1 //===- NewGVN.cpp - Global Value Numbering Pass ---------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This file implements the new LLVM's Global Value Numbering pass.
11 /// GVN partitions values computed by a function into congruence classes.
12 /// Values ending up in the same congruence class are guaranteed to be the same
13 /// for every execution of the program. In that respect, congruency is a
14 /// compile-time approximation of equivalence of values at runtime.
15 /// The algorithm implemented here uses a sparse formulation and it's based
16 /// on the ideas described in the paper:
17 /// "A Sparse Algorithm for Predicated Global Value Numbering" from
18 /// Karthik Gargi.
19 ///
20 /// A brief overview of the algorithm: The algorithm is essentially the same as
21 /// the standard RPO value numbering algorithm (a good reference is the paper
22 /// "SCC based value numbering" by L. Taylor Simpson) with one major difference:
23 /// The RPO algorithm proceeds, on every iteration, to process every reachable
24 /// block and every instruction in that block.  This is because the standard RPO
25 /// algorithm does not track what things have the same value number, it only
26 /// tracks what the value number of a given operation is (the mapping is
27 /// operation -> value number).  Thus, when a value number of an operation
28 /// changes, it must reprocess everything to ensure all uses of a value number
29 /// get updated properly.  In constrast, the sparse algorithm we use *also*
30 /// tracks what operations have a given value number (IE it also tracks the
31 /// reverse mapping from value number -> operations with that value number), so
32 /// that it only needs to reprocess the instructions that are affected when
33 /// something's value number changes.  The vast majority of complexity and code
34 /// in this file is devoted to tracking what value numbers could change for what
35 /// instructions when various things happen.  The rest of the algorithm is
36 /// devoted to performing symbolic evaluation, forward propagation, and
37 /// simplification of operations based on the value numbers deduced so far
38 ///
39 /// In order to make the GVN mostly-complete, we use a technique derived from
40 /// "Detection of Redundant Expressions: A Complete and Polynomial-time
41 /// Algorithm in SSA" by R.R. Pai.  The source of incompleteness in most SSA
42 /// based GVN algorithms is related to their inability to detect equivalence
43 /// between phi of ops (IE phi(a+b, c+d)) and op of phis (phi(a,c) + phi(b, d)).
44 /// We resolve this issue by generating the equivalent "phi of ops" form for
45 /// each op of phis we see, in a way that only takes polynomial time to resolve.
46 ///
47 /// We also do not perform elimination by using any published algorithm.  All
48 /// published algorithms are O(Instructions). Instead, we use a technique that
49 /// is O(number of operations with the same value number), enabling us to skip
50 /// trying to eliminate things that have unique value numbers.
51 //
52 //===----------------------------------------------------------------------===//
53 
54 #include "llvm/Transforms/Scalar/NewGVN.h"
55 #include "llvm/ADT/ArrayRef.h"
56 #include "llvm/ADT/BitVector.h"
57 #include "llvm/ADT/DenseMap.h"
58 #include "llvm/ADT/DenseMapInfo.h"
59 #include "llvm/ADT/DenseSet.h"
60 #include "llvm/ADT/DepthFirstIterator.h"
61 #include "llvm/ADT/GraphTraits.h"
62 #include "llvm/ADT/Hashing.h"
63 #include "llvm/ADT/PointerIntPair.h"
64 #include "llvm/ADT/PostOrderIterator.h"
65 #include "llvm/ADT/SmallPtrSet.h"
66 #include "llvm/ADT/SmallVector.h"
67 #include "llvm/ADT/SparseBitVector.h"
68 #include "llvm/ADT/Statistic.h"
69 #include "llvm/ADT/iterator_range.h"
70 #include "llvm/Analysis/AliasAnalysis.h"
71 #include "llvm/Analysis/AssumptionCache.h"
72 #include "llvm/Analysis/CFGPrinter.h"
73 #include "llvm/Analysis/ConstantFolding.h"
74 #include "llvm/Analysis/GlobalsModRef.h"
75 #include "llvm/Analysis/InstructionSimplify.h"
76 #include "llvm/Analysis/MemoryBuiltins.h"
77 #include "llvm/Analysis/MemorySSA.h"
78 #include "llvm/Analysis/TargetLibraryInfo.h"
79 #include "llvm/IR/Argument.h"
80 #include "llvm/IR/BasicBlock.h"
81 #include "llvm/IR/Constant.h"
82 #include "llvm/IR/Constants.h"
83 #include "llvm/IR/Dominators.h"
84 #include "llvm/IR/Function.h"
85 #include "llvm/IR/InstrTypes.h"
86 #include "llvm/IR/Instruction.h"
87 #include "llvm/IR/Instructions.h"
88 #include "llvm/IR/IntrinsicInst.h"
89 #include "llvm/IR/Intrinsics.h"
90 #include "llvm/IR/LLVMContext.h"
91 #include "llvm/IR/PatternMatch.h"
92 #include "llvm/IR/Type.h"
93 #include "llvm/IR/Use.h"
94 #include "llvm/IR/User.h"
95 #include "llvm/IR/Value.h"
96 #include "llvm/InitializePasses.h"
97 #include "llvm/Pass.h"
98 #include "llvm/Support/Allocator.h"
99 #include "llvm/Support/ArrayRecycler.h"
100 #include "llvm/Support/Casting.h"
101 #include "llvm/Support/CommandLine.h"
102 #include "llvm/Support/Debug.h"
103 #include "llvm/Support/DebugCounter.h"
104 #include "llvm/Support/ErrorHandling.h"
105 #include "llvm/Support/PointerLikeTypeTraits.h"
106 #include "llvm/Support/raw_ostream.h"
107 #include "llvm/Transforms/Scalar.h"
108 #include "llvm/Transforms/Scalar/GVNExpression.h"
109 #include "llvm/Transforms/Utils/Local.h"
110 #include "llvm/Transforms/Utils/PredicateInfo.h"
111 #include "llvm/Transforms/Utils/VNCoercion.h"
112 #include <algorithm>
113 #include <cassert>
114 #include <cstdint>
115 #include <iterator>
116 #include <map>
117 #include <memory>
118 #include <set>
119 #include <string>
120 #include <tuple>
121 #include <utility>
122 #include <vector>
123 
124 using namespace llvm;
125 using namespace llvm::GVNExpression;
126 using namespace llvm::VNCoercion;
127 using namespace llvm::PatternMatch;
128 
129 #define DEBUG_TYPE "newgvn"
130 
131 STATISTIC(NumGVNInstrDeleted, "Number of instructions deleted");
132 STATISTIC(NumGVNBlocksDeleted, "Number of blocks deleted");
133 STATISTIC(NumGVNOpsSimplified, "Number of Expressions simplified");
134 STATISTIC(NumGVNPhisAllSame, "Number of PHIs whos arguments are all the same");
135 STATISTIC(NumGVNMaxIterations,
136           "Maximum Number of iterations it took to converge GVN");
137 STATISTIC(NumGVNLeaderChanges, "Number of leader changes");
138 STATISTIC(NumGVNSortedLeaderChanges, "Number of sorted leader changes");
139 STATISTIC(NumGVNAvoidedSortedLeaderChanges,
140           "Number of avoided sorted leader changes");
141 STATISTIC(NumGVNDeadStores, "Number of redundant/dead stores eliminated");
142 STATISTIC(NumGVNPHIOfOpsCreated, "Number of PHI of ops created");
143 STATISTIC(NumGVNPHIOfOpsEliminations,
144           "Number of things eliminated using PHI of ops");
145 DEBUG_COUNTER(VNCounter, "newgvn-vn",
146               "Controls which instructions are value numbered");
147 DEBUG_COUNTER(PHIOfOpsCounter, "newgvn-phi",
148               "Controls which instructions we create phi of ops for");
149 // Currently store defining access refinement is too slow due to basicaa being
150 // egregiously slow.  This flag lets us keep it working while we work on this
151 // issue.
152 static cl::opt<bool> EnableStoreRefinement("enable-store-refinement",
153                                            cl::init(false), cl::Hidden);
154 
155 /// Currently, the generation "phi of ops" can result in correctness issues.
156 static cl::opt<bool> EnablePhiOfOps("enable-phi-of-ops", cl::init(true),
157                                     cl::Hidden);
158 
159 //===----------------------------------------------------------------------===//
160 //                                GVN Pass
161 //===----------------------------------------------------------------------===//
162 
163 // Anchor methods.
164 namespace llvm {
165 namespace GVNExpression {
166 
167 Expression::~Expression() = default;
168 BasicExpression::~BasicExpression() = default;
169 CallExpression::~CallExpression() = default;
170 LoadExpression::~LoadExpression() = default;
171 StoreExpression::~StoreExpression() = default;
172 AggregateValueExpression::~AggregateValueExpression() = default;
173 PHIExpression::~PHIExpression() = default;
174 
175 } // end namespace GVNExpression
176 } // end namespace llvm
177 
178 namespace {
179 
180 // Tarjan's SCC finding algorithm with Nuutila's improvements
181 // SCCIterator is actually fairly complex for the simple thing we want.
182 // It also wants to hand us SCC's that are unrelated to the phi node we ask
183 // about, and have us process them there or risk redoing work.
184 // Graph traits over a filter iterator also doesn't work that well here.
185 // This SCC finder is specialized to walk use-def chains, and only follows
186 // instructions,
187 // not generic values (arguments, etc).
188 struct TarjanSCC {
189   TarjanSCC() : Components(1) {}
190 
191   void Start(const Instruction *Start) {
192     if (Root.lookup(Start) == 0)
193       FindSCC(Start);
194   }
195 
196   const SmallPtrSetImpl<const Value *> &getComponentFor(const Value *V) const {
197     unsigned ComponentID = ValueToComponent.lookup(V);
198 
199     assert(ComponentID > 0 &&
200            "Asking for a component for a value we never processed");
201     return Components[ComponentID];
202   }
203 
204 private:
205   void FindSCC(const Instruction *I) {
206     Root[I] = ++DFSNum;
207     // Store the DFS Number we had before it possibly gets incremented.
208     unsigned int OurDFS = DFSNum;
209     for (auto &Op : I->operands()) {
210       if (auto *InstOp = dyn_cast<Instruction>(Op)) {
211         if (Root.lookup(Op) == 0)
212           FindSCC(InstOp);
213         if (!InComponent.count(Op))
214           Root[I] = std::min(Root.lookup(I), Root.lookup(Op));
215       }
216     }
217     // See if we really were the root of a component, by seeing if we still have
218     // our DFSNumber.  If we do, we are the root of the component, and we have
219     // completed a component. If we do not, we are not the root of a component,
220     // and belong on the component stack.
221     if (Root.lookup(I) == OurDFS) {
222       unsigned ComponentID = Components.size();
223       Components.resize(Components.size() + 1);
224       auto &Component = Components.back();
225       Component.insert(I);
226       LLVM_DEBUG(dbgs() << "Component root is " << *I << "\n");
227       InComponent.insert(I);
228       ValueToComponent[I] = ComponentID;
229       // Pop a component off the stack and label it.
230       while (!Stack.empty() && Root.lookup(Stack.back()) >= OurDFS) {
231         auto *Member = Stack.back();
232         LLVM_DEBUG(dbgs() << "Component member is " << *Member << "\n");
233         Component.insert(Member);
234         InComponent.insert(Member);
235         ValueToComponent[Member] = ComponentID;
236         Stack.pop_back();
237       }
238     } else {
239       // Part of a component, push to stack
240       Stack.push_back(I);
241     }
242   }
243 
244   unsigned int DFSNum = 1;
245   SmallPtrSet<const Value *, 8> InComponent;
246   DenseMap<const Value *, unsigned int> Root;
247   SmallVector<const Value *, 8> Stack;
248 
249   // Store the components as vector of ptr sets, because we need the topo order
250   // of SCC's, but not individual member order
251   SmallVector<SmallPtrSet<const Value *, 8>, 8> Components;
252 
253   DenseMap<const Value *, unsigned> ValueToComponent;
254 };
255 
256 // Congruence classes represent the set of expressions/instructions
257 // that are all the same *during some scope in the function*.
258 // That is, because of the way we perform equality propagation, and
259 // because of memory value numbering, it is not correct to assume
260 // you can willy-nilly replace any member with any other at any
261 // point in the function.
262 //
263 // For any Value in the Member set, it is valid to replace any dominated member
264 // with that Value.
265 //
266 // Every congruence class has a leader, and the leader is used to symbolize
267 // instructions in a canonical way (IE every operand of an instruction that is a
268 // member of the same congruence class will always be replaced with leader
269 // during symbolization).  To simplify symbolization, we keep the leader as a
270 // constant if class can be proved to be a constant value.  Otherwise, the
271 // leader is the member of the value set with the smallest DFS number.  Each
272 // congruence class also has a defining expression, though the expression may be
273 // null.  If it exists, it can be used for forward propagation and reassociation
274 // of values.
275 
276 // For memory, we also track a representative MemoryAccess, and a set of memory
277 // members for MemoryPhis (which have no real instructions). Note that for
278 // memory, it seems tempting to try to split the memory members into a
279 // MemoryCongruenceClass or something.  Unfortunately, this does not work
280 // easily.  The value numbering of a given memory expression depends on the
281 // leader of the memory congruence class, and the leader of memory congruence
282 // class depends on the value numbering of a given memory expression.  This
283 // leads to wasted propagation, and in some cases, missed optimization.  For
284 // example: If we had value numbered two stores together before, but now do not,
285 // we move them to a new value congruence class.  This in turn will move at one
286 // of the memorydefs to a new memory congruence class.  Which in turn, affects
287 // the value numbering of the stores we just value numbered (because the memory
288 // congruence class is part of the value number).  So while theoretically
289 // possible to split them up, it turns out to be *incredibly* complicated to get
290 // it to work right, because of the interdependency.  While structurally
291 // slightly messier, it is algorithmically much simpler and faster to do what we
292 // do here, and track them both at once in the same class.
293 // Note: The default iterators for this class iterate over values
294 class CongruenceClass {
295 public:
296   using MemberType = Value;
297   using MemberSet = SmallPtrSet<MemberType *, 4>;
298   using MemoryMemberType = MemoryPhi;
299   using MemoryMemberSet = SmallPtrSet<const MemoryMemberType *, 2>;
300 
301   explicit CongruenceClass(unsigned ID) : ID(ID) {}
302   CongruenceClass(unsigned ID, Value *Leader, const Expression *E)
303       : ID(ID), RepLeader(Leader), DefiningExpr(E) {}
304 
305   unsigned getID() const { return ID; }
306 
307   // True if this class has no members left.  This is mainly used for assertion
308   // purposes, and for skipping empty classes.
309   bool isDead() const {
310     // If it's both dead from a value perspective, and dead from a memory
311     // perspective, it's really dead.
312     return empty() && memory_empty();
313   }
314 
315   // Leader functions
316   Value *getLeader() const { return RepLeader; }
317   void setLeader(Value *Leader) { RepLeader = Leader; }
318   const std::pair<Value *, unsigned int> &getNextLeader() const {
319     return NextLeader;
320   }
321   void resetNextLeader() { NextLeader = {nullptr, ~0}; }
322   void addPossibleNextLeader(std::pair<Value *, unsigned int> LeaderPair) {
323     if (LeaderPair.second < NextLeader.second)
324       NextLeader = LeaderPair;
325   }
326 
327   Value *getStoredValue() const { return RepStoredValue; }
328   void setStoredValue(Value *Leader) { RepStoredValue = Leader; }
329   const MemoryAccess *getMemoryLeader() const { return RepMemoryAccess; }
330   void setMemoryLeader(const MemoryAccess *Leader) { RepMemoryAccess = Leader; }
331 
332   // Forward propagation info
333   const Expression *getDefiningExpr() const { return DefiningExpr; }
334 
335   // Value member set
336   bool empty() const { return Members.empty(); }
337   unsigned size() const { return Members.size(); }
338   MemberSet::const_iterator begin() const { return Members.begin(); }
339   MemberSet::const_iterator end() const { return Members.end(); }
340   void insert(MemberType *M) { Members.insert(M); }
341   void erase(MemberType *M) { Members.erase(M); }
342   void swap(MemberSet &Other) { Members.swap(Other); }
343 
344   // Memory member set
345   bool memory_empty() const { return MemoryMembers.empty(); }
346   unsigned memory_size() const { return MemoryMembers.size(); }
347   MemoryMemberSet::const_iterator memory_begin() const {
348     return MemoryMembers.begin();
349   }
350   MemoryMemberSet::const_iterator memory_end() const {
351     return MemoryMembers.end();
352   }
353   iterator_range<MemoryMemberSet::const_iterator> memory() const {
354     return make_range(memory_begin(), memory_end());
355   }
356 
357   void memory_insert(const MemoryMemberType *M) { MemoryMembers.insert(M); }
358   void memory_erase(const MemoryMemberType *M) { MemoryMembers.erase(M); }
359 
360   // Store count
361   unsigned getStoreCount() const { return StoreCount; }
362   void incStoreCount() { ++StoreCount; }
363   void decStoreCount() {
364     assert(StoreCount != 0 && "Store count went negative");
365     --StoreCount;
366   }
367 
368   // True if this class has no memory members.
369   bool definesNoMemory() const { return StoreCount == 0 && memory_empty(); }
370 
371   // Return true if two congruence classes are equivalent to each other. This
372   // means that every field but the ID number and the dead field are equivalent.
373   bool isEquivalentTo(const CongruenceClass *Other) const {
374     if (!Other)
375       return false;
376     if (this == Other)
377       return true;
378 
379     if (std::tie(StoreCount, RepLeader, RepStoredValue, RepMemoryAccess) !=
380         std::tie(Other->StoreCount, Other->RepLeader, Other->RepStoredValue,
381                  Other->RepMemoryAccess))
382       return false;
383     if (DefiningExpr != Other->DefiningExpr)
384       if (!DefiningExpr || !Other->DefiningExpr ||
385           *DefiningExpr != *Other->DefiningExpr)
386         return false;
387 
388     if (Members.size() != Other->Members.size())
389       return false;
390 
391     return all_of(Members,
392                   [&](const Value *V) { return Other->Members.count(V); });
393   }
394 
395 private:
396   unsigned ID;
397 
398   // Representative leader.
399   Value *RepLeader = nullptr;
400 
401   // The most dominating leader after our current leader, because the member set
402   // is not sorted and is expensive to keep sorted all the time.
403   std::pair<Value *, unsigned int> NextLeader = {nullptr, ~0U};
404 
405   // If this is represented by a store, the value of the store.
406   Value *RepStoredValue = nullptr;
407 
408   // If this class contains MemoryDefs or MemoryPhis, this is the leading memory
409   // access.
410   const MemoryAccess *RepMemoryAccess = nullptr;
411 
412   // Defining Expression.
413   const Expression *DefiningExpr = nullptr;
414 
415   // Actual members of this class.
416   MemberSet Members;
417 
418   // This is the set of MemoryPhis that exist in the class. MemoryDefs and
419   // MemoryUses have real instructions representing them, so we only need to
420   // track MemoryPhis here.
421   MemoryMemberSet MemoryMembers;
422 
423   // Number of stores in this congruence class.
424   // This is used so we can detect store equivalence changes properly.
425   int StoreCount = 0;
426 };
427 
428 } // end anonymous namespace
429 
430 namespace llvm {
431 
432 struct ExactEqualsExpression {
433   const Expression &E;
434 
435   explicit ExactEqualsExpression(const Expression &E) : E(E) {}
436 
437   hash_code getComputedHash() const { return E.getComputedHash(); }
438 
439   bool operator==(const Expression &Other) const {
440     return E.exactlyEquals(Other);
441   }
442 };
443 
444 template <> struct DenseMapInfo<const Expression *> {
445   static const Expression *getEmptyKey() {
446     auto Val = static_cast<uintptr_t>(-1);
447     Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable;
448     return reinterpret_cast<const Expression *>(Val);
449   }
450 
451   static const Expression *getTombstoneKey() {
452     auto Val = static_cast<uintptr_t>(~1U);
453     Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable;
454     return reinterpret_cast<const Expression *>(Val);
455   }
456 
457   static unsigned getHashValue(const Expression *E) {
458     return E->getComputedHash();
459   }
460 
461   static unsigned getHashValue(const ExactEqualsExpression &E) {
462     return E.getComputedHash();
463   }
464 
465   static bool isEqual(const ExactEqualsExpression &LHS, const Expression *RHS) {
466     if (RHS == getTombstoneKey() || RHS == getEmptyKey())
467       return false;
468     return LHS == *RHS;
469   }
470 
471   static bool isEqual(const Expression *LHS, const Expression *RHS) {
472     if (LHS == RHS)
473       return true;
474     if (LHS == getTombstoneKey() || RHS == getTombstoneKey() ||
475         LHS == getEmptyKey() || RHS == getEmptyKey())
476       return false;
477     // Compare hashes before equality.  This is *not* what the hashtable does,
478     // since it is computing it modulo the number of buckets, whereas we are
479     // using the full hash keyspace.  Since the hashes are precomputed, this
480     // check is *much* faster than equality.
481     if (LHS->getComputedHash() != RHS->getComputedHash())
482       return false;
483     return *LHS == *RHS;
484   }
485 };
486 
487 } // end namespace llvm
488 
489 namespace {
490 
491 class NewGVN {
492   Function &F;
493   DominatorTree *DT = nullptr;
494   const TargetLibraryInfo *TLI = nullptr;
495   AliasAnalysis *AA = nullptr;
496   MemorySSA *MSSA = nullptr;
497   MemorySSAWalker *MSSAWalker = nullptr;
498   const DataLayout &DL;
499   std::unique_ptr<PredicateInfo> PredInfo;
500 
501   // These are the only two things the create* functions should have
502   // side-effects on due to allocating memory.
503   mutable BumpPtrAllocator ExpressionAllocator;
504   mutable ArrayRecycler<Value *> ArgRecycler;
505   mutable TarjanSCC SCCFinder;
506   const SimplifyQuery SQ;
507 
508   // Number of function arguments, used by ranking
509   unsigned int NumFuncArgs = 0;
510 
511   // RPOOrdering of basic blocks
512   DenseMap<const DomTreeNode *, unsigned> RPOOrdering;
513 
514   // Congruence class info.
515 
516   // This class is called INITIAL in the paper. It is the class everything
517   // startsout in, and represents any value. Being an optimistic analysis,
518   // anything in the TOP class has the value TOP, which is indeterminate and
519   // equivalent to everything.
520   CongruenceClass *TOPClass = nullptr;
521   std::vector<CongruenceClass *> CongruenceClasses;
522   unsigned NextCongruenceNum = 0;
523 
524   // Value Mappings.
525   DenseMap<Value *, CongruenceClass *> ValueToClass;
526   DenseMap<Value *, const Expression *> ValueToExpression;
527 
528   // Value PHI handling, used to make equivalence between phi(op, op) and
529   // op(phi, phi).
530   // These mappings just store various data that would normally be part of the
531   // IR.
532   SmallPtrSet<const Instruction *, 8> PHINodeUses;
533 
534   DenseMap<const Value *, bool> OpSafeForPHIOfOps;
535 
536   // Map a temporary instruction we created to a parent block.
537   DenseMap<const Value *, BasicBlock *> TempToBlock;
538 
539   // Map between the already in-program instructions and the temporary phis we
540   // created that they are known equivalent to.
541   DenseMap<const Value *, PHINode *> RealToTemp;
542 
543   // In order to know when we should re-process instructions that have
544   // phi-of-ops, we track the set of expressions that they needed as
545   // leaders. When we discover new leaders for those expressions, we process the
546   // associated phi-of-op instructions again in case they have changed.  The
547   // other way they may change is if they had leaders, and those leaders
548   // disappear.  However, at the point they have leaders, there are uses of the
549   // relevant operands in the created phi node, and so they will get reprocessed
550   // through the normal user marking we perform.
551   mutable DenseMap<const Value *, SmallPtrSet<Value *, 2>> AdditionalUsers;
552   DenseMap<const Expression *, SmallPtrSet<Instruction *, 2>>
553       ExpressionToPhiOfOps;
554 
555   // Map from temporary operation to MemoryAccess.
556   DenseMap<const Instruction *, MemoryUseOrDef *> TempToMemory;
557 
558   // Set of all temporary instructions we created.
559   // Note: This will include instructions that were just created during value
560   // numbering.  The way to test if something is using them is to check
561   // RealToTemp.
562   DenseSet<Instruction *> AllTempInstructions;
563 
564   // This is the set of instructions to revisit on a reachability change.  At
565   // the end of the main iteration loop it will contain at least all the phi of
566   // ops instructions that will be changed to phis, as well as regular phis.
567   // During the iteration loop, it may contain other things, such as phi of ops
568   // instructions that used edge reachability to reach a result, and so need to
569   // be revisited when the edge changes, independent of whether the phi they
570   // depended on changes.
571   DenseMap<BasicBlock *, SparseBitVector<>> RevisitOnReachabilityChange;
572 
573   // Mapping from predicate info we used to the instructions we used it with.
574   // In order to correctly ensure propagation, we must keep track of what
575   // comparisons we used, so that when the values of the comparisons change, we
576   // propagate the information to the places we used the comparison.
577   mutable DenseMap<const Value *, SmallPtrSet<Instruction *, 2>>
578       PredicateToUsers;
579 
580   // the same reasoning as PredicateToUsers.  When we skip MemoryAccesses for
581   // stores, we no longer can rely solely on the def-use chains of MemorySSA.
582   mutable DenseMap<const MemoryAccess *, SmallPtrSet<MemoryAccess *, 2>>
583       MemoryToUsers;
584 
585   // A table storing which memorydefs/phis represent a memory state provably
586   // equivalent to another memory state.
587   // We could use the congruence class machinery, but the MemoryAccess's are
588   // abstract memory states, so they can only ever be equivalent to each other,
589   // and not to constants, etc.
590   DenseMap<const MemoryAccess *, CongruenceClass *> MemoryAccessToClass;
591 
592   // We could, if we wanted, build MemoryPhiExpressions and
593   // MemoryVariableExpressions, etc, and value number them the same way we value
594   // number phi expressions.  For the moment, this seems like overkill.  They
595   // can only exist in one of three states: they can be TOP (equal to
596   // everything), Equivalent to something else, or unique.  Because we do not
597   // create expressions for them, we need to simulate leader change not just
598   // when they change class, but when they change state.  Note: We can do the
599   // same thing for phis, and avoid having phi expressions if we wanted, We
600   // should eventually unify in one direction or the other, so this is a little
601   // bit of an experiment in which turns out easier to maintain.
602   enum MemoryPhiState { MPS_Invalid, MPS_TOP, MPS_Equivalent, MPS_Unique };
603   DenseMap<const MemoryPhi *, MemoryPhiState> MemoryPhiState;
604 
605   enum InstCycleState { ICS_Unknown, ICS_CycleFree, ICS_Cycle };
606   mutable DenseMap<const Instruction *, InstCycleState> InstCycleState;
607 
608   // Expression to class mapping.
609   using ExpressionClassMap = DenseMap<const Expression *, CongruenceClass *>;
610   ExpressionClassMap ExpressionToClass;
611 
612   // We have a single expression that represents currently DeadExpressions.
613   // For dead expressions we can prove will stay dead, we mark them with
614   // DFS number zero.  However, it's possible in the case of phi nodes
615   // for us to assume/prove all arguments are dead during fixpointing.
616   // We use DeadExpression for that case.
617   DeadExpression *SingletonDeadExpression = nullptr;
618 
619   // Which values have changed as a result of leader changes.
620   SmallPtrSet<Value *, 8> LeaderChanges;
621 
622   // Reachability info.
623   using BlockEdge = BasicBlockEdge;
624   DenseSet<BlockEdge> ReachableEdges;
625   SmallPtrSet<const BasicBlock *, 8> ReachableBlocks;
626 
627   // This is a bitvector because, on larger functions, we may have
628   // thousands of touched instructions at once (entire blocks,
629   // instructions with hundreds of uses, etc).  Even with optimization
630   // for when we mark whole blocks as touched, when this was a
631   // SmallPtrSet or DenseSet, for some functions, we spent >20% of all
632   // the time in GVN just managing this list.  The bitvector, on the
633   // other hand, efficiently supports test/set/clear of both
634   // individual and ranges, as well as "find next element" This
635   // enables us to use it as a worklist with essentially 0 cost.
636   BitVector TouchedInstructions;
637 
638   DenseMap<const BasicBlock *, std::pair<unsigned, unsigned>> BlockInstRange;
639 
640 #ifndef NDEBUG
641   // Debugging for how many times each block and instruction got processed.
642   DenseMap<const Value *, unsigned> ProcessedCount;
643 #endif
644 
645   // DFS info.
646   // This contains a mapping from Instructions to DFS numbers.
647   // The numbering starts at 1. An instruction with DFS number zero
648   // means that the instruction is dead.
649   DenseMap<const Value *, unsigned> InstrDFS;
650 
651   // This contains the mapping DFS numbers to instructions.
652   SmallVector<Value *, 32> DFSToInstr;
653 
654   // Deletion info.
655   SmallPtrSet<Instruction *, 8> InstructionsToErase;
656 
657 public:
658   NewGVN(Function &F, DominatorTree *DT, AssumptionCache *AC,
659          TargetLibraryInfo *TLI, AliasAnalysis *AA, MemorySSA *MSSA,
660          const DataLayout &DL)
661       : F(F), DT(DT), TLI(TLI), AA(AA), MSSA(MSSA), DL(DL),
662         PredInfo(std::make_unique<PredicateInfo>(F, *DT, *AC)),
663         SQ(DL, TLI, DT, AC, /*CtxI=*/nullptr, /*UseInstrInfo=*/false) {}
664 
665   bool runGVN();
666 
667 private:
668   // Expression handling.
669   const Expression *createExpression(Instruction *) const;
670   const Expression *createBinaryExpression(unsigned, Type *, Value *, Value *,
671                                            Instruction *) const;
672 
673   // Our canonical form for phi arguments is a pair of incoming value, incoming
674   // basic block.
675   using ValPair = std::pair<Value *, BasicBlock *>;
676 
677   PHIExpression *createPHIExpression(ArrayRef<ValPair>, const Instruction *,
678                                      BasicBlock *, bool &HasBackEdge,
679                                      bool &OriginalOpsConstant) const;
680   const DeadExpression *createDeadExpression() const;
681   const VariableExpression *createVariableExpression(Value *) const;
682   const ConstantExpression *createConstantExpression(Constant *) const;
683   const Expression *createVariableOrConstant(Value *V) const;
684   const UnknownExpression *createUnknownExpression(Instruction *) const;
685   const StoreExpression *createStoreExpression(StoreInst *,
686                                                const MemoryAccess *) const;
687   LoadExpression *createLoadExpression(Type *, Value *, LoadInst *,
688                                        const MemoryAccess *) const;
689   const CallExpression *createCallExpression(CallInst *,
690                                              const MemoryAccess *) const;
691   const AggregateValueExpression *
692   createAggregateValueExpression(Instruction *) const;
693   bool setBasicExpressionInfo(Instruction *, BasicExpression *) const;
694 
695   // Congruence class handling.
696   CongruenceClass *createCongruenceClass(Value *Leader, const Expression *E) {
697     auto *result = new CongruenceClass(NextCongruenceNum++, Leader, E);
698     CongruenceClasses.emplace_back(result);
699     return result;
700   }
701 
702   CongruenceClass *createMemoryClass(MemoryAccess *MA) {
703     auto *CC = createCongruenceClass(nullptr, nullptr);
704     CC->setMemoryLeader(MA);
705     return CC;
706   }
707 
708   CongruenceClass *ensureLeaderOfMemoryClass(MemoryAccess *MA) {
709     auto *CC = getMemoryClass(MA);
710     if (CC->getMemoryLeader() != MA)
711       CC = createMemoryClass(MA);
712     return CC;
713   }
714 
715   CongruenceClass *createSingletonCongruenceClass(Value *Member) {
716     CongruenceClass *CClass = createCongruenceClass(Member, nullptr);
717     CClass->insert(Member);
718     ValueToClass[Member] = CClass;
719     return CClass;
720   }
721 
722   void initializeCongruenceClasses(Function &F);
723   const Expression *makePossiblePHIOfOps(Instruction *,
724                                          SmallPtrSetImpl<Value *> &);
725   Value *findLeaderForInst(Instruction *ValueOp,
726                            SmallPtrSetImpl<Value *> &Visited,
727                            MemoryAccess *MemAccess, Instruction *OrigInst,
728                            BasicBlock *PredBB);
729   bool OpIsSafeForPHIOfOpsHelper(Value *V, const BasicBlock *PHIBlock,
730                                  SmallPtrSetImpl<const Value *> &Visited,
731                                  SmallVectorImpl<Instruction *> &Worklist);
732   bool OpIsSafeForPHIOfOps(Value *Op, const BasicBlock *PHIBlock,
733                            SmallPtrSetImpl<const Value *> &);
734   void addPhiOfOps(PHINode *Op, BasicBlock *BB, Instruction *ExistingValue);
735   void removePhiOfOps(Instruction *I, PHINode *PHITemp);
736 
737   // Value number an Instruction or MemoryPhi.
738   void valueNumberMemoryPhi(MemoryPhi *);
739   void valueNumberInstruction(Instruction *);
740 
741   // Symbolic evaluation.
742   const Expression *checkSimplificationResults(Expression *, Instruction *,
743                                                Value *) const;
744   const Expression *performSymbolicEvaluation(Value *,
745                                               SmallPtrSetImpl<Value *> &) const;
746   const Expression *performSymbolicLoadCoercion(Type *, Value *, LoadInst *,
747                                                 Instruction *,
748                                                 MemoryAccess *) const;
749   const Expression *performSymbolicLoadEvaluation(Instruction *) const;
750   const Expression *performSymbolicStoreEvaluation(Instruction *) const;
751   const Expression *performSymbolicCallEvaluation(Instruction *) const;
752   void sortPHIOps(MutableArrayRef<ValPair> Ops) const;
753   const Expression *performSymbolicPHIEvaluation(ArrayRef<ValPair>,
754                                                  Instruction *I,
755                                                  BasicBlock *PHIBlock) const;
756   const Expression *performSymbolicAggrValueEvaluation(Instruction *) const;
757   const Expression *performSymbolicCmpEvaluation(Instruction *) const;
758   const Expression *performSymbolicPredicateInfoEvaluation(Instruction *) const;
759 
760   // Congruence finding.
761   bool someEquivalentDominates(const Instruction *, const Instruction *) const;
762   Value *lookupOperandLeader(Value *) const;
763   CongruenceClass *getClassForExpression(const Expression *E) const;
764   void performCongruenceFinding(Instruction *, const Expression *);
765   void moveValueToNewCongruenceClass(Instruction *, const Expression *,
766                                      CongruenceClass *, CongruenceClass *);
767   void moveMemoryToNewCongruenceClass(Instruction *, MemoryAccess *,
768                                       CongruenceClass *, CongruenceClass *);
769   Value *getNextValueLeader(CongruenceClass *) const;
770   const MemoryAccess *getNextMemoryLeader(CongruenceClass *) const;
771   bool setMemoryClass(const MemoryAccess *From, CongruenceClass *To);
772   CongruenceClass *getMemoryClass(const MemoryAccess *MA) const;
773   const MemoryAccess *lookupMemoryLeader(const MemoryAccess *) const;
774   bool isMemoryAccessTOP(const MemoryAccess *) const;
775 
776   // Ranking
777   unsigned int getRank(const Value *) const;
778   bool shouldSwapOperands(const Value *, const Value *) const;
779 
780   // Reachability handling.
781   void updateReachableEdge(BasicBlock *, BasicBlock *);
782   void processOutgoingEdges(Instruction *, BasicBlock *);
783   Value *findConditionEquivalence(Value *) const;
784 
785   // Elimination.
786   struct ValueDFS;
787   void convertClassToDFSOrdered(const CongruenceClass &,
788                                 SmallVectorImpl<ValueDFS> &,
789                                 DenseMap<const Value *, unsigned int> &,
790                                 SmallPtrSetImpl<Instruction *> &) const;
791   void convertClassToLoadsAndStores(const CongruenceClass &,
792                                     SmallVectorImpl<ValueDFS> &) const;
793 
794   bool eliminateInstructions(Function &);
795   void replaceInstruction(Instruction *, Value *);
796   void markInstructionForDeletion(Instruction *);
797   void deleteInstructionsInBlock(BasicBlock *);
798   Value *findPHIOfOpsLeader(const Expression *, const Instruction *,
799                             const BasicBlock *) const;
800 
801   // New instruction creation.
802   void handleNewInstruction(Instruction *) {}
803 
804   // Various instruction touch utilities
805   template <typename Map, typename KeyType, typename Func>
806   void for_each_found(Map &, const KeyType &, Func);
807   template <typename Map, typename KeyType>
808   void touchAndErase(Map &, const KeyType &);
809   void markUsersTouched(Value *);
810   void markMemoryUsersTouched(const MemoryAccess *);
811   void markMemoryDefTouched(const MemoryAccess *);
812   void markPredicateUsersTouched(Instruction *);
813   void markValueLeaderChangeTouched(CongruenceClass *CC);
814   void markMemoryLeaderChangeTouched(CongruenceClass *CC);
815   void markPhiOfOpsChanged(const Expression *E);
816   void addPredicateUsers(const PredicateBase *, Instruction *) const;
817   void addMemoryUsers(const MemoryAccess *To, MemoryAccess *U) const;
818   void addAdditionalUsers(Value *To, Value *User) const;
819 
820   // Main loop of value numbering
821   void iterateTouchedInstructions();
822 
823   // Utilities.
824   void cleanupTables();
825   std::pair<unsigned, unsigned> assignDFSNumbers(BasicBlock *, unsigned);
826   void updateProcessedCount(const Value *V);
827   void verifyMemoryCongruency() const;
828   void verifyIterationSettled(Function &F);
829   void verifyStoreExpressions() const;
830   bool singleReachablePHIPath(SmallPtrSet<const MemoryAccess *, 8> &,
831                               const MemoryAccess *, const MemoryAccess *) const;
832   BasicBlock *getBlockForValue(Value *V) const;
833   void deleteExpression(const Expression *E) const;
834   MemoryUseOrDef *getMemoryAccess(const Instruction *) const;
835   MemoryAccess *getDefiningAccess(const MemoryAccess *) const;
836   MemoryPhi *getMemoryAccess(const BasicBlock *) const;
837   template <class T, class Range> T *getMinDFSOfRange(const Range &) const;
838 
839   unsigned InstrToDFSNum(const Value *V) const {
840     assert(isa<Instruction>(V) && "This should not be used for MemoryAccesses");
841     return InstrDFS.lookup(V);
842   }
843 
844   unsigned InstrToDFSNum(const MemoryAccess *MA) const {
845     return MemoryToDFSNum(MA);
846   }
847 
848   Value *InstrFromDFSNum(unsigned DFSNum) { return DFSToInstr[DFSNum]; }
849 
850   // Given a MemoryAccess, return the relevant instruction DFS number.  Note:
851   // This deliberately takes a value so it can be used with Use's, which will
852   // auto-convert to Value's but not to MemoryAccess's.
853   unsigned MemoryToDFSNum(const Value *MA) const {
854     assert(isa<MemoryAccess>(MA) &&
855            "This should not be used with instructions");
856     return isa<MemoryUseOrDef>(MA)
857                ? InstrToDFSNum(cast<MemoryUseOrDef>(MA)->getMemoryInst())
858                : InstrDFS.lookup(MA);
859   }
860 
861   bool isCycleFree(const Instruction *) const;
862   bool isBackedge(BasicBlock *From, BasicBlock *To) const;
863 
864   // Debug counter info.  When verifying, we have to reset the value numbering
865   // debug counter to the same state it started in to get the same results.
866   int64_t StartingVNCounter = 0;
867 };
868 
869 } // end anonymous namespace
870 
871 template <typename T>
872 static bool equalsLoadStoreHelper(const T &LHS, const Expression &RHS) {
873   if (!isa<LoadExpression>(RHS) && !isa<StoreExpression>(RHS))
874     return false;
875   return LHS.MemoryExpression::equals(RHS);
876 }
877 
878 bool LoadExpression::equals(const Expression &Other) const {
879   return equalsLoadStoreHelper(*this, Other);
880 }
881 
882 bool StoreExpression::equals(const Expression &Other) const {
883   if (!equalsLoadStoreHelper(*this, Other))
884     return false;
885   // Make sure that store vs store includes the value operand.
886   if (const auto *S = dyn_cast<StoreExpression>(&Other))
887     if (getStoredValue() != S->getStoredValue())
888       return false;
889   return true;
890 }
891 
892 // Determine if the edge From->To is a backedge
893 bool NewGVN::isBackedge(BasicBlock *From, BasicBlock *To) const {
894   return From == To ||
895          RPOOrdering.lookup(DT->getNode(From)) >=
896              RPOOrdering.lookup(DT->getNode(To));
897 }
898 
899 #ifndef NDEBUG
900 static std::string getBlockName(const BasicBlock *B) {
901   return DOTGraphTraits<const Function *>::getSimpleNodeLabel(B, nullptr);
902 }
903 #endif
904 
905 // Get a MemoryAccess for an instruction, fake or real.
906 MemoryUseOrDef *NewGVN::getMemoryAccess(const Instruction *I) const {
907   auto *Result = MSSA->getMemoryAccess(I);
908   return Result ? Result : TempToMemory.lookup(I);
909 }
910 
911 // Get a MemoryPhi for a basic block. These are all real.
912 MemoryPhi *NewGVN::getMemoryAccess(const BasicBlock *BB) const {
913   return MSSA->getMemoryAccess(BB);
914 }
915 
916 // Get the basic block from an instruction/memory value.
917 BasicBlock *NewGVN::getBlockForValue(Value *V) const {
918   if (auto *I = dyn_cast<Instruction>(V)) {
919     auto *Parent = I->getParent();
920     if (Parent)
921       return Parent;
922     Parent = TempToBlock.lookup(V);
923     assert(Parent && "Every fake instruction should have a block");
924     return Parent;
925   }
926 
927   auto *MP = dyn_cast<MemoryPhi>(V);
928   assert(MP && "Should have been an instruction or a MemoryPhi");
929   return MP->getBlock();
930 }
931 
932 // Delete a definitely dead expression, so it can be reused by the expression
933 // allocator.  Some of these are not in creation functions, so we have to accept
934 // const versions.
935 void NewGVN::deleteExpression(const Expression *E) const {
936   assert(isa<BasicExpression>(E));
937   auto *BE = cast<BasicExpression>(E);
938   const_cast<BasicExpression *>(BE)->deallocateOperands(ArgRecycler);
939   ExpressionAllocator.Deallocate(E);
940 }
941 
942 // If V is a predicateinfo copy, get the thing it is a copy of.
943 static Value *getCopyOf(const Value *V) {
944   if (auto *II = dyn_cast<IntrinsicInst>(V))
945     if (II->getIntrinsicID() == Intrinsic::ssa_copy)
946       return II->getOperand(0);
947   return nullptr;
948 }
949 
950 // Return true if V is really PN, even accounting for predicateinfo copies.
951 static bool isCopyOfPHI(const Value *V, const PHINode *PN) {
952   return V == PN || getCopyOf(V) == PN;
953 }
954 
955 static bool isCopyOfAPHI(const Value *V) {
956   auto *CO = getCopyOf(V);
957   return CO && isa<PHINode>(CO);
958 }
959 
960 // Sort PHI Operands into a canonical order.  What we use here is an RPO
961 // order. The BlockInstRange numbers are generated in an RPO walk of the basic
962 // blocks.
963 void NewGVN::sortPHIOps(MutableArrayRef<ValPair> Ops) const {
964   llvm::sort(Ops, [&](const ValPair &P1, const ValPair &P2) {
965     return BlockInstRange.lookup(P1.second).first <
966            BlockInstRange.lookup(P2.second).first;
967   });
968 }
969 
970 // Return true if V is a value that will always be available (IE can
971 // be placed anywhere) in the function.  We don't do globals here
972 // because they are often worse to put in place.
973 static bool alwaysAvailable(Value *V) {
974   return isa<Constant>(V) || isa<Argument>(V);
975 }
976 
977 // Create a PHIExpression from an array of {incoming edge, value} pairs.  I is
978 // the original instruction we are creating a PHIExpression for (but may not be
979 // a phi node). We require, as an invariant, that all the PHIOperands in the
980 // same block are sorted the same way. sortPHIOps will sort them into a
981 // canonical order.
982 PHIExpression *NewGVN::createPHIExpression(ArrayRef<ValPair> PHIOperands,
983                                            const Instruction *I,
984                                            BasicBlock *PHIBlock,
985                                            bool &HasBackedge,
986                                            bool &OriginalOpsConstant) const {
987   unsigned NumOps = PHIOperands.size();
988   auto *E = new (ExpressionAllocator) PHIExpression(NumOps, PHIBlock);
989 
990   E->allocateOperands(ArgRecycler, ExpressionAllocator);
991   E->setType(PHIOperands.begin()->first->getType());
992   E->setOpcode(Instruction::PHI);
993 
994   // Filter out unreachable phi operands.
995   auto Filtered = make_filter_range(PHIOperands, [&](const ValPair &P) {
996     auto *BB = P.second;
997     if (auto *PHIOp = dyn_cast<PHINode>(I))
998       if (isCopyOfPHI(P.first, PHIOp))
999         return false;
1000     if (!ReachableEdges.count({BB, PHIBlock}))
1001       return false;
1002     // Things in TOPClass are equivalent to everything.
1003     if (ValueToClass.lookup(P.first) == TOPClass)
1004       return false;
1005     OriginalOpsConstant = OriginalOpsConstant && isa<Constant>(P.first);
1006     HasBackedge = HasBackedge || isBackedge(BB, PHIBlock);
1007     return lookupOperandLeader(P.first) != I;
1008   });
1009   std::transform(Filtered.begin(), Filtered.end(), op_inserter(E),
1010                  [&](const ValPair &P) -> Value * {
1011                    return lookupOperandLeader(P.first);
1012                  });
1013   return E;
1014 }
1015 
1016 // Set basic expression info (Arguments, type, opcode) for Expression
1017 // E from Instruction I in block B.
1018 bool NewGVN::setBasicExpressionInfo(Instruction *I, BasicExpression *E) const {
1019   bool AllConstant = true;
1020   if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
1021     E->setType(GEP->getSourceElementType());
1022   else
1023     E->setType(I->getType());
1024   E->setOpcode(I->getOpcode());
1025   E->allocateOperands(ArgRecycler, ExpressionAllocator);
1026 
1027   // Transform the operand array into an operand leader array, and keep track of
1028   // whether all members are constant.
1029   std::transform(I->op_begin(), I->op_end(), op_inserter(E), [&](Value *O) {
1030     auto Operand = lookupOperandLeader(O);
1031     AllConstant = AllConstant && isa<Constant>(Operand);
1032     return Operand;
1033   });
1034 
1035   return AllConstant;
1036 }
1037 
1038 const Expression *NewGVN::createBinaryExpression(unsigned Opcode, Type *T,
1039                                                  Value *Arg1, Value *Arg2,
1040                                                  Instruction *I) const {
1041   auto *E = new (ExpressionAllocator) BasicExpression(2);
1042 
1043   E->setType(T);
1044   E->setOpcode(Opcode);
1045   E->allocateOperands(ArgRecycler, ExpressionAllocator);
1046   if (Instruction::isCommutative(Opcode)) {
1047     // Ensure that commutative instructions that only differ by a permutation
1048     // of their operands get the same value number by sorting the operand value
1049     // numbers.  Since all commutative instructions have two operands it is more
1050     // efficient to sort by hand rather than using, say, std::sort.
1051     if (shouldSwapOperands(Arg1, Arg2))
1052       std::swap(Arg1, Arg2);
1053   }
1054   E->op_push_back(lookupOperandLeader(Arg1));
1055   E->op_push_back(lookupOperandLeader(Arg2));
1056 
1057   Value *V = SimplifyBinOp(Opcode, E->getOperand(0), E->getOperand(1), SQ);
1058   if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
1059     return SimplifiedE;
1060   return E;
1061 }
1062 
1063 // Take a Value returned by simplification of Expression E/Instruction
1064 // I, and see if it resulted in a simpler expression. If so, return
1065 // that expression.
1066 const Expression *NewGVN::checkSimplificationResults(Expression *E,
1067                                                      Instruction *I,
1068                                                      Value *V) const {
1069   if (!V)
1070     return nullptr;
1071   if (auto *C = dyn_cast<Constant>(V)) {
1072     if (I)
1073       LLVM_DEBUG(dbgs() << "Simplified " << *I << " to "
1074                         << " constant " << *C << "\n");
1075     NumGVNOpsSimplified++;
1076     assert(isa<BasicExpression>(E) &&
1077            "We should always have had a basic expression here");
1078     deleteExpression(E);
1079     return createConstantExpression(C);
1080   } else if (isa<Argument>(V) || isa<GlobalVariable>(V)) {
1081     if (I)
1082       LLVM_DEBUG(dbgs() << "Simplified " << *I << " to "
1083                         << " variable " << *V << "\n");
1084     deleteExpression(E);
1085     return createVariableExpression(V);
1086   }
1087 
1088   CongruenceClass *CC = ValueToClass.lookup(V);
1089   if (CC) {
1090     if (CC->getLeader() && CC->getLeader() != I) {
1091       // If we simplified to something else, we need to communicate
1092       // that we're users of the value we simplified to.
1093       if (I != V) {
1094         // Don't add temporary instructions to the user lists.
1095         if (!AllTempInstructions.count(I))
1096           addAdditionalUsers(V, I);
1097       }
1098       return createVariableOrConstant(CC->getLeader());
1099     }
1100     if (CC->getDefiningExpr()) {
1101       // If we simplified to something else, we need to communicate
1102       // that we're users of the value we simplified to.
1103       if (I != V) {
1104         // Don't add temporary instructions to the user lists.
1105         if (!AllTempInstructions.count(I))
1106           addAdditionalUsers(V, I);
1107       }
1108 
1109       if (I)
1110         LLVM_DEBUG(dbgs() << "Simplified " << *I << " to "
1111                           << " expression " << *CC->getDefiningExpr() << "\n");
1112       NumGVNOpsSimplified++;
1113       deleteExpression(E);
1114       return CC->getDefiningExpr();
1115     }
1116   }
1117 
1118   return nullptr;
1119 }
1120 
1121 // Create a value expression from the instruction I, replacing operands with
1122 // their leaders.
1123 
1124 const Expression *NewGVN::createExpression(Instruction *I) const {
1125   auto *E = new (ExpressionAllocator) BasicExpression(I->getNumOperands());
1126 
1127   bool AllConstant = setBasicExpressionInfo(I, E);
1128 
1129   if (I->isCommutative()) {
1130     // Ensure that commutative instructions that only differ by a permutation
1131     // of their operands get the same value number by sorting the operand value
1132     // numbers.  Since all commutative instructions have two operands it is more
1133     // efficient to sort by hand rather than using, say, std::sort.
1134     assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!");
1135     if (shouldSwapOperands(E->getOperand(0), E->getOperand(1)))
1136       E->swapOperands(0, 1);
1137   }
1138   // Perform simplification.
1139   if (auto *CI = dyn_cast<CmpInst>(I)) {
1140     // Sort the operand value numbers so x<y and y>x get the same value
1141     // number.
1142     CmpInst::Predicate Predicate = CI->getPredicate();
1143     if (shouldSwapOperands(E->getOperand(0), E->getOperand(1))) {
1144       E->swapOperands(0, 1);
1145       Predicate = CmpInst::getSwappedPredicate(Predicate);
1146     }
1147     E->setOpcode((CI->getOpcode() << 8) | Predicate);
1148     // TODO: 25% of our time is spent in SimplifyCmpInst with pointer operands
1149     assert(I->getOperand(0)->getType() == I->getOperand(1)->getType() &&
1150            "Wrong types on cmp instruction");
1151     assert((E->getOperand(0)->getType() == I->getOperand(0)->getType() &&
1152             E->getOperand(1)->getType() == I->getOperand(1)->getType()));
1153     Value *V =
1154         SimplifyCmpInst(Predicate, E->getOperand(0), E->getOperand(1), SQ);
1155     if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
1156       return SimplifiedE;
1157   } else if (isa<SelectInst>(I)) {
1158     if (isa<Constant>(E->getOperand(0)) ||
1159         E->getOperand(1) == E->getOperand(2)) {
1160       assert(E->getOperand(1)->getType() == I->getOperand(1)->getType() &&
1161              E->getOperand(2)->getType() == I->getOperand(2)->getType());
1162       Value *V = SimplifySelectInst(E->getOperand(0), E->getOperand(1),
1163                                     E->getOperand(2), SQ);
1164       if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
1165         return SimplifiedE;
1166     }
1167   } else if (I->isBinaryOp()) {
1168     Value *V =
1169         SimplifyBinOp(E->getOpcode(), E->getOperand(0), E->getOperand(1), SQ);
1170     if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
1171       return SimplifiedE;
1172   } else if (auto *CI = dyn_cast<CastInst>(I)) {
1173     Value *V =
1174         SimplifyCastInst(CI->getOpcode(), E->getOperand(0), CI->getType(), SQ);
1175     if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
1176       return SimplifiedE;
1177   } else if (isa<GetElementPtrInst>(I)) {
1178     Value *V = SimplifyGEPInst(
1179         E->getType(), ArrayRef<Value *>(E->op_begin(), E->op_end()), SQ);
1180     if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
1181       return SimplifiedE;
1182   } else if (AllConstant) {
1183     // We don't bother trying to simplify unless all of the operands
1184     // were constant.
1185     // TODO: There are a lot of Simplify*'s we could call here, if we
1186     // wanted to.  The original motivating case for this code was a
1187     // zext i1 false to i8, which we don't have an interface to
1188     // simplify (IE there is no SimplifyZExt).
1189 
1190     SmallVector<Constant *, 8> C;
1191     for (Value *Arg : E->operands())
1192       C.emplace_back(cast<Constant>(Arg));
1193 
1194     if (Value *V = ConstantFoldInstOperands(I, C, DL, TLI))
1195       if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
1196         return SimplifiedE;
1197   }
1198   return E;
1199 }
1200 
1201 const AggregateValueExpression *
1202 NewGVN::createAggregateValueExpression(Instruction *I) const {
1203   if (auto *II = dyn_cast<InsertValueInst>(I)) {
1204     auto *E = new (ExpressionAllocator)
1205         AggregateValueExpression(I->getNumOperands(), II->getNumIndices());
1206     setBasicExpressionInfo(I, E);
1207     E->allocateIntOperands(ExpressionAllocator);
1208     std::copy(II->idx_begin(), II->idx_end(), int_op_inserter(E));
1209     return E;
1210   } else if (auto *EI = dyn_cast<ExtractValueInst>(I)) {
1211     auto *E = new (ExpressionAllocator)
1212         AggregateValueExpression(I->getNumOperands(), EI->getNumIndices());
1213     setBasicExpressionInfo(EI, E);
1214     E->allocateIntOperands(ExpressionAllocator);
1215     std::copy(EI->idx_begin(), EI->idx_end(), int_op_inserter(E));
1216     return E;
1217   }
1218   llvm_unreachable("Unhandled type of aggregate value operation");
1219 }
1220 
1221 const DeadExpression *NewGVN::createDeadExpression() const {
1222   // DeadExpression has no arguments and all DeadExpression's are the same,
1223   // so we only need one of them.
1224   return SingletonDeadExpression;
1225 }
1226 
1227 const VariableExpression *NewGVN::createVariableExpression(Value *V) const {
1228   auto *E = new (ExpressionAllocator) VariableExpression(V);
1229   E->setOpcode(V->getValueID());
1230   return E;
1231 }
1232 
1233 const Expression *NewGVN::createVariableOrConstant(Value *V) const {
1234   if (auto *C = dyn_cast<Constant>(V))
1235     return createConstantExpression(C);
1236   return createVariableExpression(V);
1237 }
1238 
1239 const ConstantExpression *NewGVN::createConstantExpression(Constant *C) const {
1240   auto *E = new (ExpressionAllocator) ConstantExpression(C);
1241   E->setOpcode(C->getValueID());
1242   return E;
1243 }
1244 
1245 const UnknownExpression *NewGVN::createUnknownExpression(Instruction *I) const {
1246   auto *E = new (ExpressionAllocator) UnknownExpression(I);
1247   E->setOpcode(I->getOpcode());
1248   return E;
1249 }
1250 
1251 const CallExpression *
1252 NewGVN::createCallExpression(CallInst *CI, const MemoryAccess *MA) const {
1253   // FIXME: Add operand bundles for calls.
1254   auto *E =
1255       new (ExpressionAllocator) CallExpression(CI->getNumOperands(), CI, MA);
1256   setBasicExpressionInfo(CI, E);
1257   return E;
1258 }
1259 
1260 // Return true if some equivalent of instruction Inst dominates instruction U.
1261 bool NewGVN::someEquivalentDominates(const Instruction *Inst,
1262                                      const Instruction *U) const {
1263   auto *CC = ValueToClass.lookup(Inst);
1264    // This must be an instruction because we are only called from phi nodes
1265   // in the case that the value it needs to check against is an instruction.
1266 
1267   // The most likely candidates for dominance are the leader and the next leader.
1268   // The leader or nextleader will dominate in all cases where there is an
1269   // equivalent that is higher up in the dom tree.
1270   // We can't *only* check them, however, because the
1271   // dominator tree could have an infinite number of non-dominating siblings
1272   // with instructions that are in the right congruence class.
1273   //       A
1274   // B C D E F G
1275   // |
1276   // H
1277   // Instruction U could be in H,  with equivalents in every other sibling.
1278   // Depending on the rpo order picked, the leader could be the equivalent in
1279   // any of these siblings.
1280   if (!CC)
1281     return false;
1282   if (alwaysAvailable(CC->getLeader()))
1283     return true;
1284   if (DT->dominates(cast<Instruction>(CC->getLeader()), U))
1285     return true;
1286   if (CC->getNextLeader().first &&
1287       DT->dominates(cast<Instruction>(CC->getNextLeader().first), U))
1288     return true;
1289   return llvm::any_of(*CC, [&](const Value *Member) {
1290     return Member != CC->getLeader() &&
1291            DT->dominates(cast<Instruction>(Member), U);
1292   });
1293 }
1294 
1295 // See if we have a congruence class and leader for this operand, and if so,
1296 // return it. Otherwise, return the operand itself.
1297 Value *NewGVN::lookupOperandLeader(Value *V) const {
1298   CongruenceClass *CC = ValueToClass.lookup(V);
1299   if (CC) {
1300     // Everything in TOP is represented by undef, as it can be any value.
1301     // We do have to make sure we get the type right though, so we can't set the
1302     // RepLeader to undef.
1303     if (CC == TOPClass)
1304       return UndefValue::get(V->getType());
1305     return CC->getStoredValue() ? CC->getStoredValue() : CC->getLeader();
1306   }
1307 
1308   return V;
1309 }
1310 
1311 const MemoryAccess *NewGVN::lookupMemoryLeader(const MemoryAccess *MA) const {
1312   auto *CC = getMemoryClass(MA);
1313   assert(CC->getMemoryLeader() &&
1314          "Every MemoryAccess should be mapped to a congruence class with a "
1315          "representative memory access");
1316   return CC->getMemoryLeader();
1317 }
1318 
1319 // Return true if the MemoryAccess is really equivalent to everything. This is
1320 // equivalent to the lattice value "TOP" in most lattices.  This is the initial
1321 // state of all MemoryAccesses.
1322 bool NewGVN::isMemoryAccessTOP(const MemoryAccess *MA) const {
1323   return getMemoryClass(MA) == TOPClass;
1324 }
1325 
1326 LoadExpression *NewGVN::createLoadExpression(Type *LoadType, Value *PointerOp,
1327                                              LoadInst *LI,
1328                                              const MemoryAccess *MA) const {
1329   auto *E =
1330       new (ExpressionAllocator) LoadExpression(1, LI, lookupMemoryLeader(MA));
1331   E->allocateOperands(ArgRecycler, ExpressionAllocator);
1332   E->setType(LoadType);
1333 
1334   // Give store and loads same opcode so they value number together.
1335   E->setOpcode(0);
1336   E->op_push_back(PointerOp);
1337   if (LI)
1338     E->setAlignment(MaybeAlign(LI->getAlignment()));
1339 
1340   // TODO: Value number heap versions. We may be able to discover
1341   // things alias analysis can't on it's own (IE that a store and a
1342   // load have the same value, and thus, it isn't clobbering the load).
1343   return E;
1344 }
1345 
1346 const StoreExpression *
1347 NewGVN::createStoreExpression(StoreInst *SI, const MemoryAccess *MA) const {
1348   auto *StoredValueLeader = lookupOperandLeader(SI->getValueOperand());
1349   auto *E = new (ExpressionAllocator)
1350       StoreExpression(SI->getNumOperands(), SI, StoredValueLeader, MA);
1351   E->allocateOperands(ArgRecycler, ExpressionAllocator);
1352   E->setType(SI->getValueOperand()->getType());
1353 
1354   // Give store and loads same opcode so they value number together.
1355   E->setOpcode(0);
1356   E->op_push_back(lookupOperandLeader(SI->getPointerOperand()));
1357 
1358   // TODO: Value number heap versions. We may be able to discover
1359   // things alias analysis can't on it's own (IE that a store and a
1360   // load have the same value, and thus, it isn't clobbering the load).
1361   return E;
1362 }
1363 
1364 const Expression *NewGVN::performSymbolicStoreEvaluation(Instruction *I) const {
1365   // Unlike loads, we never try to eliminate stores, so we do not check if they
1366   // are simple and avoid value numbering them.
1367   auto *SI = cast<StoreInst>(I);
1368   auto *StoreAccess = getMemoryAccess(SI);
1369   // Get the expression, if any, for the RHS of the MemoryDef.
1370   const MemoryAccess *StoreRHS = StoreAccess->getDefiningAccess();
1371   if (EnableStoreRefinement)
1372     StoreRHS = MSSAWalker->getClobberingMemoryAccess(StoreAccess);
1373   // If we bypassed the use-def chains, make sure we add a use.
1374   StoreRHS = lookupMemoryLeader(StoreRHS);
1375   if (StoreRHS != StoreAccess->getDefiningAccess())
1376     addMemoryUsers(StoreRHS, StoreAccess);
1377   // If we are defined by ourselves, use the live on entry def.
1378   if (StoreRHS == StoreAccess)
1379     StoreRHS = MSSA->getLiveOnEntryDef();
1380 
1381   if (SI->isSimple()) {
1382     // See if we are defined by a previous store expression, it already has a
1383     // value, and it's the same value as our current store. FIXME: Right now, we
1384     // only do this for simple stores, we should expand to cover memcpys, etc.
1385     const auto *LastStore = createStoreExpression(SI, StoreRHS);
1386     const auto *LastCC = ExpressionToClass.lookup(LastStore);
1387     // We really want to check whether the expression we matched was a store. No
1388     // easy way to do that. However, we can check that the class we found has a
1389     // store, which, assuming the value numbering state is not corrupt, is
1390     // sufficient, because we must also be equivalent to that store's expression
1391     // for it to be in the same class as the load.
1392     if (LastCC && LastCC->getStoredValue() == LastStore->getStoredValue())
1393       return LastStore;
1394     // Also check if our value operand is defined by a load of the same memory
1395     // location, and the memory state is the same as it was then (otherwise, it
1396     // could have been overwritten later. See test32 in
1397     // transforms/DeadStoreElimination/simple.ll).
1398     if (auto *LI = dyn_cast<LoadInst>(LastStore->getStoredValue()))
1399       if ((lookupOperandLeader(LI->getPointerOperand()) ==
1400            LastStore->getOperand(0)) &&
1401           (lookupMemoryLeader(getMemoryAccess(LI)->getDefiningAccess()) ==
1402            StoreRHS))
1403         return LastStore;
1404     deleteExpression(LastStore);
1405   }
1406 
1407   // If the store is not equivalent to anything, value number it as a store that
1408   // produces a unique memory state (instead of using it's MemoryUse, we use
1409   // it's MemoryDef).
1410   return createStoreExpression(SI, StoreAccess);
1411 }
1412 
1413 // See if we can extract the value of a loaded pointer from a load, a store, or
1414 // a memory instruction.
1415 const Expression *
1416 NewGVN::performSymbolicLoadCoercion(Type *LoadType, Value *LoadPtr,
1417                                     LoadInst *LI, Instruction *DepInst,
1418                                     MemoryAccess *DefiningAccess) const {
1419   assert((!LI || LI->isSimple()) && "Not a simple load");
1420   if (auto *DepSI = dyn_cast<StoreInst>(DepInst)) {
1421     // Can't forward from non-atomic to atomic without violating memory model.
1422     // Also don't need to coerce if they are the same type, we will just
1423     // propagate.
1424     if (LI->isAtomic() > DepSI->isAtomic() ||
1425         LoadType == DepSI->getValueOperand()->getType())
1426       return nullptr;
1427     int Offset = analyzeLoadFromClobberingStore(LoadType, LoadPtr, DepSI, DL);
1428     if (Offset >= 0) {
1429       if (auto *C = dyn_cast<Constant>(
1430               lookupOperandLeader(DepSI->getValueOperand()))) {
1431         LLVM_DEBUG(dbgs() << "Coercing load from store " << *DepSI
1432                           << " to constant " << *C << "\n");
1433         return createConstantExpression(
1434             getConstantStoreValueForLoad(C, Offset, LoadType, DL));
1435       }
1436     }
1437   } else if (auto *DepLI = dyn_cast<LoadInst>(DepInst)) {
1438     // Can't forward from non-atomic to atomic without violating memory model.
1439     if (LI->isAtomic() > DepLI->isAtomic())
1440       return nullptr;
1441     int Offset = analyzeLoadFromClobberingLoad(LoadType, LoadPtr, DepLI, DL);
1442     if (Offset >= 0) {
1443       // We can coerce a constant load into a load.
1444       if (auto *C = dyn_cast<Constant>(lookupOperandLeader(DepLI)))
1445         if (auto *PossibleConstant =
1446                 getConstantLoadValueForLoad(C, Offset, LoadType, DL)) {
1447           LLVM_DEBUG(dbgs() << "Coercing load from load " << *LI
1448                             << " to constant " << *PossibleConstant << "\n");
1449           return createConstantExpression(PossibleConstant);
1450         }
1451     }
1452   } else if (auto *DepMI = dyn_cast<MemIntrinsic>(DepInst)) {
1453     int Offset = analyzeLoadFromClobberingMemInst(LoadType, LoadPtr, DepMI, DL);
1454     if (Offset >= 0) {
1455       if (auto *PossibleConstant =
1456               getConstantMemInstValueForLoad(DepMI, Offset, LoadType, DL)) {
1457         LLVM_DEBUG(dbgs() << "Coercing load from meminst " << *DepMI
1458                           << " to constant " << *PossibleConstant << "\n");
1459         return createConstantExpression(PossibleConstant);
1460       }
1461     }
1462   }
1463 
1464   // All of the below are only true if the loaded pointer is produced
1465   // by the dependent instruction.
1466   if (LoadPtr != lookupOperandLeader(DepInst) &&
1467       !AA->isMustAlias(LoadPtr, DepInst))
1468     return nullptr;
1469   // If this load really doesn't depend on anything, then we must be loading an
1470   // undef value.  This can happen when loading for a fresh allocation with no
1471   // intervening stores, for example.  Note that this is only true in the case
1472   // that the result of the allocation is pointer equal to the load ptr.
1473   if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI)) {
1474     return createConstantExpression(UndefValue::get(LoadType));
1475   }
1476   // If this load occurs either right after a lifetime begin,
1477   // then the loaded value is undefined.
1478   else if (auto *II = dyn_cast<IntrinsicInst>(DepInst)) {
1479     if (II->getIntrinsicID() == Intrinsic::lifetime_start)
1480       return createConstantExpression(UndefValue::get(LoadType));
1481   }
1482   // If this load follows a calloc (which zero initializes memory),
1483   // then the loaded value is zero
1484   else if (isCallocLikeFn(DepInst, TLI)) {
1485     return createConstantExpression(Constant::getNullValue(LoadType));
1486   }
1487 
1488   return nullptr;
1489 }
1490 
1491 const Expression *NewGVN::performSymbolicLoadEvaluation(Instruction *I) const {
1492   auto *LI = cast<LoadInst>(I);
1493 
1494   // We can eliminate in favor of non-simple loads, but we won't be able to
1495   // eliminate the loads themselves.
1496   if (!LI->isSimple())
1497     return nullptr;
1498 
1499   Value *LoadAddressLeader = lookupOperandLeader(LI->getPointerOperand());
1500   // Load of undef is undef.
1501   if (isa<UndefValue>(LoadAddressLeader))
1502     return createConstantExpression(UndefValue::get(LI->getType()));
1503   MemoryAccess *OriginalAccess = getMemoryAccess(I);
1504   MemoryAccess *DefiningAccess =
1505       MSSAWalker->getClobberingMemoryAccess(OriginalAccess);
1506 
1507   if (!MSSA->isLiveOnEntryDef(DefiningAccess)) {
1508     if (auto *MD = dyn_cast<MemoryDef>(DefiningAccess)) {
1509       Instruction *DefiningInst = MD->getMemoryInst();
1510       // If the defining instruction is not reachable, replace with undef.
1511       if (!ReachableBlocks.count(DefiningInst->getParent()))
1512         return createConstantExpression(UndefValue::get(LI->getType()));
1513       // This will handle stores and memory insts.  We only do if it the
1514       // defining access has a different type, or it is a pointer produced by
1515       // certain memory operations that cause the memory to have a fixed value
1516       // (IE things like calloc).
1517       if (const auto *CoercionResult =
1518               performSymbolicLoadCoercion(LI->getType(), LoadAddressLeader, LI,
1519                                           DefiningInst, DefiningAccess))
1520         return CoercionResult;
1521     }
1522   }
1523 
1524   const auto *LE = createLoadExpression(LI->getType(), LoadAddressLeader, LI,
1525                                         DefiningAccess);
1526   // If our MemoryLeader is not our defining access, add a use to the
1527   // MemoryLeader, so that we get reprocessed when it changes.
1528   if (LE->getMemoryLeader() != DefiningAccess)
1529     addMemoryUsers(LE->getMemoryLeader(), OriginalAccess);
1530   return LE;
1531 }
1532 
1533 const Expression *
1534 NewGVN::performSymbolicPredicateInfoEvaluation(Instruction *I) const {
1535   auto *PI = PredInfo->getPredicateInfoFor(I);
1536   if (!PI)
1537     return nullptr;
1538 
1539   LLVM_DEBUG(dbgs() << "Found predicate info from instruction !\n");
1540 
1541   auto *PWC = dyn_cast<PredicateWithCondition>(PI);
1542   if (!PWC)
1543     return nullptr;
1544 
1545   auto *CopyOf = I->getOperand(0);
1546   auto *Cond = PWC->Condition;
1547 
1548   // If this a copy of the condition, it must be either true or false depending
1549   // on the predicate info type and edge.
1550   if (CopyOf == Cond) {
1551     // We should not need to add predicate users because the predicate info is
1552     // already a use of this operand.
1553     if (isa<PredicateAssume>(PI))
1554       return createConstantExpression(ConstantInt::getTrue(Cond->getType()));
1555     if (auto *PBranch = dyn_cast<PredicateBranch>(PI)) {
1556       if (PBranch->TrueEdge)
1557         return createConstantExpression(ConstantInt::getTrue(Cond->getType()));
1558       return createConstantExpression(ConstantInt::getFalse(Cond->getType()));
1559     }
1560     if (auto *PSwitch = dyn_cast<PredicateSwitch>(PI))
1561       return createConstantExpression(cast<Constant>(PSwitch->CaseValue));
1562   }
1563 
1564   // Not a copy of the condition, so see what the predicates tell us about this
1565   // value.  First, though, we check to make sure the value is actually a copy
1566   // of one of the condition operands. It's possible, in certain cases, for it
1567   // to be a copy of a predicateinfo copy. In particular, if two branch
1568   // operations use the same condition, and one branch dominates the other, we
1569   // will end up with a copy of a copy.  This is currently a small deficiency in
1570   // predicateinfo.  What will end up happening here is that we will value
1571   // number both copies the same anyway.
1572 
1573   // Everything below relies on the condition being a comparison.
1574   auto *Cmp = dyn_cast<CmpInst>(Cond);
1575   if (!Cmp)
1576     return nullptr;
1577 
1578   if (CopyOf != Cmp->getOperand(0) && CopyOf != Cmp->getOperand(1)) {
1579     LLVM_DEBUG(dbgs() << "Copy is not of any condition operands!\n");
1580     return nullptr;
1581   }
1582   Value *FirstOp = lookupOperandLeader(Cmp->getOperand(0));
1583   Value *SecondOp = lookupOperandLeader(Cmp->getOperand(1));
1584   bool SwappedOps = false;
1585   // Sort the ops.
1586   if (shouldSwapOperands(FirstOp, SecondOp)) {
1587     std::swap(FirstOp, SecondOp);
1588     SwappedOps = true;
1589   }
1590   CmpInst::Predicate Predicate =
1591       SwappedOps ? Cmp->getSwappedPredicate() : Cmp->getPredicate();
1592 
1593   if (isa<PredicateAssume>(PI)) {
1594     // If we assume the operands are equal, then they are equal.
1595     if (Predicate == CmpInst::ICMP_EQ) {
1596       addPredicateUsers(PI, I);
1597       addAdditionalUsers(SwappedOps ? Cmp->getOperand(1) : Cmp->getOperand(0),
1598                          I);
1599       return createVariableOrConstant(FirstOp);
1600     }
1601   }
1602   if (const auto *PBranch = dyn_cast<PredicateBranch>(PI)) {
1603     // If we are *not* a copy of the comparison, we may equal to the other
1604     // operand when the predicate implies something about equality of
1605     // operations.  In particular, if the comparison is true/false when the
1606     // operands are equal, and we are on the right edge, we know this operation
1607     // is equal to something.
1608     if ((PBranch->TrueEdge && Predicate == CmpInst::ICMP_EQ) ||
1609         (!PBranch->TrueEdge && Predicate == CmpInst::ICMP_NE)) {
1610       addPredicateUsers(PI, I);
1611       addAdditionalUsers(SwappedOps ? Cmp->getOperand(1) : Cmp->getOperand(0),
1612                          I);
1613       return createVariableOrConstant(FirstOp);
1614     }
1615     // Handle the special case of floating point.
1616     if (((PBranch->TrueEdge && Predicate == CmpInst::FCMP_OEQ) ||
1617          (!PBranch->TrueEdge && Predicate == CmpInst::FCMP_UNE)) &&
1618         isa<ConstantFP>(FirstOp) && !cast<ConstantFP>(FirstOp)->isZero()) {
1619       addPredicateUsers(PI, I);
1620       addAdditionalUsers(SwappedOps ? Cmp->getOperand(1) : Cmp->getOperand(0),
1621                          I);
1622       return createConstantExpression(cast<Constant>(FirstOp));
1623     }
1624   }
1625   return nullptr;
1626 }
1627 
1628 // Evaluate read only and pure calls, and create an expression result.
1629 const Expression *NewGVN::performSymbolicCallEvaluation(Instruction *I) const {
1630   auto *CI = cast<CallInst>(I);
1631   if (auto *II = dyn_cast<IntrinsicInst>(I)) {
1632     // Intrinsics with the returned attribute are copies of arguments.
1633     if (auto *ReturnedValue = II->getReturnedArgOperand()) {
1634       if (II->getIntrinsicID() == Intrinsic::ssa_copy)
1635         if (const auto *Result = performSymbolicPredicateInfoEvaluation(I))
1636           return Result;
1637       return createVariableOrConstant(ReturnedValue);
1638     }
1639   }
1640   if (AA->doesNotAccessMemory(CI)) {
1641     return createCallExpression(CI, TOPClass->getMemoryLeader());
1642   } else if (AA->onlyReadsMemory(CI)) {
1643     if (auto *MA = MSSA->getMemoryAccess(CI)) {
1644       auto *DefiningAccess = MSSAWalker->getClobberingMemoryAccess(MA);
1645       return createCallExpression(CI, DefiningAccess);
1646     } else // MSSA determined that CI does not access memory.
1647       return createCallExpression(CI, TOPClass->getMemoryLeader());
1648   }
1649   return nullptr;
1650 }
1651 
1652 // Retrieve the memory class for a given MemoryAccess.
1653 CongruenceClass *NewGVN::getMemoryClass(const MemoryAccess *MA) const {
1654   auto *Result = MemoryAccessToClass.lookup(MA);
1655   assert(Result && "Should have found memory class");
1656   return Result;
1657 }
1658 
1659 // Update the MemoryAccess equivalence table to say that From is equal to To,
1660 // and return true if this is different from what already existed in the table.
1661 bool NewGVN::setMemoryClass(const MemoryAccess *From,
1662                             CongruenceClass *NewClass) {
1663   assert(NewClass &&
1664          "Every MemoryAccess should be getting mapped to a non-null class");
1665   LLVM_DEBUG(dbgs() << "Setting " << *From);
1666   LLVM_DEBUG(dbgs() << " equivalent to congruence class ");
1667   LLVM_DEBUG(dbgs() << NewClass->getID()
1668                     << " with current MemoryAccess leader ");
1669   LLVM_DEBUG(dbgs() << *NewClass->getMemoryLeader() << "\n");
1670 
1671   auto LookupResult = MemoryAccessToClass.find(From);
1672   bool Changed = false;
1673   // If it's already in the table, see if the value changed.
1674   if (LookupResult != MemoryAccessToClass.end()) {
1675     auto *OldClass = LookupResult->second;
1676     if (OldClass != NewClass) {
1677       // If this is a phi, we have to handle memory member updates.
1678       if (auto *MP = dyn_cast<MemoryPhi>(From)) {
1679         OldClass->memory_erase(MP);
1680         NewClass->memory_insert(MP);
1681         // This may have killed the class if it had no non-memory members
1682         if (OldClass->getMemoryLeader() == From) {
1683           if (OldClass->definesNoMemory()) {
1684             OldClass->setMemoryLeader(nullptr);
1685           } else {
1686             OldClass->setMemoryLeader(getNextMemoryLeader(OldClass));
1687             LLVM_DEBUG(dbgs() << "Memory class leader change for class "
1688                               << OldClass->getID() << " to "
1689                               << *OldClass->getMemoryLeader()
1690                               << " due to removal of a memory member " << *From
1691                               << "\n");
1692             markMemoryLeaderChangeTouched(OldClass);
1693           }
1694         }
1695       }
1696       // It wasn't equivalent before, and now it is.
1697       LookupResult->second = NewClass;
1698       Changed = true;
1699     }
1700   }
1701 
1702   return Changed;
1703 }
1704 
1705 // Determine if a instruction is cycle-free.  That means the values in the
1706 // instruction don't depend on any expressions that can change value as a result
1707 // of the instruction.  For example, a non-cycle free instruction would be v =
1708 // phi(0, v+1).
1709 bool NewGVN::isCycleFree(const Instruction *I) const {
1710   // In order to compute cycle-freeness, we do SCC finding on the instruction,
1711   // and see what kind of SCC it ends up in.  If it is a singleton, it is
1712   // cycle-free.  If it is not in a singleton, it is only cycle free if the
1713   // other members are all phi nodes (as they do not compute anything, they are
1714   // copies).
1715   auto ICS = InstCycleState.lookup(I);
1716   if (ICS == ICS_Unknown) {
1717     SCCFinder.Start(I);
1718     auto &SCC = SCCFinder.getComponentFor(I);
1719     // It's cycle free if it's size 1 or the SCC is *only* phi nodes.
1720     if (SCC.size() == 1)
1721       InstCycleState.insert({I, ICS_CycleFree});
1722     else {
1723       bool AllPhis = llvm::all_of(SCC, [](const Value *V) {
1724         return isa<PHINode>(V) || isCopyOfAPHI(V);
1725       });
1726       ICS = AllPhis ? ICS_CycleFree : ICS_Cycle;
1727       for (auto *Member : SCC)
1728         if (auto *MemberPhi = dyn_cast<PHINode>(Member))
1729           InstCycleState.insert({MemberPhi, ICS});
1730     }
1731   }
1732   if (ICS == ICS_Cycle)
1733     return false;
1734   return true;
1735 }
1736 
1737 // Evaluate PHI nodes symbolically and create an expression result.
1738 const Expression *
1739 NewGVN::performSymbolicPHIEvaluation(ArrayRef<ValPair> PHIOps,
1740                                      Instruction *I,
1741                                      BasicBlock *PHIBlock) const {
1742   // True if one of the incoming phi edges is a backedge.
1743   bool HasBackedge = false;
1744   // All constant tracks the state of whether all the *original* phi operands
1745   // This is really shorthand for "this phi cannot cycle due to forward
1746   // change in value of the phi is guaranteed not to later change the value of
1747   // the phi. IE it can't be v = phi(undef, v+1)
1748   bool OriginalOpsConstant = true;
1749   auto *E = cast<PHIExpression>(createPHIExpression(
1750       PHIOps, I, PHIBlock, HasBackedge, OriginalOpsConstant));
1751   // We match the semantics of SimplifyPhiNode from InstructionSimplify here.
1752   // See if all arguments are the same.
1753   // We track if any were undef because they need special handling.
1754   bool HasUndef = false;
1755   auto Filtered = make_filter_range(E->operands(), [&](Value *Arg) {
1756     if (isa<UndefValue>(Arg)) {
1757       HasUndef = true;
1758       return false;
1759     }
1760     return true;
1761   });
1762   // If we are left with no operands, it's dead.
1763   if (Filtered.empty()) {
1764     // If it has undef at this point, it means there are no-non-undef arguments,
1765     // and thus, the value of the phi node must be undef.
1766     if (HasUndef) {
1767       LLVM_DEBUG(
1768           dbgs() << "PHI Node " << *I
1769                  << " has no non-undef arguments, valuing it as undef\n");
1770       return createConstantExpression(UndefValue::get(I->getType()));
1771     }
1772 
1773     LLVM_DEBUG(dbgs() << "No arguments of PHI node " << *I << " are live\n");
1774     deleteExpression(E);
1775     return createDeadExpression();
1776   }
1777   Value *AllSameValue = *(Filtered.begin());
1778   ++Filtered.begin();
1779   // Can't use std::equal here, sadly, because filter.begin moves.
1780   if (llvm::all_of(Filtered, [&](Value *Arg) { return Arg == AllSameValue; })) {
1781     // In LLVM's non-standard representation of phi nodes, it's possible to have
1782     // phi nodes with cycles (IE dependent on other phis that are .... dependent
1783     // on the original phi node), especially in weird CFG's where some arguments
1784     // are unreachable, or uninitialized along certain paths.  This can cause
1785     // infinite loops during evaluation. We work around this by not trying to
1786     // really evaluate them independently, but instead using a variable
1787     // expression to say if one is equivalent to the other.
1788     // We also special case undef, so that if we have an undef, we can't use the
1789     // common value unless it dominates the phi block.
1790     if (HasUndef) {
1791       // If we have undef and at least one other value, this is really a
1792       // multivalued phi, and we need to know if it's cycle free in order to
1793       // evaluate whether we can ignore the undef.  The other parts of this are
1794       // just shortcuts.  If there is no backedge, or all operands are
1795       // constants, it also must be cycle free.
1796       if (HasBackedge && !OriginalOpsConstant &&
1797           !isa<UndefValue>(AllSameValue) && !isCycleFree(I))
1798         return E;
1799 
1800       // Only have to check for instructions
1801       if (auto *AllSameInst = dyn_cast<Instruction>(AllSameValue))
1802         if (!someEquivalentDominates(AllSameInst, I))
1803           return E;
1804     }
1805     // Can't simplify to something that comes later in the iteration.
1806     // Otherwise, when and if it changes congruence class, we will never catch
1807     // up. We will always be a class behind it.
1808     if (isa<Instruction>(AllSameValue) &&
1809         InstrToDFSNum(AllSameValue) > InstrToDFSNum(I))
1810       return E;
1811     NumGVNPhisAllSame++;
1812     LLVM_DEBUG(dbgs() << "Simplified PHI node " << *I << " to " << *AllSameValue
1813                       << "\n");
1814     deleteExpression(E);
1815     return createVariableOrConstant(AllSameValue);
1816   }
1817   return E;
1818 }
1819 
1820 const Expression *
1821 NewGVN::performSymbolicAggrValueEvaluation(Instruction *I) const {
1822   if (auto *EI = dyn_cast<ExtractValueInst>(I)) {
1823     auto *WO = dyn_cast<WithOverflowInst>(EI->getAggregateOperand());
1824     if (WO && EI->getNumIndices() == 1 && *EI->idx_begin() == 0)
1825       // EI is an extract from one of our with.overflow intrinsics. Synthesize
1826       // a semantically equivalent expression instead of an extract value
1827       // expression.
1828       return createBinaryExpression(WO->getBinaryOp(), EI->getType(),
1829                                     WO->getLHS(), WO->getRHS(), I);
1830   }
1831 
1832   return createAggregateValueExpression(I);
1833 }
1834 
1835 const Expression *NewGVN::performSymbolicCmpEvaluation(Instruction *I) const {
1836   assert(isa<CmpInst>(I) && "Expected a cmp instruction.");
1837 
1838   auto *CI = cast<CmpInst>(I);
1839   // See if our operands are equal to those of a previous predicate, and if so,
1840   // if it implies true or false.
1841   auto Op0 = lookupOperandLeader(CI->getOperand(0));
1842   auto Op1 = lookupOperandLeader(CI->getOperand(1));
1843   auto OurPredicate = CI->getPredicate();
1844   if (shouldSwapOperands(Op0, Op1)) {
1845     std::swap(Op0, Op1);
1846     OurPredicate = CI->getSwappedPredicate();
1847   }
1848 
1849   // Avoid processing the same info twice.
1850   const PredicateBase *LastPredInfo = nullptr;
1851   // See if we know something about the comparison itself, like it is the target
1852   // of an assume.
1853   auto *CmpPI = PredInfo->getPredicateInfoFor(I);
1854   if (dyn_cast_or_null<PredicateAssume>(CmpPI))
1855     return createConstantExpression(ConstantInt::getTrue(CI->getType()));
1856 
1857   if (Op0 == Op1) {
1858     // This condition does not depend on predicates, no need to add users
1859     if (CI->isTrueWhenEqual())
1860       return createConstantExpression(ConstantInt::getTrue(CI->getType()));
1861     else if (CI->isFalseWhenEqual())
1862       return createConstantExpression(ConstantInt::getFalse(CI->getType()));
1863   }
1864 
1865   // NOTE: Because we are comparing both operands here and below, and using
1866   // previous comparisons, we rely on fact that predicateinfo knows to mark
1867   // comparisons that use renamed operands as users of the earlier comparisons.
1868   // It is *not* enough to just mark predicateinfo renamed operands as users of
1869   // the earlier comparisons, because the *other* operand may have changed in a
1870   // previous iteration.
1871   // Example:
1872   // icmp slt %a, %b
1873   // %b.0 = ssa.copy(%b)
1874   // false branch:
1875   // icmp slt %c, %b.0
1876 
1877   // %c and %a may start out equal, and thus, the code below will say the second
1878   // %icmp is false.  c may become equal to something else, and in that case the
1879   // %second icmp *must* be reexamined, but would not if only the renamed
1880   // %operands are considered users of the icmp.
1881 
1882   // *Currently* we only check one level of comparisons back, and only mark one
1883   // level back as touched when changes happen.  If you modify this code to look
1884   // back farther through comparisons, you *must* mark the appropriate
1885   // comparisons as users in PredicateInfo.cpp, or you will cause bugs.  See if
1886   // we know something just from the operands themselves
1887 
1888   // See if our operands have predicate info, so that we may be able to derive
1889   // something from a previous comparison.
1890   for (const auto &Op : CI->operands()) {
1891     auto *PI = PredInfo->getPredicateInfoFor(Op);
1892     if (const auto *PBranch = dyn_cast_or_null<PredicateBranch>(PI)) {
1893       if (PI == LastPredInfo)
1894         continue;
1895       LastPredInfo = PI;
1896       // In phi of ops cases, we may have predicate info that we are evaluating
1897       // in a different context.
1898       if (!DT->dominates(PBranch->To, getBlockForValue(I)))
1899         continue;
1900       // TODO: Along the false edge, we may know more things too, like
1901       // icmp of
1902       // same operands is false.
1903       // TODO: We only handle actual comparison conditions below, not
1904       // and/or.
1905       auto *BranchCond = dyn_cast<CmpInst>(PBranch->Condition);
1906       if (!BranchCond)
1907         continue;
1908       auto *BranchOp0 = lookupOperandLeader(BranchCond->getOperand(0));
1909       auto *BranchOp1 = lookupOperandLeader(BranchCond->getOperand(1));
1910       auto BranchPredicate = BranchCond->getPredicate();
1911       if (shouldSwapOperands(BranchOp0, BranchOp1)) {
1912         std::swap(BranchOp0, BranchOp1);
1913         BranchPredicate = BranchCond->getSwappedPredicate();
1914       }
1915       if (BranchOp0 == Op0 && BranchOp1 == Op1) {
1916         if (PBranch->TrueEdge) {
1917           // If we know the previous predicate is true and we are in the true
1918           // edge then we may be implied true or false.
1919           if (CmpInst::isImpliedTrueByMatchingCmp(BranchPredicate,
1920                                                   OurPredicate)) {
1921             addPredicateUsers(PI, I);
1922             return createConstantExpression(
1923                 ConstantInt::getTrue(CI->getType()));
1924           }
1925 
1926           if (CmpInst::isImpliedFalseByMatchingCmp(BranchPredicate,
1927                                                    OurPredicate)) {
1928             addPredicateUsers(PI, I);
1929             return createConstantExpression(
1930                 ConstantInt::getFalse(CI->getType()));
1931           }
1932         } else {
1933           // Just handle the ne and eq cases, where if we have the same
1934           // operands, we may know something.
1935           if (BranchPredicate == OurPredicate) {
1936             addPredicateUsers(PI, I);
1937             // Same predicate, same ops,we know it was false, so this is false.
1938             return createConstantExpression(
1939                 ConstantInt::getFalse(CI->getType()));
1940           } else if (BranchPredicate ==
1941                      CmpInst::getInversePredicate(OurPredicate)) {
1942             addPredicateUsers(PI, I);
1943             // Inverse predicate, we know the other was false, so this is true.
1944             return createConstantExpression(
1945                 ConstantInt::getTrue(CI->getType()));
1946           }
1947         }
1948       }
1949     }
1950   }
1951   // Create expression will take care of simplifyCmpInst
1952   return createExpression(I);
1953 }
1954 
1955 // Substitute and symbolize the value before value numbering.
1956 const Expression *
1957 NewGVN::performSymbolicEvaluation(Value *V,
1958                                   SmallPtrSetImpl<Value *> &Visited) const {
1959   const Expression *E = nullptr;
1960   if (auto *C = dyn_cast<Constant>(V))
1961     E = createConstantExpression(C);
1962   else if (isa<Argument>(V) || isa<GlobalVariable>(V)) {
1963     E = createVariableExpression(V);
1964   } else {
1965     // TODO: memory intrinsics.
1966     // TODO: Some day, we should do the forward propagation and reassociation
1967     // parts of the algorithm.
1968     auto *I = cast<Instruction>(V);
1969     switch (I->getOpcode()) {
1970     case Instruction::ExtractValue:
1971     case Instruction::InsertValue:
1972       E = performSymbolicAggrValueEvaluation(I);
1973       break;
1974     case Instruction::PHI: {
1975       SmallVector<ValPair, 3> Ops;
1976       auto *PN = cast<PHINode>(I);
1977       for (unsigned i = 0; i < PN->getNumOperands(); ++i)
1978         Ops.push_back({PN->getIncomingValue(i), PN->getIncomingBlock(i)});
1979       // Sort to ensure the invariant createPHIExpression requires is met.
1980       sortPHIOps(Ops);
1981       E = performSymbolicPHIEvaluation(Ops, I, getBlockForValue(I));
1982     } break;
1983     case Instruction::Call:
1984       E = performSymbolicCallEvaluation(I);
1985       break;
1986     case Instruction::Store:
1987       E = performSymbolicStoreEvaluation(I);
1988       break;
1989     case Instruction::Load:
1990       E = performSymbolicLoadEvaluation(I);
1991       break;
1992     case Instruction::BitCast:
1993     case Instruction::AddrSpaceCast:
1994       E = createExpression(I);
1995       break;
1996     case Instruction::ICmp:
1997     case Instruction::FCmp:
1998       E = performSymbolicCmpEvaluation(I);
1999       break;
2000     case Instruction::FNeg:
2001     case Instruction::Add:
2002     case Instruction::FAdd:
2003     case Instruction::Sub:
2004     case Instruction::FSub:
2005     case Instruction::Mul:
2006     case Instruction::FMul:
2007     case Instruction::UDiv:
2008     case Instruction::SDiv:
2009     case Instruction::FDiv:
2010     case Instruction::URem:
2011     case Instruction::SRem:
2012     case Instruction::FRem:
2013     case Instruction::Shl:
2014     case Instruction::LShr:
2015     case Instruction::AShr:
2016     case Instruction::And:
2017     case Instruction::Or:
2018     case Instruction::Xor:
2019     case Instruction::Trunc:
2020     case Instruction::ZExt:
2021     case Instruction::SExt:
2022     case Instruction::FPToUI:
2023     case Instruction::FPToSI:
2024     case Instruction::UIToFP:
2025     case Instruction::SIToFP:
2026     case Instruction::FPTrunc:
2027     case Instruction::FPExt:
2028     case Instruction::PtrToInt:
2029     case Instruction::IntToPtr:
2030     case Instruction::Select:
2031     case Instruction::ExtractElement:
2032     case Instruction::InsertElement:
2033     case Instruction::ShuffleVector:
2034     case Instruction::GetElementPtr:
2035       E = createExpression(I);
2036       break;
2037     default:
2038       return nullptr;
2039     }
2040   }
2041   return E;
2042 }
2043 
2044 // Look up a container in a map, and then call a function for each thing in the
2045 // found container.
2046 template <typename Map, typename KeyType, typename Func>
2047 void NewGVN::for_each_found(Map &M, const KeyType &Key, Func F) {
2048   const auto Result = M.find_as(Key);
2049   if (Result != M.end())
2050     for (typename Map::mapped_type::value_type Mapped : Result->second)
2051       F(Mapped);
2052 }
2053 
2054 // Look up a container of values/instructions in a map, and touch all the
2055 // instructions in the container.  Then erase value from the map.
2056 template <typename Map, typename KeyType>
2057 void NewGVN::touchAndErase(Map &M, const KeyType &Key) {
2058   const auto Result = M.find_as(Key);
2059   if (Result != M.end()) {
2060     for (const typename Map::mapped_type::value_type Mapped : Result->second)
2061       TouchedInstructions.set(InstrToDFSNum(Mapped));
2062     M.erase(Result);
2063   }
2064 }
2065 
2066 void NewGVN::addAdditionalUsers(Value *To, Value *User) const {
2067   assert(User && To != User);
2068   if (isa<Instruction>(To))
2069     AdditionalUsers[To].insert(User);
2070 }
2071 
2072 void NewGVN::markUsersTouched(Value *V) {
2073   // Now mark the users as touched.
2074   for (auto *User : V->users()) {
2075     assert(isa<Instruction>(User) && "Use of value not within an instruction?");
2076     TouchedInstructions.set(InstrToDFSNum(User));
2077   }
2078   touchAndErase(AdditionalUsers, V);
2079 }
2080 
2081 void NewGVN::addMemoryUsers(const MemoryAccess *To, MemoryAccess *U) const {
2082   LLVM_DEBUG(dbgs() << "Adding memory user " << *U << " to " << *To << "\n");
2083   MemoryToUsers[To].insert(U);
2084 }
2085 
2086 void NewGVN::markMemoryDefTouched(const MemoryAccess *MA) {
2087   TouchedInstructions.set(MemoryToDFSNum(MA));
2088 }
2089 
2090 void NewGVN::markMemoryUsersTouched(const MemoryAccess *MA) {
2091   if (isa<MemoryUse>(MA))
2092     return;
2093   for (auto U : MA->users())
2094     TouchedInstructions.set(MemoryToDFSNum(U));
2095   touchAndErase(MemoryToUsers, MA);
2096 }
2097 
2098 // Add I to the set of users of a given predicate.
2099 void NewGVN::addPredicateUsers(const PredicateBase *PB, Instruction *I) const {
2100   // Don't add temporary instructions to the user lists.
2101   if (AllTempInstructions.count(I))
2102     return;
2103 
2104   if (auto *PBranch = dyn_cast<PredicateBranch>(PB))
2105     PredicateToUsers[PBranch->Condition].insert(I);
2106   else if (auto *PAssume = dyn_cast<PredicateAssume>(PB))
2107     PredicateToUsers[PAssume->Condition].insert(I);
2108 }
2109 
2110 // Touch all the predicates that depend on this instruction.
2111 void NewGVN::markPredicateUsersTouched(Instruction *I) {
2112   touchAndErase(PredicateToUsers, I);
2113 }
2114 
2115 // Mark users affected by a memory leader change.
2116 void NewGVN::markMemoryLeaderChangeTouched(CongruenceClass *CC) {
2117   for (auto M : CC->memory())
2118     markMemoryDefTouched(M);
2119 }
2120 
2121 // Touch the instructions that need to be updated after a congruence class has a
2122 // leader change, and mark changed values.
2123 void NewGVN::markValueLeaderChangeTouched(CongruenceClass *CC) {
2124   for (auto M : *CC) {
2125     if (auto *I = dyn_cast<Instruction>(M))
2126       TouchedInstructions.set(InstrToDFSNum(I));
2127     LeaderChanges.insert(M);
2128   }
2129 }
2130 
2131 // Give a range of things that have instruction DFS numbers, this will return
2132 // the member of the range with the smallest dfs number.
2133 template <class T, class Range>
2134 T *NewGVN::getMinDFSOfRange(const Range &R) const {
2135   std::pair<T *, unsigned> MinDFS = {nullptr, ~0U};
2136   for (const auto X : R) {
2137     auto DFSNum = InstrToDFSNum(X);
2138     if (DFSNum < MinDFS.second)
2139       MinDFS = {X, DFSNum};
2140   }
2141   return MinDFS.first;
2142 }
2143 
2144 // This function returns the MemoryAccess that should be the next leader of
2145 // congruence class CC, under the assumption that the current leader is going to
2146 // disappear.
2147 const MemoryAccess *NewGVN::getNextMemoryLeader(CongruenceClass *CC) const {
2148   // TODO: If this ends up to slow, we can maintain a next memory leader like we
2149   // do for regular leaders.
2150   // Make sure there will be a leader to find.
2151   assert(!CC->definesNoMemory() && "Can't get next leader if there is none");
2152   if (CC->getStoreCount() > 0) {
2153     if (auto *NL = dyn_cast_or_null<StoreInst>(CC->getNextLeader().first))
2154       return getMemoryAccess(NL);
2155     // Find the store with the minimum DFS number.
2156     auto *V = getMinDFSOfRange<Value>(make_filter_range(
2157         *CC, [&](const Value *V) { return isa<StoreInst>(V); }));
2158     return getMemoryAccess(cast<StoreInst>(V));
2159   }
2160   assert(CC->getStoreCount() == 0);
2161 
2162   // Given our assertion, hitting this part must mean
2163   // !OldClass->memory_empty()
2164   if (CC->memory_size() == 1)
2165     return *CC->memory_begin();
2166   return getMinDFSOfRange<const MemoryPhi>(CC->memory());
2167 }
2168 
2169 // This function returns the next value leader of a congruence class, under the
2170 // assumption that the current leader is going away.  This should end up being
2171 // the next most dominating member.
2172 Value *NewGVN::getNextValueLeader(CongruenceClass *CC) const {
2173   // We don't need to sort members if there is only 1, and we don't care about
2174   // sorting the TOP class because everything either gets out of it or is
2175   // unreachable.
2176 
2177   if (CC->size() == 1 || CC == TOPClass) {
2178     return *(CC->begin());
2179   } else if (CC->getNextLeader().first) {
2180     ++NumGVNAvoidedSortedLeaderChanges;
2181     return CC->getNextLeader().first;
2182   } else {
2183     ++NumGVNSortedLeaderChanges;
2184     // NOTE: If this ends up to slow, we can maintain a dual structure for
2185     // member testing/insertion, or keep things mostly sorted, and sort only
2186     // here, or use SparseBitVector or ....
2187     return getMinDFSOfRange<Value>(*CC);
2188   }
2189 }
2190 
2191 // Move a MemoryAccess, currently in OldClass, to NewClass, including updates to
2192 // the memory members, etc for the move.
2193 //
2194 // The invariants of this function are:
2195 //
2196 // - I must be moving to NewClass from OldClass
2197 // - The StoreCount of OldClass and NewClass is expected to have been updated
2198 //   for I already if it is a store.
2199 // - The OldClass memory leader has not been updated yet if I was the leader.
2200 void NewGVN::moveMemoryToNewCongruenceClass(Instruction *I,
2201                                             MemoryAccess *InstMA,
2202                                             CongruenceClass *OldClass,
2203                                             CongruenceClass *NewClass) {
2204   // If the leader is I, and we had a representative MemoryAccess, it should
2205   // be the MemoryAccess of OldClass.
2206   assert((!InstMA || !OldClass->getMemoryLeader() ||
2207           OldClass->getLeader() != I ||
2208           MemoryAccessToClass.lookup(OldClass->getMemoryLeader()) ==
2209               MemoryAccessToClass.lookup(InstMA)) &&
2210          "Representative MemoryAccess mismatch");
2211   // First, see what happens to the new class
2212   if (!NewClass->getMemoryLeader()) {
2213     // Should be a new class, or a store becoming a leader of a new class.
2214     assert(NewClass->size() == 1 ||
2215            (isa<StoreInst>(I) && NewClass->getStoreCount() == 1));
2216     NewClass->setMemoryLeader(InstMA);
2217     // Mark it touched if we didn't just create a singleton
2218     LLVM_DEBUG(dbgs() << "Memory class leader change for class "
2219                       << NewClass->getID()
2220                       << " due to new memory instruction becoming leader\n");
2221     markMemoryLeaderChangeTouched(NewClass);
2222   }
2223   setMemoryClass(InstMA, NewClass);
2224   // Now, fixup the old class if necessary
2225   if (OldClass->getMemoryLeader() == InstMA) {
2226     if (!OldClass->definesNoMemory()) {
2227       OldClass->setMemoryLeader(getNextMemoryLeader(OldClass));
2228       LLVM_DEBUG(dbgs() << "Memory class leader change for class "
2229                         << OldClass->getID() << " to "
2230                         << *OldClass->getMemoryLeader()
2231                         << " due to removal of old leader " << *InstMA << "\n");
2232       markMemoryLeaderChangeTouched(OldClass);
2233     } else
2234       OldClass->setMemoryLeader(nullptr);
2235   }
2236 }
2237 
2238 // Move a value, currently in OldClass, to be part of NewClass
2239 // Update OldClass and NewClass for the move (including changing leaders, etc).
2240 void NewGVN::moveValueToNewCongruenceClass(Instruction *I, const Expression *E,
2241                                            CongruenceClass *OldClass,
2242                                            CongruenceClass *NewClass) {
2243   if (I == OldClass->getNextLeader().first)
2244     OldClass->resetNextLeader();
2245 
2246   OldClass->erase(I);
2247   NewClass->insert(I);
2248 
2249   if (NewClass->getLeader() != I)
2250     NewClass->addPossibleNextLeader({I, InstrToDFSNum(I)});
2251   // Handle our special casing of stores.
2252   if (auto *SI = dyn_cast<StoreInst>(I)) {
2253     OldClass->decStoreCount();
2254     // Okay, so when do we want to make a store a leader of a class?
2255     // If we have a store defined by an earlier load, we want the earlier load
2256     // to lead the class.
2257     // If we have a store defined by something else, we want the store to lead
2258     // the class so everything else gets the "something else" as a value.
2259     // If we have a store as the single member of the class, we want the store
2260     // as the leader
2261     if (NewClass->getStoreCount() == 0 && !NewClass->getStoredValue()) {
2262       // If it's a store expression we are using, it means we are not equivalent
2263       // to something earlier.
2264       if (auto *SE = dyn_cast<StoreExpression>(E)) {
2265         NewClass->setStoredValue(SE->getStoredValue());
2266         markValueLeaderChangeTouched(NewClass);
2267         // Shift the new class leader to be the store
2268         LLVM_DEBUG(dbgs() << "Changing leader of congruence class "
2269                           << NewClass->getID() << " from "
2270                           << *NewClass->getLeader() << " to  " << *SI
2271                           << " because store joined class\n");
2272         // If we changed the leader, we have to mark it changed because we don't
2273         // know what it will do to symbolic evaluation.
2274         NewClass->setLeader(SI);
2275       }
2276       // We rely on the code below handling the MemoryAccess change.
2277     }
2278     NewClass->incStoreCount();
2279   }
2280   // True if there is no memory instructions left in a class that had memory
2281   // instructions before.
2282 
2283   // If it's not a memory use, set the MemoryAccess equivalence
2284   auto *InstMA = dyn_cast_or_null<MemoryDef>(getMemoryAccess(I));
2285   if (InstMA)
2286     moveMemoryToNewCongruenceClass(I, InstMA, OldClass, NewClass);
2287   ValueToClass[I] = NewClass;
2288   // See if we destroyed the class or need to swap leaders.
2289   if (OldClass->empty() && OldClass != TOPClass) {
2290     if (OldClass->getDefiningExpr()) {
2291       LLVM_DEBUG(dbgs() << "Erasing expression " << *OldClass->getDefiningExpr()
2292                         << " from table\n");
2293       // We erase it as an exact expression to make sure we don't just erase an
2294       // equivalent one.
2295       auto Iter = ExpressionToClass.find_as(
2296           ExactEqualsExpression(*OldClass->getDefiningExpr()));
2297       if (Iter != ExpressionToClass.end())
2298         ExpressionToClass.erase(Iter);
2299 #ifdef EXPENSIVE_CHECKS
2300       assert(
2301           (*OldClass->getDefiningExpr() != *E || ExpressionToClass.lookup(E)) &&
2302           "We erased the expression we just inserted, which should not happen");
2303 #endif
2304     }
2305   } else if (OldClass->getLeader() == I) {
2306     // When the leader changes, the value numbering of
2307     // everything may change due to symbolization changes, so we need to
2308     // reprocess.
2309     LLVM_DEBUG(dbgs() << "Value class leader change for class "
2310                       << OldClass->getID() << "\n");
2311     ++NumGVNLeaderChanges;
2312     // Destroy the stored value if there are no more stores to represent it.
2313     // Note that this is basically clean up for the expression removal that
2314     // happens below.  If we remove stores from a class, we may leave it as a
2315     // class of equivalent memory phis.
2316     if (OldClass->getStoreCount() == 0) {
2317       if (OldClass->getStoredValue())
2318         OldClass->setStoredValue(nullptr);
2319     }
2320     OldClass->setLeader(getNextValueLeader(OldClass));
2321     OldClass->resetNextLeader();
2322     markValueLeaderChangeTouched(OldClass);
2323   }
2324 }
2325 
2326 // For a given expression, mark the phi of ops instructions that could have
2327 // changed as a result.
2328 void NewGVN::markPhiOfOpsChanged(const Expression *E) {
2329   touchAndErase(ExpressionToPhiOfOps, E);
2330 }
2331 
2332 // Perform congruence finding on a given value numbering expression.
2333 void NewGVN::performCongruenceFinding(Instruction *I, const Expression *E) {
2334   // This is guaranteed to return something, since it will at least find
2335   // TOP.
2336 
2337   CongruenceClass *IClass = ValueToClass.lookup(I);
2338   assert(IClass && "Should have found a IClass");
2339   // Dead classes should have been eliminated from the mapping.
2340   assert(!IClass->isDead() && "Found a dead class");
2341 
2342   CongruenceClass *EClass = nullptr;
2343   if (const auto *VE = dyn_cast<VariableExpression>(E)) {
2344     EClass = ValueToClass.lookup(VE->getVariableValue());
2345   } else if (isa<DeadExpression>(E)) {
2346     EClass = TOPClass;
2347   }
2348   if (!EClass) {
2349     auto lookupResult = ExpressionToClass.insert({E, nullptr});
2350 
2351     // If it's not in the value table, create a new congruence class.
2352     if (lookupResult.second) {
2353       CongruenceClass *NewClass = createCongruenceClass(nullptr, E);
2354       auto place = lookupResult.first;
2355       place->second = NewClass;
2356 
2357       // Constants and variables should always be made the leader.
2358       if (const auto *CE = dyn_cast<ConstantExpression>(E)) {
2359         NewClass->setLeader(CE->getConstantValue());
2360       } else if (const auto *SE = dyn_cast<StoreExpression>(E)) {
2361         StoreInst *SI = SE->getStoreInst();
2362         NewClass->setLeader(SI);
2363         NewClass->setStoredValue(SE->getStoredValue());
2364         // The RepMemoryAccess field will be filled in properly by the
2365         // moveValueToNewCongruenceClass call.
2366       } else {
2367         NewClass->setLeader(I);
2368       }
2369       assert(!isa<VariableExpression>(E) &&
2370              "VariableExpression should have been handled already");
2371 
2372       EClass = NewClass;
2373       LLVM_DEBUG(dbgs() << "Created new congruence class for " << *I
2374                         << " using expression " << *E << " at "
2375                         << NewClass->getID() << " and leader "
2376                         << *(NewClass->getLeader()));
2377       if (NewClass->getStoredValue())
2378         LLVM_DEBUG(dbgs() << " and stored value "
2379                           << *(NewClass->getStoredValue()));
2380       LLVM_DEBUG(dbgs() << "\n");
2381     } else {
2382       EClass = lookupResult.first->second;
2383       if (isa<ConstantExpression>(E))
2384         assert((isa<Constant>(EClass->getLeader()) ||
2385                 (EClass->getStoredValue() &&
2386                  isa<Constant>(EClass->getStoredValue()))) &&
2387                "Any class with a constant expression should have a "
2388                "constant leader");
2389 
2390       assert(EClass && "Somehow don't have an eclass");
2391 
2392       assert(!EClass->isDead() && "We accidentally looked up a dead class");
2393     }
2394   }
2395   bool ClassChanged = IClass != EClass;
2396   bool LeaderChanged = LeaderChanges.erase(I);
2397   if (ClassChanged || LeaderChanged) {
2398     LLVM_DEBUG(dbgs() << "New class " << EClass->getID() << " for expression "
2399                       << *E << "\n");
2400     if (ClassChanged) {
2401       moveValueToNewCongruenceClass(I, E, IClass, EClass);
2402       markPhiOfOpsChanged(E);
2403     }
2404 
2405     markUsersTouched(I);
2406     if (MemoryAccess *MA = getMemoryAccess(I))
2407       markMemoryUsersTouched(MA);
2408     if (auto *CI = dyn_cast<CmpInst>(I))
2409       markPredicateUsersTouched(CI);
2410   }
2411   // If we changed the class of the store, we want to ensure nothing finds the
2412   // old store expression.  In particular, loads do not compare against stored
2413   // value, so they will find old store expressions (and associated class
2414   // mappings) if we leave them in the table.
2415   if (ClassChanged && isa<StoreInst>(I)) {
2416     auto *OldE = ValueToExpression.lookup(I);
2417     // It could just be that the old class died. We don't want to erase it if we
2418     // just moved classes.
2419     if (OldE && isa<StoreExpression>(OldE) && *E != *OldE) {
2420       // Erase this as an exact expression to ensure we don't erase expressions
2421       // equivalent to it.
2422       auto Iter = ExpressionToClass.find_as(ExactEqualsExpression(*OldE));
2423       if (Iter != ExpressionToClass.end())
2424         ExpressionToClass.erase(Iter);
2425     }
2426   }
2427   ValueToExpression[I] = E;
2428 }
2429 
2430 // Process the fact that Edge (from, to) is reachable, including marking
2431 // any newly reachable blocks and instructions for processing.
2432 void NewGVN::updateReachableEdge(BasicBlock *From, BasicBlock *To) {
2433   // Check if the Edge was reachable before.
2434   if (ReachableEdges.insert({From, To}).second) {
2435     // If this block wasn't reachable before, all instructions are touched.
2436     if (ReachableBlocks.insert(To).second) {
2437       LLVM_DEBUG(dbgs() << "Block " << getBlockName(To)
2438                         << " marked reachable\n");
2439       const auto &InstRange = BlockInstRange.lookup(To);
2440       TouchedInstructions.set(InstRange.first, InstRange.second);
2441     } else {
2442       LLVM_DEBUG(dbgs() << "Block " << getBlockName(To)
2443                         << " was reachable, but new edge {"
2444                         << getBlockName(From) << "," << getBlockName(To)
2445                         << "} to it found\n");
2446 
2447       // We've made an edge reachable to an existing block, which may
2448       // impact predicates. Otherwise, only mark the phi nodes as touched, as
2449       // they are the only thing that depend on new edges. Anything using their
2450       // values will get propagated to if necessary.
2451       if (MemoryAccess *MemPhi = getMemoryAccess(To))
2452         TouchedInstructions.set(InstrToDFSNum(MemPhi));
2453 
2454       // FIXME: We should just add a union op on a Bitvector and
2455       // SparseBitVector.  We can do it word by word faster than we are doing it
2456       // here.
2457       for (auto InstNum : RevisitOnReachabilityChange[To])
2458         TouchedInstructions.set(InstNum);
2459     }
2460   }
2461 }
2462 
2463 // Given a predicate condition (from a switch, cmp, or whatever) and a block,
2464 // see if we know some constant value for it already.
2465 Value *NewGVN::findConditionEquivalence(Value *Cond) const {
2466   auto Result = lookupOperandLeader(Cond);
2467   return isa<Constant>(Result) ? Result : nullptr;
2468 }
2469 
2470 // Process the outgoing edges of a block for reachability.
2471 void NewGVN::processOutgoingEdges(Instruction *TI, BasicBlock *B) {
2472   // Evaluate reachability of terminator instruction.
2473   Value *Cond;
2474   BasicBlock *TrueSucc, *FalseSucc;
2475   if (match(TI, m_Br(m_Value(Cond), TrueSucc, FalseSucc))) {
2476     Value *CondEvaluated = findConditionEquivalence(Cond);
2477     if (!CondEvaluated) {
2478       if (auto *I = dyn_cast<Instruction>(Cond)) {
2479         const Expression *E = createExpression(I);
2480         if (const auto *CE = dyn_cast<ConstantExpression>(E)) {
2481           CondEvaluated = CE->getConstantValue();
2482         }
2483       } else if (isa<ConstantInt>(Cond)) {
2484         CondEvaluated = Cond;
2485       }
2486     }
2487     ConstantInt *CI;
2488     if (CondEvaluated && (CI = dyn_cast<ConstantInt>(CondEvaluated))) {
2489       if (CI->isOne()) {
2490         LLVM_DEBUG(dbgs() << "Condition for Terminator " << *TI
2491                           << " evaluated to true\n");
2492         updateReachableEdge(B, TrueSucc);
2493       } else if (CI->isZero()) {
2494         LLVM_DEBUG(dbgs() << "Condition for Terminator " << *TI
2495                           << " evaluated to false\n");
2496         updateReachableEdge(B, FalseSucc);
2497       }
2498     } else {
2499       updateReachableEdge(B, TrueSucc);
2500       updateReachableEdge(B, FalseSucc);
2501     }
2502   } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
2503     // For switches, propagate the case values into the case
2504     // destinations.
2505 
2506     Value *SwitchCond = SI->getCondition();
2507     Value *CondEvaluated = findConditionEquivalence(SwitchCond);
2508     // See if we were able to turn this switch statement into a constant.
2509     if (CondEvaluated && isa<ConstantInt>(CondEvaluated)) {
2510       auto *CondVal = cast<ConstantInt>(CondEvaluated);
2511       // We should be able to get case value for this.
2512       auto Case = *SI->findCaseValue(CondVal);
2513       if (Case.getCaseSuccessor() == SI->getDefaultDest()) {
2514         // We proved the value is outside of the range of the case.
2515         // We can't do anything other than mark the default dest as reachable,
2516         // and go home.
2517         updateReachableEdge(B, SI->getDefaultDest());
2518         return;
2519       }
2520       // Now get where it goes and mark it reachable.
2521       BasicBlock *TargetBlock = Case.getCaseSuccessor();
2522       updateReachableEdge(B, TargetBlock);
2523     } else {
2524       for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
2525         BasicBlock *TargetBlock = SI->getSuccessor(i);
2526         updateReachableEdge(B, TargetBlock);
2527       }
2528     }
2529   } else {
2530     // Otherwise this is either unconditional, or a type we have no
2531     // idea about. Just mark successors as reachable.
2532     for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
2533       BasicBlock *TargetBlock = TI->getSuccessor(i);
2534       updateReachableEdge(B, TargetBlock);
2535     }
2536 
2537     // This also may be a memory defining terminator, in which case, set it
2538     // equivalent only to itself.
2539     //
2540     auto *MA = getMemoryAccess(TI);
2541     if (MA && !isa<MemoryUse>(MA)) {
2542       auto *CC = ensureLeaderOfMemoryClass(MA);
2543       if (setMemoryClass(MA, CC))
2544         markMemoryUsersTouched(MA);
2545     }
2546   }
2547 }
2548 
2549 // Remove the PHI of Ops PHI for I
2550 void NewGVN::removePhiOfOps(Instruction *I, PHINode *PHITemp) {
2551   InstrDFS.erase(PHITemp);
2552   // It's still a temp instruction. We keep it in the array so it gets erased.
2553   // However, it's no longer used by I, or in the block
2554   TempToBlock.erase(PHITemp);
2555   RealToTemp.erase(I);
2556   // We don't remove the users from the phi node uses. This wastes a little
2557   // time, but such is life.  We could use two sets to track which were there
2558   // are the start of NewGVN, and which were added, but right nowt he cost of
2559   // tracking is more than the cost of checking for more phi of ops.
2560 }
2561 
2562 // Add PHI Op in BB as a PHI of operations version of ExistingValue.
2563 void NewGVN::addPhiOfOps(PHINode *Op, BasicBlock *BB,
2564                          Instruction *ExistingValue) {
2565   InstrDFS[Op] = InstrToDFSNum(ExistingValue);
2566   AllTempInstructions.insert(Op);
2567   TempToBlock[Op] = BB;
2568   RealToTemp[ExistingValue] = Op;
2569   // Add all users to phi node use, as they are now uses of the phi of ops phis
2570   // and may themselves be phi of ops.
2571   for (auto *U : ExistingValue->users())
2572     if (auto *UI = dyn_cast<Instruction>(U))
2573       PHINodeUses.insert(UI);
2574 }
2575 
2576 static bool okayForPHIOfOps(const Instruction *I) {
2577   if (!EnablePhiOfOps)
2578     return false;
2579   return isa<BinaryOperator>(I) || isa<SelectInst>(I) || isa<CmpInst>(I) ||
2580          isa<LoadInst>(I);
2581 }
2582 
2583 bool NewGVN::OpIsSafeForPHIOfOpsHelper(
2584     Value *V, const BasicBlock *PHIBlock,
2585     SmallPtrSetImpl<const Value *> &Visited,
2586     SmallVectorImpl<Instruction *> &Worklist) {
2587 
2588   if (!isa<Instruction>(V))
2589     return true;
2590   auto OISIt = OpSafeForPHIOfOps.find(V);
2591   if (OISIt != OpSafeForPHIOfOps.end())
2592     return OISIt->second;
2593 
2594   // Keep walking until we either dominate the phi block, or hit a phi, or run
2595   // out of things to check.
2596   if (DT->properlyDominates(getBlockForValue(V), PHIBlock)) {
2597     OpSafeForPHIOfOps.insert({V, true});
2598     return true;
2599   }
2600   // PHI in the same block.
2601   if (isa<PHINode>(V) && getBlockForValue(V) == PHIBlock) {
2602     OpSafeForPHIOfOps.insert({V, false});
2603     return false;
2604   }
2605 
2606   auto *OrigI = cast<Instruction>(V);
2607   for (auto *Op : OrigI->operand_values()) {
2608     if (!isa<Instruction>(Op))
2609       continue;
2610     // Stop now if we find an unsafe operand.
2611     auto OISIt = OpSafeForPHIOfOps.find(OrigI);
2612     if (OISIt != OpSafeForPHIOfOps.end()) {
2613       if (!OISIt->second) {
2614         OpSafeForPHIOfOps.insert({V, false});
2615         return false;
2616       }
2617       continue;
2618     }
2619     if (!Visited.insert(Op).second)
2620       continue;
2621     Worklist.push_back(cast<Instruction>(Op));
2622   }
2623   return true;
2624 }
2625 
2626 // Return true if this operand will be safe to use for phi of ops.
2627 //
2628 // The reason some operands are unsafe is that we are not trying to recursively
2629 // translate everything back through phi nodes.  We actually expect some lookups
2630 // of expressions to fail.  In particular, a lookup where the expression cannot
2631 // exist in the predecessor.  This is true even if the expression, as shown, can
2632 // be determined to be constant.
2633 bool NewGVN::OpIsSafeForPHIOfOps(Value *V, const BasicBlock *PHIBlock,
2634                                  SmallPtrSetImpl<const Value *> &Visited) {
2635   SmallVector<Instruction *, 4> Worklist;
2636   if (!OpIsSafeForPHIOfOpsHelper(V, PHIBlock, Visited, Worklist))
2637     return false;
2638   while (!Worklist.empty()) {
2639     auto *I = Worklist.pop_back_val();
2640     if (!OpIsSafeForPHIOfOpsHelper(I, PHIBlock, Visited, Worklist))
2641       return false;
2642   }
2643   OpSafeForPHIOfOps.insert({V, true});
2644   return true;
2645 }
2646 
2647 // Try to find a leader for instruction TransInst, which is a phi translated
2648 // version of something in our original program.  Visited is used to ensure we
2649 // don't infinite loop during translations of cycles.  OrigInst is the
2650 // instruction in the original program, and PredBB is the predecessor we
2651 // translated it through.
2652 Value *NewGVN::findLeaderForInst(Instruction *TransInst,
2653                                  SmallPtrSetImpl<Value *> &Visited,
2654                                  MemoryAccess *MemAccess, Instruction *OrigInst,
2655                                  BasicBlock *PredBB) {
2656   unsigned IDFSNum = InstrToDFSNum(OrigInst);
2657   // Make sure it's marked as a temporary instruction.
2658   AllTempInstructions.insert(TransInst);
2659   // and make sure anything that tries to add it's DFS number is
2660   // redirected to the instruction we are making a phi of ops
2661   // for.
2662   TempToBlock.insert({TransInst, PredBB});
2663   InstrDFS.insert({TransInst, IDFSNum});
2664 
2665   const Expression *E = performSymbolicEvaluation(TransInst, Visited);
2666   InstrDFS.erase(TransInst);
2667   AllTempInstructions.erase(TransInst);
2668   TempToBlock.erase(TransInst);
2669   if (MemAccess)
2670     TempToMemory.erase(TransInst);
2671   if (!E)
2672     return nullptr;
2673   auto *FoundVal = findPHIOfOpsLeader(E, OrigInst, PredBB);
2674   if (!FoundVal) {
2675     ExpressionToPhiOfOps[E].insert(OrigInst);
2676     LLVM_DEBUG(dbgs() << "Cannot find phi of ops operand for " << *TransInst
2677                       << " in block " << getBlockName(PredBB) << "\n");
2678     return nullptr;
2679   }
2680   if (auto *SI = dyn_cast<StoreInst>(FoundVal))
2681     FoundVal = SI->getValueOperand();
2682   return FoundVal;
2683 }
2684 
2685 // When we see an instruction that is an op of phis, generate the equivalent phi
2686 // of ops form.
2687 const Expression *
2688 NewGVN::makePossiblePHIOfOps(Instruction *I,
2689                              SmallPtrSetImpl<Value *> &Visited) {
2690   if (!okayForPHIOfOps(I))
2691     return nullptr;
2692 
2693   if (!Visited.insert(I).second)
2694     return nullptr;
2695   // For now, we require the instruction be cycle free because we don't
2696   // *always* create a phi of ops for instructions that could be done as phi
2697   // of ops, we only do it if we think it is useful.  If we did do it all the
2698   // time, we could remove the cycle free check.
2699   if (!isCycleFree(I))
2700     return nullptr;
2701 
2702   SmallPtrSet<const Value *, 8> ProcessedPHIs;
2703   // TODO: We don't do phi translation on memory accesses because it's
2704   // complicated. For a load, we'd need to be able to simulate a new memoryuse,
2705   // which we don't have a good way of doing ATM.
2706   auto *MemAccess = getMemoryAccess(I);
2707   // If the memory operation is defined by a memory operation this block that
2708   // isn't a MemoryPhi, transforming the pointer backwards through a scalar phi
2709   // can't help, as it would still be killed by that memory operation.
2710   if (MemAccess && !isa<MemoryPhi>(MemAccess->getDefiningAccess()) &&
2711       MemAccess->getDefiningAccess()->getBlock() == I->getParent())
2712     return nullptr;
2713 
2714   // Convert op of phis to phi of ops
2715   SmallPtrSet<const Value *, 10> VisitedOps;
2716   SmallVector<Value *, 4> Ops(I->operand_values());
2717   BasicBlock *SamePHIBlock = nullptr;
2718   PHINode *OpPHI = nullptr;
2719   if (!DebugCounter::shouldExecute(PHIOfOpsCounter))
2720     return nullptr;
2721   for (auto *Op : Ops) {
2722     if (!isa<PHINode>(Op)) {
2723       auto *ValuePHI = RealToTemp.lookup(Op);
2724       if (!ValuePHI)
2725         continue;
2726       LLVM_DEBUG(dbgs() << "Found possible dependent phi of ops\n");
2727       Op = ValuePHI;
2728     }
2729     OpPHI = cast<PHINode>(Op);
2730     if (!SamePHIBlock) {
2731       SamePHIBlock = getBlockForValue(OpPHI);
2732     } else if (SamePHIBlock != getBlockForValue(OpPHI)) {
2733       LLVM_DEBUG(
2734           dbgs()
2735           << "PHIs for operands are not all in the same block, aborting\n");
2736       return nullptr;
2737     }
2738     // No point in doing this for one-operand phis.
2739     if (OpPHI->getNumOperands() == 1) {
2740       OpPHI = nullptr;
2741       continue;
2742     }
2743   }
2744 
2745   if (!OpPHI)
2746     return nullptr;
2747 
2748   SmallVector<ValPair, 4> PHIOps;
2749   SmallPtrSet<Value *, 4> Deps;
2750   auto *PHIBlock = getBlockForValue(OpPHI);
2751   RevisitOnReachabilityChange[PHIBlock].reset(InstrToDFSNum(I));
2752   for (unsigned PredNum = 0; PredNum < OpPHI->getNumOperands(); ++PredNum) {
2753     auto *PredBB = OpPHI->getIncomingBlock(PredNum);
2754     Value *FoundVal = nullptr;
2755     SmallPtrSet<Value *, 4> CurrentDeps;
2756     // We could just skip unreachable edges entirely but it's tricky to do
2757     // with rewriting existing phi nodes.
2758     if (ReachableEdges.count({PredBB, PHIBlock})) {
2759       // Clone the instruction, create an expression from it that is
2760       // translated back into the predecessor, and see if we have a leader.
2761       Instruction *ValueOp = I->clone();
2762       if (MemAccess)
2763         TempToMemory.insert({ValueOp, MemAccess});
2764       bool SafeForPHIOfOps = true;
2765       VisitedOps.clear();
2766       for (auto &Op : ValueOp->operands()) {
2767         auto *OrigOp = &*Op;
2768         // When these operand changes, it could change whether there is a
2769         // leader for us or not, so we have to add additional users.
2770         if (isa<PHINode>(Op)) {
2771           Op = Op->DoPHITranslation(PHIBlock, PredBB);
2772           if (Op != OrigOp && Op != I)
2773             CurrentDeps.insert(Op);
2774         } else if (auto *ValuePHI = RealToTemp.lookup(Op)) {
2775           if (getBlockForValue(ValuePHI) == PHIBlock)
2776             Op = ValuePHI->getIncomingValueForBlock(PredBB);
2777         }
2778         // If we phi-translated the op, it must be safe.
2779         SafeForPHIOfOps =
2780             SafeForPHIOfOps &&
2781             (Op != OrigOp || OpIsSafeForPHIOfOps(Op, PHIBlock, VisitedOps));
2782       }
2783       // FIXME: For those things that are not safe we could generate
2784       // expressions all the way down, and see if this comes out to a
2785       // constant.  For anything where that is true, and unsafe, we should
2786       // have made a phi-of-ops (or value numbered it equivalent to something)
2787       // for the pieces already.
2788       FoundVal = !SafeForPHIOfOps ? nullptr
2789                                   : findLeaderForInst(ValueOp, Visited,
2790                                                       MemAccess, I, PredBB);
2791       ValueOp->deleteValue();
2792       if (!FoundVal) {
2793         // We failed to find a leader for the current ValueOp, but this might
2794         // change in case of the translated operands change.
2795         if (SafeForPHIOfOps)
2796           for (auto Dep : CurrentDeps)
2797             addAdditionalUsers(Dep, I);
2798 
2799         return nullptr;
2800       }
2801       Deps.insert(CurrentDeps.begin(), CurrentDeps.end());
2802     } else {
2803       LLVM_DEBUG(dbgs() << "Skipping phi of ops operand for incoming block "
2804                         << getBlockName(PredBB)
2805                         << " because the block is unreachable\n");
2806       FoundVal = UndefValue::get(I->getType());
2807       RevisitOnReachabilityChange[PHIBlock].set(InstrToDFSNum(I));
2808     }
2809 
2810     PHIOps.push_back({FoundVal, PredBB});
2811     LLVM_DEBUG(dbgs() << "Found phi of ops operand " << *FoundVal << " in "
2812                       << getBlockName(PredBB) << "\n");
2813   }
2814   for (auto Dep : Deps)
2815     addAdditionalUsers(Dep, I);
2816   sortPHIOps(PHIOps);
2817   auto *E = performSymbolicPHIEvaluation(PHIOps, I, PHIBlock);
2818   if (isa<ConstantExpression>(E) || isa<VariableExpression>(E)) {
2819     LLVM_DEBUG(
2820         dbgs()
2821         << "Not creating real PHI of ops because it simplified to existing "
2822            "value or constant\n");
2823     return E;
2824   }
2825   auto *ValuePHI = RealToTemp.lookup(I);
2826   bool NewPHI = false;
2827   if (!ValuePHI) {
2828     ValuePHI =
2829         PHINode::Create(I->getType(), OpPHI->getNumOperands(), "phiofops");
2830     addPhiOfOps(ValuePHI, PHIBlock, I);
2831     NewPHI = true;
2832     NumGVNPHIOfOpsCreated++;
2833   }
2834   if (NewPHI) {
2835     for (auto PHIOp : PHIOps)
2836       ValuePHI->addIncoming(PHIOp.first, PHIOp.second);
2837   } else {
2838     TempToBlock[ValuePHI] = PHIBlock;
2839     unsigned int i = 0;
2840     for (auto PHIOp : PHIOps) {
2841       ValuePHI->setIncomingValue(i, PHIOp.first);
2842       ValuePHI->setIncomingBlock(i, PHIOp.second);
2843       ++i;
2844     }
2845   }
2846   RevisitOnReachabilityChange[PHIBlock].set(InstrToDFSNum(I));
2847   LLVM_DEBUG(dbgs() << "Created phi of ops " << *ValuePHI << " for " << *I
2848                     << "\n");
2849 
2850   return E;
2851 }
2852 
2853 // The algorithm initially places the values of the routine in the TOP
2854 // congruence class. The leader of TOP is the undetermined value `undef`.
2855 // When the algorithm has finished, values still in TOP are unreachable.
2856 void NewGVN::initializeCongruenceClasses(Function &F) {
2857   NextCongruenceNum = 0;
2858 
2859   // Note that even though we use the live on entry def as a representative
2860   // MemoryAccess, it is *not* the same as the actual live on entry def. We
2861   // have no real equivalemnt to undef for MemoryAccesses, and so we really
2862   // should be checking whether the MemoryAccess is top if we want to know if it
2863   // is equivalent to everything.  Otherwise, what this really signifies is that
2864   // the access "it reaches all the way back to the beginning of the function"
2865 
2866   // Initialize all other instructions to be in TOP class.
2867   TOPClass = createCongruenceClass(nullptr, nullptr);
2868   TOPClass->setMemoryLeader(MSSA->getLiveOnEntryDef());
2869   //  The live on entry def gets put into it's own class
2870   MemoryAccessToClass[MSSA->getLiveOnEntryDef()] =
2871       createMemoryClass(MSSA->getLiveOnEntryDef());
2872 
2873   for (auto DTN : nodes(DT)) {
2874     BasicBlock *BB = DTN->getBlock();
2875     // All MemoryAccesses are equivalent to live on entry to start. They must
2876     // be initialized to something so that initial changes are noticed. For
2877     // the maximal answer, we initialize them all to be the same as
2878     // liveOnEntry.
2879     auto *MemoryBlockDefs = MSSA->getBlockDefs(BB);
2880     if (MemoryBlockDefs)
2881       for (const auto &Def : *MemoryBlockDefs) {
2882         MemoryAccessToClass[&Def] = TOPClass;
2883         auto *MD = dyn_cast<MemoryDef>(&Def);
2884         // Insert the memory phis into the member list.
2885         if (!MD) {
2886           const MemoryPhi *MP = cast<MemoryPhi>(&Def);
2887           TOPClass->memory_insert(MP);
2888           MemoryPhiState.insert({MP, MPS_TOP});
2889         }
2890 
2891         if (MD && isa<StoreInst>(MD->getMemoryInst()))
2892           TOPClass->incStoreCount();
2893       }
2894 
2895     // FIXME: This is trying to discover which instructions are uses of phi
2896     // nodes.  We should move this into one of the myriad of places that walk
2897     // all the operands already.
2898     for (auto &I : *BB) {
2899       if (isa<PHINode>(&I))
2900         for (auto *U : I.users())
2901           if (auto *UInst = dyn_cast<Instruction>(U))
2902             if (InstrToDFSNum(UInst) != 0 && okayForPHIOfOps(UInst))
2903               PHINodeUses.insert(UInst);
2904       // Don't insert void terminators into the class. We don't value number
2905       // them, and they just end up sitting in TOP.
2906       if (I.isTerminator() && I.getType()->isVoidTy())
2907         continue;
2908       TOPClass->insert(&I);
2909       ValueToClass[&I] = TOPClass;
2910     }
2911   }
2912 
2913   // Initialize arguments to be in their own unique congruence classes
2914   for (auto &FA : F.args())
2915     createSingletonCongruenceClass(&FA);
2916 }
2917 
2918 void NewGVN::cleanupTables() {
2919   for (unsigned i = 0, e = CongruenceClasses.size(); i != e; ++i) {
2920     LLVM_DEBUG(dbgs() << "Congruence class " << CongruenceClasses[i]->getID()
2921                       << " has " << CongruenceClasses[i]->size()
2922                       << " members\n");
2923     // Make sure we delete the congruence class (probably worth switching to
2924     // a unique_ptr at some point.
2925     delete CongruenceClasses[i];
2926     CongruenceClasses[i] = nullptr;
2927   }
2928 
2929   // Destroy the value expressions
2930   SmallVector<Instruction *, 8> TempInst(AllTempInstructions.begin(),
2931                                          AllTempInstructions.end());
2932   AllTempInstructions.clear();
2933 
2934   // We have to drop all references for everything first, so there are no uses
2935   // left as we delete them.
2936   for (auto *I : TempInst) {
2937     I->dropAllReferences();
2938   }
2939 
2940   while (!TempInst.empty()) {
2941     auto *I = TempInst.back();
2942     TempInst.pop_back();
2943     I->deleteValue();
2944   }
2945 
2946   ValueToClass.clear();
2947   ArgRecycler.clear(ExpressionAllocator);
2948   ExpressionAllocator.Reset();
2949   CongruenceClasses.clear();
2950   ExpressionToClass.clear();
2951   ValueToExpression.clear();
2952   RealToTemp.clear();
2953   AdditionalUsers.clear();
2954   ExpressionToPhiOfOps.clear();
2955   TempToBlock.clear();
2956   TempToMemory.clear();
2957   PHINodeUses.clear();
2958   OpSafeForPHIOfOps.clear();
2959   ReachableBlocks.clear();
2960   ReachableEdges.clear();
2961 #ifndef NDEBUG
2962   ProcessedCount.clear();
2963 #endif
2964   InstrDFS.clear();
2965   InstructionsToErase.clear();
2966   DFSToInstr.clear();
2967   BlockInstRange.clear();
2968   TouchedInstructions.clear();
2969   MemoryAccessToClass.clear();
2970   PredicateToUsers.clear();
2971   MemoryToUsers.clear();
2972   RevisitOnReachabilityChange.clear();
2973 }
2974 
2975 // Assign local DFS number mapping to instructions, and leave space for Value
2976 // PHI's.
2977 std::pair<unsigned, unsigned> NewGVN::assignDFSNumbers(BasicBlock *B,
2978                                                        unsigned Start) {
2979   unsigned End = Start;
2980   if (MemoryAccess *MemPhi = getMemoryAccess(B)) {
2981     InstrDFS[MemPhi] = End++;
2982     DFSToInstr.emplace_back(MemPhi);
2983   }
2984 
2985   // Then the real block goes next.
2986   for (auto &I : *B) {
2987     // There's no need to call isInstructionTriviallyDead more than once on
2988     // an instruction. Therefore, once we know that an instruction is dead
2989     // we change its DFS number so that it doesn't get value numbered.
2990     if (isInstructionTriviallyDead(&I, TLI)) {
2991       InstrDFS[&I] = 0;
2992       LLVM_DEBUG(dbgs() << "Skipping trivially dead instruction " << I << "\n");
2993       markInstructionForDeletion(&I);
2994       continue;
2995     }
2996     if (isa<PHINode>(&I))
2997       RevisitOnReachabilityChange[B].set(End);
2998     InstrDFS[&I] = End++;
2999     DFSToInstr.emplace_back(&I);
3000   }
3001 
3002   // All of the range functions taken half-open ranges (open on the end side).
3003   // So we do not subtract one from count, because at this point it is one
3004   // greater than the last instruction.
3005   return std::make_pair(Start, End);
3006 }
3007 
3008 void NewGVN::updateProcessedCount(const Value *V) {
3009 #ifndef NDEBUG
3010   if (ProcessedCount.count(V) == 0) {
3011     ProcessedCount.insert({V, 1});
3012   } else {
3013     ++ProcessedCount[V];
3014     assert(ProcessedCount[V] < 100 &&
3015            "Seem to have processed the same Value a lot");
3016   }
3017 #endif
3018 }
3019 
3020 // Evaluate MemoryPhi nodes symbolically, just like PHI nodes
3021 void NewGVN::valueNumberMemoryPhi(MemoryPhi *MP) {
3022   // If all the arguments are the same, the MemoryPhi has the same value as the
3023   // argument.  Filter out unreachable blocks and self phis from our operands.
3024   // TODO: We could do cycle-checking on the memory phis to allow valueizing for
3025   // self-phi checking.
3026   const BasicBlock *PHIBlock = MP->getBlock();
3027   auto Filtered = make_filter_range(MP->operands(), [&](const Use &U) {
3028     return cast<MemoryAccess>(U) != MP &&
3029            !isMemoryAccessTOP(cast<MemoryAccess>(U)) &&
3030            ReachableEdges.count({MP->getIncomingBlock(U), PHIBlock});
3031   });
3032   // If all that is left is nothing, our memoryphi is undef. We keep it as
3033   // InitialClass.  Note: The only case this should happen is if we have at
3034   // least one self-argument.
3035   if (Filtered.begin() == Filtered.end()) {
3036     if (setMemoryClass(MP, TOPClass))
3037       markMemoryUsersTouched(MP);
3038     return;
3039   }
3040 
3041   // Transform the remaining operands into operand leaders.
3042   // FIXME: mapped_iterator should have a range version.
3043   auto LookupFunc = [&](const Use &U) {
3044     return lookupMemoryLeader(cast<MemoryAccess>(U));
3045   };
3046   auto MappedBegin = map_iterator(Filtered.begin(), LookupFunc);
3047   auto MappedEnd = map_iterator(Filtered.end(), LookupFunc);
3048 
3049   // and now check if all the elements are equal.
3050   // Sadly, we can't use std::equals since these are random access iterators.
3051   const auto *AllSameValue = *MappedBegin;
3052   ++MappedBegin;
3053   bool AllEqual = std::all_of(
3054       MappedBegin, MappedEnd,
3055       [&AllSameValue](const MemoryAccess *V) { return V == AllSameValue; });
3056 
3057   if (AllEqual)
3058     LLVM_DEBUG(dbgs() << "Memory Phi value numbered to " << *AllSameValue
3059                       << "\n");
3060   else
3061     LLVM_DEBUG(dbgs() << "Memory Phi value numbered to itself\n");
3062   // If it's equal to something, it's in that class. Otherwise, it has to be in
3063   // a class where it is the leader (other things may be equivalent to it, but
3064   // it needs to start off in its own class, which means it must have been the
3065   // leader, and it can't have stopped being the leader because it was never
3066   // removed).
3067   CongruenceClass *CC =
3068       AllEqual ? getMemoryClass(AllSameValue) : ensureLeaderOfMemoryClass(MP);
3069   auto OldState = MemoryPhiState.lookup(MP);
3070   assert(OldState != MPS_Invalid && "Invalid memory phi state");
3071   auto NewState = AllEqual ? MPS_Equivalent : MPS_Unique;
3072   MemoryPhiState[MP] = NewState;
3073   if (setMemoryClass(MP, CC) || OldState != NewState)
3074     markMemoryUsersTouched(MP);
3075 }
3076 
3077 // Value number a single instruction, symbolically evaluating, performing
3078 // congruence finding, and updating mappings.
3079 void NewGVN::valueNumberInstruction(Instruction *I) {
3080   LLVM_DEBUG(dbgs() << "Processing instruction " << *I << "\n");
3081   if (!I->isTerminator()) {
3082     const Expression *Symbolized = nullptr;
3083     SmallPtrSet<Value *, 2> Visited;
3084     if (DebugCounter::shouldExecute(VNCounter)) {
3085       Symbolized = performSymbolicEvaluation(I, Visited);
3086       // Make a phi of ops if necessary
3087       if (Symbolized && !isa<ConstantExpression>(Symbolized) &&
3088           !isa<VariableExpression>(Symbolized) && PHINodeUses.count(I)) {
3089         auto *PHIE = makePossiblePHIOfOps(I, Visited);
3090         // If we created a phi of ops, use it.
3091         // If we couldn't create one, make sure we don't leave one lying around
3092         if (PHIE) {
3093           Symbolized = PHIE;
3094         } else if (auto *Op = RealToTemp.lookup(I)) {
3095           removePhiOfOps(I, Op);
3096         }
3097       }
3098     } else {
3099       // Mark the instruction as unused so we don't value number it again.
3100       InstrDFS[I] = 0;
3101     }
3102     // If we couldn't come up with a symbolic expression, use the unknown
3103     // expression
3104     if (Symbolized == nullptr)
3105       Symbolized = createUnknownExpression(I);
3106     performCongruenceFinding(I, Symbolized);
3107   } else {
3108     // Handle terminators that return values. All of them produce values we
3109     // don't currently understand.  We don't place non-value producing
3110     // terminators in a class.
3111     if (!I->getType()->isVoidTy()) {
3112       auto *Symbolized = createUnknownExpression(I);
3113       performCongruenceFinding(I, Symbolized);
3114     }
3115     processOutgoingEdges(I, I->getParent());
3116   }
3117 }
3118 
3119 // Check if there is a path, using single or equal argument phi nodes, from
3120 // First to Second.
3121 bool NewGVN::singleReachablePHIPath(
3122     SmallPtrSet<const MemoryAccess *, 8> &Visited, const MemoryAccess *First,
3123     const MemoryAccess *Second) const {
3124   if (First == Second)
3125     return true;
3126   if (MSSA->isLiveOnEntryDef(First))
3127     return false;
3128 
3129   // This is not perfect, but as we're just verifying here, we can live with
3130   // the loss of precision. The real solution would be that of doing strongly
3131   // connected component finding in this routine, and it's probably not worth
3132   // the complexity for the time being. So, we just keep a set of visited
3133   // MemoryAccess and return true when we hit a cycle.
3134   if (Visited.count(First))
3135     return true;
3136   Visited.insert(First);
3137 
3138   const auto *EndDef = First;
3139   for (auto *ChainDef : optimized_def_chain(First)) {
3140     if (ChainDef == Second)
3141       return true;
3142     if (MSSA->isLiveOnEntryDef(ChainDef))
3143       return false;
3144     EndDef = ChainDef;
3145   }
3146   auto *MP = cast<MemoryPhi>(EndDef);
3147   auto ReachableOperandPred = [&](const Use &U) {
3148     return ReachableEdges.count({MP->getIncomingBlock(U), MP->getBlock()});
3149   };
3150   auto FilteredPhiArgs =
3151       make_filter_range(MP->operands(), ReachableOperandPred);
3152   SmallVector<const Value *, 32> OperandList;
3153   llvm::copy(FilteredPhiArgs, std::back_inserter(OperandList));
3154   bool Okay = is_splat(OperandList);
3155   if (Okay)
3156     return singleReachablePHIPath(Visited, cast<MemoryAccess>(OperandList[0]),
3157                                   Second);
3158   return false;
3159 }
3160 
3161 // Verify the that the memory equivalence table makes sense relative to the
3162 // congruence classes.  Note that this checking is not perfect, and is currently
3163 // subject to very rare false negatives. It is only useful for
3164 // testing/debugging.
3165 void NewGVN::verifyMemoryCongruency() const {
3166 #ifndef NDEBUG
3167   // Verify that the memory table equivalence and memory member set match
3168   for (const auto *CC : CongruenceClasses) {
3169     if (CC == TOPClass || CC->isDead())
3170       continue;
3171     if (CC->getStoreCount() != 0) {
3172       assert((CC->getStoredValue() || !isa<StoreInst>(CC->getLeader())) &&
3173              "Any class with a store as a leader should have a "
3174              "representative stored value");
3175       assert(CC->getMemoryLeader() &&
3176              "Any congruence class with a store should have a "
3177              "representative access");
3178     }
3179 
3180     if (CC->getMemoryLeader())
3181       assert(MemoryAccessToClass.lookup(CC->getMemoryLeader()) == CC &&
3182              "Representative MemoryAccess does not appear to be reverse "
3183              "mapped properly");
3184     for (auto M : CC->memory())
3185       assert(MemoryAccessToClass.lookup(M) == CC &&
3186              "Memory member does not appear to be reverse mapped properly");
3187   }
3188 
3189   // Anything equivalent in the MemoryAccess table should be in the same
3190   // congruence class.
3191 
3192   // Filter out the unreachable and trivially dead entries, because they may
3193   // never have been updated if the instructions were not processed.
3194   auto ReachableAccessPred =
3195       [&](const std::pair<const MemoryAccess *, CongruenceClass *> Pair) {
3196         bool Result = ReachableBlocks.count(Pair.first->getBlock());
3197         if (!Result || MSSA->isLiveOnEntryDef(Pair.first) ||
3198             MemoryToDFSNum(Pair.first) == 0)
3199           return false;
3200         if (auto *MemDef = dyn_cast<MemoryDef>(Pair.first))
3201           return !isInstructionTriviallyDead(MemDef->getMemoryInst());
3202 
3203         // We could have phi nodes which operands are all trivially dead,
3204         // so we don't process them.
3205         if (auto *MemPHI = dyn_cast<MemoryPhi>(Pair.first)) {
3206           for (auto &U : MemPHI->incoming_values()) {
3207             if (auto *I = dyn_cast<Instruction>(&*U)) {
3208               if (!isInstructionTriviallyDead(I))
3209                 return true;
3210             }
3211           }
3212           return false;
3213         }
3214 
3215         return true;
3216       };
3217 
3218   auto Filtered = make_filter_range(MemoryAccessToClass, ReachableAccessPred);
3219   for (auto KV : Filtered) {
3220     if (auto *FirstMUD = dyn_cast<MemoryUseOrDef>(KV.first)) {
3221       auto *SecondMUD = dyn_cast<MemoryUseOrDef>(KV.second->getMemoryLeader());
3222       if (FirstMUD && SecondMUD) {
3223         SmallPtrSet<const MemoryAccess *, 8> VisitedMAS;
3224         assert((singleReachablePHIPath(VisitedMAS, FirstMUD, SecondMUD) ||
3225                 ValueToClass.lookup(FirstMUD->getMemoryInst()) ==
3226                     ValueToClass.lookup(SecondMUD->getMemoryInst())) &&
3227                "The instructions for these memory operations should have "
3228                "been in the same congruence class or reachable through"
3229                "a single argument phi");
3230       }
3231     } else if (auto *FirstMP = dyn_cast<MemoryPhi>(KV.first)) {
3232       // We can only sanely verify that MemoryDefs in the operand list all have
3233       // the same class.
3234       auto ReachableOperandPred = [&](const Use &U) {
3235         return ReachableEdges.count(
3236                    {FirstMP->getIncomingBlock(U), FirstMP->getBlock()}) &&
3237                isa<MemoryDef>(U);
3238 
3239       };
3240       // All arguments should in the same class, ignoring unreachable arguments
3241       auto FilteredPhiArgs =
3242           make_filter_range(FirstMP->operands(), ReachableOperandPred);
3243       SmallVector<const CongruenceClass *, 16> PhiOpClasses;
3244       std::transform(FilteredPhiArgs.begin(), FilteredPhiArgs.end(),
3245                      std::back_inserter(PhiOpClasses), [&](const Use &U) {
3246                        const MemoryDef *MD = cast<MemoryDef>(U);
3247                        return ValueToClass.lookup(MD->getMemoryInst());
3248                      });
3249       assert(is_splat(PhiOpClasses) &&
3250              "All MemoryPhi arguments should be in the same class");
3251     }
3252   }
3253 #endif
3254 }
3255 
3256 // Verify that the sparse propagation we did actually found the maximal fixpoint
3257 // We do this by storing the value to class mapping, touching all instructions,
3258 // and redoing the iteration to see if anything changed.
3259 void NewGVN::verifyIterationSettled(Function &F) {
3260 #ifndef NDEBUG
3261   LLVM_DEBUG(dbgs() << "Beginning iteration verification\n");
3262   if (DebugCounter::isCounterSet(VNCounter))
3263     DebugCounter::setCounterValue(VNCounter, StartingVNCounter);
3264 
3265   // Note that we have to store the actual classes, as we may change existing
3266   // classes during iteration.  This is because our memory iteration propagation
3267   // is not perfect, and so may waste a little work.  But it should generate
3268   // exactly the same congruence classes we have now, with different IDs.
3269   std::map<const Value *, CongruenceClass> BeforeIteration;
3270 
3271   for (auto &KV : ValueToClass) {
3272     if (auto *I = dyn_cast<Instruction>(KV.first))
3273       // Skip unused/dead instructions.
3274       if (InstrToDFSNum(I) == 0)
3275         continue;
3276     BeforeIteration.insert({KV.first, *KV.second});
3277   }
3278 
3279   TouchedInstructions.set();
3280   TouchedInstructions.reset(0);
3281   iterateTouchedInstructions();
3282   DenseSet<std::pair<const CongruenceClass *, const CongruenceClass *>>
3283       EqualClasses;
3284   for (const auto &KV : ValueToClass) {
3285     if (auto *I = dyn_cast<Instruction>(KV.first))
3286       // Skip unused/dead instructions.
3287       if (InstrToDFSNum(I) == 0)
3288         continue;
3289     // We could sink these uses, but i think this adds a bit of clarity here as
3290     // to what we are comparing.
3291     auto *BeforeCC = &BeforeIteration.find(KV.first)->second;
3292     auto *AfterCC = KV.second;
3293     // Note that the classes can't change at this point, so we memoize the set
3294     // that are equal.
3295     if (!EqualClasses.count({BeforeCC, AfterCC})) {
3296       assert(BeforeCC->isEquivalentTo(AfterCC) &&
3297              "Value number changed after main loop completed!");
3298       EqualClasses.insert({BeforeCC, AfterCC});
3299     }
3300   }
3301 #endif
3302 }
3303 
3304 // Verify that for each store expression in the expression to class mapping,
3305 // only the latest appears, and multiple ones do not appear.
3306 // Because loads do not use the stored value when doing equality with stores,
3307 // if we don't erase the old store expressions from the table, a load can find
3308 // a no-longer valid StoreExpression.
3309 void NewGVN::verifyStoreExpressions() const {
3310 #ifndef NDEBUG
3311   // This is the only use of this, and it's not worth defining a complicated
3312   // densemapinfo hash/equality function for it.
3313   std::set<
3314       std::pair<const Value *,
3315                 std::tuple<const Value *, const CongruenceClass *, Value *>>>
3316       StoreExpressionSet;
3317   for (const auto &KV : ExpressionToClass) {
3318     if (auto *SE = dyn_cast<StoreExpression>(KV.first)) {
3319       // Make sure a version that will conflict with loads is not already there
3320       auto Res = StoreExpressionSet.insert(
3321           {SE->getOperand(0), std::make_tuple(SE->getMemoryLeader(), KV.second,
3322                                               SE->getStoredValue())});
3323       bool Okay = Res.second;
3324       // It's okay to have the same expression already in there if it is
3325       // identical in nature.
3326       // This can happen when the leader of the stored value changes over time.
3327       if (!Okay)
3328         Okay = (std::get<1>(Res.first->second) == KV.second) &&
3329                (lookupOperandLeader(std::get<2>(Res.first->second)) ==
3330                 lookupOperandLeader(SE->getStoredValue()));
3331       assert(Okay && "Stored expression conflict exists in expression table");
3332       auto *ValueExpr = ValueToExpression.lookup(SE->getStoreInst());
3333       assert(ValueExpr && ValueExpr->equals(*SE) &&
3334              "StoreExpression in ExpressionToClass is not latest "
3335              "StoreExpression for value");
3336     }
3337   }
3338 #endif
3339 }
3340 
3341 // This is the main value numbering loop, it iterates over the initial touched
3342 // instruction set, propagating value numbers, marking things touched, etc,
3343 // until the set of touched instructions is completely empty.
3344 void NewGVN::iterateTouchedInstructions() {
3345   unsigned int Iterations = 0;
3346   // Figure out where touchedinstructions starts
3347   int FirstInstr = TouchedInstructions.find_first();
3348   // Nothing set, nothing to iterate, just return.
3349   if (FirstInstr == -1)
3350     return;
3351   const BasicBlock *LastBlock = getBlockForValue(InstrFromDFSNum(FirstInstr));
3352   while (TouchedInstructions.any()) {
3353     ++Iterations;
3354     // Walk through all the instructions in all the blocks in RPO.
3355     // TODO: As we hit a new block, we should push and pop equalities into a
3356     // table lookupOperandLeader can use, to catch things PredicateInfo
3357     // might miss, like edge-only equivalences.
3358     for (unsigned InstrNum : TouchedInstructions.set_bits()) {
3359 
3360       // This instruction was found to be dead. We don't bother looking
3361       // at it again.
3362       if (InstrNum == 0) {
3363         TouchedInstructions.reset(InstrNum);
3364         continue;
3365       }
3366 
3367       Value *V = InstrFromDFSNum(InstrNum);
3368       const BasicBlock *CurrBlock = getBlockForValue(V);
3369 
3370       // If we hit a new block, do reachability processing.
3371       if (CurrBlock != LastBlock) {
3372         LastBlock = CurrBlock;
3373         bool BlockReachable = ReachableBlocks.count(CurrBlock);
3374         const auto &CurrInstRange = BlockInstRange.lookup(CurrBlock);
3375 
3376         // If it's not reachable, erase any touched instructions and move on.
3377         if (!BlockReachable) {
3378           TouchedInstructions.reset(CurrInstRange.first, CurrInstRange.second);
3379           LLVM_DEBUG(dbgs() << "Skipping instructions in block "
3380                             << getBlockName(CurrBlock)
3381                             << " because it is unreachable\n");
3382           continue;
3383         }
3384         updateProcessedCount(CurrBlock);
3385       }
3386       // Reset after processing (because we may mark ourselves as touched when
3387       // we propagate equalities).
3388       TouchedInstructions.reset(InstrNum);
3389 
3390       if (auto *MP = dyn_cast<MemoryPhi>(V)) {
3391         LLVM_DEBUG(dbgs() << "Processing MemoryPhi " << *MP << "\n");
3392         valueNumberMemoryPhi(MP);
3393       } else if (auto *I = dyn_cast<Instruction>(V)) {
3394         valueNumberInstruction(I);
3395       } else {
3396         llvm_unreachable("Should have been a MemoryPhi or Instruction");
3397       }
3398       updateProcessedCount(V);
3399     }
3400   }
3401   NumGVNMaxIterations = std::max(NumGVNMaxIterations.getValue(), Iterations);
3402 }
3403 
3404 // This is the main transformation entry point.
3405 bool NewGVN::runGVN() {
3406   if (DebugCounter::isCounterSet(VNCounter))
3407     StartingVNCounter = DebugCounter::getCounterValue(VNCounter);
3408   bool Changed = false;
3409   NumFuncArgs = F.arg_size();
3410   MSSAWalker = MSSA->getWalker();
3411   SingletonDeadExpression = new (ExpressionAllocator) DeadExpression();
3412 
3413   // Count number of instructions for sizing of hash tables, and come
3414   // up with a global dfs numbering for instructions.
3415   unsigned ICount = 1;
3416   // Add an empty instruction to account for the fact that we start at 1
3417   DFSToInstr.emplace_back(nullptr);
3418   // Note: We want ideal RPO traversal of the blocks, which is not quite the
3419   // same as dominator tree order, particularly with regard whether backedges
3420   // get visited first or second, given a block with multiple successors.
3421   // If we visit in the wrong order, we will end up performing N times as many
3422   // iterations.
3423   // The dominator tree does guarantee that, for a given dom tree node, it's
3424   // parent must occur before it in the RPO ordering. Thus, we only need to sort
3425   // the siblings.
3426   ReversePostOrderTraversal<Function *> RPOT(&F);
3427   unsigned Counter = 0;
3428   for (auto &B : RPOT) {
3429     auto *Node = DT->getNode(B);
3430     assert(Node && "RPO and Dominator tree should have same reachability");
3431     RPOOrdering[Node] = ++Counter;
3432   }
3433   // Sort dominator tree children arrays into RPO.
3434   for (auto &B : RPOT) {
3435     auto *Node = DT->getNode(B);
3436     if (Node->getChildren().size() > 1)
3437       llvm::sort(Node->begin(), Node->end(),
3438                  [&](const DomTreeNode *A, const DomTreeNode *B) {
3439                    return RPOOrdering[A] < RPOOrdering[B];
3440                  });
3441   }
3442 
3443   // Now a standard depth first ordering of the domtree is equivalent to RPO.
3444   for (auto DTN : depth_first(DT->getRootNode())) {
3445     BasicBlock *B = DTN->getBlock();
3446     const auto &BlockRange = assignDFSNumbers(B, ICount);
3447     BlockInstRange.insert({B, BlockRange});
3448     ICount += BlockRange.second - BlockRange.first;
3449   }
3450   initializeCongruenceClasses(F);
3451 
3452   TouchedInstructions.resize(ICount);
3453   // Ensure we don't end up resizing the expressionToClass map, as
3454   // that can be quite expensive. At most, we have one expression per
3455   // instruction.
3456   ExpressionToClass.reserve(ICount);
3457 
3458   // Initialize the touched instructions to include the entry block.
3459   const auto &InstRange = BlockInstRange.lookup(&F.getEntryBlock());
3460   TouchedInstructions.set(InstRange.first, InstRange.second);
3461   LLVM_DEBUG(dbgs() << "Block " << getBlockName(&F.getEntryBlock())
3462                     << " marked reachable\n");
3463   ReachableBlocks.insert(&F.getEntryBlock());
3464 
3465   iterateTouchedInstructions();
3466   verifyMemoryCongruency();
3467   verifyIterationSettled(F);
3468   verifyStoreExpressions();
3469 
3470   Changed |= eliminateInstructions(F);
3471 
3472   // Delete all instructions marked for deletion.
3473   for (Instruction *ToErase : InstructionsToErase) {
3474     if (!ToErase->use_empty())
3475       ToErase->replaceAllUsesWith(UndefValue::get(ToErase->getType()));
3476 
3477     assert(ToErase->getParent() &&
3478            "BB containing ToErase deleted unexpectedly!");
3479     ToErase->eraseFromParent();
3480   }
3481   Changed |= !InstructionsToErase.empty();
3482 
3483   // Delete all unreachable blocks.
3484   auto UnreachableBlockPred = [&](const BasicBlock &BB) {
3485     return !ReachableBlocks.count(&BB);
3486   };
3487 
3488   for (auto &BB : make_filter_range(F, UnreachableBlockPred)) {
3489     LLVM_DEBUG(dbgs() << "We believe block " << getBlockName(&BB)
3490                       << " is unreachable\n");
3491     deleteInstructionsInBlock(&BB);
3492     Changed = true;
3493   }
3494 
3495   cleanupTables();
3496   return Changed;
3497 }
3498 
3499 struct NewGVN::ValueDFS {
3500   int DFSIn = 0;
3501   int DFSOut = 0;
3502   int LocalNum = 0;
3503 
3504   // Only one of Def and U will be set.
3505   // The bool in the Def tells us whether the Def is the stored value of a
3506   // store.
3507   PointerIntPair<Value *, 1, bool> Def;
3508   Use *U = nullptr;
3509 
3510   bool operator<(const ValueDFS &Other) const {
3511     // It's not enough that any given field be less than - we have sets
3512     // of fields that need to be evaluated together to give a proper ordering.
3513     // For example, if you have;
3514     // DFS (1, 3)
3515     // Val 0
3516     // DFS (1, 2)
3517     // Val 50
3518     // We want the second to be less than the first, but if we just go field
3519     // by field, we will get to Val 0 < Val 50 and say the first is less than
3520     // the second. We only want it to be less than if the DFS orders are equal.
3521     //
3522     // Each LLVM instruction only produces one value, and thus the lowest-level
3523     // differentiator that really matters for the stack (and what we use as as a
3524     // replacement) is the local dfs number.
3525     // Everything else in the structure is instruction level, and only affects
3526     // the order in which we will replace operands of a given instruction.
3527     //
3528     // For a given instruction (IE things with equal dfsin, dfsout, localnum),
3529     // the order of replacement of uses does not matter.
3530     // IE given,
3531     //  a = 5
3532     //  b = a + a
3533     // When you hit b, you will have two valuedfs with the same dfsin, out, and
3534     // localnum.
3535     // The .val will be the same as well.
3536     // The .u's will be different.
3537     // You will replace both, and it does not matter what order you replace them
3538     // in (IE whether you replace operand 2, then operand 1, or operand 1, then
3539     // operand 2).
3540     // Similarly for the case of same dfsin, dfsout, localnum, but different
3541     // .val's
3542     //  a = 5
3543     //  b  = 6
3544     //  c = a + b
3545     // in c, we will a valuedfs for a, and one for b,with everything the same
3546     // but .val  and .u.
3547     // It does not matter what order we replace these operands in.
3548     // You will always end up with the same IR, and this is guaranteed.
3549     return std::tie(DFSIn, DFSOut, LocalNum, Def, U) <
3550            std::tie(Other.DFSIn, Other.DFSOut, Other.LocalNum, Other.Def,
3551                     Other.U);
3552   }
3553 };
3554 
3555 // This function converts the set of members for a congruence class from values,
3556 // to sets of defs and uses with associated DFS info.  The total number of
3557 // reachable uses for each value is stored in UseCount, and instructions that
3558 // seem
3559 // dead (have no non-dead uses) are stored in ProbablyDead.
3560 void NewGVN::convertClassToDFSOrdered(
3561     const CongruenceClass &Dense, SmallVectorImpl<ValueDFS> &DFSOrderedSet,
3562     DenseMap<const Value *, unsigned int> &UseCounts,
3563     SmallPtrSetImpl<Instruction *> &ProbablyDead) const {
3564   for (auto D : Dense) {
3565     // First add the value.
3566     BasicBlock *BB = getBlockForValue(D);
3567     // Constants are handled prior to ever calling this function, so
3568     // we should only be left with instructions as members.
3569     assert(BB && "Should have figured out a basic block for value");
3570     ValueDFS VDDef;
3571     DomTreeNode *DomNode = DT->getNode(BB);
3572     VDDef.DFSIn = DomNode->getDFSNumIn();
3573     VDDef.DFSOut = DomNode->getDFSNumOut();
3574     // If it's a store, use the leader of the value operand, if it's always
3575     // available, or the value operand.  TODO: We could do dominance checks to
3576     // find a dominating leader, but not worth it ATM.
3577     if (auto *SI = dyn_cast<StoreInst>(D)) {
3578       auto Leader = lookupOperandLeader(SI->getValueOperand());
3579       if (alwaysAvailable(Leader)) {
3580         VDDef.Def.setPointer(Leader);
3581       } else {
3582         VDDef.Def.setPointer(SI->getValueOperand());
3583         VDDef.Def.setInt(true);
3584       }
3585     } else {
3586       VDDef.Def.setPointer(D);
3587     }
3588     assert(isa<Instruction>(D) &&
3589            "The dense set member should always be an instruction");
3590     Instruction *Def = cast<Instruction>(D);
3591     VDDef.LocalNum = InstrToDFSNum(D);
3592     DFSOrderedSet.push_back(VDDef);
3593     // If there is a phi node equivalent, add it
3594     if (auto *PN = RealToTemp.lookup(Def)) {
3595       auto *PHIE =
3596           dyn_cast_or_null<PHIExpression>(ValueToExpression.lookup(Def));
3597       if (PHIE) {
3598         VDDef.Def.setInt(false);
3599         VDDef.Def.setPointer(PN);
3600         VDDef.LocalNum = 0;
3601         DFSOrderedSet.push_back(VDDef);
3602       }
3603     }
3604 
3605     unsigned int UseCount = 0;
3606     // Now add the uses.
3607     for (auto &U : Def->uses()) {
3608       if (auto *I = dyn_cast<Instruction>(U.getUser())) {
3609         // Don't try to replace into dead uses
3610         if (InstructionsToErase.count(I))
3611           continue;
3612         ValueDFS VDUse;
3613         // Put the phi node uses in the incoming block.
3614         BasicBlock *IBlock;
3615         if (auto *P = dyn_cast<PHINode>(I)) {
3616           IBlock = P->getIncomingBlock(U);
3617           // Make phi node users appear last in the incoming block
3618           // they are from.
3619           VDUse.LocalNum = InstrDFS.size() + 1;
3620         } else {
3621           IBlock = getBlockForValue(I);
3622           VDUse.LocalNum = InstrToDFSNum(I);
3623         }
3624 
3625         // Skip uses in unreachable blocks, as we're going
3626         // to delete them.
3627         if (ReachableBlocks.count(IBlock) == 0)
3628           continue;
3629 
3630         DomTreeNode *DomNode = DT->getNode(IBlock);
3631         VDUse.DFSIn = DomNode->getDFSNumIn();
3632         VDUse.DFSOut = DomNode->getDFSNumOut();
3633         VDUse.U = &U;
3634         ++UseCount;
3635         DFSOrderedSet.emplace_back(VDUse);
3636       }
3637     }
3638 
3639     // If there are no uses, it's probably dead (but it may have side-effects,
3640     // so not definitely dead. Otherwise, store the number of uses so we can
3641     // track if it becomes dead later).
3642     if (UseCount == 0)
3643       ProbablyDead.insert(Def);
3644     else
3645       UseCounts[Def] = UseCount;
3646   }
3647 }
3648 
3649 // This function converts the set of members for a congruence class from values,
3650 // to the set of defs for loads and stores, with associated DFS info.
3651 void NewGVN::convertClassToLoadsAndStores(
3652     const CongruenceClass &Dense,
3653     SmallVectorImpl<ValueDFS> &LoadsAndStores) const {
3654   for (auto D : Dense) {
3655     if (!isa<LoadInst>(D) && !isa<StoreInst>(D))
3656       continue;
3657 
3658     BasicBlock *BB = getBlockForValue(D);
3659     ValueDFS VD;
3660     DomTreeNode *DomNode = DT->getNode(BB);
3661     VD.DFSIn = DomNode->getDFSNumIn();
3662     VD.DFSOut = DomNode->getDFSNumOut();
3663     VD.Def.setPointer(D);
3664 
3665     // If it's an instruction, use the real local dfs number.
3666     if (auto *I = dyn_cast<Instruction>(D))
3667       VD.LocalNum = InstrToDFSNum(I);
3668     else
3669       llvm_unreachable("Should have been an instruction");
3670 
3671     LoadsAndStores.emplace_back(VD);
3672   }
3673 }
3674 
3675 static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) {
3676   patchReplacementInstruction(I, Repl);
3677   I->replaceAllUsesWith(Repl);
3678 }
3679 
3680 void NewGVN::deleteInstructionsInBlock(BasicBlock *BB) {
3681   LLVM_DEBUG(dbgs() << "  BasicBlock Dead:" << *BB);
3682   ++NumGVNBlocksDeleted;
3683 
3684   // Delete the instructions backwards, as it has a reduced likelihood of having
3685   // to update as many def-use and use-def chains. Start after the terminator.
3686   auto StartPoint = BB->rbegin();
3687   ++StartPoint;
3688   // Note that we explicitly recalculate BB->rend() on each iteration,
3689   // as it may change when we remove the first instruction.
3690   for (BasicBlock::reverse_iterator I(StartPoint); I != BB->rend();) {
3691     Instruction &Inst = *I++;
3692     if (!Inst.use_empty())
3693       Inst.replaceAllUsesWith(UndefValue::get(Inst.getType()));
3694     if (isa<LandingPadInst>(Inst))
3695       continue;
3696 
3697     Inst.eraseFromParent();
3698     ++NumGVNInstrDeleted;
3699   }
3700   // Now insert something that simplifycfg will turn into an unreachable.
3701   Type *Int8Ty = Type::getInt8Ty(BB->getContext());
3702   new StoreInst(UndefValue::get(Int8Ty),
3703                 Constant::getNullValue(Int8Ty->getPointerTo()),
3704                 BB->getTerminator());
3705 }
3706 
3707 void NewGVN::markInstructionForDeletion(Instruction *I) {
3708   LLVM_DEBUG(dbgs() << "Marking " << *I << " for deletion\n");
3709   InstructionsToErase.insert(I);
3710 }
3711 
3712 void NewGVN::replaceInstruction(Instruction *I, Value *V) {
3713   LLVM_DEBUG(dbgs() << "Replacing " << *I << " with " << *V << "\n");
3714   patchAndReplaceAllUsesWith(I, V);
3715   // We save the actual erasing to avoid invalidating memory
3716   // dependencies until we are done with everything.
3717   markInstructionForDeletion(I);
3718 }
3719 
3720 namespace {
3721 
3722 // This is a stack that contains both the value and dfs info of where
3723 // that value is valid.
3724 class ValueDFSStack {
3725 public:
3726   Value *back() const { return ValueStack.back(); }
3727   std::pair<int, int> dfs_back() const { return DFSStack.back(); }
3728 
3729   void push_back(Value *V, int DFSIn, int DFSOut) {
3730     ValueStack.emplace_back(V);
3731     DFSStack.emplace_back(DFSIn, DFSOut);
3732   }
3733 
3734   bool empty() const { return DFSStack.empty(); }
3735 
3736   bool isInScope(int DFSIn, int DFSOut) const {
3737     if (empty())
3738       return false;
3739     return DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second;
3740   }
3741 
3742   void popUntilDFSScope(int DFSIn, int DFSOut) {
3743 
3744     // These two should always be in sync at this point.
3745     assert(ValueStack.size() == DFSStack.size() &&
3746            "Mismatch between ValueStack and DFSStack");
3747     while (
3748         !DFSStack.empty() &&
3749         !(DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second)) {
3750       DFSStack.pop_back();
3751       ValueStack.pop_back();
3752     }
3753   }
3754 
3755 private:
3756   SmallVector<Value *, 8> ValueStack;
3757   SmallVector<std::pair<int, int>, 8> DFSStack;
3758 };
3759 
3760 } // end anonymous namespace
3761 
3762 // Given an expression, get the congruence class for it.
3763 CongruenceClass *NewGVN::getClassForExpression(const Expression *E) const {
3764   if (auto *VE = dyn_cast<VariableExpression>(E))
3765     return ValueToClass.lookup(VE->getVariableValue());
3766   else if (isa<DeadExpression>(E))
3767     return TOPClass;
3768   return ExpressionToClass.lookup(E);
3769 }
3770 
3771 // Given a value and a basic block we are trying to see if it is available in,
3772 // see if the value has a leader available in that block.
3773 Value *NewGVN::findPHIOfOpsLeader(const Expression *E,
3774                                   const Instruction *OrigInst,
3775                                   const BasicBlock *BB) const {
3776   // It would already be constant if we could make it constant
3777   if (auto *CE = dyn_cast<ConstantExpression>(E))
3778     return CE->getConstantValue();
3779   if (auto *VE = dyn_cast<VariableExpression>(E)) {
3780     auto *V = VE->getVariableValue();
3781     if (alwaysAvailable(V) || DT->dominates(getBlockForValue(V), BB))
3782       return VE->getVariableValue();
3783   }
3784 
3785   auto *CC = getClassForExpression(E);
3786   if (!CC)
3787     return nullptr;
3788   if (alwaysAvailable(CC->getLeader()))
3789     return CC->getLeader();
3790 
3791   for (auto Member : *CC) {
3792     auto *MemberInst = dyn_cast<Instruction>(Member);
3793     if (MemberInst == OrigInst)
3794       continue;
3795     // Anything that isn't an instruction is always available.
3796     if (!MemberInst)
3797       return Member;
3798     if (DT->dominates(getBlockForValue(MemberInst), BB))
3799       return Member;
3800   }
3801   return nullptr;
3802 }
3803 
3804 bool NewGVN::eliminateInstructions(Function &F) {
3805   // This is a non-standard eliminator. The normal way to eliminate is
3806   // to walk the dominator tree in order, keeping track of available
3807   // values, and eliminating them.  However, this is mildly
3808   // pointless. It requires doing lookups on every instruction,
3809   // regardless of whether we will ever eliminate it.  For
3810   // instructions part of most singleton congruence classes, we know we
3811   // will never eliminate them.
3812 
3813   // Instead, this eliminator looks at the congruence classes directly, sorts
3814   // them into a DFS ordering of the dominator tree, and then we just
3815   // perform elimination straight on the sets by walking the congruence
3816   // class member uses in order, and eliminate the ones dominated by the
3817   // last member.   This is worst case O(E log E) where E = number of
3818   // instructions in a single congruence class.  In theory, this is all
3819   // instructions.   In practice, it is much faster, as most instructions are
3820   // either in singleton congruence classes or can't possibly be eliminated
3821   // anyway (if there are no overlapping DFS ranges in class).
3822   // When we find something not dominated, it becomes the new leader
3823   // for elimination purposes.
3824   // TODO: If we wanted to be faster, We could remove any members with no
3825   // overlapping ranges while sorting, as we will never eliminate anything
3826   // with those members, as they don't dominate anything else in our set.
3827 
3828   bool AnythingReplaced = false;
3829 
3830   // Since we are going to walk the domtree anyway, and we can't guarantee the
3831   // DFS numbers are updated, we compute some ourselves.
3832   DT->updateDFSNumbers();
3833 
3834   // Go through all of our phi nodes, and kill the arguments associated with
3835   // unreachable edges.
3836   auto ReplaceUnreachablePHIArgs = [&](PHINode *PHI, BasicBlock *BB) {
3837     for (auto &Operand : PHI->incoming_values())
3838       if (!ReachableEdges.count({PHI->getIncomingBlock(Operand), BB})) {
3839         LLVM_DEBUG(dbgs() << "Replacing incoming value of " << PHI
3840                           << " for block "
3841                           << getBlockName(PHI->getIncomingBlock(Operand))
3842                           << " with undef due to it being unreachable\n");
3843         Operand.set(UndefValue::get(PHI->getType()));
3844       }
3845   };
3846   // Replace unreachable phi arguments.
3847   // At this point, RevisitOnReachabilityChange only contains:
3848   //
3849   // 1. PHIs
3850   // 2. Temporaries that will convert to PHIs
3851   // 3. Operations that are affected by an unreachable edge but do not fit into
3852   // 1 or 2 (rare).
3853   // So it is a slight overshoot of what we want. We could make it exact by
3854   // using two SparseBitVectors per block.
3855   DenseMap<const BasicBlock *, unsigned> ReachablePredCount;
3856   for (auto &KV : ReachableEdges)
3857     ReachablePredCount[KV.getEnd()]++;
3858   for (auto &BBPair : RevisitOnReachabilityChange) {
3859     for (auto InstNum : BBPair.second) {
3860       auto *Inst = InstrFromDFSNum(InstNum);
3861       auto *PHI = dyn_cast<PHINode>(Inst);
3862       PHI = PHI ? PHI : dyn_cast_or_null<PHINode>(RealToTemp.lookup(Inst));
3863       if (!PHI)
3864         continue;
3865       auto *BB = BBPair.first;
3866       if (ReachablePredCount.lookup(BB) != PHI->getNumIncomingValues())
3867         ReplaceUnreachablePHIArgs(PHI, BB);
3868     }
3869   }
3870 
3871   // Map to store the use counts
3872   DenseMap<const Value *, unsigned int> UseCounts;
3873   for (auto *CC : reverse(CongruenceClasses)) {
3874     LLVM_DEBUG(dbgs() << "Eliminating in congruence class " << CC->getID()
3875                       << "\n");
3876     // Track the equivalent store info so we can decide whether to try
3877     // dead store elimination.
3878     SmallVector<ValueDFS, 8> PossibleDeadStores;
3879     SmallPtrSet<Instruction *, 8> ProbablyDead;
3880     if (CC->isDead() || CC->empty())
3881       continue;
3882     // Everything still in the TOP class is unreachable or dead.
3883     if (CC == TOPClass) {
3884       for (auto M : *CC) {
3885         auto *VTE = ValueToExpression.lookup(M);
3886         if (VTE && isa<DeadExpression>(VTE))
3887           markInstructionForDeletion(cast<Instruction>(M));
3888         assert((!ReachableBlocks.count(cast<Instruction>(M)->getParent()) ||
3889                 InstructionsToErase.count(cast<Instruction>(M))) &&
3890                "Everything in TOP should be unreachable or dead at this "
3891                "point");
3892       }
3893       continue;
3894     }
3895 
3896     assert(CC->getLeader() && "We should have had a leader");
3897     // If this is a leader that is always available, and it's a
3898     // constant or has no equivalences, just replace everything with
3899     // it. We then update the congruence class with whatever members
3900     // are left.
3901     Value *Leader =
3902         CC->getStoredValue() ? CC->getStoredValue() : CC->getLeader();
3903     if (alwaysAvailable(Leader)) {
3904       CongruenceClass::MemberSet MembersLeft;
3905       for (auto M : *CC) {
3906         Value *Member = M;
3907         // Void things have no uses we can replace.
3908         if (Member == Leader || !isa<Instruction>(Member) ||
3909             Member->getType()->isVoidTy()) {
3910           MembersLeft.insert(Member);
3911           continue;
3912         }
3913         LLVM_DEBUG(dbgs() << "Found replacement " << *(Leader) << " for "
3914                           << *Member << "\n");
3915         auto *I = cast<Instruction>(Member);
3916         assert(Leader != I && "About to accidentally remove our leader");
3917         replaceInstruction(I, Leader);
3918         AnythingReplaced = true;
3919       }
3920       CC->swap(MembersLeft);
3921     } else {
3922       // If this is a singleton, we can skip it.
3923       if (CC->size() != 1 || RealToTemp.count(Leader)) {
3924         // This is a stack because equality replacement/etc may place
3925         // constants in the middle of the member list, and we want to use
3926         // those constant values in preference to the current leader, over
3927         // the scope of those constants.
3928         ValueDFSStack EliminationStack;
3929 
3930         // Convert the members to DFS ordered sets and then merge them.
3931         SmallVector<ValueDFS, 8> DFSOrderedSet;
3932         convertClassToDFSOrdered(*CC, DFSOrderedSet, UseCounts, ProbablyDead);
3933 
3934         // Sort the whole thing.
3935         llvm::sort(DFSOrderedSet);
3936         for (auto &VD : DFSOrderedSet) {
3937           int MemberDFSIn = VD.DFSIn;
3938           int MemberDFSOut = VD.DFSOut;
3939           Value *Def = VD.Def.getPointer();
3940           bool FromStore = VD.Def.getInt();
3941           Use *U = VD.U;
3942           // We ignore void things because we can't get a value from them.
3943           if (Def && Def->getType()->isVoidTy())
3944             continue;
3945           auto *DefInst = dyn_cast_or_null<Instruction>(Def);
3946           if (DefInst && AllTempInstructions.count(DefInst)) {
3947             auto *PN = cast<PHINode>(DefInst);
3948 
3949             // If this is a value phi and that's the expression we used, insert
3950             // it into the program
3951             // remove from temp instruction list.
3952             AllTempInstructions.erase(PN);
3953             auto *DefBlock = getBlockForValue(Def);
3954             LLVM_DEBUG(dbgs() << "Inserting fully real phi of ops" << *Def
3955                               << " into block "
3956                               << getBlockName(getBlockForValue(Def)) << "\n");
3957             PN->insertBefore(&DefBlock->front());
3958             Def = PN;
3959             NumGVNPHIOfOpsEliminations++;
3960           }
3961 
3962           if (EliminationStack.empty()) {
3963             LLVM_DEBUG(dbgs() << "Elimination Stack is empty\n");
3964           } else {
3965             LLVM_DEBUG(dbgs() << "Elimination Stack Top DFS numbers are ("
3966                               << EliminationStack.dfs_back().first << ","
3967                               << EliminationStack.dfs_back().second << ")\n");
3968           }
3969 
3970           LLVM_DEBUG(dbgs() << "Current DFS numbers are (" << MemberDFSIn << ","
3971                             << MemberDFSOut << ")\n");
3972           // First, we see if we are out of scope or empty.  If so,
3973           // and there equivalences, we try to replace the top of
3974           // stack with equivalences (if it's on the stack, it must
3975           // not have been eliminated yet).
3976           // Then we synchronize to our current scope, by
3977           // popping until we are back within a DFS scope that
3978           // dominates the current member.
3979           // Then, what happens depends on a few factors
3980           // If the stack is now empty, we need to push
3981           // If we have a constant or a local equivalence we want to
3982           // start using, we also push.
3983           // Otherwise, we walk along, processing members who are
3984           // dominated by this scope, and eliminate them.
3985           bool ShouldPush = Def && EliminationStack.empty();
3986           bool OutOfScope =
3987               !EliminationStack.isInScope(MemberDFSIn, MemberDFSOut);
3988 
3989           if (OutOfScope || ShouldPush) {
3990             // Sync to our current scope.
3991             EliminationStack.popUntilDFSScope(MemberDFSIn, MemberDFSOut);
3992             bool ShouldPush = Def && EliminationStack.empty();
3993             if (ShouldPush) {
3994               EliminationStack.push_back(Def, MemberDFSIn, MemberDFSOut);
3995             }
3996           }
3997 
3998           // Skip the Def's, we only want to eliminate on their uses.  But mark
3999           // dominated defs as dead.
4000           if (Def) {
4001             // For anything in this case, what and how we value number
4002             // guarantees that any side-effets that would have occurred (ie
4003             // throwing, etc) can be proven to either still occur (because it's
4004             // dominated by something that has the same side-effects), or never
4005             // occur.  Otherwise, we would not have been able to prove it value
4006             // equivalent to something else. For these things, we can just mark
4007             // it all dead.  Note that this is different from the "ProbablyDead"
4008             // set, which may not be dominated by anything, and thus, are only
4009             // easy to prove dead if they are also side-effect free. Note that
4010             // because stores are put in terms of the stored value, we skip
4011             // stored values here. If the stored value is really dead, it will
4012             // still be marked for deletion when we process it in its own class.
4013             if (!EliminationStack.empty() && Def != EliminationStack.back() &&
4014                 isa<Instruction>(Def) && !FromStore)
4015               markInstructionForDeletion(cast<Instruction>(Def));
4016             continue;
4017           }
4018           // At this point, we know it is a Use we are trying to possibly
4019           // replace.
4020 
4021           assert(isa<Instruction>(U->get()) &&
4022                  "Current def should have been an instruction");
4023           assert(isa<Instruction>(U->getUser()) &&
4024                  "Current user should have been an instruction");
4025 
4026           // If the thing we are replacing into is already marked to be dead,
4027           // this use is dead.  Note that this is true regardless of whether
4028           // we have anything dominating the use or not.  We do this here
4029           // because we are already walking all the uses anyway.
4030           Instruction *InstUse = cast<Instruction>(U->getUser());
4031           if (InstructionsToErase.count(InstUse)) {
4032             auto &UseCount = UseCounts[U->get()];
4033             if (--UseCount == 0) {
4034               ProbablyDead.insert(cast<Instruction>(U->get()));
4035             }
4036           }
4037 
4038           // If we get to this point, and the stack is empty we must have a use
4039           // with nothing we can use to eliminate this use, so just skip it.
4040           if (EliminationStack.empty())
4041             continue;
4042 
4043           Value *DominatingLeader = EliminationStack.back();
4044 
4045           auto *II = dyn_cast<IntrinsicInst>(DominatingLeader);
4046           bool isSSACopy = II && II->getIntrinsicID() == Intrinsic::ssa_copy;
4047           if (isSSACopy)
4048             DominatingLeader = II->getOperand(0);
4049 
4050           // Don't replace our existing users with ourselves.
4051           if (U->get() == DominatingLeader)
4052             continue;
4053           LLVM_DEBUG(dbgs()
4054                      << "Found replacement " << *DominatingLeader << " for "
4055                      << *U->get() << " in " << *(U->getUser()) << "\n");
4056 
4057           // If we replaced something in an instruction, handle the patching of
4058           // metadata.  Skip this if we are replacing predicateinfo with its
4059           // original operand, as we already know we can just drop it.
4060           auto *ReplacedInst = cast<Instruction>(U->get());
4061           auto *PI = PredInfo->getPredicateInfoFor(ReplacedInst);
4062           if (!PI || DominatingLeader != PI->OriginalOp)
4063             patchReplacementInstruction(ReplacedInst, DominatingLeader);
4064           U->set(DominatingLeader);
4065           // This is now a use of the dominating leader, which means if the
4066           // dominating leader was dead, it's now live!
4067           auto &LeaderUseCount = UseCounts[DominatingLeader];
4068           // It's about to be alive again.
4069           if (LeaderUseCount == 0 && isa<Instruction>(DominatingLeader))
4070             ProbablyDead.erase(cast<Instruction>(DominatingLeader));
4071           // For copy instructions, we use their operand as a leader,
4072           // which means we remove a user of the copy and it may become dead.
4073           if (isSSACopy) {
4074             unsigned &IIUseCount = UseCounts[II];
4075             if (--IIUseCount == 0)
4076               ProbablyDead.insert(II);
4077           }
4078           ++LeaderUseCount;
4079           AnythingReplaced = true;
4080         }
4081       }
4082     }
4083 
4084     // At this point, anything still in the ProbablyDead set is actually dead if
4085     // would be trivially dead.
4086     for (auto *I : ProbablyDead)
4087       if (wouldInstructionBeTriviallyDead(I))
4088         markInstructionForDeletion(I);
4089 
4090     // Cleanup the congruence class.
4091     CongruenceClass::MemberSet MembersLeft;
4092     for (auto *Member : *CC)
4093       if (!isa<Instruction>(Member) ||
4094           !InstructionsToErase.count(cast<Instruction>(Member)))
4095         MembersLeft.insert(Member);
4096     CC->swap(MembersLeft);
4097 
4098     // If we have possible dead stores to look at, try to eliminate them.
4099     if (CC->getStoreCount() > 0) {
4100       convertClassToLoadsAndStores(*CC, PossibleDeadStores);
4101       llvm::sort(PossibleDeadStores);
4102       ValueDFSStack EliminationStack;
4103       for (auto &VD : PossibleDeadStores) {
4104         int MemberDFSIn = VD.DFSIn;
4105         int MemberDFSOut = VD.DFSOut;
4106         Instruction *Member = cast<Instruction>(VD.Def.getPointer());
4107         if (EliminationStack.empty() ||
4108             !EliminationStack.isInScope(MemberDFSIn, MemberDFSOut)) {
4109           // Sync to our current scope.
4110           EliminationStack.popUntilDFSScope(MemberDFSIn, MemberDFSOut);
4111           if (EliminationStack.empty()) {
4112             EliminationStack.push_back(Member, MemberDFSIn, MemberDFSOut);
4113             continue;
4114           }
4115         }
4116         // We already did load elimination, so nothing to do here.
4117         if (isa<LoadInst>(Member))
4118           continue;
4119         assert(!EliminationStack.empty());
4120         Instruction *Leader = cast<Instruction>(EliminationStack.back());
4121         (void)Leader;
4122         assert(DT->dominates(Leader->getParent(), Member->getParent()));
4123         // Member is dominater by Leader, and thus dead
4124         LLVM_DEBUG(dbgs() << "Marking dead store " << *Member
4125                           << " that is dominated by " << *Leader << "\n");
4126         markInstructionForDeletion(Member);
4127         CC->erase(Member);
4128         ++NumGVNDeadStores;
4129       }
4130     }
4131   }
4132   return AnythingReplaced;
4133 }
4134 
4135 // This function provides global ranking of operations so that we can place them
4136 // in a canonical order.  Note that rank alone is not necessarily enough for a
4137 // complete ordering, as constants all have the same rank.  However, generally,
4138 // we will simplify an operation with all constants so that it doesn't matter
4139 // what order they appear in.
4140 unsigned int NewGVN::getRank(const Value *V) const {
4141   // Prefer constants to undef to anything else
4142   // Undef is a constant, have to check it first.
4143   // Prefer smaller constants to constantexprs
4144   if (isa<ConstantExpr>(V))
4145     return 2;
4146   if (isa<UndefValue>(V))
4147     return 1;
4148   if (isa<Constant>(V))
4149     return 0;
4150   else if (auto *A = dyn_cast<Argument>(V))
4151     return 3 + A->getArgNo();
4152 
4153   // Need to shift the instruction DFS by number of arguments + 3 to account for
4154   // the constant and argument ranking above.
4155   unsigned Result = InstrToDFSNum(V);
4156   if (Result > 0)
4157     return 4 + NumFuncArgs + Result;
4158   // Unreachable or something else, just return a really large number.
4159   return ~0;
4160 }
4161 
4162 // This is a function that says whether two commutative operations should
4163 // have their order swapped when canonicalizing.
4164 bool NewGVN::shouldSwapOperands(const Value *A, const Value *B) const {
4165   // Because we only care about a total ordering, and don't rewrite expressions
4166   // in this order, we order by rank, which will give a strict weak ordering to
4167   // everything but constants, and then we order by pointer address.
4168   return std::make_pair(getRank(A), A) > std::make_pair(getRank(B), B);
4169 }
4170 
4171 namespace {
4172 
4173 class NewGVNLegacyPass : public FunctionPass {
4174 public:
4175   // Pass identification, replacement for typeid.
4176   static char ID;
4177 
4178   NewGVNLegacyPass() : FunctionPass(ID) {
4179     initializeNewGVNLegacyPassPass(*PassRegistry::getPassRegistry());
4180   }
4181 
4182   bool runOnFunction(Function &F) override;
4183 
4184 private:
4185   void getAnalysisUsage(AnalysisUsage &AU) const override {
4186     AU.addRequired<AssumptionCacheTracker>();
4187     AU.addRequired<DominatorTreeWrapperPass>();
4188     AU.addRequired<TargetLibraryInfoWrapperPass>();
4189     AU.addRequired<MemorySSAWrapperPass>();
4190     AU.addRequired<AAResultsWrapperPass>();
4191     AU.addPreserved<DominatorTreeWrapperPass>();
4192     AU.addPreserved<GlobalsAAWrapperPass>();
4193   }
4194 };
4195 
4196 } // end anonymous namespace
4197 
4198 bool NewGVNLegacyPass::runOnFunction(Function &F) {
4199   if (skipFunction(F))
4200     return false;
4201   return NewGVN(F, &getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
4202                 &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
4203                 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
4204                 &getAnalysis<AAResultsWrapperPass>().getAAResults(),
4205                 &getAnalysis<MemorySSAWrapperPass>().getMSSA(),
4206                 F.getParent()->getDataLayout())
4207       .runGVN();
4208 }
4209 
4210 char NewGVNLegacyPass::ID = 0;
4211 
4212 INITIALIZE_PASS_BEGIN(NewGVNLegacyPass, "newgvn", "Global Value Numbering",
4213                       false, false)
4214 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
4215 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
4216 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
4217 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
4218 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
4219 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
4220 INITIALIZE_PASS_END(NewGVNLegacyPass, "newgvn", "Global Value Numbering", false,
4221                     false)
4222 
4223 // createGVNPass - The public interface to this file.
4224 FunctionPass *llvm::createNewGVNPass() { return new NewGVNLegacyPass(); }
4225 
4226 PreservedAnalyses NewGVNPass::run(Function &F, AnalysisManager<Function> &AM) {
4227   // Apparently the order in which we get these results matter for
4228   // the old GVN (see Chandler's comment in GVN.cpp). I'll keep
4229   // the same order here, just in case.
4230   auto &AC = AM.getResult<AssumptionAnalysis>(F);
4231   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
4232   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
4233   auto &AA = AM.getResult<AAManager>(F);
4234   auto &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA();
4235   bool Changed =
4236       NewGVN(F, &DT, &AC, &TLI, &AA, &MSSA, F.getParent()->getDataLayout())
4237           .runGVN();
4238   if (!Changed)
4239     return PreservedAnalyses::all();
4240   PreservedAnalyses PA;
4241   PA.preserve<DominatorTreeAnalysis>();
4242   PA.preserve<GlobalsAA>();
4243   return PA;
4244 }
4245