1 //===- LoopUnroll.cpp - Loop unroller pass --------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements a simple loop unroller.  It works best when loops have
10 // been canonicalized by the -indvars pass, allowing it to determine the trip
11 // counts of loops easily.
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/LoopUnrollPass.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DenseMapInfo.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/Analysis/AssumptionCache.h"
26 #include "llvm/Analysis/BlockFrequencyInfo.h"
27 #include "llvm/Analysis/CodeMetrics.h"
28 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
29 #include "llvm/Analysis/LoopAnalysisManager.h"
30 #include "llvm/Analysis/LoopInfo.h"
31 #include "llvm/Analysis/LoopPass.h"
32 #include "llvm/Analysis/LoopUnrollAnalyzer.h"
33 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
34 #include "llvm/Analysis/ProfileSummaryInfo.h"
35 #include "llvm/Analysis/ScalarEvolution.h"
36 #include "llvm/Analysis/TargetTransformInfo.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/CFG.h"
39 #include "llvm/IR/Constant.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DiagnosticInfo.h"
42 #include "llvm/IR/Dominators.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Metadata.h"
48 #include "llvm/IR/PassManager.h"
49 #include "llvm/InitializePasses.h"
50 #include "llvm/Pass.h"
51 #include "llvm/Support/Casting.h"
52 #include "llvm/Support/CommandLine.h"
53 #include "llvm/Support/Debug.h"
54 #include "llvm/Support/ErrorHandling.h"
55 #include "llvm/Support/raw_ostream.h"
56 #include "llvm/Transforms/Scalar.h"
57 #include "llvm/Transforms/Scalar/LoopPassManager.h"
58 #include "llvm/Transforms/Utils.h"
59 #include "llvm/Transforms/Utils/LoopPeel.h"
60 #include "llvm/Transforms/Utils/LoopSimplify.h"
61 #include "llvm/Transforms/Utils/LoopUtils.h"
62 #include "llvm/Transforms/Utils/SizeOpts.h"
63 #include "llvm/Transforms/Utils/UnrollLoop.h"
64 #include <algorithm>
65 #include <cassert>
66 #include <cstdint>
67 #include <limits>
68 #include <string>
69 #include <tuple>
70 #include <utility>
71 
72 using namespace llvm;
73 
74 #define DEBUG_TYPE "loop-unroll"
75 
76 cl::opt<bool> llvm::ForgetSCEVInLoopUnroll(
77     "forget-scev-loop-unroll", cl::init(false), cl::Hidden,
78     cl::desc("Forget everything in SCEV when doing LoopUnroll, instead of just"
79              " the current top-most loop. This is sometimes preferred to reduce"
80              " compile time."));
81 
82 static cl::opt<unsigned>
83     UnrollThreshold("unroll-threshold", cl::Hidden,
84                     cl::desc("The cost threshold for loop unrolling"));
85 
86 static cl::opt<unsigned>
87     UnrollOptSizeThreshold(
88       "unroll-optsize-threshold", cl::init(0), cl::Hidden,
89       cl::desc("The cost threshold for loop unrolling when optimizing for "
90                "size"));
91 
92 static cl::opt<unsigned> UnrollPartialThreshold(
93     "unroll-partial-threshold", cl::Hidden,
94     cl::desc("The cost threshold for partial loop unrolling"));
95 
96 static cl::opt<unsigned> UnrollMaxPercentThresholdBoost(
97     "unroll-max-percent-threshold-boost", cl::init(400), cl::Hidden,
98     cl::desc("The maximum 'boost' (represented as a percentage >= 100) applied "
99              "to the threshold when aggressively unrolling a loop due to the "
100              "dynamic cost savings. If completely unrolling a loop will reduce "
101              "the total runtime from X to Y, we boost the loop unroll "
102              "threshold to DefaultThreshold*std::min(MaxPercentThresholdBoost, "
103              "X/Y). This limit avoids excessive code bloat."));
104 
105 static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze(
106     "unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden,
107     cl::desc("Don't allow loop unrolling to simulate more than this number of"
108              "iterations when checking full unroll profitability"));
109 
110 static cl::opt<unsigned> UnrollCount(
111     "unroll-count", cl::Hidden,
112     cl::desc("Use this unroll count for all loops including those with "
113              "unroll_count pragma values, for testing purposes"));
114 
115 static cl::opt<unsigned> UnrollMaxCount(
116     "unroll-max-count", cl::Hidden,
117     cl::desc("Set the max unroll count for partial and runtime unrolling, for"
118              "testing purposes"));
119 
120 static cl::opt<unsigned> UnrollFullMaxCount(
121     "unroll-full-max-count", cl::Hidden,
122     cl::desc(
123         "Set the max unroll count for full unrolling, for testing purposes"));
124 
125 static cl::opt<bool>
126     UnrollAllowPartial("unroll-allow-partial", cl::Hidden,
127                        cl::desc("Allows loops to be partially unrolled until "
128                                 "-unroll-threshold loop size is reached."));
129 
130 static cl::opt<bool> UnrollAllowRemainder(
131     "unroll-allow-remainder", cl::Hidden,
132     cl::desc("Allow generation of a loop remainder (extra iterations) "
133              "when unrolling a loop."));
134 
135 static cl::opt<bool>
136     UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::Hidden,
137                   cl::desc("Unroll loops with run-time trip counts"));
138 
139 static cl::opt<unsigned> UnrollMaxUpperBound(
140     "unroll-max-upperbound", cl::init(8), cl::Hidden,
141     cl::desc(
142         "The max of trip count upper bound that is considered in unrolling"));
143 
144 static cl::opt<unsigned> PragmaUnrollThreshold(
145     "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden,
146     cl::desc("Unrolled size limit for loops with an unroll(full) or "
147              "unroll_count pragma."));
148 
149 static cl::opt<unsigned> FlatLoopTripCountThreshold(
150     "flat-loop-tripcount-threshold", cl::init(5), cl::Hidden,
151     cl::desc("If the runtime tripcount for the loop is lower than the "
152              "threshold, the loop is considered as flat and will be less "
153              "aggressively unrolled."));
154 
155 static cl::opt<bool> UnrollUnrollRemainder(
156   "unroll-remainder", cl::Hidden,
157   cl::desc("Allow the loop remainder to be unrolled."));
158 
159 // This option isn't ever intended to be enabled, it serves to allow
160 // experiments to check the assumptions about when this kind of revisit is
161 // necessary.
162 static cl::opt<bool> UnrollRevisitChildLoops(
163     "unroll-revisit-child-loops", cl::Hidden,
164     cl::desc("Enqueue and re-visit child loops in the loop PM after unrolling. "
165              "This shouldn't typically be needed as child loops (or their "
166              "clones) were already visited."));
167 
168 static cl::opt<unsigned> UnrollThresholdAggressive(
169     "unroll-threshold-aggressive", cl::init(300), cl::Hidden,
170     cl::desc("Threshold (max size of unrolled loop) to use in aggressive (O3) "
171              "optimizations"));
172 static cl::opt<unsigned>
173     UnrollThresholdDefault("unroll-threshold-default", cl::init(150),
174                            cl::Hidden,
175                            cl::desc("Default threshold (max size of unrolled "
176                                     "loop), used in all but O3 optimizations"));
177 
178 /// A magic value for use with the Threshold parameter to indicate
179 /// that the loop unroll should be performed regardless of how much
180 /// code expansion would result.
181 static const unsigned NoThreshold = std::numeric_limits<unsigned>::max();
182 
183 /// Gather the various unrolling parameters based on the defaults, compiler
184 /// flags, TTI overrides and user specified parameters.
185 TargetTransformInfo::UnrollingPreferences llvm::gatherUnrollingPreferences(
186     Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI,
187     BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, int OptLevel,
188     Optional<unsigned> UserThreshold, Optional<unsigned> UserCount,
189     Optional<bool> UserAllowPartial, Optional<bool> UserRuntime,
190     Optional<bool> UserUpperBound, Optional<unsigned> UserFullUnrollMaxCount) {
191   TargetTransformInfo::UnrollingPreferences UP;
192 
193   // Set up the defaults
194   UP.Threshold =
195       OptLevel > 2 ? UnrollThresholdAggressive : UnrollThresholdDefault;
196   UP.MaxPercentThresholdBoost = 400;
197   UP.OptSizeThreshold = UnrollOptSizeThreshold;
198   UP.PartialThreshold = 150;
199   UP.PartialOptSizeThreshold = UnrollOptSizeThreshold;
200   UP.Count = 0;
201   UP.DefaultUnrollRuntimeCount = 8;
202   UP.MaxCount = std::numeric_limits<unsigned>::max();
203   UP.FullUnrollMaxCount = std::numeric_limits<unsigned>::max();
204   UP.BEInsns = 2;
205   UP.Partial = false;
206   UP.Runtime = false;
207   UP.AllowRemainder = true;
208   UP.UnrollRemainder = false;
209   UP.AllowExpensiveTripCount = false;
210   UP.Force = false;
211   UP.UpperBound = false;
212   UP.UnrollAndJam = false;
213   UP.UnrollAndJamInnerLoopThreshold = 60;
214   UP.MaxIterationsCountToAnalyze = UnrollMaxIterationsCountToAnalyze;
215 
216   // Override with any target specific settings
217   TTI.getUnrollingPreferences(L, SE, UP);
218 
219   // Apply size attributes
220   bool OptForSize = L->getHeader()->getParent()->hasOptSize() ||
221                     // Let unroll hints / pragmas take precedence over PGSO.
222                     (hasUnrollTransformation(L) != TM_ForcedByUser &&
223                      llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
224                                                  PGSOQueryType::IRPass));
225   if (OptForSize) {
226     UP.Threshold = UP.OptSizeThreshold;
227     UP.PartialThreshold = UP.PartialOptSizeThreshold;
228     UP.MaxPercentThresholdBoost = 100;
229   }
230 
231   // Apply any user values specified by cl::opt
232   if (UnrollThreshold.getNumOccurrences() > 0)
233     UP.Threshold = UnrollThreshold;
234   if (UnrollPartialThreshold.getNumOccurrences() > 0)
235     UP.PartialThreshold = UnrollPartialThreshold;
236   if (UnrollMaxPercentThresholdBoost.getNumOccurrences() > 0)
237     UP.MaxPercentThresholdBoost = UnrollMaxPercentThresholdBoost;
238   if (UnrollMaxCount.getNumOccurrences() > 0)
239     UP.MaxCount = UnrollMaxCount;
240   if (UnrollFullMaxCount.getNumOccurrences() > 0)
241     UP.FullUnrollMaxCount = UnrollFullMaxCount;
242   if (UnrollAllowPartial.getNumOccurrences() > 0)
243     UP.Partial = UnrollAllowPartial;
244   if (UnrollAllowRemainder.getNumOccurrences() > 0)
245     UP.AllowRemainder = UnrollAllowRemainder;
246   if (UnrollRuntime.getNumOccurrences() > 0)
247     UP.Runtime = UnrollRuntime;
248   if (UnrollMaxUpperBound == 0)
249     UP.UpperBound = false;
250   if (UnrollUnrollRemainder.getNumOccurrences() > 0)
251     UP.UnrollRemainder = UnrollUnrollRemainder;
252   if (UnrollMaxIterationsCountToAnalyze.getNumOccurrences() > 0)
253     UP.MaxIterationsCountToAnalyze = UnrollMaxIterationsCountToAnalyze;
254 
255   // Apply user values provided by argument
256   if (UserThreshold.hasValue()) {
257     UP.Threshold = *UserThreshold;
258     UP.PartialThreshold = *UserThreshold;
259   }
260   if (UserCount.hasValue())
261     UP.Count = *UserCount;
262   if (UserAllowPartial.hasValue())
263     UP.Partial = *UserAllowPartial;
264   if (UserRuntime.hasValue())
265     UP.Runtime = *UserRuntime;
266   if (UserUpperBound.hasValue())
267     UP.UpperBound = *UserUpperBound;
268   if (UserFullUnrollMaxCount.hasValue())
269     UP.FullUnrollMaxCount = *UserFullUnrollMaxCount;
270 
271   return UP;
272 }
273 
274 namespace {
275 
276 /// A struct to densely store the state of an instruction after unrolling at
277 /// each iteration.
278 ///
279 /// This is designed to work like a tuple of <Instruction *, int> for the
280 /// purposes of hashing and lookup, but to be able to associate two boolean
281 /// states with each key.
282 struct UnrolledInstState {
283   Instruction *I;
284   int Iteration : 30;
285   unsigned IsFree : 1;
286   unsigned IsCounted : 1;
287 };
288 
289 /// Hashing and equality testing for a set of the instruction states.
290 struct UnrolledInstStateKeyInfo {
291   using PtrInfo = DenseMapInfo<Instruction *>;
292   using PairInfo = DenseMapInfo<std::pair<Instruction *, int>>;
293 
294   static inline UnrolledInstState getEmptyKey() {
295     return {PtrInfo::getEmptyKey(), 0, 0, 0};
296   }
297 
298   static inline UnrolledInstState getTombstoneKey() {
299     return {PtrInfo::getTombstoneKey(), 0, 0, 0};
300   }
301 
302   static inline unsigned getHashValue(const UnrolledInstState &S) {
303     return PairInfo::getHashValue({S.I, S.Iteration});
304   }
305 
306   static inline bool isEqual(const UnrolledInstState &LHS,
307                              const UnrolledInstState &RHS) {
308     return PairInfo::isEqual({LHS.I, LHS.Iteration}, {RHS.I, RHS.Iteration});
309   }
310 };
311 
312 struct EstimatedUnrollCost {
313   /// The estimated cost after unrolling.
314   unsigned UnrolledCost;
315 
316   /// The estimated dynamic cost of executing the instructions in the
317   /// rolled form.
318   unsigned RolledDynamicCost;
319 };
320 
321 } // end anonymous namespace
322 
323 /// Figure out if the loop is worth full unrolling.
324 ///
325 /// Complete loop unrolling can make some loads constant, and we need to know
326 /// if that would expose any further optimization opportunities.  This routine
327 /// estimates this optimization.  It computes cost of unrolled loop
328 /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By
329 /// dynamic cost we mean that we won't count costs of blocks that are known not
330 /// to be executed (i.e. if we have a branch in the loop and we know that at the
331 /// given iteration its condition would be resolved to true, we won't add up the
332 /// cost of the 'false'-block).
333 /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If
334 /// the analysis failed (no benefits expected from the unrolling, or the loop is
335 /// too big to analyze), the returned value is None.
336 static Optional<EstimatedUnrollCost> analyzeLoopUnrollCost(
337     const Loop *L, unsigned TripCount, DominatorTree &DT, ScalarEvolution &SE,
338     const SmallPtrSetImpl<const Value *> &EphValues,
339     const TargetTransformInfo &TTI, unsigned MaxUnrolledLoopSize,
340     unsigned MaxIterationsCountToAnalyze) {
341   // We want to be able to scale offsets by the trip count and add more offsets
342   // to them without checking for overflows, and we already don't want to
343   // analyze *massive* trip counts, so we force the max to be reasonably small.
344   assert(MaxIterationsCountToAnalyze <
345              (unsigned)(std::numeric_limits<int>::max() / 2) &&
346          "The unroll iterations max is too large!");
347 
348   // Only analyze inner loops. We can't properly estimate cost of nested loops
349   // and we won't visit inner loops again anyway.
350   if (!L->isInnermost())
351     return None;
352 
353   // Don't simulate loops with a big or unknown tripcount
354   if (!TripCount || TripCount > MaxIterationsCountToAnalyze)
355     return None;
356 
357   SmallSetVector<BasicBlock *, 16> BBWorklist;
358   SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist;
359   DenseMap<Value *, Value *> SimplifiedValues;
360   SmallVector<std::pair<Value *, Value *>, 4> SimplifiedInputValues;
361 
362   // The estimated cost of the unrolled form of the loop. We try to estimate
363   // this by simplifying as much as we can while computing the estimate.
364   InstructionCost UnrolledCost = 0;
365 
366   // We also track the estimated dynamic (that is, actually executed) cost in
367   // the rolled form. This helps identify cases when the savings from unrolling
368   // aren't just exposing dead control flows, but actual reduced dynamic
369   // instructions due to the simplifications which we expect to occur after
370   // unrolling.
371   InstructionCost RolledDynamicCost = 0;
372 
373   // We track the simplification of each instruction in each iteration. We use
374   // this to recursively merge costs into the unrolled cost on-demand so that
375   // we don't count the cost of any dead code. This is essentially a map from
376   // <instruction, int> to <bool, bool>, but stored as a densely packed struct.
377   DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap;
378 
379   // A small worklist used to accumulate cost of instructions from each
380   // observable and reached root in the loop.
381   SmallVector<Instruction *, 16> CostWorklist;
382 
383   // PHI-used worklist used between iterations while accumulating cost.
384   SmallVector<Instruction *, 4> PHIUsedList;
385 
386   // Helper function to accumulate cost for instructions in the loop.
387   auto AddCostRecursively = [&](Instruction &RootI, int Iteration) {
388     assert(Iteration >= 0 && "Cannot have a negative iteration!");
389     assert(CostWorklist.empty() && "Must start with an empty cost list");
390     assert(PHIUsedList.empty() && "Must start with an empty phi used list");
391     CostWorklist.push_back(&RootI);
392     TargetTransformInfo::TargetCostKind CostKind =
393       RootI.getFunction()->hasMinSize() ?
394       TargetTransformInfo::TCK_CodeSize :
395       TargetTransformInfo::TCK_SizeAndLatency;
396     for (;; --Iteration) {
397       do {
398         Instruction *I = CostWorklist.pop_back_val();
399 
400         // InstCostMap only uses I and Iteration as a key, the other two values
401         // don't matter here.
402         auto CostIter = InstCostMap.find({I, Iteration, 0, 0});
403         if (CostIter == InstCostMap.end())
404           // If an input to a PHI node comes from a dead path through the loop
405           // we may have no cost data for it here. What that actually means is
406           // that it is free.
407           continue;
408         auto &Cost = *CostIter;
409         if (Cost.IsCounted)
410           // Already counted this instruction.
411           continue;
412 
413         // Mark that we are counting the cost of this instruction now.
414         Cost.IsCounted = true;
415 
416         // If this is a PHI node in the loop header, just add it to the PHI set.
417         if (auto *PhiI = dyn_cast<PHINode>(I))
418           if (PhiI->getParent() == L->getHeader()) {
419             assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they "
420                                   "inherently simplify during unrolling.");
421             if (Iteration == 0)
422               continue;
423 
424             // Push the incoming value from the backedge into the PHI used list
425             // if it is an in-loop instruction. We'll use this to populate the
426             // cost worklist for the next iteration (as we count backwards).
427             if (auto *OpI = dyn_cast<Instruction>(
428                     PhiI->getIncomingValueForBlock(L->getLoopLatch())))
429               if (L->contains(OpI))
430                 PHIUsedList.push_back(OpI);
431             continue;
432           }
433 
434         // First accumulate the cost of this instruction.
435         if (!Cost.IsFree) {
436           UnrolledCost += TTI.getUserCost(I, CostKind);
437           LLVM_DEBUG(dbgs() << "Adding cost of instruction (iteration "
438                             << Iteration << "): ");
439           LLVM_DEBUG(I->dump());
440         }
441 
442         // We must count the cost of every operand which is not free,
443         // recursively. If we reach a loop PHI node, simply add it to the set
444         // to be considered on the next iteration (backwards!).
445         for (Value *Op : I->operands()) {
446           // Check whether this operand is free due to being a constant or
447           // outside the loop.
448           auto *OpI = dyn_cast<Instruction>(Op);
449           if (!OpI || !L->contains(OpI))
450             continue;
451 
452           // Otherwise accumulate its cost.
453           CostWorklist.push_back(OpI);
454         }
455       } while (!CostWorklist.empty());
456 
457       if (PHIUsedList.empty())
458         // We've exhausted the search.
459         break;
460 
461       assert(Iteration > 0 &&
462              "Cannot track PHI-used values past the first iteration!");
463       CostWorklist.append(PHIUsedList.begin(), PHIUsedList.end());
464       PHIUsedList.clear();
465     }
466   };
467 
468   // Ensure that we don't violate the loop structure invariants relied on by
469   // this analysis.
470   assert(L->isLoopSimplifyForm() && "Must put loop into normal form first.");
471   assert(L->isLCSSAForm(DT) &&
472          "Must have loops in LCSSA form to track live-out values.");
473 
474   LLVM_DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n");
475 
476   TargetTransformInfo::TargetCostKind CostKind =
477     L->getHeader()->getParent()->hasMinSize() ?
478     TargetTransformInfo::TCK_CodeSize : TargetTransformInfo::TCK_SizeAndLatency;
479   // Simulate execution of each iteration of the loop counting instructions,
480   // which would be simplified.
481   // Since the same load will take different values on different iterations,
482   // we literally have to go through all loop's iterations.
483   for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) {
484     LLVM_DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n");
485 
486     // Prepare for the iteration by collecting any simplified entry or backedge
487     // inputs.
488     for (Instruction &I : *L->getHeader()) {
489       auto *PHI = dyn_cast<PHINode>(&I);
490       if (!PHI)
491         break;
492 
493       // The loop header PHI nodes must have exactly two input: one from the
494       // loop preheader and one from the loop latch.
495       assert(
496           PHI->getNumIncomingValues() == 2 &&
497           "Must have an incoming value only for the preheader and the latch.");
498 
499       Value *V = PHI->getIncomingValueForBlock(
500           Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch());
501       if (Iteration != 0 && SimplifiedValues.count(V))
502         V = SimplifiedValues.lookup(V);
503       SimplifiedInputValues.push_back({PHI, V});
504     }
505 
506     // Now clear and re-populate the map for the next iteration.
507     SimplifiedValues.clear();
508     while (!SimplifiedInputValues.empty())
509       SimplifiedValues.insert(SimplifiedInputValues.pop_back_val());
510 
511     UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L);
512 
513     BBWorklist.clear();
514     BBWorklist.insert(L->getHeader());
515     // Note that we *must not* cache the size, this loop grows the worklist.
516     for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
517       BasicBlock *BB = BBWorklist[Idx];
518 
519       // Visit all instructions in the given basic block and try to simplify
520       // it.  We don't change the actual IR, just count optimization
521       // opportunities.
522       for (Instruction &I : *BB) {
523         // These won't get into the final code - don't even try calculating the
524         // cost for them.
525         if (isa<DbgInfoIntrinsic>(I) || EphValues.count(&I))
526           continue;
527 
528         // Track this instruction's expected baseline cost when executing the
529         // rolled loop form.
530         RolledDynamicCost += TTI.getUserCost(&I, CostKind);
531 
532         // Visit the instruction to analyze its loop cost after unrolling,
533         // and if the visitor returns true, mark the instruction as free after
534         // unrolling and continue.
535         bool IsFree = Analyzer.visit(I);
536         bool Inserted = InstCostMap.insert({&I, (int)Iteration,
537                                            (unsigned)IsFree,
538                                            /*IsCounted*/ false}).second;
539         (void)Inserted;
540         assert(Inserted && "Cannot have a state for an unvisited instruction!");
541 
542         if (IsFree)
543           continue;
544 
545         // Can't properly model a cost of a call.
546         // FIXME: With a proper cost model we should be able to do it.
547         if (auto *CI = dyn_cast<CallInst>(&I)) {
548           const Function *Callee = CI->getCalledFunction();
549           if (!Callee || TTI.isLoweredToCall(Callee)) {
550             LLVM_DEBUG(dbgs() << "Can't analyze cost of loop with call\n");
551             return None;
552           }
553         }
554 
555         // If the instruction might have a side-effect recursively account for
556         // the cost of it and all the instructions leading up to it.
557         if (I.mayHaveSideEffects())
558           AddCostRecursively(I, Iteration);
559 
560         // If unrolled body turns out to be too big, bail out.
561         if (UnrolledCost > MaxUnrolledLoopSize) {
562           LLVM_DEBUG(dbgs() << "  Exceeded threshold.. exiting.\n"
563                             << "  UnrolledCost: " << UnrolledCost
564                             << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize
565                             << "\n");
566           return None;
567         }
568       }
569 
570       Instruction *TI = BB->getTerminator();
571 
572       auto getSimplifiedConstant = [&](Value *V) -> Constant * {
573         if (SimplifiedValues.count(V))
574           V = SimplifiedValues.lookup(V);
575         return dyn_cast<Constant>(V);
576       };
577 
578       // Add in the live successors by first checking whether we have terminator
579       // that may be simplified based on the values simplified by this call.
580       BasicBlock *KnownSucc = nullptr;
581       if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
582         if (BI->isConditional()) {
583           if (auto *SimpleCond = getSimplifiedConstant(BI->getCondition())) {
584             // Just take the first successor if condition is undef
585             if (isa<UndefValue>(SimpleCond))
586               KnownSucc = BI->getSuccessor(0);
587             else if (ConstantInt *SimpleCondVal =
588                          dyn_cast<ConstantInt>(SimpleCond))
589               KnownSucc = BI->getSuccessor(SimpleCondVal->isZero() ? 1 : 0);
590           }
591         }
592       } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
593         if (auto *SimpleCond = getSimplifiedConstant(SI->getCondition())) {
594           // Just take the first successor if condition is undef
595           if (isa<UndefValue>(SimpleCond))
596             KnownSucc = SI->getSuccessor(0);
597           else if (ConstantInt *SimpleCondVal =
598                        dyn_cast<ConstantInt>(SimpleCond))
599             KnownSucc = SI->findCaseValue(SimpleCondVal)->getCaseSuccessor();
600         }
601       }
602       if (KnownSucc) {
603         if (L->contains(KnownSucc))
604           BBWorklist.insert(KnownSucc);
605         else
606           ExitWorklist.insert({BB, KnownSucc});
607         continue;
608       }
609 
610       // Add BB's successors to the worklist.
611       for (BasicBlock *Succ : successors(BB))
612         if (L->contains(Succ))
613           BBWorklist.insert(Succ);
614         else
615           ExitWorklist.insert({BB, Succ});
616       AddCostRecursively(*TI, Iteration);
617     }
618 
619     // If we found no optimization opportunities on the first iteration, we
620     // won't find them on later ones too.
621     if (UnrolledCost == RolledDynamicCost) {
622       LLVM_DEBUG(dbgs() << "  No opportunities found.. exiting.\n"
623                         << "  UnrolledCost: " << UnrolledCost << "\n");
624       return None;
625     }
626   }
627 
628   while (!ExitWorklist.empty()) {
629     BasicBlock *ExitingBB, *ExitBB;
630     std::tie(ExitingBB, ExitBB) = ExitWorklist.pop_back_val();
631 
632     for (Instruction &I : *ExitBB) {
633       auto *PN = dyn_cast<PHINode>(&I);
634       if (!PN)
635         break;
636 
637       Value *Op = PN->getIncomingValueForBlock(ExitingBB);
638       if (auto *OpI = dyn_cast<Instruction>(Op))
639         if (L->contains(OpI))
640           AddCostRecursively(*OpI, TripCount - 1);
641     }
642   }
643 
644   assert(UnrolledCost.isValid() && RolledDynamicCost.isValid() &&
645          "All instructions must have a valid cost, whether the "
646          "loop is rolled or unrolled.");
647 
648   LLVM_DEBUG(dbgs() << "Analysis finished:\n"
649                     << "UnrolledCost: " << UnrolledCost << ", "
650                     << "RolledDynamicCost: " << RolledDynamicCost << "\n");
651   return {{unsigned(*UnrolledCost.getValue()),
652            unsigned(*RolledDynamicCost.getValue())}};
653 }
654 
655 /// ApproximateLoopSize - Approximate the size of the loop.
656 unsigned llvm::ApproximateLoopSize(
657     const Loop *L, unsigned &NumCalls, bool &NotDuplicatable, bool &Convergent,
658     const TargetTransformInfo &TTI,
659     const SmallPtrSetImpl<const Value *> &EphValues, unsigned BEInsns) {
660   CodeMetrics Metrics;
661   for (BasicBlock *BB : L->blocks())
662     Metrics.analyzeBasicBlock(BB, TTI, EphValues);
663   NumCalls = Metrics.NumInlineCandidates;
664   NotDuplicatable = Metrics.notDuplicatable;
665   Convergent = Metrics.convergent;
666 
667   unsigned LoopSize = Metrics.NumInsts;
668 
669   // Don't allow an estimate of size zero.  This would allows unrolling of loops
670   // with huge iteration counts, which is a compile time problem even if it's
671   // not a problem for code quality. Also, the code using this size may assume
672   // that each loop has at least three instructions (likely a conditional
673   // branch, a comparison feeding that branch, and some kind of loop increment
674   // feeding that comparison instruction).
675   LoopSize = std::max(LoopSize, BEInsns + 1);
676 
677   return LoopSize;
678 }
679 
680 // Returns the loop hint metadata node with the given name (for example,
681 // "llvm.loop.unroll.count").  If no such metadata node exists, then nullptr is
682 // returned.
683 static MDNode *getUnrollMetadataForLoop(const Loop *L, StringRef Name) {
684   if (MDNode *LoopID = L->getLoopID())
685     return GetUnrollMetadata(LoopID, Name);
686   return nullptr;
687 }
688 
689 // Returns true if the loop has an unroll(full) pragma.
690 static bool hasUnrollFullPragma(const Loop *L) {
691   return getUnrollMetadataForLoop(L, "llvm.loop.unroll.full");
692 }
693 
694 // Returns true if the loop has an unroll(enable) pragma. This metadata is used
695 // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives.
696 static bool hasUnrollEnablePragma(const Loop *L) {
697   return getUnrollMetadataForLoop(L, "llvm.loop.unroll.enable");
698 }
699 
700 // Returns true if the loop has an runtime unroll(disable) pragma.
701 static bool hasRuntimeUnrollDisablePragma(const Loop *L) {
702   return getUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable");
703 }
704 
705 // If loop has an unroll_count pragma return the (necessarily
706 // positive) value from the pragma.  Otherwise return 0.
707 static unsigned unrollCountPragmaValue(const Loop *L) {
708   MDNode *MD = getUnrollMetadataForLoop(L, "llvm.loop.unroll.count");
709   if (MD) {
710     assert(MD->getNumOperands() == 2 &&
711            "Unroll count hint metadata should have two operands.");
712     unsigned Count =
713         mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
714     assert(Count >= 1 && "Unroll count must be positive.");
715     return Count;
716   }
717   return 0;
718 }
719 
720 // Computes the boosting factor for complete unrolling.
721 // If fully unrolling the loop would save a lot of RolledDynamicCost, it would
722 // be beneficial to fully unroll the loop even if unrolledcost is large. We
723 // use (RolledDynamicCost / UnrolledCost) to model the unroll benefits to adjust
724 // the unroll threshold.
725 static unsigned getFullUnrollBoostingFactor(const EstimatedUnrollCost &Cost,
726                                             unsigned MaxPercentThresholdBoost) {
727   if (Cost.RolledDynamicCost >= std::numeric_limits<unsigned>::max() / 100)
728     return 100;
729   else if (Cost.UnrolledCost != 0)
730     // The boosting factor is RolledDynamicCost / UnrolledCost
731     return std::min(100 * Cost.RolledDynamicCost / Cost.UnrolledCost,
732                     MaxPercentThresholdBoost);
733   else
734     return MaxPercentThresholdBoost;
735 }
736 
737 // Produce an estimate of the unrolled cost of the specified loop.  This
738 // is used to a) produce a cost estimate for partial unrolling and b) to
739 // cheaply estimate cost for full unrolling when we don't want to symbolically
740 // evaluate all iterations.
741 class UnrollCostEstimator {
742   const unsigned LoopSize;
743 
744 public:
745   UnrollCostEstimator(Loop &L, unsigned LoopSize) : LoopSize(LoopSize) {}
746 
747   // Returns loop size estimation for unrolled loop, given the unrolling
748   // configuration specified by UP.
749   uint64_t getUnrolledLoopSize(TargetTransformInfo::UnrollingPreferences &UP) {
750     assert(LoopSize >= UP.BEInsns &&
751            "LoopSize should not be less than BEInsns!");
752     return (uint64_t)(LoopSize - UP.BEInsns) * UP.Count + UP.BEInsns;
753   }
754 };
755 
756 // Returns true if unroll count was set explicitly.
757 // Calculates unroll count and writes it to UP.Count.
758 // Unless IgnoreUser is true, will also use metadata and command-line options
759 // that are specific to to the LoopUnroll pass (which, for instance, are
760 // irrelevant for the LoopUnrollAndJam pass).
761 // FIXME: This function is used by LoopUnroll and LoopUnrollAndJam, but consumes
762 // many LoopUnroll-specific options. The shared functionality should be
763 // refactored into it own function.
764 bool llvm::computeUnrollCount(
765     Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, LoopInfo *LI,
766     ScalarEvolution &SE, const SmallPtrSetImpl<const Value *> &EphValues,
767     OptimizationRemarkEmitter *ORE, unsigned TripCount, unsigned MaxTripCount,
768     bool MaxOrZero, unsigned TripMultiple, unsigned LoopSize,
769     TargetTransformInfo::UnrollingPreferences &UP,
770     TargetTransformInfo::PeelingPreferences &PP, bool &UseUpperBound) {
771 
772   UnrollCostEstimator UCE(*L, LoopSize);
773 
774   // Use an explicit peel count that has been specified for testing. In this
775   // case it's not permitted to also specify an explicit unroll count.
776   if (PP.PeelCount) {
777     if (UnrollCount.getNumOccurrences() > 0) {
778       report_fatal_error("Cannot specify both explicit peel count and "
779                          "explicit unroll count");
780     }
781     UP.Count = 1;
782     UP.Runtime = false;
783     return true;
784   }
785 
786   // Check for explicit Count.
787   // 1st priority is unroll count set by "unroll-count" option.
788   bool UserUnrollCount = UnrollCount.getNumOccurrences() > 0;
789   if (UserUnrollCount) {
790     UP.Count = UnrollCount;
791     UP.AllowExpensiveTripCount = true;
792     UP.Force = true;
793     if (UP.AllowRemainder && UCE.getUnrolledLoopSize(UP) < UP.Threshold)
794       return true;
795   }
796 
797   // 2nd priority is unroll count set by pragma.
798   unsigned PragmaCount = unrollCountPragmaValue(L);
799   if (PragmaCount > 0) {
800     UP.Count = PragmaCount;
801     UP.Runtime = true;
802     UP.AllowExpensiveTripCount = true;
803     UP.Force = true;
804     if ((UP.AllowRemainder || (TripMultiple % PragmaCount == 0)) &&
805         UCE.getUnrolledLoopSize(UP) < PragmaUnrollThreshold)
806       return true;
807   }
808   bool PragmaFullUnroll = hasUnrollFullPragma(L);
809   if (PragmaFullUnroll && TripCount != 0) {
810     UP.Count = TripCount;
811     if (UCE.getUnrolledLoopSize(UP) < PragmaUnrollThreshold)
812       return false;
813   }
814 
815   bool PragmaEnableUnroll = hasUnrollEnablePragma(L);
816   bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll ||
817                         PragmaEnableUnroll || UserUnrollCount;
818 
819   if (ExplicitUnroll && TripCount != 0) {
820     // If the loop has an unrolling pragma, we want to be more aggressive with
821     // unrolling limits. Set thresholds to at least the PragmaUnrollThreshold
822     // value which is larger than the default limits.
823     UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold);
824     UP.PartialThreshold =
825         std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold);
826   }
827 
828   // 3rd priority is full unroll count.
829   // Full unroll makes sense only when TripCount or its upper bound could be
830   // statically calculated.
831   // Also we need to check if we exceed FullUnrollMaxCount.
832 
833   // We can unroll by the upper bound amount if it's generally allowed or if
834   // we know that the loop is executed either the upper bound or zero times.
835   // (MaxOrZero unrolling keeps only the first loop test, so the number of
836   // loop tests remains the same compared to the non-unrolled version, whereas
837   // the generic upper bound unrolling keeps all but the last loop test so the
838   // number of loop tests goes up which may end up being worse on targets with
839   // constrained branch predictor resources so is controlled by an option.)
840   // In addition we only unroll small upper bounds.
841   unsigned FullUnrollMaxTripCount = MaxTripCount;
842   if (!(UP.UpperBound || MaxOrZero) ||
843       FullUnrollMaxTripCount > UnrollMaxUpperBound)
844     FullUnrollMaxTripCount = 0;
845 
846   // UnrollByMaxCount and ExactTripCount cannot both be non zero since we only
847   // compute the former when the latter is zero.
848   unsigned ExactTripCount = TripCount;
849   assert((ExactTripCount == 0 || FullUnrollMaxTripCount == 0) &&
850          "ExtractTripCount and UnrollByMaxCount cannot both be non zero.");
851 
852   unsigned FullUnrollTripCount =
853       ExactTripCount ? ExactTripCount : FullUnrollMaxTripCount;
854   UP.Count = FullUnrollTripCount;
855   if (FullUnrollTripCount && FullUnrollTripCount <= UP.FullUnrollMaxCount) {
856     // When computing the unrolled size, note that BEInsns are not replicated
857     // like the rest of the loop body.
858     if (UCE.getUnrolledLoopSize(UP) < UP.Threshold) {
859       UseUpperBound = (FullUnrollMaxTripCount == FullUnrollTripCount);
860       return ExplicitUnroll;
861     } else {
862       // The loop isn't that small, but we still can fully unroll it if that
863       // helps to remove a significant number of instructions.
864       // To check that, run additional analysis on the loop.
865       if (Optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost(
866               L, FullUnrollTripCount, DT, SE, EphValues, TTI,
867               UP.Threshold * UP.MaxPercentThresholdBoost / 100,
868               UP.MaxIterationsCountToAnalyze)) {
869         unsigned Boost =
870             getFullUnrollBoostingFactor(*Cost, UP.MaxPercentThresholdBoost);
871         if (Cost->UnrolledCost < UP.Threshold * Boost / 100) {
872           UseUpperBound = (FullUnrollMaxTripCount == FullUnrollTripCount);
873           return ExplicitUnroll;
874         }
875       }
876     }
877   }
878 
879   // 4th priority is loop peeling.
880   computePeelCount(L, LoopSize, PP, TripCount, SE, UP.Threshold);
881   if (PP.PeelCount) {
882     UP.Runtime = false;
883     UP.Count = 1;
884     return ExplicitUnroll;
885   }
886 
887   // 5th priority is partial unrolling.
888   // Try partial unroll only when TripCount could be statically calculated.
889   if (TripCount) {
890     UP.Partial |= ExplicitUnroll;
891     if (!UP.Partial) {
892       LLVM_DEBUG(dbgs() << "  will not try to unroll partially because "
893                         << "-unroll-allow-partial not given\n");
894       UP.Count = 0;
895       return false;
896     }
897     if (UP.Count == 0)
898       UP.Count = TripCount;
899     if (UP.PartialThreshold != NoThreshold) {
900       // Reduce unroll count to be modulo of TripCount for partial unrolling.
901       if (UCE.getUnrolledLoopSize(UP) > UP.PartialThreshold)
902         UP.Count =
903             (std::max(UP.PartialThreshold, UP.BEInsns + 1) - UP.BEInsns) /
904             (LoopSize - UP.BEInsns);
905       if (UP.Count > UP.MaxCount)
906         UP.Count = UP.MaxCount;
907       while (UP.Count != 0 && TripCount % UP.Count != 0)
908         UP.Count--;
909       if (UP.AllowRemainder && UP.Count <= 1) {
910         // If there is no Count that is modulo of TripCount, set Count to
911         // largest power-of-two factor that satisfies the threshold limit.
912         // As we'll create fixup loop, do the type of unrolling only if
913         // remainder loop is allowed.
914         UP.Count = UP.DefaultUnrollRuntimeCount;
915         while (UP.Count != 0 &&
916                UCE.getUnrolledLoopSize(UP) > UP.PartialThreshold)
917           UP.Count >>= 1;
918       }
919       if (UP.Count < 2) {
920         if (PragmaEnableUnroll)
921           ORE->emit([&]() {
922             return OptimizationRemarkMissed(DEBUG_TYPE,
923                                             "UnrollAsDirectedTooLarge",
924                                             L->getStartLoc(), L->getHeader())
925                    << "Unable to unroll loop as directed by unroll(enable) "
926                       "pragma "
927                       "because unrolled size is too large.";
928           });
929         UP.Count = 0;
930       }
931     } else {
932       UP.Count = TripCount;
933     }
934     if (UP.Count > UP.MaxCount)
935       UP.Count = UP.MaxCount;
936     if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount &&
937         UP.Count != TripCount)
938       ORE->emit([&]() {
939         return OptimizationRemarkMissed(DEBUG_TYPE,
940                                         "FullUnrollAsDirectedTooLarge",
941                                         L->getStartLoc(), L->getHeader())
942                << "Unable to fully unroll loop as directed by unroll pragma "
943                   "because "
944                   "unrolled size is too large.";
945       });
946     LLVM_DEBUG(dbgs() << "  partially unrolling with count: " << UP.Count
947                       << "\n");
948     return ExplicitUnroll;
949   }
950   assert(TripCount == 0 &&
951          "All cases when TripCount is constant should be covered here.");
952   if (PragmaFullUnroll)
953     ORE->emit([&]() {
954       return OptimizationRemarkMissed(
955                  DEBUG_TYPE, "CantFullUnrollAsDirectedRuntimeTripCount",
956                  L->getStartLoc(), L->getHeader())
957              << "Unable to fully unroll loop as directed by unroll(full) "
958                 "pragma "
959                 "because loop has a runtime trip count.";
960     });
961 
962   // 6th priority is runtime unrolling.
963   // Don't unroll a runtime trip count loop when it is disabled.
964   if (hasRuntimeUnrollDisablePragma(L)) {
965     UP.Count = 0;
966     return false;
967   }
968 
969   // Don't unroll a small upper bound loop unless user or TTI asked to do so.
970   if (MaxTripCount && !UP.Force && MaxTripCount < UnrollMaxUpperBound) {
971     UP.Count = 0;
972     return false;
973   }
974 
975   // Check if the runtime trip count is too small when profile is available.
976   if (L->getHeader()->getParent()->hasProfileData()) {
977     if (auto ProfileTripCount = getLoopEstimatedTripCount(L)) {
978       if (*ProfileTripCount < FlatLoopTripCountThreshold)
979         return false;
980       else
981         UP.AllowExpensiveTripCount = true;
982     }
983   }
984 
985   // Reduce count based on the type of unrolling and the threshold values.
986   UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount;
987   if (!UP.Runtime) {
988     LLVM_DEBUG(
989         dbgs() << "  will not try to unroll loop with runtime trip count "
990                << "-unroll-runtime not given\n");
991     UP.Count = 0;
992     return false;
993   }
994   if (UP.Count == 0)
995     UP.Count = UP.DefaultUnrollRuntimeCount;
996 
997   // Reduce unroll count to be the largest power-of-two factor of
998   // the original count which satisfies the threshold limit.
999   while (UP.Count != 0 &&
1000          UCE.getUnrolledLoopSize(UP) > UP.PartialThreshold)
1001     UP.Count >>= 1;
1002 
1003 #ifndef NDEBUG
1004   unsigned OrigCount = UP.Count;
1005 #endif
1006 
1007   if (!UP.AllowRemainder && UP.Count != 0 && (TripMultiple % UP.Count) != 0) {
1008     while (UP.Count != 0 && TripMultiple % UP.Count != 0)
1009       UP.Count >>= 1;
1010     LLVM_DEBUG(
1011         dbgs() << "Remainder loop is restricted (that could architecture "
1012                   "specific or because the loop contains a convergent "
1013                   "instruction), so unroll count must divide the trip "
1014                   "multiple, "
1015                << TripMultiple << ".  Reducing unroll count from " << OrigCount
1016                << " to " << UP.Count << ".\n");
1017 
1018     using namespace ore;
1019 
1020     if (PragmaCount > 0 && !UP.AllowRemainder)
1021       ORE->emit([&]() {
1022         return OptimizationRemarkMissed(DEBUG_TYPE,
1023                                         "DifferentUnrollCountFromDirected",
1024                                         L->getStartLoc(), L->getHeader())
1025                << "Unable to unroll loop the number of times directed by "
1026                   "unroll_count pragma because remainder loop is restricted "
1027                   "(that could architecture specific or because the loop "
1028                   "contains a convergent instruction) and so must have an "
1029                   "unroll "
1030                   "count that divides the loop trip multiple of "
1031                << NV("TripMultiple", TripMultiple) << ".  Unrolling instead "
1032                << NV("UnrollCount", UP.Count) << " time(s).";
1033       });
1034   }
1035 
1036   if (UP.Count > UP.MaxCount)
1037     UP.Count = UP.MaxCount;
1038 
1039   if (MaxTripCount && UP.Count > MaxTripCount)
1040     UP.Count = MaxTripCount;
1041 
1042   LLVM_DEBUG(dbgs() << "  runtime unrolling with count: " << UP.Count
1043                     << "\n");
1044   if (UP.Count < 2)
1045     UP.Count = 0;
1046   return ExplicitUnroll;
1047 }
1048 
1049 static LoopUnrollResult tryToUnrollLoop(
1050     Loop *L, DominatorTree &DT, LoopInfo *LI, ScalarEvolution &SE,
1051     const TargetTransformInfo &TTI, AssumptionCache &AC,
1052     OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI,
1053     ProfileSummaryInfo *PSI, bool PreserveLCSSA, int OptLevel,
1054     bool OnlyWhenForced, bool ForgetAllSCEV, Optional<unsigned> ProvidedCount,
1055     Optional<unsigned> ProvidedThreshold, Optional<bool> ProvidedAllowPartial,
1056     Optional<bool> ProvidedRuntime, Optional<bool> ProvidedUpperBound,
1057     Optional<bool> ProvidedAllowPeeling,
1058     Optional<bool> ProvidedAllowProfileBasedPeeling,
1059     Optional<unsigned> ProvidedFullUnrollMaxCount) {
1060   LLVM_DEBUG(dbgs() << "Loop Unroll: F["
1061                     << L->getHeader()->getParent()->getName() << "] Loop %"
1062                     << L->getHeader()->getName() << "\n");
1063   TransformationMode TM = hasUnrollTransformation(L);
1064   if (TM & TM_Disable)
1065     return LoopUnrollResult::Unmodified;
1066   if (!L->isLoopSimplifyForm()) {
1067     LLVM_DEBUG(
1068         dbgs() << "  Not unrolling loop which is not in loop-simplify form.\n");
1069     return LoopUnrollResult::Unmodified;
1070   }
1071 
1072   // When automatic unrolling is disabled, do not unroll unless overridden for
1073   // this loop.
1074   if (OnlyWhenForced && !(TM & TM_Enable))
1075     return LoopUnrollResult::Unmodified;
1076 
1077   bool OptForSize = L->getHeader()->getParent()->hasOptSize();
1078   unsigned NumInlineCandidates;
1079   bool NotDuplicatable;
1080   bool Convergent;
1081   TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences(
1082       L, SE, TTI, BFI, PSI, OptLevel, ProvidedThreshold, ProvidedCount,
1083       ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound,
1084       ProvidedFullUnrollMaxCount);
1085   TargetTransformInfo::PeelingPreferences PP = gatherPeelingPreferences(
1086       L, SE, TTI, ProvidedAllowPeeling, ProvidedAllowProfileBasedPeeling, true);
1087 
1088   // Exit early if unrolling is disabled. For OptForSize, we pick the loop size
1089   // as threshold later on.
1090   if (UP.Threshold == 0 && (!UP.Partial || UP.PartialThreshold == 0) &&
1091       !OptForSize)
1092     return LoopUnrollResult::Unmodified;
1093 
1094   SmallPtrSet<const Value *, 32> EphValues;
1095   CodeMetrics::collectEphemeralValues(L, &AC, EphValues);
1096 
1097   unsigned LoopSize =
1098       ApproximateLoopSize(L, NumInlineCandidates, NotDuplicatable, Convergent,
1099                           TTI, EphValues, UP.BEInsns);
1100   LLVM_DEBUG(dbgs() << "  Loop Size = " << LoopSize << "\n");
1101   if (NotDuplicatable) {
1102     LLVM_DEBUG(dbgs() << "  Not unrolling loop which contains non-duplicatable"
1103                       << " instructions.\n");
1104     return LoopUnrollResult::Unmodified;
1105   }
1106 
1107   // When optimizing for size, use LoopSize + 1 as threshold (we use < Threshold
1108   // later), to (fully) unroll loops, if it does not increase code size.
1109   if (OptForSize)
1110     UP.Threshold = std::max(UP.Threshold, LoopSize + 1);
1111 
1112   if (NumInlineCandidates != 0) {
1113     LLVM_DEBUG(dbgs() << "  Not unrolling loop with inlinable calls.\n");
1114     return LoopUnrollResult::Unmodified;
1115   }
1116 
1117   // Find the smallest exact trip count for any exit. This is an upper bound
1118   // on the loop trip count, but an exit at an earlier iteration is still
1119   // possible. An unroll by the smallest exact trip count guarantees that all
1120   // brnaches relating to at least one exit can be eliminated. This is unlike
1121   // the max trip count, which only guarantees that the backedge can be broken.
1122   unsigned TripCount = 0;
1123   unsigned TripMultiple = 1;
1124   SmallVector<BasicBlock *, 8> ExitingBlocks;
1125   L->getExitingBlocks(ExitingBlocks);
1126   for (BasicBlock *ExitingBlock : ExitingBlocks)
1127     if (unsigned TC = SE.getSmallConstantTripCount(L, ExitingBlock))
1128       if (!TripCount || TC < TripCount)
1129         TripCount = TripMultiple = TC;
1130 
1131   if (!TripCount) {
1132     // If no exact trip count is known, determine the trip multiple of either
1133     // the loop latch or the single exiting block.
1134     // TODO: Relax for multiple exits.
1135     BasicBlock *ExitingBlock = L->getLoopLatch();
1136     if (!ExitingBlock || !L->isLoopExiting(ExitingBlock))
1137       ExitingBlock = L->getExitingBlock();
1138     if (ExitingBlock)
1139       TripMultiple = SE.getSmallConstantTripMultiple(L, ExitingBlock);
1140   }
1141 
1142   // If the loop contains a convergent operation, the prelude we'd add
1143   // to do the first few instructions before we hit the unrolled loop
1144   // is unsafe -- it adds a control-flow dependency to the convergent
1145   // operation.  Therefore restrict remainder loop (try unrolling without).
1146   //
1147   // TODO: This is quite conservative.  In practice, convergent_op()
1148   // is likely to be called unconditionally in the loop.  In this
1149   // case, the program would be ill-formed (on most architectures)
1150   // unless n were the same on all threads in a thread group.
1151   // Assuming n is the same on all threads, any kind of unrolling is
1152   // safe.  But currently llvm's notion of convergence isn't powerful
1153   // enough to express this.
1154   if (Convergent)
1155     UP.AllowRemainder = false;
1156 
1157   // Try to find the trip count upper bound if we cannot find the exact trip
1158   // count.
1159   unsigned MaxTripCount = 0;
1160   bool MaxOrZero = false;
1161   if (!TripCount) {
1162     MaxTripCount = SE.getSmallConstantMaxTripCount(L);
1163     MaxOrZero = SE.isBackedgeTakenCountMaxOrZero(L);
1164   }
1165 
1166   // computeUnrollCount() decides whether it is beneficial to use upper bound to
1167   // fully unroll the loop.
1168   bool UseUpperBound = false;
1169   bool IsCountSetExplicitly = computeUnrollCount(
1170       L, TTI, DT, LI, SE, EphValues, &ORE, TripCount, MaxTripCount, MaxOrZero,
1171       TripMultiple, LoopSize, UP, PP, UseUpperBound);
1172   if (!UP.Count)
1173     return LoopUnrollResult::Unmodified;
1174 
1175   if (PP.PeelCount) {
1176     assert(UP.Count == 1 && "Cannot perform peel and unroll in the same step");
1177     LLVM_DEBUG(dbgs() << "PEELING loop %" << L->getHeader()->getName()
1178                       << " with iteration count " << PP.PeelCount << "!\n");
1179     ORE.emit([&]() {
1180       return OptimizationRemark(DEBUG_TYPE, "Peeled", L->getStartLoc(),
1181                                 L->getHeader())
1182              << " peeled loop by " << ore::NV("PeelCount", PP.PeelCount)
1183              << " iterations";
1184     });
1185 
1186     if (peelLoop(L, PP.PeelCount, LI, &SE, &DT, &AC, PreserveLCSSA)) {
1187       simplifyLoopAfterUnroll(L, true, LI, &SE, &DT, &AC, &TTI);
1188       // If the loop was peeled, we already "used up" the profile information
1189       // we had, so we don't want to unroll or peel again.
1190       if (PP.PeelProfiledIterations)
1191         L->setLoopAlreadyUnrolled();
1192       return LoopUnrollResult::PartiallyUnrolled;
1193     }
1194     return LoopUnrollResult::Unmodified;
1195   }
1196 
1197   // At this point, UP.Runtime indicates that run-time unrolling is allowed.
1198   // However, we only want to actually perform it if we don't know the trip
1199   // count and the unroll count doesn't divide the known trip multiple.
1200   // TODO: This decision should probably be pushed up into
1201   // computeUnrollCount().
1202   UP.Runtime &= TripCount == 0 && TripMultiple % UP.Count != 0;
1203 
1204   // Save loop properties before it is transformed.
1205   MDNode *OrigLoopID = L->getLoopID();
1206 
1207   // Unroll the loop.
1208   Loop *RemainderLoop = nullptr;
1209   LoopUnrollResult UnrollResult = UnrollLoop(
1210       L,
1211       {UP.Count, UP.Force, UP.Runtime, UP.AllowExpensiveTripCount,
1212        UP.UnrollRemainder, ForgetAllSCEV},
1213       LI, &SE, &DT, &AC, &TTI, &ORE, PreserveLCSSA, &RemainderLoop);
1214   if (UnrollResult == LoopUnrollResult::Unmodified)
1215     return LoopUnrollResult::Unmodified;
1216 
1217   if (RemainderLoop) {
1218     Optional<MDNode *> RemainderLoopID =
1219         makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll,
1220                                         LLVMLoopUnrollFollowupRemainder});
1221     if (RemainderLoopID.hasValue())
1222       RemainderLoop->setLoopID(RemainderLoopID.getValue());
1223   }
1224 
1225   if (UnrollResult != LoopUnrollResult::FullyUnrolled) {
1226     Optional<MDNode *> NewLoopID =
1227         makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll,
1228                                         LLVMLoopUnrollFollowupUnrolled});
1229     if (NewLoopID.hasValue()) {
1230       L->setLoopID(NewLoopID.getValue());
1231 
1232       // Do not setLoopAlreadyUnrolled if loop attributes have been specified
1233       // explicitly.
1234       return UnrollResult;
1235     }
1236   }
1237 
1238   // If loop has an unroll count pragma or unrolled by explicitly set count
1239   // mark loop as unrolled to prevent unrolling beyond that requested.
1240   if (UnrollResult != LoopUnrollResult::FullyUnrolled && IsCountSetExplicitly)
1241     L->setLoopAlreadyUnrolled();
1242 
1243   return UnrollResult;
1244 }
1245 
1246 namespace {
1247 
1248 class LoopUnroll : public LoopPass {
1249 public:
1250   static char ID; // Pass ID, replacement for typeid
1251 
1252   int OptLevel;
1253 
1254   /// If false, use a cost model to determine whether unrolling of a loop is
1255   /// profitable. If true, only loops that explicitly request unrolling via
1256   /// metadata are considered. All other loops are skipped.
1257   bool OnlyWhenForced;
1258 
1259   /// If false, when SCEV is invalidated, only forget everything in the
1260   /// top-most loop (call forgetTopMostLoop), of the loop being processed.
1261   /// Otherwise, forgetAllLoops and rebuild when needed next.
1262   bool ForgetAllSCEV;
1263 
1264   Optional<unsigned> ProvidedCount;
1265   Optional<unsigned> ProvidedThreshold;
1266   Optional<bool> ProvidedAllowPartial;
1267   Optional<bool> ProvidedRuntime;
1268   Optional<bool> ProvidedUpperBound;
1269   Optional<bool> ProvidedAllowPeeling;
1270   Optional<bool> ProvidedAllowProfileBasedPeeling;
1271   Optional<unsigned> ProvidedFullUnrollMaxCount;
1272 
1273   LoopUnroll(int OptLevel = 2, bool OnlyWhenForced = false,
1274              bool ForgetAllSCEV = false, Optional<unsigned> Threshold = None,
1275              Optional<unsigned> Count = None,
1276              Optional<bool> AllowPartial = None, Optional<bool> Runtime = None,
1277              Optional<bool> UpperBound = None,
1278              Optional<bool> AllowPeeling = None,
1279              Optional<bool> AllowProfileBasedPeeling = None,
1280              Optional<unsigned> ProvidedFullUnrollMaxCount = None)
1281       : LoopPass(ID), OptLevel(OptLevel), OnlyWhenForced(OnlyWhenForced),
1282         ForgetAllSCEV(ForgetAllSCEV), ProvidedCount(std::move(Count)),
1283         ProvidedThreshold(Threshold), ProvidedAllowPartial(AllowPartial),
1284         ProvidedRuntime(Runtime), ProvidedUpperBound(UpperBound),
1285         ProvidedAllowPeeling(AllowPeeling),
1286         ProvidedAllowProfileBasedPeeling(AllowProfileBasedPeeling),
1287         ProvidedFullUnrollMaxCount(ProvidedFullUnrollMaxCount) {
1288     initializeLoopUnrollPass(*PassRegistry::getPassRegistry());
1289   }
1290 
1291   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
1292     if (skipLoop(L))
1293       return false;
1294 
1295     Function &F = *L->getHeader()->getParent();
1296 
1297     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1298     LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1299     ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1300     const TargetTransformInfo &TTI =
1301         getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1302     auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1303     // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
1304     // pass.  Function analyses need to be preserved across loop transformations
1305     // but ORE cannot be preserved (see comment before the pass definition).
1306     OptimizationRemarkEmitter ORE(&F);
1307     bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
1308 
1309     LoopUnrollResult Result = tryToUnrollLoop(
1310         L, DT, LI, SE, TTI, AC, ORE, nullptr, nullptr, PreserveLCSSA, OptLevel,
1311         OnlyWhenForced, ForgetAllSCEV, ProvidedCount, ProvidedThreshold,
1312         ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound,
1313         ProvidedAllowPeeling, ProvidedAllowProfileBasedPeeling,
1314         ProvidedFullUnrollMaxCount);
1315 
1316     if (Result == LoopUnrollResult::FullyUnrolled)
1317       LPM.markLoopAsDeleted(*L);
1318 
1319     return Result != LoopUnrollResult::Unmodified;
1320   }
1321 
1322   /// This transformation requires natural loop information & requires that
1323   /// loop preheaders be inserted into the CFG...
1324   void getAnalysisUsage(AnalysisUsage &AU) const override {
1325     AU.addRequired<AssumptionCacheTracker>();
1326     AU.addRequired<TargetTransformInfoWrapperPass>();
1327     // FIXME: Loop passes are required to preserve domtree, and for now we just
1328     // recreate dom info if anything gets unrolled.
1329     getLoopAnalysisUsage(AU);
1330   }
1331 };
1332 
1333 } // end anonymous namespace
1334 
1335 char LoopUnroll::ID = 0;
1336 
1337 INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
1338 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1339 INITIALIZE_PASS_DEPENDENCY(LoopPass)
1340 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1341 INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
1342 
1343 Pass *llvm::createLoopUnrollPass(int OptLevel, bool OnlyWhenForced,
1344                                  bool ForgetAllSCEV, int Threshold, int Count,
1345                                  int AllowPartial, int Runtime, int UpperBound,
1346                                  int AllowPeeling) {
1347   // TODO: It would make more sense for this function to take the optionals
1348   // directly, but that's dangerous since it would silently break out of tree
1349   // callers.
1350   return new LoopUnroll(
1351       OptLevel, OnlyWhenForced, ForgetAllSCEV,
1352       Threshold == -1 ? None : Optional<unsigned>(Threshold),
1353       Count == -1 ? None : Optional<unsigned>(Count),
1354       AllowPartial == -1 ? None : Optional<bool>(AllowPartial),
1355       Runtime == -1 ? None : Optional<bool>(Runtime),
1356       UpperBound == -1 ? None : Optional<bool>(UpperBound),
1357       AllowPeeling == -1 ? None : Optional<bool>(AllowPeeling));
1358 }
1359 
1360 Pass *llvm::createSimpleLoopUnrollPass(int OptLevel, bool OnlyWhenForced,
1361                                        bool ForgetAllSCEV) {
1362   return createLoopUnrollPass(OptLevel, OnlyWhenForced, ForgetAllSCEV, -1, -1,
1363                               0, 0, 0, 1);
1364 }
1365 
1366 PreservedAnalyses LoopFullUnrollPass::run(Loop &L, LoopAnalysisManager &AM,
1367                                           LoopStandardAnalysisResults &AR,
1368                                           LPMUpdater &Updater) {
1369   // For the new PM, we can't use OptimizationRemarkEmitter as an analysis
1370   // pass. Function analyses need to be preserved across loop transformations
1371   // but ORE cannot be preserved (see comment before the pass definition).
1372   OptimizationRemarkEmitter ORE(L.getHeader()->getParent());
1373 
1374   // Keep track of the previous loop structure so we can identify new loops
1375   // created by unrolling.
1376   Loop *ParentL = L.getParentLoop();
1377   SmallPtrSet<Loop *, 4> OldLoops;
1378   if (ParentL)
1379     OldLoops.insert(ParentL->begin(), ParentL->end());
1380   else
1381     OldLoops.insert(AR.LI.begin(), AR.LI.end());
1382 
1383   std::string LoopName = std::string(L.getName());
1384 
1385   bool Changed = tryToUnrollLoop(&L, AR.DT, &AR.LI, AR.SE, AR.TTI, AR.AC, ORE,
1386                                  /*BFI*/ nullptr, /*PSI*/ nullptr,
1387                                  /*PreserveLCSSA*/ true, OptLevel,
1388                                  OnlyWhenForced, ForgetSCEV, /*Count*/ None,
1389                                  /*Threshold*/ None, /*AllowPartial*/ false,
1390                                  /*Runtime*/ false, /*UpperBound*/ false,
1391                                  /*AllowPeeling*/ true,
1392                                  /*AllowProfileBasedPeeling*/ false,
1393                                  /*FullUnrollMaxCount*/ None) !=
1394                  LoopUnrollResult::Unmodified;
1395   if (!Changed)
1396     return PreservedAnalyses::all();
1397 
1398   // The parent must not be damaged by unrolling!
1399 #ifndef NDEBUG
1400   if (ParentL)
1401     ParentL->verifyLoop();
1402 #endif
1403 
1404   // Unrolling can do several things to introduce new loops into a loop nest:
1405   // - Full unrolling clones child loops within the current loop but then
1406   //   removes the current loop making all of the children appear to be new
1407   //   sibling loops.
1408   //
1409   // When a new loop appears as a sibling loop after fully unrolling,
1410   // its nesting structure has fundamentally changed and we want to revisit
1411   // it to reflect that.
1412   //
1413   // When unrolling has removed the current loop, we need to tell the
1414   // infrastructure that it is gone.
1415   //
1416   // Finally, we support a debugging/testing mode where we revisit child loops
1417   // as well. These are not expected to require further optimizations as either
1418   // they or the loop they were cloned from have been directly visited already.
1419   // But the debugging mode allows us to check this assumption.
1420   bool IsCurrentLoopValid = false;
1421   SmallVector<Loop *, 4> SibLoops;
1422   if (ParentL)
1423     SibLoops.append(ParentL->begin(), ParentL->end());
1424   else
1425     SibLoops.append(AR.LI.begin(), AR.LI.end());
1426   erase_if(SibLoops, [&](Loop *SibLoop) {
1427     if (SibLoop == &L) {
1428       IsCurrentLoopValid = true;
1429       return true;
1430     }
1431 
1432     // Otherwise erase the loop from the list if it was in the old loops.
1433     return OldLoops.contains(SibLoop);
1434   });
1435   Updater.addSiblingLoops(SibLoops);
1436 
1437   if (!IsCurrentLoopValid) {
1438     Updater.markLoopAsDeleted(L, LoopName);
1439   } else {
1440     // We can only walk child loops if the current loop remained valid.
1441     if (UnrollRevisitChildLoops) {
1442       // Walk *all* of the child loops.
1443       SmallVector<Loop *, 4> ChildLoops(L.begin(), L.end());
1444       Updater.addChildLoops(ChildLoops);
1445     }
1446   }
1447 
1448   return getLoopPassPreservedAnalyses();
1449 }
1450 
1451 PreservedAnalyses LoopUnrollPass::run(Function &F,
1452                                       FunctionAnalysisManager &AM) {
1453   auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
1454   auto &LI = AM.getResult<LoopAnalysis>(F);
1455   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
1456   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1457   auto &AC = AM.getResult<AssumptionAnalysis>(F);
1458   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1459 
1460   LoopAnalysisManager *LAM = nullptr;
1461   if (auto *LAMProxy = AM.getCachedResult<LoopAnalysisManagerFunctionProxy>(F))
1462     LAM = &LAMProxy->getManager();
1463 
1464   auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
1465   ProfileSummaryInfo *PSI =
1466       MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
1467   auto *BFI = (PSI && PSI->hasProfileSummary()) ?
1468       &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr;
1469 
1470   bool Changed = false;
1471 
1472   // The unroller requires loops to be in simplified form, and also needs LCSSA.
1473   // Since simplification may add new inner loops, it has to run before the
1474   // legality and profitability checks. This means running the loop unroller
1475   // will simplify all loops, regardless of whether anything end up being
1476   // unrolled.
1477   for (auto &L : LI) {
1478     Changed |=
1479         simplifyLoop(L, &DT, &LI, &SE, &AC, nullptr, false /* PreserveLCSSA */);
1480     Changed |= formLCSSARecursively(*L, DT, &LI, &SE);
1481   }
1482 
1483   // Add the loop nests in the reverse order of LoopInfo. See method
1484   // declaration.
1485   SmallPriorityWorklist<Loop *, 4> Worklist;
1486   appendLoopsToWorklist(LI, Worklist);
1487 
1488   while (!Worklist.empty()) {
1489     // Because the LoopInfo stores the loops in RPO, we walk the worklist
1490     // from back to front so that we work forward across the CFG, which
1491     // for unrolling is only needed to get optimization remarks emitted in
1492     // a forward order.
1493     Loop &L = *Worklist.pop_back_val();
1494 #ifndef NDEBUG
1495     Loop *ParentL = L.getParentLoop();
1496 #endif
1497 
1498     // Check if the profile summary indicates that the profiled application
1499     // has a huge working set size, in which case we disable peeling to avoid
1500     // bloating it further.
1501     Optional<bool> LocalAllowPeeling = UnrollOpts.AllowPeeling;
1502     if (PSI && PSI->hasHugeWorkingSetSize())
1503       LocalAllowPeeling = false;
1504     std::string LoopName = std::string(L.getName());
1505     // The API here is quite complex to call and we allow to select some
1506     // flavors of unrolling during construction time (by setting UnrollOpts).
1507     LoopUnrollResult Result = tryToUnrollLoop(
1508         &L, DT, &LI, SE, TTI, AC, ORE, BFI, PSI,
1509         /*PreserveLCSSA*/ true, UnrollOpts.OptLevel, UnrollOpts.OnlyWhenForced,
1510         UnrollOpts.ForgetSCEV, /*Count*/ None,
1511         /*Threshold*/ None, UnrollOpts.AllowPartial, UnrollOpts.AllowRuntime,
1512         UnrollOpts.AllowUpperBound, LocalAllowPeeling,
1513         UnrollOpts.AllowProfileBasedPeeling, UnrollOpts.FullUnrollMaxCount);
1514     Changed |= Result != LoopUnrollResult::Unmodified;
1515 
1516     // The parent must not be damaged by unrolling!
1517 #ifndef NDEBUG
1518     if (Result != LoopUnrollResult::Unmodified && ParentL)
1519       ParentL->verifyLoop();
1520 #endif
1521 
1522     // Clear any cached analysis results for L if we removed it completely.
1523     if (LAM && Result == LoopUnrollResult::FullyUnrolled)
1524       LAM->clear(L, LoopName);
1525   }
1526 
1527   if (!Changed)
1528     return PreservedAnalyses::all();
1529 
1530   return getLoopPassPreservedAnalyses();
1531 }
1532