1 //===- LoopUnroll.cpp - Loop unroller pass --------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements a simple loop unroller.  It works best when loops have
10 // been canonicalized by the -indvars pass, allowing it to determine the trip
11 // counts of loops easily.
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/LoopUnrollPass.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DenseMapInfo.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/Analysis/AssumptionCache.h"
26 #include "llvm/Analysis/BlockFrequencyInfo.h"
27 #include "llvm/Analysis/CodeMetrics.h"
28 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
29 #include "llvm/Analysis/LoopAnalysisManager.h"
30 #include "llvm/Analysis/LoopInfo.h"
31 #include "llvm/Analysis/LoopPass.h"
32 #include "llvm/Analysis/LoopUnrollAnalyzer.h"
33 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
34 #include "llvm/Analysis/ProfileSummaryInfo.h"
35 #include "llvm/Analysis/ScalarEvolution.h"
36 #include "llvm/Analysis/TargetTransformInfo.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/CFG.h"
39 #include "llvm/IR/Constant.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DiagnosticInfo.h"
42 #include "llvm/IR/Dominators.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Metadata.h"
48 #include "llvm/IR/PassManager.h"
49 #include "llvm/InitializePasses.h"
50 #include "llvm/Pass.h"
51 #include "llvm/Support/Casting.h"
52 #include "llvm/Support/CommandLine.h"
53 #include "llvm/Support/Debug.h"
54 #include "llvm/Support/ErrorHandling.h"
55 #include "llvm/Support/raw_ostream.h"
56 #include "llvm/Transforms/Scalar.h"
57 #include "llvm/Transforms/Scalar/LoopPassManager.h"
58 #include "llvm/Transforms/Utils.h"
59 #include "llvm/Transforms/Utils/LoopPeel.h"
60 #include "llvm/Transforms/Utils/LoopSimplify.h"
61 #include "llvm/Transforms/Utils/LoopUtils.h"
62 #include "llvm/Transforms/Utils/SizeOpts.h"
63 #include "llvm/Transforms/Utils/UnrollLoop.h"
64 #include <algorithm>
65 #include <cassert>
66 #include <cstdint>
67 #include <limits>
68 #include <string>
69 #include <tuple>
70 #include <utility>
71 
72 using namespace llvm;
73 
74 #define DEBUG_TYPE "loop-unroll"
75 
76 cl::opt<bool> llvm::ForgetSCEVInLoopUnroll(
77     "forget-scev-loop-unroll", cl::init(false), cl::Hidden,
78     cl::desc("Forget everything in SCEV when doing LoopUnroll, instead of just"
79              " the current top-most loop. This is sometimes preferred to reduce"
80              " compile time."));
81 
82 static cl::opt<unsigned>
83     UnrollThreshold("unroll-threshold", cl::Hidden,
84                     cl::desc("The cost threshold for loop unrolling"));
85 
86 static cl::opt<unsigned>
87     UnrollOptSizeThreshold(
88       "unroll-optsize-threshold", cl::init(0), cl::Hidden,
89       cl::desc("The cost threshold for loop unrolling when optimizing for "
90                "size"));
91 
92 static cl::opt<unsigned> UnrollPartialThreshold(
93     "unroll-partial-threshold", cl::Hidden,
94     cl::desc("The cost threshold for partial loop unrolling"));
95 
96 static cl::opt<unsigned> UnrollMaxPercentThresholdBoost(
97     "unroll-max-percent-threshold-boost", cl::init(400), cl::Hidden,
98     cl::desc("The maximum 'boost' (represented as a percentage >= 100) applied "
99              "to the threshold when aggressively unrolling a loop due to the "
100              "dynamic cost savings. If completely unrolling a loop will reduce "
101              "the total runtime from X to Y, we boost the loop unroll "
102              "threshold to DefaultThreshold*std::min(MaxPercentThresholdBoost, "
103              "X/Y). This limit avoids excessive code bloat."));
104 
105 static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze(
106     "unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden,
107     cl::desc("Don't allow loop unrolling to simulate more than this number of"
108              "iterations when checking full unroll profitability"));
109 
110 static cl::opt<unsigned> UnrollCount(
111     "unroll-count", cl::Hidden,
112     cl::desc("Use this unroll count for all loops including those with "
113              "unroll_count pragma values, for testing purposes"));
114 
115 static cl::opt<unsigned> UnrollMaxCount(
116     "unroll-max-count", cl::Hidden,
117     cl::desc("Set the max unroll count for partial and runtime unrolling, for"
118              "testing purposes"));
119 
120 static cl::opt<unsigned> UnrollFullMaxCount(
121     "unroll-full-max-count", cl::Hidden,
122     cl::desc(
123         "Set the max unroll count for full unrolling, for testing purposes"));
124 
125 static cl::opt<bool>
126     UnrollAllowPartial("unroll-allow-partial", cl::Hidden,
127                        cl::desc("Allows loops to be partially unrolled until "
128                                 "-unroll-threshold loop size is reached."));
129 
130 static cl::opt<bool> UnrollAllowRemainder(
131     "unroll-allow-remainder", cl::Hidden,
132     cl::desc("Allow generation of a loop remainder (extra iterations) "
133              "when unrolling a loop."));
134 
135 static cl::opt<bool>
136     UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::Hidden,
137                   cl::desc("Unroll loops with run-time trip counts"));
138 
139 static cl::opt<unsigned> UnrollMaxUpperBound(
140     "unroll-max-upperbound", cl::init(8), cl::Hidden,
141     cl::desc(
142         "The max of trip count upper bound that is considered in unrolling"));
143 
144 static cl::opt<unsigned> PragmaUnrollThreshold(
145     "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden,
146     cl::desc("Unrolled size limit for loops with an unroll(full) or "
147              "unroll_count pragma."));
148 
149 static cl::opt<unsigned> FlatLoopTripCountThreshold(
150     "flat-loop-tripcount-threshold", cl::init(5), cl::Hidden,
151     cl::desc("If the runtime tripcount for the loop is lower than the "
152              "threshold, the loop is considered as flat and will be less "
153              "aggressively unrolled."));
154 
155 static cl::opt<bool> UnrollUnrollRemainder(
156   "unroll-remainder", cl::Hidden,
157   cl::desc("Allow the loop remainder to be unrolled."));
158 
159 // This option isn't ever intended to be enabled, it serves to allow
160 // experiments to check the assumptions about when this kind of revisit is
161 // necessary.
162 static cl::opt<bool> UnrollRevisitChildLoops(
163     "unroll-revisit-child-loops", cl::Hidden,
164     cl::desc("Enqueue and re-visit child loops in the loop PM after unrolling. "
165              "This shouldn't typically be needed as child loops (or their "
166              "clones) were already visited."));
167 
168 static cl::opt<unsigned> UnrollThresholdAggressive(
169     "unroll-threshold-aggressive", cl::init(300), cl::Hidden,
170     cl::desc("Threshold (max size of unrolled loop) to use in aggressive (O3) "
171              "optimizations"));
172 static cl::opt<unsigned>
173     UnrollThresholdDefault("unroll-threshold-default", cl::init(150),
174                            cl::Hidden,
175                            cl::desc("Default threshold (max size of unrolled "
176                                     "loop), used in all but O3 optimizations"));
177 
178 /// A magic value for use with the Threshold parameter to indicate
179 /// that the loop unroll should be performed regardless of how much
180 /// code expansion would result.
181 static const unsigned NoThreshold = std::numeric_limits<unsigned>::max();
182 
183 /// Gather the various unrolling parameters based on the defaults, compiler
184 /// flags, TTI overrides and user specified parameters.
185 TargetTransformInfo::UnrollingPreferences llvm::gatherUnrollingPreferences(
186     Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI,
187     BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, int OptLevel,
188     Optional<unsigned> UserThreshold, Optional<unsigned> UserCount,
189     Optional<bool> UserAllowPartial, Optional<bool> UserRuntime,
190     Optional<bool> UserUpperBound, Optional<unsigned> UserFullUnrollMaxCount) {
191   TargetTransformInfo::UnrollingPreferences UP;
192 
193   // Set up the defaults
194   UP.Threshold =
195       OptLevel > 2 ? UnrollThresholdAggressive : UnrollThresholdDefault;
196   UP.MaxPercentThresholdBoost = 400;
197   UP.OptSizeThreshold = UnrollOptSizeThreshold;
198   UP.PartialThreshold = 150;
199   UP.PartialOptSizeThreshold = UnrollOptSizeThreshold;
200   UP.Count = 0;
201   UP.DefaultUnrollRuntimeCount = 8;
202   UP.MaxCount = std::numeric_limits<unsigned>::max();
203   UP.FullUnrollMaxCount = std::numeric_limits<unsigned>::max();
204   UP.BEInsns = 2;
205   UP.Partial = false;
206   UP.Runtime = false;
207   UP.AllowRemainder = true;
208   UP.UnrollRemainder = false;
209   UP.AllowExpensiveTripCount = false;
210   UP.Force = false;
211   UP.UpperBound = false;
212   UP.UnrollAndJam = false;
213   UP.UnrollAndJamInnerLoopThreshold = 60;
214   UP.MaxIterationsCountToAnalyze = UnrollMaxIterationsCountToAnalyze;
215 
216   // Override with any target specific settings
217   TTI.getUnrollingPreferences(L, SE, UP);
218 
219   // Apply size attributes
220   bool OptForSize = L->getHeader()->getParent()->hasOptSize() ||
221                     // Let unroll hints / pragmas take precedence over PGSO.
222                     (hasUnrollTransformation(L) != TM_ForcedByUser &&
223                      llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
224                                                  PGSOQueryType::IRPass));
225   if (OptForSize) {
226     UP.Threshold = UP.OptSizeThreshold;
227     UP.PartialThreshold = UP.PartialOptSizeThreshold;
228     UP.MaxPercentThresholdBoost = 100;
229   }
230 
231   // Apply any user values specified by cl::opt
232   if (UnrollThreshold.getNumOccurrences() > 0)
233     UP.Threshold = UnrollThreshold;
234   if (UnrollPartialThreshold.getNumOccurrences() > 0)
235     UP.PartialThreshold = UnrollPartialThreshold;
236   if (UnrollMaxPercentThresholdBoost.getNumOccurrences() > 0)
237     UP.MaxPercentThresholdBoost = UnrollMaxPercentThresholdBoost;
238   if (UnrollMaxCount.getNumOccurrences() > 0)
239     UP.MaxCount = UnrollMaxCount;
240   if (UnrollFullMaxCount.getNumOccurrences() > 0)
241     UP.FullUnrollMaxCount = UnrollFullMaxCount;
242   if (UnrollAllowPartial.getNumOccurrences() > 0)
243     UP.Partial = UnrollAllowPartial;
244   if (UnrollAllowRemainder.getNumOccurrences() > 0)
245     UP.AllowRemainder = UnrollAllowRemainder;
246   if (UnrollRuntime.getNumOccurrences() > 0)
247     UP.Runtime = UnrollRuntime;
248   if (UnrollMaxUpperBound == 0)
249     UP.UpperBound = false;
250   if (UnrollUnrollRemainder.getNumOccurrences() > 0)
251     UP.UnrollRemainder = UnrollUnrollRemainder;
252   if (UnrollMaxIterationsCountToAnalyze.getNumOccurrences() > 0)
253     UP.MaxIterationsCountToAnalyze = UnrollMaxIterationsCountToAnalyze;
254 
255   // Apply user values provided by argument
256   if (UserThreshold.hasValue()) {
257     UP.Threshold = *UserThreshold;
258     UP.PartialThreshold = *UserThreshold;
259   }
260   if (UserCount.hasValue())
261     UP.Count = *UserCount;
262   if (UserAllowPartial.hasValue())
263     UP.Partial = *UserAllowPartial;
264   if (UserRuntime.hasValue())
265     UP.Runtime = *UserRuntime;
266   if (UserUpperBound.hasValue())
267     UP.UpperBound = *UserUpperBound;
268   if (UserFullUnrollMaxCount.hasValue())
269     UP.FullUnrollMaxCount = *UserFullUnrollMaxCount;
270 
271   return UP;
272 }
273 
274 namespace {
275 
276 /// A struct to densely store the state of an instruction after unrolling at
277 /// each iteration.
278 ///
279 /// This is designed to work like a tuple of <Instruction *, int> for the
280 /// purposes of hashing and lookup, but to be able to associate two boolean
281 /// states with each key.
282 struct UnrolledInstState {
283   Instruction *I;
284   int Iteration : 30;
285   unsigned IsFree : 1;
286   unsigned IsCounted : 1;
287 };
288 
289 /// Hashing and equality testing for a set of the instruction states.
290 struct UnrolledInstStateKeyInfo {
291   using PtrInfo = DenseMapInfo<Instruction *>;
292   using PairInfo = DenseMapInfo<std::pair<Instruction *, int>>;
293 
294   static inline UnrolledInstState getEmptyKey() {
295     return {PtrInfo::getEmptyKey(), 0, 0, 0};
296   }
297 
298   static inline UnrolledInstState getTombstoneKey() {
299     return {PtrInfo::getTombstoneKey(), 0, 0, 0};
300   }
301 
302   static inline unsigned getHashValue(const UnrolledInstState &S) {
303     return PairInfo::getHashValue({S.I, S.Iteration});
304   }
305 
306   static inline bool isEqual(const UnrolledInstState &LHS,
307                              const UnrolledInstState &RHS) {
308     return PairInfo::isEqual({LHS.I, LHS.Iteration}, {RHS.I, RHS.Iteration});
309   }
310 };
311 
312 struct EstimatedUnrollCost {
313   /// The estimated cost after unrolling.
314   unsigned UnrolledCost;
315 
316   /// The estimated dynamic cost of executing the instructions in the
317   /// rolled form.
318   unsigned RolledDynamicCost;
319 };
320 
321 } // end anonymous namespace
322 
323 /// Figure out if the loop is worth full unrolling.
324 ///
325 /// Complete loop unrolling can make some loads constant, and we need to know
326 /// if that would expose any further optimization opportunities.  This routine
327 /// estimates this optimization.  It computes cost of unrolled loop
328 /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By
329 /// dynamic cost we mean that we won't count costs of blocks that are known not
330 /// to be executed (i.e. if we have a branch in the loop and we know that at the
331 /// given iteration its condition would be resolved to true, we won't add up the
332 /// cost of the 'false'-block).
333 /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If
334 /// the analysis failed (no benefits expected from the unrolling, or the loop is
335 /// too big to analyze), the returned value is None.
336 static Optional<EstimatedUnrollCost> analyzeLoopUnrollCost(
337     const Loop *L, unsigned TripCount, DominatorTree &DT, ScalarEvolution &SE,
338     const SmallPtrSetImpl<const Value *> &EphValues,
339     const TargetTransformInfo &TTI, unsigned MaxUnrolledLoopSize,
340     unsigned MaxIterationsCountToAnalyze) {
341   // We want to be able to scale offsets by the trip count and add more offsets
342   // to them without checking for overflows, and we already don't want to
343   // analyze *massive* trip counts, so we force the max to be reasonably small.
344   assert(MaxIterationsCountToAnalyze <
345              (unsigned)(std::numeric_limits<int>::max() / 2) &&
346          "The unroll iterations max is too large!");
347 
348   // Only analyze inner loops. We can't properly estimate cost of nested loops
349   // and we won't visit inner loops again anyway.
350   if (!L->isInnermost())
351     return None;
352 
353   // Don't simulate loops with a big or unknown tripcount
354   if (!TripCount || TripCount > MaxIterationsCountToAnalyze)
355     return None;
356 
357   SmallSetVector<BasicBlock *, 16> BBWorklist;
358   SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist;
359   DenseMap<Value *, Constant *> SimplifiedValues;
360   SmallVector<std::pair<Value *, Constant *>, 4> SimplifiedInputValues;
361 
362   // The estimated cost of the unrolled form of the loop. We try to estimate
363   // this by simplifying as much as we can while computing the estimate.
364   unsigned UnrolledCost = 0;
365 
366   // We also track the estimated dynamic (that is, actually executed) cost in
367   // the rolled form. This helps identify cases when the savings from unrolling
368   // aren't just exposing dead control flows, but actual reduced dynamic
369   // instructions due to the simplifications which we expect to occur after
370   // unrolling.
371   unsigned RolledDynamicCost = 0;
372 
373   // We track the simplification of each instruction in each iteration. We use
374   // this to recursively merge costs into the unrolled cost on-demand so that
375   // we don't count the cost of any dead code. This is essentially a map from
376   // <instruction, int> to <bool, bool>, but stored as a densely packed struct.
377   DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap;
378 
379   // A small worklist used to accumulate cost of instructions from each
380   // observable and reached root in the loop.
381   SmallVector<Instruction *, 16> CostWorklist;
382 
383   // PHI-used worklist used between iterations while accumulating cost.
384   SmallVector<Instruction *, 4> PHIUsedList;
385 
386   // Helper function to accumulate cost for instructions in the loop.
387   auto AddCostRecursively = [&](Instruction &RootI, int Iteration) {
388     assert(Iteration >= 0 && "Cannot have a negative iteration!");
389     assert(CostWorklist.empty() && "Must start with an empty cost list");
390     assert(PHIUsedList.empty() && "Must start with an empty phi used list");
391     CostWorklist.push_back(&RootI);
392     TargetTransformInfo::TargetCostKind CostKind =
393       RootI.getFunction()->hasMinSize() ?
394       TargetTransformInfo::TCK_CodeSize :
395       TargetTransformInfo::TCK_SizeAndLatency;
396     for (;; --Iteration) {
397       do {
398         Instruction *I = CostWorklist.pop_back_val();
399 
400         // InstCostMap only uses I and Iteration as a key, the other two values
401         // don't matter here.
402         auto CostIter = InstCostMap.find({I, Iteration, 0, 0});
403         if (CostIter == InstCostMap.end())
404           // If an input to a PHI node comes from a dead path through the loop
405           // we may have no cost data for it here. What that actually means is
406           // that it is free.
407           continue;
408         auto &Cost = *CostIter;
409         if (Cost.IsCounted)
410           // Already counted this instruction.
411           continue;
412 
413         // Mark that we are counting the cost of this instruction now.
414         Cost.IsCounted = true;
415 
416         // If this is a PHI node in the loop header, just add it to the PHI set.
417         if (auto *PhiI = dyn_cast<PHINode>(I))
418           if (PhiI->getParent() == L->getHeader()) {
419             assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they "
420                                   "inherently simplify during unrolling.");
421             if (Iteration == 0)
422               continue;
423 
424             // Push the incoming value from the backedge into the PHI used list
425             // if it is an in-loop instruction. We'll use this to populate the
426             // cost worklist for the next iteration (as we count backwards).
427             if (auto *OpI = dyn_cast<Instruction>(
428                     PhiI->getIncomingValueForBlock(L->getLoopLatch())))
429               if (L->contains(OpI))
430                 PHIUsedList.push_back(OpI);
431             continue;
432           }
433 
434         // First accumulate the cost of this instruction.
435         if (!Cost.IsFree) {
436           UnrolledCost += TTI.getUserCost(I, CostKind);
437           LLVM_DEBUG(dbgs() << "Adding cost of instruction (iteration "
438                             << Iteration << "): ");
439           LLVM_DEBUG(I->dump());
440         }
441 
442         // We must count the cost of every operand which is not free,
443         // recursively. If we reach a loop PHI node, simply add it to the set
444         // to be considered on the next iteration (backwards!).
445         for (Value *Op : I->operands()) {
446           // Check whether this operand is free due to being a constant or
447           // outside the loop.
448           auto *OpI = dyn_cast<Instruction>(Op);
449           if (!OpI || !L->contains(OpI))
450             continue;
451 
452           // Otherwise accumulate its cost.
453           CostWorklist.push_back(OpI);
454         }
455       } while (!CostWorklist.empty());
456 
457       if (PHIUsedList.empty())
458         // We've exhausted the search.
459         break;
460 
461       assert(Iteration > 0 &&
462              "Cannot track PHI-used values past the first iteration!");
463       CostWorklist.append(PHIUsedList.begin(), PHIUsedList.end());
464       PHIUsedList.clear();
465     }
466   };
467 
468   // Ensure that we don't violate the loop structure invariants relied on by
469   // this analysis.
470   assert(L->isLoopSimplifyForm() && "Must put loop into normal form first.");
471   assert(L->isLCSSAForm(DT) &&
472          "Must have loops in LCSSA form to track live-out values.");
473 
474   LLVM_DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n");
475 
476   TargetTransformInfo::TargetCostKind CostKind =
477     L->getHeader()->getParent()->hasMinSize() ?
478     TargetTransformInfo::TCK_CodeSize : TargetTransformInfo::TCK_SizeAndLatency;
479   // Simulate execution of each iteration of the loop counting instructions,
480   // which would be simplified.
481   // Since the same load will take different values on different iterations,
482   // we literally have to go through all loop's iterations.
483   for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) {
484     LLVM_DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n");
485 
486     // Prepare for the iteration by collecting any simplified entry or backedge
487     // inputs.
488     for (Instruction &I : *L->getHeader()) {
489       auto *PHI = dyn_cast<PHINode>(&I);
490       if (!PHI)
491         break;
492 
493       // The loop header PHI nodes must have exactly two input: one from the
494       // loop preheader and one from the loop latch.
495       assert(
496           PHI->getNumIncomingValues() == 2 &&
497           "Must have an incoming value only for the preheader and the latch.");
498 
499       Value *V = PHI->getIncomingValueForBlock(
500           Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch());
501       Constant *C = dyn_cast<Constant>(V);
502       if (Iteration != 0 && !C)
503         C = SimplifiedValues.lookup(V);
504       if (C)
505         SimplifiedInputValues.push_back({PHI, C});
506     }
507 
508     // Now clear and re-populate the map for the next iteration.
509     SimplifiedValues.clear();
510     while (!SimplifiedInputValues.empty())
511       SimplifiedValues.insert(SimplifiedInputValues.pop_back_val());
512 
513     UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L);
514 
515     BBWorklist.clear();
516     BBWorklist.insert(L->getHeader());
517     // Note that we *must not* cache the size, this loop grows the worklist.
518     for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
519       BasicBlock *BB = BBWorklist[Idx];
520 
521       // Visit all instructions in the given basic block and try to simplify
522       // it.  We don't change the actual IR, just count optimization
523       // opportunities.
524       for (Instruction &I : *BB) {
525         // These won't get into the final code - don't even try calculating the
526         // cost for them.
527         if (isa<DbgInfoIntrinsic>(I) || EphValues.count(&I))
528           continue;
529 
530         // Track this instruction's expected baseline cost when executing the
531         // rolled loop form.
532         RolledDynamicCost += TTI.getUserCost(&I, CostKind);
533 
534         // Visit the instruction to analyze its loop cost after unrolling,
535         // and if the visitor returns true, mark the instruction as free after
536         // unrolling and continue.
537         bool IsFree = Analyzer.visit(I);
538         bool Inserted = InstCostMap.insert({&I, (int)Iteration,
539                                            (unsigned)IsFree,
540                                            /*IsCounted*/ false}).second;
541         (void)Inserted;
542         assert(Inserted && "Cannot have a state for an unvisited instruction!");
543 
544         if (IsFree)
545           continue;
546 
547         // Can't properly model a cost of a call.
548         // FIXME: With a proper cost model we should be able to do it.
549         if (auto *CI = dyn_cast<CallInst>(&I)) {
550           const Function *Callee = CI->getCalledFunction();
551           if (!Callee || TTI.isLoweredToCall(Callee)) {
552             LLVM_DEBUG(dbgs() << "Can't analyze cost of loop with call\n");
553             return None;
554           }
555         }
556 
557         // If the instruction might have a side-effect recursively account for
558         // the cost of it and all the instructions leading up to it.
559         if (I.mayHaveSideEffects())
560           AddCostRecursively(I, Iteration);
561 
562         // If unrolled body turns out to be too big, bail out.
563         if (UnrolledCost > MaxUnrolledLoopSize) {
564           LLVM_DEBUG(dbgs() << "  Exceeded threshold.. exiting.\n"
565                             << "  UnrolledCost: " << UnrolledCost
566                             << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize
567                             << "\n");
568           return None;
569         }
570       }
571 
572       Instruction *TI = BB->getTerminator();
573 
574       // Add in the live successors by first checking whether we have terminator
575       // that may be simplified based on the values simplified by this call.
576       BasicBlock *KnownSucc = nullptr;
577       if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
578         if (BI->isConditional()) {
579           if (Constant *SimpleCond =
580                   SimplifiedValues.lookup(BI->getCondition())) {
581             // Just take the first successor if condition is undef
582             if (isa<UndefValue>(SimpleCond))
583               KnownSucc = BI->getSuccessor(0);
584             else if (ConstantInt *SimpleCondVal =
585                          dyn_cast<ConstantInt>(SimpleCond))
586               KnownSucc = BI->getSuccessor(SimpleCondVal->isZero() ? 1 : 0);
587           }
588         }
589       } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
590         if (Constant *SimpleCond =
591                 SimplifiedValues.lookup(SI->getCondition())) {
592           // Just take the first successor if condition is undef
593           if (isa<UndefValue>(SimpleCond))
594             KnownSucc = SI->getSuccessor(0);
595           else if (ConstantInt *SimpleCondVal =
596                        dyn_cast<ConstantInt>(SimpleCond))
597             KnownSucc = SI->findCaseValue(SimpleCondVal)->getCaseSuccessor();
598         }
599       }
600       if (KnownSucc) {
601         if (L->contains(KnownSucc))
602           BBWorklist.insert(KnownSucc);
603         else
604           ExitWorklist.insert({BB, KnownSucc});
605         continue;
606       }
607 
608       // Add BB's successors to the worklist.
609       for (BasicBlock *Succ : successors(BB))
610         if (L->contains(Succ))
611           BBWorklist.insert(Succ);
612         else
613           ExitWorklist.insert({BB, Succ});
614       AddCostRecursively(*TI, Iteration);
615     }
616 
617     // If we found no optimization opportunities on the first iteration, we
618     // won't find them on later ones too.
619     if (UnrolledCost == RolledDynamicCost) {
620       LLVM_DEBUG(dbgs() << "  No opportunities found.. exiting.\n"
621                         << "  UnrolledCost: " << UnrolledCost << "\n");
622       return None;
623     }
624   }
625 
626   while (!ExitWorklist.empty()) {
627     BasicBlock *ExitingBB, *ExitBB;
628     std::tie(ExitingBB, ExitBB) = ExitWorklist.pop_back_val();
629 
630     for (Instruction &I : *ExitBB) {
631       auto *PN = dyn_cast<PHINode>(&I);
632       if (!PN)
633         break;
634 
635       Value *Op = PN->getIncomingValueForBlock(ExitingBB);
636       if (auto *OpI = dyn_cast<Instruction>(Op))
637         if (L->contains(OpI))
638           AddCostRecursively(*OpI, TripCount - 1);
639     }
640   }
641 
642   LLVM_DEBUG(dbgs() << "Analysis finished:\n"
643                     << "UnrolledCost: " << UnrolledCost << ", "
644                     << "RolledDynamicCost: " << RolledDynamicCost << "\n");
645   return {{UnrolledCost, RolledDynamicCost}};
646 }
647 
648 /// ApproximateLoopSize - Approximate the size of the loop.
649 unsigned llvm::ApproximateLoopSize(
650     const Loop *L, unsigned &NumCalls, bool &NotDuplicatable, bool &Convergent,
651     const TargetTransformInfo &TTI,
652     const SmallPtrSetImpl<const Value *> &EphValues, unsigned BEInsns) {
653   CodeMetrics Metrics;
654   for (BasicBlock *BB : L->blocks())
655     Metrics.analyzeBasicBlock(BB, TTI, EphValues);
656   NumCalls = Metrics.NumInlineCandidates;
657   NotDuplicatable = Metrics.notDuplicatable;
658   Convergent = Metrics.convergent;
659 
660   unsigned LoopSize = Metrics.NumInsts;
661 
662   // Don't allow an estimate of size zero.  This would allows unrolling of loops
663   // with huge iteration counts, which is a compile time problem even if it's
664   // not a problem for code quality. Also, the code using this size may assume
665   // that each loop has at least three instructions (likely a conditional
666   // branch, a comparison feeding that branch, and some kind of loop increment
667   // feeding that comparison instruction).
668   LoopSize = std::max(LoopSize, BEInsns + 1);
669 
670   return LoopSize;
671 }
672 
673 // Returns the loop hint metadata node with the given name (for example,
674 // "llvm.loop.unroll.count").  If no such metadata node exists, then nullptr is
675 // returned.
676 static MDNode *getUnrollMetadataForLoop(const Loop *L, StringRef Name) {
677   if (MDNode *LoopID = L->getLoopID())
678     return GetUnrollMetadata(LoopID, Name);
679   return nullptr;
680 }
681 
682 // Returns true if the loop has an unroll(full) pragma.
683 static bool hasUnrollFullPragma(const Loop *L) {
684   return getUnrollMetadataForLoop(L, "llvm.loop.unroll.full");
685 }
686 
687 // Returns true if the loop has an unroll(enable) pragma. This metadata is used
688 // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives.
689 static bool hasUnrollEnablePragma(const Loop *L) {
690   return getUnrollMetadataForLoop(L, "llvm.loop.unroll.enable");
691 }
692 
693 // Returns true if the loop has an runtime unroll(disable) pragma.
694 static bool hasRuntimeUnrollDisablePragma(const Loop *L) {
695   return getUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable");
696 }
697 
698 // If loop has an unroll_count pragma return the (necessarily
699 // positive) value from the pragma.  Otherwise return 0.
700 static unsigned unrollCountPragmaValue(const Loop *L) {
701   MDNode *MD = getUnrollMetadataForLoop(L, "llvm.loop.unroll.count");
702   if (MD) {
703     assert(MD->getNumOperands() == 2 &&
704            "Unroll count hint metadata should have two operands.");
705     unsigned Count =
706         mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
707     assert(Count >= 1 && "Unroll count must be positive.");
708     return Count;
709   }
710   return 0;
711 }
712 
713 // Computes the boosting factor for complete unrolling.
714 // If fully unrolling the loop would save a lot of RolledDynamicCost, it would
715 // be beneficial to fully unroll the loop even if unrolledcost is large. We
716 // use (RolledDynamicCost / UnrolledCost) to model the unroll benefits to adjust
717 // the unroll threshold.
718 static unsigned getFullUnrollBoostingFactor(const EstimatedUnrollCost &Cost,
719                                             unsigned MaxPercentThresholdBoost) {
720   if (Cost.RolledDynamicCost >= std::numeric_limits<unsigned>::max() / 100)
721     return 100;
722   else if (Cost.UnrolledCost != 0)
723     // The boosting factor is RolledDynamicCost / UnrolledCost
724     return std::min(100 * Cost.RolledDynamicCost / Cost.UnrolledCost,
725                     MaxPercentThresholdBoost);
726   else
727     return MaxPercentThresholdBoost;
728 }
729 
730 // Returns loop size estimation for unrolled loop.
731 static uint64_t getUnrolledLoopSize(
732     unsigned LoopSize,
733     TargetTransformInfo::UnrollingPreferences &UP) {
734   assert(LoopSize >= UP.BEInsns && "LoopSize should not be less than BEInsns!");
735   return (uint64_t)(LoopSize - UP.BEInsns) * UP.Count + UP.BEInsns;
736 }
737 
738 // Returns true if unroll count was set explicitly.
739 // Calculates unroll count and writes it to UP.Count.
740 // Unless IgnoreUser is true, will also use metadata and command-line options
741 // that are specific to to the LoopUnroll pass (which, for instance, are
742 // irrelevant for the LoopUnrollAndJam pass).
743 // FIXME: This function is used by LoopUnroll and LoopUnrollAndJam, but consumes
744 // many LoopUnroll-specific options. The shared functionality should be
745 // refactored into it own function.
746 bool llvm::computeUnrollCount(
747     Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, LoopInfo *LI,
748     ScalarEvolution &SE, const SmallPtrSetImpl<const Value *> &EphValues,
749     OptimizationRemarkEmitter *ORE, unsigned &TripCount, unsigned MaxTripCount,
750     bool MaxOrZero, unsigned &TripMultiple, unsigned LoopSize,
751     TargetTransformInfo::UnrollingPreferences &UP,
752     TargetTransformInfo::PeelingPreferences &PP, bool &UseUpperBound) {
753 
754   // Check for explicit Count.
755   // 1st priority is unroll count set by "unroll-count" option.
756   bool UserUnrollCount = UnrollCount.getNumOccurrences() > 0;
757   if (UserUnrollCount) {
758     UP.Count = UnrollCount;
759     UP.AllowExpensiveTripCount = true;
760     UP.Force = true;
761     if (UP.AllowRemainder && getUnrolledLoopSize(LoopSize, UP) < UP.Threshold)
762       return true;
763   }
764 
765   // 2nd priority is unroll count set by pragma.
766   unsigned PragmaCount = unrollCountPragmaValue(L);
767   if (PragmaCount > 0) {
768     UP.Count = PragmaCount;
769     UP.Runtime = true;
770     UP.AllowExpensiveTripCount = true;
771     UP.Force = true;
772     if ((UP.AllowRemainder || (TripMultiple % PragmaCount == 0)) &&
773         getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold)
774       return true;
775   }
776   bool PragmaFullUnroll = hasUnrollFullPragma(L);
777   if (PragmaFullUnroll && TripCount != 0) {
778     UP.Count = TripCount;
779     if (getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold)
780       return false;
781   }
782 
783   bool PragmaEnableUnroll = hasUnrollEnablePragma(L);
784   bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll ||
785                         PragmaEnableUnroll || UserUnrollCount;
786 
787   if (ExplicitUnroll && TripCount != 0) {
788     // If the loop has an unrolling pragma, we want to be more aggressive with
789     // unrolling limits. Set thresholds to at least the PragmaUnrollThreshold
790     // value which is larger than the default limits.
791     UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold);
792     UP.PartialThreshold =
793         std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold);
794   }
795 
796   // 3rd priority is full unroll count.
797   // Full unroll makes sense only when TripCount or its upper bound could be
798   // statically calculated.
799   // Also we need to check if we exceed FullUnrollMaxCount.
800   // If using the upper bound to unroll, TripMultiple should be set to 1 because
801   // we do not know when loop may exit.
802 
803   // We can unroll by the upper bound amount if it's generally allowed or if
804   // we know that the loop is executed either the upper bound or zero times.
805   // (MaxOrZero unrolling keeps only the first loop test, so the number of
806   // loop tests remains the same compared to the non-unrolled version, whereas
807   // the generic upper bound unrolling keeps all but the last loop test so the
808   // number of loop tests goes up which may end up being worse on targets with
809   // constrained branch predictor resources so is controlled by an option.)
810   // In addition we only unroll small upper bounds.
811   unsigned FullUnrollMaxTripCount = MaxTripCount;
812   if (!(UP.UpperBound || MaxOrZero) ||
813       FullUnrollMaxTripCount > UnrollMaxUpperBound)
814     FullUnrollMaxTripCount = 0;
815 
816   // UnrollByMaxCount and ExactTripCount cannot both be non zero since we only
817   // compute the former when the latter is zero.
818   unsigned ExactTripCount = TripCount;
819   assert((ExactTripCount == 0 || FullUnrollMaxTripCount == 0) &&
820          "ExtractTripCount and UnrollByMaxCount cannot both be non zero.");
821 
822   unsigned FullUnrollTripCount =
823       ExactTripCount ? ExactTripCount : FullUnrollMaxTripCount;
824   UP.Count = FullUnrollTripCount;
825   if (FullUnrollTripCount && FullUnrollTripCount <= UP.FullUnrollMaxCount) {
826     // When computing the unrolled size, note that BEInsns are not replicated
827     // like the rest of the loop body.
828     if (getUnrolledLoopSize(LoopSize, UP) < UP.Threshold) {
829       UseUpperBound = (FullUnrollMaxTripCount == FullUnrollTripCount);
830       TripCount = FullUnrollTripCount;
831       TripMultiple = UP.UpperBound ? 1 : TripMultiple;
832       return ExplicitUnroll;
833     } else {
834       // The loop isn't that small, but we still can fully unroll it if that
835       // helps to remove a significant number of instructions.
836       // To check that, run additional analysis on the loop.
837       if (Optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost(
838               L, FullUnrollTripCount, DT, SE, EphValues, TTI,
839               UP.Threshold * UP.MaxPercentThresholdBoost / 100,
840               UP.MaxIterationsCountToAnalyze)) {
841         unsigned Boost =
842             getFullUnrollBoostingFactor(*Cost, UP.MaxPercentThresholdBoost);
843         if (Cost->UnrolledCost < UP.Threshold * Boost / 100) {
844           UseUpperBound = (FullUnrollMaxTripCount == FullUnrollTripCount);
845           TripCount = FullUnrollTripCount;
846           TripMultiple = UP.UpperBound ? 1 : TripMultiple;
847           return ExplicitUnroll;
848         }
849       }
850     }
851   }
852 
853   // 4th priority is loop peeling.
854   computePeelCount(L, LoopSize, PP, TripCount, SE, UP.Threshold);
855   if (PP.PeelCount) {
856     UP.Runtime = false;
857     UP.Count = 1;
858     return ExplicitUnroll;
859   }
860 
861   // 5th priority is partial unrolling.
862   // Try partial unroll only when TripCount could be statically calculated.
863   if (TripCount) {
864     UP.Partial |= ExplicitUnroll;
865     if (!UP.Partial) {
866       LLVM_DEBUG(dbgs() << "  will not try to unroll partially because "
867                         << "-unroll-allow-partial not given\n");
868       UP.Count = 0;
869       return false;
870     }
871     if (UP.Count == 0)
872       UP.Count = TripCount;
873     if (UP.PartialThreshold != NoThreshold) {
874       // Reduce unroll count to be modulo of TripCount for partial unrolling.
875       if (getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold)
876         UP.Count =
877             (std::max(UP.PartialThreshold, UP.BEInsns + 1) - UP.BEInsns) /
878             (LoopSize - UP.BEInsns);
879       if (UP.Count > UP.MaxCount)
880         UP.Count = UP.MaxCount;
881       while (UP.Count != 0 && TripCount % UP.Count != 0)
882         UP.Count--;
883       if (UP.AllowRemainder && UP.Count <= 1) {
884         // If there is no Count that is modulo of TripCount, set Count to
885         // largest power-of-two factor that satisfies the threshold limit.
886         // As we'll create fixup loop, do the type of unrolling only if
887         // remainder loop is allowed.
888         UP.Count = UP.DefaultUnrollRuntimeCount;
889         while (UP.Count != 0 &&
890                getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold)
891           UP.Count >>= 1;
892       }
893       if (UP.Count < 2) {
894         if (PragmaEnableUnroll)
895           ORE->emit([&]() {
896             return OptimizationRemarkMissed(DEBUG_TYPE,
897                                             "UnrollAsDirectedTooLarge",
898                                             L->getStartLoc(), L->getHeader())
899                    << "Unable to unroll loop as directed by unroll(enable) "
900                       "pragma "
901                       "because unrolled size is too large.";
902           });
903         UP.Count = 0;
904       }
905     } else {
906       UP.Count = TripCount;
907     }
908     if (UP.Count > UP.MaxCount)
909       UP.Count = UP.MaxCount;
910     if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount &&
911         UP.Count != TripCount)
912       ORE->emit([&]() {
913         return OptimizationRemarkMissed(DEBUG_TYPE,
914                                         "FullUnrollAsDirectedTooLarge",
915                                         L->getStartLoc(), L->getHeader())
916                << "Unable to fully unroll loop as directed by unroll pragma "
917                   "because "
918                   "unrolled size is too large.";
919       });
920     LLVM_DEBUG(dbgs() << "  partially unrolling with count: " << UP.Count
921                       << "\n");
922     return ExplicitUnroll;
923   }
924   assert(TripCount == 0 &&
925          "All cases when TripCount is constant should be covered here.");
926   if (PragmaFullUnroll)
927     ORE->emit([&]() {
928       return OptimizationRemarkMissed(
929                  DEBUG_TYPE, "CantFullUnrollAsDirectedRuntimeTripCount",
930                  L->getStartLoc(), L->getHeader())
931              << "Unable to fully unroll loop as directed by unroll(full) "
932                 "pragma "
933                 "because loop has a runtime trip count.";
934     });
935 
936   // 6th priority is runtime unrolling.
937   // Don't unroll a runtime trip count loop when it is disabled.
938   if (hasRuntimeUnrollDisablePragma(L)) {
939     UP.Count = 0;
940     return false;
941   }
942 
943   // Don't unroll a small upper bound loop unless user or TTI asked to do so.
944   if (MaxTripCount && !UP.Force && MaxTripCount < UnrollMaxUpperBound) {
945     UP.Count = 0;
946     return false;
947   }
948 
949   // Check if the runtime trip count is too small when profile is available.
950   if (L->getHeader()->getParent()->hasProfileData()) {
951     if (auto ProfileTripCount = getLoopEstimatedTripCount(L)) {
952       if (*ProfileTripCount < FlatLoopTripCountThreshold)
953         return false;
954       else
955         UP.AllowExpensiveTripCount = true;
956     }
957   }
958 
959   // Reduce count based on the type of unrolling and the threshold values.
960   UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount;
961   if (!UP.Runtime) {
962     LLVM_DEBUG(
963         dbgs() << "  will not try to unroll loop with runtime trip count "
964                << "-unroll-runtime not given\n");
965     UP.Count = 0;
966     return false;
967   }
968   if (UP.Count == 0)
969     UP.Count = UP.DefaultUnrollRuntimeCount;
970 
971   // Reduce unroll count to be the largest power-of-two factor of
972   // the original count which satisfies the threshold limit.
973   while (UP.Count != 0 &&
974          getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold)
975     UP.Count >>= 1;
976 
977 #ifndef NDEBUG
978   unsigned OrigCount = UP.Count;
979 #endif
980 
981   if (!UP.AllowRemainder && UP.Count != 0 && (TripMultiple % UP.Count) != 0) {
982     while (UP.Count != 0 && TripMultiple % UP.Count != 0)
983       UP.Count >>= 1;
984     LLVM_DEBUG(
985         dbgs() << "Remainder loop is restricted (that could architecture "
986                   "specific or because the loop contains a convergent "
987                   "instruction), so unroll count must divide the trip "
988                   "multiple, "
989                << TripMultiple << ".  Reducing unroll count from " << OrigCount
990                << " to " << UP.Count << ".\n");
991 
992     using namespace ore;
993 
994     if (PragmaCount > 0 && !UP.AllowRemainder)
995       ORE->emit([&]() {
996         return OptimizationRemarkMissed(DEBUG_TYPE,
997                                         "DifferentUnrollCountFromDirected",
998                                         L->getStartLoc(), L->getHeader())
999                << "Unable to unroll loop the number of times directed by "
1000                   "unroll_count pragma because remainder loop is restricted "
1001                   "(that could architecture specific or because the loop "
1002                   "contains a convergent instruction) and so must have an "
1003                   "unroll "
1004                   "count that divides the loop trip multiple of "
1005                << NV("TripMultiple", TripMultiple) << ".  Unrolling instead "
1006                << NV("UnrollCount", UP.Count) << " time(s).";
1007       });
1008   }
1009 
1010   if (UP.Count > UP.MaxCount)
1011     UP.Count = UP.MaxCount;
1012 
1013   if (MaxTripCount && UP.Count > MaxTripCount)
1014     UP.Count = MaxTripCount;
1015 
1016   LLVM_DEBUG(dbgs() << "  runtime unrolling with count: " << UP.Count
1017                     << "\n");
1018   if (UP.Count < 2)
1019     UP.Count = 0;
1020   return ExplicitUnroll;
1021 }
1022 
1023 static LoopUnrollResult tryToUnrollLoop(
1024     Loop *L, DominatorTree &DT, LoopInfo *LI, ScalarEvolution &SE,
1025     const TargetTransformInfo &TTI, AssumptionCache &AC,
1026     OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI,
1027     ProfileSummaryInfo *PSI, bool PreserveLCSSA, int OptLevel,
1028     bool OnlyWhenForced, bool ForgetAllSCEV, Optional<unsigned> ProvidedCount,
1029     Optional<unsigned> ProvidedThreshold, Optional<bool> ProvidedAllowPartial,
1030     Optional<bool> ProvidedRuntime, Optional<bool> ProvidedUpperBound,
1031     Optional<bool> ProvidedAllowPeeling,
1032     Optional<bool> ProvidedAllowProfileBasedPeeling,
1033     Optional<unsigned> ProvidedFullUnrollMaxCount) {
1034   LLVM_DEBUG(dbgs() << "Loop Unroll: F["
1035                     << L->getHeader()->getParent()->getName() << "] Loop %"
1036                     << L->getHeader()->getName() << "\n");
1037   TransformationMode TM = hasUnrollTransformation(L);
1038   if (TM & TM_Disable)
1039     return LoopUnrollResult::Unmodified;
1040   if (!L->isLoopSimplifyForm()) {
1041     LLVM_DEBUG(
1042         dbgs() << "  Not unrolling loop which is not in loop-simplify form.\n");
1043     return LoopUnrollResult::Unmodified;
1044   }
1045 
1046   // When automatic unrolling is disabled, do not unroll unless overridden for
1047   // this loop.
1048   if (OnlyWhenForced && !(TM & TM_Enable))
1049     return LoopUnrollResult::Unmodified;
1050 
1051   bool OptForSize = L->getHeader()->getParent()->hasOptSize();
1052   unsigned NumInlineCandidates;
1053   bool NotDuplicatable;
1054   bool Convergent;
1055   TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences(
1056       L, SE, TTI, BFI, PSI, OptLevel, ProvidedThreshold, ProvidedCount,
1057       ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound,
1058       ProvidedFullUnrollMaxCount);
1059   TargetTransformInfo::PeelingPreferences PP = gatherPeelingPreferences(
1060       L, SE, TTI, ProvidedAllowPeeling, ProvidedAllowProfileBasedPeeling, true);
1061 
1062   // Exit early if unrolling is disabled. For OptForSize, we pick the loop size
1063   // as threshold later on.
1064   if (UP.Threshold == 0 && (!UP.Partial || UP.PartialThreshold == 0) &&
1065       !OptForSize)
1066     return LoopUnrollResult::Unmodified;
1067 
1068   SmallPtrSet<const Value *, 32> EphValues;
1069   CodeMetrics::collectEphemeralValues(L, &AC, EphValues);
1070 
1071   unsigned LoopSize =
1072       ApproximateLoopSize(L, NumInlineCandidates, NotDuplicatable, Convergent,
1073                           TTI, EphValues, UP.BEInsns);
1074   LLVM_DEBUG(dbgs() << "  Loop Size = " << LoopSize << "\n");
1075   if (NotDuplicatable) {
1076     LLVM_DEBUG(dbgs() << "  Not unrolling loop which contains non-duplicatable"
1077                       << " instructions.\n");
1078     return LoopUnrollResult::Unmodified;
1079   }
1080 
1081   // When optimizing for size, use LoopSize + 1 as threshold (we use < Threshold
1082   // later), to (fully) unroll loops, if it does not increase code size.
1083   if (OptForSize)
1084     UP.Threshold = std::max(UP.Threshold, LoopSize + 1);
1085 
1086   if (NumInlineCandidates != 0) {
1087     LLVM_DEBUG(dbgs() << "  Not unrolling loop with inlinable calls.\n");
1088     return LoopUnrollResult::Unmodified;
1089   }
1090 
1091   // Find trip count and trip multiple if count is not available
1092   unsigned TripCount = 0;
1093   unsigned TripMultiple = 1;
1094   // If there are multiple exiting blocks but one of them is the latch, use the
1095   // latch for the trip count estimation. Otherwise insist on a single exiting
1096   // block for the trip count estimation.
1097   BasicBlock *ExitingBlock = L->getLoopLatch();
1098   if (!ExitingBlock || !L->isLoopExiting(ExitingBlock))
1099     ExitingBlock = L->getExitingBlock();
1100   if (ExitingBlock) {
1101     TripCount = SE.getSmallConstantTripCount(L, ExitingBlock);
1102     TripMultiple = SE.getSmallConstantTripMultiple(L, ExitingBlock);
1103   }
1104 
1105   // If the loop contains a convergent operation, the prelude we'd add
1106   // to do the first few instructions before we hit the unrolled loop
1107   // is unsafe -- it adds a control-flow dependency to the convergent
1108   // operation.  Therefore restrict remainder loop (try unrolling without).
1109   //
1110   // TODO: This is quite conservative.  In practice, convergent_op()
1111   // is likely to be called unconditionally in the loop.  In this
1112   // case, the program would be ill-formed (on most architectures)
1113   // unless n were the same on all threads in a thread group.
1114   // Assuming n is the same on all threads, any kind of unrolling is
1115   // safe.  But currently llvm's notion of convergence isn't powerful
1116   // enough to express this.
1117   if (Convergent)
1118     UP.AllowRemainder = false;
1119 
1120   // Try to find the trip count upper bound if we cannot find the exact trip
1121   // count.
1122   unsigned MaxTripCount = 0;
1123   bool MaxOrZero = false;
1124   if (!TripCount) {
1125     MaxTripCount = SE.getSmallConstantMaxTripCount(L);
1126     MaxOrZero = SE.isBackedgeTakenCountMaxOrZero(L);
1127   }
1128 
1129   // computeUnrollCount() decides whether it is beneficial to use upper bound to
1130   // fully unroll the loop.
1131   bool UseUpperBound = false;
1132   bool IsCountSetExplicitly = computeUnrollCount(
1133       L, TTI, DT, LI, SE, EphValues, &ORE, TripCount, MaxTripCount, MaxOrZero,
1134       TripMultiple, LoopSize, UP, PP, UseUpperBound);
1135   if (!UP.Count)
1136     return LoopUnrollResult::Unmodified;
1137   // Unroll factor (Count) must be less or equal to TripCount.
1138   if (TripCount && UP.Count > TripCount)
1139     UP.Count = TripCount;
1140 
1141   // Save loop properties before it is transformed.
1142   MDNode *OrigLoopID = L->getLoopID();
1143 
1144   // Unroll the loop.
1145   Loop *RemainderLoop = nullptr;
1146   LoopUnrollResult UnrollResult = UnrollLoop(
1147       L,
1148       {UP.Count, TripCount, UP.Force, UP.Runtime, UP.AllowExpensiveTripCount,
1149        UseUpperBound, MaxOrZero, TripMultiple, PP.PeelCount, UP.UnrollRemainder,
1150        ForgetAllSCEV},
1151       LI, &SE, &DT, &AC, &TTI, &ORE, PreserveLCSSA, &RemainderLoop);
1152   if (UnrollResult == LoopUnrollResult::Unmodified)
1153     return LoopUnrollResult::Unmodified;
1154 
1155   if (RemainderLoop) {
1156     Optional<MDNode *> RemainderLoopID =
1157         makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll,
1158                                         LLVMLoopUnrollFollowupRemainder});
1159     if (RemainderLoopID.hasValue())
1160       RemainderLoop->setLoopID(RemainderLoopID.getValue());
1161   }
1162 
1163   if (UnrollResult != LoopUnrollResult::FullyUnrolled) {
1164     Optional<MDNode *> NewLoopID =
1165         makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll,
1166                                         LLVMLoopUnrollFollowupUnrolled});
1167     if (NewLoopID.hasValue()) {
1168       L->setLoopID(NewLoopID.getValue());
1169 
1170       // Do not setLoopAlreadyUnrolled if loop attributes have been specified
1171       // explicitly.
1172       return UnrollResult;
1173     }
1174   }
1175 
1176   // If loop has an unroll count pragma or unrolled by explicitly set count
1177   // mark loop as unrolled to prevent unrolling beyond that requested.
1178   // If the loop was peeled, we already "used up" the profile information
1179   // we had, so we don't want to unroll or peel again.
1180   if (UnrollResult != LoopUnrollResult::FullyUnrolled &&
1181       (IsCountSetExplicitly || (PP.PeelProfiledIterations && PP.PeelCount)))
1182     L->setLoopAlreadyUnrolled();
1183 
1184   return UnrollResult;
1185 }
1186 
1187 namespace {
1188 
1189 class LoopUnroll : public LoopPass {
1190 public:
1191   static char ID; // Pass ID, replacement for typeid
1192 
1193   int OptLevel;
1194 
1195   /// If false, use a cost model to determine whether unrolling of a loop is
1196   /// profitable. If true, only loops that explicitly request unrolling via
1197   /// metadata are considered. All other loops are skipped.
1198   bool OnlyWhenForced;
1199 
1200   /// If false, when SCEV is invalidated, only forget everything in the
1201   /// top-most loop (call forgetTopMostLoop), of the loop being processed.
1202   /// Otherwise, forgetAllLoops and rebuild when needed next.
1203   bool ForgetAllSCEV;
1204 
1205   Optional<unsigned> ProvidedCount;
1206   Optional<unsigned> ProvidedThreshold;
1207   Optional<bool> ProvidedAllowPartial;
1208   Optional<bool> ProvidedRuntime;
1209   Optional<bool> ProvidedUpperBound;
1210   Optional<bool> ProvidedAllowPeeling;
1211   Optional<bool> ProvidedAllowProfileBasedPeeling;
1212   Optional<unsigned> ProvidedFullUnrollMaxCount;
1213 
1214   LoopUnroll(int OptLevel = 2, bool OnlyWhenForced = false,
1215              bool ForgetAllSCEV = false, Optional<unsigned> Threshold = None,
1216              Optional<unsigned> Count = None,
1217              Optional<bool> AllowPartial = None, Optional<bool> Runtime = None,
1218              Optional<bool> UpperBound = None,
1219              Optional<bool> AllowPeeling = None,
1220              Optional<bool> AllowProfileBasedPeeling = None,
1221              Optional<unsigned> ProvidedFullUnrollMaxCount = None)
1222       : LoopPass(ID), OptLevel(OptLevel), OnlyWhenForced(OnlyWhenForced),
1223         ForgetAllSCEV(ForgetAllSCEV), ProvidedCount(std::move(Count)),
1224         ProvidedThreshold(Threshold), ProvidedAllowPartial(AllowPartial),
1225         ProvidedRuntime(Runtime), ProvidedUpperBound(UpperBound),
1226         ProvidedAllowPeeling(AllowPeeling),
1227         ProvidedAllowProfileBasedPeeling(AllowProfileBasedPeeling),
1228         ProvidedFullUnrollMaxCount(ProvidedFullUnrollMaxCount) {
1229     initializeLoopUnrollPass(*PassRegistry::getPassRegistry());
1230   }
1231 
1232   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
1233     if (skipLoop(L))
1234       return false;
1235 
1236     Function &F = *L->getHeader()->getParent();
1237 
1238     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1239     LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1240     ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1241     const TargetTransformInfo &TTI =
1242         getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1243     auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1244     // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
1245     // pass.  Function analyses need to be preserved across loop transformations
1246     // but ORE cannot be preserved (see comment before the pass definition).
1247     OptimizationRemarkEmitter ORE(&F);
1248     bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
1249 
1250     LoopUnrollResult Result = tryToUnrollLoop(
1251         L, DT, LI, SE, TTI, AC, ORE, nullptr, nullptr, PreserveLCSSA, OptLevel,
1252         OnlyWhenForced, ForgetAllSCEV, ProvidedCount, ProvidedThreshold,
1253         ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound,
1254         ProvidedAllowPeeling, ProvidedAllowProfileBasedPeeling,
1255         ProvidedFullUnrollMaxCount);
1256 
1257     if (Result == LoopUnrollResult::FullyUnrolled)
1258       LPM.markLoopAsDeleted(*L);
1259 
1260     return Result != LoopUnrollResult::Unmodified;
1261   }
1262 
1263   /// This transformation requires natural loop information & requires that
1264   /// loop preheaders be inserted into the CFG...
1265   void getAnalysisUsage(AnalysisUsage &AU) const override {
1266     AU.addRequired<AssumptionCacheTracker>();
1267     AU.addRequired<TargetTransformInfoWrapperPass>();
1268     // FIXME: Loop passes are required to preserve domtree, and for now we just
1269     // recreate dom info if anything gets unrolled.
1270     getLoopAnalysisUsage(AU);
1271   }
1272 };
1273 
1274 } // end anonymous namespace
1275 
1276 char LoopUnroll::ID = 0;
1277 
1278 INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
1279 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1280 INITIALIZE_PASS_DEPENDENCY(LoopPass)
1281 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1282 INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
1283 
1284 Pass *llvm::createLoopUnrollPass(int OptLevel, bool OnlyWhenForced,
1285                                  bool ForgetAllSCEV, int Threshold, int Count,
1286                                  int AllowPartial, int Runtime, int UpperBound,
1287                                  int AllowPeeling) {
1288   // TODO: It would make more sense for this function to take the optionals
1289   // directly, but that's dangerous since it would silently break out of tree
1290   // callers.
1291   return new LoopUnroll(
1292       OptLevel, OnlyWhenForced, ForgetAllSCEV,
1293       Threshold == -1 ? None : Optional<unsigned>(Threshold),
1294       Count == -1 ? None : Optional<unsigned>(Count),
1295       AllowPartial == -1 ? None : Optional<bool>(AllowPartial),
1296       Runtime == -1 ? None : Optional<bool>(Runtime),
1297       UpperBound == -1 ? None : Optional<bool>(UpperBound),
1298       AllowPeeling == -1 ? None : Optional<bool>(AllowPeeling));
1299 }
1300 
1301 Pass *llvm::createSimpleLoopUnrollPass(int OptLevel, bool OnlyWhenForced,
1302                                        bool ForgetAllSCEV) {
1303   return createLoopUnrollPass(OptLevel, OnlyWhenForced, ForgetAllSCEV, -1, -1,
1304                               0, 0, 0, 1);
1305 }
1306 
1307 PreservedAnalyses LoopFullUnrollPass::run(Loop &L, LoopAnalysisManager &AM,
1308                                           LoopStandardAnalysisResults &AR,
1309                                           LPMUpdater &Updater) {
1310   // For the new PM, we can't use OptimizationRemarkEmitter as an analysis
1311   // pass. Function analyses need to be preserved across loop transformations
1312   // but ORE cannot be preserved (see comment before the pass definition).
1313   OptimizationRemarkEmitter ORE(L.getHeader()->getParent());
1314 
1315   // Keep track of the previous loop structure so we can identify new loops
1316   // created by unrolling.
1317   Loop *ParentL = L.getParentLoop();
1318   SmallPtrSet<Loop *, 4> OldLoops;
1319   if (ParentL)
1320     OldLoops.insert(ParentL->begin(), ParentL->end());
1321   else
1322     OldLoops.insert(AR.LI.begin(), AR.LI.end());
1323 
1324   std::string LoopName = std::string(L.getName());
1325 
1326   bool Changed = tryToUnrollLoop(&L, AR.DT, &AR.LI, AR.SE, AR.TTI, AR.AC, ORE,
1327                                  /*BFI*/ nullptr, /*PSI*/ nullptr,
1328                                  /*PreserveLCSSA*/ true, OptLevel,
1329                                  OnlyWhenForced, ForgetSCEV, /*Count*/ None,
1330                                  /*Threshold*/ None, /*AllowPartial*/ false,
1331                                  /*Runtime*/ false, /*UpperBound*/ false,
1332                                  /*AllowPeeling*/ true,
1333                                  /*AllowProfileBasedPeeling*/ false,
1334                                  /*FullUnrollMaxCount*/ None) !=
1335                  LoopUnrollResult::Unmodified;
1336   if (!Changed)
1337     return PreservedAnalyses::all();
1338 
1339   // The parent must not be damaged by unrolling!
1340 #ifndef NDEBUG
1341   if (ParentL)
1342     ParentL->verifyLoop();
1343 #endif
1344 
1345   // Unrolling can do several things to introduce new loops into a loop nest:
1346   // - Full unrolling clones child loops within the current loop but then
1347   //   removes the current loop making all of the children appear to be new
1348   //   sibling loops.
1349   //
1350   // When a new loop appears as a sibling loop after fully unrolling,
1351   // its nesting structure has fundamentally changed and we want to revisit
1352   // it to reflect that.
1353   //
1354   // When unrolling has removed the current loop, we need to tell the
1355   // infrastructure that it is gone.
1356   //
1357   // Finally, we support a debugging/testing mode where we revisit child loops
1358   // as well. These are not expected to require further optimizations as either
1359   // they or the loop they were cloned from have been directly visited already.
1360   // But the debugging mode allows us to check this assumption.
1361   bool IsCurrentLoopValid = false;
1362   SmallVector<Loop *, 4> SibLoops;
1363   if (ParentL)
1364     SibLoops.append(ParentL->begin(), ParentL->end());
1365   else
1366     SibLoops.append(AR.LI.begin(), AR.LI.end());
1367   erase_if(SibLoops, [&](Loop *SibLoop) {
1368     if (SibLoop == &L) {
1369       IsCurrentLoopValid = true;
1370       return true;
1371     }
1372 
1373     // Otherwise erase the loop from the list if it was in the old loops.
1374     return OldLoops.contains(SibLoop);
1375   });
1376   Updater.addSiblingLoops(SibLoops);
1377 
1378   if (!IsCurrentLoopValid) {
1379     Updater.markLoopAsDeleted(L, LoopName);
1380   } else {
1381     // We can only walk child loops if the current loop remained valid.
1382     if (UnrollRevisitChildLoops) {
1383       // Walk *all* of the child loops.
1384       SmallVector<Loop *, 4> ChildLoops(L.begin(), L.end());
1385       Updater.addChildLoops(ChildLoops);
1386     }
1387   }
1388 
1389   return getLoopPassPreservedAnalyses();
1390 }
1391 
1392 PreservedAnalyses LoopUnrollPass::run(Function &F,
1393                                       FunctionAnalysisManager &AM) {
1394   auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
1395   auto &LI = AM.getResult<LoopAnalysis>(F);
1396   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
1397   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1398   auto &AC = AM.getResult<AssumptionAnalysis>(F);
1399   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1400 
1401   LoopAnalysisManager *LAM = nullptr;
1402   if (auto *LAMProxy = AM.getCachedResult<LoopAnalysisManagerFunctionProxy>(F))
1403     LAM = &LAMProxy->getManager();
1404 
1405   auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
1406   ProfileSummaryInfo *PSI =
1407       MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
1408   auto *BFI = (PSI && PSI->hasProfileSummary()) ?
1409       &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr;
1410 
1411   bool Changed = false;
1412 
1413   // The unroller requires loops to be in simplified form, and also needs LCSSA.
1414   // Since simplification may add new inner loops, it has to run before the
1415   // legality and profitability checks. This means running the loop unroller
1416   // will simplify all loops, regardless of whether anything end up being
1417   // unrolled.
1418   for (auto &L : LI) {
1419     Changed |=
1420         simplifyLoop(L, &DT, &LI, &SE, &AC, nullptr, false /* PreserveLCSSA */);
1421     Changed |= formLCSSARecursively(*L, DT, &LI, &SE);
1422   }
1423 
1424   // Add the loop nests in the reverse order of LoopInfo. See method
1425   // declaration.
1426   SmallPriorityWorklist<Loop *, 4> Worklist;
1427   appendLoopsToWorklist(LI, Worklist);
1428 
1429   while (!Worklist.empty()) {
1430     // Because the LoopInfo stores the loops in RPO, we walk the worklist
1431     // from back to front so that we work forward across the CFG, which
1432     // for unrolling is only needed to get optimization remarks emitted in
1433     // a forward order.
1434     Loop &L = *Worklist.pop_back_val();
1435 #ifndef NDEBUG
1436     Loop *ParentL = L.getParentLoop();
1437 #endif
1438 
1439     // Check if the profile summary indicates that the profiled application
1440     // has a huge working set size, in which case we disable peeling to avoid
1441     // bloating it further.
1442     Optional<bool> LocalAllowPeeling = UnrollOpts.AllowPeeling;
1443     if (PSI && PSI->hasHugeWorkingSetSize())
1444       LocalAllowPeeling = false;
1445     std::string LoopName = std::string(L.getName());
1446     // The API here is quite complex to call and we allow to select some
1447     // flavors of unrolling during construction time (by setting UnrollOpts).
1448     LoopUnrollResult Result = tryToUnrollLoop(
1449         &L, DT, &LI, SE, TTI, AC, ORE, BFI, PSI,
1450         /*PreserveLCSSA*/ true, UnrollOpts.OptLevel, UnrollOpts.OnlyWhenForced,
1451         UnrollOpts.ForgetSCEV, /*Count*/ None,
1452         /*Threshold*/ None, UnrollOpts.AllowPartial, UnrollOpts.AllowRuntime,
1453         UnrollOpts.AllowUpperBound, LocalAllowPeeling,
1454         UnrollOpts.AllowProfileBasedPeeling, UnrollOpts.FullUnrollMaxCount);
1455     Changed |= Result != LoopUnrollResult::Unmodified;
1456 
1457     // The parent must not be damaged by unrolling!
1458 #ifndef NDEBUG
1459     if (Result != LoopUnrollResult::Unmodified && ParentL)
1460       ParentL->verifyLoop();
1461 #endif
1462 
1463     // Clear any cached analysis results for L if we removed it completely.
1464     if (LAM && Result == LoopUnrollResult::FullyUnrolled)
1465       LAM->clear(L, LoopName);
1466   }
1467 
1468   if (!Changed)
1469     return PreservedAnalyses::all();
1470 
1471   return getLoopPassPreservedAnalyses();
1472 }
1473