1 //===- PlaceSafepoints.cpp - Place GC Safepoints --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Place garbage collection safepoints at appropriate locations in the IR. This
10 // does not make relocation semantics or variable liveness explicit.  That's
11 // done by RewriteStatepointsForGC.
12 //
13 // Terminology:
14 // - A call is said to be "parseable" if there is a stack map generated for the
15 // return PC of the call.  A runtime can determine where values listed in the
16 // deopt arguments and (after RewriteStatepointsForGC) gc arguments are located
17 // on the stack when the code is suspended inside such a call.  Every parse
18 // point is represented by a call wrapped in an gc.statepoint intrinsic.
19 // - A "poll" is an explicit check in the generated code to determine if the
20 // runtime needs the generated code to cooperate by calling a helper routine
21 // and thus suspending its execution at a known state. The call to the helper
22 // routine will be parseable.  The (gc & runtime specific) logic of a poll is
23 // assumed to be provided in a function of the name "gc.safepoint_poll".
24 //
25 // We aim to insert polls such that running code can quickly be brought to a
26 // well defined state for inspection by the collector.  In the current
27 // implementation, this is done via the insertion of poll sites at method entry
28 // and the backedge of most loops.  We try to avoid inserting more polls than
29 // are necessary to ensure a finite period between poll sites.  This is not
30 // because the poll itself is expensive in the generated code; it's not.  Polls
31 // do tend to impact the optimizer itself in negative ways; we'd like to avoid
32 // perturbing the optimization of the method as much as we can.
33 //
34 // We also need to make most call sites parseable.  The callee might execute a
35 // poll (or otherwise be inspected by the GC).  If so, the entire stack
36 // (including the suspended frame of the current method) must be parseable.
37 //
38 // This pass will insert:
39 // - Call parse points ("call safepoints") for any call which may need to
40 // reach a safepoint during the execution of the callee function.
41 // - Backedge safepoint polls and entry safepoint polls to ensure that
42 // executing code reaches a safepoint poll in a finite amount of time.
43 //
44 // We do not currently support return statepoints, but adding them would not
45 // be hard.  They are not required for correctness - entry safepoints are an
46 // alternative - but some GCs may prefer them.  Patches welcome.
47 //
48 //===----------------------------------------------------------------------===//
49 
50 #include "llvm/InitializePasses.h"
51 #include "llvm/Pass.h"
52 
53 #include "llvm/ADT/SetVector.h"
54 #include "llvm/ADT/Statistic.h"
55 #include "llvm/Analysis/CFG.h"
56 #include "llvm/Analysis/ScalarEvolution.h"
57 #include "llvm/Analysis/TargetLibraryInfo.h"
58 #include "llvm/Transforms/Utils/Local.h"
59 #include "llvm/IR/Dominators.h"
60 #include "llvm/IR/IntrinsicInst.h"
61 #include "llvm/IR/LegacyPassManager.h"
62 #include "llvm/IR/Statepoint.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Debug.h"
65 #include "llvm/Transforms/Scalar.h"
66 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
67 #include "llvm/Transforms/Utils/Cloning.h"
68 
69 #define DEBUG_TYPE "safepoint-placement"
70 
71 STATISTIC(NumEntrySafepoints, "Number of entry safepoints inserted");
72 STATISTIC(NumBackedgeSafepoints, "Number of backedge safepoints inserted");
73 
74 STATISTIC(CallInLoop,
75           "Number of loops without safepoints due to calls in loop");
76 STATISTIC(FiniteExecution,
77           "Number of loops without safepoints finite execution");
78 
79 using namespace llvm;
80 
81 // Ignore opportunities to avoid placing safepoints on backedges, useful for
82 // validation
83 static cl::opt<bool> AllBackedges("spp-all-backedges", cl::Hidden,
84                                   cl::init(false));
85 
86 /// How narrow does the trip count of a loop have to be to have to be considered
87 /// "counted"?  Counted loops do not get safepoints at backedges.
88 static cl::opt<int> CountedLoopTripWidth("spp-counted-loop-trip-width",
89                                          cl::Hidden, cl::init(32));
90 
91 // If true, split the backedge of a loop when placing the safepoint, otherwise
92 // split the latch block itself.  Both are useful to support for
93 // experimentation, but in practice, it looks like splitting the backedge
94 // optimizes better.
95 static cl::opt<bool> SplitBackedge("spp-split-backedge", cl::Hidden,
96                                    cl::init(false));
97 
98 namespace {
99 
100 /// An analysis pass whose purpose is to identify each of the backedges in
101 /// the function which require a safepoint poll to be inserted.
102 struct PlaceBackedgeSafepointsImpl : public FunctionPass {
103   static char ID;
104 
105   /// The output of the pass - gives a list of each backedge (described by
106   /// pointing at the branch) which need a poll inserted.
107   std::vector<Instruction *> PollLocations;
108 
109   /// True unless we're running spp-no-calls in which case we need to disable
110   /// the call-dependent placement opts.
111   bool CallSafepointsEnabled;
112 
113   ScalarEvolution *SE = nullptr;
114   DominatorTree *DT = nullptr;
115   LoopInfo *LI = nullptr;
116   TargetLibraryInfo *TLI = nullptr;
117 
118   PlaceBackedgeSafepointsImpl(bool CallSafepoints = false)
119       : FunctionPass(ID), CallSafepointsEnabled(CallSafepoints) {
120     initializePlaceBackedgeSafepointsImplPass(*PassRegistry::getPassRegistry());
121   }
122 
123   bool runOnLoop(Loop *);
124   void runOnLoopAndSubLoops(Loop *L) {
125     // Visit all the subloops
126     for (Loop *I : *L)
127       runOnLoopAndSubLoops(I);
128     runOnLoop(L);
129   }
130 
131   bool runOnFunction(Function &F) override {
132     SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
133     DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
134     LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
135     TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
136     for (Loop *I : *LI) {
137       runOnLoopAndSubLoops(I);
138     }
139     return false;
140   }
141 
142   void getAnalysisUsage(AnalysisUsage &AU) const override {
143     AU.addRequired<DominatorTreeWrapperPass>();
144     AU.addRequired<ScalarEvolutionWrapperPass>();
145     AU.addRequired<LoopInfoWrapperPass>();
146     AU.addRequired<TargetLibraryInfoWrapperPass>();
147     // We no longer modify the IR at all in this pass.  Thus all
148     // analysis are preserved.
149     AU.setPreservesAll();
150   }
151 };
152 }
153 
154 static cl::opt<bool> NoEntry("spp-no-entry", cl::Hidden, cl::init(false));
155 static cl::opt<bool> NoCall("spp-no-call", cl::Hidden, cl::init(false));
156 static cl::opt<bool> NoBackedge("spp-no-backedge", cl::Hidden, cl::init(false));
157 
158 namespace {
159 struct PlaceSafepoints : public FunctionPass {
160   static char ID; // Pass identification, replacement for typeid
161 
162   PlaceSafepoints() : FunctionPass(ID) {
163     initializePlaceSafepointsPass(*PassRegistry::getPassRegistry());
164   }
165   bool runOnFunction(Function &F) override;
166 
167   void getAnalysisUsage(AnalysisUsage &AU) const override {
168     // We modify the graph wholesale (inlining, block insertion, etc).  We
169     // preserve nothing at the moment.  We could potentially preserve dom tree
170     // if that was worth doing
171     AU.addRequired<TargetLibraryInfoWrapperPass>();
172   }
173 };
174 }
175 
176 // Insert a safepoint poll immediately before the given instruction.  Does
177 // not handle the parsability of state at the runtime call, that's the
178 // callers job.
179 static void
180 InsertSafepointPoll(Instruction *InsertBefore,
181                     std::vector<CallBase *> &ParsePointsNeeded /*rval*/,
182                     const TargetLibraryInfo &TLI);
183 
184 static bool needsStatepoint(CallBase *Call, const TargetLibraryInfo &TLI) {
185   if (callsGCLeafFunction(Call, TLI))
186     return false;
187   if (auto *CI = dyn_cast<CallInst>(Call)) {
188     if (CI->isInlineAsm())
189       return false;
190   }
191 
192   return !(isStatepoint(Call) || isGCRelocate(Call) || isGCResult(Call));
193 }
194 
195 /// Returns true if this loop is known to contain a call safepoint which
196 /// must unconditionally execute on any iteration of the loop which returns
197 /// to the loop header via an edge from Pred.  Returns a conservative correct
198 /// answer; i.e. false is always valid.
199 static bool containsUnconditionalCallSafepoint(Loop *L, BasicBlock *Header,
200                                                BasicBlock *Pred,
201                                                DominatorTree &DT,
202                                                const TargetLibraryInfo &TLI) {
203   // In general, we're looking for any cut of the graph which ensures
204   // there's a call safepoint along every edge between Header and Pred.
205   // For the moment, we look only for the 'cuts' that consist of a single call
206   // instruction in a block which is dominated by the Header and dominates the
207   // loop latch (Pred) block.  Somewhat surprisingly, walking the entire chain
208   // of such dominating blocks gets substantially more occurrences than just
209   // checking the Pred and Header blocks themselves.  This may be due to the
210   // density of loop exit conditions caused by range and null checks.
211   // TODO: structure this as an analysis pass, cache the result for subloops,
212   // avoid dom tree recalculations
213   assert(DT.dominates(Header, Pred) && "loop latch not dominated by header?");
214 
215   BasicBlock *Current = Pred;
216   while (true) {
217     for (Instruction &I : *Current) {
218       if (auto *Call = dyn_cast<CallBase>(&I))
219         // Note: Technically, needing a safepoint isn't quite the right
220         // condition here.  We should instead be checking if the target method
221         // has an
222         // unconditional poll. In practice, this is only a theoretical concern
223         // since we don't have any methods with conditional-only safepoint
224         // polls.
225         if (needsStatepoint(Call, TLI))
226           return true;
227     }
228 
229     if (Current == Header)
230       break;
231     Current = DT.getNode(Current)->getIDom()->getBlock();
232   }
233 
234   return false;
235 }
236 
237 /// Returns true if this loop is known to terminate in a finite number of
238 /// iterations.  Note that this function may return false for a loop which
239 /// does actual terminate in a finite constant number of iterations due to
240 /// conservatism in the analysis.
241 static bool mustBeFiniteCountedLoop(Loop *L, ScalarEvolution *SE,
242                                     BasicBlock *Pred) {
243   // A conservative bound on the loop as a whole.
244   const SCEV *MaxTrips = SE->getConstantMaxBackedgeTakenCount(L);
245   if (MaxTrips != SE->getCouldNotCompute() &&
246       SE->getUnsignedRange(MaxTrips).getUnsignedMax().isIntN(
247           CountedLoopTripWidth))
248     return true;
249 
250   // If this is a conditional branch to the header with the alternate path
251   // being outside the loop, we can ask questions about the execution frequency
252   // of the exit block.
253   if (L->isLoopExiting(Pred)) {
254     // This returns an exact expression only.  TODO: We really only need an
255     // upper bound here, but SE doesn't expose that.
256     const SCEV *MaxExec = SE->getExitCount(L, Pred);
257     if (MaxExec != SE->getCouldNotCompute() &&
258         SE->getUnsignedRange(MaxExec).getUnsignedMax().isIntN(
259             CountedLoopTripWidth))
260         return true;
261   }
262 
263   return /* not finite */ false;
264 }
265 
266 static void scanOneBB(Instruction *Start, Instruction *End,
267                       std::vector<CallInst *> &Calls,
268                       DenseSet<BasicBlock *> &Seen,
269                       std::vector<BasicBlock *> &Worklist) {
270   for (BasicBlock::iterator BBI(Start), BBE0 = Start->getParent()->end(),
271                                         BBE1 = BasicBlock::iterator(End);
272        BBI != BBE0 && BBI != BBE1; BBI++) {
273     if (CallInst *CI = dyn_cast<CallInst>(&*BBI))
274       Calls.push_back(CI);
275 
276     // FIXME: This code does not handle invokes
277     assert(!isa<InvokeInst>(&*BBI) &&
278            "support for invokes in poll code needed");
279 
280     // Only add the successor blocks if we reach the terminator instruction
281     // without encountering end first
282     if (BBI->isTerminator()) {
283       BasicBlock *BB = BBI->getParent();
284       for (BasicBlock *Succ : successors(BB)) {
285         if (Seen.insert(Succ).second) {
286           Worklist.push_back(Succ);
287         }
288       }
289     }
290   }
291 }
292 
293 static void scanInlinedCode(Instruction *Start, Instruction *End,
294                             std::vector<CallInst *> &Calls,
295                             DenseSet<BasicBlock *> &Seen) {
296   Calls.clear();
297   std::vector<BasicBlock *> Worklist;
298   Seen.insert(Start->getParent());
299   scanOneBB(Start, End, Calls, Seen, Worklist);
300   while (!Worklist.empty()) {
301     BasicBlock *BB = Worklist.back();
302     Worklist.pop_back();
303     scanOneBB(&*BB->begin(), End, Calls, Seen, Worklist);
304   }
305 }
306 
307 bool PlaceBackedgeSafepointsImpl::runOnLoop(Loop *L) {
308   // Loop through all loop latches (branches controlling backedges).  We need
309   // to place a safepoint on every backedge (potentially).
310   // Note: In common usage, there will be only one edge due to LoopSimplify
311   // having run sometime earlier in the pipeline, but this code must be correct
312   // w.r.t. loops with multiple backedges.
313   BasicBlock *Header = L->getHeader();
314   SmallVector<BasicBlock*, 16> LoopLatches;
315   L->getLoopLatches(LoopLatches);
316   for (BasicBlock *Pred : LoopLatches) {
317     assert(L->contains(Pred));
318 
319     // Make a policy decision about whether this loop needs a safepoint or
320     // not.  Note that this is about unburdening the optimizer in loops, not
321     // avoiding the runtime cost of the actual safepoint.
322     if (!AllBackedges) {
323       if (mustBeFiniteCountedLoop(L, SE, Pred)) {
324         LLVM_DEBUG(dbgs() << "skipping safepoint placement in finite loop\n");
325         FiniteExecution++;
326         continue;
327       }
328       if (CallSafepointsEnabled &&
329           containsUnconditionalCallSafepoint(L, Header, Pred, *DT, *TLI)) {
330         // Note: This is only semantically legal since we won't do any further
331         // IPO or inlining before the actual call insertion..  If we hadn't, we
332         // might latter loose this call safepoint.
333         LLVM_DEBUG(
334             dbgs()
335             << "skipping safepoint placement due to unconditional call\n");
336         CallInLoop++;
337         continue;
338       }
339     }
340 
341     // TODO: We can create an inner loop which runs a finite number of
342     // iterations with an outer loop which contains a safepoint.  This would
343     // not help runtime performance that much, but it might help our ability to
344     // optimize the inner loop.
345 
346     // Safepoint insertion would involve creating a new basic block (as the
347     // target of the current backedge) which does the safepoint (of all live
348     // variables) and branches to the true header
349     Instruction *Term = Pred->getTerminator();
350 
351     LLVM_DEBUG(dbgs() << "[LSP] terminator instruction: " << *Term);
352 
353     PollLocations.push_back(Term);
354   }
355 
356   return false;
357 }
358 
359 /// Returns true if an entry safepoint is not required before this callsite in
360 /// the caller function.
361 static bool doesNotRequireEntrySafepointBefore(CallBase *Call) {
362   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Call)) {
363     switch (II->getIntrinsicID()) {
364     case Intrinsic::experimental_gc_statepoint:
365     case Intrinsic::experimental_patchpoint_void:
366     case Intrinsic::experimental_patchpoint_i64:
367       // The can wrap an actual call which may grow the stack by an unbounded
368       // amount or run forever.
369       return false;
370     default:
371       // Most LLVM intrinsics are things which do not expand to actual calls, or
372       // at least if they do, are leaf functions that cause only finite stack
373       // growth.  In particular, the optimizer likes to form things like memsets
374       // out of stores in the original IR.  Another important example is
375       // llvm.localescape which must occur in the entry block.  Inserting a
376       // safepoint before it is not legal since it could push the localescape
377       // out of the entry block.
378       return true;
379     }
380   }
381   return false;
382 }
383 
384 static Instruction *findLocationForEntrySafepoint(Function &F,
385                                                   DominatorTree &DT) {
386 
387   // Conceptually, this poll needs to be on method entry, but in
388   // practice, we place it as late in the entry block as possible.  We
389   // can place it as late as we want as long as it dominates all calls
390   // that can grow the stack.  This, combined with backedge polls,
391   // give us all the progress guarantees we need.
392 
393   // hasNextInstruction and nextInstruction are used to iterate
394   // through a "straight line" execution sequence.
395 
396   auto HasNextInstruction = [](Instruction *I) {
397     if (!I->isTerminator())
398       return true;
399 
400     BasicBlock *nextBB = I->getParent()->getUniqueSuccessor();
401     return nextBB && (nextBB->getUniquePredecessor() != nullptr);
402   };
403 
404   auto NextInstruction = [&](Instruction *I) {
405     assert(HasNextInstruction(I) &&
406            "first check if there is a next instruction!");
407 
408     if (I->isTerminator())
409       return &I->getParent()->getUniqueSuccessor()->front();
410     return &*++I->getIterator();
411   };
412 
413   Instruction *Cursor = nullptr;
414   for (Cursor = &F.getEntryBlock().front(); HasNextInstruction(Cursor);
415        Cursor = NextInstruction(Cursor)) {
416 
417     // We need to ensure a safepoint poll occurs before any 'real' call.  The
418     // easiest way to ensure finite execution between safepoints in the face of
419     // recursive and mutually recursive functions is to enforce that each take
420     // a safepoint.  Additionally, we need to ensure a poll before any call
421     // which can grow the stack by an unbounded amount.  This isn't required
422     // for GC semantics per se, but is a common requirement for languages
423     // which detect stack overflow via guard pages and then throw exceptions.
424     if (auto *Call = dyn_cast<CallBase>(Cursor)) {
425       if (doesNotRequireEntrySafepointBefore(Call))
426         continue;
427       break;
428     }
429   }
430 
431   assert((HasNextInstruction(Cursor) || Cursor->isTerminator()) &&
432          "either we stopped because of a call, or because of terminator");
433 
434   return Cursor;
435 }
436 
437 static const char *const GCSafepointPollName = "gc.safepoint_poll";
438 
439 static bool isGCSafepointPoll(Function &F) {
440   return F.getName().equals(GCSafepointPollName);
441 }
442 
443 /// Returns true if this function should be rewritten to include safepoint
444 /// polls and parseable call sites.  The main point of this function is to be
445 /// an extension point for custom logic.
446 static bool shouldRewriteFunction(Function &F) {
447   // TODO: This should check the GCStrategy
448   if (F.hasGC()) {
449     const auto &FunctionGCName = F.getGC();
450     const StringRef StatepointExampleName("statepoint-example");
451     const StringRef CoreCLRName("coreclr");
452     return (StatepointExampleName == FunctionGCName) ||
453            (CoreCLRName == FunctionGCName);
454   } else
455     return false;
456 }
457 
458 // TODO: These should become properties of the GCStrategy, possibly with
459 // command line overrides.
460 static bool enableEntrySafepoints(Function &F) { return !NoEntry; }
461 static bool enableBackedgeSafepoints(Function &F) { return !NoBackedge; }
462 static bool enableCallSafepoints(Function &F) { return !NoCall; }
463 
464 bool PlaceSafepoints::runOnFunction(Function &F) {
465   if (F.isDeclaration() || F.empty()) {
466     // This is a declaration, nothing to do.  Must exit early to avoid crash in
467     // dom tree calculation
468     return false;
469   }
470 
471   if (isGCSafepointPoll(F)) {
472     // Given we're inlining this inside of safepoint poll insertion, this
473     // doesn't make any sense.  Note that we do make any contained calls
474     // parseable after we inline a poll.
475     return false;
476   }
477 
478   if (!shouldRewriteFunction(F))
479     return false;
480 
481   const TargetLibraryInfo &TLI =
482       getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
483 
484   bool Modified = false;
485 
486   // In various bits below, we rely on the fact that uses are reachable from
487   // defs.  When there are basic blocks unreachable from the entry, dominance
488   // and reachablity queries return non-sensical results.  Thus, we preprocess
489   // the function to ensure these properties hold.
490   Modified |= removeUnreachableBlocks(F);
491 
492   // STEP 1 - Insert the safepoint polling locations.  We do not need to
493   // actually insert parse points yet.  That will be done for all polls and
494   // calls in a single pass.
495 
496   DominatorTree DT;
497   DT.recalculate(F);
498 
499   SmallVector<Instruction *, 16> PollsNeeded;
500   std::vector<CallBase *> ParsePointNeeded;
501 
502   if (enableBackedgeSafepoints(F)) {
503     // Construct a pass manager to run the LoopPass backedge logic.  We
504     // need the pass manager to handle scheduling all the loop passes
505     // appropriately.  Doing this by hand is painful and just not worth messing
506     // with for the moment.
507     legacy::FunctionPassManager FPM(F.getParent());
508     bool CanAssumeCallSafepoints = enableCallSafepoints(F);
509     auto *PBS = new PlaceBackedgeSafepointsImpl(CanAssumeCallSafepoints);
510     FPM.add(PBS);
511     FPM.run(F);
512 
513     // We preserve dominance information when inserting the poll, otherwise
514     // we'd have to recalculate this on every insert
515     DT.recalculate(F);
516 
517     auto &PollLocations = PBS->PollLocations;
518 
519     auto OrderByBBName = [](Instruction *a, Instruction *b) {
520       return a->getParent()->getName() < b->getParent()->getName();
521     };
522     // We need the order of list to be stable so that naming ends up stable
523     // when we split edges.  This makes test cases much easier to write.
524     llvm::sort(PollLocations, OrderByBBName);
525 
526     // We can sometimes end up with duplicate poll locations.  This happens if
527     // a single loop is visited more than once.   The fact this happens seems
528     // wrong, but it does happen for the split-backedge.ll test case.
529     PollLocations.erase(std::unique(PollLocations.begin(),
530                                     PollLocations.end()),
531                         PollLocations.end());
532 
533     // Insert a poll at each point the analysis pass identified
534     // The poll location must be the terminator of a loop latch block.
535     for (Instruction *Term : PollLocations) {
536       // We are inserting a poll, the function is modified
537       Modified = true;
538 
539       if (SplitBackedge) {
540         // Split the backedge of the loop and insert the poll within that new
541         // basic block.  This creates a loop with two latches per original
542         // latch (which is non-ideal), but this appears to be easier to
543         // optimize in practice than inserting the poll immediately before the
544         // latch test.
545 
546         // Since this is a latch, at least one of the successors must dominate
547         // it. Its possible that we have a) duplicate edges to the same header
548         // and b) edges to distinct loop headers.  We need to insert pools on
549         // each.
550         SetVector<BasicBlock *> Headers;
551         for (unsigned i = 0; i < Term->getNumSuccessors(); i++) {
552           BasicBlock *Succ = Term->getSuccessor(i);
553           if (DT.dominates(Succ, Term->getParent())) {
554             Headers.insert(Succ);
555           }
556         }
557         assert(!Headers.empty() && "poll location is not a loop latch?");
558 
559         // The split loop structure here is so that we only need to recalculate
560         // the dominator tree once.  Alternatively, we could just keep it up to
561         // date and use a more natural merged loop.
562         SetVector<BasicBlock *> SplitBackedges;
563         for (BasicBlock *Header : Headers) {
564           BasicBlock *NewBB = SplitEdge(Term->getParent(), Header, &DT);
565           PollsNeeded.push_back(NewBB->getTerminator());
566           NumBackedgeSafepoints++;
567         }
568       } else {
569         // Split the latch block itself, right before the terminator.
570         PollsNeeded.push_back(Term);
571         NumBackedgeSafepoints++;
572       }
573     }
574   }
575 
576   if (enableEntrySafepoints(F)) {
577     if (Instruction *Location = findLocationForEntrySafepoint(F, DT)) {
578       PollsNeeded.push_back(Location);
579       Modified = true;
580       NumEntrySafepoints++;
581     }
582     // TODO: else we should assert that there was, in fact, a policy choice to
583     // not insert a entry safepoint poll.
584   }
585 
586   // Now that we've identified all the needed safepoint poll locations, insert
587   // safepoint polls themselves.
588   for (Instruction *PollLocation : PollsNeeded) {
589     std::vector<CallBase *> RuntimeCalls;
590     InsertSafepointPoll(PollLocation, RuntimeCalls, TLI);
591     ParsePointNeeded.insert(ParsePointNeeded.end(), RuntimeCalls.begin(),
592                             RuntimeCalls.end());
593   }
594 
595   return Modified;
596 }
597 
598 char PlaceBackedgeSafepointsImpl::ID = 0;
599 char PlaceSafepoints::ID = 0;
600 
601 FunctionPass *llvm::createPlaceSafepointsPass() {
602   return new PlaceSafepoints();
603 }
604 
605 INITIALIZE_PASS_BEGIN(PlaceBackedgeSafepointsImpl,
606                       "place-backedge-safepoints-impl",
607                       "Place Backedge Safepoints", false, false)
608 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
609 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
610 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
611 INITIALIZE_PASS_END(PlaceBackedgeSafepointsImpl,
612                     "place-backedge-safepoints-impl",
613                     "Place Backedge Safepoints", false, false)
614 
615 INITIALIZE_PASS_BEGIN(PlaceSafepoints, "place-safepoints", "Place Safepoints",
616                       false, false)
617 INITIALIZE_PASS_END(PlaceSafepoints, "place-safepoints", "Place Safepoints",
618                     false, false)
619 
620 static void
621 InsertSafepointPoll(Instruction *InsertBefore,
622                     std::vector<CallBase *> &ParsePointsNeeded /*rval*/,
623                     const TargetLibraryInfo &TLI) {
624   BasicBlock *OrigBB = InsertBefore->getParent();
625   Module *M = InsertBefore->getModule();
626   assert(M && "must be part of a module");
627 
628   // Inline the safepoint poll implementation - this will get all the branch,
629   // control flow, etc..  Most importantly, it will introduce the actual slow
630   // path call - where we need to insert a safepoint (parsepoint).
631 
632   auto *F = M->getFunction(GCSafepointPollName);
633   assert(F && "gc.safepoint_poll function is missing");
634   assert(F->getValueType() ==
635          FunctionType::get(Type::getVoidTy(M->getContext()), false) &&
636          "gc.safepoint_poll declared with wrong type");
637   assert(!F->empty() && "gc.safepoint_poll must be a non-empty function");
638   CallInst *PollCall = CallInst::Create(F, "", InsertBefore);
639 
640   // Record some information about the call site we're replacing
641   BasicBlock::iterator Before(PollCall), After(PollCall);
642   bool IsBegin = false;
643   if (Before == OrigBB->begin())
644     IsBegin = true;
645   else
646     Before--;
647 
648   After++;
649   assert(After != OrigBB->end() && "must have successor");
650 
651   // Do the actual inlining
652   InlineFunctionInfo IFI;
653   bool InlineStatus = InlineFunction(PollCall, IFI);
654   assert(InlineStatus && "inline must succeed");
655   (void)InlineStatus; // suppress warning in release-asserts
656 
657   // Check post-conditions
658   assert(IFI.StaticAllocas.empty() && "can't have allocs");
659 
660   std::vector<CallInst *> Calls; // new calls
661   DenseSet<BasicBlock *> BBs;    // new BBs + insertee
662 
663   // Include only the newly inserted instructions, Note: begin may not be valid
664   // if we inserted to the beginning of the basic block
665   BasicBlock::iterator Start = IsBegin ? OrigBB->begin() : std::next(Before);
666 
667   // If your poll function includes an unreachable at the end, that's not
668   // valid.  Bugpoint likes to create this, so check for it.
669   assert(isPotentiallyReachable(&*Start, &*After) &&
670          "malformed poll function");
671 
672   scanInlinedCode(&*Start, &*After, Calls, BBs);
673   assert(!Calls.empty() && "slow path not found for safepoint poll");
674 
675   // Record the fact we need a parsable state at the runtime call contained in
676   // the poll function.  This is required so that the runtime knows how to
677   // parse the last frame when we actually take  the safepoint (i.e. execute
678   // the slow path)
679   assert(ParsePointsNeeded.empty());
680   for (auto *CI : Calls) {
681     // No safepoint needed or wanted
682     if (!needsStatepoint(CI, TLI))
683       continue;
684 
685     // These are likely runtime calls.  Should we assert that via calling
686     // convention or something?
687     ParsePointsNeeded.push_back(CI);
688   }
689   assert(ParsePointsNeeded.size() <= Calls.size());
690 }
691