1 //===- Reassociate.cpp - Reassociate binary expressions -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass reassociates commutative expressions in an order that is designed
10 // to promote better constant propagation, GCSE, LICM, PRE, etc.
11 //
12 // For example: 4 + (x + 5) -> x + (4 + 5)
13 //
14 // In the implementation of this algorithm, constants are assigned rank = 0,
15 // function arguments are rank = 1, and other values are assigned ranks
16 // corresponding to the reverse post order traversal of current function
17 // (starting at 2), which effectively gives values in deep loops higher rank
18 // than values not in loops.
19 //
20 //===----------------------------------------------------------------------===//
21 
22 #include "llvm/Transforms/Scalar/Reassociate.h"
23 #include "llvm/ADT/APFloat.h"
24 #include "llvm/ADT/APInt.h"
25 #include "llvm/ADT/DenseMap.h"
26 #include "llvm/ADT/PostOrderIterator.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/SmallSet.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/ADT/Statistic.h"
31 #include "llvm/Analysis/BasicAliasAnalysis.h"
32 #include "llvm/Analysis/ConstantFolding.h"
33 #include "llvm/Analysis/GlobalsModRef.h"
34 #include "llvm/Analysis/ValueTracking.h"
35 #include "llvm/IR/Argument.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/CFG.h"
38 #include "llvm/IR/Constant.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/IRBuilder.h"
42 #include "llvm/IR/InstrTypes.h"
43 #include "llvm/IR/Instruction.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/Operator.h"
46 #include "llvm/IR/PassManager.h"
47 #include "llvm/IR/PatternMatch.h"
48 #include "llvm/IR/Type.h"
49 #include "llvm/IR/User.h"
50 #include "llvm/IR/Value.h"
51 #include "llvm/IR/ValueHandle.h"
52 #include "llvm/InitializePasses.h"
53 #include "llvm/Pass.h"
54 #include "llvm/Support/Casting.h"
55 #include "llvm/Support/CommandLine.h"
56 #include "llvm/Support/Debug.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include "llvm/Transforms/Scalar.h"
59 #include "llvm/Transforms/Utils/Local.h"
60 #include <algorithm>
61 #include <cassert>
62 #include <utility>
63 
64 using namespace llvm;
65 using namespace reassociate;
66 using namespace PatternMatch;
67 
68 #define DEBUG_TYPE "reassociate"
69 
70 STATISTIC(NumChanged, "Number of insts reassociated");
71 STATISTIC(NumAnnihil, "Number of expr tree annihilated");
72 STATISTIC(NumFactor , "Number of multiplies factored");
73 
74 static cl::opt<bool>
75     UseCSELocalOpt(DEBUG_TYPE "-use-cse-local",
76                    cl::desc("Only reorder expressions within a basic block "
77                             "when exposing CSE opportunities"),
78                    cl::init(true), cl::Hidden);
79 
80 #ifndef NDEBUG
81 /// Print out the expression identified in the Ops list.
82 static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
83   Module *M = I->getModule();
84   dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
85        << *Ops[0].Op->getType() << '\t';
86   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
87     dbgs() << "[ ";
88     Ops[i].Op->printAsOperand(dbgs(), false, M);
89     dbgs() << ", #" << Ops[i].Rank << "] ";
90   }
91 }
92 #endif
93 
94 /// Utility class representing a non-constant Xor-operand. We classify
95 /// non-constant Xor-Operands into two categories:
96 ///  C1) The operand is in the form "X & C", where C is a constant and C != ~0
97 ///  C2)
98 ///    C2.1) The operand is in the form of "X | C", where C is a non-zero
99 ///          constant.
100 ///    C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this
101 ///          operand as "E | 0"
102 class llvm::reassociate::XorOpnd {
103 public:
104   XorOpnd(Value *V);
105 
106   bool isInvalid() const { return SymbolicPart == nullptr; }
107   bool isOrExpr() const { return isOr; }
108   Value *getValue() const { return OrigVal; }
109   Value *getSymbolicPart() const { return SymbolicPart; }
110   unsigned getSymbolicRank() const { return SymbolicRank; }
111   const APInt &getConstPart() const { return ConstPart; }
112 
113   void Invalidate() { SymbolicPart = OrigVal = nullptr; }
114   void setSymbolicRank(unsigned R) { SymbolicRank = R; }
115 
116 private:
117   Value *OrigVal;
118   Value *SymbolicPart;
119   APInt ConstPart;
120   unsigned SymbolicRank;
121   bool isOr;
122 };
123 
124 XorOpnd::XorOpnd(Value *V) {
125   assert(!isa<ConstantInt>(V) && "No ConstantInt");
126   OrigVal = V;
127   Instruction *I = dyn_cast<Instruction>(V);
128   SymbolicRank = 0;
129 
130   if (I && (I->getOpcode() == Instruction::Or ||
131             I->getOpcode() == Instruction::And)) {
132     Value *V0 = I->getOperand(0);
133     Value *V1 = I->getOperand(1);
134     const APInt *C;
135     if (match(V0, m_APInt(C)))
136       std::swap(V0, V1);
137 
138     if (match(V1, m_APInt(C))) {
139       ConstPart = *C;
140       SymbolicPart = V0;
141       isOr = (I->getOpcode() == Instruction::Or);
142       return;
143     }
144   }
145 
146   // view the operand as "V | 0"
147   SymbolicPart = V;
148   ConstPart = APInt::getZero(V->getType()->getScalarSizeInBits());
149   isOr = true;
150 }
151 
152 /// Return true if I is an instruction with the FastMathFlags that are needed
153 /// for general reassociation set.  This is not the same as testing
154 /// Instruction::isAssociative() because it includes operations like fsub.
155 /// (This routine is only intended to be called for floating-point operations.)
156 static bool hasFPAssociativeFlags(Instruction *I) {
157   assert(I && isa<FPMathOperator>(I) && "Should only check FP ops");
158   return I->hasAllowReassoc() && I->hasNoSignedZeros();
159 }
160 
161 /// Return true if V is an instruction of the specified opcode and if it
162 /// only has one use.
163 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
164   auto *BO = dyn_cast<BinaryOperator>(V);
165   if (BO && BO->hasOneUse() && BO->getOpcode() == Opcode)
166     if (!isa<FPMathOperator>(BO) || hasFPAssociativeFlags(BO))
167       return BO;
168   return nullptr;
169 }
170 
171 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1,
172                                         unsigned Opcode2) {
173   auto *BO = dyn_cast<BinaryOperator>(V);
174   if (BO && BO->hasOneUse() &&
175       (BO->getOpcode() == Opcode1 || BO->getOpcode() == Opcode2))
176     if (!isa<FPMathOperator>(BO) || hasFPAssociativeFlags(BO))
177       return BO;
178   return nullptr;
179 }
180 
181 void ReassociatePass::BuildRankMap(Function &F,
182                                    ReversePostOrderTraversal<Function*> &RPOT) {
183   unsigned Rank = 2;
184 
185   // Assign distinct ranks to function arguments.
186   for (auto &Arg : F.args()) {
187     ValueRankMap[&Arg] = ++Rank;
188     LLVM_DEBUG(dbgs() << "Calculated Rank[" << Arg.getName() << "] = " << Rank
189                       << "\n");
190   }
191 
192   // Traverse basic blocks in ReversePostOrder.
193   for (BasicBlock *BB : RPOT) {
194     unsigned BBRank = RankMap[BB] = ++Rank << 16;
195 
196     // Walk the basic block, adding precomputed ranks for any instructions that
197     // we cannot move.  This ensures that the ranks for these instructions are
198     // all different in the block.
199     for (Instruction &I : *BB)
200       if (mayHaveNonDefUseDependency(I))
201         ValueRankMap[&I] = ++BBRank;
202   }
203 }
204 
205 unsigned ReassociatePass::getRank(Value *V) {
206   Instruction *I = dyn_cast<Instruction>(V);
207   if (!I) {
208     if (isa<Argument>(V)) return ValueRankMap[V];   // Function argument.
209     return 0;  // Otherwise it's a global or constant, rank 0.
210   }
211 
212   if (unsigned Rank = ValueRankMap[I])
213     return Rank;    // Rank already known?
214 
215   // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
216   // we can reassociate expressions for code motion!  Since we do not recurse
217   // for PHI nodes, we cannot have infinite recursion here, because there
218   // cannot be loops in the value graph that do not go through PHI nodes.
219   unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
220   for (unsigned i = 0, e = I->getNumOperands(); i != e && Rank != MaxRank; ++i)
221     Rank = std::max(Rank, getRank(I->getOperand(i)));
222 
223   // If this is a 'not' or 'neg' instruction, do not count it for rank. This
224   // assures us that X and ~X will have the same rank.
225   if (!match(I, m_Not(m_Value())) && !match(I, m_Neg(m_Value())) &&
226       !match(I, m_FNeg(m_Value())))
227     ++Rank;
228 
229   LLVM_DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " << Rank
230                     << "\n");
231 
232   return ValueRankMap[I] = Rank;
233 }
234 
235 // Canonicalize constants to RHS.  Otherwise, sort the operands by rank.
236 void ReassociatePass::canonicalizeOperands(Instruction *I) {
237   assert(isa<BinaryOperator>(I) && "Expected binary operator.");
238   assert(I->isCommutative() && "Expected commutative operator.");
239 
240   Value *LHS = I->getOperand(0);
241   Value *RHS = I->getOperand(1);
242   if (LHS == RHS || isa<Constant>(RHS))
243     return;
244   if (isa<Constant>(LHS) || getRank(RHS) < getRank(LHS))
245     cast<BinaryOperator>(I)->swapOperands();
246 }
247 
248 static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name,
249                                  Instruction *InsertBefore, Value *FlagsOp) {
250   if (S1->getType()->isIntOrIntVectorTy())
251     return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore);
252   else {
253     BinaryOperator *Res =
254         BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore);
255     Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
256     return Res;
257   }
258 }
259 
260 static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name,
261                                  Instruction *InsertBefore, Value *FlagsOp) {
262   if (S1->getType()->isIntOrIntVectorTy())
263     return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore);
264   else {
265     BinaryOperator *Res =
266       BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore);
267     Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
268     return Res;
269   }
270 }
271 
272 static Instruction *CreateNeg(Value *S1, const Twine &Name,
273                               Instruction *InsertBefore, Value *FlagsOp) {
274   if (S1->getType()->isIntOrIntVectorTy())
275     return BinaryOperator::CreateNeg(S1, Name, InsertBefore);
276 
277   if (auto *FMFSource = dyn_cast<Instruction>(FlagsOp))
278     return UnaryOperator::CreateFNegFMF(S1, FMFSource, Name, InsertBefore);
279 
280   return UnaryOperator::CreateFNeg(S1, Name, InsertBefore);
281 }
282 
283 /// Replace 0-X with X*-1.
284 static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
285   assert((isa<UnaryOperator>(Neg) || isa<BinaryOperator>(Neg)) &&
286          "Expected a Negate!");
287   // FIXME: It's not safe to lower a unary FNeg into a FMul by -1.0.
288   unsigned OpNo = isa<BinaryOperator>(Neg) ? 1 : 0;
289   Type *Ty = Neg->getType();
290   Constant *NegOne = Ty->isIntOrIntVectorTy() ?
291     ConstantInt::getAllOnesValue(Ty) : ConstantFP::get(Ty, -1.0);
292 
293   BinaryOperator *Res = CreateMul(Neg->getOperand(OpNo), NegOne, "", Neg, Neg);
294   Neg->setOperand(OpNo, Constant::getNullValue(Ty)); // Drop use of op.
295   Res->takeName(Neg);
296   Neg->replaceAllUsesWith(Res);
297   Res->setDebugLoc(Neg->getDebugLoc());
298   return Res;
299 }
300 
301 /// Returns k such that lambda(2^Bitwidth) = 2^k, where lambda is the Carmichael
302 /// function. This means that x^(2^k) === 1 mod 2^Bitwidth for
303 /// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
304 /// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
305 /// even x in Bitwidth-bit arithmetic.
306 static unsigned CarmichaelShift(unsigned Bitwidth) {
307   if (Bitwidth < 3)
308     return Bitwidth - 1;
309   return Bitwidth - 2;
310 }
311 
312 /// Add the extra weight 'RHS' to the existing weight 'LHS',
313 /// reducing the combined weight using any special properties of the operation.
314 /// The existing weight LHS represents the computation X op X op ... op X where
315 /// X occurs LHS times.  The combined weight represents  X op X op ... op X with
316 /// X occurring LHS + RHS times.  If op is "Xor" for example then the combined
317 /// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
318 /// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
319 static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
320   // If we were working with infinite precision arithmetic then the combined
321   // weight would be LHS + RHS.  But we are using finite precision arithmetic,
322   // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
323   // for nilpotent operations and addition, but not for idempotent operations
324   // and multiplication), so it is important to correctly reduce the combined
325   // weight back into range if wrapping would be wrong.
326 
327   // If RHS is zero then the weight didn't change.
328   if (RHS.isMinValue())
329     return;
330   // If LHS is zero then the combined weight is RHS.
331   if (LHS.isMinValue()) {
332     LHS = RHS;
333     return;
334   }
335   // From this point on we know that neither LHS nor RHS is zero.
336 
337   if (Instruction::isIdempotent(Opcode)) {
338     // Idempotent means X op X === X, so any non-zero weight is equivalent to a
339     // weight of 1.  Keeping weights at zero or one also means that wrapping is
340     // not a problem.
341     assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
342     return; // Return a weight of 1.
343   }
344   if (Instruction::isNilpotent(Opcode)) {
345     // Nilpotent means X op X === 0, so reduce weights modulo 2.
346     assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
347     LHS = 0; // 1 + 1 === 0 modulo 2.
348     return;
349   }
350   if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) {
351     // TODO: Reduce the weight by exploiting nsw/nuw?
352     LHS += RHS;
353     return;
354   }
355 
356   assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) &&
357          "Unknown associative operation!");
358   unsigned Bitwidth = LHS.getBitWidth();
359   // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
360   // can be replaced with W-CM.  That's because x^W=x^(W-CM) for every Bitwidth
361   // bit number x, since either x is odd in which case x^CM = 1, or x is even in
362   // which case both x^W and x^(W - CM) are zero.  By subtracting off multiples
363   // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
364   // which by a happy accident means that they can always be represented using
365   // Bitwidth bits.
366   // TODO: Reduce the weight by exploiting nsw/nuw?  (Could do much better than
367   // the Carmichael number).
368   if (Bitwidth > 3) {
369     /// CM - The value of Carmichael's lambda function.
370     APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth));
371     // Any weight W >= Threshold can be replaced with W - CM.
372     APInt Threshold = CM + Bitwidth;
373     assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!");
374     // For Bitwidth 4 or more the following sum does not overflow.
375     LHS += RHS;
376     while (LHS.uge(Threshold))
377       LHS -= CM;
378   } else {
379     // To avoid problems with overflow do everything the same as above but using
380     // a larger type.
381     unsigned CM = 1U << CarmichaelShift(Bitwidth);
382     unsigned Threshold = CM + Bitwidth;
383     assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold &&
384            "Weights not reduced!");
385     unsigned Total = LHS.getZExtValue() + RHS.getZExtValue();
386     while (Total >= Threshold)
387       Total -= CM;
388     LHS = Total;
389   }
390 }
391 
392 using RepeatedValue = std::pair<Value*, APInt>;
393 
394 /// Given an associative binary expression, return the leaf
395 /// nodes in Ops along with their weights (how many times the leaf occurs).  The
396 /// original expression is the same as
397 ///   (Ops[0].first op Ops[0].first op ... Ops[0].first)  <- Ops[0].second times
398 /// op
399 ///   (Ops[1].first op Ops[1].first op ... Ops[1].first)  <- Ops[1].second times
400 /// op
401 ///   ...
402 /// op
403 ///   (Ops[N].first op Ops[N].first op ... Ops[N].first)  <- Ops[N].second times
404 ///
405 /// Note that the values Ops[0].first, ..., Ops[N].first are all distinct.
406 ///
407 /// This routine may modify the function, in which case it returns 'true'.  The
408 /// changes it makes may well be destructive, changing the value computed by 'I'
409 /// to something completely different.  Thus if the routine returns 'true' then
410 /// you MUST either replace I with a new expression computed from the Ops array,
411 /// or use RewriteExprTree to put the values back in.
412 ///
413 /// A leaf node is either not a binary operation of the same kind as the root
414 /// node 'I' (i.e. is not a binary operator at all, or is, but with a different
415 /// opcode), or is the same kind of binary operator but has a use which either
416 /// does not belong to the expression, or does belong to the expression but is
417 /// a leaf node.  Every leaf node has at least one use that is a non-leaf node
418 /// of the expression, while for non-leaf nodes (except for the root 'I') every
419 /// use is a non-leaf node of the expression.
420 ///
421 /// For example:
422 ///           expression graph        node names
423 ///
424 ///                     +        |        I
425 ///                    / \       |
426 ///                   +   +      |      A,  B
427 ///                  / \ / \     |
428 ///                 *   +   *    |    C,  D,  E
429 ///                / \ / \ / \   |
430 ///                   +   *      |      F,  G
431 ///
432 /// The leaf nodes are C, E, F and G.  The Ops array will contain (maybe not in
433 /// that order) (C, 1), (E, 1), (F, 2), (G, 2).
434 ///
435 /// The expression is maximal: if some instruction is a binary operator of the
436 /// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
437 /// then the instruction also belongs to the expression, is not a leaf node of
438 /// it, and its operands also belong to the expression (but may be leaf nodes).
439 ///
440 /// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
441 /// order to ensure that every non-root node in the expression has *exactly one*
442 /// use by a non-leaf node of the expression.  This destruction means that the
443 /// caller MUST either replace 'I' with a new expression or use something like
444 /// RewriteExprTree to put the values back in if the routine indicates that it
445 /// made a change by returning 'true'.
446 ///
447 /// In the above example either the right operand of A or the left operand of B
448 /// will be replaced by undef.  If it is B's operand then this gives:
449 ///
450 ///                     +        |        I
451 ///                    / \       |
452 ///                   +   +      |      A,  B - operand of B replaced with undef
453 ///                  / \   \     |
454 ///                 *   +   *    |    C,  D,  E
455 ///                / \ / \ / \   |
456 ///                   +   *      |      F,  G
457 ///
458 /// Note that such undef operands can only be reached by passing through 'I'.
459 /// For example, if you visit operands recursively starting from a leaf node
460 /// then you will never see such an undef operand unless you get back to 'I',
461 /// which requires passing through a phi node.
462 ///
463 /// Note that this routine may also mutate binary operators of the wrong type
464 /// that have all uses inside the expression (i.e. only used by non-leaf nodes
465 /// of the expression) if it can turn them into binary operators of the right
466 /// type and thus make the expression bigger.
467 static bool LinearizeExprTree(Instruction *I,
468                               SmallVectorImpl<RepeatedValue> &Ops,
469                               ReassociatePass::OrderedSet &ToRedo) {
470   assert((isa<UnaryOperator>(I) || isa<BinaryOperator>(I)) &&
471          "Expected a UnaryOperator or BinaryOperator!");
472   LLVM_DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
473   unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
474   unsigned Opcode = I->getOpcode();
475   assert(I->isAssociative() && I->isCommutative() &&
476          "Expected an associative and commutative operation!");
477 
478   // Visit all operands of the expression, keeping track of their weight (the
479   // number of paths from the expression root to the operand, or if you like
480   // the number of times that operand occurs in the linearized expression).
481   // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
482   // while A has weight two.
483 
484   // Worklist of non-leaf nodes (their operands are in the expression too) along
485   // with their weights, representing a certain number of paths to the operator.
486   // If an operator occurs in the worklist multiple times then we found multiple
487   // ways to get to it.
488   SmallVector<std::pair<Instruction*, APInt>, 8> Worklist; // (Op, Weight)
489   Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
490   bool Changed = false;
491 
492   // Leaves of the expression are values that either aren't the right kind of
493   // operation (eg: a constant, or a multiply in an add tree), or are, but have
494   // some uses that are not inside the expression.  For example, in I = X + X,
495   // X = A + B, the value X has two uses (by I) that are in the expression.  If
496   // X has any other uses, for example in a return instruction, then we consider
497   // X to be a leaf, and won't analyze it further.  When we first visit a value,
498   // if it has more than one use then at first we conservatively consider it to
499   // be a leaf.  Later, as the expression is explored, we may discover some more
500   // uses of the value from inside the expression.  If all uses turn out to be
501   // from within the expression (and the value is a binary operator of the right
502   // kind) then the value is no longer considered to be a leaf, and its operands
503   // are explored.
504 
505   // Leaves - Keeps track of the set of putative leaves as well as the number of
506   // paths to each leaf seen so far.
507   using LeafMap = DenseMap<Value *, APInt>;
508   LeafMap Leaves; // Leaf -> Total weight so far.
509   SmallVector<Value *, 8> LeafOrder; // Ensure deterministic leaf output order.
510 
511 #ifndef NDEBUG
512   SmallPtrSet<Value *, 8> Visited; // For checking the iteration scheme.
513 #endif
514   while (!Worklist.empty()) {
515     std::pair<Instruction*, APInt> P = Worklist.pop_back_val();
516     I = P.first; // We examine the operands of this binary operator.
517 
518     for (unsigned OpIdx = 0; OpIdx < I->getNumOperands(); ++OpIdx) { // Visit operands.
519       Value *Op = I->getOperand(OpIdx);
520       APInt Weight = P.second; // Number of paths to this operand.
521       LLVM_DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
522       assert(!Op->use_empty() && "No uses, so how did we get to it?!");
523 
524       // If this is a binary operation of the right kind with only one use then
525       // add its operands to the expression.
526       if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
527         assert(Visited.insert(Op).second && "Not first visit!");
528         LLVM_DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
529         Worklist.push_back(std::make_pair(BO, Weight));
530         continue;
531       }
532 
533       // Appears to be a leaf.  Is the operand already in the set of leaves?
534       LeafMap::iterator It = Leaves.find(Op);
535       if (It == Leaves.end()) {
536         // Not in the leaf map.  Must be the first time we saw this operand.
537         assert(Visited.insert(Op).second && "Not first visit!");
538         if (!Op->hasOneUse()) {
539           // This value has uses not accounted for by the expression, so it is
540           // not safe to modify.  Mark it as being a leaf.
541           LLVM_DEBUG(dbgs()
542                      << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
543           LeafOrder.push_back(Op);
544           Leaves[Op] = Weight;
545           continue;
546         }
547         // No uses outside the expression, try morphing it.
548       } else {
549         // Already in the leaf map.
550         assert(It != Leaves.end() && Visited.count(Op) &&
551                "In leaf map but not visited!");
552 
553         // Update the number of paths to the leaf.
554         IncorporateWeight(It->second, Weight, Opcode);
555 
556 #if 0   // TODO: Re-enable once PR13021 is fixed.
557         // The leaf already has one use from inside the expression.  As we want
558         // exactly one such use, drop this new use of the leaf.
559         assert(!Op->hasOneUse() && "Only one use, but we got here twice!");
560         I->setOperand(OpIdx, UndefValue::get(I->getType()));
561         Changed = true;
562 
563         // If the leaf is a binary operation of the right kind and we now see
564         // that its multiple original uses were in fact all by nodes belonging
565         // to the expression, then no longer consider it to be a leaf and add
566         // its operands to the expression.
567         if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
568           LLVM_DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n");
569           Worklist.push_back(std::make_pair(BO, It->second));
570           Leaves.erase(It);
571           continue;
572         }
573 #endif
574 
575         // If we still have uses that are not accounted for by the expression
576         // then it is not safe to modify the value.
577         if (!Op->hasOneUse())
578           continue;
579 
580         // No uses outside the expression, try morphing it.
581         Weight = It->second;
582         Leaves.erase(It); // Since the value may be morphed below.
583       }
584 
585       // At this point we have a value which, first of all, is not a binary
586       // expression of the right kind, and secondly, is only used inside the
587       // expression.  This means that it can safely be modified.  See if we
588       // can usefully morph it into an expression of the right kind.
589       assert((!isa<Instruction>(Op) ||
590               cast<Instruction>(Op)->getOpcode() != Opcode
591               || (isa<FPMathOperator>(Op) &&
592                   !hasFPAssociativeFlags(cast<Instruction>(Op)))) &&
593              "Should have been handled above!");
594       assert(Op->hasOneUse() && "Has uses outside the expression tree!");
595 
596       // If this is a multiply expression, turn any internal negations into
597       // multiplies by -1 so they can be reassociated.  Add any users of the
598       // newly created multiplication by -1 to the redo list, so any
599       // reassociation opportunities that are exposed will be reassociated
600       // further.
601       Instruction *Neg;
602       if (((Opcode == Instruction::Mul && match(Op, m_Neg(m_Value()))) ||
603            (Opcode == Instruction::FMul && match(Op, m_FNeg(m_Value())))) &&
604            match(Op, m_Instruction(Neg))) {
605         LLVM_DEBUG(dbgs()
606                    << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
607         Instruction *Mul = LowerNegateToMultiply(Neg);
608         LLVM_DEBUG(dbgs() << *Mul << '\n');
609         Worklist.push_back(std::make_pair(Mul, Weight));
610         for (User *U : Mul->users()) {
611           if (BinaryOperator *UserBO = dyn_cast<BinaryOperator>(U))
612             ToRedo.insert(UserBO);
613         }
614         ToRedo.insert(Neg);
615         Changed = true;
616         continue;
617       }
618 
619       // Failed to morph into an expression of the right type.  This really is
620       // a leaf.
621       LLVM_DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
622       assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
623       LeafOrder.push_back(Op);
624       Leaves[Op] = Weight;
625     }
626   }
627 
628   // The leaves, repeated according to their weights, represent the linearized
629   // form of the expression.
630   for (Value *V : LeafOrder) {
631     LeafMap::iterator It = Leaves.find(V);
632     if (It == Leaves.end())
633       // Node initially thought to be a leaf wasn't.
634       continue;
635     assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
636     APInt Weight = It->second;
637     if (Weight.isMinValue())
638       // Leaf already output or weight reduction eliminated it.
639       continue;
640     // Ensure the leaf is only output once.
641     It->second = 0;
642     Ops.push_back(std::make_pair(V, Weight));
643   }
644 
645   // For nilpotent operations or addition there may be no operands, for example
646   // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
647   // in both cases the weight reduces to 0 causing the value to be skipped.
648   if (Ops.empty()) {
649     Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
650     assert(Identity && "Associative operation without identity!");
651     Ops.emplace_back(Identity, APInt(Bitwidth, 1));
652   }
653 
654   return Changed;
655 }
656 
657 /// Now that the operands for this expression tree are
658 /// linearized and optimized, emit them in-order.
659 void ReassociatePass::RewriteExprTree(BinaryOperator *I,
660                                       SmallVectorImpl<ValueEntry> &Ops) {
661   assert(Ops.size() > 1 && "Single values should be used directly!");
662 
663   // Since our optimizations should never increase the number of operations, the
664   // new expression can usually be written reusing the existing binary operators
665   // from the original expression tree, without creating any new instructions,
666   // though the rewritten expression may have a completely different topology.
667   // We take care to not change anything if the new expression will be the same
668   // as the original.  If more than trivial changes (like commuting operands)
669   // were made then we are obliged to clear out any optional subclass data like
670   // nsw flags.
671 
672   /// NodesToRewrite - Nodes from the original expression available for writing
673   /// the new expression into.
674   SmallVector<BinaryOperator*, 8> NodesToRewrite;
675   unsigned Opcode = I->getOpcode();
676   BinaryOperator *Op = I;
677 
678   /// NotRewritable - The operands being written will be the leaves of the new
679   /// expression and must not be used as inner nodes (via NodesToRewrite) by
680   /// mistake.  Inner nodes are always reassociable, and usually leaves are not
681   /// (if they were they would have been incorporated into the expression and so
682   /// would not be leaves), so most of the time there is no danger of this.  But
683   /// in rare cases a leaf may become reassociable if an optimization kills uses
684   /// of it, or it may momentarily become reassociable during rewriting (below)
685   /// due it being removed as an operand of one of its uses.  Ensure that misuse
686   /// of leaf nodes as inner nodes cannot occur by remembering all of the future
687   /// leaves and refusing to reuse any of them as inner nodes.
688   SmallPtrSet<Value*, 8> NotRewritable;
689   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
690     NotRewritable.insert(Ops[i].Op);
691 
692   // ExpressionChangedStart - Non-null if the rewritten expression differs from
693   // the original in some non-trivial way, requiring the clearing of optional
694   // flags. Flags are cleared from the operator in ExpressionChangedStart up to
695   // ExpressionChangedEnd inclusive.
696   BinaryOperator *ExpressionChangedStart = nullptr,
697                  *ExpressionChangedEnd = nullptr;
698   for (unsigned i = 0; ; ++i) {
699     // The last operation (which comes earliest in the IR) is special as both
700     // operands will come from Ops, rather than just one with the other being
701     // a subexpression.
702     if (i+2 == Ops.size()) {
703       Value *NewLHS = Ops[i].Op;
704       Value *NewRHS = Ops[i+1].Op;
705       Value *OldLHS = Op->getOperand(0);
706       Value *OldRHS = Op->getOperand(1);
707 
708       if (NewLHS == OldLHS && NewRHS == OldRHS)
709         // Nothing changed, leave it alone.
710         break;
711 
712       if (NewLHS == OldRHS && NewRHS == OldLHS) {
713         // The order of the operands was reversed.  Swap them.
714         LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
715         Op->swapOperands();
716         LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
717         MadeChange = true;
718         ++NumChanged;
719         break;
720       }
721 
722       // The new operation differs non-trivially from the original. Overwrite
723       // the old operands with the new ones.
724       LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
725       if (NewLHS != OldLHS) {
726         BinaryOperator *BO = isReassociableOp(OldLHS, Opcode);
727         if (BO && !NotRewritable.count(BO))
728           NodesToRewrite.push_back(BO);
729         Op->setOperand(0, NewLHS);
730       }
731       if (NewRHS != OldRHS) {
732         BinaryOperator *BO = isReassociableOp(OldRHS, Opcode);
733         if (BO && !NotRewritable.count(BO))
734           NodesToRewrite.push_back(BO);
735         Op->setOperand(1, NewRHS);
736       }
737       LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
738 
739       ExpressionChangedStart = Op;
740       if (!ExpressionChangedEnd)
741         ExpressionChangedEnd = Op;
742       MadeChange = true;
743       ++NumChanged;
744 
745       break;
746     }
747 
748     // Not the last operation.  The left-hand side will be a sub-expression
749     // while the right-hand side will be the current element of Ops.
750     Value *NewRHS = Ops[i].Op;
751     if (NewRHS != Op->getOperand(1)) {
752       LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
753       if (NewRHS == Op->getOperand(0)) {
754         // The new right-hand side was already present as the left operand.  If
755         // we are lucky then swapping the operands will sort out both of them.
756         Op->swapOperands();
757       } else {
758         // Overwrite with the new right-hand side.
759         BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode);
760         if (BO && !NotRewritable.count(BO))
761           NodesToRewrite.push_back(BO);
762         Op->setOperand(1, NewRHS);
763         ExpressionChangedStart = Op;
764         if (!ExpressionChangedEnd)
765           ExpressionChangedEnd = Op;
766       }
767       LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
768       MadeChange = true;
769       ++NumChanged;
770     }
771 
772     // Now deal with the left-hand side.  If this is already an operation node
773     // from the original expression then just rewrite the rest of the expression
774     // into it.
775     BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode);
776     if (BO && !NotRewritable.count(BO)) {
777       Op = BO;
778       continue;
779     }
780 
781     // Otherwise, grab a spare node from the original expression and use that as
782     // the left-hand side.  If there are no nodes left then the optimizers made
783     // an expression with more nodes than the original!  This usually means that
784     // they did something stupid but it might mean that the problem was just too
785     // hard (finding the mimimal number of multiplications needed to realize a
786     // multiplication expression is NP-complete).  Whatever the reason, smart or
787     // stupid, create a new node if there are none left.
788     BinaryOperator *NewOp;
789     if (NodesToRewrite.empty()) {
790       Constant *Undef = UndefValue::get(I->getType());
791       NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode),
792                                      Undef, Undef, "", I);
793       if (isa<FPMathOperator>(NewOp))
794         NewOp->setFastMathFlags(I->getFastMathFlags());
795     } else {
796       NewOp = NodesToRewrite.pop_back_val();
797     }
798 
799     LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
800     Op->setOperand(0, NewOp);
801     LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
802     ExpressionChangedStart = Op;
803     if (!ExpressionChangedEnd)
804       ExpressionChangedEnd = Op;
805     MadeChange = true;
806     ++NumChanged;
807     Op = NewOp;
808   }
809 
810   // If the expression changed non-trivially then clear out all subclass data
811   // starting from the operator specified in ExpressionChanged, and compactify
812   // the operators to just before the expression root to guarantee that the
813   // expression tree is dominated by all of Ops.
814   if (ExpressionChangedStart) {
815     bool ClearFlags = true;
816     do {
817       // Preserve FastMathFlags.
818       if (ClearFlags) {
819         if (isa<FPMathOperator>(I)) {
820           FastMathFlags Flags = I->getFastMathFlags();
821           ExpressionChangedStart->clearSubclassOptionalData();
822           ExpressionChangedStart->setFastMathFlags(Flags);
823         } else
824           ExpressionChangedStart->clearSubclassOptionalData();
825       }
826 
827       if (ExpressionChangedStart == ExpressionChangedEnd)
828         ClearFlags = false;
829       if (ExpressionChangedStart == I)
830         break;
831 
832       // Discard any debug info related to the expressions that has changed (we
833       // can leave debug info related to the root and any operation that didn't
834       // change, since the result of the expression tree should be the same
835       // even after reassociation).
836       if (ClearFlags)
837         replaceDbgUsesWithUndef(ExpressionChangedStart);
838 
839       ExpressionChangedStart->moveBefore(I);
840       ExpressionChangedStart =
841           cast<BinaryOperator>(*ExpressionChangedStart->user_begin());
842     } while (true);
843   }
844 
845   // Throw away any left over nodes from the original expression.
846   for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
847     RedoInsts.insert(NodesToRewrite[i]);
848 }
849 
850 /// Insert instructions before the instruction pointed to by BI,
851 /// that computes the negative version of the value specified.  The negative
852 /// version of the value is returned, and BI is left pointing at the instruction
853 /// that should be processed next by the reassociation pass.
854 /// Also add intermediate instructions to the redo list that are modified while
855 /// pushing the negates through adds.  These will be revisited to see if
856 /// additional opportunities have been exposed.
857 static Value *NegateValue(Value *V, Instruction *BI,
858                           ReassociatePass::OrderedSet &ToRedo) {
859   if (auto *C = dyn_cast<Constant>(V)) {
860     const DataLayout &DL = BI->getModule()->getDataLayout();
861     Constant *Res = C->getType()->isFPOrFPVectorTy()
862                         ? ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL)
863                         : ConstantExpr::getNeg(C);
864     if (Res)
865       return Res;
866   }
867 
868   // We are trying to expose opportunity for reassociation.  One of the things
869   // that we want to do to achieve this is to push a negation as deep into an
870   // expression chain as possible, to expose the add instructions.  In practice,
871   // this means that we turn this:
872   //   X = -(A+12+C+D)   into    X = -A + -12 + -C + -D = -12 + -A + -C + -D
873   // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
874   // the constants.  We assume that instcombine will clean up the mess later if
875   // we introduce tons of unnecessary negation instructions.
876   //
877   if (BinaryOperator *I =
878           isReassociableOp(V, Instruction::Add, Instruction::FAdd)) {
879     // Push the negates through the add.
880     I->setOperand(0, NegateValue(I->getOperand(0), BI, ToRedo));
881     I->setOperand(1, NegateValue(I->getOperand(1), BI, ToRedo));
882     if (I->getOpcode() == Instruction::Add) {
883       I->setHasNoUnsignedWrap(false);
884       I->setHasNoSignedWrap(false);
885     }
886 
887     // We must move the add instruction here, because the neg instructions do
888     // not dominate the old add instruction in general.  By moving it, we are
889     // assured that the neg instructions we just inserted dominate the
890     // instruction we are about to insert after them.
891     //
892     I->moveBefore(BI);
893     I->setName(I->getName()+".neg");
894 
895     // Add the intermediate negates to the redo list as processing them later
896     // could expose more reassociating opportunities.
897     ToRedo.insert(I);
898     return I;
899   }
900 
901   // Okay, we need to materialize a negated version of V with an instruction.
902   // Scan the use lists of V to see if we have one already.
903   for (User *U : V->users()) {
904     if (!match(U, m_Neg(m_Value())) && !match(U, m_FNeg(m_Value())))
905       continue;
906 
907     // We found one!  Now we have to make sure that the definition dominates
908     // this use.  We do this by moving it to the entry block (if it is a
909     // non-instruction value) or right after the definition.  These negates will
910     // be zapped by reassociate later, so we don't need much finesse here.
911     Instruction *TheNeg = dyn_cast<Instruction>(U);
912 
913     // We can't safely propagate a vector zero constant with poison/undef lanes.
914     Constant *C;
915     if (match(TheNeg, m_BinOp(m_Constant(C), m_Value())) &&
916         C->containsUndefOrPoisonElement())
917       continue;
918 
919     // Verify that the negate is in this function, V might be a constant expr.
920     if (!TheNeg ||
921         TheNeg->getParent()->getParent() != BI->getParent()->getParent())
922       continue;
923 
924     Instruction *InsertPt;
925     if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
926       InsertPt = InstInput->getInsertionPointAfterDef();
927       if (!InsertPt)
928         continue;
929     } else {
930       InsertPt = &*TheNeg->getFunction()->getEntryBlock().begin();
931     }
932 
933     TheNeg->moveBefore(InsertPt);
934     if (TheNeg->getOpcode() == Instruction::Sub) {
935       TheNeg->setHasNoUnsignedWrap(false);
936       TheNeg->setHasNoSignedWrap(false);
937     } else {
938       TheNeg->andIRFlags(BI);
939     }
940     ToRedo.insert(TheNeg);
941     return TheNeg;
942   }
943 
944   // Insert a 'neg' instruction that subtracts the value from zero to get the
945   // negation.
946   Instruction *NewNeg = CreateNeg(V, V->getName() + ".neg", BI, BI);
947   ToRedo.insert(NewNeg);
948   return NewNeg;
949 }
950 
951 // See if this `or` looks like an load widening reduction, i.e. that it
952 // consists of an `or`/`shl`/`zext`/`load` nodes only. Note that we don't
953 // ensure that the pattern is *really* a load widening reduction,
954 // we do not ensure that it can really be replaced with a widened load,
955 // only that it mostly looks like one.
956 static bool isLoadCombineCandidate(Instruction *Or) {
957   SmallVector<Instruction *, 8> Worklist;
958   SmallSet<Instruction *, 8> Visited;
959 
960   auto Enqueue = [&](Value *V) {
961     auto *I = dyn_cast<Instruction>(V);
962     // Each node of an `or` reduction must be an instruction,
963     if (!I)
964       return false; // Node is certainly not part of an `or` load reduction.
965     // Only process instructions we have never processed before.
966     if (Visited.insert(I).second)
967       Worklist.emplace_back(I);
968     return true; // Will need to look at parent nodes.
969   };
970 
971   if (!Enqueue(Or))
972     return false; // Not an `or` reduction pattern.
973 
974   while (!Worklist.empty()) {
975     auto *I = Worklist.pop_back_val();
976 
977     // Okay, which instruction is this node?
978     switch (I->getOpcode()) {
979     case Instruction::Or:
980       // Got an `or` node. That's fine, just recurse into it's operands.
981       for (Value *Op : I->operands())
982         if (!Enqueue(Op))
983           return false; // Not an `or` reduction pattern.
984       continue;
985 
986     case Instruction::Shl:
987     case Instruction::ZExt:
988       // `shl`/`zext` nodes are fine, just recurse into their base operand.
989       if (!Enqueue(I->getOperand(0)))
990         return false; // Not an `or` reduction pattern.
991       continue;
992 
993     case Instruction::Load:
994       // Perfect, `load` node means we've reached an edge of the graph.
995       continue;
996 
997     default:        // Unknown node.
998       return false; // Not an `or` reduction pattern.
999     }
1000   }
1001 
1002   return true;
1003 }
1004 
1005 /// Return true if it may be profitable to convert this (X|Y) into (X+Y).
1006 static bool shouldConvertOrWithNoCommonBitsToAdd(Instruction *Or) {
1007   // Don't bother to convert this up unless either the LHS is an associable add
1008   // or subtract or mul or if this is only used by one of the above.
1009   // This is only a compile-time improvement, it is not needed for correctness!
1010   auto isInteresting = [](Value *V) {
1011     for (auto Op : {Instruction::Add, Instruction::Sub, Instruction::Mul,
1012                     Instruction::Shl})
1013       if (isReassociableOp(V, Op))
1014         return true;
1015     return false;
1016   };
1017 
1018   if (any_of(Or->operands(), isInteresting))
1019     return true;
1020 
1021   Value *VB = Or->user_back();
1022   if (Or->hasOneUse() && isInteresting(VB))
1023     return true;
1024 
1025   return false;
1026 }
1027 
1028 /// If we have (X|Y), and iff X and Y have no common bits set,
1029 /// transform this into (X+Y) to allow arithmetics reassociation.
1030 static BinaryOperator *convertOrWithNoCommonBitsToAdd(Instruction *Or) {
1031   // Convert an or into an add.
1032   BinaryOperator *New =
1033       CreateAdd(Or->getOperand(0), Or->getOperand(1), "", Or, Or);
1034   New->setHasNoSignedWrap();
1035   New->setHasNoUnsignedWrap();
1036   New->takeName(Or);
1037 
1038   // Everyone now refers to the add instruction.
1039   Or->replaceAllUsesWith(New);
1040   New->setDebugLoc(Or->getDebugLoc());
1041 
1042   LLVM_DEBUG(dbgs() << "Converted or into an add: " << *New << '\n');
1043   return New;
1044 }
1045 
1046 /// Return true if we should break up this subtract of X-Y into (X + -Y).
1047 static bool ShouldBreakUpSubtract(Instruction *Sub) {
1048   // If this is a negation, we can't split it up!
1049   if (match(Sub, m_Neg(m_Value())) || match(Sub, m_FNeg(m_Value())))
1050     return false;
1051 
1052   // Don't breakup X - undef.
1053   if (isa<UndefValue>(Sub->getOperand(1)))
1054     return false;
1055 
1056   // Don't bother to break this up unless either the LHS is an associable add or
1057   // subtract or if this is only used by one.
1058   Value *V0 = Sub->getOperand(0);
1059   if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) ||
1060       isReassociableOp(V0, Instruction::Sub, Instruction::FSub))
1061     return true;
1062   Value *V1 = Sub->getOperand(1);
1063   if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) ||
1064       isReassociableOp(V1, Instruction::Sub, Instruction::FSub))
1065     return true;
1066   Value *VB = Sub->user_back();
1067   if (Sub->hasOneUse() &&
1068       (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) ||
1069        isReassociableOp(VB, Instruction::Sub, Instruction::FSub)))
1070     return true;
1071 
1072   return false;
1073 }
1074 
1075 /// If we have (X-Y), and if either X is an add, or if this is only used by an
1076 /// add, transform this into (X+(0-Y)) to promote better reassociation.
1077 static BinaryOperator *BreakUpSubtract(Instruction *Sub,
1078                                        ReassociatePass::OrderedSet &ToRedo) {
1079   // Convert a subtract into an add and a neg instruction. This allows sub
1080   // instructions to be commuted with other add instructions.
1081   //
1082   // Calculate the negative value of Operand 1 of the sub instruction,
1083   // and set it as the RHS of the add instruction we just made.
1084   Value *NegVal = NegateValue(Sub->getOperand(1), Sub, ToRedo);
1085   BinaryOperator *New = CreateAdd(Sub->getOperand(0), NegVal, "", Sub, Sub);
1086   Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
1087   Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
1088   New->takeName(Sub);
1089 
1090   // Everyone now refers to the add instruction.
1091   Sub->replaceAllUsesWith(New);
1092   New->setDebugLoc(Sub->getDebugLoc());
1093 
1094   LLVM_DEBUG(dbgs() << "Negated: " << *New << '\n');
1095   return New;
1096 }
1097 
1098 /// If this is a shift of a reassociable multiply or is used by one, change
1099 /// this into a multiply by a constant to assist with further reassociation.
1100 static BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
1101   Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
1102   auto *SA = cast<ConstantInt>(Shl->getOperand(1));
1103   MulCst = ConstantExpr::getShl(MulCst, SA);
1104 
1105   BinaryOperator *Mul =
1106     BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
1107   Shl->setOperand(0, PoisonValue::get(Shl->getType())); // Drop use of op.
1108   Mul->takeName(Shl);
1109 
1110   // Everyone now refers to the mul instruction.
1111   Shl->replaceAllUsesWith(Mul);
1112   Mul->setDebugLoc(Shl->getDebugLoc());
1113 
1114   // We can safely preserve the nuw flag in all cases.  It's also safe to turn a
1115   // nuw nsw shl into a nuw nsw mul.  However, nsw in isolation requires special
1116   // handling.  It can be preserved as long as we're not left shifting by
1117   // bitwidth - 1.
1118   bool NSW = cast<BinaryOperator>(Shl)->hasNoSignedWrap();
1119   bool NUW = cast<BinaryOperator>(Shl)->hasNoUnsignedWrap();
1120   unsigned BitWidth = Shl->getType()->getIntegerBitWidth();
1121   if (NSW && (NUW || SA->getValue().ult(BitWidth - 1)))
1122     Mul->setHasNoSignedWrap(true);
1123   Mul->setHasNoUnsignedWrap(NUW);
1124   return Mul;
1125 }
1126 
1127 /// Scan backwards and forwards among values with the same rank as element i
1128 /// to see if X exists.  If X does not exist, return i.  This is useful when
1129 /// scanning for 'x' when we see '-x' because they both get the same rank.
1130 static unsigned FindInOperandList(const SmallVectorImpl<ValueEntry> &Ops,
1131                                   unsigned i, Value *X) {
1132   unsigned XRank = Ops[i].Rank;
1133   unsigned e = Ops.size();
1134   for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) {
1135     if (Ops[j].Op == X)
1136       return j;
1137     if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
1138       if (Instruction *I2 = dyn_cast<Instruction>(X))
1139         if (I1->isIdenticalTo(I2))
1140           return j;
1141   }
1142   // Scan backwards.
1143   for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) {
1144     if (Ops[j].Op == X)
1145       return j;
1146     if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
1147       if (Instruction *I2 = dyn_cast<Instruction>(X))
1148         if (I1->isIdenticalTo(I2))
1149           return j;
1150   }
1151   return i;
1152 }
1153 
1154 /// Emit a tree of add instructions, summing Ops together
1155 /// and returning the result.  Insert the tree before I.
1156 static Value *EmitAddTreeOfValues(Instruction *I,
1157                                   SmallVectorImpl<WeakTrackingVH> &Ops) {
1158   if (Ops.size() == 1) return Ops.back();
1159 
1160   Value *V1 = Ops.pop_back_val();
1161   Value *V2 = EmitAddTreeOfValues(I, Ops);
1162   return CreateAdd(V2, V1, "reass.add", I, I);
1163 }
1164 
1165 /// If V is an expression tree that is a multiplication sequence,
1166 /// and if this sequence contains a multiply by Factor,
1167 /// remove Factor from the tree and return the new tree.
1168 Value *ReassociatePass::RemoveFactorFromExpression(Value *V, Value *Factor) {
1169   BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
1170   if (!BO)
1171     return nullptr;
1172 
1173   SmallVector<RepeatedValue, 8> Tree;
1174   MadeChange |= LinearizeExprTree(BO, Tree, RedoInsts);
1175   SmallVector<ValueEntry, 8> Factors;
1176   Factors.reserve(Tree.size());
1177   for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
1178     RepeatedValue E = Tree[i];
1179     Factors.append(E.second.getZExtValue(),
1180                    ValueEntry(getRank(E.first), E.first));
1181   }
1182 
1183   bool FoundFactor = false;
1184   bool NeedsNegate = false;
1185   for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1186     if (Factors[i].Op == Factor) {
1187       FoundFactor = true;
1188       Factors.erase(Factors.begin()+i);
1189       break;
1190     }
1191 
1192     // If this is a negative version of this factor, remove it.
1193     if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) {
1194       if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
1195         if (FC1->getValue() == -FC2->getValue()) {
1196           FoundFactor = NeedsNegate = true;
1197           Factors.erase(Factors.begin()+i);
1198           break;
1199         }
1200     } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) {
1201       if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) {
1202         const APFloat &F1 = FC1->getValueAPF();
1203         APFloat F2(FC2->getValueAPF());
1204         F2.changeSign();
1205         if (F1 == F2) {
1206           FoundFactor = NeedsNegate = true;
1207           Factors.erase(Factors.begin() + i);
1208           break;
1209         }
1210       }
1211     }
1212   }
1213 
1214   if (!FoundFactor) {
1215     // Make sure to restore the operands to the expression tree.
1216     RewriteExprTree(BO, Factors);
1217     return nullptr;
1218   }
1219 
1220   BasicBlock::iterator InsertPt = ++BO->getIterator();
1221 
1222   // If this was just a single multiply, remove the multiply and return the only
1223   // remaining operand.
1224   if (Factors.size() == 1) {
1225     RedoInsts.insert(BO);
1226     V = Factors[0].Op;
1227   } else {
1228     RewriteExprTree(BO, Factors);
1229     V = BO;
1230   }
1231 
1232   if (NeedsNegate)
1233     V = CreateNeg(V, "neg", &*InsertPt, BO);
1234 
1235   return V;
1236 }
1237 
1238 /// If V is a single-use multiply, recursively add its operands as factors,
1239 /// otherwise add V to the list of factors.
1240 ///
1241 /// Ops is the top-level list of add operands we're trying to factor.
1242 static void FindSingleUseMultiplyFactors(Value *V,
1243                                          SmallVectorImpl<Value*> &Factors) {
1244   BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
1245   if (!BO) {
1246     Factors.push_back(V);
1247     return;
1248   }
1249 
1250   // Otherwise, add the LHS and RHS to the list of factors.
1251   FindSingleUseMultiplyFactors(BO->getOperand(1), Factors);
1252   FindSingleUseMultiplyFactors(BO->getOperand(0), Factors);
1253 }
1254 
1255 /// Optimize a series of operands to an 'and', 'or', or 'xor' instruction.
1256 /// This optimizes based on identities.  If it can be reduced to a single Value,
1257 /// it is returned, otherwise the Ops list is mutated as necessary.
1258 static Value *OptimizeAndOrXor(unsigned Opcode,
1259                                SmallVectorImpl<ValueEntry> &Ops) {
1260   // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
1261   // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
1262   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1263     // First, check for X and ~X in the operand list.
1264     assert(i < Ops.size());
1265     Value *X;
1266     if (match(Ops[i].Op, m_Not(m_Value(X)))) {    // Cannot occur for ^.
1267       unsigned FoundX = FindInOperandList(Ops, i, X);
1268       if (FoundX != i) {
1269         if (Opcode == Instruction::And)   // ...&X&~X = 0
1270           return Constant::getNullValue(X->getType());
1271 
1272         if (Opcode == Instruction::Or)    // ...|X|~X = -1
1273           return Constant::getAllOnesValue(X->getType());
1274       }
1275     }
1276 
1277     // Next, check for duplicate pairs of values, which we assume are next to
1278     // each other, due to our sorting criteria.
1279     assert(i < Ops.size());
1280     if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
1281       if (Opcode == Instruction::And || Opcode == Instruction::Or) {
1282         // Drop duplicate values for And and Or.
1283         Ops.erase(Ops.begin()+i);
1284         --i; --e;
1285         ++NumAnnihil;
1286         continue;
1287       }
1288 
1289       // Drop pairs of values for Xor.
1290       assert(Opcode == Instruction::Xor);
1291       if (e == 2)
1292         return Constant::getNullValue(Ops[0].Op->getType());
1293 
1294       // Y ^ X^X -> Y
1295       Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1296       i -= 1; e -= 2;
1297       ++NumAnnihil;
1298     }
1299   }
1300   return nullptr;
1301 }
1302 
1303 /// Helper function of CombineXorOpnd(). It creates a bitwise-and
1304 /// instruction with the given two operands, and return the resulting
1305 /// instruction. There are two special cases: 1) if the constant operand is 0,
1306 /// it will return NULL. 2) if the constant is ~0, the symbolic operand will
1307 /// be returned.
1308 static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd,
1309                              const APInt &ConstOpnd) {
1310   if (ConstOpnd.isZero())
1311     return nullptr;
1312 
1313   if (ConstOpnd.isAllOnes())
1314     return Opnd;
1315 
1316   Instruction *I = BinaryOperator::CreateAnd(
1317       Opnd, ConstantInt::get(Opnd->getType(), ConstOpnd), "and.ra",
1318       InsertBefore);
1319   I->setDebugLoc(InsertBefore->getDebugLoc());
1320   return I;
1321 }
1322 
1323 // Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd"
1324 // into "R ^ C", where C would be 0, and R is a symbolic value.
1325 //
1326 // If it was successful, true is returned, and the "R" and "C" is returned
1327 // via "Res" and "ConstOpnd", respectively; otherwise, false is returned,
1328 // and both "Res" and "ConstOpnd" remain unchanged.
1329 bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1330                                      APInt &ConstOpnd, Value *&Res) {
1331   // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2
1332   //                       = ((x | c1) ^ c1) ^ (c1 ^ c2)
1333   //                       = (x & ~c1) ^ (c1 ^ c2)
1334   // It is useful only when c1 == c2.
1335   if (!Opnd1->isOrExpr() || Opnd1->getConstPart().isZero())
1336     return false;
1337 
1338   if (!Opnd1->getValue()->hasOneUse())
1339     return false;
1340 
1341   const APInt &C1 = Opnd1->getConstPart();
1342   if (C1 != ConstOpnd)
1343     return false;
1344 
1345   Value *X = Opnd1->getSymbolicPart();
1346   Res = createAndInstr(I, X, ~C1);
1347   // ConstOpnd was C2, now C1 ^ C2.
1348   ConstOpnd ^= C1;
1349 
1350   if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1351     RedoInsts.insert(T);
1352   return true;
1353 }
1354 
1355 // Helper function of OptimizeXor(). It tries to simplify
1356 // "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a
1357 // symbolic value.
1358 //
1359 // If it was successful, true is returned, and the "R" and "C" is returned
1360 // via "Res" and "ConstOpnd", respectively (If the entire expression is
1361 // evaluated to a constant, the Res is set to NULL); otherwise, false is
1362 // returned, and both "Res" and "ConstOpnd" remain unchanged.
1363 bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1364                                      XorOpnd *Opnd2, APInt &ConstOpnd,
1365                                      Value *&Res) {
1366   Value *X = Opnd1->getSymbolicPart();
1367   if (X != Opnd2->getSymbolicPart())
1368     return false;
1369 
1370   // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.)
1371   int DeadInstNum = 1;
1372   if (Opnd1->getValue()->hasOneUse())
1373     DeadInstNum++;
1374   if (Opnd2->getValue()->hasOneUse())
1375     DeadInstNum++;
1376 
1377   // Xor-Rule 2:
1378   //  (x | c1) ^ (x & c2)
1379   //   = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1
1380   //   = (x & ~c1) ^ (x & c2) ^ c1               // Xor-Rule 1
1381   //   = (x & c3) ^ c1, where c3 = ~c1 ^ c2      // Xor-rule 3
1382   //
1383   if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) {
1384     if (Opnd2->isOrExpr())
1385       std::swap(Opnd1, Opnd2);
1386 
1387     const APInt &C1 = Opnd1->getConstPart();
1388     const APInt &C2 = Opnd2->getConstPart();
1389     APInt C3((~C1) ^ C2);
1390 
1391     // Do not increase code size!
1392     if (!C3.isZero() && !C3.isAllOnes()) {
1393       int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2;
1394       if (NewInstNum > DeadInstNum)
1395         return false;
1396     }
1397 
1398     Res = createAndInstr(I, X, C3);
1399     ConstOpnd ^= C1;
1400   } else if (Opnd1->isOrExpr()) {
1401     // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2
1402     //
1403     const APInt &C1 = Opnd1->getConstPart();
1404     const APInt &C2 = Opnd2->getConstPart();
1405     APInt C3 = C1 ^ C2;
1406 
1407     // Do not increase code size
1408     if (!C3.isZero() && !C3.isAllOnes()) {
1409       int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2;
1410       if (NewInstNum > DeadInstNum)
1411         return false;
1412     }
1413 
1414     Res = createAndInstr(I, X, C3);
1415     ConstOpnd ^= C3;
1416   } else {
1417     // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2))
1418     //
1419     const APInt &C1 = Opnd1->getConstPart();
1420     const APInt &C2 = Opnd2->getConstPart();
1421     APInt C3 = C1 ^ C2;
1422     Res = createAndInstr(I, X, C3);
1423   }
1424 
1425   // Put the original operands in the Redo list; hope they will be deleted
1426   // as dead code.
1427   if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1428     RedoInsts.insert(T);
1429   if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue()))
1430     RedoInsts.insert(T);
1431 
1432   return true;
1433 }
1434 
1435 /// Optimize a series of operands to an 'xor' instruction. If it can be reduced
1436 /// to a single Value, it is returned, otherwise the Ops list is mutated as
1437 /// necessary.
1438 Value *ReassociatePass::OptimizeXor(Instruction *I,
1439                                     SmallVectorImpl<ValueEntry> &Ops) {
1440   if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops))
1441     return V;
1442 
1443   if (Ops.size() == 1)
1444     return nullptr;
1445 
1446   SmallVector<XorOpnd, 8> Opnds;
1447   SmallVector<XorOpnd*, 8> OpndPtrs;
1448   Type *Ty = Ops[0].Op->getType();
1449   APInt ConstOpnd(Ty->getScalarSizeInBits(), 0);
1450 
1451   // Step 1: Convert ValueEntry to XorOpnd
1452   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1453     Value *V = Ops[i].Op;
1454     const APInt *C;
1455     // TODO: Support non-splat vectors.
1456     if (match(V, m_APInt(C))) {
1457       ConstOpnd ^= *C;
1458     } else {
1459       XorOpnd O(V);
1460       O.setSymbolicRank(getRank(O.getSymbolicPart()));
1461       Opnds.push_back(O);
1462     }
1463   }
1464 
1465   // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds".
1466   //  It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate
1467   //  the "OpndPtrs" as well. For the similar reason, do not fuse this loop
1468   //  with the previous loop --- the iterator of the "Opnds" may be invalidated
1469   //  when new elements are added to the vector.
1470   for (unsigned i = 0, e = Opnds.size(); i != e; ++i)
1471     OpndPtrs.push_back(&Opnds[i]);
1472 
1473   // Step 2: Sort the Xor-Operands in a way such that the operands containing
1474   //  the same symbolic value cluster together. For instance, the input operand
1475   //  sequence ("x | 123", "y & 456", "x & 789") will be sorted into:
1476   //  ("x | 123", "x & 789", "y & 456").
1477   //
1478   //  The purpose is twofold:
1479   //  1) Cluster together the operands sharing the same symbolic-value.
1480   //  2) Operand having smaller symbolic-value-rank is permuted earlier, which
1481   //     could potentially shorten crital path, and expose more loop-invariants.
1482   //     Note that values' rank are basically defined in RPO order (FIXME).
1483   //     So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier
1484   //     than Y which is defined earlier than Z. Permute "x | 1", "Y & 2",
1485   //     "z" in the order of X-Y-Z is better than any other orders.
1486   llvm::stable_sort(OpndPtrs, [](XorOpnd *LHS, XorOpnd *RHS) {
1487     return LHS->getSymbolicRank() < RHS->getSymbolicRank();
1488   });
1489 
1490   // Step 3: Combine adjacent operands
1491   XorOpnd *PrevOpnd = nullptr;
1492   bool Changed = false;
1493   for (unsigned i = 0, e = Opnds.size(); i < e; i++) {
1494     XorOpnd *CurrOpnd = OpndPtrs[i];
1495     // The combined value
1496     Value *CV;
1497 
1498     // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd"
1499     if (!ConstOpnd.isZero() && CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) {
1500       Changed = true;
1501       if (CV)
1502         *CurrOpnd = XorOpnd(CV);
1503       else {
1504         CurrOpnd->Invalidate();
1505         continue;
1506       }
1507     }
1508 
1509     if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) {
1510       PrevOpnd = CurrOpnd;
1511       continue;
1512     }
1513 
1514     // step 3.2: When previous and current operands share the same symbolic
1515     //  value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd"
1516     if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) {
1517       // Remove previous operand
1518       PrevOpnd->Invalidate();
1519       if (CV) {
1520         *CurrOpnd = XorOpnd(CV);
1521         PrevOpnd = CurrOpnd;
1522       } else {
1523         CurrOpnd->Invalidate();
1524         PrevOpnd = nullptr;
1525       }
1526       Changed = true;
1527     }
1528   }
1529 
1530   // Step 4: Reassemble the Ops
1531   if (Changed) {
1532     Ops.clear();
1533     for (const XorOpnd &O : Opnds) {
1534       if (O.isInvalid())
1535         continue;
1536       ValueEntry VE(getRank(O.getValue()), O.getValue());
1537       Ops.push_back(VE);
1538     }
1539     if (!ConstOpnd.isZero()) {
1540       Value *C = ConstantInt::get(Ty, ConstOpnd);
1541       ValueEntry VE(getRank(C), C);
1542       Ops.push_back(VE);
1543     }
1544     unsigned Sz = Ops.size();
1545     if (Sz == 1)
1546       return Ops.back().Op;
1547     if (Sz == 0) {
1548       assert(ConstOpnd.isZero());
1549       return ConstantInt::get(Ty, ConstOpnd);
1550     }
1551   }
1552 
1553   return nullptr;
1554 }
1555 
1556 /// Optimize a series of operands to an 'add' instruction.  This
1557 /// optimizes based on identities.  If it can be reduced to a single Value, it
1558 /// is returned, otherwise the Ops list is mutated as necessary.
1559 Value *ReassociatePass::OptimizeAdd(Instruction *I,
1560                                     SmallVectorImpl<ValueEntry> &Ops) {
1561   // Scan the operand lists looking for X and -X pairs.  If we find any, we
1562   // can simplify expressions like X+-X == 0 and X+~X ==-1.  While we're at it,
1563   // scan for any
1564   // duplicates.  We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
1565 
1566   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1567     Value *TheOp = Ops[i].Op;
1568     // Check to see if we've seen this operand before.  If so, we factor all
1569     // instances of the operand together.  Due to our sorting criteria, we know
1570     // that these need to be next to each other in the vector.
1571     if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
1572       // Rescan the list, remove all instances of this operand from the expr.
1573       unsigned NumFound = 0;
1574       do {
1575         Ops.erase(Ops.begin()+i);
1576         ++NumFound;
1577       } while (i != Ops.size() && Ops[i].Op == TheOp);
1578 
1579       LLVM_DEBUG(dbgs() << "\nFACTORING [" << NumFound << "]: " << *TheOp
1580                         << '\n');
1581       ++NumFactor;
1582 
1583       // Insert a new multiply.
1584       Type *Ty = TheOp->getType();
1585       Constant *C = Ty->isIntOrIntVectorTy() ?
1586         ConstantInt::get(Ty, NumFound) : ConstantFP::get(Ty, NumFound);
1587       Instruction *Mul = CreateMul(TheOp, C, "factor", I, I);
1588 
1589       // Now that we have inserted a multiply, optimize it. This allows us to
1590       // handle cases that require multiple factoring steps, such as this:
1591       // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
1592       RedoInsts.insert(Mul);
1593 
1594       // If every add operand was a duplicate, return the multiply.
1595       if (Ops.empty())
1596         return Mul;
1597 
1598       // Otherwise, we had some input that didn't have the dupe, such as
1599       // "A + A + B" -> "A*2 + B".  Add the new multiply to the list of
1600       // things being added by this operation.
1601       Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
1602 
1603       --i;
1604       e = Ops.size();
1605       continue;
1606     }
1607 
1608     // Check for X and -X or X and ~X in the operand list.
1609     Value *X;
1610     if (!match(TheOp, m_Neg(m_Value(X))) && !match(TheOp, m_Not(m_Value(X))) &&
1611         !match(TheOp, m_FNeg(m_Value(X))))
1612       continue;
1613 
1614     unsigned FoundX = FindInOperandList(Ops, i, X);
1615     if (FoundX == i)
1616       continue;
1617 
1618     // Remove X and -X from the operand list.
1619     if (Ops.size() == 2 &&
1620         (match(TheOp, m_Neg(m_Value())) || match(TheOp, m_FNeg(m_Value()))))
1621       return Constant::getNullValue(X->getType());
1622 
1623     // Remove X and ~X from the operand list.
1624     if (Ops.size() == 2 && match(TheOp, m_Not(m_Value())))
1625       return Constant::getAllOnesValue(X->getType());
1626 
1627     Ops.erase(Ops.begin()+i);
1628     if (i < FoundX)
1629       --FoundX;
1630     else
1631       --i;   // Need to back up an extra one.
1632     Ops.erase(Ops.begin()+FoundX);
1633     ++NumAnnihil;
1634     --i;     // Revisit element.
1635     e -= 2;  // Removed two elements.
1636 
1637     // if X and ~X we append -1 to the operand list.
1638     if (match(TheOp, m_Not(m_Value()))) {
1639       Value *V = Constant::getAllOnesValue(X->getType());
1640       Ops.insert(Ops.end(), ValueEntry(getRank(V), V));
1641       e += 1;
1642     }
1643   }
1644 
1645   // Scan the operand list, checking to see if there are any common factors
1646   // between operands.  Consider something like A*A+A*B*C+D.  We would like to
1647   // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
1648   // To efficiently find this, we count the number of times a factor occurs
1649   // for any ADD operands that are MULs.
1650   DenseMap<Value*, unsigned> FactorOccurrences;
1651 
1652   // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
1653   // where they are actually the same multiply.
1654   unsigned MaxOcc = 0;
1655   Value *MaxOccVal = nullptr;
1656   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1657     BinaryOperator *BOp =
1658         isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
1659     if (!BOp)
1660       continue;
1661 
1662     // Compute all of the factors of this added value.
1663     SmallVector<Value*, 8> Factors;
1664     FindSingleUseMultiplyFactors(BOp, Factors);
1665     assert(Factors.size() > 1 && "Bad linearize!");
1666 
1667     // Add one to FactorOccurrences for each unique factor in this op.
1668     SmallPtrSet<Value*, 8> Duplicates;
1669     for (Value *Factor : Factors) {
1670       if (!Duplicates.insert(Factor).second)
1671         continue;
1672 
1673       unsigned Occ = ++FactorOccurrences[Factor];
1674       if (Occ > MaxOcc) {
1675         MaxOcc = Occ;
1676         MaxOccVal = Factor;
1677       }
1678 
1679       // If Factor is a negative constant, add the negated value as a factor
1680       // because we can percolate the negate out.  Watch for minint, which
1681       // cannot be positivified.
1682       if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) {
1683         if (CI->isNegative() && !CI->isMinValue(true)) {
1684           Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
1685           if (!Duplicates.insert(Factor).second)
1686             continue;
1687           unsigned Occ = ++FactorOccurrences[Factor];
1688           if (Occ > MaxOcc) {
1689             MaxOcc = Occ;
1690             MaxOccVal = Factor;
1691           }
1692         }
1693       } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) {
1694         if (CF->isNegative()) {
1695           APFloat F(CF->getValueAPF());
1696           F.changeSign();
1697           Factor = ConstantFP::get(CF->getContext(), F);
1698           if (!Duplicates.insert(Factor).second)
1699             continue;
1700           unsigned Occ = ++FactorOccurrences[Factor];
1701           if (Occ > MaxOcc) {
1702             MaxOcc = Occ;
1703             MaxOccVal = Factor;
1704           }
1705         }
1706       }
1707     }
1708   }
1709 
1710   // If any factor occurred more than one time, we can pull it out.
1711   if (MaxOcc > 1) {
1712     LLVM_DEBUG(dbgs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal
1713                       << '\n');
1714     ++NumFactor;
1715 
1716     // Create a new instruction that uses the MaxOccVal twice.  If we don't do
1717     // this, we could otherwise run into situations where removing a factor
1718     // from an expression will drop a use of maxocc, and this can cause
1719     // RemoveFactorFromExpression on successive values to behave differently.
1720     Instruction *DummyInst =
1721         I->getType()->isIntOrIntVectorTy()
1722             ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal)
1723             : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal);
1724 
1725     SmallVector<WeakTrackingVH, 4> NewMulOps;
1726     for (unsigned i = 0; i != Ops.size(); ++i) {
1727       // Only try to remove factors from expressions we're allowed to.
1728       BinaryOperator *BOp =
1729           isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
1730       if (!BOp)
1731         continue;
1732 
1733       if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
1734         // The factorized operand may occur several times.  Convert them all in
1735         // one fell swoop.
1736         for (unsigned j = Ops.size(); j != i;) {
1737           --j;
1738           if (Ops[j].Op == Ops[i].Op) {
1739             NewMulOps.push_back(V);
1740             Ops.erase(Ops.begin()+j);
1741           }
1742         }
1743         --i;
1744       }
1745     }
1746 
1747     // No need for extra uses anymore.
1748     DummyInst->deleteValue();
1749 
1750     unsigned NumAddedValues = NewMulOps.size();
1751     Value *V = EmitAddTreeOfValues(I, NewMulOps);
1752 
1753     // Now that we have inserted the add tree, optimize it. This allows us to
1754     // handle cases that require multiple factoring steps, such as this:
1755     // A*A*B + A*A*C   -->   A*(A*B+A*C)   -->   A*(A*(B+C))
1756     assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
1757     (void)NumAddedValues;
1758     if (Instruction *VI = dyn_cast<Instruction>(V))
1759       RedoInsts.insert(VI);
1760 
1761     // Create the multiply.
1762     Instruction *V2 = CreateMul(V, MaxOccVal, "reass.mul", I, I);
1763 
1764     // Rerun associate on the multiply in case the inner expression turned into
1765     // a multiply.  We want to make sure that we keep things in canonical form.
1766     RedoInsts.insert(V2);
1767 
1768     // If every add operand included the factor (e.g. "A*B + A*C"), then the
1769     // entire result expression is just the multiply "A*(B+C)".
1770     if (Ops.empty())
1771       return V2;
1772 
1773     // Otherwise, we had some input that didn't have the factor, such as
1774     // "A*B + A*C + D" -> "A*(B+C) + D".  Add the new multiply to the list of
1775     // things being added by this operation.
1776     Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
1777   }
1778 
1779   return nullptr;
1780 }
1781 
1782 /// Build up a vector of value/power pairs factoring a product.
1783 ///
1784 /// Given a series of multiplication operands, build a vector of factors and
1785 /// the powers each is raised to when forming the final product. Sort them in
1786 /// the order of descending power.
1787 ///
1788 ///      (x*x)          -> [(x, 2)]
1789 ///     ((x*x)*x)       -> [(x, 3)]
1790 ///   ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
1791 ///
1792 /// \returns Whether any factors have a power greater than one.
1793 static bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
1794                                    SmallVectorImpl<Factor> &Factors) {
1795   // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
1796   // Compute the sum of powers of simplifiable factors.
1797   unsigned FactorPowerSum = 0;
1798   for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
1799     Value *Op = Ops[Idx-1].Op;
1800 
1801     // Count the number of occurrences of this value.
1802     unsigned Count = 1;
1803     for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
1804       ++Count;
1805     // Track for simplification all factors which occur 2 or more times.
1806     if (Count > 1)
1807       FactorPowerSum += Count;
1808   }
1809 
1810   // We can only simplify factors if the sum of the powers of our simplifiable
1811   // factors is 4 or higher. When that is the case, we will *always* have
1812   // a simplification. This is an important invariant to prevent cyclicly
1813   // trying to simplify already minimal formations.
1814   if (FactorPowerSum < 4)
1815     return false;
1816 
1817   // Now gather the simplifiable factors, removing them from Ops.
1818   FactorPowerSum = 0;
1819   for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
1820     Value *Op = Ops[Idx-1].Op;
1821 
1822     // Count the number of occurrences of this value.
1823     unsigned Count = 1;
1824     for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
1825       ++Count;
1826     if (Count == 1)
1827       continue;
1828     // Move an even number of occurrences to Factors.
1829     Count &= ~1U;
1830     Idx -= Count;
1831     FactorPowerSum += Count;
1832     Factors.push_back(Factor(Op, Count));
1833     Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
1834   }
1835 
1836   // None of the adjustments above should have reduced the sum of factor powers
1837   // below our mininum of '4'.
1838   assert(FactorPowerSum >= 4);
1839 
1840   llvm::stable_sort(Factors, [](const Factor &LHS, const Factor &RHS) {
1841     return LHS.Power > RHS.Power;
1842   });
1843   return true;
1844 }
1845 
1846 /// Build a tree of multiplies, computing the product of Ops.
1847 static Value *buildMultiplyTree(IRBuilderBase &Builder,
1848                                 SmallVectorImpl<Value*> &Ops) {
1849   if (Ops.size() == 1)
1850     return Ops.back();
1851 
1852   Value *LHS = Ops.pop_back_val();
1853   do {
1854     if (LHS->getType()->isIntOrIntVectorTy())
1855       LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
1856     else
1857       LHS = Builder.CreateFMul(LHS, Ops.pop_back_val());
1858   } while (!Ops.empty());
1859 
1860   return LHS;
1861 }
1862 
1863 /// Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
1864 ///
1865 /// Given a vector of values raised to various powers, where no two values are
1866 /// equal and the powers are sorted in decreasing order, compute the minimal
1867 /// DAG of multiplies to compute the final product, and return that product
1868 /// value.
1869 Value *
1870 ReassociatePass::buildMinimalMultiplyDAG(IRBuilderBase &Builder,
1871                                          SmallVectorImpl<Factor> &Factors) {
1872   assert(Factors[0].Power);
1873   SmallVector<Value *, 4> OuterProduct;
1874   for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
1875        Idx < Size && Factors[Idx].Power > 0; ++Idx) {
1876     if (Factors[Idx].Power != Factors[LastIdx].Power) {
1877       LastIdx = Idx;
1878       continue;
1879     }
1880 
1881     // We want to multiply across all the factors with the same power so that
1882     // we can raise them to that power as a single entity. Build a mini tree
1883     // for that.
1884     SmallVector<Value *, 4> InnerProduct;
1885     InnerProduct.push_back(Factors[LastIdx].Base);
1886     do {
1887       InnerProduct.push_back(Factors[Idx].Base);
1888       ++Idx;
1889     } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
1890 
1891     // Reset the base value of the first factor to the new expression tree.
1892     // We'll remove all the factors with the same power in a second pass.
1893     Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
1894     if (Instruction *MI = dyn_cast<Instruction>(M))
1895       RedoInsts.insert(MI);
1896 
1897     LastIdx = Idx;
1898   }
1899   // Unique factors with equal powers -- we've folded them into the first one's
1900   // base.
1901   Factors.erase(std::unique(Factors.begin(), Factors.end(),
1902                             [](const Factor &LHS, const Factor &RHS) {
1903                               return LHS.Power == RHS.Power;
1904                             }),
1905                 Factors.end());
1906 
1907   // Iteratively collect the base of each factor with an add power into the
1908   // outer product, and halve each power in preparation for squaring the
1909   // expression.
1910   for (Factor &F : Factors) {
1911     if (F.Power & 1)
1912       OuterProduct.push_back(F.Base);
1913     F.Power >>= 1;
1914   }
1915   if (Factors[0].Power) {
1916     Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
1917     OuterProduct.push_back(SquareRoot);
1918     OuterProduct.push_back(SquareRoot);
1919   }
1920   if (OuterProduct.size() == 1)
1921     return OuterProduct.front();
1922 
1923   Value *V = buildMultiplyTree(Builder, OuterProduct);
1924   return V;
1925 }
1926 
1927 Value *ReassociatePass::OptimizeMul(BinaryOperator *I,
1928                                     SmallVectorImpl<ValueEntry> &Ops) {
1929   // We can only optimize the multiplies when there is a chain of more than
1930   // three, such that a balanced tree might require fewer total multiplies.
1931   if (Ops.size() < 4)
1932     return nullptr;
1933 
1934   // Try to turn linear trees of multiplies without other uses of the
1935   // intermediate stages into minimal multiply DAGs with perfect sub-expression
1936   // re-use.
1937   SmallVector<Factor, 4> Factors;
1938   if (!collectMultiplyFactors(Ops, Factors))
1939     return nullptr; // All distinct factors, so nothing left for us to do.
1940 
1941   IRBuilder<> Builder(I);
1942   // The reassociate transformation for FP operations is performed only
1943   // if unsafe algebra is permitted by FastMathFlags. Propagate those flags
1944   // to the newly generated operations.
1945   if (auto FPI = dyn_cast<FPMathOperator>(I))
1946     Builder.setFastMathFlags(FPI->getFastMathFlags());
1947 
1948   Value *V = buildMinimalMultiplyDAG(Builder, Factors);
1949   if (Ops.empty())
1950     return V;
1951 
1952   ValueEntry NewEntry = ValueEntry(getRank(V), V);
1953   Ops.insert(llvm::lower_bound(Ops, NewEntry), NewEntry);
1954   return nullptr;
1955 }
1956 
1957 Value *ReassociatePass::OptimizeExpression(BinaryOperator *I,
1958                                            SmallVectorImpl<ValueEntry> &Ops) {
1959   // Now that we have the linearized expression tree, try to optimize it.
1960   // Start by folding any constants that we found.
1961   const DataLayout &DL = I->getModule()->getDataLayout();
1962   Constant *Cst = nullptr;
1963   unsigned Opcode = I->getOpcode();
1964   while (!Ops.empty()) {
1965     if (auto *C = dyn_cast<Constant>(Ops.back().Op)) {
1966       if (!Cst) {
1967         Ops.pop_back();
1968         Cst = C;
1969         continue;
1970       }
1971       if (Constant *Res = ConstantFoldBinaryOpOperands(Opcode, C, Cst, DL)) {
1972         Ops.pop_back();
1973         Cst = Res;
1974         continue;
1975       }
1976     }
1977     break;
1978   }
1979   // If there was nothing but constants then we are done.
1980   if (Ops.empty())
1981     return Cst;
1982 
1983   // Put the combined constant back at the end of the operand list, except if
1984   // there is no point.  For example, an add of 0 gets dropped here, while a
1985   // multiplication by zero turns the whole expression into zero.
1986   if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) {
1987     if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType()))
1988       return Cst;
1989     Ops.push_back(ValueEntry(0, Cst));
1990   }
1991 
1992   if (Ops.size() == 1) return Ops[0].Op;
1993 
1994   // Handle destructive annihilation due to identities between elements in the
1995   // argument list here.
1996   unsigned NumOps = Ops.size();
1997   switch (Opcode) {
1998   default: break;
1999   case Instruction::And:
2000   case Instruction::Or:
2001     if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
2002       return Result;
2003     break;
2004 
2005   case Instruction::Xor:
2006     if (Value *Result = OptimizeXor(I, Ops))
2007       return Result;
2008     break;
2009 
2010   case Instruction::Add:
2011   case Instruction::FAdd:
2012     if (Value *Result = OptimizeAdd(I, Ops))
2013       return Result;
2014     break;
2015 
2016   case Instruction::Mul:
2017   case Instruction::FMul:
2018     if (Value *Result = OptimizeMul(I, Ops))
2019       return Result;
2020     break;
2021   }
2022 
2023   if (Ops.size() != NumOps)
2024     return OptimizeExpression(I, Ops);
2025   return nullptr;
2026 }
2027 
2028 // Remove dead instructions and if any operands are trivially dead add them to
2029 // Insts so they will be removed as well.
2030 void ReassociatePass::RecursivelyEraseDeadInsts(Instruction *I,
2031                                                 OrderedSet &Insts) {
2032   assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
2033   SmallVector<Value *, 4> Ops(I->operands());
2034   ValueRankMap.erase(I);
2035   Insts.remove(I);
2036   RedoInsts.remove(I);
2037   llvm::salvageDebugInfo(*I);
2038   I->eraseFromParent();
2039   for (auto *Op : Ops)
2040     if (Instruction *OpInst = dyn_cast<Instruction>(Op))
2041       if (OpInst->use_empty())
2042         Insts.insert(OpInst);
2043 }
2044 
2045 /// Zap the given instruction, adding interesting operands to the work list.
2046 void ReassociatePass::EraseInst(Instruction *I) {
2047   assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
2048   LLVM_DEBUG(dbgs() << "Erasing dead inst: "; I->dump());
2049 
2050   SmallVector<Value *, 8> Ops(I->operands());
2051   // Erase the dead instruction.
2052   ValueRankMap.erase(I);
2053   RedoInsts.remove(I);
2054   llvm::salvageDebugInfo(*I);
2055   I->eraseFromParent();
2056   // Optimize its operands.
2057   SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes.
2058   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2059     if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
2060       // If this is a node in an expression tree, climb to the expression root
2061       // and add that since that's where optimization actually happens.
2062       unsigned Opcode = Op->getOpcode();
2063       while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode &&
2064              Visited.insert(Op).second)
2065         Op = Op->user_back();
2066 
2067       // The instruction we're going to push may be coming from a
2068       // dead block, and Reassociate skips the processing of unreachable
2069       // blocks because it's a waste of time and also because it can
2070       // lead to infinite loop due to LLVM's non-standard definition
2071       // of dominance.
2072       if (ValueRankMap.contains(Op))
2073         RedoInsts.insert(Op);
2074     }
2075 
2076   MadeChange = true;
2077 }
2078 
2079 /// Recursively analyze an expression to build a list of instructions that have
2080 /// negative floating-point constant operands. The caller can then transform
2081 /// the list to create positive constants for better reassociation and CSE.
2082 static void getNegatibleInsts(Value *V,
2083                               SmallVectorImpl<Instruction *> &Candidates) {
2084   // Handle only one-use instructions. Combining negations does not justify
2085   // replicating instructions.
2086   Instruction *I;
2087   if (!match(V, m_OneUse(m_Instruction(I))))
2088     return;
2089 
2090   // Handle expressions of multiplications and divisions.
2091   // TODO: This could look through floating-point casts.
2092   const APFloat *C;
2093   switch (I->getOpcode()) {
2094     case Instruction::FMul:
2095       // Not expecting non-canonical code here. Bail out and wait.
2096       if (match(I->getOperand(0), m_Constant()))
2097         break;
2098 
2099       if (match(I->getOperand(1), m_APFloat(C)) && C->isNegative()) {
2100         Candidates.push_back(I);
2101         LLVM_DEBUG(dbgs() << "FMul with negative constant: " << *I << '\n');
2102       }
2103       getNegatibleInsts(I->getOperand(0), Candidates);
2104       getNegatibleInsts(I->getOperand(1), Candidates);
2105       break;
2106     case Instruction::FDiv:
2107       // Not expecting non-canonical code here. Bail out and wait.
2108       if (match(I->getOperand(0), m_Constant()) &&
2109           match(I->getOperand(1), m_Constant()))
2110         break;
2111 
2112       if ((match(I->getOperand(0), m_APFloat(C)) && C->isNegative()) ||
2113           (match(I->getOperand(1), m_APFloat(C)) && C->isNegative())) {
2114         Candidates.push_back(I);
2115         LLVM_DEBUG(dbgs() << "FDiv with negative constant: " << *I << '\n');
2116       }
2117       getNegatibleInsts(I->getOperand(0), Candidates);
2118       getNegatibleInsts(I->getOperand(1), Candidates);
2119       break;
2120     default:
2121       break;
2122   }
2123 }
2124 
2125 /// Given an fadd/fsub with an operand that is a one-use instruction
2126 /// (the fadd/fsub), try to change negative floating-point constants into
2127 /// positive constants to increase potential for reassociation and CSE.
2128 Instruction *ReassociatePass::canonicalizeNegFPConstantsForOp(Instruction *I,
2129                                                               Instruction *Op,
2130                                                               Value *OtherOp) {
2131   assert((I->getOpcode() == Instruction::FAdd ||
2132           I->getOpcode() == Instruction::FSub) && "Expected fadd/fsub");
2133 
2134   // Collect instructions with negative FP constants from the subtree that ends
2135   // in Op.
2136   SmallVector<Instruction *, 4> Candidates;
2137   getNegatibleInsts(Op, Candidates);
2138   if (Candidates.empty())
2139     return nullptr;
2140 
2141   // Don't canonicalize x + (-Constant * y) -> x - (Constant * y), if the
2142   // resulting subtract will be broken up later.  This can get us into an
2143   // infinite loop during reassociation.
2144   bool IsFSub = I->getOpcode() == Instruction::FSub;
2145   bool NeedsSubtract = !IsFSub && Candidates.size() % 2 == 1;
2146   if (NeedsSubtract && ShouldBreakUpSubtract(I))
2147     return nullptr;
2148 
2149   for (Instruction *Negatible : Candidates) {
2150     const APFloat *C;
2151     if (match(Negatible->getOperand(0), m_APFloat(C))) {
2152       assert(!match(Negatible->getOperand(1), m_Constant()) &&
2153              "Expecting only 1 constant operand");
2154       assert(C->isNegative() && "Expected negative FP constant");
2155       Negatible->setOperand(0, ConstantFP::get(Negatible->getType(), abs(*C)));
2156       MadeChange = true;
2157     }
2158     if (match(Negatible->getOperand(1), m_APFloat(C))) {
2159       assert(!match(Negatible->getOperand(0), m_Constant()) &&
2160              "Expecting only 1 constant operand");
2161       assert(C->isNegative() && "Expected negative FP constant");
2162       Negatible->setOperand(1, ConstantFP::get(Negatible->getType(), abs(*C)));
2163       MadeChange = true;
2164     }
2165   }
2166   assert(MadeChange == true && "Negative constant candidate was not changed");
2167 
2168   // Negations cancelled out.
2169   if (Candidates.size() % 2 == 0)
2170     return I;
2171 
2172   // Negate the final operand in the expression by flipping the opcode of this
2173   // fadd/fsub.
2174   assert(Candidates.size() % 2 == 1 && "Expected odd number");
2175   IRBuilder<> Builder(I);
2176   Value *NewInst = IsFSub ? Builder.CreateFAddFMF(OtherOp, Op, I)
2177                           : Builder.CreateFSubFMF(OtherOp, Op, I);
2178   I->replaceAllUsesWith(NewInst);
2179   RedoInsts.insert(I);
2180   return dyn_cast<Instruction>(NewInst);
2181 }
2182 
2183 /// Canonicalize expressions that contain a negative floating-point constant
2184 /// of the following form:
2185 ///   OtherOp + (subtree) -> OtherOp {+/-} (canonical subtree)
2186 ///   (subtree) + OtherOp -> OtherOp {+/-} (canonical subtree)
2187 ///   OtherOp - (subtree) -> OtherOp {+/-} (canonical subtree)
2188 ///
2189 /// The fadd/fsub opcode may be switched to allow folding a negation into the
2190 /// input instruction.
2191 Instruction *ReassociatePass::canonicalizeNegFPConstants(Instruction *I) {
2192   LLVM_DEBUG(dbgs() << "Combine negations for: " << *I << '\n');
2193   Value *X;
2194   Instruction *Op;
2195   if (match(I, m_FAdd(m_Value(X), m_OneUse(m_Instruction(Op)))))
2196     if (Instruction *R = canonicalizeNegFPConstantsForOp(I, Op, X))
2197       I = R;
2198   if (match(I, m_FAdd(m_OneUse(m_Instruction(Op)), m_Value(X))))
2199     if (Instruction *R = canonicalizeNegFPConstantsForOp(I, Op, X))
2200       I = R;
2201   if (match(I, m_FSub(m_Value(X), m_OneUse(m_Instruction(Op)))))
2202     if (Instruction *R = canonicalizeNegFPConstantsForOp(I, Op, X))
2203       I = R;
2204   return I;
2205 }
2206 
2207 /// Inspect and optimize the given instruction. Note that erasing
2208 /// instructions is not allowed.
2209 void ReassociatePass::OptimizeInst(Instruction *I) {
2210   // Only consider operations that we understand.
2211   if (!isa<UnaryOperator>(I) && !isa<BinaryOperator>(I))
2212     return;
2213 
2214   if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1)))
2215     // If an operand of this shift is a reassociable multiply, or if the shift
2216     // is used by a reassociable multiply or add, turn into a multiply.
2217     if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
2218         (I->hasOneUse() &&
2219          (isReassociableOp(I->user_back(), Instruction::Mul) ||
2220           isReassociableOp(I->user_back(), Instruction::Add)))) {
2221       Instruction *NI = ConvertShiftToMul(I);
2222       RedoInsts.insert(I);
2223       MadeChange = true;
2224       I = NI;
2225     }
2226 
2227   // Commute binary operators, to canonicalize the order of their operands.
2228   // This can potentially expose more CSE opportunities, and makes writing other
2229   // transformations simpler.
2230   if (I->isCommutative())
2231     canonicalizeOperands(I);
2232 
2233   // Canonicalize negative constants out of expressions.
2234   if (Instruction *Res = canonicalizeNegFPConstants(I))
2235     I = Res;
2236 
2237   // Don't optimize floating-point instructions unless they have the
2238   // appropriate FastMathFlags for reassociation enabled.
2239   if (isa<FPMathOperator>(I) && !hasFPAssociativeFlags(I))
2240     return;
2241 
2242   // Do not reassociate boolean (i1) expressions.  We want to preserve the
2243   // original order of evaluation for short-circuited comparisons that
2244   // SimplifyCFG has folded to AND/OR expressions.  If the expression
2245   // is not further optimized, it is likely to be transformed back to a
2246   // short-circuited form for code gen, and the source order may have been
2247   // optimized for the most likely conditions.
2248   if (I->getType()->isIntegerTy(1))
2249     return;
2250 
2251   // If this is a bitwise or instruction of operands
2252   // with no common bits set, convert it to X+Y.
2253   if (I->getOpcode() == Instruction::Or &&
2254       shouldConvertOrWithNoCommonBitsToAdd(I) && !isLoadCombineCandidate(I) &&
2255       haveNoCommonBitsSet(I->getOperand(0), I->getOperand(1),
2256                           I->getModule()->getDataLayout(), /*AC=*/nullptr, I,
2257                           /*DT=*/nullptr)) {
2258     Instruction *NI = convertOrWithNoCommonBitsToAdd(I);
2259     RedoInsts.insert(I);
2260     MadeChange = true;
2261     I = NI;
2262   }
2263 
2264   // If this is a subtract instruction which is not already in negate form,
2265   // see if we can convert it to X+-Y.
2266   if (I->getOpcode() == Instruction::Sub) {
2267     if (ShouldBreakUpSubtract(I)) {
2268       Instruction *NI = BreakUpSubtract(I, RedoInsts);
2269       RedoInsts.insert(I);
2270       MadeChange = true;
2271       I = NI;
2272     } else if (match(I, m_Neg(m_Value()))) {
2273       // Otherwise, this is a negation.  See if the operand is a multiply tree
2274       // and if this is not an inner node of a multiply tree.
2275       if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
2276           (!I->hasOneUse() ||
2277            !isReassociableOp(I->user_back(), Instruction::Mul))) {
2278         Instruction *NI = LowerNegateToMultiply(I);
2279         // If the negate was simplified, revisit the users to see if we can
2280         // reassociate further.
2281         for (User *U : NI->users()) {
2282           if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
2283             RedoInsts.insert(Tmp);
2284         }
2285         RedoInsts.insert(I);
2286         MadeChange = true;
2287         I = NI;
2288       }
2289     }
2290   } else if (I->getOpcode() == Instruction::FNeg ||
2291              I->getOpcode() == Instruction::FSub) {
2292     if (ShouldBreakUpSubtract(I)) {
2293       Instruction *NI = BreakUpSubtract(I, RedoInsts);
2294       RedoInsts.insert(I);
2295       MadeChange = true;
2296       I = NI;
2297     } else if (match(I, m_FNeg(m_Value()))) {
2298       // Otherwise, this is a negation.  See if the operand is a multiply tree
2299       // and if this is not an inner node of a multiply tree.
2300       Value *Op = isa<BinaryOperator>(I) ? I->getOperand(1) :
2301                                            I->getOperand(0);
2302       if (isReassociableOp(Op, Instruction::FMul) &&
2303           (!I->hasOneUse() ||
2304            !isReassociableOp(I->user_back(), Instruction::FMul))) {
2305         // If the negate was simplified, revisit the users to see if we can
2306         // reassociate further.
2307         Instruction *NI = LowerNegateToMultiply(I);
2308         for (User *U : NI->users()) {
2309           if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
2310             RedoInsts.insert(Tmp);
2311         }
2312         RedoInsts.insert(I);
2313         MadeChange = true;
2314         I = NI;
2315       }
2316     }
2317   }
2318 
2319   // If this instruction is an associative binary operator, process it.
2320   if (!I->isAssociative()) return;
2321   BinaryOperator *BO = cast<BinaryOperator>(I);
2322 
2323   // If this is an interior node of a reassociable tree, ignore it until we
2324   // get to the root of the tree, to avoid N^2 analysis.
2325   unsigned Opcode = BO->getOpcode();
2326   if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode) {
2327     // During the initial run we will get to the root of the tree.
2328     // But if we get here while we are redoing instructions, there is no
2329     // guarantee that the root will be visited. So Redo later
2330     if (BO->user_back() != BO &&
2331         BO->getParent() == BO->user_back()->getParent())
2332       RedoInsts.insert(BO->user_back());
2333     return;
2334   }
2335 
2336   // If this is an add tree that is used by a sub instruction, ignore it
2337   // until we process the subtract.
2338   if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
2339       cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub)
2340     return;
2341   if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd &&
2342       cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub)
2343     return;
2344 
2345   ReassociateExpression(BO);
2346 }
2347 
2348 void ReassociatePass::ReassociateExpression(BinaryOperator *I) {
2349   // First, walk the expression tree, linearizing the tree, collecting the
2350   // operand information.
2351   SmallVector<RepeatedValue, 8> Tree;
2352   MadeChange |= LinearizeExprTree(I, Tree, RedoInsts);
2353   SmallVector<ValueEntry, 8> Ops;
2354   Ops.reserve(Tree.size());
2355   for (const RepeatedValue &E : Tree)
2356     Ops.append(E.second.getZExtValue(), ValueEntry(getRank(E.first), E.first));
2357 
2358   LLVM_DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
2359 
2360   // Now that we have linearized the tree to a list and have gathered all of
2361   // the operands and their ranks, sort the operands by their rank.  Use a
2362   // stable_sort so that values with equal ranks will have their relative
2363   // positions maintained (and so the compiler is deterministic).  Note that
2364   // this sorts so that the highest ranking values end up at the beginning of
2365   // the vector.
2366   llvm::stable_sort(Ops);
2367 
2368   // Now that we have the expression tree in a convenient
2369   // sorted form, optimize it globally if possible.
2370   if (Value *V = OptimizeExpression(I, Ops)) {
2371     if (V == I)
2372       // Self-referential expression in unreachable code.
2373       return;
2374     // This expression tree simplified to something that isn't a tree,
2375     // eliminate it.
2376     LLVM_DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
2377     I->replaceAllUsesWith(V);
2378     if (Instruction *VI = dyn_cast<Instruction>(V))
2379       if (I->getDebugLoc())
2380         VI->setDebugLoc(I->getDebugLoc());
2381     RedoInsts.insert(I);
2382     ++NumAnnihil;
2383     return;
2384   }
2385 
2386   // We want to sink immediates as deeply as possible except in the case where
2387   // this is a multiply tree used only by an add, and the immediate is a -1.
2388   // In this case we reassociate to put the negation on the outside so that we
2389   // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
2390   if (I->hasOneUse()) {
2391     if (I->getOpcode() == Instruction::Mul &&
2392         cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add &&
2393         isa<ConstantInt>(Ops.back().Op) &&
2394         cast<ConstantInt>(Ops.back().Op)->isMinusOne()) {
2395       ValueEntry Tmp = Ops.pop_back_val();
2396       Ops.insert(Ops.begin(), Tmp);
2397     } else if (I->getOpcode() == Instruction::FMul &&
2398                cast<Instruction>(I->user_back())->getOpcode() ==
2399                    Instruction::FAdd &&
2400                isa<ConstantFP>(Ops.back().Op) &&
2401                cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) {
2402       ValueEntry Tmp = Ops.pop_back_val();
2403       Ops.insert(Ops.begin(), Tmp);
2404     }
2405   }
2406 
2407   LLVM_DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
2408 
2409   if (Ops.size() == 1) {
2410     if (Ops[0].Op == I)
2411       // Self-referential expression in unreachable code.
2412       return;
2413 
2414     // This expression tree simplified to something that isn't a tree,
2415     // eliminate it.
2416     I->replaceAllUsesWith(Ops[0].Op);
2417     if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
2418       OI->setDebugLoc(I->getDebugLoc());
2419     RedoInsts.insert(I);
2420     return;
2421   }
2422 
2423   if (Ops.size() > 2 && Ops.size() <= GlobalReassociateLimit) {
2424     // Find the pair with the highest count in the pairmap and move it to the
2425     // back of the list so that it can later be CSE'd.
2426     // example:
2427     //   a*b*c*d*e
2428     // if c*e is the most "popular" pair, we can express this as
2429     //   (((c*e)*d)*b)*a
2430     unsigned Max = 1;
2431     unsigned BestRank = 0;
2432     std::pair<unsigned, unsigned> BestPair;
2433     unsigned Idx = I->getOpcode() - Instruction::BinaryOpsBegin;
2434     unsigned LimitIdx = 0;
2435     // With the CSE-driven heuristic, we are about to slap two values at the
2436     // beginning of the expression whereas they could live very late in the CFG.
2437     // When using the CSE-local heuristic we avoid creating dependences from
2438     // completely unrelated part of the CFG by limiting the expression
2439     // reordering on the values that live in the first seen basic block.
2440     // The main idea is that we want to avoid forming expressions that would
2441     // become loop dependent.
2442     if (UseCSELocalOpt) {
2443       const BasicBlock *FirstSeenBB = nullptr;
2444       int StartIdx = Ops.size() - 1;
2445       // Skip the first value of the expression since we need at least two
2446       // values to materialize an expression. I.e., even if this value is
2447       // anchored in a different basic block, the actual first sub expression
2448       // will be anchored on the second value.
2449       for (int i = StartIdx - 1; i != -1; --i) {
2450         const Value *Val = Ops[i].Op;
2451         const auto *CurrLeafInstr = dyn_cast<Instruction>(Val);
2452         const BasicBlock *SeenBB = nullptr;
2453         if (!CurrLeafInstr) {
2454           // The value is free of any CFG dependencies.
2455           // Do as if it lives in the entry block.
2456           //
2457           // We do this to make sure all the values falling on this path are
2458           // seen through the same anchor point. The rationale is these values
2459           // can be combined together to from a sub expression free of any CFG
2460           // dependencies so we want them to stay together.
2461           // We could be cleverer and postpone the anchor down to the first
2462           // anchored value, but that's likely complicated to get right.
2463           // E.g., we wouldn't want to do that if that means being stuck in a
2464           // loop.
2465           //
2466           // For instance, we wouldn't want to change:
2467           // res = arg1 op arg2 op arg3 op ... op loop_val1 op loop_val2 ...
2468           // into
2469           // res = loop_val1 op arg1 op arg2 op arg3 op ... op loop_val2 ...
2470           // Because all the sub expressions with arg2..N would be stuck between
2471           // two loop dependent values.
2472           SeenBB = &I->getParent()->getParent()->getEntryBlock();
2473         } else {
2474           SeenBB = CurrLeafInstr->getParent();
2475         }
2476 
2477         if (!FirstSeenBB) {
2478           FirstSeenBB = SeenBB;
2479           continue;
2480         }
2481         if (FirstSeenBB != SeenBB) {
2482           // ith value is in a different basic block.
2483           // Rewind the index once to point to the last value on the same basic
2484           // block.
2485           LimitIdx = i + 1;
2486           LLVM_DEBUG(dbgs() << "CSE reordering: Consider values between ["
2487                             << LimitIdx << ", " << StartIdx << "]\n");
2488           break;
2489         }
2490       }
2491     }
2492     for (unsigned i = Ops.size() - 1; i > LimitIdx; --i) {
2493       // We must use int type to go below zero when LimitIdx is 0.
2494       for (int j = i - 1; j >= (int)LimitIdx; --j) {
2495         unsigned Score = 0;
2496         Value *Op0 = Ops[i].Op;
2497         Value *Op1 = Ops[j].Op;
2498         if (std::less<Value *>()(Op1, Op0))
2499           std::swap(Op0, Op1);
2500         auto it = PairMap[Idx].find({Op0, Op1});
2501         if (it != PairMap[Idx].end()) {
2502           // Functions like BreakUpSubtract() can erase the Values we're using
2503           // as keys and create new Values after we built the PairMap. There's a
2504           // small chance that the new nodes can have the same address as
2505           // something already in the table. We shouldn't accumulate the stored
2506           // score in that case as it refers to the wrong Value.
2507           if (it->second.isValid())
2508             Score += it->second.Score;
2509         }
2510 
2511         unsigned MaxRank = std::max(Ops[i].Rank, Ops[j].Rank);
2512 
2513         // By construction, the operands are sorted in reverse order of their
2514         // topological order.
2515         // So we tend to form (sub) expressions with values that are close to
2516         // each other.
2517         //
2518         // Now to expose more CSE opportunities we want to expose the pair of
2519         // operands that occur the most (as statically computed in
2520         // BuildPairMap.) as the first sub-expression.
2521         //
2522         // If two pairs occur as many times, we pick the one with the
2523         // lowest rank, meaning the one with both operands appearing first in
2524         // the topological order.
2525         if (Score > Max || (Score == Max && MaxRank < BestRank)) {
2526           BestPair = {j, i};
2527           Max = Score;
2528           BestRank = MaxRank;
2529         }
2530       }
2531     }
2532     if (Max > 1) {
2533       auto Op0 = Ops[BestPair.first];
2534       auto Op1 = Ops[BestPair.second];
2535       Ops.erase(&Ops[BestPair.second]);
2536       Ops.erase(&Ops[BestPair.first]);
2537       Ops.push_back(Op0);
2538       Ops.push_back(Op1);
2539     }
2540   }
2541   LLVM_DEBUG(dbgs() << "RAOut after CSE reorder:\t"; PrintOps(I, Ops);
2542              dbgs() << '\n');
2543   // Now that we ordered and optimized the expressions, splat them back into
2544   // the expression tree, removing any unneeded nodes.
2545   RewriteExprTree(I, Ops);
2546 }
2547 
2548 void
2549 ReassociatePass::BuildPairMap(ReversePostOrderTraversal<Function *> &RPOT) {
2550   // Make a "pairmap" of how often each operand pair occurs.
2551   for (BasicBlock *BI : RPOT) {
2552     for (Instruction &I : *BI) {
2553       if (!I.isAssociative())
2554         continue;
2555 
2556       // Ignore nodes that aren't at the root of trees.
2557       if (I.hasOneUse() && I.user_back()->getOpcode() == I.getOpcode())
2558         continue;
2559 
2560       // Collect all operands in a single reassociable expression.
2561       // Since Reassociate has already been run once, we can assume things
2562       // are already canonical according to Reassociation's regime.
2563       SmallVector<Value *, 8> Worklist = { I.getOperand(0), I.getOperand(1) };
2564       SmallVector<Value *, 8> Ops;
2565       while (!Worklist.empty() && Ops.size() <= GlobalReassociateLimit) {
2566         Value *Op = Worklist.pop_back_val();
2567         Instruction *OpI = dyn_cast<Instruction>(Op);
2568         if (!OpI || OpI->getOpcode() != I.getOpcode() || !OpI->hasOneUse()) {
2569           Ops.push_back(Op);
2570           continue;
2571         }
2572         // Be paranoid about self-referencing expressions in unreachable code.
2573         if (OpI->getOperand(0) != OpI)
2574           Worklist.push_back(OpI->getOperand(0));
2575         if (OpI->getOperand(1) != OpI)
2576           Worklist.push_back(OpI->getOperand(1));
2577       }
2578       // Skip extremely long expressions.
2579       if (Ops.size() > GlobalReassociateLimit)
2580         continue;
2581 
2582       // Add all pairwise combinations of operands to the pair map.
2583       unsigned BinaryIdx = I.getOpcode() - Instruction::BinaryOpsBegin;
2584       SmallSet<std::pair<Value *, Value*>, 32> Visited;
2585       for (unsigned i = 0; i < Ops.size() - 1; ++i) {
2586         for (unsigned j = i + 1; j < Ops.size(); ++j) {
2587           // Canonicalize operand orderings.
2588           Value *Op0 = Ops[i];
2589           Value *Op1 = Ops[j];
2590           if (std::less<Value *>()(Op1, Op0))
2591             std::swap(Op0, Op1);
2592           if (!Visited.insert({Op0, Op1}).second)
2593             continue;
2594           auto res = PairMap[BinaryIdx].insert({{Op0, Op1}, {Op0, Op1, 1}});
2595           if (!res.second) {
2596             // If either key value has been erased then we've got the same
2597             // address by coincidence. That can't happen here because nothing is
2598             // erasing values but it can happen by the time we're querying the
2599             // map.
2600             assert(res.first->second.isValid() && "WeakVH invalidated");
2601             ++res.first->second.Score;
2602           }
2603         }
2604       }
2605     }
2606   }
2607 }
2608 
2609 PreservedAnalyses ReassociatePass::run(Function &F, FunctionAnalysisManager &) {
2610   // Get the functions basic blocks in Reverse Post Order. This order is used by
2611   // BuildRankMap to pre calculate ranks correctly. It also excludes dead basic
2612   // blocks (it has been seen that the analysis in this pass could hang when
2613   // analysing dead basic blocks).
2614   ReversePostOrderTraversal<Function *> RPOT(&F);
2615 
2616   // Calculate the rank map for F.
2617   BuildRankMap(F, RPOT);
2618 
2619   // Build the pair map before running reassociate.
2620   // Technically this would be more accurate if we did it after one round
2621   // of reassociation, but in practice it doesn't seem to help much on
2622   // real-world code, so don't waste the compile time running reassociate
2623   // twice.
2624   // If a user wants, they could expicitly run reassociate twice in their
2625   // pass pipeline for further potential gains.
2626   // It might also be possible to update the pair map during runtime, but the
2627   // overhead of that may be large if there's many reassociable chains.
2628   BuildPairMap(RPOT);
2629 
2630   MadeChange = false;
2631 
2632   // Traverse the same blocks that were analysed by BuildRankMap.
2633   for (BasicBlock *BI : RPOT) {
2634     assert(RankMap.count(&*BI) && "BB should be ranked.");
2635     // Optimize every instruction in the basic block.
2636     for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE;)
2637       if (isInstructionTriviallyDead(&*II)) {
2638         EraseInst(&*II++);
2639       } else {
2640         OptimizeInst(&*II);
2641         assert(II->getParent() == &*BI && "Moved to a different block!");
2642         ++II;
2643       }
2644 
2645     // Make a copy of all the instructions to be redone so we can remove dead
2646     // instructions.
2647     OrderedSet ToRedo(RedoInsts);
2648     // Iterate over all instructions to be reevaluated and remove trivially dead
2649     // instructions. If any operand of the trivially dead instruction becomes
2650     // dead mark it for deletion as well. Continue this process until all
2651     // trivially dead instructions have been removed.
2652     while (!ToRedo.empty()) {
2653       Instruction *I = ToRedo.pop_back_val();
2654       if (isInstructionTriviallyDead(I)) {
2655         RecursivelyEraseDeadInsts(I, ToRedo);
2656         MadeChange = true;
2657       }
2658     }
2659 
2660     // Now that we have removed dead instructions, we can reoptimize the
2661     // remaining instructions.
2662     while (!RedoInsts.empty()) {
2663       Instruction *I = RedoInsts.front();
2664       RedoInsts.erase(RedoInsts.begin());
2665       if (isInstructionTriviallyDead(I))
2666         EraseInst(I);
2667       else
2668         OptimizeInst(I);
2669     }
2670   }
2671 
2672   // We are done with the rank map and pair map.
2673   RankMap.clear();
2674   ValueRankMap.clear();
2675   for (auto &Entry : PairMap)
2676     Entry.clear();
2677 
2678   if (MadeChange) {
2679     PreservedAnalyses PA;
2680     PA.preserveSet<CFGAnalyses>();
2681     return PA;
2682   }
2683 
2684   return PreservedAnalyses::all();
2685 }
2686 
2687 namespace {
2688 
2689   class ReassociateLegacyPass : public FunctionPass {
2690     ReassociatePass Impl;
2691 
2692   public:
2693     static char ID; // Pass identification, replacement for typeid
2694 
2695     ReassociateLegacyPass() : FunctionPass(ID) {
2696       initializeReassociateLegacyPassPass(*PassRegistry::getPassRegistry());
2697     }
2698 
2699     bool runOnFunction(Function &F) override {
2700       if (skipFunction(F))
2701         return false;
2702 
2703       FunctionAnalysisManager DummyFAM;
2704       auto PA = Impl.run(F, DummyFAM);
2705       return !PA.areAllPreserved();
2706     }
2707 
2708     void getAnalysisUsage(AnalysisUsage &AU) const override {
2709       AU.setPreservesCFG();
2710       AU.addPreserved<AAResultsWrapperPass>();
2711       AU.addPreserved<BasicAAWrapperPass>();
2712       AU.addPreserved<GlobalsAAWrapperPass>();
2713     }
2714   };
2715 
2716 } // end anonymous namespace
2717 
2718 char ReassociateLegacyPass::ID = 0;
2719 
2720 INITIALIZE_PASS(ReassociateLegacyPass, "reassociate",
2721                 "Reassociate expressions", false, false)
2722 
2723 // Public interface to the Reassociate pass
2724 FunctionPass *llvm::createReassociatePass() {
2725   return new ReassociateLegacyPass();
2726 }
2727