
1093 
1094   LSRFixup() = default;
1095 
1096   bool isUseFullyOutsideLoop(const Loop *L) const;
1097 
1098   void print(raw_ostream &OS) const;
1099   void dump() const;
1100 };
1101 
1102 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted
1103 /// SmallVectors of const SCEV*.
1104 struct UniquifierDenseMapInfo {
1105   static SmallVector<const SCEV *, 4> getEmptyKey() {
1106     SmallVector<const SCEV *, 4>  V;
1107     V.push_back(reinterpret_cast<const SCEV *>(-1));
1108     return V;
1109   }
1110 
1111   static SmallVector<const SCEV *, 4> getTombstoneKey() {
1112     SmallVector<const SCEV *, 4> V;
1113     V.push_back(reinterpret_cast<const SCEV *>(-2));
1114     return V;
1115   }
1116 
1117   static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) {
1118     return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
1119   }
1120 
1121   static bool isEqual(const SmallVector<const SCEV *, 4> &LHS,
1122                       const SmallVector<const SCEV *, 4> &RHS) {
1123     return LHS == RHS;
1124   }
1125 };
1126 
1127 /// This class holds the state that LSR keeps for each use in IVUsers, as well
1128 /// as uses invented by LSR itself. It includes information about what kinds of
1129 /// things can be folded into the user, information about the user itself, and
1130 /// information about how the use may be satisfied.  TODO: Represent multiple
1131 /// users of the same expression in common?
1132 class LSRUse {
1133   DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier;
1134 
1135 public:
1136   /// An enum for a kind of use, indicating what types of scaled and immediate
1137   /// operands it might support.
1138   enum KindType {
1139     Basic,   ///< A normal use, with no folding.
1140     Special, ///< A special case of basic, allowing -1 scales.
1141     Address, ///< An address use; folding according to TargetLowering
1142     ICmpZero ///< An equality icmp with both operands folded into one.
1143     // TODO: Add a generic icmp too?
1144   };
1145 
1146   using SCEVUseKindPair = PointerIntPair<const SCEV *, 2, KindType>;
1147 
1148   KindType Kind;
1149   MemAccessTy AccessTy;
1150 
1151   /// The list of operands which are to be replaced.
1152   SmallVector<LSRFixup, 8> Fixups;
1153 
1154   /// Keep track of the min and max offsets of the fixups.
1155   int64_t MinOffset = std::numeric_limits<int64_t>::max();
1156   int64_t MaxOffset = std::numeric_limits<int64_t>::min();
1157 
1158   /// This records whether all of the fixups using this LSRUse are outside of
1159   /// the loop, in which case some special-case heuristics may be used.
1160   bool AllFixupsOutsideLoop = true;
1161 
1162   /// RigidFormula is set to true to guarantee that this use will be associated
1163   /// with a single formula--the one that initially matched. Some SCEV
1164   /// expressions cannot be expanded. This allows LSR to consider the registers
1165   /// used by those expressions without the need to expand them later after
1166   /// changing the formula.
1167   bool RigidFormula = false;
1168 
1169   /// This records the widest use type for any fixup using this
1170   /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max
1171   /// fixup widths to be equivalent, because the narrower one may be relying on
1172   /// the implicit truncation to truncate away bogus bits.
1173   Type *WidestFixupType = nullptr;
1174 
1175   /// A list of ways to build a value that can satisfy this user.  After the
1176   /// list is populated, one of these is selected heuristically and used to
1177   /// formulate a replacement for OperandValToReplace in UserInst.
1178   SmallVector<Formula, 12> Formulae;
1179 
1180   /// The set of register candidates used by all formulae in this LSRUse.
1181   SmallPtrSet<const SCEV *, 4> Regs;
1182 
1183   LSRUse(KindType K, MemAccessTy AT) : Kind(K), AccessTy(AT) {}
1184 
1185   LSRFixup &getNewFixup() {
1186     Fixups.push_back(LSRFixup());
1187     return Fixups.back();
1188   }
1189 
1190   void pushFixup(LSRFixup &f) {
1191     Fixups.push_back(f);
1192     if (f.Offset > MaxOffset)
1193       MaxOffset = f.Offset;
1194     if (f.Offset < MinOffset)
1195       MinOffset = f.Offset;
1196   }
1197 
1198   bool HasFormulaWithSameRegs(const Formula &F) const;
1199   float getNotSelectedProbability(const SCEV *Reg) const;
1200   bool InsertFormula(const Formula &F, const Loop &L);
1201   void DeleteFormula(Formula &F);
1202   void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
1203 
1204   void print(raw_ostream &OS) const;
1205   void dump() const;
1206 };
1207 
1208 } // end anonymous namespace
1209 
1210 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1211                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1212                                  GlobalValue *BaseGV, int64_t BaseOffset,
1213                                  bool HasBaseReg, int64_t Scale,
1214                                  Instruction *Fixup = nullptr);
1215 
1216 static unsigned getSetupCost(const SCEV *Reg, unsigned Depth) {
1217   if (isa<SCEVUnknown>(Reg) || isa<SCEVConstant>(Reg))
1218     return 1;
1219   if (Depth == 0)
1220     return 0;
1221   if (const auto *S = dyn_cast<SCEVAddRecExpr>(Reg))
1222     return getSetupCost(S->getStart(), Depth - 1);
1223   if (auto S = dyn_cast<SCEVCastExpr>(Reg))
1224     return getSetupCost(S->getOperand(), Depth - 1);
1225   if (auto S = dyn_cast<SCEVNAryExpr>(Reg))
1226     return std::accumulate(S->op_begin(), S->op_end(), 0,
1227                            [&](unsigned i, const SCEV *Reg) {
1228                              return i + getSetupCost(Reg, Depth - 1);
1229                            });
1230   if (auto S = dyn_cast<SCEVUDivExpr>(Reg))
1231     return getSetupCost(S->getLHS(), Depth - 1) +
1232            getSetupCost(S->getRHS(), Depth - 1);
1233   return 0;
1234 }
1235 
1236 /// Tally up interesting quantities from the given register.
1237 void Cost::RateRegister(const Formula &F, const SCEV *Reg,
1238                         SmallPtrSetImpl<const SCEV *> &Regs) {
1239   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
1240     // If this is an addrec for another loop, it should be an invariant
1241     // with respect to L since L is the innermost loop (at least
1242     // for now LSR only handles innermost loops).
1243     if (AR->getLoop() != L) {
1244       // If the AddRec exists, consider it's register free and leave it alone.
1245       if (isExistingPhi(AR, *SE))
1246         return;
1247 
1248       // It is bad to allow LSR for current loop to add induction variables
1249       // for its sibling loops.
1250       if (!AR->getLoop()->contains(L)) {
1251         Lose();
1252         return;
1253       }
1254 
1255       // Otherwise, it will be an invariant with respect to Loop L.
1256       ++C.NumRegs;
1257       return;
1258     }
1259 
1260     unsigned LoopCost = 1;
1261     if (TTI->isIndexedLoadLegal(TTI->MIM_PostInc, AR->getType()) ||
1262         TTI->isIndexedStoreLegal(TTI->MIM_PostInc, AR->getType())) {
1263 
1264       // If the step size matches the base offset, we could use pre-indexed
1265       // addressing.
1266       if (TTI->shouldFavorBackedgeIndex(L)) {
1267         if (auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)))
1268           if (Step->getAPInt() == F.BaseOffset)
1269             LoopCost = 0;
1270       }
1271 
1272       if (TTI->shouldFavorPostInc()) {
1273         const SCEV *LoopStep = AR->getStepRecurrence(*SE);
1274         if (isa<SCEVConstant>(LoopStep)) {
1275           const SCEV *LoopStart = AR->getStart();
1276           if (!isa<SCEVConstant>(LoopStart) &&
1277               SE->isLoopInvariant(LoopStart, L))
1278             LoopCost = 0;
1279         }
1280       }
1281     }
1282     C.AddRecCost += LoopCost;
1283 
1284     // Add the step value register, if it needs one.
1285     // TODO: The non-affine case isn't precisely modeled here.
1286     if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) {
1287       if (!Regs.count(AR->getOperand(1))) {
1288         RateRegister(F, AR->getOperand(1), Regs);
1289         if (isLoser())
1290           return;
1291       }
1292     }
1293   }
1294   ++C.NumRegs;
1295 
1296   // Rough heuristic; favor registers which don't require extra setup
1297   // instructions in the preheader.
1298   C.SetupCost += getSetupCost(Reg, SetupCostDepthLimit);
1299   // Ensure we don't, even with the recusion limit, produce invalid costs.
1300   C.SetupCost = std::min<unsigned>(C.SetupCost, 1 << 16);
1301 
1302   C.NumIVMuls += isa<SCEVMulExpr>(Reg) &&
1303                SE->hasComputableLoopEvolution(Reg, L);
1304 }
1305 
1306 /// Record this register in the set. If we haven't seen it before, rate
1307 /// it. Optional LoserRegs provides a way to declare any formula that refers to
1308 /// one of those regs an instant loser.
1309 void Cost::RatePrimaryRegister(const Formula &F, const SCEV *Reg,
1310                                SmallPtrSetImpl<const SCEV *> &Regs,
1311                                SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1312   if (LoserRegs && LoserRegs->count(Reg)) {
1313     Lose();
1314     return;
1315   }
1316   if (Regs.insert(Reg).second) {
1317     RateRegister(F, Reg, Regs);
1318     if (LoserRegs && isLoser())
1319       LoserRegs->insert(Reg);
1320   }
1321 }
1322 
1323 void Cost::RateFormula(const Formula &F,
1324                        SmallPtrSetImpl<const SCEV *> &Regs,
1325                        const DenseSet<const SCEV *> &VisitedRegs,
1326                        const LSRUse &LU,
1327                        SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1328   assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula");
1329   // Tally up the registers.
1330   unsigned PrevAddRecCost = C.AddRecCost;
1331   unsigned PrevNumRegs = C.NumRegs;
1332   unsigned PrevNumBaseAdds = C.NumBaseAdds;
1333   if (const SCEV *ScaledReg = F.ScaledReg) {
1334     if (VisitedRegs.count(ScaledReg)) {
1335       Lose();
1336       return;
1337     }
1338     RatePrimaryRegister(F, ScaledReg, Regs, LoserRegs);
1339     if (isLoser())
1340       return;
1341   }
1342   for (const SCEV *BaseReg : F.BaseRegs) {
1343     if (VisitedRegs.count(BaseReg)) {
1344       Lose();
1345       return;
1346     }
1347     RatePrimaryRegister(F, BaseReg, Regs, LoserRegs);
1348     if (isLoser())
1349       return;
1350   }
1351 
1352   // Determine how many (unfolded) adds we'll need inside the loop.
1353   size_t NumBaseParts = F.getNumRegs();
1354   if (NumBaseParts > 1)
1355     // Do not count the base and a possible second register if the target
1356     // allows to fold 2 registers.
1357     C.NumBaseAdds +=
1358         NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(*TTI, LU, F)));
1359   C.NumBaseAdds += (F.UnfoldedOffset != 0);
1360 
1361   // Accumulate non-free scaling amounts.
1362   C.ScaleCost += getScalingFactorCost(*TTI, LU, F, *L);
1363 
1364   // Tally up the non-zero immediates.
1365   for (const LSRFixup &Fixup : LU.Fixups) {
1366     int64_t O = Fixup.Offset;
1367     int64_t Offset = (uint64_t)O + F.BaseOffset;
1368     if (F.BaseGV)
1369       C.ImmCost += 64; // Handle symbolic values conservatively.
1370                      // TODO: This should probably be the pointer size.
1371     else if (Offset != 0)
1372       C.ImmCost += APInt(64, Offset, true).getMinSignedBits();
1373 
1374     // Check with target if this offset with this instruction is
1375     // specifically not supported.
1376     if (LU.Kind == LSRUse::Address && Offset != 0 &&
1377         !isAMCompletelyFolded(*TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
1378                               Offset, F.HasBaseReg, F.Scale, Fixup.UserInst))
1379       C.NumBaseAdds++;
1380   }
1381 
1382   // If we don't count instruction cost exit here.
1383   if (!InsnsCost) {
1384     assert(isValid() && "invalid cost");
1385     return;
1386   }
1387 
1388   // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as
1389   // additional instruction (at least fill).
1390   // TODO: Need distinguish register class?
1391   unsigned TTIRegNum = TTI->getNumberOfRegisters(
1392                        TTI->getRegisterClassForType(false, F.getType())) - 1;
1393   if (C.NumRegs > TTIRegNum) {
1394     // Cost already exceeded TTIRegNum, then only newly added register can add
1395     // new instructions.
1396     if (PrevNumRegs > TTIRegNum)
1397       C.Insns += (C.NumRegs - PrevNumRegs);
1398     else
1399       C.Insns += (C.NumRegs - TTIRegNum);
1400   }
1401 
1402   // If ICmpZero formula ends with not 0, it could not be replaced by
1403   // just add or sub. We'll need to compare final result of AddRec.
1404   // That means we'll need an additional instruction. But if the target can
1405   // macro-fuse a compare with a branch, don't count this extra instruction.
1406   // For -10 + {0, +, 1}:
1407   // i = i + 1;
1408   // cmp i, 10
1409   //
1410   // For {-10, +, 1}:
1411   // i = i + 1;
1412   if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd() &&
1413       !TTI->canMacroFuseCmp())
1414     C.Insns++;
1415   // Each new AddRec adds 1 instruction to calculation.
1416   C.Insns += (C.AddRecCost - PrevAddRecCost);
1417 
1418   // BaseAdds adds instructions for unfolded registers.
1419   if (LU.Kind != LSRUse::ICmpZero)
1420     C.Insns += C.NumBaseAdds - PrevNumBaseAdds;
1421   assert(isValid() && "invalid cost");
1422 }
1423 
1424 /// Set this cost to a losing value.
1425 void Cost::Lose() {
1426   C.Insns = std::numeric_limits<unsigned>::max();
1427   C.NumRegs = std::numeric_limits<unsigned>::max();
1428   C.AddRecCost = std::numeric_limits<unsigned>::max();
1429   C.NumIVMuls = std::numeric_limits<unsigned>::max();
1430   C.NumBaseAdds = std::numeric_limits<unsigned>::max();
1431   C.ImmCost = std::numeric_limits<unsigned>::max();
1432   C.SetupCost = std::numeric_limits<unsigned>::max();
1433   C.ScaleCost = std::numeric_limits<unsigned>::max();
1434 }
1435 
1436 /// Choose the lower cost.
1437 bool Cost::isLess(Cost &Other) {
1438   if (InsnsCost.getNumOccurrences() > 0 && InsnsCost &&
1439       C.Insns != Other.C.Insns)
1440     return C.Insns < Other.C.Insns;
1441   return TTI->isLSRCostLess(C, Other.C);
1442 }
1443 
1444 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1445 void Cost::print(raw_ostream &OS) const {
1446   if (InsnsCost)
1447     OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s ");
1448   OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s");
1449   if (C.AddRecCost != 0)
1450     OS << ", with addrec cost " << C.AddRecCost;
1451   if (C.NumIVMuls != 0)
1452     OS << ", plus " << C.NumIVMuls << " IV mul"
1453        << (C.NumIVMuls == 1 ? "" : "s");
1454   if (C.NumBaseAdds != 0)
1455     OS << ", plus " << C.NumBaseAdds << " base add"
1456        << (C.NumBaseAdds == 1 ? "" : "s");
1457   if (C.ScaleCost != 0)
1458     OS << ", plus " << C.ScaleCost << " scale cost";
1459   if (C.ImmCost != 0)
1460     OS << ", plus " << C.ImmCost << " imm cost";
1461   if (C.SetupCost != 0)
1462     OS << ", plus " << C.SetupCost << " setup cost";
1463 }
1464 
1465 LLVM_DUMP_METHOD void Cost::dump() const {
1466   print(errs()); errs() << '\n';
1467 }
1468 #endif
1469 
1470 /// Test whether this fixup always uses its value outside of the given loop.
1471 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
1472   // PHI nodes use their value in their incoming blocks.
1473   if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
1474     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1475       if (PN->getIncomingValue(i) == OperandValToReplace &&
1476           L->contains(PN->getIncomingBlock(i)))
1477         return false;
1478     return true;
1479   }
1480 
1481   return !L->contains(UserInst);
1482 }
1483 
1484 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1485 void LSRFixup::print(raw_ostream &OS) const {
1486   OS << "UserInst=";
1487   // Store is common and interesting enough to be worth special-casing.
1488   if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
1489     OS << "store ";
1490     Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false);
1491   } else if (UserInst->getType()->isVoidTy())
1492     OS << UserInst->getOpcodeName();
1493   else
1494     UserInst->printAsOperand(OS, /*PrintType=*/false);
1495 
1496   OS << ", OperandValToReplace=";
1497   OperandValToReplace->printAsOperand(OS, /*PrintType=*/false);
1498 
1499   for (const Loop *PIL : PostIncLoops) {
1500     OS << ", PostIncLoop=";
1501     PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
1502   }
1503 
1504   if (Offset != 0)
1505     OS << ", Offset=" << Offset;
1506 }
1507 
1508 LLVM_DUMP_METHOD void LSRFixup::dump() const {
1509   print(errs()); errs() << '\n';
1510 }
1511 #endif
1512 
1513 /// Test whether this use as a formula which has the same registers as the given
1514 /// formula.
1515 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
1516   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1517   if (F.ScaledReg) Key.push_back(F.ScaledReg);
1518   // Unstable sort by host order ok, because this is only used for uniquifying.
1519   llvm::sort(Key);
1520   return Uniquifier.count(Key);
1521 }
1522 
1523 /// The function returns a probability of selecting formula without Reg.
1524 float LSRUse::getNotSelectedProbability(const SCEV *Reg) const {
1525   unsigned FNum = 0;
1526   for (const Formula &F : Formulae)
1527     if (F.referencesReg(Reg))
1528       FNum++;
1529   return ((float)(Formulae.size() - FNum)) / Formulae.size();
1530 }
1531 
1532 /// If the given formula has not yet been inserted, add it to the list, and
1533 /// return true. Return false otherwise.  The formula must be in canonical form.
1534 bool LSRUse::InsertFormula(const Formula &F, const Loop &L) {
1535   assert(F.isCanonical(L) && "Invalid canonical representation");
1536 
1537   if (!Formulae.empty() && RigidFormula)
1538     return false;
1539 
1540   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1541   if (F.ScaledReg) Key.push_back(F.ScaledReg);
1542   // Unstable sort by host order ok, because this is only used for uniquifying.
1543   llvm::sort(Key);
1544 
1545   if (!Uniquifier.insert(Key).second)
1546     return false;
1547 
1548   // Using a register to hold the value of 0 is not profitable.
1549   assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
1550          "Zero allocated in a scaled register!");
1551 #ifndef NDEBUG
1552   for (const SCEV *BaseReg : F.BaseRegs)
1553     assert(!BaseReg->isZero() && "Zero allocated in a base register!");
1554 #endif
1555 
1556   // Add the formula to the list.
1557   Formulae.push_back(F);
1558 
1559   // Record registers now being used by this use.
1560   Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1561   if (F.ScaledReg)
1562     Regs.insert(F.ScaledReg);
1563 
1564   return true;
1565 }
1566 
1567 /// Remove the given formula from this use's list.
1568 void LSRUse::DeleteFormula(Formula &F) {
1569   if (&F != &Formulae.back())
1570     std::swap(F, Formulae.back());
1571   Formulae.pop_back();
1572 }
1573 
1574 /// Recompute the Regs field, and update RegUses.
1575 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
1576   // Now that we've filtered out some formulae, recompute the Regs set.
1577   SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs);
1578   Regs.clear();
1579   for (const Formula &F : Formulae) {
1580     if (F.ScaledReg) Regs.insert(F.ScaledReg);
1581     Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1582   }
1583 
1584   // Update the RegTracker.
1585   for (const SCEV *S : OldRegs)
1586     if (!Regs.count(S))
1587       RegUses.dropRegister(S, LUIdx);
1588 }
1589 
1590 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1591 void LSRUse::print(raw_ostream &OS) const {
1592   OS << "LSR Use: Kind=";
1593   switch (Kind) {
1594   case Basic:    OS << "Basic"; break;
1595   case Special:  OS << "Special"; break;
1596   case ICmpZero: OS << "ICmpZero"; break;
1597   case Address:
1598     OS << "Address of ";
1599     if (AccessTy.MemTy->isPointerTy())
1600       OS << "pointer"; // the full pointer type could be really verbose
1601     else {
1602       OS << *AccessTy.MemTy;
1603     }
1604 
1605     OS << " in addrspace(" << AccessTy.AddrSpace << ')';
1606   }
1607 
1608   OS << ", Offsets={";
1609   bool NeedComma = false;
1610   for (const LSRFixup &Fixup : Fixups) {
1611     if (NeedComma) OS << ',';
1612     OS << Fixup.Offset;
1613     NeedComma = true;
1614   }
1615   OS << '}';
1616 
1617   if (AllFixupsOutsideLoop)
1618     OS << ", all-fixups-outside-loop";
1619 
1620   if (WidestFixupType)
1621     OS << ", widest fixup type: " << *WidestFixupType;
1622 }
1623 
1624 LLVM_DUMP_METHOD void LSRUse::dump() const {
1625   print(errs()); errs() << '\n';
1626 }
1627 #endif
1628 
1629 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1630                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1631                                  GlobalValue *BaseGV, int64_t BaseOffset,
1632                                  bool HasBaseReg, int64_t Scale,
1633                                  Instruction *Fixup/*= nullptr*/) {
1634   switch (Kind) {
1635   case LSRUse::Address:
1636     return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset,
1637                                      HasBaseReg, Scale, AccessTy.AddrSpace, Fixup);
1638 
1639   case LSRUse::ICmpZero:
1640     // There's not even a target hook for querying whether it would be legal to
1641     // fold a GV into an ICmp.
1642     if (BaseGV)
1643       return false;
1644 
1645     // ICmp only has two operands; don't allow more than two non-trivial parts.
1646     if (Scale != 0 && HasBaseReg && BaseOffset != 0)
1647       return false;
1648 
1649     // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1650     // putting the scaled register in the other operand of the icmp.
1651     if (Scale != 0 && Scale != -1)
1652       return false;
1653 
1654     // If we have low-level target information, ask the target if it can fold an
1655     // integer immediate on an icmp.
1656     if (BaseOffset != 0) {
1657       // We have one of:
1658       // ICmpZero     BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset
1659       // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset
1660       // Offs is the ICmp immediate.
1661       if (Scale == 0)
1662         // The cast does the right thing with
1663         // std::numeric_limits<int64_t>::min().
1664         BaseOffset = -(uint64_t)BaseOffset;
1665       return TTI.isLegalICmpImmediate(BaseOffset);
1666     }
1667 
1668     // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg
1669     return true;
1670 
1671   case LSRUse::Basic:
1672     // Only handle single-register values.
1673     return !BaseGV && Scale == 0 && BaseOffset == 0;
1674 
1675   case LSRUse::Special:
1676     // Special case Basic to handle -1 scales.
1677     return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0;
1678   }
1679 
1680   llvm_unreachable("Invalid LSRUse Kind!");
1681 }
1682 
1683 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1684                                  int64_t MinOffset, int64_t MaxOffset,
1685                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1686                                  GlobalValue *BaseGV, int64_t BaseOffset,
1687                                  bool HasBaseReg, int64_t Scale) {
1688   // Check for overflow.
1689   if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) !=
1690       (MinOffset > 0))
1691     return false;
1692   MinOffset = (uint64_t)BaseOffset + MinOffset;
1693   if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) !=
1694       (MaxOffset > 0))
1695     return false;
1696   MaxOffset = (uint64_t)BaseOffset + MaxOffset;
1697 
1698   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset,
1699                               HasBaseReg, Scale) &&
1700          isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset,
1701                               HasBaseReg, Scale);
1702 }
1703 
1704 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1705                                  int64_t MinOffset, int64_t MaxOffset,
1706                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1707                                  const Formula &F, const Loop &L) {
1708   // For the purpose of isAMCompletelyFolded either having a canonical formula
1709   // or a scale not equal to zero is correct.
1710   // Problems may arise from non canonical formulae having a scale == 0.
1711   // Strictly speaking it would best to just rely on canonical formulae.
1712   // However, when we generate the scaled formulae, we first check that the
1713   // scaling factor is profitable before computing the actual ScaledReg for
1714   // compile time sake.
1715   assert((F.isCanonical(L) || F.Scale != 0));
1716   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1717                               F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale);
1718 }
1719 
1720 /// Test whether we know how to expand the current formula.
1721 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1722                        int64_t MaxOffset, LSRUse::KindType Kind,
1723                        MemAccessTy AccessTy, GlobalValue *BaseGV,
1724                        int64_t BaseOffset, bool HasBaseReg, int64_t Scale) {
1725   // We know how to expand completely foldable formulae.
1726   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1727                               BaseOffset, HasBaseReg, Scale) ||
1728          // Or formulae that use a base register produced by a sum of base
1729          // registers.
1730          (Scale == 1 &&
1731           isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1732                                BaseGV, BaseOffset, true, 0));
1733 }
1734 
1735 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1736                        int64_t MaxOffset, LSRUse::KindType Kind,
1737                        MemAccessTy AccessTy, const Formula &F) {
1738   return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV,
1739                     F.BaseOffset, F.HasBaseReg, F.Scale);
1740 }
1741 
1742 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1743                                  const LSRUse &LU, const Formula &F) {
1744   // Target may want to look at the user instructions.
1745   if (LU.Kind == LSRUse::Address && TTI.LSRWithInstrQueries()) {
1746     for (const LSRFixup &Fixup : LU.Fixups)
1747       if (!isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
1748                                 (F.BaseOffset + Fixup.Offset), F.HasBaseReg,
1749                                 F.Scale, Fixup.UserInst))
1750         return false;
1751     return true;
1752   }
1753 
1754   return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1755                               LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg,
1756                               F.Scale);
1757 }
1758 
1759 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
1760                                      const LSRUse &LU, const Formula &F,
1761                                      const Loop &L) {
1762   if (!F.Scale)
1763     return 0;
1764 
1765   // If the use is not completely folded in that instruction, we will have to
1766   // pay an extra cost only for scale != 1.
1767   if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1768                             LU.AccessTy, F, L))
1769     return F.Scale != 1;
1770 
1771   switch (LU.Kind) {
1772   case LSRUse::Address: {
1773     // Check the scaling factor cost with both the min and max offsets.
1774     int ScaleCostMinOffset = TTI.getScalingFactorCost(
1775         LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg,
1776         F.Scale, LU.AccessTy.AddrSpace);
1777     int ScaleCostMaxOffset = TTI.getScalingFactorCost(
1778         LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg,
1779         F.Scale, LU.AccessTy.AddrSpace);
1780 
1781     assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 &&
1782            "Legal addressing mode has an illegal cost!");
1783     return std::max(ScaleCostMinOffset, ScaleCostMaxOffset);
1784   }
1785   case LSRUse::ICmpZero:
1786   case LSRUse::Basic:
1787   case LSRUse::Special:
1788     // The use is completely folded, i.e., everything is folded into the
1789     // instruction.
1790     return 0;
1791   }
1792 
1793   llvm_unreachable("Invalid LSRUse Kind!");
1794 }
1795 
1796 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1797                              LSRUse::KindType Kind, MemAccessTy AccessTy,
1798                              GlobalValue *BaseGV, int64_t BaseOffset,
1799                              bool HasBaseReg) {
1800   // Fast-path: zero is always foldable.
1801   if (BaseOffset == 0 && !BaseGV) return true;
1802 
1803   // Conservatively, create an address with an immediate and a
1804   // base and a scale.
1805   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1806 
1807   // Canonicalize a scale of 1 to a base register if the formula doesn't
1808   // already have a base register.
1809   if (!HasBaseReg && Scale == 1) {
1810     Scale = 0;
1811     HasBaseReg = true;
1812   }
1813 
1814   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset,
1815                               HasBaseReg, Scale);
1816 }
1817 
1818 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1819                              ScalarEvolution &SE, int64_t MinOffset,
1820                              int64_t MaxOffset, LSRUse::KindType Kind,
1821                              MemAccessTy AccessTy, const SCEV *S,
1822                              bool HasBaseReg) {
1823   // Fast-path: zero is always foldable.
1824   if (S->isZero()) return true;
1825 
1826   // Conservatively, create an address with an immediate and a
1827   // base and a scale.
1828   int64_t BaseOffset = ExtractImmediate(S, SE);
1829   GlobalValue *BaseGV = ExtractSymbol(S, SE);
1830 
1831   // If there's anything else involved, it's not foldable.
1832   if (!S->isZero()) return false;
1833 
1834   // Fast-path: zero is always foldable.
1835   if (BaseOffset == 0 && !BaseGV) return true;
1836 
1837   // Conservatively, create an address with an immediate and a
1838   // base and a scale.
1839   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1840 
1841   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1842                               BaseOffset, HasBaseReg, Scale);
1843 }
1844 
1845 namespace {
1846 
1847 /// An individual increment in a Chain of IV increments.  Relate an IV user to
1848 /// an expression that computes the IV it uses from the IV used by the previous
1849 /// link in the Chain.
1850 ///
1851 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the
1852 /// original IVOperand. The head of the chain's IVOperand is only valid during
1853 /// chain collection, before LSR replaces IV users. During chain generation,
1854 /// IncExpr can be used to find the new IVOperand that computes the same
1855 /// expression.
1856 struct IVInc {
1857   Instruction *UserInst;
1858   Value* IVOperand;
1859   const SCEV *IncExpr;
1860 
1861   IVInc(Instruction *U, Value *O, const SCEV *E)
1862       : UserInst(U), IVOperand(O), IncExpr(E) {}
1863 };
1864 
1865 // The list of IV increments in program order.  We typically add the head of a
1866 // chain without finding subsequent links.
1867 struct IVChain {
1868   SmallVector<IVInc, 1> Incs;
1869   const SCEV *ExprBase = nullptr;
1870 
1871   IVChain() = default;
1872   IVChain(const IVInc &Head, const SCEV *Base)
1873       : Incs(1, Head), ExprBase(Base) {}
1874 
1875   using const_iterator = SmallVectorImpl<IVInc>::const_iterator;
1876 
1877   // Return the first increment in the chain.
1878   const_iterator begin() const {
1879     assert(!Incs.empty());
1880     return std::next(Incs.begin());
1881   }
1882   const_iterator end() const {
1883     return Incs.end();
1884   }
1885 
1886   // Returns true if this chain contains any increments.
1887   bool hasIncs() const { return Incs.size() >= 2; }
1888 
1889   // Add an IVInc to the end of this chain.
1890   void add(const IVInc &X) { Incs.push_back(X); }
1891 
1892   // Returns the last UserInst in the chain.
1893   Instruction *tailUserInst() const { return Incs.back().UserInst; }
1894 
1895   // Returns true if IncExpr can be profitably added to this chain.
1896   bool isProfitableIncrement(const SCEV *OperExpr,
1897                              const SCEV *IncExpr,
1898                              ScalarEvolution&);
1899 };
1900 
1901 /// Helper for CollectChains to track multiple IV increment uses.  Distinguish
1902 /// between FarUsers that definitely cross IV increments and NearUsers that may
1903 /// be used between IV increments.
1904 struct ChainUsers {
1905   SmallPtrSet<Instruction*, 4> FarUsers;
1906   SmallPtrSet<Instruction*, 4> NearUsers;
1907 };
1908 
1909 /// This class holds state for the main loop strength reduction logic.
1910 class LSRInstance {
1911   IVUsers &IU;
1912   ScalarEvolution &SE;
1913   DominatorTree &DT;
1914   LoopInfo &LI;
1915   AssumptionCache &AC;
1916   TargetLibraryInfo &LibInfo;
1917   const TargetTransformInfo &TTI;
1918   Loop *const L;
1919   bool FavorBackedgeIndex = false;
1920   bool Changed = false;
1921 
1922   /// This is the insert position that the current loop's induction variable
1923   /// increment should be placed. In simple loops, this is the latch block's
1924   /// terminator. But in more complicated cases, this is a position which will
1925   /// dominate all the in-loop post-increment users.
1926   Instruction *IVIncInsertPos = nullptr;
1927 
1928   /// Interesting factors between use strides.
1929   ///
1930   /// We explicitly use a SetVector which contains a SmallSet, instead of the
1931   /// default, a SmallDenseSet, because we need to use the full range of
1932   /// int64_ts, and there's currently no good way of doing that with
1933   /// SmallDenseSet.
1934   SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors;
1935 
1936   /// Interesting use types, to facilitate truncation reuse.
1937   SmallSetVector<Type *, 4> Types;
1938 
1939   /// The list of interesting uses.
1940   mutable SmallVector<LSRUse, 16> Uses;
1941 
1942   /// Track which uses use which register candidates.
1943   RegUseTracker RegUses;
1944 
1945   // Limit the number of chains to avoid quadratic behavior. We don't expect to
1946   // have more than a few IV increment chains in a loop. Missing a Chain falls
1947   // back to normal LSR behavior for those uses.
1948   static const unsigned MaxChains = 8;
1949 
1950   /// IV users can form a chain of IV increments.
1951   SmallVector<IVChain, MaxChains> IVChainVec;
1952 
1953   /// IV users that belong to profitable IVChains.
1954   SmallPtrSet<Use*, MaxChains> IVIncSet;
1955 
1956   void OptimizeShadowIV();
1957   bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
1958   ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
1959   void OptimizeLoopTermCond();
1960 
1961   void ChainInstruction(Instruction *UserInst, Instruction *IVOper,
1962                         SmallVectorImpl<ChainUsers> &ChainUsersVec);
1963   void FinalizeChain(IVChain &Chain);
1964   void CollectChains();
1965   void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
1966                        SmallVectorImpl<WeakTrackingVH> &DeadInsts);
1967 
1968   void CollectInterestingTypesAndFactors();
1969   void CollectFixupsAndInitialFormulae();
1970 
1971   // Support for sharing of LSRUses between LSRFixups.
1972   using UseMapTy = DenseMap<LSRUse::SCEVUseKindPair, size_t>;
1973   UseMapTy UseMap;
1974 
1975   bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
1976                           LSRUse::KindType Kind, MemAccessTy AccessTy);
1977 
1978   std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind,
1979                                     MemAccessTy AccessTy);
1980 
1981   void DeleteUse(LSRUse &LU, size_t LUIdx);
1982 
1983   LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
1984 
1985   void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1986   void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1987   void CountRegisters(const Formula &F, size_t LUIdx);
1988   bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
1989 
1990   void CollectLoopInvariantFixupsAndFormulae();
1991 
1992   void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
1993                               unsigned Depth = 0);
1994 
1995   void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
1996                                   const Formula &Base, unsigned Depth,
1997                                   size_t Idx, bool IsScaledReg = false);
1998   void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
1999   void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
2000                                    const Formula &Base, size_t Idx,
2001                                    bool IsScaledReg = false);
2002   void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
2003   void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx,
2004                                    const Formula &Base,
2005                                    const SmallVectorImpl<int64_t> &Worklist,
2006                                    size_t Idx, bool IsScaledReg = false);
2007   void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
2008   void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
2009   void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
2010   void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
2011   void GenerateCrossUseConstantOffsets();
2012   void GenerateAllReuseFormulae();
2013 
2014   void FilterOutUndesirableDedicatedRegisters();
2015 
2016   size_t EstimateSearchSpaceComplexity() const;
2017   void NarrowSearchSpaceByDetectingSupersets();
2018   void NarrowSearchSpaceByCollapsingUnrolledCode();
2019   void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
2020   void NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
2021   void NarrowSearchSpaceByDeletingCostlyFormulas();
2022   void NarrowSearchSpaceByPickingWinnerRegs();
2023   void NarrowSearchSpaceUsingHeuristics();
2024 
2025   void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
2026                     Cost &SolutionCost,
2027                     SmallVectorImpl<const Formula *> &Workspace,
2028                     const Cost &CurCost,
2029                     const SmallPtrSet<const SCEV *, 16> &CurRegs,
2030                     DenseSet<const SCEV *> &VisitedRegs) const;
2031   void Solve(SmallVectorImpl<const Formula *> &Solution) const;
2032 
2033   BasicBlock::iterator
2034     HoistInsertPosition(BasicBlock::iterator IP,
2035                         const SmallVectorImpl<Instruction *> &Inputs) const;
2036   BasicBlock::iterator
2037     AdjustInsertPositionForExpand(BasicBlock::iterator IP,
2038                                   const LSRFixup &LF,
2039                                   const LSRUse &LU,
2040                                   SCEVExpander &Rewriter) const;
2041 
2042   Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
2043                 BasicBlock::iterator IP, SCEVExpander &Rewriter,
2044                 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2045   void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF,
2046                      const Formula &F, SCEVExpander &Rewriter,
2047                      SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2048   void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
2049                SCEVExpander &Rewriter,
2050                SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2051   void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution);
2052 
2053 public:
2054   LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT,
2055               LoopInfo &LI, const TargetTransformInfo &TTI, AssumptionCache &AC,
2056               TargetLibraryInfo &LibInfo);
2057 
2058   bool getChanged() const { return Changed; }
2059 
2060   void print_factors_and_types(raw_ostream &OS) const;
2061   void print_fixups(raw_ostream &OS) const;
2062   void print_uses(raw_ostream &OS) const;
2063   void print(raw_ostream &OS) const;
2064   void dump() const;
2065 };
2066 
2067 } // end anonymous namespace
2068 
2069 /// If IV is used in a int-to-float cast inside the loop then try to eliminate
2070 /// the cast operation.
2071 void LSRInstance::OptimizeShadowIV() {
2072   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2073   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2074     return;
2075 
2076   for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
2077        UI != E; /* empty */) {
2078     IVUsers::const_iterator CandidateUI = UI;
2079     ++UI;
2080     Instruction *ShadowUse = CandidateUI->getUser();
2081     Type *DestTy = nullptr;
2082     bool IsSigned = false;
2083 
2084     /* If shadow use is a int->float cast then insert a second IV
2085        to eliminate this cast.
2086 
2087          for (unsigned i = 0; i < n; ++i)
2088            foo((double)i);
2089 
2090        is transformed into
2091 
2092          double d = 0.0;
2093          for (unsigned i = 0; i < n; ++i, ++d)
2094            foo(d);
2095     */
2096     if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) {
2097       IsSigned = false;
2098       DestTy = UCast->getDestTy();
2099     }
2100     else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) {
2101       IsSigned = true;
2102       DestTy = SCast->getDestTy();
2103     }
2104     if (!DestTy) continue;
2105 
2106     // If target does not support DestTy natively then do not apply
2107     // this transformation.
2108     if (!TTI.isTypeLegal(DestTy)) continue;
2109 
2110     PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
2111     if (!PH) continue;
2112     if (PH->getNumIncomingValues() != 2) continue;
2113 
2114     // If the calculation in integers overflows, the result in FP type will
2115     // differ. So we only can do this transformation if we are guaranteed to not
2116     // deal with overflowing values
2117     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PH));
2118     if (!AR) continue;
2119     if (IsSigned && !AR->hasNoSignedWrap()) continue;
2120     if (!IsSigned && !AR->hasNoUnsignedWrap()) continue;
2121 
2122     Type *SrcTy = PH->getType();
2123     int Mantissa = DestTy->getFPMantissaWidth();
2124     if (Mantissa == -1) continue;
2125     if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
2126       continue;
2127 
2128     unsigned Entry, Latch;
2129     if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
2130       Entry = 0;
2131       Latch = 1;
2132     } else {
2133       Entry = 1;
2134       Latch = 0;
2135     }
2136 
2137     ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
2138     if (!Init) continue;
2139     Constant *NewInit = ConstantFP::get(DestTy, IsSigned ?
2140                                         (double)Init->getSExtValue() :
2141                                         (double)Init->getZExtValue());
2142 
2143     BinaryOperator *Incr =
2144       dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
2145     if (!Incr) continue;
2146     if (Incr->getOpcode() != Instruction::Add
2147         && Incr->getOpcode() != Instruction::Sub)
2148       continue;
2149 
2150     /* Initialize new IV, double d = 0.0 in above example. */
2151     ConstantInt *C = nullptr;
2152     if (Incr->getOperand(0) == PH)
2153       C = dyn_cast<ConstantInt>(Incr->getOperand(1));
2154     else if (Incr->getOperand(1) == PH)
2155       C = dyn_cast<ConstantInt>(Incr->getOperand(0));
2156     else
2157       continue;
2158 
2159     if (!C) continue;
2160 
2161     // Ignore negative constants, as the code below doesn't handle them
2162     // correctly. TODO: Remove this restriction.
2163     if (!C->getValue().isStrictlyPositive()) continue;
2164 
2165     /* Add new PHINode. */
2166     PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH);
2167 
2168     /* create new increment. '++d' in above example. */
2169     Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
2170     BinaryOperator *NewIncr =
2171       BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
2172                                Instruction::FAdd : Instruction::FSub,
2173                              NewPH, CFP, "IV.S.next.", Incr);
2174 
2175     NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
2176     NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
2177 
2178     /* Remove cast operation */
2179     ShadowUse->replaceAllUsesWith(NewPH);
2180     ShadowUse->eraseFromParent();
2181     Changed = true;
2182     break;
2183   }
2184 }
2185 
2186 /// If Cond has an operand that is an expression of an IV, set the IV user and
2187 /// stride information and return true, otherwise return false.
2188 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
2189   for (IVStrideUse &U : IU)
2190     if (U.getUser() == Cond) {
2191       // NOTE: we could handle setcc instructions with multiple uses here, but
2192       // InstCombine does it as well for simple uses, it's not clear that it
2193       // occurs enough in real life to handle.
2194       CondUse = &U;
2195       return true;
2196     }
2197   return false;
2198 }
2199 
2200 /// Rewrite the loop's terminating condition if it uses a max computation.
2201 ///
2202 /// This is a narrow solution to a specific, but acute, problem. For loops
2203 /// like this:
2204 ///
2205 ///   i = 0;
2206 ///   do {
2207 ///     p[i] = 0.0;
2208 ///   } while (++i < n);
2209 ///
2210 /// the trip count isn't just 'n', because 'n' might not be positive. And
2211 /// unfortunately this can come up even for loops where the user didn't use
2212 /// a C do-while loop. For example, seemingly well-behaved top-test loops
2213 /// will commonly be lowered like this:
2214 ///
2215 ///   if (n > 0) {
2216 ///     i = 0;
2217 ///     do {
2218 ///       p[i] = 0.0;
2219 ///     } while (++i < n);
2220 ///   }
2221 ///
2222 /// and then it's possible for subsequent optimization to obscure the if
2223 /// test in such a way that indvars can't find it.
2224 ///
2225 /// When indvars can't find the if test in loops like this, it creates a
2226 /// max expression, which allows it to give the loop a canonical
2227 /// induction variable:
2228 ///
2229 ///   i = 0;
2230 ///   max = n < 1 ? 1 : n;
2231 ///   do {
2232 ///     p[i] = 0.0;
2233 ///   } while (++i != max);
2234 ///
2235 /// Canonical induction variables are necessary because the loop passes
2236 /// are designed around them. The most obvious example of this is the
2237 /// LoopInfo analysis, which doesn't remember trip count values. It
2238 /// expects to be able to rediscover the trip count each time it is
2239 /// needed, and it does this using a simple analysis that only succeeds if
2240 /// the loop has a canonical induction variable.
2241 ///
2242 /// However, when it comes time to generate code, the maximum operation
2243 /// can be quite costly, especially if it's inside of an outer loop.
2244 ///
2245 /// This function solves this problem by detecting this type of loop and
2246 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
2247 /// the instructions for the maximum computation.
2248 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
2249   // Check that the loop matches the pattern we're looking for.
2250   if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
2251       Cond->getPredicate() != CmpInst::ICMP_NE)
2252     return Cond;
2253 
2254   SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
2255   if (!Sel || !Sel->hasOneUse()) return Cond;
2256 
2257   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2258   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2259     return Cond;
2260   const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
2261 
2262   // Add one to the backedge-taken count to get the trip count.
2263   const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount);
2264   if (IterationCount != SE.getSCEV(Sel)) return Cond;
2265 
2266   // Check for a max calculation that matches the pattern. There's no check
2267   // for ICMP_ULE here because the comparison would be with zero, which
2268   // isn't interesting.
2269   CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
2270   const SCEVNAryExpr *Max = nullptr;
2271   if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
2272     Pred = ICmpInst::ICMP_SLE;
2273     Max = S;
2274   } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
2275     Pred = ICmpInst::ICMP_SLT;
2276     Max = S;
2277   } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
2278     Pred = ICmpInst::ICMP_ULT;
2279     Max = U;
2280   } else {
2281     // No match; bail.
2282     return Cond;
2283   }
2284 
2285   // To handle a max with more than two operands, this optimization would
2286   // require additional checking and setup.
2287   if (Max->getNumOperands() != 2)
2288     return Cond;
2289 
2290   const SCEV *MaxLHS = Max->getOperand(0);
2291   const SCEV *MaxRHS = Max->getOperand(1);
2292 
2293   // ScalarEvolution canonicalizes constants to the left. For < and >, look
2294   // for a comparison with 1. For <= and >=, a comparison with zero.
2295   if (!MaxLHS ||
2296       (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
2297     return Cond;
2298 
2299   // Check the relevant induction variable for conformance to
2300   // the pattern.
2301   const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
2302   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
2303   if (!AR || !AR->isAffine() ||
2304       AR->getStart() != One ||
2305       AR->getStepRecurrence(SE) != One)
2306     return Cond;
2307 
2308   assert(AR->getLoop() == L &&
2309          "Loop condition operand is an addrec in a different loop!");
2310 
2311   // Check the right operand of the select, and remember it, as it will
2312   // be used in the new comparison instruction.
2313   Value *NewRHS = nullptr;
2314   if (ICmpInst::isTrueWhenEqual(Pred)) {
2315     // Look for n+1, and grab n.
2316     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
2317       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2318          if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2319            NewRHS = BO->getOperand(0);
2320     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
2321       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2322         if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2323           NewRHS = BO->getOperand(0);
2324     if (!NewRHS)
2325       return Cond;
2326   } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
2327     NewRHS = Sel->getOperand(1);
2328   else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
2329     NewRHS = Sel->getOperand(2);
2330   else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
2331     NewRHS = SU->getValue();
2332   else
2333     // Max doesn't match expected pattern.
2334     return Cond;
2335 
2336   // Determine the new comparison opcode. It may be signed or unsigned,
2337   // and the original comparison may be either equality or inequality.
2338   if (Cond->getPredicate() == CmpInst::ICMP_EQ)
2339     Pred = CmpInst::getInversePredicate(Pred);
2340 
2341   // Ok, everything looks ok to change the condition into an SLT or SGE and
2342   // delete the max calculation.
2343   ICmpInst *NewCond =
2344     new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
2345 
2346   // Delete the max calculation instructions.
2347   Cond->replaceAllUsesWith(NewCond);
2348   CondUse->setUser(NewCond);
2349   Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
2350   Cond->eraseFromParent();
2351   Sel->eraseFromParent();
2352   if (Cmp->use_empty())
2353     Cmp->eraseFromParent();
2354   return NewCond;
2355 }
2356 
2357 /// Change loop terminating condition to use the postinc iv when possible.
2358 void
2359 LSRInstance::OptimizeLoopTermCond() {
2360   SmallPtrSet<Instruction *, 4> PostIncs;
2361 
2362   // We need a different set of heuristics for rotated and non-rotated loops.
2363   // If a loop is rotated then the latch is also the backedge, so inserting
2364   // post-inc expressions just before the latch is ideal. To reduce live ranges
2365   // it also makes sense to rewrite terminating conditions to use post-inc
2366   // expressions.
2367   //
2368   // If the loop is not rotated then the latch is not a backedge; the latch
2369   // check is done in the loop head. Adding post-inc expressions before the
2370   // latch will cause overlapping live-ranges of pre-inc and post-inc expressions
2371   // in the loop body. In this case we do *not* want to use post-inc expressions
2372   // in the latch check, and we want to insert post-inc expressions before
2373   // the backedge.
2374   BasicBlock *LatchBlock = L->getLoopLatch();
2375   SmallVector<BasicBlock*, 8> ExitingBlocks;
2376   L->getExitingBlocks(ExitingBlocks);
2377   if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) {
2378         return LatchBlock != BB;
2379       })) {
2380     // The backedge doesn't exit the loop; treat this as a head-tested loop.
2381     IVIncInsertPos = LatchBlock->getTerminator();
2382     return;
2383   }
2384 
2385   // Otherwise treat this as a rotated loop.
2386   for (BasicBlock *ExitingBlock : ExitingBlocks) {
2387     // Get the terminating condition for the loop if possible.  If we
2388     // can, we want to change it to use a post-incremented version of its
2389     // induction variable, to allow coalescing the live ranges for the IV into
2390     // one register value.
2391 
2392     BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2393     if (!TermBr)
2394       continue;
2395     // FIXME: Overly conservative, termination condition could be an 'or' etc..
2396     if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
2397       continue;
2398 
2399     // Search IVUsesByStride to find Cond's IVUse if there is one.
2400     IVStrideUse *CondUse = nullptr;
2401     ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
2402     if (!FindIVUserForCond(Cond, CondUse))
2403       continue;
2404 
2405     // If the trip count is computed in terms of a max (due to ScalarEvolution
2406     // being unable to find a sufficient guard, for example), change the loop
2407     // comparison to use SLT or ULT instead of NE.
2408     // One consequence of doing this now is that it disrupts the count-down
2409     // optimization. That's not always a bad thing though, because in such
2410     // cases it may still be worthwhile to avoid a max.
2411     Cond = OptimizeMax(Cond, CondUse);
2412 
2413     // If this exiting block dominates the latch block, it may also use
2414     // the post-inc value if it won't be shared with other uses.
2415     // Check for dominance.
2416     if (!DT.dominates(ExitingBlock, LatchBlock))
2417       continue;
2418 
2419     // Conservatively avoid trying to use the post-inc value in non-latch
2420     // exits if there may be pre-inc users in intervening blocks.
2421     if (LatchBlock != ExitingBlock)
2422       for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
2423         // Test if the use is reachable from the exiting block. This dominator
2424         // query is a conservative approximation of reachability.
2425         if (&*UI != CondUse &&
2426             !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
2427           // Conservatively assume there may be reuse if the quotient of their
2428           // strides could be a legal scale.
2429           const SCEV *A = IU.getStride(*CondUse, L);
2430           const SCEV *B = IU.getStride(*UI, L);
2431           if (!A || !B) continue;
2432           if (SE.getTypeSizeInBits(A->getType()) !=
2433               SE.getTypeSizeInBits(B->getType())) {
2434             if (SE.getTypeSizeInBits(A->getType()) >
2435                 SE.getTypeSizeInBits(B->getType()))
2436               B = SE.getSignExtendExpr(B, A->getType());
2437             else
2438               A = SE.getSignExtendExpr(A, B->getType());
2439           }
2440           if (const SCEVConstant *D =
2441                 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
2442             const ConstantInt *C = D->getValue();
2443             // Stride of one or negative one can have reuse with non-addresses.
2444             if (C->isOne() || C->isMinusOne())
2445               goto decline_post_inc;
2446             // Avoid weird situations.
2447             if (C->getValue().getMinSignedBits() >= 64 ||
2448                 C->getValue().isMinSignedValue())
2449               goto decline_post_inc;
2450             // Check for possible scaled-address reuse.
2451             if (isAddressUse(TTI, UI->getUser(), UI->getOperandValToReplace())) {
2452               MemAccessTy AccessTy = getAccessType(
2453                   TTI, UI->getUser(), UI->getOperandValToReplace());
2454               int64_t Scale = C->getSExtValue();
2455               if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2456                                             /*BaseOffset=*/0,
2457                                             /*HasBaseReg=*/false, Scale,
2458                                             AccessTy.AddrSpace))
2459                 goto decline_post_inc;
2460               Scale = -Scale;
2461               if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2462                                             /*BaseOffset=*/0,
2463                                             /*HasBaseReg=*/false, Scale,
2464                                             AccessTy.AddrSpace))
2465                 goto decline_post_inc;
2466             }
2467           }
2468         }
2469 
2470     LLVM_DEBUG(dbgs() << "  Change loop exiting icmp to use postinc iv: "
2471                       << *Cond << '\n');
2472 
2473     // It's possible for the setcc instruction to be anywhere in the loop, and
2474     // possible for it to have multiple users.  If it is not immediately before
2475     // the exiting block branch, move it.
2476     if (&*++BasicBlock::iterator(Cond) != TermBr) {
2477       if (Cond->hasOneUse()) {
2478         Cond->moveBefore(TermBr);
2479       } else {
2480         // Clone the terminating condition and insert into the loopend.
2481         ICmpInst *OldCond = Cond;
2482         Cond = cast<ICmpInst>(Cond->clone());
2483         Cond->setName(L->getHeader()->getName() + ".termcond");
2484         ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond);
2485 
2486         // Clone the IVUse, as the old use still exists!
2487         CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
2488         TermBr->replaceUsesOfWith(OldCond, Cond);
2489       }
2490     }
2491 
2492     // If we get to here, we know that we can transform the setcc instruction to
2493     // use the post-incremented version of the IV, allowing us to coalesce the
2494     // live ranges for the IV correctly.
2495     CondUse->transformToPostInc(L);
2496     Changed = true;
2497 
2498     PostIncs.insert(Cond);
2499   decline_post_inc:;
2500   }
2501 
2502   // Determine an insertion point for the loop induction variable increment. It
2503   // must dominate all the post-inc comparisons we just set up, and it must
2504   // dominate the loop latch edge.
2505   IVIncInsertPos = L->getLoopLatch()->getTerminator();
2506   for (Instruction *Inst : PostIncs) {
2507     BasicBlock *BB =
2508       DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
2509                                     Inst->getParent());
2510     if (BB == Inst->getParent())
2511       IVIncInsertPos = Inst;
2512     else if (BB != IVIncInsertPos->getParent())
2513       IVIncInsertPos = BB->getTerminator();
2514   }
2515 }
2516 
2517 /// Determine if the given use can accommodate a fixup at the given offset and
2518 /// other details. If so, update the use and return true.
2519 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset,
2520                                      bool HasBaseReg, LSRUse::KindType Kind,
2521                                      MemAccessTy AccessTy) {
2522   int64_t NewMinOffset = LU.MinOffset;
2523   int64_t NewMaxOffset = LU.MaxOffset;
2524   MemAccessTy NewAccessTy = AccessTy;
2525 
2526   // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
2527   // something conservative, however this can pessimize in the case that one of
2528   // the uses will have all its uses outside the loop, for example.
2529   if (LU.Kind != Kind)
2530     return false;
2531 
2532   // Check for a mismatched access type, and fall back conservatively as needed.
2533   // TODO: Be less conservative when the type is similar and can use the same
2534   // addressing modes.
2535   if (Kind == LSRUse::Address) {
2536     if (AccessTy.MemTy != LU.AccessTy.MemTy) {
2537       NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(),
2538                                             AccessTy.AddrSpace);
2539     }
2540   }
2541 
2542   // Conservatively assume HasBaseReg is true for now.
2543   if (NewOffset < LU.MinOffset) {
2544     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2545                           LU.MaxOffset - NewOffset, HasBaseReg))
2546       return false;
2547     NewMinOffset = NewOffset;
2548   } else if (NewOffset > LU.MaxOffset) {
2549     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2550                           NewOffset - LU.MinOffset, HasBaseReg))
2551       return false;
2552     NewMaxOffset = NewOffset;
2553   }
2554 
2555   // Update the use.
2556   LU.MinOffset = NewMinOffset;
2557   LU.MaxOffset = NewMaxOffset;
2558   LU.AccessTy = NewAccessTy;
2559   return true;
2560 }
2561 
2562 /// Return an LSRUse index and an offset value for a fixup which needs the given
2563 /// expression, with the given kind and optional access type.  Either reuse an
2564 /// existing use or create a new one, as needed.
2565 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr,
2566                                                LSRUse::KindType Kind,
2567                                                MemAccessTy AccessTy) {
2568   const SCEV *Copy = Expr;
2569   int64_t Offset = ExtractImmediate(Expr, SE);
2570 
2571   // Basic uses can't accept any offset, for example.
2572   if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr,
2573                         Offset, /*HasBaseReg=*/ true)) {
2574     Expr = Copy;
2575     Offset = 0;
2576   }
2577 
2578   std::pair<UseMapTy::iterator, bool> P =
2579     UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0));
2580   if (!P.second) {
2581     // A use already existed with this base.
2582     size_t LUIdx = P.first->second;
2583     LSRUse &LU = Uses[LUIdx];
2584     if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
2585       // Reuse this use.
2586       return std::make_pair(LUIdx, Offset);
2587   }
2588 
2589   // Create a new use.
2590   size_t LUIdx = Uses.size();
2591   P.first->second = LUIdx;
2592   Uses.push_back(LSRUse(Kind, AccessTy));
2593   LSRUse &LU = Uses[LUIdx];
2594 
2595   LU.MinOffset = Offset;
2596   LU.MaxOffset = Offset;
2597   return std::make_pair(LUIdx, Offset);
2598 }
2599 
2600 /// Delete the given use from the Uses list.
2601 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) {
2602   if (&LU != &Uses.back())
2603     std::swap(LU, Uses.back());
2604   Uses.pop_back();
2605 
2606   // Update RegUses.
2607   RegUses.swapAndDropUse(LUIdx, Uses.size());
2608 }
2609 
2610 /// Look for a use distinct from OrigLU which is has a formula that has the same
2611 /// registers as the given formula.
2612 LSRUse *
2613 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
2614                                        const LSRUse &OrigLU) {
2615   // Search all uses for the formula. This could be more clever.
2616   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2617     LSRUse &LU = Uses[LUIdx];
2618     // Check whether this use is close enough to OrigLU, to see whether it's
2619     // worthwhile looking through its formulae.
2620     // Ignore ICmpZero uses because they may contain formulae generated by
2621     // GenerateICmpZeroScales, in which case adding fixup offsets may
2622     // be invalid.
2623     if (&LU != &OrigLU &&
2624         LU.Kind != LSRUse::ICmpZero &&
2625         LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
2626         LU.WidestFixupType == OrigLU.WidestFixupType &&
2627         LU.HasFormulaWithSameRegs(OrigF)) {
2628       // Scan through this use's formulae.
2629       for (const Formula &F : LU.Formulae) {
2630         // Check to see if this formula has the same registers and symbols
2631         // as OrigF.
2632         if (F.BaseRegs == OrigF.BaseRegs &&
2633             F.ScaledReg == OrigF.ScaledReg &&
2634             F.BaseGV == OrigF.BaseGV &&
2635             F.Scale == OrigF.Scale &&
2636             F.UnfoldedOffset == OrigF.UnfoldedOffset) {
2637           if (F.BaseOffset == 0)
2638             return &LU;
2639           // This is the formula where all the registers and symbols matched;
2640           // there aren't going to be any others. Since we declined it, we
2641           // can skip the rest of the formulae and proceed to the next LSRUse.
2642           break;
2643         }
2644       }
2645     }
2646   }
2647 
2648   // Nothing looked good.
2649   return nullptr;
2650 }
2651 
2652 void LSRInstance::CollectInterestingTypesAndFactors() {
2653   SmallSetVector<const SCEV *, 4> Strides;
2654 
2655   // Collect interesting types and strides.
2656   SmallVector<const SCEV *, 4> Worklist;
2657   for (const IVStrideUse &U : IU) {
2658     const SCEV *Expr = IU.getExpr(U);
2659 
2660     // Collect interesting types.
2661     Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
2662 
2663     // Add strides for mentioned loops.
2664     Worklist.push_back(Expr);
2665     do {
2666       const SCEV *S = Worklist.pop_back_val();
2667       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2668         if (AR->getLoop() == L)
2669           Strides.insert(AR->getStepRecurrence(SE));
2670         Worklist.push_back(AR->getStart());
2671       } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2672         Worklist.append(Add->op_begin(), Add->op_end());
2673       }
2674     } while (!Worklist.empty());
2675   }
2676 
2677   // Compute interesting factors from the set of interesting strides.
2678   for (SmallSetVector<const SCEV *, 4>::const_iterator
2679        I = Strides.begin(), E = Strides.end(); I != E; ++I)
2680     for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
2681          std::next(I); NewStrideIter != E; ++NewStrideIter) {
2682       const SCEV *OldStride = *I;
2683       const SCEV *NewStride = *NewStrideIter;
2684 
2685       if (SE.getTypeSizeInBits(OldStride->getType()) !=
2686           SE.getTypeSizeInBits(NewStride->getType())) {
2687         if (SE.getTypeSizeInBits(OldStride->getType()) >
2688             SE.getTypeSizeInBits(NewStride->getType()))
2689           NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
2690         else
2691           OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
2692       }
2693       if (const SCEVConstant *Factor =
2694             dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
2695                                                         SE, true))) {
2696         if (Factor->getAPInt().getMinSignedBits() <= 64)
2697           Factors.insert(Factor->getAPInt().getSExtValue());
2698       } else if (const SCEVConstant *Factor =
2699                    dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
2700                                                                NewStride,
2701                                                                SE, true))) {
2702         if (Factor->getAPInt().getMinSignedBits() <= 64)
2703           Factors.insert(Factor->getAPInt().getSExtValue());
2704       }
2705     }
2706 
2707   // If all uses use the same type, don't bother looking for truncation-based
2708   // reuse.
2709   if (Types.size() == 1)
2710     Types.clear();
2711 
2712   LLVM_DEBUG(print_factors_and_types(dbgs()));
2713 }
2714 
2715 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in
2716 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to
2717 /// IVStrideUses, we could partially skip this.
2718 static User::op_iterator
2719 findIVOperand(User::op_iterator OI, User::op_iterator OE,
2720               Loop *L, ScalarEvolution &SE) {
2721   for(; OI != OE; ++OI) {
2722     if (Instruction *Oper = dyn_cast<Instruction>(*OI)) {
2723       if (!SE.isSCEVable(Oper->getType()))
2724         continue;
2725 
2726       if (const SCEVAddRecExpr *AR =
2727           dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) {
2728         if (AR->getLoop() == L)
2729           break;
2730       }
2731     }
2732   }
2733   return OI;
2734 }
2735 
2736 /// IVChain logic must consistently peek base TruncInst operands, so wrap it in
2737 /// a convenient helper.
2738 static Value *getWideOperand(Value *Oper) {
2739   if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper))
2740     return Trunc->getOperand(0);
2741   return Oper;
2742 }
2743 
2744 /// Return true if we allow an IV chain to include both types.
2745 static bool isCompatibleIVType(Value *LVal, Value *RVal) {
2746   Type *LType = LVal->getType();
2747   Type *RType = RVal->getType();
2748   return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy() &&
2749                               // Different address spaces means (possibly)
2750                               // different types of the pointer implementation,
2751                               // e.g. i16 vs i32 so disallow that.
2752                               (LType->getPointerAddressSpace() ==
2753                                RType->getPointerAddressSpace()));
2754 }
2755 
2756 /// Return an approximation of this SCEV expression's "base", or NULL for any
2757 /// constant. Returning the expression itself is conservative. Returning a
2758 /// deeper subexpression is more precise and valid as long as it isn't less
2759 /// complex than another subexpression. For expressions involving multiple
2760 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids
2761 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i],
2762 /// IVInc==b-a.
2763 ///
2764 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost
2765 /// SCEVUnknown, we simply return the rightmost SCEV operand.
2766 static const SCEV *getExprBase(const SCEV *S) {
2767   switch (S->getSCEVType()) {
2768   default: // uncluding scUnknown.
2769     return S;
2770   case scConstant:
2771     return nullptr;
2772   case scTruncate:
2773     return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand());
2774   case scZeroExtend:
2775     return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand());
2776   case scSignExtend:
2777     return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand());
2778   case scAddExpr: {
2779     // Skip over scaled operands (scMulExpr) to follow add operands as long as
2780     // there's nothing more complex.
2781     // FIXME: not sure if we want to recognize negation.
2782     const SCEVAddExpr *Add = cast<SCEVAddExpr>(S);
2783     for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()),
2784            E(Add->op_begin()); I != E; ++I) {
2785       const SCEV *SubExpr = *I;
2786       if (SubExpr->getSCEVType() == scAddExpr)
2787         return getExprBase(SubExpr);
2788 
2789       if (SubExpr->getSCEVType() != scMulExpr)
2790         return SubExpr;
2791     }
2792     return S; // all operands are scaled, be conservative.
2793   }
2794   case scAddRecExpr:
2795     return getExprBase(cast<SCEVAddRecExpr>(S)->getStart());
2796   }
2797 }
2798 
2799 /// Return true if the chain increment is profitable to expand into a loop
2800 /// invariant value, which may require its own register. A profitable chain
2801 /// increment will be an offset relative to the same base. We allow such offsets
2802 /// to potentially be used as chain increment as long as it's not obviously
2803 /// expensive to expand using real instructions.
2804 bool IVChain::isProfitableIncrement(const SCEV *OperExpr,
2805                                     const SCEV *IncExpr,
2806                                     ScalarEvolution &SE) {
2807   // Aggressively form chains when -stress-ivchain.
2808   if (StressIVChain)
2809     return true;
2810 
2811   // Do not replace a constant offset from IV head with a nonconstant IV
2812   // increment.
2813   if (!isa<SCEVConstant>(IncExpr)) {
2814     const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand));
2815     if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr)))
2816       return false;
2817   }
2818 
2819   SmallPtrSet<const SCEV*, 8> Processed;
2820   return !isHighCostExpansion(IncExpr, Processed, SE);
2821 }
2822 
2823 /// Return true if the number of registers needed for the chain is estimated to
2824 /// be less than the number required for the individual IV users. First prohibit
2825 /// any IV users that keep the IV live across increments (the Users set should
2826 /// be empty). Next count the number and type of increments in the chain.
2827 ///
2828 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't
2829 /// effectively use postinc addressing modes. Only consider it profitable it the
2830 /// increments can be computed in fewer registers when chained.
2831 ///
2832 /// TODO: Consider IVInc free if it's already used in another chains.
2833 static bool
2834 isProfitableChain(IVChain &Chain, SmallPtrSetImpl<Instruction*> &Users,
2835                   ScalarEvolution &SE) {
2836   if (StressIVChain)
2837     return true;
2838 
2839   if (!Chain.hasIncs())
2840     return false;
2841 
2842   if (!Users.empty()) {
2843     LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n";
2844                for (Instruction *Inst
2845                     : Users) { dbgs() << "  " << *Inst << "\n"; });
2846     return false;
2847   }
2848   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
2849 
2850   // The chain itself may require a register, so intialize cost to 1.
2851   int cost = 1;
2852 
2853   // A complete chain likely eliminates the need for keeping the original IV in
2854   // a register. LSR does not currently know how to form a complete chain unless
2855   // the header phi already exists.
2856   if (isa<PHINode>(Chain.tailUserInst())
2857       && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) {
2858     --cost;
2859   }
2860   const SCEV *LastIncExpr = nullptr;
2861   unsigned NumConstIncrements = 0;
2862   unsigned NumVarIncrements = 0;
2863   unsigned NumReusedIncrements = 0;
2864   for (const IVInc &Inc : Chain) {
2865     if (Inc.IncExpr->isZero())
2866       continue;
2867 
2868     // Incrementing by zero or some constant is neutral. We assume constants can
2869     // be folded into an addressing mode or an add's immediate operand.
2870     if (isa<SCEVConstant>(Inc.IncExpr)) {
2871       ++NumConstIncrements;
2872       continue;
2873     }
2874 
2875     if (Inc.IncExpr == LastIncExpr)
2876       ++NumReusedIncrements;
2877     else
2878       ++NumVarIncrements;
2879 
2880     LastIncExpr = Inc.IncExpr;
2881   }
2882   // An IV chain with a single increment is handled by LSR's postinc
2883   // uses. However, a chain with multiple increments requires keeping the IV's
2884   // value live longer than it needs to be if chained.
2885   if (NumConstIncrements > 1)
2886     --cost;
2887 
2888   // Materializing increment expressions in the preheader that didn't exist in
2889   // the original code may cost a register. For example, sign-extended array
2890   // indices can produce ridiculous increments like this:
2891   // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
2892   cost += NumVarIncrements;
2893 
2894   // Reusing variable increments likely saves a register to hold the multiple of
2895   // the stride.
2896   cost -= NumReusedIncrements;
2897 
2898   LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost
2899                     << "\n");
2900 
2901   return cost < 0;
2902 }
2903 
2904 /// Add this IV user to an existing chain or make it the head of a new chain.
2905 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper,
2906                                    SmallVectorImpl<ChainUsers> &ChainUsersVec) {
2907   // When IVs are used as types of varying widths, they are generally converted
2908   // to a wider type with some uses remaining narrow under a (free) trunc.
2909   Value *const NextIV = getWideOperand(IVOper);
2910   const SCEV *const OperExpr = SE.getSCEV(NextIV);
2911   const SCEV *const OperExprBase = getExprBase(OperExpr);
2912 
2913   // Visit all existing chains. Check if its IVOper can be computed as a
2914   // profitable loop invariant increment from the last link in the Chain.
2915   unsigned ChainIdx = 0, NChains = IVChainVec.size();
2916   const SCEV *LastIncExpr = nullptr;
2917   for (; ChainIdx < NChains; ++ChainIdx) {
2918     IVChain &Chain = IVChainVec[ChainIdx];
2919 
2920     // Prune the solution space aggressively by checking that both IV operands
2921     // are expressions that operate on the same unscaled SCEVUnknown. This
2922     // "base" will be canceled by the subsequent getMinusSCEV call. Checking
2923     // first avoids creating extra SCEV expressions.
2924     if (!StressIVChain && Chain.ExprBase != OperExprBase)
2925       continue;
2926 
2927     Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand);
2928     if (!isCompatibleIVType(PrevIV, NextIV))
2929       continue;
2930 
2931     // A phi node terminates a chain.
2932     if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst()))
2933       continue;
2934 
2935     // The increment must be loop-invariant so it can be kept in a register.
2936     const SCEV *PrevExpr = SE.getSCEV(PrevIV);
2937     const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr);
2938     if (!SE.isLoopInvariant(IncExpr, L))
2939       continue;
2940 
2941     if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) {
2942       LastIncExpr = IncExpr;
2943       break;
2944     }
2945   }
2946   // If we haven't found a chain, create a new one, unless we hit the max. Don't
2947   // bother for phi nodes, because they must be last in the chain.
2948   if (ChainIdx == NChains) {
2949     if (isa<PHINode>(UserInst))
2950       return;
2951     if (NChains >= MaxChains && !StressIVChain) {
2952       LLVM_DEBUG(dbgs() << "IV Chain Limit\n");
2953       return;
2954     }
2955     LastIncExpr = OperExpr;
2956     // IVUsers may have skipped over sign/zero extensions. We don't currently
2957     // attempt to form chains involving extensions unless they can be hoisted
2958     // into this loop's AddRec.
2959     if (!isa<SCEVAddRecExpr>(LastIncExpr))
2960       return;
2961     ++NChains;
2962     IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr),
2963                                  OperExprBase));
2964     ChainUsersVec.resize(NChains);
2965     LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst
2966                       << ") IV=" << *LastIncExpr << "\n");
2967   } else {
2968     LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << "  Inc: (" << *UserInst
2969                       << ") IV+" << *LastIncExpr << "\n");
2970     // Add this IV user to the end of the chain.
2971     IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr));
2972   }
2973   IVChain &Chain = IVChainVec[ChainIdx];
2974 
2975   SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers;
2976   // This chain's NearUsers become FarUsers.
2977   if (!LastIncExpr->isZero()) {
2978     ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(),
2979                                             NearUsers.end());
2980     NearUsers.clear();
2981   }
2982 
2983   // All other uses of IVOperand become near uses of the chain.
2984   // We currently ignore intermediate values within SCEV expressions, assuming
2985   // they will eventually be used be the current chain, or can be computed
2986   // from one of the chain increments. To be more precise we could
2987   // transitively follow its user and only add leaf IV users to the set.
2988   for (User *U : IVOper->users()) {
2989     Instruction *OtherUse = dyn_cast<Instruction>(U);
2990     if (!OtherUse)
2991       continue;
2992     // Uses in the chain will no longer be uses if the chain is formed.
2993     // Include the head of the chain in this iteration (not Chain.begin()).
2994     IVChain::const_iterator IncIter = Chain.Incs.begin();
2995     IVChain::const_iterator IncEnd = Chain.Incs.end();
2996     for( ; IncIter != IncEnd; ++IncIter) {
2997       if (IncIter->UserInst == OtherUse)
2998         break;
2999     }
3000     if (IncIter != IncEnd)
3001       continue;
3002 
3003     if (SE.isSCEVable(OtherUse->getType())
3004         && !isa<SCEVUnknown>(SE.getSCEV(OtherUse))
3005         && IU.isIVUserOrOperand(OtherUse)) {
3006       continue;
3007     }
3008     NearUsers.insert(OtherUse);
3009   }
3010 
3011   // Since this user is part of the chain, it's no longer considered a use
3012   // of the chain.
3013   ChainUsersVec[ChainIdx].FarUsers.erase(UserInst);
3014 }
3015 
3016 /// Populate the vector of Chains.
3017 ///
3018 /// This decreases ILP at the architecture level. Targets with ample registers,
3019 /// multiple memory ports, and no register renaming probably don't want
3020 /// this. However, such targets should probably disable LSR altogether.
3021 ///
3022 /// The job of LSR is to make a reasonable choice of induction variables across
3023 /// the loop. Subsequent passes can easily "unchain" computation exposing more
3024 /// ILP *within the loop* if the target wants it.
3025 ///
3026 /// Finding the best IV chain is potentially a scheduling problem. Since LSR
3027 /// will not reorder memory operations, it will recognize this as a chain, but
3028 /// will generate redundant IV increments. Ideally this would be corrected later
3029 /// by a smart scheduler:
3030 ///        = A[i]
3031 ///        = A[i+x]
3032 /// A[i]   =
3033 /// A[i+x] =
3034 ///
3035 /// TODO: Walk the entire domtree within this loop, not just the path to the
3036 /// loop latch. This will discover chains on side paths, but requires
3037 /// maintaining multiple copies of the Chains state.
3038 void LSRInstance::CollectChains() {
3039   LLVM_DEBUG(dbgs() << "Collecting IV Chains.\n");
3040   SmallVector<ChainUsers, 8> ChainUsersVec;
3041 
3042   SmallVector<BasicBlock *,8> LatchPath;
3043   BasicBlock *LoopHeader = L->getHeader();
3044   for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch());
3045        Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) {
3046     LatchPath.push_back(Rung->getBlock());
3047   }
3048   LatchPath.push_back(LoopHeader);
3049 
3050   // Walk the instruction stream from the loop header to the loop latch.
3051   for (BasicBlock *BB : reverse(LatchPath)) {
3052     for (Instruction &I : *BB) {
3053       // Skip instructions that weren't seen by IVUsers analysis.
3054       if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I))
3055         continue;
3056 
3057       // Ignore users that are part of a SCEV expression. This way we only
3058       // consider leaf IV Users. This effectively rediscovers a portion of
3059       // IVUsers analysis but in program order this time.
3060       if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I)))
3061           continue;
3062 
3063       // Remove this instruction from any NearUsers set it may be in.
3064       for (unsigned ChainIdx = 0, NChains = IVChainVec.size();
3065            ChainIdx < NChains; ++ChainIdx) {
3066         ChainUsersVec[ChainIdx].NearUsers.erase(&I);
3067       }
3068       // Search for operands that can be chained.
3069       SmallPtrSet<Instruction*, 4> UniqueOperands;
3070       User::op_iterator IVOpEnd = I.op_end();
3071       User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE);
3072       while (IVOpIter != IVOpEnd) {
3073         Instruction *IVOpInst = cast<Instruction>(*IVOpIter);
3074         if (UniqueOperands.insert(IVOpInst).second)
3075           ChainInstruction(&I, IVOpInst, ChainUsersVec);
3076         IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
3077       }
3078     } // Continue walking down the instructions.
3079   } // Continue walking down the domtree.
3080   // Visit phi backedges to determine if the chain can generate the IV postinc.
3081   for (PHINode &PN : L->getHeader()->phis()) {
3082     if (!SE.isSCEVable(PN.getType()))
3083       continue;
3084 
3085     Instruction *IncV =
3086         dyn_cast<Instruction>(PN.getIncomingValueForBlock(L->getLoopLatch()));
3087     if (IncV)
3088       ChainInstruction(&PN, IncV, ChainUsersVec);
3089   }
3090   // Remove any unprofitable chains.
3091   unsigned ChainIdx = 0;
3092   for (unsigned UsersIdx = 0, NChains = IVChainVec.size();
3093        UsersIdx < NChains; ++UsersIdx) {
3094     if (!isProfitableChain(IVChainVec[UsersIdx],
3095                            ChainUsersVec[UsersIdx].FarUsers, SE))
3096       continue;
3097     // Preserve the chain at UsesIdx.
3098     if (ChainIdx != UsersIdx)
3099       IVChainVec[ChainIdx] = IVChainVec[UsersIdx];
3100     FinalizeChain(IVChainVec[ChainIdx]);
3101     ++ChainIdx;
3102   }
3103   IVChainVec.resize(ChainIdx);
3104 }
3105 
3106 void LSRInstance::FinalizeChain(IVChain &Chain) {
3107   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
3108   LLVM_DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n");
3109 
3110   for (const IVInc &Inc : Chain) {
3111     LLVM_DEBUG(dbgs() << "        Inc: " << *Inc.UserInst << "\n");
3112     auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand);
3113     assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand");
3114     IVIncSet.insert(UseI);
3115   }
3116 }
3117 
3118 /// Return true if the IVInc can be folded into an addressing mode.
3119 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
3120                              Value *Operand, const TargetTransformInfo &TTI) {
3121   const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr);
3122   if (!IncConst || !isAddressUse(TTI, UserInst, Operand))
3123     return false;
3124 
3125   if (IncConst->getAPInt().getMinSignedBits() > 64)
3126     return false;
3127 
3128   MemAccessTy AccessTy = getAccessType(TTI, UserInst, Operand);
3129   int64_t IncOffset = IncConst->getValue()->getSExtValue();
3130   if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr,
3131                         IncOffset, /*HasBaseReg=*/false))
3132     return false;
3133 
3134   return true;
3135 }
3136 
3137 /// Generate an add or subtract for each IVInc in a chain to materialize the IV
3138 /// user's operand from the previous IV user's operand.
3139 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
3140                                   SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
3141   // Find the new IVOperand for the head of the chain. It may have been replaced
3142   // by LSR.
3143   const IVInc &Head = Chain.Incs[0];
3144   User::op_iterator IVOpEnd = Head.UserInst->op_end();
3145   // findIVOperand returns IVOpEnd if it can no longer find a valid IV user.
3146   User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(),
3147                                              IVOpEnd, L, SE);
3148   Value *IVSrc = nullptr;
3149   while (IVOpIter != IVOpEnd) {
3150     IVSrc = getWideOperand(*IVOpIter);
3151 
3152     // If this operand computes the expression that the chain needs, we may use
3153     // it. (Check this after setting IVSrc which is used below.)
3154     //
3155     // Note that if Head.IncExpr is wider than IVSrc, then this phi is too
3156     // narrow for the chain, so we can no longer use it. We do allow using a
3157     // wider phi, assuming the LSR checked for free truncation. In that case we
3158     // should already have a truncate on this operand such that
3159     // getSCEV(IVSrc) == IncExpr.
3160     if (SE.getSCEV(*IVOpIter) == Head.IncExpr
3161         || SE.getSCEV(IVSrc) == Head.IncExpr) {
3162       break;
3163     }
3164     IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
3165   }
3166   if (IVOpIter == IVOpEnd) {
3167     // Gracefully give up on this chain.
3168     LLVM_DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n");
3169     return;
3170   }
3171   assert(IVSrc && "Failed to find IV chain source");
3172 
3173   LLVM_DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n");
3174   Type *IVTy = IVSrc->getType();
3175   Type *IntTy = SE.getEffectiveSCEVType(IVTy);
3176   const SCEV *LeftOverExpr = nullptr;
3177   for (const IVInc &Inc : Chain) {
3178     Instruction *InsertPt = Inc.UserInst;
3179     if (isa<PHINode>(InsertPt))
3180       InsertPt = L->getLoopLatch()->getTerminator();
3181 
3182     // IVOper will replace the current IV User's operand. IVSrc is the IV
3183     // value currently held in a register.
3184     Value *IVOper = IVSrc;
3185     if (!Inc.IncExpr->isZero()) {
3186       // IncExpr was the result of subtraction of two narrow values, so must
3187       // be signed.
3188       const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy);
3189       LeftOverExpr = LeftOverExpr ?
3190         SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr;
3191     }
3192     if (LeftOverExpr && !LeftOverExpr->isZero()) {
3193       // Expand the IV increment.
3194       Rewriter.clearPostInc();
3195       Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt);
3196       const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc),
3197                                              SE.getUnknown(IncV));
3198       IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt);
3199 
3200       // If an IV increment can't be folded, use it as the next IV value.
3201       if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) {
3202         assert(IVTy == IVOper->getType() && "inconsistent IV increment type");
3203         IVSrc = IVOper;
3204         LeftOverExpr = nullptr;
3205       }
3206     }
3207     Type *OperTy = Inc.IVOperand->getType();
3208     if (IVTy != OperTy) {
3209       assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) &&
3210              "cannot extend a chained IV");
3211       IRBuilder<> Builder(InsertPt);
3212       IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain");
3213     }
3214     Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper);
3215     DeadInsts.emplace_back(Inc.IVOperand);
3216   }
3217   // If LSR created a new, wider phi, we may also replace its postinc. We only
3218   // do this if we also found a wide value for the head of the chain.
3219   if (isa<PHINode>(Chain.tailUserInst())) {
3220     for (PHINode &Phi : L->getHeader()->phis()) {
3221       if (!isCompatibleIVType(&Phi, IVSrc))
3222         continue;
3223       Instruction *PostIncV = dyn_cast<Instruction>(
3224           Phi.getIncomingValueForBlock(L->getLoopLatch()));
3225       if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc)))
3226         continue;
3227       Value *IVOper = IVSrc;
3228       Type *PostIncTy = PostIncV->getType();
3229       if (IVTy != PostIncTy) {
3230         assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types");
3231         IRBuilder<> Builder(L->getLoopLatch()->getTerminator());
3232         Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc());
3233         IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain");
3234       }
3235       Phi.replaceUsesOfWith(PostIncV, IVOper);
3236       DeadInsts.emplace_back(PostIncV);
3237     }
3238   }
3239 }
3240 
3241 void LSRInstance::CollectFixupsAndInitialFormulae() {
3242   BranchInst *ExitBranch = nullptr;
3243   bool SaveCmp = TTI.canSaveCmp(L, &ExitBranch, &SE, &LI, &DT, &AC, &LibInfo);
3244 
3245   for (const IVStrideUse &U : IU) {
3246     Instruction *UserInst = U.getUser();
3247     // Skip IV users that are part of profitable IV Chains.
3248     User::op_iterator UseI =
3249         find(UserInst->operands(), U.getOperandValToReplace());
3250     assert(UseI != UserInst->op_end() && "cannot find IV operand");
3251     if (IVIncSet.count(UseI)) {
3252       LLVM_DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n');
3253       continue;
3254     }
3255 
3256     LSRUse::KindType Kind = LSRUse::Basic;
3257     MemAccessTy AccessTy;
3258     if (isAddressUse(TTI, UserInst, U.getOperandValToReplace())) {
3259       Kind = LSRUse::Address;
3260       AccessTy = getAccessType(TTI, UserInst, U.getOperandValToReplace());
3261     }
3262 
3263     const SCEV *S = IU.getExpr(U);
3264     PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops();
3265 
3266     // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
3267     // (N - i == 0), and this allows (N - i) to be the expression that we work
3268     // with rather than just N or i, so we can consider the register
3269     // requirements for both N and i at the same time. Limiting this code to
3270     // equality icmps is not a problem because all interesting loops use
3271     // equality icmps, thanks to IndVarSimplify.
3272     if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst)) {
3273       // If CI can be saved in some target, like replaced inside hardware loop
3274       // in PowerPC, no need to generate initial formulae for it.
3275       if (SaveCmp && CI == dyn_cast<ICmpInst>(ExitBranch->getCondition()))
3276         continue;
3277       if (CI->isEquality()) {
3278         // Swap the operands if needed to put the OperandValToReplace on the
3279         // left, for consistency.
3280         Value *NV = CI->getOperand(1);
3281         if (NV == U.getOperandValToReplace()) {
3282           CI->setOperand(1, CI->getOperand(0));
3283           CI->setOperand(0, NV);
3284           NV = CI->getOperand(1);
3285           Changed = true;
3286         }
3287 
3288         // x == y  -->  x - y == 0
3289         const SCEV *N = SE.getSCEV(NV);
3290         if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) {
3291           // S is normalized, so normalize N before folding it into S
3292           // to keep the result normalized.
3293           N = normalizeForPostIncUse(N, TmpPostIncLoops, SE);
3294           Kind = LSRUse::ICmpZero;
3295           S = SE.getMinusSCEV(N, S);
3296         }
3297 
3298         // -1 and the negations of all interesting strides (except the negation
3299         // of -1) are now also interesting.
3300         for (size_t i = 0, e = Factors.size(); i != e; ++i)
3301           if (Factors[i] != -1)
3302             Factors.insert(-(uint64_t)Factors[i]);
3303         Factors.insert(-1);
3304       }
3305     }
3306 
3307     // Get or create an LSRUse.
3308     std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
3309     size_t LUIdx = P.first;
3310     int64_t Offset = P.second;
3311     LSRUse &LU = Uses[LUIdx];
3312 
3313     // Record the fixup.
3314     LSRFixup &LF = LU.getNewFixup();
3315     LF.UserInst = UserInst;
3316     LF.OperandValToReplace = U.getOperandValToReplace();
3317     LF.PostIncLoops = TmpPostIncLoops;
3318     LF.Offset = Offset;
3319     LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3320 
3321     if (!LU.WidestFixupType ||
3322         SE.getTypeSizeInBits(LU.WidestFixupType) <
3323         SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3324       LU.WidestFixupType = LF.OperandValToReplace->getType();
3325 
3326     // If this is the first use of this LSRUse, give it a formula.
3327     if (LU.Formulae.empty()) {
3328       InsertInitialFormula(S, LU, LUIdx);
3329       CountRegisters(LU.Formulae.back(), LUIdx);
3330     }
3331   }
3332 
3333   LLVM_DEBUG(print_fixups(dbgs()));
3334 }
3335 
3336 /// Insert a formula for the given expression into the given use, separating out
3337 /// loop-variant portions from loop-invariant and loop-computable portions.
3338 void
3339 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
3340   // Mark uses whose expressions cannot be expanded.
3341   if (!isSafeToExpand(S, SE))
3342     LU.RigidFormula = true;
3343 
3344   Formula F;
3345   F.initialMatch(S, L, SE);
3346   bool Inserted = InsertFormula(LU, LUIdx, F);
3347   assert(Inserted && "Initial formula already exists!"); (void)Inserted;
3348 }
3349 
3350 /// Insert a simple single-register formula for the given expression into the
3351 /// given use.
3352 void
3353 LSRInstance::InsertSupplementalFormula(const SCEV *S,
3354                                        LSRUse &LU, size_t LUIdx) {
3355   Formula F;
3356   F.BaseRegs.push_back(S);
3357   F.HasBaseReg = true;
3358   bool Inserted = InsertFormula(LU, LUIdx, F);
3359   assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
3360 }
3361 
3362 /// Note which registers are used by the given formula, updating RegUses.
3363 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
3364   if (F.ScaledReg)
3365     RegUses.countRegister(F.ScaledReg, LUIdx);
3366   for (const SCEV *BaseReg : F.BaseRegs)
3367     RegUses.countRegister(BaseReg, LUIdx);
3368 }
3369 
3370 /// If the given formula has not yet been inserted, add it to the list, and
3371 /// return true. Return false otherwise.
3372 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
3373   // Do not insert formula that we will not be able to expand.
3374   assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) &&
3375          "Formula is illegal");
3376 
3377   if (!LU.InsertFormula(F, *L))
3378     return false;
3379 
3380   CountRegisters(F, LUIdx);
3381   return true;
3382 }
3383 
3384 /// Check for other uses of loop-invariant values which we're tracking. These
3385 /// other uses will pin these values in registers, making them less profitable
3386 /// for elimination.
3387 /// TODO: This currently misses non-constant addrec step registers.
3388 /// TODO: Should this give more weight to users inside the loop?
3389 void
3390 LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
3391   SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
3392   SmallPtrSet<const SCEV *, 32> Visited;
3393 
3394   while (!Worklist.empty()) {
3395     const SCEV *S = Worklist.pop_back_val();
3396 
3397     // Don't process the same SCEV twice
3398     if (!Visited.insert(S).second)
3399       continue;
3400 
3401     if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
3402       Worklist.append(N->op_begin(), N->op_end());
3403     else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
3404       Worklist.push_back(C->getOperand());
3405     else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
3406       Worklist.push_back(D->getLHS());
3407       Worklist.push_back(D->getRHS());
3408     } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) {
3409       const Value *V = US->getValue();
3410       if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
3411         // Look for instructions defined outside the loop.
3412         if (L->contains(Inst)) continue;
3413       } else if (isa<UndefValue>(V))
3414         // Undef doesn't have a live range, so it doesn't matter.
3415         continue;
3416       for (const Use &U : V->uses()) {
3417         const Instruction *UserInst = dyn_cast<Instruction>(U.getUser());
3418         // Ignore non-instructions.
3419         if (!UserInst)
3420           continue;
3421         // Ignore instructions in other functions (as can happen with
3422         // Constants).
3423         if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
3424           continue;
3425         // Ignore instructions not dominated by the loop.
3426         const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
3427           UserInst->getParent() :
3428           cast<PHINode>(UserInst)->getIncomingBlock(
3429             PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
3430         if (!DT.dominates(L->getHeader(), UseBB))
3431           continue;
3432         // Don't bother if the instruction is in a BB which ends in an EHPad.
3433         if (UseBB->getTerminator()->isEHPad())
3434           continue;
3435         // Don't bother rewriting PHIs in catchswitch blocks.
3436         if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator()))
3437           continue;
3438         // Ignore uses which are part of other SCEV expressions, to avoid
3439         // analyzing them multiple times.
3440         if (SE.isSCEVable(UserInst->getType())) {
3441           const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
3442           // If the user is a no-op, look through to its uses.
3443           if (!isa<SCEVUnknown>(UserS))
3444             continue;
3445           if (UserS == US) {
3446             Worklist.push_back(
3447               SE.getUnknown(const_cast<Instruction *>(UserInst)));
3448             continue;
3449           }
3450         }
3451         // Ignore icmp instructions which are already being analyzed.
3452         if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
3453           unsigned OtherIdx = !U.getOperandNo();
3454           Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
3455           if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L))
3456             continue;
3457         }
3458 
3459         std::pair<size_t, int64_t> P = getUse(
3460             S, LSRUse::Basic, MemAccessTy());
3461         size_t LUIdx = P.first;
3462         int64_t Offset = P.second;
3463         LSRUse &LU = Uses[LUIdx];
3464         LSRFixup &LF = LU.getNewFixup();
3465         LF.UserInst = const_cast<Instruction *>(UserInst);
3466         LF.OperandValToReplace = U;
3467         LF.Offset = Offset;
3468         LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3469         if (!LU.WidestFixupType ||
3470             SE.getTypeSizeInBits(LU.WidestFixupType) <
3471             SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3472           LU.WidestFixupType = LF.OperandValToReplace->getType();
3473         InsertSupplementalFormula(US, LU, LUIdx);
3474         CountRegisters(LU.Formulae.back(), Uses.size() - 1);
3475         break;
3476       }
3477     }
3478   }
3479 }
3480 
3481 /// Split S into subexpressions which can be pulled out into separate
3482 /// registers. If C is non-null, multiply each subexpression by C.
3483 ///
3484 /// Return remainder expression after factoring the subexpressions captured by
3485 /// Ops. If Ops is complete, return NULL.
3486 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C,
3487                                    SmallVectorImpl<const SCEV *> &Ops,
3488                                    const Loop *L,
3489                                    ScalarEvolution &SE,
3490                                    unsigned Depth = 0) {
3491   // Arbitrarily cap recursion to protect compile time.
3492   if (Depth >= 3)
3493     return S;
3494 
3495   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3496     // Break out add operands.
3497     for (const SCEV *S : Add->operands()) {
3498       const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1);
3499       if (Remainder)
3500         Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3501     }
3502     return nullptr;
3503   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
3504     // Split a non-zero base out of an addrec.
3505     if (AR->getStart()->isZero() || !AR->isAffine())
3506       return S;
3507 
3508     const SCEV *Remainder = CollectSubexprs(AR->getStart(),
3509                                             C, Ops, L, SE, Depth+1);
3510     // Split the non-zero AddRec unless it is part of a nested recurrence that
3511     // does not pertain to this loop.
3512     if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) {
3513       Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3514       Remainder = nullptr;
3515     }
3516     if (Remainder != AR->getStart()) {
3517       if (!Remainder)
3518         Remainder = SE.getConstant(AR->getType(), 0);
3519       return SE.getAddRecExpr(Remainder,
3520                               AR->getStepRecurrence(SE),
3521                               AR->getLoop(),
3522                               //FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
3523                               SCEV::FlagAnyWrap);
3524     }
3525   } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3526     // Break (C * (a + b + c)) into C*a + C*b + C*c.
3527     if (Mul->getNumOperands() != 2)
3528       return S;
3529     if (const SCEVConstant *Op0 =
3530         dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3531       C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0;
3532       const SCEV *Remainder =
3533         CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1);
3534       if (Remainder)
3535         Ops.push_back(SE.getMulExpr(C, Remainder));
3536       return nullptr;
3537     }
3538   }
3539   return S;
3540 }
3541 
3542 /// Return true if the SCEV represents a value that may end up as a
3543 /// post-increment operation.
3544 static bool mayUsePostIncMode(const TargetTransformInfo &TTI,
3545                               LSRUse &LU, const SCEV *S, const Loop *L,
3546                               ScalarEvolution &SE) {
3547   if (LU.Kind != LSRUse::Address ||
3548       !LU.AccessTy.getType()->isIntOrIntVectorTy())
3549     return false;
3550   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
3551   if (!AR)
3552     return false;
3553   const SCEV *LoopStep = AR->getStepRecurrence(SE);
3554   if (!isa<SCEVConstant>(LoopStep))
3555     return false;
3556   if (LU.AccessTy.getType()->getScalarSizeInBits() !=
3557       LoopStep->getType()->getScalarSizeInBits())
3558     return false;
3559   // Check if a post-indexed load/store can be used.
3560   if (TTI.isIndexedLoadLegal(TTI.MIM_PostInc, AR->getType()) ||
3561       TTI.isIndexedStoreLegal(TTI.MIM_PostInc, AR->getType())) {
3562     const SCEV *LoopStart = AR->getStart();
3563     if (!isa<SCEVConstant>(LoopStart) && SE.isLoopInvariant(LoopStart, L))
3564       return true;
3565   }
3566   return false;
3567 }
3568 
3569 /// Helper function for LSRInstance::GenerateReassociations.
3570 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
3571                                              const Formula &Base,
3572                                              unsigned Depth, size_t Idx,
3573                                              bool IsScaledReg) {
3574   const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3575   // Don't generate reassociations for the base register of a value that
3576   // may generate a post-increment operator. The reason is that the
3577   // reassociations cause extra base+register formula to be created,
3578   // and possibly chosen, but the post-increment is more efficient.
3579   if (TTI.shouldFavorPostInc() && mayUsePostIncMode(TTI, LU, BaseReg, L, SE))
3580     return;
3581   SmallVector<const SCEV *, 8> AddOps;
3582   const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE);
3583   if (Remainder)
3584     AddOps.push_back(Remainder);
3585 
3586   if (AddOps.size() == 1)
3587     return;
3588 
3589   for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
3590                                                      JE = AddOps.end();
3591        J != JE; ++J) {
3592     // Loop-variant "unknown" values are uninteresting; we won't be able to
3593     // do anything meaningful with them.
3594     if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L))
3595       continue;
3596 
3597     // Don't pull a constant into a register if the constant could be folded
3598     // into an immediate field.
3599     if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3600                          LU.AccessTy, *J, Base.getNumRegs() > 1))
3601       continue;
3602 
3603     // Collect all operands except *J.
3604     SmallVector<const SCEV *, 8> InnerAddOps(
3605         ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
3606     InnerAddOps.append(std::next(J),
3607                        ((const SmallVector<const SCEV *, 8> &)AddOps).end());
3608 
3609     // Don't leave just a constant behind in a register if the constant could
3610     // be folded into an immediate field.
3611     if (InnerAddOps.size() == 1 &&
3612         isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3613                          LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1))
3614       continue;
3615 
3616     const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
3617     if (InnerSum->isZero())
3618       continue;
3619     Formula F = Base;
3620 
3621     // Add the remaining pieces of the add back into the new formula.
3622     const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum);
3623     if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 &&
3624         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3625                                 InnerSumSC->getValue()->getZExtValue())) {
3626       F.UnfoldedOffset =
3627           (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue();
3628       if (IsScaledReg)
3629         F.ScaledReg = nullptr;
3630       else
3631         F.BaseRegs.erase(F.BaseRegs.begin() + Idx);
3632     } else if (IsScaledReg)
3633       F.ScaledReg = InnerSum;
3634     else
3635       F.BaseRegs[Idx] = InnerSum;
3636 
3637     // Add J as its own register, or an unfolded immediate.
3638     const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J);
3639     if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
3640         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3641                                 SC->getValue()->getZExtValue()))
3642       F.UnfoldedOffset =
3643           (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue();
3644     else
3645       F.BaseRegs.push_back(*J);
3646     // We may have changed the number of register in base regs, adjust the
3647     // formula accordingly.
3648     F.canonicalize(*L);
3649 
3650     if (InsertFormula(LU, LUIdx, F))
3651       // If that formula hadn't been seen before, recurse to find more like
3652       // it.
3653       // Add check on Log16(AddOps.size()) - same as Log2_32(AddOps.size()) >> 2)
3654       // Because just Depth is not enough to bound compile time.
3655       // This means that every time AddOps.size() is greater 16^x we will add
3656       // x to Depth.
3657       GenerateReassociations(LU, LUIdx, LU.Formulae.back(),
3658                              Depth + 1 + (Log2_32(AddOps.size()) >> 2));
3659   }
3660 }
3661 
3662 /// Split out subexpressions from adds and the bases of addrecs.
3663 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
3664                                          Formula Base, unsigned Depth) {
3665   assert(Base.isCanonical(*L) && "Input must be in the canonical form");
3666   // Arbitrarily cap recursion to protect compile time.
3667   if (Depth >= 3)
3668     return;
3669 
3670   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3671     GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i);
3672 
3673   if (Base.Scale == 1)
3674     GenerateReassociationsImpl(LU, LUIdx, Base, Depth,
3675                                /* Idx */ -1, /* IsScaledReg */ true);
3676 }
3677 
3678 ///  Generate a formula consisting of all of the loop-dominating registers added
3679 /// into a single register.
3680 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
3681                                        Formula Base) {
3682   // This method is only interesting on a plurality of registers.
3683   if (Base.BaseRegs.size() + (Base.Scale == 1) +
3684       (Base.UnfoldedOffset != 0) <= 1)
3685     return;
3686 
3687   // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before
3688   // processing the formula.
3689   Base.unscale();
3690   SmallVector<const SCEV *, 4> Ops;
3691   Formula NewBase = Base;
3692   NewBase.BaseRegs.clear();
3693   Type *CombinedIntegerType = nullptr;
3694   for (const SCEV *BaseReg : Base.BaseRegs) {
3695     if (SE.properlyDominates(BaseReg, L->getHeader()) &&
3696         !SE.hasComputableLoopEvolution(BaseReg, L)) {
3697       if (!CombinedIntegerType)
3698         CombinedIntegerType = SE.getEffectiveSCEVType(BaseReg->getType());
3699       Ops.push_back(BaseReg);
3700     }
3701     else
3702       NewBase.BaseRegs.push_back(BaseReg);
3703   }
3704 
3705   // If no register is relevant, we're done.
3706   if (Ops.size() == 0)
3707     return;
3708 
3709   // Utility function for generating the required variants of the combined
3710   // registers.
3711   auto GenerateFormula = [&](const SCEV *Sum) {
3712     Formula F = NewBase;
3713 
3714     // TODO: If Sum is zero, it probably means ScalarEvolution missed an
3715     // opportunity to fold something. For now, just ignore such cases
3716     // rather than proceed with zero in a register.
3717     if (Sum->isZero())
3718       return;
3719 
3720     F.BaseRegs.push_back(Sum);
3721     F.canonicalize(*L);
3722     (void)InsertFormula(LU, LUIdx, F);
3723   };
3724 
3725   // If we collected at least two registers, generate a formula combining them.
3726   if (Ops.size() > 1) {
3727     SmallVector<const SCEV *, 4> OpsCopy(Ops); // Don't let SE modify Ops.
3728     GenerateFormula(SE.getAddExpr(OpsCopy));
3729   }
3730 
3731   // If we have an unfolded offset, generate a formula combining it with the
3732   // registers collected.
3733   if (NewBase.UnfoldedOffset) {
3734     assert(CombinedIntegerType && "Missing a type for the unfolded offset");
3735     Ops.push_back(SE.getConstant(CombinedIntegerType, NewBase.UnfoldedOffset,
3736                                  true));
3737     NewBase.UnfoldedOffset = 0;
3738     GenerateFormula(SE.getAddExpr(Ops));
3739   }
3740 }
3741 
3742 /// Helper function for LSRInstance::GenerateSymbolicOffsets.
3743 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
3744                                               const Formula &Base, size_t Idx,
3745                                               bool IsScaledReg) {
3746   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3747   GlobalValue *GV = ExtractSymbol(G, SE);
3748   if (G->isZero() || !GV)
3749     return;
3750   Formula F = Base;
3751   F.BaseGV = GV;
3752   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3753     return;
3754   if (IsScaledReg)
3755     F.ScaledReg = G;
3756   else
3757     F.BaseRegs[Idx] = G;
3758   (void)InsertFormula(LU, LUIdx, F);
3759 }
3760 
3761 /// Generate reuse formulae using symbolic offsets.
3762 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
3763                                           Formula Base) {
3764   // We can't add a symbolic offset if the address already contains one.
3765   if (Base.BaseGV) return;
3766 
3767   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3768     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i);
3769   if (Base.Scale == 1)
3770     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1,
3771                                 /* IsScaledReg */ true);
3772 }
3773 
3774 /// Helper function for LSRInstance::GenerateConstantOffsets.
3775 void LSRInstance::GenerateConstantOffsetsImpl(
3776     LSRUse &LU, unsigned LUIdx, const Formula &Base,
3777     const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) {
3778 
3779   auto GenerateOffset = [&](const SCEV *G, int64_t Offset) {
3780     Formula F = Base;
3781     F.BaseOffset = (uint64_t)Base.BaseOffset - Offset;
3782 
3783     if (isLegalUse(TTI, LU.MinOffset - Offset, LU.MaxOffset - Offset, LU.Kind,
3784                    LU.AccessTy, F)) {
3785       // Add the offset to the base register.
3786       const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G);
3787       // If it cancelled out, drop the base register, otherwise update it.
3788       if (NewG->isZero()) {
3789         if (IsScaledReg) {
3790           F.Scale = 0;
3791           F.ScaledReg = nullptr;
3792         } else
3793           F.deleteBaseReg(F.BaseRegs[Idx]);
3794         F.canonicalize(*L);
3795       } else if (IsScaledReg)
3796         F.ScaledReg = NewG;
3797       else
3798         F.BaseRegs[Idx] = NewG;
3799 
3800       (void)InsertFormula(LU, LUIdx, F);
3801     }
3802   };
3803 
3804   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3805 
3806   // With constant offsets and constant steps, we can generate pre-inc
3807   // accesses by having the offset equal the step. So, for access #0 with a
3808   // step of 8, we generate a G - 8 base which would require the first access
3809   // to be ((G - 8) + 8),+,8. The pre-indexed access then updates the pointer
3810   // for itself and hopefully becomes the base for other accesses. This means
3811   // means that a single pre-indexed access can be generated to become the new
3812   // base pointer for each iteration of the loop, resulting in no extra add/sub
3813   // instructions for pointer updating.
3814   if (FavorBackedgeIndex && LU.Kind == LSRUse::Address) {
3815     if (auto *GAR = dyn_cast<SCEVAddRecExpr>(G)) {
3816       if (auto *StepRec =
3817           dyn_cast<SCEVConstant>(GAR->getStepRecurrence(SE))) {
3818         const APInt &StepInt = StepRec->getAPInt();
3819         int64_t Step = StepInt.isNegative() ?
3820           StepInt.getSExtValue() : StepInt.getZExtValue();
3821 
3822         for (int64_t Offset : Worklist) {
3823           Offset -= Step;
3824           GenerateOffset(G, Offset);
3825         }
3826       }
3827     }
3828   }
3829   for (int64_t Offset : Worklist)
3830     GenerateOffset(G, Offset);
3831 
3832   int64_t Imm = ExtractImmediate(G, SE);
3833   if (G->isZero() || Imm == 0)
3834     return;
3835   Formula F = Base;
3836   F.BaseOffset = (uint64_t)F.BaseOffset + Imm;
3837   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3838     return;
3839   if (IsScaledReg)
3840     F.ScaledReg = G;
3841   else
3842     F.BaseRegs[Idx] = G;
3843   (void)InsertFormula(LU, LUIdx, F);
3844 }
3845 
3846 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
3847 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
3848                                           Formula Base) {
3849   // TODO: For now, just add the min and max offset, because it usually isn't
3850   // worthwhile looking at everything inbetween.
3851   SmallVector<int64_t, 2> Worklist;
3852   Worklist.push_back(LU.MinOffset);
3853   if (LU.MaxOffset != LU.MinOffset)
3854     Worklist.push_back(LU.MaxOffset);
3855 
3856   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3857     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i);
3858   if (Base.Scale == 1)
3859     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1,
3860                                 /* IsScaledReg */ true);
3861 }
3862 
3863 /// For ICmpZero, check to see if we can scale up the comparison. For example, x
3864 /// == y -> x*c == y*c.
3865 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
3866                                          Formula Base) {
3867   if (LU.Kind != LSRUse::ICmpZero) return;
3868 
3869   // Determine the integer type for the base formula.
3870   Type *IntTy = Base.getType();
3871   if (!IntTy) return;
3872   if (SE.getTypeSizeInBits(IntTy) > 64) return;
3873 
3874   // Don't do this if there is more than one offset.
3875   if (LU.MinOffset != LU.MaxOffset) return;
3876 
3877   // Check if transformation is valid. It is illegal to multiply pointer.
3878   if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy())
3879     return;
3880   for (const SCEV *BaseReg : Base.BaseRegs)
3881     if (BaseReg->getType()->isPointerTy())
3882       return;
3883   assert(!Base.BaseGV && "ICmpZero use is not legal!");
3884 
3885   // Check each interesting stride.
3886   for (int64_t Factor : Factors) {
3887     // Check that the multiplication doesn't overflow.
3888     if (Base.BaseOffset == std::numeric_limits<int64_t>::min() && Factor == -1)
3889       continue;
3890     int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor;
3891     if (NewBaseOffset / Factor != Base.BaseOffset)
3892       continue;
3893     // If the offset will be truncated at this use, check that it is in bounds.
3894     if (!IntTy->isPointerTy() &&
3895         !ConstantInt::isValueValidForType(IntTy, NewBaseOffset))
3896       continue;
3897 
3898     // Check that multiplying with the use offset doesn't overflow.
3899     int64_t Offset = LU.MinOffset;
3900     if (Offset == std::numeric_limits<int64_t>::min() && Factor == -1)
3901       continue;
3902     Offset = (uint64_t)Offset * Factor;
3903     if (Offset / Factor != LU.MinOffset)
3904       continue;
3905     // If the offset will be truncated at this use, check that it is in bounds.
3906     if (!IntTy->isPointerTy() &&
3907         !ConstantInt::isValueValidForType(IntTy, Offset))
3908       continue;
3909 
3910     Formula F = Base;
3911     F.BaseOffset = NewBaseOffset;
3912 
3913     // Check that this scale is legal.
3914     if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F))
3915       continue;
3916 
3917     // Compensate for the use having MinOffset built into it.
3918     F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset;
3919 
3920     const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3921 
3922     // Check that multiplying with each base register doesn't overflow.
3923     for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
3924       F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
3925       if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
3926         goto next;
3927     }
3928 
3929     // Check that multiplying with the scaled register doesn't overflow.
3930     if (F.ScaledReg) {
3931       F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
3932       if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
3933         continue;
3934     }
3935 
3936     // Check that multiplying with the unfolded offset doesn't overflow.
3937     if (F.UnfoldedOffset != 0) {
3938       if (F.UnfoldedOffset == std::numeric_limits<int64_t>::min() &&
3939           Factor == -1)
3940         continue;
3941       F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor;
3942       if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset)
3943         continue;
3944       // If the offset will be truncated, check that it is in bounds.
3945       if (!IntTy->isPointerTy() &&
3946           !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset))
3947         continue;
3948     }
3949 
3950     // If we make it here and it's legal, add it.
3951     (void)InsertFormula(LU, LUIdx, F);
3952   next:;
3953   }
3954 }
3955 
3956 /// Generate stride factor reuse formulae by making use of scaled-offset address
3957 /// modes, for example.
3958 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
3959   // Determine the integer type for the base formula.
3960   Type *IntTy = Base.getType();
3961   if (!IntTy) return;
3962 
3963   // If this Formula already has a scaled register, we can't add another one.
3964   // Try to unscale the formula to generate a better scale.
3965   if (Base.Scale != 0 && !Base.unscale())
3966     return;
3967 
3968   assert(Base.Scale == 0 && "unscale did not did its job!");
3969 
3970   // Check each interesting stride.
3971   for (int64_t Factor : Factors) {
3972     Base.Scale = Factor;
3973     Base.HasBaseReg = Base.BaseRegs.size() > 1;
3974     // Check whether this scale is going to be legal.
3975     if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
3976                     Base)) {
3977       // As a special-case, handle special out-of-loop Basic users specially.
3978       // TODO: Reconsider this special case.
3979       if (LU.Kind == LSRUse::Basic &&
3980           isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special,
3981                      LU.AccessTy, Base) &&
3982           LU.AllFixupsOutsideLoop)
3983         LU.Kind = LSRUse::Special;
3984       else
3985         continue;
3986     }
3987     // For an ICmpZero, negating a solitary base register won't lead to
3988     // new solutions.
3989     if (LU.Kind == LSRUse::ICmpZero &&
3990         !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV)
3991       continue;
3992     // For each addrec base reg, if its loop is current loop, apply the scale.
3993     for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
3994       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]);
3995       if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) {
3996         const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3997         if (FactorS->isZero())
3998           continue;
3999         // Divide out the factor, ignoring high bits, since we'll be
4000         // scaling the value back up in the end.
4001         if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
4002           // TODO: This could be optimized to avoid all the copying.
4003           Formula F = Base;
4004           F.ScaledReg = Quotient;
4005           F.deleteBaseReg(F.BaseRegs[i]);
4006           // The canonical representation of 1*reg is reg, which is already in
4007           // Base. In that case, do not try to insert the formula, it will be
4008           // rejected anyway.
4009           if (F.Scale == 1 && (F.BaseRegs.empty() ||
4010                                (AR->getLoop() != L && LU.AllFixupsOutsideLoop)))
4011             continue;
4012           // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate
4013           // non canonical Formula with ScaledReg's loop not being L.
4014           if (F.Scale == 1 && LU.AllFixupsOutsideLoop)
4015             F.canonicalize(*L);
4016           (void)InsertFormula(LU, LUIdx, F);
4017         }
4018       }
4019     }
4020   }
4021 }
4022 
4023 /// Generate reuse formulae from different IV types.
4024 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
4025   // Don't bother truncating symbolic values.
4026   if (Base.BaseGV) return;
4027 
4028   // Determine the integer type for the base formula.
4029   Type *DstTy = Base.getType();
4030   if (!DstTy) return;
4031   DstTy = SE.getEffectiveSCEVType(DstTy);
4032 
4033   for (Type *SrcTy : Types) {
4034     if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) {
4035       Formula F = Base;
4036 
4037       // Sometimes SCEV is able to prove zero during ext transform. It may
4038       // happen if SCEV did not do all possible transforms while creating the
4039       // initial node (maybe due to depth limitations), but it can do them while
4040       // taking ext.
4041       if (F.ScaledReg) {
4042         const SCEV *NewScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy);
4043         if (NewScaledReg->isZero())
4044          continue;
4045         F.ScaledReg = NewScaledReg;
4046       }
4047       bool HasZeroBaseReg = false;
4048       for (const SCEV *&BaseReg : F.BaseRegs) {
4049         const SCEV *NewBaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy);
4050         if (NewBaseReg->isZero()) {
4051           HasZeroBaseReg = true;
4052           break;
4053         }
4054         BaseReg = NewBaseReg;
4055       }
4056       if (HasZeroBaseReg)
4057         continue;
4058 
4059       // TODO: This assumes we've done basic processing on all uses and
4060       // have an idea what the register usage is.
4061       if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
4062         continue;
4063 
4064       F.canonicalize(*L);
4065       (void)InsertFormula(LU, LUIdx, F);
4066     }
4067   }
4068 }
4069 
4070 namespace {
4071 
4072 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer
4073 /// modifications so that the search phase doesn't have to worry about the data
4074 /// structures moving underneath it.
4075 struct WorkItem {
4076   size_t LUIdx;
4077   int64_t Imm;
4078   const SCEV *OrigReg;
4079 
4080   WorkItem(size_t LI, int64_t I, const SCEV *R)
4081       : LUIdx(LI), Imm(I), OrigReg(R) {}
4082 
4083   void print(raw_ostream &OS) const;
4084   void dump() const;
4085 };
4086 
4087 } // end anonymous namespace
4088 
4089 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4090 void WorkItem::print(raw_ostream &OS) const {
4091   OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
4092      << " , add offset " << Imm;
4093 }
4094 
4095 LLVM_DUMP_METHOD void WorkItem::dump() const {
4096   print(errs()); errs() << '\n';
4097 }
4098 #endif
4099 
4100 /// Look for registers which are a constant distance apart and try to form reuse
4101 /// opportunities between them.
4102 void LSRInstance::GenerateCrossUseConstantOffsets() {
4103   // Group the registers by their value without any added constant offset.
4104   using ImmMapTy = std::map<int64_t, const SCEV *>;
4105 
4106   DenseMap<const SCEV *, ImmMapTy> Map;
4107   DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
4108   SmallVector<const SCEV *, 8> Sequence;
4109   for (const SCEV *Use : RegUses) {
4110     const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify.
4111     int64_t Imm = ExtractImmediate(Reg, SE);
4112     auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy()));
4113     if (Pair.second)
4114       Sequence.push_back(Reg);
4115     Pair.first->second.insert(std::make_pair(Imm, Use));
4116     UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use);
4117   }
4118 
4119   // Now examine each set of registers with the same base value. Build up
4120   // a list of work to do and do the work in a separate step so that we're
4121   // not adding formulae and register counts while we're searching.
4122   SmallVector<WorkItem, 32> WorkItems;
4123   SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
4124   for (const SCEV *Reg : Sequence) {
4125     const ImmMapTy &Imms = Map.find(Reg)->second;
4126 
4127     // It's not worthwhile looking for reuse if there's only one offset.
4128     if (Imms.size() == 1)
4129       continue;
4130 
4131     LLVM_DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
4132                for (const auto &Entry
4133                     : Imms) dbgs()
4134                << ' ' << Entry.first;
4135                dbgs() << '\n');
4136 
4137     // Examine each offset.
4138     for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
4139          J != JE; ++J) {
4140       const SCEV *OrigReg = J->second;
4141 
4142       int64_t JImm = J->first;
4143       const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
4144 
4145       if (!isa<SCEVConstant>(OrigReg) &&
4146           UsedByIndicesMap[Reg].count() == 1) {
4147         LLVM_DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg
4148                           << '\n');
4149         continue;
4150       }
4151 
4152       // Conservatively examine offsets between this orig reg a few selected
4153       // other orig regs.
4154       int64_t First = Imms.begin()->first;
4155       int64_t Last = std::prev(Imms.end())->first;
4156       // Compute (First + Last)  / 2 without overflow using the fact that
4157       // First + Last = 2 * (First + Last) + (First ^ Last).
4158       int64_t Avg = (First & Last) + ((First ^ Last) >> 1);
4159       // If the result is negative and First is odd and Last even (or vice versa),
4160       // we rounded towards -inf. Add 1 in that case, to round towards 0.
4161       Avg = Avg + ((First ^ Last) & ((uint64_t)Avg >> 63));
4162       ImmMapTy::const_iterator OtherImms[] = {
4163           Imms.begin(), std::prev(Imms.end()),
4164          Imms.lower_bound(Avg)};
4165       for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
4166         ImmMapTy::const_iterator M = OtherImms[i];
4167         if (M == J || M == JE) continue;
4168 
4169         // Compute the difference between the two.
4170         int64_t Imm = (uint64_t)JImm - M->first;
4171         for (unsigned LUIdx : UsedByIndices.set_bits())
4172           // Make a memo of this use, offset, and register tuple.
4173           if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second)
4174             WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
4175       }
4176     }
4177   }
4178 
4179   Map.clear();
4180   Sequence.clear();
4181   UsedByIndicesMap.clear();
4182   UniqueItems.clear();
4183 
4184   // Now iterate through the worklist and add new formulae.
4185   for (const WorkItem &WI : WorkItems) {
4186     size_t LUIdx = WI.LUIdx;
4187     LSRUse &LU = Uses[LUIdx];
4188     int64_t Imm = WI.Imm;
4189     const SCEV *OrigReg = WI.OrigReg;
4190 
4191     Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
4192     const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
4193     unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
4194 
4195     // TODO: Use a more targeted data structure.
4196     for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
4197       Formula F = LU.Formulae[L];
4198       // FIXME: The code for the scaled and unscaled registers looks
4199       // very similar but slightly different. Investigate if they
4200       // could be merged. That way, we would not have to unscale the
4201       // Formula.
4202       F.unscale();
4203       // Use the immediate in the scaled register.
4204       if (F.ScaledReg == OrigReg) {
4205         int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale;
4206         // Don't create 50 + reg(-50).
4207         if (F.referencesReg(SE.getSCEV(
4208                    ConstantInt::get(IntTy, -(uint64_t)Offset))))
4209           continue;
4210         Formula NewF = F;
4211         NewF.BaseOffset = Offset;
4212         if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
4213                         NewF))
4214           continue;
4215         NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
4216 
4217         // If the new scale is a constant in a register, and adding the constant
4218         // value to the immediate would produce a value closer to zero than the
4219         // immediate itself, then the formula isn't worthwhile.
4220         if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
4221           if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) &&
4222               (C->getAPInt().abs() * APInt(BitWidth, F.Scale))
4223                   .ule(std::abs(NewF.BaseOffset)))
4224             continue;
4225 
4226         // OK, looks good.
4227         NewF.canonicalize(*this->L);
4228         (void)InsertFormula(LU, LUIdx, NewF);
4229       } else {
4230         // Use the immediate in a base register.
4231         for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
4232           const SCEV *BaseReg = F.BaseRegs[N];
4233           if (BaseReg != OrigReg)
4234             continue;
4235           Formula NewF = F;
4236           NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm;
4237           if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset,
4238                           LU.Kind, LU.AccessTy, NewF)) {
4239             if (TTI.shouldFavorPostInc() &&
4240                 mayUsePostIncMode(TTI, LU, OrigReg, this->L, SE))
4241               continue;
4242             if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
4243               continue;
4244             NewF = F;
4245             NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm;
4246           }
4247           NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
4248 
4249           // If the new formula has a constant in a register, and adding the
4250           // constant value to the immediate would produce a value closer to
4251           // zero than the immediate itself, then the formula isn't worthwhile.
4252           for (const SCEV *NewReg : NewF.BaseRegs)
4253             if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg))
4254               if ((C->getAPInt() + NewF.BaseOffset)
4255                       .abs()
4256                       .slt(std::abs(NewF.BaseOffset)) &&
4257                   (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >=
4258                       countTrailingZeros<uint64_t>(NewF.BaseOffset))
4259                 goto skip_formula;
4260 
4261           // Ok, looks good.
4262           NewF.canonicalize(*this->L);
4263           (void)InsertFormula(LU, LUIdx, NewF);
4264           break;
4265         skip_formula:;
4266         }
4267       }
4268     }
4269   }
4270 }
4271 
4272 /// Generate formulae for each use.
4273 void
4274 LSRInstance::GenerateAllReuseFormulae() {
4275   // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
4276   // queries are more precise.
4277   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4278     LSRUse &LU = Uses[LUIdx];
4279     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4280       GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
4281     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4282       GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
4283   }
4284   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4285     LSRUse &LU = Uses[LUIdx];
4286     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4287       GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
4288     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4289       GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
4290     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4291       GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
4292     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4293       GenerateScales(LU, LUIdx, LU.Formulae[i]);
4294   }
4295   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4296     LSRUse &LU = Uses[LUIdx];
4297     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4298       GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
4299   }
4300 
4301   GenerateCrossUseConstantOffsets();
4302 
4303   LLVM_DEBUG(dbgs() << "\n"
4304                        "After generating reuse formulae:\n";
4305              print_uses(dbgs()));
4306 }
4307 
4308 /// If there are multiple formulae with the same set of registers used
4309 /// by other uses, pick the best one and delete the others.
4310 void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
4311   DenseSet<const SCEV *> VisitedRegs;
4312   SmallPtrSet<const SCEV *, 16> Regs;
4313   SmallPtrSet<const SCEV *, 16> LoserRegs;
4314 #ifndef NDEBUG
4315   bool ChangedFormulae = false;
4316 #endif
4317 
4318   // Collect the best formula for each unique set of shared registers. This
4319   // is reset for each use.
4320   using BestFormulaeTy =
4321       DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>;
4322 
4323   BestFormulaeTy BestFormulae;
4324 
4325   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4326     LSRUse &LU = Uses[LUIdx];
4327     LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs());
4328                dbgs() << '\n');
4329 
4330     bool Any = false;
4331     for (size_t FIdx = 0, NumForms = LU.Formulae.size();
4332          FIdx != NumForms; ++FIdx) {
4333       Formula &F = LU.Formulae[FIdx];
4334 
4335       // Some formulas are instant losers. For example, they may depend on
4336       // nonexistent AddRecs from other loops. These need to be filtered
4337       // immediately, otherwise heuristics could choose them over others leading
4338       // to an unsatisfactory solution. Passing LoserRegs into RateFormula here
4339       // avoids the need to recompute this information across formulae using the
4340       // same bad AddRec. Passing LoserRegs is also essential unless we remove
4341       // the corresponding bad register from the Regs set.
4342       Cost CostF(L, SE, TTI);
4343       Regs.clear();
4344       CostF.RateFormula(F, Regs, VisitedRegs, LU, &LoserRegs);
4345       if (CostF.isLoser()) {
4346         // During initial formula generation, undesirable formulae are generated
4347         // by uses within other loops that have some non-trivial address mode or
4348         // use the postinc form of the IV. LSR needs to provide these formulae
4349         // as the basis of rediscovering the desired formula that uses an AddRec
4350         // corresponding to the existing phi. Once all formulae have been
4351         // generated, these initial losers may be pruned.
4352         LLVM_DEBUG(dbgs() << "  Filtering loser "; F.print(dbgs());
4353                    dbgs() << "\n");
4354       }
4355       else {
4356         SmallVector<const SCEV *, 4> Key;
4357         for (const SCEV *Reg : F.BaseRegs) {
4358           if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
4359             Key.push_back(Reg);
4360         }
4361         if (F.ScaledReg &&
4362             RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
4363           Key.push_back(F.ScaledReg);
4364         // Unstable sort by host order ok, because this is only used for
4365         // uniquifying.
4366         llvm::sort(Key);
4367 
4368         std::pair<BestFormulaeTy::const_iterator, bool> P =
4369           BestFormulae.insert(std::make_pair(Key, FIdx));
4370         if (P.second)
4371           continue;
4372 
4373         Formula &Best = LU.Formulae[P.first->second];
4374 
4375         Cost CostBest(L, SE, TTI);
4376         Regs.clear();
4377         CostBest.RateFormula(Best, Regs, VisitedRegs, LU);
4378         if (CostF.isLess(CostBest))
4379           std::swap(F, Best);
4380         LLVM_DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
4381                    dbgs() << "\n"
4382                              "    in favor of formula ";
4383                    Best.print(dbgs()); dbgs() << '\n');
4384       }
4385 #ifndef NDEBUG
4386       ChangedFormulae = true;
4387 #endif
4388       LU.DeleteFormula(F);
4389       --FIdx;
4390       --NumForms;
4391       Any = true;
4392     }
4393 
4394     // Now that we've filtered out some formulae, recompute the Regs set.
4395     if (Any)
4396       LU.RecomputeRegs(LUIdx, RegUses);
4397 
4398     // Reset this to prepare for the next use.
4399     BestFormulae.clear();
4400   }
4401 
4402   LLVM_DEBUG(if (ChangedFormulae) {
4403     dbgs() << "\n"
4404               "After filtering out undesirable candidates:\n";
4405     print_uses(dbgs());
4406   });
4407 }
4408 
4409 /// Estimate the worst-case number of solutions the solver might have to
4410 /// consider. It almost never considers this many solutions because it prune the
4411 /// search space, but the pruning isn't always sufficient.
4412 size_t LSRInstance::EstimateSearchSpaceComplexity() const {
4413   size_t Power = 1;
4414   for (const LSRUse &LU : Uses) {
4415     size_t FSize = LU.Formulae.size();
4416     if (FSize >= ComplexityLimit) {
4417       Power = ComplexityLimit;
4418       break;
4419     }
4420     Power *= FSize;
4421     if (Power >= ComplexityLimit)
4422       break;
4423   }
4424   return Power;
4425 }
4426 
4427 /// When one formula uses a superset of the registers of another formula, it
4428 /// won't help reduce register pressure (though it may not necessarily hurt
4429 /// register pressure); remove it to simplify the system.
4430 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
4431   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4432     LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4433 
4434     LLVM_DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
4435                          "which use a superset of registers used by other "
4436                          "formulae.\n");
4437 
4438     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4439       LSRUse &LU = Uses[LUIdx];
4440       bool Any = false;
4441       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4442         Formula &F = LU.Formulae[i];
4443         // Look for a formula with a constant or GV in a register. If the use
4444         // also has a formula with that same value in an immediate field,
4445         // delete the one that uses a register.
4446         for (SmallVectorImpl<const SCEV *>::const_iterator
4447              I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
4448           if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
4449             Formula NewF = F;
4450             //FIXME: Formulas should store bitwidth to do wrapping properly.
4451             //       See PR41034.
4452             NewF.BaseOffset += (uint64_t)C->getValue()->getSExtValue();
4453             NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4454                                 (I - F.BaseRegs.begin()));
4455             if (LU.HasFormulaWithSameRegs(NewF)) {
4456               LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4457                          dbgs() << '\n');
4458               LU.DeleteFormula(F);
4459               --i;
4460               --e;
4461               Any = true;
4462               break;
4463             }
4464           } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
4465             if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
4466               if (!F.BaseGV) {
4467                 Formula NewF = F;
4468                 NewF.BaseGV = GV;
4469                 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4470                                     (I - F.BaseRegs.begin()));
4471                 if (LU.HasFormulaWithSameRegs(NewF)) {
4472                   LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4473                              dbgs() << '\n');
4474                   LU.DeleteFormula(F);
4475                   --i;
4476                   --e;
4477                   Any = true;
4478                   break;
4479                 }
4480               }
4481           }
4482         }
4483       }
4484       if (Any)
4485         LU.RecomputeRegs(LUIdx, RegUses);
4486     }
4487 
4488     LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4489   }
4490 }
4491 
4492 /// When there are many registers for expressions like A, A+1, A+2, etc.,
4493 /// allocate a single register for them.
4494 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
4495   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4496     return;
4497 
4498   LLVM_DEBUG(
4499       dbgs() << "The search space is too complex.\n"
4500                 "Narrowing the search space by assuming that uses separated "
4501                 "by a constant offset will use the same registers.\n");
4502 
4503   // This is especially useful for unrolled loops.
4504 
4505   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4506     LSRUse &LU = Uses[LUIdx];
4507     for (const Formula &F : LU.Formulae) {
4508       if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1))
4509         continue;
4510 
4511       LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU);
4512       if (!LUThatHas)
4513         continue;
4514 
4515       if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false,
4516                               LU.Kind, LU.AccessTy))
4517         continue;
4518 
4519       LLVM_DEBUG(dbgs() << "  Deleting use "; LU.print(dbgs()); dbgs() << '\n');
4520 
4521       LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
4522 
4523       // Transfer the fixups of LU to LUThatHas.
4524       for (LSRFixup &Fixup : LU.Fixups) {
4525         Fixup.Offset += F.BaseOffset;
4526         LUThatHas->pushFixup(Fixup);
4527         LLVM_DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n');
4528       }
4529 
4530       // Delete formulae from the new use which are no longer legal.
4531       bool Any = false;
4532       for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
4533         Formula &F = LUThatHas->Formulae[i];
4534         if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset,
4535                         LUThatHas->Kind, LUThatHas->AccessTy, F)) {
4536           LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4537           LUThatHas->DeleteFormula(F);
4538           --i;
4539           --e;
4540           Any = true;
4541         }
4542       }
4543 
4544       if (Any)
4545         LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
4546 
4547       // Delete the old use.
4548       DeleteUse(LU, LUIdx);
4549       --LUIdx;
4550       --NumUses;
4551       break;
4552     }
4553   }
4554 
4555   LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4556 }
4557 
4558 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that
4559 /// we've done more filtering, as it may be able to find more formulae to
4560 /// eliminate.
4561 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
4562   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4563     LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4564 
4565     LLVM_DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
4566                          "undesirable dedicated registers.\n");
4567 
4568     FilterOutUndesirableDedicatedRegisters();
4569 
4570     LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4571   }
4572 }
4573 
4574 /// If a LSRUse has multiple formulae with the same ScaledReg and Scale.
4575 /// Pick the best one and delete the others.
4576 /// This narrowing heuristic is to keep as many formulae with different
4577 /// Scale and ScaledReg pair as possible while narrowing the search space.
4578 /// The benefit is that it is more likely to find out a better solution
4579 /// from a formulae set with more Scale and ScaledReg variations than
4580 /// a formulae set with the same Scale and ScaledReg. The picking winner
4581 /// reg heuristic will often keep the formulae with the same Scale and
4582 /// ScaledReg and filter others, and we want to avoid that if possible.
4583 void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() {
4584   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4585     return;
4586 
4587   LLVM_DEBUG(
4588       dbgs() << "The search space is too complex.\n"
4589                 "Narrowing the search space by choosing the best Formula "
4590                 "from the Formulae with the same Scale and ScaledReg.\n");
4591 
4592   // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse.
4593   using BestFormulaeTy = DenseMap<std::pair<const SCEV *, int64_t>, size_t>;
4594 
4595   BestFormulaeTy BestFormulae;
4596 #ifndef NDEBUG
4597   bool ChangedFormulae = false;
4598 #endif
4599   DenseSet<const SCEV *> VisitedRegs;
4600   SmallPtrSet<const SCEV *, 16> Regs;
4601 
4602   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4603     LSRUse &LU = Uses[LUIdx];
4604     LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs());
4605                dbgs() << '\n');
4606 
4607     // Return true if Formula FA is better than Formula FB.
4608     auto IsBetterThan = [&](Formula &FA, Formula &FB) {
4609       // First we will try to choose the Formula with fewer new registers.
4610       // For a register used by current Formula, the more the register is
4611       // shared among LSRUses, the less we increase the register number
4612       // counter of the formula.
4613       size_t FARegNum = 0;
4614       for (const SCEV *Reg : FA.BaseRegs) {
4615         const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
4616         FARegNum += (NumUses - UsedByIndices.count() + 1);
4617       }
4618       size_t FBRegNum = 0;
4619       for (const SCEV *Reg : FB.BaseRegs) {
4620         const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
4621         FBRegNum += (NumUses - UsedByIndices.count() + 1);
4622       }
4623       if (FARegNum != FBRegNum)
4624         return FARegNum < FBRegNum;
4625 
4626       // If the new register numbers are the same, choose the Formula with
4627       // less Cost.
4628       Cost CostFA(L, SE, TTI);
4629       Cost CostFB(L, SE, TTI);
4630       Regs.clear();
4631       CostFA.RateFormula(FA, Regs, VisitedRegs, LU);
4632       Regs.clear();
4633       CostFB.RateFormula(FB, Regs, VisitedRegs, LU);
4634       return CostFA.isLess(CostFB);
4635     };
4636 
4637     bool Any = false;
4638     for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms;
4639          ++FIdx) {
4640       Formula &F = LU.Formulae[FIdx];
4641       if (!F.ScaledReg)
4642         continue;
4643       auto P = BestFormulae.insert({{F.ScaledReg, F.Scale}, FIdx});
4644       if (P.second)
4645         continue;
4646 
4647       Formula &Best = LU.Formulae[P.first->second];
4648       if (IsBetterThan(F, Best))
4649         std::swap(F, Best);
4650       LLVM_DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
4651                  dbgs() << "\n"
4652                            "    in favor of formula ";
4653                  Best.print(dbgs()); dbgs() << '\n');
4654 #ifndef NDEBUG
4655       ChangedFormulae = true;
4656 #endif
4657       LU.DeleteFormula(F);
4658       --FIdx;
4659       --NumForms;
4660       Any = true;
4661     }
4662     if (Any)
4663       LU.RecomputeRegs(LUIdx, RegUses);
4664 
4665     // Reset this to prepare for the next use.
4666     BestFormulae.clear();
4667   }
4668 
4669   LLVM_DEBUG(if (ChangedFormulae) {
4670     dbgs() << "\n"
4671               "After filtering out undesirable candidates:\n";
4672     print_uses(dbgs());
4673   });
4674 }
4675 
4676 /// The function delete formulas with high registers number expectation.
4677 /// Assuming we don't know the value of each formula (already delete
4678 /// all inefficient), generate probability of not selecting for each
4679 /// register.
4680 /// For example,
4681 /// Use1:
4682 ///  reg(a) + reg({0,+,1})
4683 ///  reg(a) + reg({-1,+,1}) + 1
4684 ///  reg({a,+,1})
4685 /// Use2:
4686 ///  reg(b) + reg({0,+,1})
4687 ///  reg(b) + reg({-1,+,1}) + 1
4688 ///  reg({b,+,1})
4689 /// Use3:
4690 ///  reg(c) + reg(b) + reg({0,+,1})
4691 ///  reg(c) + reg({b,+,1})
4692 ///
4693 /// Probability of not selecting
4694 ///                 Use1   Use2    Use3
4695 /// reg(a)         (1/3) *   1   *   1
4696 /// reg(b)           1   * (1/3) * (1/2)
4697 /// reg({0,+,1})   (2/3) * (2/3) * (1/2)
4698 /// reg({-1,+,1})  (2/3) * (2/3) *   1
4699 /// reg({a,+,1})   (2/3) *   1   *   1
4700 /// reg({b,+,1})     1   * (2/3) * (2/3)
4701 /// reg(c)           1   *   1   *   0
4702 ///
4703 /// Now count registers number mathematical expectation for each formula:
4704 /// Note that for each use we exclude probability if not selecting for the use.
4705 /// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding
4706 /// probabilty 1/3 of not selecting for Use1).
4707 /// Use1:
4708 ///  reg(a) + reg({0,+,1})          1 + 1/3       -- to be deleted
4709 ///  reg(a) + reg({-1,+,1}) + 1     1 + 4/9       -- to be deleted
4710 ///  reg({a,+,1})                   1
4711 /// Use2:
4712 ///  reg(b) + reg({0,+,1})          1/2 + 1/3     -- to be deleted
4713 ///  reg(b) + reg({-1,+,1}) + 1     1/2 + 2/3     -- to be deleted
4714 ///  reg({b,+,1})                   2/3
4715 /// Use3:
4716 ///  reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted
4717 ///  reg(c) + reg({b,+,1})          1 + 2/3
4718 void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() {
4719   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4720     return;
4721   // Ok, we have too many of formulae on our hands to conveniently handle.
4722   // Use a rough heuristic to thin out the list.
4723 
4724   // Set of Regs wich will be 100% used in final solution.
4725   // Used in each formula of a solution (in example above this is reg(c)).
4726   // We can skip them in calculations.
4727   SmallPtrSet<const SCEV *, 4> UniqRegs;
4728   LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4729 
4730   // Map each register to probability of not selecting
4731   DenseMap <const SCEV *, float> RegNumMap;
4732   for (const SCEV *Reg : RegUses) {
4733     if (UniqRegs.count(Reg))
4734       continue;
4735     float PNotSel = 1;
4736     for (const LSRUse &LU : Uses) {
4737       if (!LU.Regs.count(Reg))
4738         continue;
4739       float P = LU.getNotSelectedProbability(Reg);
4740       if (P != 0.0)
4741         PNotSel *= P;
4742       else
4743         UniqRegs.insert(Reg);
4744     }
4745     RegNumMap.insert(std::make_pair(Reg, PNotSel));
4746   }
4747 
4748   LLVM_DEBUG(
4749       dbgs() << "Narrowing the search space by deleting costly formulas\n");
4750 
4751   // Delete formulas where registers number expectation is high.
4752   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4753     LSRUse &LU = Uses[LUIdx];
4754     // If nothing to delete - continue.
4755     if (LU.Formulae.size() < 2)
4756       continue;
4757     // This is temporary solution to test performance. Float should be
4758     // replaced with round independent type (based on integers) to avoid
4759     // different results for different target builds.
4760     float FMinRegNum = LU.Formulae[0].getNumRegs();
4761     float FMinARegNum = LU.Formulae[0].getNumRegs();
4762     size_t MinIdx = 0;
4763     for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4764       Formula &F = LU.Formulae[i];
4765       float FRegNum = 0;
4766       float FARegNum = 0;
4767       for (const SCEV *BaseReg : F.BaseRegs) {
4768         if (UniqRegs.count(BaseReg))
4769           continue;
4770         FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
4771         if (isa<SCEVAddRecExpr>(BaseReg))
4772           FARegNum +=
4773               RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
4774       }
4775       if (const SCEV *ScaledReg = F.ScaledReg) {
4776         if (!UniqRegs.count(ScaledReg)) {
4777           FRegNum +=
4778               RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
4779           if (isa<SCEVAddRecExpr>(ScaledReg))
4780             FARegNum +=
4781                 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
4782         }
4783       }
4784       if (FMinRegNum > FRegNum ||
4785           (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) {
4786         FMinRegNum = FRegNum;
4787         FMinARegNum = FARegNum;
4788         MinIdx = i;
4789       }
4790     }
4791     LLVM_DEBUG(dbgs() << "  The formula "; LU.Formulae[MinIdx].print(dbgs());
4792                dbgs() << " with min reg num " << FMinRegNum << '\n');
4793     if (MinIdx != 0)
4794       std::swap(LU.Formulae[MinIdx], LU.Formulae[0]);
4795     while (LU.Formulae.size() != 1) {
4796       LLVM_DEBUG(dbgs() << "  Deleting "; LU.Formulae.back().print(dbgs());
4797                  dbgs() << '\n');
4798       LU.Formulae.pop_back();
4799     }
4800     LU.RecomputeRegs(LUIdx, RegUses);
4801     assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula");
4802     Formula &F = LU.Formulae[0];
4803     LLVM_DEBUG(dbgs() << "  Leaving only "; F.print(dbgs()); dbgs() << '\n');
4804     // When we choose the formula, the regs become unique.
4805     UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
4806     if (F.ScaledReg)
4807       UniqRegs.insert(F.ScaledReg);
4808   }
4809   LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4810 }
4811 
4812 /// Pick a register which seems likely to be profitable, and then in any use
4813 /// which has any reference to that register, delete all formulae which do not
4814 /// reference that register.
4815 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
4816   // With all other options exhausted, loop until the system is simple
4817   // enough to handle.
4818   SmallPtrSet<const SCEV *, 4> Taken;
4819   while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4820     // Ok, we have too many of formulae on our hands to conveniently handle.
4821     // Use a rough heuristic to thin out the list.
4822     LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4823 
4824     // Pick the register which is used by the most LSRUses, which is likely
4825     // to be a good reuse register candidate.
4826     const SCEV *Best = nullptr;
4827     unsigned BestNum = 0;
4828     for (const SCEV *Reg : RegUses) {
4829       if (Taken.count(Reg))
4830         continue;
4831       if (!Best) {
4832         Best = Reg;
4833         BestNum = RegUses.getUsedByIndices(Reg).count();
4834       } else {
4835         unsigned Count = RegUses.getUsedByIndices(Reg).count();
4836         if (Count > BestNum) {
4837           Best = Reg;
4838           BestNum = Count;
4839         }
4840       }
4841     }
4842     assert(Best && "Failed to find best LSRUse candidate");
4843 
4844     LLVM_DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
4845                       << " will yield profitable reuse.\n");
4846     Taken.insert(Best);
4847 
4848     // In any use with formulae which references this register, delete formulae
4849     // which don't reference it.
4850     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4851       LSRUse &LU = Uses[LUIdx];
4852       if (!LU.Regs.count(Best)) continue;
4853 
4854       bool Any = false;
4855       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4856         Formula &F = LU.Formulae[i];
4857         if (!F.referencesReg(Best)) {
4858           LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4859           LU.DeleteFormula(F);
4860           --e;
4861           --i;
4862           Any = true;
4863           assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
4864           continue;
4865         }
4866       }
4867 
4868       if (Any)
4869         LU.RecomputeRegs(LUIdx, RegUses);
4870     }
4871 
4872     LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4873   }
4874 }
4875 
4876 /// If there are an extraordinary number of formulae to choose from, use some
4877 /// rough heuristics to prune down the number of formulae. This keeps the main
4878 /// solver from taking an extraordinary amount of time in some worst-case
4879 /// scenarios.
4880 void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
4881   NarrowSearchSpaceByDetectingSupersets();
4882   NarrowSearchSpaceByCollapsingUnrolledCode();
4883   NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
4884   if (FilterSameScaledReg)
4885     NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
4886   if (LSRExpNarrow)
4887     NarrowSearchSpaceByDeletingCostlyFormulas();
4888   else
4889     NarrowSearchSpaceByPickingWinnerRegs();
4890 }
4891 
4892 /// This is the recursive solver.
4893 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
4894                                Cost &SolutionCost,
4895                                SmallVectorImpl<const Formula *> &Workspace,
4896                                const Cost &CurCost,
4897                                const SmallPtrSet<const SCEV *, 16> &CurRegs,
4898                                DenseSet<const SCEV *> &VisitedRegs) const {
4899   // Some ideas:
4900   //  - prune more:
4901   //    - use more aggressive filtering
4902   //    - sort the formula so that the most profitable solutions are found first
4903   //    - sort the uses too
4904   //  - search faster:
4905   //    - don't compute a cost, and then compare. compare while computing a cost
4906   //      and bail early.
4907   //    - track register sets with SmallBitVector
4908 
4909   const LSRUse &LU = Uses[Workspace.size()];
4910 
4911   // If this use references any register that's already a part of the
4912   // in-progress solution, consider it a requirement that a formula must
4913   // reference that register in order to be considered. This prunes out
4914   // unprofitable searching.
4915   SmallSetVector<const SCEV *, 4> ReqRegs;
4916   for (const SCEV *S : CurRegs)
4917     if (LU.Regs.count(S))
4918       ReqRegs.insert(S);
4919 
4920   SmallPtrSet<const SCEV *, 16> NewRegs;
4921   Cost NewCost(L, SE, TTI);
4922   for (const Formula &F : LU.Formulae) {
4923     // Ignore formulae which may not be ideal in terms of register reuse of
4924     // ReqRegs.  The formula should use all required registers before
4925     // introducing new ones.
4926     int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size());
4927     for (const SCEV *Reg : ReqRegs) {
4928       if ((F.ScaledReg && F.ScaledReg == Reg) ||
4929           is_contained(F.BaseRegs, Reg)) {
4930         --NumReqRegsToFind;
4931         if (NumReqRegsToFind == 0)
4932           break;
4933       }
4934     }
4935     if (NumReqRegsToFind != 0) {
4936       // If none of the formulae satisfied the required registers, then we could
4937       // clear ReqRegs and try again. Currently, we simply give up in this case.
4938       continue;
4939     }
4940 
4941     // Evaluate the cost of the current formula. If it's already worse than
4942     // the current best, prune the search at that point.
4943     NewCost = CurCost;
4944     NewRegs = CurRegs;
4945     NewCost.RateFormula(F, NewRegs, VisitedRegs, LU);
4946     if (NewCost.isLess(SolutionCost)) {
4947       Workspace.push_back(&F);
4948       if (Workspace.size() != Uses.size()) {
4949         SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
4950                      NewRegs, VisitedRegs);
4951         if (F.getNumRegs() == 1 && Workspace.size() == 1)
4952           VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
4953       } else {
4954         LLVM_DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
4955                    dbgs() << ".\nRegs:\n";
4956                    for (const SCEV *S : NewRegs) dbgs()
4957                       << "- " << *S << "\n";
4958                    dbgs() << '\n');
4959 
4960         SolutionCost = NewCost;
4961         Solution = Workspace;
4962       }
4963       Workspace.pop_back();
4964     }
4965   }
4966 }
4967 
4968 /// Choose one formula from each use. Return the results in the given Solution
4969 /// vector.
4970 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
4971   SmallVector<const Formula *, 8> Workspace;
4972   Cost SolutionCost(L, SE, TTI);
4973   SolutionCost.Lose();
4974   Cost CurCost(L, SE, TTI);
4975   SmallPtrSet<const SCEV *, 16> CurRegs;
4976   DenseSet<const SCEV *> VisitedRegs;
4977   Workspace.reserve(Uses.size());
4978 
4979   // SolveRecurse does all the work.
4980   SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
4981                CurRegs, VisitedRegs);
4982   if (Solution.empty()) {
4983     LLVM_DEBUG(dbgs() << "\nNo Satisfactory Solution\n");
4984     return;
4985   }
4986 
4987   // Ok, we've now made all our decisions.
4988   LLVM_DEBUG(dbgs() << "\n"
4989                        "The chosen solution requires ";
4990              SolutionCost.print(dbgs()); dbgs() << ":\n";
4991              for (size_t i = 0, e = Uses.size(); i != e; ++i) {
4992                dbgs() << "  ";
4993                Uses[i].print(dbgs());
4994                dbgs() << "\n"
4995                          "    ";
4996                Solution[i]->print(dbgs());
4997                dbgs() << '\n';
4998              });
4999 
5000   assert(Solution.size() == Uses.size() && "Malformed solution!");
5001 }
5002 
5003 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as
5004 /// we can go while still being dominated by the input positions. This helps
5005 /// canonicalize the insert position, which encourages sharing.
5006 BasicBlock::iterator
5007 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
5008                                  const SmallVectorImpl<Instruction *> &Inputs)
5009                                                                          const {
5010   Instruction *Tentative = &*IP;
5011   while (true) {
5012     bool AllDominate = true;
5013     Instruction *BetterPos = nullptr;
5014     // Don't bother attempting to insert before a catchswitch, their basic block
5015     // cannot have other non-PHI instructions.
5016     if (isa<CatchSwitchInst>(Tentative))
5017       return IP;
5018 
5019     for (Instruction *Inst : Inputs) {
5020       if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
5021         AllDominate = false;
5022         break;
5023       }
5024       // Attempt to find an insert position in the middle of the block,
5025       // instead of at the end, so that it can be used for other expansions.
5026       if (Tentative->getParent() == Inst->getParent() &&
5027           (!BetterPos || !DT.dominates(Inst, BetterPos)))
5028         BetterPos = &*std::next(BasicBlock::iterator(Inst));
5029     }
5030     if (!AllDominate)
5031       break;
5032     if (BetterPos)
5033       IP = BetterPos->getIterator();
5034     else
5035       IP = Tentative->getIterator();
5036 
5037     const Loop *IPLoop = LI.getLoopFor(IP->getParent());
5038     unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
5039 
5040     BasicBlock *IDom;
5041     for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
5042       if (!Rung) return IP;
5043       Rung = Rung->getIDom();
5044       if (!Rung) return IP;
5045       IDom = Rung->getBlock();
5046 
5047       // Don't climb into a loop though.
5048       const Loop *IDomLoop = LI.getLoopFor(IDom);
5049       unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
5050       if (IDomDepth <= IPLoopDepth &&
5051           (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
5052         break;
5053     }
5054 
5055     Tentative = IDom->getTerminator();
5056   }
5057 
5058   return IP;
5059 }
5060 
5061 /// Determine an input position which will be dominated by the operands and
5062 /// which will dominate the result.
5063 BasicBlock::iterator
5064 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP,
5065                                            const LSRFixup &LF,
5066                                            const LSRUse &LU,
5067                                            SCEVExpander &Rewriter) const {
5068   // Collect some instructions which must be dominated by the
5069   // expanding replacement. These must be dominated by any operands that
5070   // will be required in the expansion.
5071   SmallVector<Instruction *, 4> Inputs;
5072   if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
5073     Inputs.push_back(I);
5074   if (LU.Kind == LSRUse::ICmpZero)
5075     if (Instruction *I =
5076           dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
5077       Inputs.push_back(I);
5078   if (LF.PostIncLoops.count(L)) {
5079     if (LF.isUseFullyOutsideLoop(L))
5080       Inputs.push_back(L->getLoopLatch()->getTerminator());
5081     else
5082       Inputs.push_back(IVIncInsertPos);
5083   }
5084   // The expansion must also be dominated by the increment positions of any
5085   // loops it for which it is using post-inc mode.
5086   for (const Loop *PIL : LF.PostIncLoops) {
5087     if (PIL == L) continue;
5088 
5089     // Be dominated by the loop exit.
5090     SmallVector<BasicBlock *, 4> ExitingBlocks;
5091     PIL->getExitingBlocks(ExitingBlocks);
5092     if (!ExitingBlocks.empty()) {
5093       BasicBlock *BB = ExitingBlocks[0];
5094       for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
5095         BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
5096       Inputs.push_back(BB->getTerminator());
5097     }
5098   }
5099 
5100   assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad()
5101          && !isa<DbgInfoIntrinsic>(LowestIP) &&
5102          "Insertion point must be a normal instruction");
5103 
5104   // Then, climb up the immediate dominator tree as far as we can go while
5105   // still being dominated by the input positions.
5106   BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs);
5107 
5108   // Don't insert instructions before PHI nodes.
5109   while (isa<PHINode>(IP)) ++IP;
5110 
5111   // Ignore landingpad instructions.
5112   while (IP->isEHPad()) ++IP;
5113 
5114   // Ignore debug intrinsics.
5115   while (isa<DbgInfoIntrinsic>(IP)) ++IP;
5116 
5117   // Set IP below instructions recently inserted by SCEVExpander. This keeps the
5118   // IP consistent across expansions and allows the previously inserted
5119   // instructions to be reused by subsequent expansion.
5120   while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP)
5121     ++IP;
5122 
5123   return IP;
5124 }
5125 
5126 /// Emit instructions for the leading candidate expression for this LSRUse (this
5127 /// is called "expanding").
5128 Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF,
5129                            const Formula &F, BasicBlock::iterator IP,
5130                            SCEVExpander &Rewriter,
5131                            SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5132   if (LU.RigidFormula)
5133     return LF.OperandValToReplace;
5134 
5135   // Determine an input position which will be dominated by the operands and
5136   // which will dominate the result.
5137   IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter);
5138   Rewriter.setInsertPoint(&*IP);
5139 
5140   // Inform the Rewriter if we have a post-increment use, so that it can
5141   // perform an advantageous expansion.
5142   Rewriter.setPostInc(LF.PostIncLoops);
5143 
5144   // This is the type that the user actually needs.
5145   Type *OpTy = LF.OperandValToReplace->getType();
5146   // This will be the type that we'll initially expand to.
5147   Type *Ty = F.getType();
5148   if (!Ty)
5149     // No type known; just expand directly to the ultimate type.
5150     Ty = OpTy;
5151   else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
5152     // Expand directly to the ultimate type if it's the right size.
5153     Ty = OpTy;
5154   // This is the type to do integer arithmetic in.
5155   Type *IntTy = SE.getEffectiveSCEVType(Ty);
5156 
5157   // Build up a list of operands to add together to form the full base.
5158   SmallVector<const SCEV *, 8> Ops;
5159 
5160   // Expand the BaseRegs portion.
5161   for (const SCEV *Reg : F.BaseRegs) {
5162     assert(!Reg->isZero() && "Zero allocated in a base register!");
5163 
5164     // If we're expanding for a post-inc user, make the post-inc adjustment.
5165     Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE);
5166     Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr)));
5167   }
5168 
5169   // Expand the ScaledReg portion.
5170   Value *ICmpScaledV = nullptr;
5171   if (F.Scale != 0) {
5172     const SCEV *ScaledS = F.ScaledReg;
5173 
5174     // If we're expanding for a post-inc user, make the post-inc adjustment.
5175     PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
5176     ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE);
5177 
5178     if (LU.Kind == LSRUse::ICmpZero) {
5179       // Expand ScaleReg as if it was part of the base regs.
5180       if (F.Scale == 1)
5181         Ops.push_back(
5182             SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)));
5183       else {
5184         // An interesting way of "folding" with an icmp is to use a negated
5185         // scale, which we'll implement by inserting it into the other operand
5186         // of the icmp.
5187         assert(F.Scale == -1 &&
5188                "The only scale supported by ICmpZero uses is -1!");
5189         ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr);
5190       }
5191     } else {
5192       // Otherwise just expand the scaled register and an explicit scale,
5193       // which is expected to be matched as part of the address.
5194 
5195       // Flush the operand list to suppress SCEVExpander hoisting address modes.
5196       // Unless the addressing mode will not be folded.
5197       if (!Ops.empty() && LU.Kind == LSRUse::Address &&
5198           isAMCompletelyFolded(TTI, LU, F)) {
5199         Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), nullptr);
5200         Ops.clear();
5201         Ops.push_back(SE.getUnknown(FullV));
5202       }
5203       ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr));
5204       if (F.Scale != 1)
5205         ScaledS =
5206             SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale));
5207       Ops.push_back(ScaledS);
5208     }
5209   }
5210 
5211   // Expand the GV portion.
5212   if (F.BaseGV) {
5213     // Flush the operand list to suppress SCEVExpander hoisting.
5214     if (!Ops.empty()) {
5215       Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
5216       Ops.clear();
5217       Ops.push_back(SE.getUnknown(FullV));
5218     }
5219     Ops.push_back(SE.getUnknown(F.BaseGV));
5220   }
5221 
5222   // Flush the operand list to suppress SCEVExpander hoisting of both folded and
5223   // unfolded offsets. LSR assumes they both live next to their uses.
5224   if (!Ops.empty()) {
5225     Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
5226     Ops.clear();
5227     Ops.push_back(SE.getUnknown(FullV));
5228   }
5229 
5230   // Expand the immediate portion.
5231   int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset;
5232   if (Offset != 0) {
5233     if (LU.Kind == LSRUse::ICmpZero) {
5234       // The other interesting way of "folding" with an ICmpZero is to use a
5235       // negated immediate.
5236       if (!ICmpScaledV)
5237         ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset);
5238       else {
5239         Ops.push_back(SE.getUnknown(ICmpScaledV));
5240         ICmpScaledV = ConstantInt::get(IntTy, Offset);
5241       }
5242     } else {
5243       // Just add the immediate values. These again are expected to be matched
5244       // as part of the address.
5245       Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
5246     }
5247   }
5248 
5249   // Expand the unfolded offset portion.
5250   int64_t UnfoldedOffset = F.UnfoldedOffset;
5251   if (UnfoldedOffset != 0) {
5252     // Just add the immediate values.
5253     Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy,
5254                                                        UnfoldedOffset)));
5255   }
5256 
5257   // Emit instructions summing all the operands.
5258   const SCEV *FullS = Ops.empty() ?
5259                       SE.getConstant(IntTy, 0) :
5260                       SE.getAddExpr(Ops);
5261   Value *FullV = Rewriter.expandCodeFor(FullS, Ty);
5262 
5263   // We're done expanding now, so reset the rewriter.
5264   Rewriter.clearPostInc();
5265 
5266   // An ICmpZero Formula represents an ICmp which we're handling as a
5267   // comparison against zero. Now that we've expanded an expression for that
5268   // form, update the ICmp's other operand.
5269   if (LU.Kind == LSRUse::ICmpZero) {
5270     ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
5271     DeadInsts.emplace_back(CI->getOperand(1));
5272     assert(!F.BaseGV && "ICmp does not support folding a global value and "
5273                            "a scale at the same time!");
5274     if (F.Scale == -1) {
5275       if (ICmpScaledV->getType() != OpTy) {
5276         Instruction *Cast =
5277           CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
5278                                                    OpTy, false),
5279                            ICmpScaledV, OpTy, "tmp", CI);
5280         ICmpScaledV = Cast;
5281       }
5282       CI->setOperand(1, ICmpScaledV);
5283     } else {
5284       // A scale of 1 means that the scale has been expanded as part of the
5285       // base regs.
5286       assert((F.Scale == 0 || F.Scale == 1) &&
5287              "ICmp does not support folding a global value and "
5288              "a scale at the same time!");
5289       Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
5290                                            -(uint64_t)Offset);
5291       if (C->getType() != OpTy)
5292         C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5293                                                           OpTy, false),
5294                                   C, OpTy);
5295 
5296       CI->setOperand(1, C);
5297     }
5298   }
5299 
5300   return FullV;
5301 }
5302 
5303 /// Helper for Rewrite. PHI nodes are special because the use of their operands
5304 /// effectively happens in their predecessor blocks, so the expression may need
5305 /// to be expanded in multiple places.
5306 void LSRInstance::RewriteForPHI(
5307     PHINode *PN, const LSRUse &LU, const LSRFixup &LF, const Formula &F,
5308     SCEVExpander &Rewriter, SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5309   DenseMap<BasicBlock *, Value *> Inserted;
5310   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5311     if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
5312       bool needUpdateFixups = false;
5313       BasicBlock *BB = PN->getIncomingBlock(i);
5314 
5315       // If this is a critical edge, split the edge so that we do not insert
5316       // the code on all predecessor/successor paths.  We do this unless this
5317       // is the canonical backedge for this loop, which complicates post-inc
5318       // users.
5319       if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
5320           !isa<IndirectBrInst>(BB->getTerminator()) &&
5321           !isa<CatchSwitchInst>(BB->getTerminator())) {
5322         BasicBlock *Parent = PN->getParent();
5323         Loop *PNLoop = LI.getLoopFor(Parent);
5324         if (!PNLoop || Parent != PNLoop->getHeader()) {
5325           // Split the critical edge.
5326           BasicBlock *NewBB = nullptr;
5327           if (!Parent->isLandingPad()) {
5328             NewBB = SplitCriticalEdge(BB, Parent,
5329                                       CriticalEdgeSplittingOptions(&DT, &LI)
5330                                           .setMergeIdenticalEdges()
5331                                           .setKeepOneInputPHIs());
5332           } else {
5333             SmallVector<BasicBlock*, 2> NewBBs;
5334             SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI);
5335             NewBB = NewBBs[0];
5336           }
5337           // If NewBB==NULL, then SplitCriticalEdge refused to split because all
5338           // phi predecessors are identical. The simple thing to do is skip
5339           // splitting in this case rather than complicate the API.
5340           if (NewBB) {
5341             // If PN is outside of the loop and BB is in the loop, we want to
5342             // move the block to be immediately before the PHI block, not
5343             // immediately after BB.
5344             if (L->contains(BB) && !L->contains(PN))
5345               NewBB->moveBefore(PN->getParent());
5346 
5347             // Splitting the edge can reduce the number of PHI entries we have.
5348             e = PN->getNumIncomingValues();
5349             BB = NewBB;
5350             i = PN->getBasicBlockIndex(BB);
5351 
5352             needUpdateFixups = true;
5353           }
5354         }
5355       }
5356 
5357       std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
5358         Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr)));
5359       if (!Pair.second)
5360         PN->setIncomingValue(i, Pair.first->second);
5361       else {
5362         Value *FullV = Expand(LU, LF, F, BB->getTerminator()->getIterator(),
5363                               Rewriter, DeadInsts);
5364 
5365         // If this is reuse-by-noop-cast, insert the noop cast.
5366         Type *OpTy = LF.OperandValToReplace->getType();
5367         if (FullV->getType() != OpTy)
5368           FullV =
5369             CastInst::Create(CastInst::getCastOpcode(FullV, false,
5370                                                      OpTy, false),
5371                              FullV, LF.OperandValToReplace->getType(),
5372                              "tmp", BB->getTerminator());
5373 
5374         PN->setIncomingValue(i, FullV);
5375         Pair.first->second = FullV;
5376       }
5377 
5378       // If LSR splits critical edge and phi node has other pending
5379       // fixup operands, we need to update those pending fixups. Otherwise
5380       // formulae will not be implemented completely and some instructions
5381       // will not be eliminated.
5382       if (needUpdateFixups) {
5383         for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx)
5384           for (LSRFixup &Fixup : Uses[LUIdx].Fixups)
5385             // If fixup is supposed to rewrite some operand in the phi
5386             // that was just updated, it may be already moved to
5387             // another phi node. Such fixup requires update.
5388             if (Fixup.UserInst == PN) {
5389               // Check if the operand we try to replace still exists in the
5390               // original phi.
5391               bool foundInOriginalPHI = false;
5392               for (const auto &val : PN->incoming_values())
5393                 if (val == Fixup.OperandValToReplace) {
5394                   foundInOriginalPHI = true;
5395                   break;
5396                 }
5397 
5398               // If fixup operand found in original PHI - nothing to do.
5399               if (foundInOriginalPHI)
5400                 continue;
5401 
5402               // Otherwise it might be moved to another PHI and requires update.
5403               // If fixup operand not found in any of the incoming blocks that
5404               // means we have already rewritten it - nothing to do.
5405               for (const auto &Block : PN->blocks())
5406                 for (BasicBlock::iterator I = Block->begin(); isa<PHINode>(I);
5407                      ++I) {
5408                   PHINode *NewPN = cast<PHINode>(I);
5409                   for (const auto &val : NewPN->incoming_values())
5410                     if (val == Fixup.OperandValToReplace)
5411                       Fixup.UserInst = NewPN;
5412                 }
5413             }
5414       }
5415     }
5416 }
5417 
5418 /// Emit instructions for the leading candidate expression for this LSRUse (this
5419 /// is called "expanding"), and update the UserInst to reference the newly
5420 /// expanded value.
5421 void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF,
5422                           const Formula &F, SCEVExpander &Rewriter,
5423                           SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5424   // First, find an insertion point that dominates UserInst. For PHI nodes,
5425   // find the nearest block which dominates all the relevant uses.
5426   if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
5427     RewriteForPHI(PN, LU, LF, F, Rewriter, DeadInsts);
5428   } else {
5429     Value *FullV =
5430       Expand(LU, LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts);
5431 
5432     // If this is reuse-by-noop-cast, insert the noop cast.
5433     Type *OpTy = LF.OperandValToReplace->getType();
5434     if (FullV->getType() != OpTy) {
5435       Instruction *Cast =
5436         CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
5437                          FullV, OpTy, "tmp", LF.UserInst);
5438       FullV = Cast;
5439     }
5440 
5441     // Update the user. ICmpZero is handled specially here (for now) because
5442     // Expand may have updated one of the operands of the icmp already, and
5443     // its new value may happen to be equal to LF.OperandValToReplace, in
5444     // which case doing replaceUsesOfWith leads to replacing both operands
5445     // with the same value. TODO: Reorganize this.
5446     if (LU.Kind == LSRUse::ICmpZero)
5447       LF.UserInst->setOperand(0, FullV);
5448     else
5449       LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
5450   }
5451 
5452   DeadInsts.emplace_back(LF.OperandValToReplace);
5453 }
5454 
5455 /// Rewrite all the fixup locations with new values, following the chosen
5456 /// solution.
5457 void LSRInstance::ImplementSolution(
5458     const SmallVectorImpl<const Formula *> &Solution) {
5459   // Keep track of instructions we may have made dead, so that
5460   // we can remove them after we are done working.
5461   SmallVector<WeakTrackingVH, 16> DeadInsts;
5462 
5463   SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(),
5464                         "lsr");
5465 #ifndef NDEBUG
5466   Rewriter.setDebugType(DEBUG_TYPE);
5467 #endif
5468   Rewriter.disableCanonicalMode();
5469   Rewriter.enableLSRMode();
5470   Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
5471 
5472   // Mark phi nodes that terminate chains so the expander tries to reuse them.
5473   for (const IVChain &Chain : IVChainVec) {
5474     if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst()))
5475       Rewriter.setChainedPhi(PN);
5476   }
5477 
5478   // Expand the new value definitions and update the users.
5479   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx)
5480     for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) {
5481       Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], Rewriter, DeadInsts);
5482       Changed = true;
5483     }
5484 
5485   for (const IVChain &Chain : IVChainVec) {
5486     GenerateIVChain(Chain, Rewriter, DeadInsts);
5487     Changed = true;
5488   }
5489   // Clean up after ourselves. This must be done before deleting any
5490   // instructions.
5491   Rewriter.clear();
5492 
5493   Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
5494 }
5495 
5496 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE,
5497                          DominatorTree &DT, LoopInfo &LI,
5498                          const TargetTransformInfo &TTI, AssumptionCache &AC,
5499                          TargetLibraryInfo &LibInfo)
5500     : IU(IU), SE(SE), DT(DT), LI(LI), AC(AC), LibInfo(LibInfo), TTI(TTI), L(L),
5501       FavorBackedgeIndex(EnableBackedgeIndexing &&
5502                          TTI.shouldFavorBackedgeIndex(L)) {
5503   // If LoopSimplify form is not available, stay out of trouble.
5504   if (!L->isLoopSimplifyForm())
5505     return;
5506 
5507   // If there's no interesting work to be done, bail early.
5508   if (IU.empty()) return;
5509 
5510   // If there's too much analysis to be done, bail early. We won't be able to
5511   // model the problem anyway.
5512   unsigned NumUsers = 0;
5513   for (const IVStrideUse &U : IU) {
5514     if (++NumUsers > MaxIVUsers) {
5515       (void)U;
5516       LLVM_DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U
5517                         << "\n");
5518       return;
5519     }
5520     // Bail out if we have a PHI on an EHPad that gets a value from a
5521     // CatchSwitchInst.  Because the CatchSwitchInst cannot be split, there is
5522     // no good place to stick any instructions.
5523     if (auto *PN = dyn_cast<PHINode>(U.getUser())) {
5524        auto *FirstNonPHI = PN->getParent()->getFirstNonPHI();
5525        if (isa<FuncletPadInst>(FirstNonPHI) ||
5526            isa<CatchSwitchInst>(FirstNonPHI))
5527          for (BasicBlock *PredBB : PN->blocks())
5528            if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI()))
5529              return;
5530     }
5531   }
5532 
5533 #ifndef NDEBUG
5534   // All dominating loops must have preheaders, or SCEVExpander may not be able
5535   // to materialize an AddRecExpr whose Start is an outer AddRecExpr.
5536   //
5537   // IVUsers analysis should only create users that are dominated by simple loop
5538   // headers. Since this loop should dominate all of its users, its user list
5539   // should be empty if this loop itself is not within a simple loop nest.
5540   for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader());
5541        Rung; Rung = Rung->getIDom()) {
5542     BasicBlock *BB = Rung->getBlock();
5543     const Loop *DomLoop = LI.getLoopFor(BB);
5544     if (DomLoop && DomLoop->getHeader() == BB) {
5545       assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest");
5546     }
5547   }
5548 #endif // DEBUG
5549 
5550   LLVM_DEBUG(dbgs() << "\nLSR on loop ";
5551              L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false);
5552              dbgs() << ":\n");
5553 
5554   // First, perform some low-level loop optimizations.
5555   OptimizeShadowIV();
5556   OptimizeLoopTermCond();
5557 
5558   // If loop preparation eliminates all interesting IV users, bail.
5559   if (IU.empty()) return;
5560 
5561   // Skip nested loops until we can model them better with formulae.
5562   if (!L->empty()) {
5563     LLVM_DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n");
5564     return;
5565   }
5566 
5567   // Start collecting data and preparing for the solver.
5568   CollectChains();
5569   CollectInterestingTypesAndFactors();
5570   CollectFixupsAndInitialFormulae();
5571   CollectLoopInvariantFixupsAndFormulae();
5572 
5573   if (Uses.empty())
5574     return;
5575 
5576   LLVM_DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
5577              print_uses(dbgs()));
5578 
5579   // Now use the reuse data to generate a bunch of interesting ways
5580   // to formulate the values needed for the uses.
5581   GenerateAllReuseFormulae();
5582 
5583   FilterOutUndesirableDedicatedRegisters();
5584   NarrowSearchSpaceUsingHeuristics();
5585 
5586   SmallVector<const Formula *, 8> Solution;
5587   Solve(Solution);
5588 
5589   // Release memory that is no longer needed.
5590   Factors.clear();
5591   Types.clear();
5592   RegUses.clear();
5593 
5594   if (Solution.empty())
5595     return;
5596 
5597 #ifndef NDEBUG
5598   // Formulae should be legal.
5599   for (const LSRUse &LU : Uses) {
5600     for (const Formula &F : LU.Formulae)
5601       assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
5602                         F) && "Illegal formula generated!");
5603   };
5604 #endif
5605 
5606   // Now that we've decided what we want, make it so.
5607   ImplementSolution(Solution);
5608 }
5609 
5610 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
5611 void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
5612   if (Factors.empty() && Types.empty()) return;
5613 
5614   OS << "LSR has identified the following interesting factors and types: ";
5615   bool First = true;
5616 
5617   for (int64_t Factor : Factors) {
5618     if (!First) OS << ", ";
5619     First = false;
5620     OS << '*' << Factor;
5621   }
5622 
5623   for (Type *Ty : Types) {
5624     if (!First) OS << ", ";
5625     First = false;
5626     OS << '(' << *Ty << ')';
5627   }
5628   OS << '\n';
5629 }
5630 
5631 void LSRInstance::print_fixups(raw_ostream &OS) const {
5632   OS << "LSR is examining the following fixup sites:\n";
5633   for (const LSRUse &LU : Uses)
5634     for (const LSRFixup &LF : LU.Fixups) {
5635       dbgs() << "  ";
5636       LF.print(OS);
5637       OS << '\n';
5638     }
5639 }
5640 
5641 void LSRInstance::print_uses(raw_ostream &OS) const {
5642   OS << "LSR is examining the following uses:\n";
5643   for (const LSRUse &LU : Uses) {
5644     dbgs() << "  ";
5645     LU.print(OS);
5646     OS << '\n';
5647     for (const Formula &F : LU.Formulae) {
5648       OS << "    ";
5649       F.print(OS);
5650       OS << '\n';
5651     }
5652   }
5653 }
5654 
5655 void LSRInstance::print(raw_ostream &OS) const {
5656   print_factors_and_types(OS);
5657   print_fixups(OS);
5658   print_uses(OS);
5659 }
5660 
5661 LLVM_DUMP_METHOD void LSRInstance::dump() const {
5662   print(errs()); errs() << '\n';
5663 }
5664 #endif
5665 
5666 namespace {
5667 
5668 class LoopStrengthReduce : public LoopPass {
5669 public:
5670   static char ID; // Pass ID, replacement for typeid
5671 
5672   LoopStrengthReduce();
5673 
5674 private:
5675   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
5676   void getAnalysisUsage(AnalysisUsage &AU) const override;
5677 };
5678 
5679 } // end anonymous namespace
5680 
5681 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) {
5682   initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
5683 }
5684 
5685 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
5686   // We split critical edges, so we change the CFG.  However, we do update
5687   // many analyses if they are around.
5688   AU.addPreservedID(LoopSimplifyID);
5689 
5690   AU.addRequired<LoopInfoWrapperPass>();
5691   AU.addPreserved<LoopInfoWrapperPass>();
5692   AU.addRequiredID(LoopSimplifyID);
5693   AU.addRequired<DominatorTreeWrapperPass>();
5694   AU.addPreserved<DominatorTreeWrapperPass>();
5695   AU.addRequired<ScalarEvolutionWrapperPass>();
5696   AU.addPreserved<ScalarEvolutionWrapperPass>();
5697   AU.addRequired<AssumptionCacheTracker>();
5698   AU.addRequired<TargetLibraryInfoWrapperPass>();
5699   // Requiring LoopSimplify a second time here prevents IVUsers from running
5700   // twice, since LoopSimplify was invalidated by running ScalarEvolution.
5701   AU.addRequiredID(LoopSimplifyID);
5702   AU.addRequired<IVUsersWrapperPass>();
5703   AU.addPreserved<IVUsersWrapperPass>();
5704   AU.addRequired<TargetTransformInfoWrapperPass>();
5705 }
5706 
5707 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE,
5708                                DominatorTree &DT, LoopInfo &LI,
5709                                const TargetTransformInfo &TTI,
5710                                AssumptionCache &AC,
5711                                TargetLibraryInfo &LibInfo) {
5712 
5713   bool Changed = false;
5714 
5715   // Run the main LSR transformation.
5716   Changed |= LSRInstance(L, IU, SE, DT, LI, TTI, AC, LibInfo).getChanged();
5717 
5718   // Remove any extra phis created by processing inner loops.
5719   Changed |= DeleteDeadPHIs(L->getHeader());
5720   if (EnablePhiElim && L->isLoopSimplifyForm()) {
5721     SmallVector<WeakTrackingVH, 16> DeadInsts;
5722     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
5723     SCEVExpander Rewriter(SE, DL, "lsr");
5724 #ifndef NDEBUG
5725     Rewriter.setDebugType(DEBUG_TYPE);
5726 #endif
5727     unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI);
5728     if (numFolded) {
5729       Changed = true;
5730       DeleteTriviallyDeadInstructions(DeadInsts);
5731       DeleteDeadPHIs(L->getHeader());
5732     }
5733   }
5734   return Changed;
5735 }
5736 
5737 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
5738   if (skipLoop(L))
5739     return false;
5740 
5741   auto &IU = getAnalysis<IVUsersWrapperPass>().getIU();
5742   auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
5743   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
5744   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
5745   const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
5746       *L->getHeader()->getParent());
5747   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
5748       *L->getHeader()->getParent());
5749   auto &LibInfo = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
5750       *L->getHeader()->getParent());
5751   return ReduceLoopStrength(L, IU, SE, DT, LI, TTI, AC, LibInfo);
5752 }
5753 
5754 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM,
5755                                               LoopStandardAnalysisResults &AR,
5756                                               LPMUpdater &) {
5757   if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE,
5758                           AR.DT, AR.LI, AR.TTI, AR.AC, AR.TLI))
5759     return PreservedAnalyses::all();
5760 
5761   return getLoopPassPreservedAnalyses();
5762 }
5763 
5764 char LoopStrengthReduce::ID = 0;
5765 
5766 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",
5767                       "Loop Strength Reduction", false, false)
5768 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
5769 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
5770 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
5771 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass)
5772 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
5773 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
5774 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce",
5775                     "Loop Strength Reduction", false, false)
5776 
5777 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); }
5778