1 //===- NaryReassociate.cpp - Reassociate n-ary expressions ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass reassociates n-ary add expressions and eliminates the redundancy
10 // exposed by the reassociation.
11 //
12 // A motivating example:
13 //
14 //   void foo(int a, int b) {
15 //     bar(a + b);
16 //     bar((a + 2) + b);
17 //   }
18 //
19 // An ideal compiler should reassociate (a + 2) + b to (a + b) + 2 and simplify
20 // the above code to
21 //
22 //   int t = a + b;
23 //   bar(t);
24 //   bar(t + 2);
25 //
26 // However, the Reassociate pass is unable to do that because it processes each
27 // instruction individually and believes (a + 2) + b is the best form according
28 // to its rank system.
29 //
30 // To address this limitation, NaryReassociate reassociates an expression in a
31 // form that reuses existing instructions. As a result, NaryReassociate can
32 // reassociate (a + 2) + b in the example to (a + b) + 2 because it detects that
33 // (a + b) is computed before.
34 //
35 // NaryReassociate works as follows. For every instruction in the form of (a +
36 // b) + c, it checks whether a + c or b + c is already computed by a dominating
37 // instruction. If so, it then reassociates (a + b) + c into (a + c) + b or (b +
38 // c) + a and removes the redundancy accordingly. To efficiently look up whether
39 // an expression is computed before, we store each instruction seen and its SCEV
40 // into an SCEV-to-instruction map.
41 //
42 // Although the algorithm pattern-matches only ternary additions, it
43 // automatically handles many >3-ary expressions by walking through the function
44 // in the depth-first order. For example, given
45 //
46 //   (a + c) + d
47 //   ((a + b) + c) + d
48 //
49 // NaryReassociate first rewrites (a + b) + c to (a + c) + b, and then rewrites
50 // ((a + c) + b) + d into ((a + c) + d) + b.
51 //
52 // Finally, the above dominator-based algorithm may need to be run multiple
53 // iterations before emitting optimal code. One source of this need is that we
54 // only split an operand when it is used only once. The above algorithm can
55 // eliminate an instruction and decrease the usage count of its operands. As a
56 // result, an instruction that previously had multiple uses may become a
57 // single-use instruction and thus eligible for split consideration. For
58 // example,
59 //
60 //   ac = a + c
61 //   ab = a + b
62 //   abc = ab + c
63 //   ab2 = ab + b
64 //   ab2c = ab2 + c
65 //
66 // In the first iteration, we cannot reassociate abc to ac+b because ab is used
67 // twice. However, we can reassociate ab2c to abc+b in the first iteration. As a
68 // result, ab2 becomes dead and ab will be used only once in the second
69 // iteration.
70 //
71 // Limitations and TODO items:
72 //
73 // 1) We only considers n-ary adds and muls for now. This should be extended
74 // and generalized.
75 //
76 //===----------------------------------------------------------------------===//
77 
78 #include "llvm/Transforms/Scalar/NaryReassociate.h"
79 #include "llvm/ADT/DepthFirstIterator.h"
80 #include "llvm/ADT/SmallVector.h"
81 #include "llvm/Analysis/AssumptionCache.h"
82 #include "llvm/Analysis/ScalarEvolution.h"
83 #include "llvm/Analysis/TargetLibraryInfo.h"
84 #include "llvm/Analysis/TargetTransformInfo.h"
85 #include "llvm/Analysis/ValueTracking.h"
86 #include "llvm/IR/BasicBlock.h"
87 #include "llvm/IR/Constants.h"
88 #include "llvm/IR/DataLayout.h"
89 #include "llvm/IR/DerivedTypes.h"
90 #include "llvm/IR/Dominators.h"
91 #include "llvm/IR/Function.h"
92 #include "llvm/IR/GetElementPtrTypeIterator.h"
93 #include "llvm/IR/IRBuilder.h"
94 #include "llvm/IR/InstrTypes.h"
95 #include "llvm/IR/Instruction.h"
96 #include "llvm/IR/Instructions.h"
97 #include "llvm/IR/Module.h"
98 #include "llvm/IR/Operator.h"
99 #include "llvm/IR/PatternMatch.h"
100 #include "llvm/IR/Type.h"
101 #include "llvm/IR/Value.h"
102 #include "llvm/IR/ValueHandle.h"
103 #include "llvm/InitializePasses.h"
104 #include "llvm/Pass.h"
105 #include "llvm/Support/Casting.h"
106 #include "llvm/Support/ErrorHandling.h"
107 #include "llvm/Transforms/Scalar.h"
108 #include "llvm/Transforms/Utils/Local.h"
109 #include <cassert>
110 #include <cstdint>
111 
112 using namespace llvm;
113 using namespace PatternMatch;
114 
115 #define DEBUG_TYPE "nary-reassociate"
116 
117 namespace {
118 
119 class NaryReassociateLegacyPass : public FunctionPass {
120 public:
121   static char ID;
122 
123   NaryReassociateLegacyPass() : FunctionPass(ID) {
124     initializeNaryReassociateLegacyPassPass(*PassRegistry::getPassRegistry());
125   }
126 
127   bool doInitialization(Module &M) override {
128     return false;
129   }
130 
131   bool runOnFunction(Function &F) override;
132 
133   void getAnalysisUsage(AnalysisUsage &AU) const override {
134     AU.addPreserved<DominatorTreeWrapperPass>();
135     AU.addPreserved<ScalarEvolutionWrapperPass>();
136     AU.addPreserved<TargetLibraryInfoWrapperPass>();
137     AU.addRequired<AssumptionCacheTracker>();
138     AU.addRequired<DominatorTreeWrapperPass>();
139     AU.addRequired<ScalarEvolutionWrapperPass>();
140     AU.addRequired<TargetLibraryInfoWrapperPass>();
141     AU.addRequired<TargetTransformInfoWrapperPass>();
142     AU.setPreservesCFG();
143   }
144 
145 private:
146   NaryReassociatePass Impl;
147 };
148 
149 } // end anonymous namespace
150 
151 char NaryReassociateLegacyPass::ID = 0;
152 
153 INITIALIZE_PASS_BEGIN(NaryReassociateLegacyPass, "nary-reassociate",
154                       "Nary reassociation", false, false)
155 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
156 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
157 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
158 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
159 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
160 INITIALIZE_PASS_END(NaryReassociateLegacyPass, "nary-reassociate",
161                     "Nary reassociation", false, false)
162 
163 FunctionPass *llvm::createNaryReassociatePass() {
164   return new NaryReassociateLegacyPass();
165 }
166 
167 bool NaryReassociateLegacyPass::runOnFunction(Function &F) {
168   if (skipFunction(F))
169     return false;
170 
171   auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
172   auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
173   auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
174   auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
175   auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
176 
177   return Impl.runImpl(F, AC, DT, SE, TLI, TTI);
178 }
179 
180 PreservedAnalyses NaryReassociatePass::run(Function &F,
181                                            FunctionAnalysisManager &AM) {
182   auto *AC = &AM.getResult<AssumptionAnalysis>(F);
183   auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
184   auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
185   auto *TLI = &AM.getResult<TargetLibraryAnalysis>(F);
186   auto *TTI = &AM.getResult<TargetIRAnalysis>(F);
187 
188   if (!runImpl(F, AC, DT, SE, TLI, TTI))
189     return PreservedAnalyses::all();
190 
191   PreservedAnalyses PA;
192   PA.preserveSet<CFGAnalyses>();
193   PA.preserve<ScalarEvolutionAnalysis>();
194   return PA;
195 }
196 
197 bool NaryReassociatePass::runImpl(Function &F, AssumptionCache *AC_,
198                                   DominatorTree *DT_, ScalarEvolution *SE_,
199                                   TargetLibraryInfo *TLI_,
200                                   TargetTransformInfo *TTI_) {
201   AC = AC_;
202   DT = DT_;
203   SE = SE_;
204   TLI = TLI_;
205   TTI = TTI_;
206   DL = &F.getParent()->getDataLayout();
207 
208   bool Changed = false, ChangedInThisIteration;
209   do {
210     ChangedInThisIteration = doOneIteration(F);
211     Changed |= ChangedInThisIteration;
212   } while (ChangedInThisIteration);
213   return Changed;
214 }
215 
216 // Whitelist the instruction types NaryReassociate handles for now.
217 static bool isPotentiallyNaryReassociable(Instruction *I) {
218   switch (I->getOpcode()) {
219   case Instruction::Add:
220   case Instruction::GetElementPtr:
221   case Instruction::Mul:
222     return true;
223   default:
224     return false;
225   }
226 }
227 
228 bool NaryReassociatePass::doOneIteration(Function &F) {
229   bool Changed = false;
230   SeenExprs.clear();
231   // Process the basic blocks in a depth first traversal of the dominator
232   // tree. This order ensures that all bases of a candidate are in Candidates
233   // when we process it.
234   for (const auto Node : depth_first(DT)) {
235     BasicBlock *BB = Node->getBlock();
236     for (auto I = BB->begin(); I != BB->end(); ++I) {
237       if (SE->isSCEVable(I->getType()) && isPotentiallyNaryReassociable(&*I)) {
238         const SCEV *OldSCEV = SE->getSCEV(&*I);
239         if (Instruction *NewI = tryReassociate(&*I)) {
240           Changed = true;
241           SE->forgetValue(&*I);
242           I->replaceAllUsesWith(NewI);
243           WeakVH NewIExist = NewI;
244           // If SeenExprs/NewIExist contains I's WeakTrackingVH/WeakVH, that
245           // entry will be replaced with nullptr if deleted.
246           RecursivelyDeleteTriviallyDeadInstructions(&*I, TLI);
247           if (!NewIExist) {
248             // Rare occation where the new instruction (NewI) have been removed,
249             // probably due to parts of the input code was dead from the
250             // beginning, reset the iterator and start over from the beginning
251             I = BB->begin();
252             continue;
253           }
254           I = NewI->getIterator();
255         }
256         // Add the rewritten instruction to SeenExprs; the original instruction
257         // is deleted.
258         const SCEV *NewSCEV = SE->getSCEV(&*I);
259         SeenExprs[NewSCEV].push_back(WeakTrackingVH(&*I));
260         // Ideally, NewSCEV should equal OldSCEV because tryReassociate(I)
261         // is equivalent to I. However, ScalarEvolution::getSCEV may
262         // weaken nsw causing NewSCEV not to equal OldSCEV. For example, suppose
263         // we reassociate
264         //   I = &a[sext(i +nsw j)] // assuming sizeof(a[0]) = 4
265         // to
266         //   NewI = &a[sext(i)] + sext(j).
267         //
268         // ScalarEvolution computes
269         //   getSCEV(I)    = a + 4 * sext(i + j)
270         //   getSCEV(newI) = a + 4 * sext(i) + 4 * sext(j)
271         // which are different SCEVs.
272         //
273         // To alleviate this issue of ScalarEvolution not always capturing
274         // equivalence, we add I to SeenExprs[OldSCEV] as well so that we can
275         // map both SCEV before and after tryReassociate(I) to I.
276         //
277         // This improvement is exercised in @reassociate_gep_nsw in nary-gep.ll.
278         if (NewSCEV != OldSCEV)
279           SeenExprs[OldSCEV].push_back(WeakTrackingVH(&*I));
280       }
281     }
282   }
283   return Changed;
284 }
285 
286 Instruction *NaryReassociatePass::tryReassociate(Instruction *I) {
287   switch (I->getOpcode()) {
288   case Instruction::Add:
289   case Instruction::Mul:
290     return tryReassociateBinaryOp(cast<BinaryOperator>(I));
291   case Instruction::GetElementPtr:
292     return tryReassociateGEP(cast<GetElementPtrInst>(I));
293   default:
294     llvm_unreachable("should be filtered out by isPotentiallyNaryReassociable");
295   }
296 }
297 
298 static bool isGEPFoldable(GetElementPtrInst *GEP,
299                           const TargetTransformInfo *TTI) {
300   SmallVector<const Value*, 4> Indices;
301   for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I)
302     Indices.push_back(*I);
303   return TTI->getGEPCost(GEP->getSourceElementType(), GEP->getPointerOperand(),
304                          Indices) == TargetTransformInfo::TCC_Free;
305 }
306 
307 Instruction *NaryReassociatePass::tryReassociateGEP(GetElementPtrInst *GEP) {
308   // Not worth reassociating GEP if it is foldable.
309   if (isGEPFoldable(GEP, TTI))
310     return nullptr;
311 
312   gep_type_iterator GTI = gep_type_begin(*GEP);
313   for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
314     if (GTI.isSequential()) {
315       if (auto *NewGEP = tryReassociateGEPAtIndex(GEP, I - 1,
316                                                   GTI.getIndexedType())) {
317         return NewGEP;
318       }
319     }
320   }
321   return nullptr;
322 }
323 
324 bool NaryReassociatePass::requiresSignExtension(Value *Index,
325                                                 GetElementPtrInst *GEP) {
326   unsigned PointerSizeInBits =
327       DL->getPointerSizeInBits(GEP->getType()->getPointerAddressSpace());
328   return cast<IntegerType>(Index->getType())->getBitWidth() < PointerSizeInBits;
329 }
330 
331 GetElementPtrInst *
332 NaryReassociatePass::tryReassociateGEPAtIndex(GetElementPtrInst *GEP,
333                                               unsigned I, Type *IndexedType) {
334   Value *IndexToSplit = GEP->getOperand(I + 1);
335   if (SExtInst *SExt = dyn_cast<SExtInst>(IndexToSplit)) {
336     IndexToSplit = SExt->getOperand(0);
337   } else if (ZExtInst *ZExt = dyn_cast<ZExtInst>(IndexToSplit)) {
338     // zext can be treated as sext if the source is non-negative.
339     if (isKnownNonNegative(ZExt->getOperand(0), *DL, 0, AC, GEP, DT))
340       IndexToSplit = ZExt->getOperand(0);
341   }
342 
343   if (AddOperator *AO = dyn_cast<AddOperator>(IndexToSplit)) {
344     // If the I-th index needs sext and the underlying add is not equipped with
345     // nsw, we cannot split the add because
346     //   sext(LHS + RHS) != sext(LHS) + sext(RHS).
347     if (requiresSignExtension(IndexToSplit, GEP) &&
348         computeOverflowForSignedAdd(AO, *DL, AC, GEP, DT) !=
349             OverflowResult::NeverOverflows)
350       return nullptr;
351 
352     Value *LHS = AO->getOperand(0), *RHS = AO->getOperand(1);
353     // IndexToSplit = LHS + RHS.
354     if (auto *NewGEP = tryReassociateGEPAtIndex(GEP, I, LHS, RHS, IndexedType))
355       return NewGEP;
356     // Symmetrically, try IndexToSplit = RHS + LHS.
357     if (LHS != RHS) {
358       if (auto *NewGEP =
359               tryReassociateGEPAtIndex(GEP, I, RHS, LHS, IndexedType))
360         return NewGEP;
361     }
362   }
363   return nullptr;
364 }
365 
366 GetElementPtrInst *
367 NaryReassociatePass::tryReassociateGEPAtIndex(GetElementPtrInst *GEP,
368                                               unsigned I, Value *LHS,
369                                               Value *RHS, Type *IndexedType) {
370   // Look for GEP's closest dominator that has the same SCEV as GEP except that
371   // the I-th index is replaced with LHS.
372   SmallVector<const SCEV *, 4> IndexExprs;
373   for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
374     IndexExprs.push_back(SE->getSCEV(*Index));
375   // Replace the I-th index with LHS.
376   IndexExprs[I] = SE->getSCEV(LHS);
377   if (isKnownNonNegative(LHS, *DL, 0, AC, GEP, DT) &&
378       DL->getTypeSizeInBits(LHS->getType()) <
379           DL->getTypeSizeInBits(GEP->getOperand(I)->getType())) {
380     // Zero-extend LHS if it is non-negative. InstCombine canonicalizes sext to
381     // zext if the source operand is proved non-negative. We should do that
382     // consistently so that CandidateExpr more likely appears before. See
383     // @reassociate_gep_assume for an example of this canonicalization.
384     IndexExprs[I] =
385         SE->getZeroExtendExpr(IndexExprs[I], GEP->getOperand(I)->getType());
386   }
387   const SCEV *CandidateExpr = SE->getGEPExpr(cast<GEPOperator>(GEP),
388                                              IndexExprs);
389 
390   Value *Candidate = findClosestMatchingDominator(CandidateExpr, GEP);
391   if (Candidate == nullptr)
392     return nullptr;
393 
394   IRBuilder<> Builder(GEP);
395   // Candidate does not necessarily have the same pointer type as GEP. Use
396   // bitcast or pointer cast to make sure they have the same type, so that the
397   // later RAUW doesn't complain.
398   Candidate = Builder.CreateBitOrPointerCast(Candidate, GEP->getType());
399   assert(Candidate->getType() == GEP->getType());
400 
401   // NewGEP = (char *)Candidate + RHS * sizeof(IndexedType)
402   uint64_t IndexedSize = DL->getTypeAllocSize(IndexedType);
403   Type *ElementType = GEP->getResultElementType();
404   uint64_t ElementSize = DL->getTypeAllocSize(ElementType);
405   // Another less rare case: because I is not necessarily the last index of the
406   // GEP, the size of the type at the I-th index (IndexedSize) is not
407   // necessarily divisible by ElementSize. For example,
408   //
409   // #pragma pack(1)
410   // struct S {
411   //   int a[3];
412   //   int64 b[8];
413   // };
414   // #pragma pack()
415   //
416   // sizeof(S) = 100 is indivisible by sizeof(int64) = 8.
417   //
418   // TODO: bail out on this case for now. We could emit uglygep.
419   if (IndexedSize % ElementSize != 0)
420     return nullptr;
421 
422   // NewGEP = &Candidate[RHS * (sizeof(IndexedType) / sizeof(Candidate[0])));
423   Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
424   if (RHS->getType() != IntPtrTy)
425     RHS = Builder.CreateSExtOrTrunc(RHS, IntPtrTy);
426   if (IndexedSize != ElementSize) {
427     RHS = Builder.CreateMul(
428         RHS, ConstantInt::get(IntPtrTy, IndexedSize / ElementSize));
429   }
430   GetElementPtrInst *NewGEP = cast<GetElementPtrInst>(
431       Builder.CreateGEP(GEP->getResultElementType(), Candidate, RHS));
432   NewGEP->setIsInBounds(GEP->isInBounds());
433   NewGEP->takeName(GEP);
434   return NewGEP;
435 }
436 
437 Instruction *NaryReassociatePass::tryReassociateBinaryOp(BinaryOperator *I) {
438   Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
439   // There is no need to reassociate 0.
440   if (SE->getSCEV(I)->isZero())
441     return nullptr;
442   if (auto *NewI = tryReassociateBinaryOp(LHS, RHS, I))
443     return NewI;
444   if (auto *NewI = tryReassociateBinaryOp(RHS, LHS, I))
445     return NewI;
446   return nullptr;
447 }
448 
449 Instruction *NaryReassociatePass::tryReassociateBinaryOp(Value *LHS, Value *RHS,
450                                                          BinaryOperator *I) {
451   Value *A = nullptr, *B = nullptr;
452   // To be conservative, we reassociate I only when it is the only user of (A op
453   // B).
454   if (LHS->hasOneUse() && matchTernaryOp(I, LHS, A, B)) {
455     // I = (A op B) op RHS
456     //   = (A op RHS) op B or (B op RHS) op A
457     const SCEV *AExpr = SE->getSCEV(A), *BExpr = SE->getSCEV(B);
458     const SCEV *RHSExpr = SE->getSCEV(RHS);
459     if (BExpr != RHSExpr) {
460       if (auto *NewI =
461               tryReassociatedBinaryOp(getBinarySCEV(I, AExpr, RHSExpr), B, I))
462         return NewI;
463     }
464     if (AExpr != RHSExpr) {
465       if (auto *NewI =
466               tryReassociatedBinaryOp(getBinarySCEV(I, BExpr, RHSExpr), A, I))
467         return NewI;
468     }
469   }
470   return nullptr;
471 }
472 
473 Instruction *NaryReassociatePass::tryReassociatedBinaryOp(const SCEV *LHSExpr,
474                                                           Value *RHS,
475                                                           BinaryOperator *I) {
476   // Look for the closest dominator LHS of I that computes LHSExpr, and replace
477   // I with LHS op RHS.
478   auto *LHS = findClosestMatchingDominator(LHSExpr, I);
479   if (LHS == nullptr)
480     return nullptr;
481 
482   Instruction *NewI = nullptr;
483   switch (I->getOpcode()) {
484   case Instruction::Add:
485     NewI = BinaryOperator::CreateAdd(LHS, RHS, "", I);
486     break;
487   case Instruction::Mul:
488     NewI = BinaryOperator::CreateMul(LHS, RHS, "", I);
489     break;
490   default:
491     llvm_unreachable("Unexpected instruction.");
492   }
493   NewI->takeName(I);
494   return NewI;
495 }
496 
497 bool NaryReassociatePass::matchTernaryOp(BinaryOperator *I, Value *V,
498                                          Value *&Op1, Value *&Op2) {
499   switch (I->getOpcode()) {
500   case Instruction::Add:
501     return match(V, m_Add(m_Value(Op1), m_Value(Op2)));
502   case Instruction::Mul:
503     return match(V, m_Mul(m_Value(Op1), m_Value(Op2)));
504   default:
505     llvm_unreachable("Unexpected instruction.");
506   }
507   return false;
508 }
509 
510 const SCEV *NaryReassociatePass::getBinarySCEV(BinaryOperator *I,
511                                                const SCEV *LHS,
512                                                const SCEV *RHS) {
513   switch (I->getOpcode()) {
514   case Instruction::Add:
515     return SE->getAddExpr(LHS, RHS);
516   case Instruction::Mul:
517     return SE->getMulExpr(LHS, RHS);
518   default:
519     llvm_unreachable("Unexpected instruction.");
520   }
521   return nullptr;
522 }
523 
524 Instruction *
525 NaryReassociatePass::findClosestMatchingDominator(const SCEV *CandidateExpr,
526                                                   Instruction *Dominatee) {
527   auto Pos = SeenExprs.find(CandidateExpr);
528   if (Pos == SeenExprs.end())
529     return nullptr;
530 
531   auto &Candidates = Pos->second;
532   // Because we process the basic blocks in pre-order of the dominator tree, a
533   // candidate that doesn't dominate the current instruction won't dominate any
534   // future instruction either. Therefore, we pop it out of the stack. This
535   // optimization makes the algorithm O(n).
536   while (!Candidates.empty()) {
537     // Candidates stores WeakTrackingVHs, so a candidate can be nullptr if it's
538     // removed
539     // during rewriting.
540     if (Value *Candidate = Candidates.back()) {
541       Instruction *CandidateInstruction = cast<Instruction>(Candidate);
542       if (DT->dominates(CandidateInstruction, Dominatee))
543         return CandidateInstruction;
544     }
545     Candidates.pop_back();
546   }
547   return nullptr;
548 }
549