1 //===- Reassociate.cpp - Reassociate binary expressions -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass reassociates commutative expressions in an order that is designed
10 // to promote better constant propagation, GCSE, LICM, PRE, etc.
11 //
12 // For example: 4 + (x + 5) -> x + (4 + 5)
13 //
14 // In the implementation of this algorithm, constants are assigned rank = 0,
15 // function arguments are rank = 1, and other values are assigned ranks
16 // corresponding to the reverse post order traversal of current function
17 // (starting at 2), which effectively gives values in deep loops higher rank
18 // than values not in loops.
19 //
20 //===----------------------------------------------------------------------===//
21 
22 #include "llvm/Transforms/Scalar/Reassociate.h"
23 #include "llvm/ADT/APFloat.h"
24 #include "llvm/ADT/APInt.h"
25 #include "llvm/ADT/DenseMap.h"
26 #include "llvm/ADT/PostOrderIterator.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/SmallSet.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/ADT/Statistic.h"
31 #include "llvm/Analysis/BasicAliasAnalysis.h"
32 #include "llvm/Analysis/ConstantFolding.h"
33 #include "llvm/Analysis/GlobalsModRef.h"
34 #include "llvm/Analysis/ValueTracking.h"
35 #include "llvm/IR/Argument.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/CFG.h"
38 #include "llvm/IR/Constant.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/IRBuilder.h"
42 #include "llvm/IR/InstrTypes.h"
43 #include "llvm/IR/Instruction.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/Operator.h"
46 #include "llvm/IR/PassManager.h"
47 #include "llvm/IR/PatternMatch.h"
48 #include "llvm/IR/Type.h"
49 #include "llvm/IR/User.h"
50 #include "llvm/IR/Value.h"
51 #include "llvm/IR/ValueHandle.h"
52 #include "llvm/InitializePasses.h"
53 #include "llvm/Pass.h"
54 #include "llvm/Support/Casting.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include "llvm/Transforms/Scalar.h"
58 #include "llvm/Transforms/Utils/Local.h"
59 #include <algorithm>
60 #include <cassert>
61 #include <utility>
62 
63 using namespace llvm;
64 using namespace reassociate;
65 using namespace PatternMatch;
66 
67 #define DEBUG_TYPE "reassociate"
68 
69 STATISTIC(NumChanged, "Number of insts reassociated");
70 STATISTIC(NumAnnihil, "Number of expr tree annihilated");
71 STATISTIC(NumFactor , "Number of multiplies factored");
72 
73 #ifndef NDEBUG
74 /// Print out the expression identified in the Ops list.
75 static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
76   Module *M = I->getModule();
77   dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
78        << *Ops[0].Op->getType() << '\t';
79   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
80     dbgs() << "[ ";
81     Ops[i].Op->printAsOperand(dbgs(), false, M);
82     dbgs() << ", #" << Ops[i].Rank << "] ";
83   }
84 }
85 #endif
86 
87 /// Utility class representing a non-constant Xor-operand. We classify
88 /// non-constant Xor-Operands into two categories:
89 ///  C1) The operand is in the form "X & C", where C is a constant and C != ~0
90 ///  C2)
91 ///    C2.1) The operand is in the form of "X | C", where C is a non-zero
92 ///          constant.
93 ///    C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this
94 ///          operand as "E | 0"
95 class llvm::reassociate::XorOpnd {
96 public:
97   XorOpnd(Value *V);
98 
99   bool isInvalid() const { return SymbolicPart == nullptr; }
100   bool isOrExpr() const { return isOr; }
101   Value *getValue() const { return OrigVal; }
102   Value *getSymbolicPart() const { return SymbolicPart; }
103   unsigned getSymbolicRank() const { return SymbolicRank; }
104   const APInt &getConstPart() const { return ConstPart; }
105 
106   void Invalidate() { SymbolicPart = OrigVal = nullptr; }
107   void setSymbolicRank(unsigned R) { SymbolicRank = R; }
108 
109 private:
110   Value *OrigVal;
111   Value *SymbolicPart;
112   APInt ConstPart;
113   unsigned SymbolicRank;
114   bool isOr;
115 };
116 
117 XorOpnd::XorOpnd(Value *V) {
118   assert(!isa<ConstantInt>(V) && "No ConstantInt");
119   OrigVal = V;
120   Instruction *I = dyn_cast<Instruction>(V);
121   SymbolicRank = 0;
122 
123   if (I && (I->getOpcode() == Instruction::Or ||
124             I->getOpcode() == Instruction::And)) {
125     Value *V0 = I->getOperand(0);
126     Value *V1 = I->getOperand(1);
127     const APInt *C;
128     if (match(V0, m_APInt(C)))
129       std::swap(V0, V1);
130 
131     if (match(V1, m_APInt(C))) {
132       ConstPart = *C;
133       SymbolicPart = V0;
134       isOr = (I->getOpcode() == Instruction::Or);
135       return;
136     }
137   }
138 
139   // view the operand as "V | 0"
140   SymbolicPart = V;
141   ConstPart = APInt::getZero(V->getType()->getScalarSizeInBits());
142   isOr = true;
143 }
144 
145 /// Return true if I is an instruction with the FastMathFlags that are needed
146 /// for general reassociation set.  This is not the same as testing
147 /// Instruction::isAssociative() because it includes operations like fsub.
148 /// (This routine is only intended to be called for floating-point operations.)
149 static bool hasFPAssociativeFlags(Instruction *I) {
150   assert(I && isa<FPMathOperator>(I) && "Should only check FP ops");
151   return I->hasAllowReassoc() && I->hasNoSignedZeros();
152 }
153 
154 /// Return true if V is an instruction of the specified opcode and if it
155 /// only has one use.
156 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
157   auto *BO = dyn_cast<BinaryOperator>(V);
158   if (BO && BO->hasOneUse() && BO->getOpcode() == Opcode)
159     if (!isa<FPMathOperator>(BO) || hasFPAssociativeFlags(BO))
160       return BO;
161   return nullptr;
162 }
163 
164 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1,
165                                         unsigned Opcode2) {
166   auto *BO = dyn_cast<BinaryOperator>(V);
167   if (BO && BO->hasOneUse() &&
168       (BO->getOpcode() == Opcode1 || BO->getOpcode() == Opcode2))
169     if (!isa<FPMathOperator>(BO) || hasFPAssociativeFlags(BO))
170       return BO;
171   return nullptr;
172 }
173 
174 void ReassociatePass::BuildRankMap(Function &F,
175                                    ReversePostOrderTraversal<Function*> &RPOT) {
176   unsigned Rank = 2;
177 
178   // Assign distinct ranks to function arguments.
179   for (auto &Arg : F.args()) {
180     ValueRankMap[&Arg] = ++Rank;
181     LLVM_DEBUG(dbgs() << "Calculated Rank[" << Arg.getName() << "] = " << Rank
182                       << "\n");
183   }
184 
185   // Traverse basic blocks in ReversePostOrder.
186   for (BasicBlock *BB : RPOT) {
187     unsigned BBRank = RankMap[BB] = ++Rank << 16;
188 
189     // Walk the basic block, adding precomputed ranks for any instructions that
190     // we cannot move.  This ensures that the ranks for these instructions are
191     // all different in the block.
192     for (Instruction &I : *BB)
193       if (mayHaveNonDefUseDependency(I))
194         ValueRankMap[&I] = ++BBRank;
195   }
196 }
197 
198 unsigned ReassociatePass::getRank(Value *V) {
199   Instruction *I = dyn_cast<Instruction>(V);
200   if (!I) {
201     if (isa<Argument>(V)) return ValueRankMap[V];   // Function argument.
202     return 0;  // Otherwise it's a global or constant, rank 0.
203   }
204 
205   if (unsigned Rank = ValueRankMap[I])
206     return Rank;    // Rank already known?
207 
208   // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
209   // we can reassociate expressions for code motion!  Since we do not recurse
210   // for PHI nodes, we cannot have infinite recursion here, because there
211   // cannot be loops in the value graph that do not go through PHI nodes.
212   unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
213   for (unsigned i = 0, e = I->getNumOperands(); i != e && Rank != MaxRank; ++i)
214     Rank = std::max(Rank, getRank(I->getOperand(i)));
215 
216   // If this is a 'not' or 'neg' instruction, do not count it for rank. This
217   // assures us that X and ~X will have the same rank.
218   if (!match(I, m_Not(m_Value())) && !match(I, m_Neg(m_Value())) &&
219       !match(I, m_FNeg(m_Value())))
220     ++Rank;
221 
222   LLVM_DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " << Rank
223                     << "\n");
224 
225   return ValueRankMap[I] = Rank;
226 }
227 
228 // Canonicalize constants to RHS.  Otherwise, sort the operands by rank.
229 void ReassociatePass::canonicalizeOperands(Instruction *I) {
230   assert(isa<BinaryOperator>(I) && "Expected binary operator.");
231   assert(I->isCommutative() && "Expected commutative operator.");
232 
233   Value *LHS = I->getOperand(0);
234   Value *RHS = I->getOperand(1);
235   if (LHS == RHS || isa<Constant>(RHS))
236     return;
237   if (isa<Constant>(LHS) || getRank(RHS) < getRank(LHS))
238     cast<BinaryOperator>(I)->swapOperands();
239 }
240 
241 static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name,
242                                  Instruction *InsertBefore, Value *FlagsOp) {
243   if (S1->getType()->isIntOrIntVectorTy())
244     return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore);
245   else {
246     BinaryOperator *Res =
247         BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore);
248     Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
249     return Res;
250   }
251 }
252 
253 static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name,
254                                  Instruction *InsertBefore, Value *FlagsOp) {
255   if (S1->getType()->isIntOrIntVectorTy())
256     return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore);
257   else {
258     BinaryOperator *Res =
259       BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore);
260     Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
261     return Res;
262   }
263 }
264 
265 static Instruction *CreateNeg(Value *S1, const Twine &Name,
266                               Instruction *InsertBefore, Value *FlagsOp) {
267   if (S1->getType()->isIntOrIntVectorTy())
268     return BinaryOperator::CreateNeg(S1, Name, InsertBefore);
269 
270   if (auto *FMFSource = dyn_cast<Instruction>(FlagsOp))
271     return UnaryOperator::CreateFNegFMF(S1, FMFSource, Name, InsertBefore);
272 
273   return UnaryOperator::CreateFNeg(S1, Name, InsertBefore);
274 }
275 
276 /// Replace 0-X with X*-1.
277 static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
278   assert((isa<UnaryOperator>(Neg) || isa<BinaryOperator>(Neg)) &&
279          "Expected a Negate!");
280   // FIXME: It's not safe to lower a unary FNeg into a FMul by -1.0.
281   unsigned OpNo = isa<BinaryOperator>(Neg) ? 1 : 0;
282   Type *Ty = Neg->getType();
283   Constant *NegOne = Ty->isIntOrIntVectorTy() ?
284     ConstantInt::getAllOnesValue(Ty) : ConstantFP::get(Ty, -1.0);
285 
286   BinaryOperator *Res = CreateMul(Neg->getOperand(OpNo), NegOne, "", Neg, Neg);
287   Neg->setOperand(OpNo, Constant::getNullValue(Ty)); // Drop use of op.
288   Res->takeName(Neg);
289   Neg->replaceAllUsesWith(Res);
290   Res->setDebugLoc(Neg->getDebugLoc());
291   return Res;
292 }
293 
294 /// Returns k such that lambda(2^Bitwidth) = 2^k, where lambda is the Carmichael
295 /// function. This means that x^(2^k) === 1 mod 2^Bitwidth for
296 /// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
297 /// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
298 /// even x in Bitwidth-bit arithmetic.
299 static unsigned CarmichaelShift(unsigned Bitwidth) {
300   if (Bitwidth < 3)
301     return Bitwidth - 1;
302   return Bitwidth - 2;
303 }
304 
305 /// Add the extra weight 'RHS' to the existing weight 'LHS',
306 /// reducing the combined weight using any special properties of the operation.
307 /// The existing weight LHS represents the computation X op X op ... op X where
308 /// X occurs LHS times.  The combined weight represents  X op X op ... op X with
309 /// X occurring LHS + RHS times.  If op is "Xor" for example then the combined
310 /// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
311 /// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
312 static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
313   // If we were working with infinite precision arithmetic then the combined
314   // weight would be LHS + RHS.  But we are using finite precision arithmetic,
315   // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
316   // for nilpotent operations and addition, but not for idempotent operations
317   // and multiplication), so it is important to correctly reduce the combined
318   // weight back into range if wrapping would be wrong.
319 
320   // If RHS is zero then the weight didn't change.
321   if (RHS.isMinValue())
322     return;
323   // If LHS is zero then the combined weight is RHS.
324   if (LHS.isMinValue()) {
325     LHS = RHS;
326     return;
327   }
328   // From this point on we know that neither LHS nor RHS is zero.
329 
330   if (Instruction::isIdempotent(Opcode)) {
331     // Idempotent means X op X === X, so any non-zero weight is equivalent to a
332     // weight of 1.  Keeping weights at zero or one also means that wrapping is
333     // not a problem.
334     assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
335     return; // Return a weight of 1.
336   }
337   if (Instruction::isNilpotent(Opcode)) {
338     // Nilpotent means X op X === 0, so reduce weights modulo 2.
339     assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
340     LHS = 0; // 1 + 1 === 0 modulo 2.
341     return;
342   }
343   if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) {
344     // TODO: Reduce the weight by exploiting nsw/nuw?
345     LHS += RHS;
346     return;
347   }
348 
349   assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) &&
350          "Unknown associative operation!");
351   unsigned Bitwidth = LHS.getBitWidth();
352   // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
353   // can be replaced with W-CM.  That's because x^W=x^(W-CM) for every Bitwidth
354   // bit number x, since either x is odd in which case x^CM = 1, or x is even in
355   // which case both x^W and x^(W - CM) are zero.  By subtracting off multiples
356   // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
357   // which by a happy accident means that they can always be represented using
358   // Bitwidth bits.
359   // TODO: Reduce the weight by exploiting nsw/nuw?  (Could do much better than
360   // the Carmichael number).
361   if (Bitwidth > 3) {
362     /// CM - The value of Carmichael's lambda function.
363     APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth));
364     // Any weight W >= Threshold can be replaced with W - CM.
365     APInt Threshold = CM + Bitwidth;
366     assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!");
367     // For Bitwidth 4 or more the following sum does not overflow.
368     LHS += RHS;
369     while (LHS.uge(Threshold))
370       LHS -= CM;
371   } else {
372     // To avoid problems with overflow do everything the same as above but using
373     // a larger type.
374     unsigned CM = 1U << CarmichaelShift(Bitwidth);
375     unsigned Threshold = CM + Bitwidth;
376     assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold &&
377            "Weights not reduced!");
378     unsigned Total = LHS.getZExtValue() + RHS.getZExtValue();
379     while (Total >= Threshold)
380       Total -= CM;
381     LHS = Total;
382   }
383 }
384 
385 using RepeatedValue = std::pair<Value*, APInt>;
386 
387 /// Given an associative binary expression, return the leaf
388 /// nodes in Ops along with their weights (how many times the leaf occurs).  The
389 /// original expression is the same as
390 ///   (Ops[0].first op Ops[0].first op ... Ops[0].first)  <- Ops[0].second times
391 /// op
392 ///   (Ops[1].first op Ops[1].first op ... Ops[1].first)  <- Ops[1].second times
393 /// op
394 ///   ...
395 /// op
396 ///   (Ops[N].first op Ops[N].first op ... Ops[N].first)  <- Ops[N].second times
397 ///
398 /// Note that the values Ops[0].first, ..., Ops[N].first are all distinct.
399 ///
400 /// This routine may modify the function, in which case it returns 'true'.  The
401 /// changes it makes may well be destructive, changing the value computed by 'I'
402 /// to something completely different.  Thus if the routine returns 'true' then
403 /// you MUST either replace I with a new expression computed from the Ops array,
404 /// or use RewriteExprTree to put the values back in.
405 ///
406 /// A leaf node is either not a binary operation of the same kind as the root
407 /// node 'I' (i.e. is not a binary operator at all, or is, but with a different
408 /// opcode), or is the same kind of binary operator but has a use which either
409 /// does not belong to the expression, or does belong to the expression but is
410 /// a leaf node.  Every leaf node has at least one use that is a non-leaf node
411 /// of the expression, while for non-leaf nodes (except for the root 'I') every
412 /// use is a non-leaf node of the expression.
413 ///
414 /// For example:
415 ///           expression graph        node names
416 ///
417 ///                     +        |        I
418 ///                    / \       |
419 ///                   +   +      |      A,  B
420 ///                  / \ / \     |
421 ///                 *   +   *    |    C,  D,  E
422 ///                / \ / \ / \   |
423 ///                   +   *      |      F,  G
424 ///
425 /// The leaf nodes are C, E, F and G.  The Ops array will contain (maybe not in
426 /// that order) (C, 1), (E, 1), (F, 2), (G, 2).
427 ///
428 /// The expression is maximal: if some instruction is a binary operator of the
429 /// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
430 /// then the instruction also belongs to the expression, is not a leaf node of
431 /// it, and its operands also belong to the expression (but may be leaf nodes).
432 ///
433 /// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
434 /// order to ensure that every non-root node in the expression has *exactly one*
435 /// use by a non-leaf node of the expression.  This destruction means that the
436 /// caller MUST either replace 'I' with a new expression or use something like
437 /// RewriteExprTree to put the values back in if the routine indicates that it
438 /// made a change by returning 'true'.
439 ///
440 /// In the above example either the right operand of A or the left operand of B
441 /// will be replaced by undef.  If it is B's operand then this gives:
442 ///
443 ///                     +        |        I
444 ///                    / \       |
445 ///                   +   +      |      A,  B - operand of B replaced with undef
446 ///                  / \   \     |
447 ///                 *   +   *    |    C,  D,  E
448 ///                / \ / \ / \   |
449 ///                   +   *      |      F,  G
450 ///
451 /// Note that such undef operands can only be reached by passing through 'I'.
452 /// For example, if you visit operands recursively starting from a leaf node
453 /// then you will never see such an undef operand unless you get back to 'I',
454 /// which requires passing through a phi node.
455 ///
456 /// Note that this routine may also mutate binary operators of the wrong type
457 /// that have all uses inside the expression (i.e. only used by non-leaf nodes
458 /// of the expression) if it can turn them into binary operators of the right
459 /// type and thus make the expression bigger.
460 static bool LinearizeExprTree(Instruction *I,
461                               SmallVectorImpl<RepeatedValue> &Ops,
462                               ReassociatePass::OrderedSet &ToRedo) {
463   assert((isa<UnaryOperator>(I) || isa<BinaryOperator>(I)) &&
464          "Expected a UnaryOperator or BinaryOperator!");
465   LLVM_DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
466   unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
467   unsigned Opcode = I->getOpcode();
468   assert(I->isAssociative() && I->isCommutative() &&
469          "Expected an associative and commutative operation!");
470 
471   // Visit all operands of the expression, keeping track of their weight (the
472   // number of paths from the expression root to the operand, or if you like
473   // the number of times that operand occurs in the linearized expression).
474   // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
475   // while A has weight two.
476 
477   // Worklist of non-leaf nodes (their operands are in the expression too) along
478   // with their weights, representing a certain number of paths to the operator.
479   // If an operator occurs in the worklist multiple times then we found multiple
480   // ways to get to it.
481   SmallVector<std::pair<Instruction*, APInt>, 8> Worklist; // (Op, Weight)
482   Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
483   bool Changed = false;
484 
485   // Leaves of the expression are values that either aren't the right kind of
486   // operation (eg: a constant, or a multiply in an add tree), or are, but have
487   // some uses that are not inside the expression.  For example, in I = X + X,
488   // X = A + B, the value X has two uses (by I) that are in the expression.  If
489   // X has any other uses, for example in a return instruction, then we consider
490   // X to be a leaf, and won't analyze it further.  When we first visit a value,
491   // if it has more than one use then at first we conservatively consider it to
492   // be a leaf.  Later, as the expression is explored, we may discover some more
493   // uses of the value from inside the expression.  If all uses turn out to be
494   // from within the expression (and the value is a binary operator of the right
495   // kind) then the value is no longer considered to be a leaf, and its operands
496   // are explored.
497 
498   // Leaves - Keeps track of the set of putative leaves as well as the number of
499   // paths to each leaf seen so far.
500   using LeafMap = DenseMap<Value *, APInt>;
501   LeafMap Leaves; // Leaf -> Total weight so far.
502   SmallVector<Value *, 8> LeafOrder; // Ensure deterministic leaf output order.
503 
504 #ifndef NDEBUG
505   SmallPtrSet<Value *, 8> Visited; // For checking the iteration scheme.
506 #endif
507   while (!Worklist.empty()) {
508     std::pair<Instruction*, APInt> P = Worklist.pop_back_val();
509     I = P.first; // We examine the operands of this binary operator.
510 
511     for (unsigned OpIdx = 0; OpIdx < I->getNumOperands(); ++OpIdx) { // Visit operands.
512       Value *Op = I->getOperand(OpIdx);
513       APInt Weight = P.second; // Number of paths to this operand.
514       LLVM_DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
515       assert(!Op->use_empty() && "No uses, so how did we get to it?!");
516 
517       // If this is a binary operation of the right kind with only one use then
518       // add its operands to the expression.
519       if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
520         assert(Visited.insert(Op).second && "Not first visit!");
521         LLVM_DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
522         Worklist.push_back(std::make_pair(BO, Weight));
523         continue;
524       }
525 
526       // Appears to be a leaf.  Is the operand already in the set of leaves?
527       LeafMap::iterator It = Leaves.find(Op);
528       if (It == Leaves.end()) {
529         // Not in the leaf map.  Must be the first time we saw this operand.
530         assert(Visited.insert(Op).second && "Not first visit!");
531         if (!Op->hasOneUse()) {
532           // This value has uses not accounted for by the expression, so it is
533           // not safe to modify.  Mark it as being a leaf.
534           LLVM_DEBUG(dbgs()
535                      << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
536           LeafOrder.push_back(Op);
537           Leaves[Op] = Weight;
538           continue;
539         }
540         // No uses outside the expression, try morphing it.
541       } else {
542         // Already in the leaf map.
543         assert(It != Leaves.end() && Visited.count(Op) &&
544                "In leaf map but not visited!");
545 
546         // Update the number of paths to the leaf.
547         IncorporateWeight(It->second, Weight, Opcode);
548 
549 #if 0   // TODO: Re-enable once PR13021 is fixed.
550         // The leaf already has one use from inside the expression.  As we want
551         // exactly one such use, drop this new use of the leaf.
552         assert(!Op->hasOneUse() && "Only one use, but we got here twice!");
553         I->setOperand(OpIdx, UndefValue::get(I->getType()));
554         Changed = true;
555 
556         // If the leaf is a binary operation of the right kind and we now see
557         // that its multiple original uses were in fact all by nodes belonging
558         // to the expression, then no longer consider it to be a leaf and add
559         // its operands to the expression.
560         if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
561           LLVM_DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n");
562           Worklist.push_back(std::make_pair(BO, It->second));
563           Leaves.erase(It);
564           continue;
565         }
566 #endif
567 
568         // If we still have uses that are not accounted for by the expression
569         // then it is not safe to modify the value.
570         if (!Op->hasOneUse())
571           continue;
572 
573         // No uses outside the expression, try morphing it.
574         Weight = It->second;
575         Leaves.erase(It); // Since the value may be morphed below.
576       }
577 
578       // At this point we have a value which, first of all, is not a binary
579       // expression of the right kind, and secondly, is only used inside the
580       // expression.  This means that it can safely be modified.  See if we
581       // can usefully morph it into an expression of the right kind.
582       assert((!isa<Instruction>(Op) ||
583               cast<Instruction>(Op)->getOpcode() != Opcode
584               || (isa<FPMathOperator>(Op) &&
585                   !hasFPAssociativeFlags(cast<Instruction>(Op)))) &&
586              "Should have been handled above!");
587       assert(Op->hasOneUse() && "Has uses outside the expression tree!");
588 
589       // If this is a multiply expression, turn any internal negations into
590       // multiplies by -1 so they can be reassociated.  Add any users of the
591       // newly created multiplication by -1 to the redo list, so any
592       // reassociation opportunities that are exposed will be reassociated
593       // further.
594       Instruction *Neg;
595       if (((Opcode == Instruction::Mul && match(Op, m_Neg(m_Value()))) ||
596            (Opcode == Instruction::FMul && match(Op, m_FNeg(m_Value())))) &&
597            match(Op, m_Instruction(Neg))) {
598         LLVM_DEBUG(dbgs()
599                    << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
600         Instruction *Mul = LowerNegateToMultiply(Neg);
601         LLVM_DEBUG(dbgs() << *Mul << '\n');
602         Worklist.push_back(std::make_pair(Mul, Weight));
603         for (User *U : Mul->users()) {
604           if (BinaryOperator *UserBO = dyn_cast<BinaryOperator>(U))
605             ToRedo.insert(UserBO);
606         }
607         ToRedo.insert(Neg);
608         Changed = true;
609         continue;
610       }
611 
612       // Failed to morph into an expression of the right type.  This really is
613       // a leaf.
614       LLVM_DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
615       assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
616       LeafOrder.push_back(Op);
617       Leaves[Op] = Weight;
618     }
619   }
620 
621   // The leaves, repeated according to their weights, represent the linearized
622   // form of the expression.
623   for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) {
624     Value *V = LeafOrder[i];
625     LeafMap::iterator It = Leaves.find(V);
626     if (It == Leaves.end())
627       // Node initially thought to be a leaf wasn't.
628       continue;
629     assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
630     APInt Weight = It->second;
631     if (Weight.isMinValue())
632       // Leaf already output or weight reduction eliminated it.
633       continue;
634     // Ensure the leaf is only output once.
635     It->second = 0;
636     Ops.push_back(std::make_pair(V, Weight));
637   }
638 
639   // For nilpotent operations or addition there may be no operands, for example
640   // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
641   // in both cases the weight reduces to 0 causing the value to be skipped.
642   if (Ops.empty()) {
643     Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
644     assert(Identity && "Associative operation without identity!");
645     Ops.emplace_back(Identity, APInt(Bitwidth, 1));
646   }
647 
648   return Changed;
649 }
650 
651 /// Now that the operands for this expression tree are
652 /// linearized and optimized, emit them in-order.
653 void ReassociatePass::RewriteExprTree(BinaryOperator *I,
654                                       SmallVectorImpl<ValueEntry> &Ops) {
655   assert(Ops.size() > 1 && "Single values should be used directly!");
656 
657   // Since our optimizations should never increase the number of operations, the
658   // new expression can usually be written reusing the existing binary operators
659   // from the original expression tree, without creating any new instructions,
660   // though the rewritten expression may have a completely different topology.
661   // We take care to not change anything if the new expression will be the same
662   // as the original.  If more than trivial changes (like commuting operands)
663   // were made then we are obliged to clear out any optional subclass data like
664   // nsw flags.
665 
666   /// NodesToRewrite - Nodes from the original expression available for writing
667   /// the new expression into.
668   SmallVector<BinaryOperator*, 8> NodesToRewrite;
669   unsigned Opcode = I->getOpcode();
670   BinaryOperator *Op = I;
671 
672   /// NotRewritable - The operands being written will be the leaves of the new
673   /// expression and must not be used as inner nodes (via NodesToRewrite) by
674   /// mistake.  Inner nodes are always reassociable, and usually leaves are not
675   /// (if they were they would have been incorporated into the expression and so
676   /// would not be leaves), so most of the time there is no danger of this.  But
677   /// in rare cases a leaf may become reassociable if an optimization kills uses
678   /// of it, or it may momentarily become reassociable during rewriting (below)
679   /// due it being removed as an operand of one of its uses.  Ensure that misuse
680   /// of leaf nodes as inner nodes cannot occur by remembering all of the future
681   /// leaves and refusing to reuse any of them as inner nodes.
682   SmallPtrSet<Value*, 8> NotRewritable;
683   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
684     NotRewritable.insert(Ops[i].Op);
685 
686   // ExpressionChanged - Non-null if the rewritten expression differs from the
687   // original in some non-trivial way, requiring the clearing of optional flags.
688   // Flags are cleared from the operator in ExpressionChanged up to I inclusive.
689   BinaryOperator *ExpressionChanged = nullptr;
690   for (unsigned i = 0; ; ++i) {
691     // The last operation (which comes earliest in the IR) is special as both
692     // operands will come from Ops, rather than just one with the other being
693     // a subexpression.
694     if (i+2 == Ops.size()) {
695       Value *NewLHS = Ops[i].Op;
696       Value *NewRHS = Ops[i+1].Op;
697       Value *OldLHS = Op->getOperand(0);
698       Value *OldRHS = Op->getOperand(1);
699 
700       if (NewLHS == OldLHS && NewRHS == OldRHS)
701         // Nothing changed, leave it alone.
702         break;
703 
704       if (NewLHS == OldRHS && NewRHS == OldLHS) {
705         // The order of the operands was reversed.  Swap them.
706         LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
707         Op->swapOperands();
708         LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
709         MadeChange = true;
710         ++NumChanged;
711         break;
712       }
713 
714       // The new operation differs non-trivially from the original. Overwrite
715       // the old operands with the new ones.
716       LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
717       if (NewLHS != OldLHS) {
718         BinaryOperator *BO = isReassociableOp(OldLHS, Opcode);
719         if (BO && !NotRewritable.count(BO))
720           NodesToRewrite.push_back(BO);
721         Op->setOperand(0, NewLHS);
722       }
723       if (NewRHS != OldRHS) {
724         BinaryOperator *BO = isReassociableOp(OldRHS, Opcode);
725         if (BO && !NotRewritable.count(BO))
726           NodesToRewrite.push_back(BO);
727         Op->setOperand(1, NewRHS);
728       }
729       LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
730 
731       ExpressionChanged = Op;
732       MadeChange = true;
733       ++NumChanged;
734 
735       break;
736     }
737 
738     // Not the last operation.  The left-hand side will be a sub-expression
739     // while the right-hand side will be the current element of Ops.
740     Value *NewRHS = Ops[i].Op;
741     if (NewRHS != Op->getOperand(1)) {
742       LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
743       if (NewRHS == Op->getOperand(0)) {
744         // The new right-hand side was already present as the left operand.  If
745         // we are lucky then swapping the operands will sort out both of them.
746         Op->swapOperands();
747       } else {
748         // Overwrite with the new right-hand side.
749         BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode);
750         if (BO && !NotRewritable.count(BO))
751           NodesToRewrite.push_back(BO);
752         Op->setOperand(1, NewRHS);
753         ExpressionChanged = Op;
754       }
755       LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
756       MadeChange = true;
757       ++NumChanged;
758     }
759 
760     // Now deal with the left-hand side.  If this is already an operation node
761     // from the original expression then just rewrite the rest of the expression
762     // into it.
763     BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode);
764     if (BO && !NotRewritable.count(BO)) {
765       Op = BO;
766       continue;
767     }
768 
769     // Otherwise, grab a spare node from the original expression and use that as
770     // the left-hand side.  If there are no nodes left then the optimizers made
771     // an expression with more nodes than the original!  This usually means that
772     // they did something stupid but it might mean that the problem was just too
773     // hard (finding the mimimal number of multiplications needed to realize a
774     // multiplication expression is NP-complete).  Whatever the reason, smart or
775     // stupid, create a new node if there are none left.
776     BinaryOperator *NewOp;
777     if (NodesToRewrite.empty()) {
778       Constant *Undef = UndefValue::get(I->getType());
779       NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode),
780                                      Undef, Undef, "", I);
781       if (isa<FPMathOperator>(NewOp))
782         NewOp->setFastMathFlags(I->getFastMathFlags());
783     } else {
784       NewOp = NodesToRewrite.pop_back_val();
785     }
786 
787     LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
788     Op->setOperand(0, NewOp);
789     LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
790     ExpressionChanged = Op;
791     MadeChange = true;
792     ++NumChanged;
793     Op = NewOp;
794   }
795 
796   // If the expression changed non-trivially then clear out all subclass data
797   // starting from the operator specified in ExpressionChanged, and compactify
798   // the operators to just before the expression root to guarantee that the
799   // expression tree is dominated by all of Ops.
800   if (ExpressionChanged)
801     do {
802       // Preserve FastMathFlags.
803       if (isa<FPMathOperator>(I)) {
804         FastMathFlags Flags = I->getFastMathFlags();
805         ExpressionChanged->clearSubclassOptionalData();
806         ExpressionChanged->setFastMathFlags(Flags);
807       } else
808         ExpressionChanged->clearSubclassOptionalData();
809 
810       if (ExpressionChanged == I)
811         break;
812 
813       // Discard any debug info related to the expressions that has changed (we
814       // can leave debug infor related to the root, since the result of the
815       // expression tree should be the same even after reassociation).
816       replaceDbgUsesWithUndef(ExpressionChanged);
817 
818       ExpressionChanged->moveBefore(I);
819       ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->user_begin());
820     } while (true);
821 
822   // Throw away any left over nodes from the original expression.
823   for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
824     RedoInsts.insert(NodesToRewrite[i]);
825 }
826 
827 /// Insert instructions before the instruction pointed to by BI,
828 /// that computes the negative version of the value specified.  The negative
829 /// version of the value is returned, and BI is left pointing at the instruction
830 /// that should be processed next by the reassociation pass.
831 /// Also add intermediate instructions to the redo list that are modified while
832 /// pushing the negates through adds.  These will be revisited to see if
833 /// additional opportunities have been exposed.
834 static Value *NegateValue(Value *V, Instruction *BI,
835                           ReassociatePass::OrderedSet &ToRedo) {
836   if (auto *C = dyn_cast<Constant>(V))
837     return C->getType()->isFPOrFPVectorTy() ? ConstantExpr::getFNeg(C) :
838                                               ConstantExpr::getNeg(C);
839 
840   // We are trying to expose opportunity for reassociation.  One of the things
841   // that we want to do to achieve this is to push a negation as deep into an
842   // expression chain as possible, to expose the add instructions.  In practice,
843   // this means that we turn this:
844   //   X = -(A+12+C+D)   into    X = -A + -12 + -C + -D = -12 + -A + -C + -D
845   // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
846   // the constants.  We assume that instcombine will clean up the mess later if
847   // we introduce tons of unnecessary negation instructions.
848   //
849   if (BinaryOperator *I =
850           isReassociableOp(V, Instruction::Add, Instruction::FAdd)) {
851     // Push the negates through the add.
852     I->setOperand(0, NegateValue(I->getOperand(0), BI, ToRedo));
853     I->setOperand(1, NegateValue(I->getOperand(1), BI, ToRedo));
854     if (I->getOpcode() == Instruction::Add) {
855       I->setHasNoUnsignedWrap(false);
856       I->setHasNoSignedWrap(false);
857     }
858 
859     // We must move the add instruction here, because the neg instructions do
860     // not dominate the old add instruction in general.  By moving it, we are
861     // assured that the neg instructions we just inserted dominate the
862     // instruction we are about to insert after them.
863     //
864     I->moveBefore(BI);
865     I->setName(I->getName()+".neg");
866 
867     // Add the intermediate negates to the redo list as processing them later
868     // could expose more reassociating opportunities.
869     ToRedo.insert(I);
870     return I;
871   }
872 
873   // Okay, we need to materialize a negated version of V with an instruction.
874   // Scan the use lists of V to see if we have one already.
875   for (User *U : V->users()) {
876     if (!match(U, m_Neg(m_Value())) && !match(U, m_FNeg(m_Value())))
877       continue;
878 
879     // We found one!  Now we have to make sure that the definition dominates
880     // this use.  We do this by moving it to the entry block (if it is a
881     // non-instruction value) or right after the definition.  These negates will
882     // be zapped by reassociate later, so we don't need much finesse here.
883     Instruction *TheNeg = cast<Instruction>(U);
884 
885     // Verify that the negate is in this function, V might be a constant expr.
886     if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
887       continue;
888 
889     bool FoundCatchSwitch = false;
890 
891     BasicBlock::iterator InsertPt;
892     if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
893       if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
894         InsertPt = II->getNormalDest()->begin();
895       } else {
896         InsertPt = ++InstInput->getIterator();
897       }
898 
899       const BasicBlock *BB = InsertPt->getParent();
900 
901       // Make sure we don't move anything before PHIs or exception
902       // handling pads.
903       while (InsertPt != BB->end() && (isa<PHINode>(InsertPt) ||
904                                        InsertPt->isEHPad())) {
905         if (isa<CatchSwitchInst>(InsertPt))
906           // A catchswitch cannot have anything in the block except
907           // itself and PHIs.  We'll bail out below.
908           FoundCatchSwitch = true;
909         ++InsertPt;
910       }
911     } else {
912       InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
913     }
914 
915     // We found a catchswitch in the block where we want to move the
916     // neg.  We cannot move anything into that block.  Bail and just
917     // create the neg before BI, as if we hadn't found an existing
918     // neg.
919     if (FoundCatchSwitch)
920       break;
921 
922     TheNeg->moveBefore(&*InsertPt);
923     if (TheNeg->getOpcode() == Instruction::Sub) {
924       TheNeg->setHasNoUnsignedWrap(false);
925       TheNeg->setHasNoSignedWrap(false);
926     } else {
927       TheNeg->andIRFlags(BI);
928     }
929     ToRedo.insert(TheNeg);
930     return TheNeg;
931   }
932 
933   // Insert a 'neg' instruction that subtracts the value from zero to get the
934   // negation.
935   Instruction *NewNeg = CreateNeg(V, V->getName() + ".neg", BI, BI);
936   ToRedo.insert(NewNeg);
937   return NewNeg;
938 }
939 
940 // See if this `or` looks like an load widening reduction, i.e. that it
941 // consists of an `or`/`shl`/`zext`/`load` nodes only. Note that we don't
942 // ensure that the pattern is *really* a load widening reduction,
943 // we do not ensure that it can really be replaced with a widened load,
944 // only that it mostly looks like one.
945 static bool isLoadCombineCandidate(Instruction *Or) {
946   SmallVector<Instruction *, 8> Worklist;
947   SmallSet<Instruction *, 8> Visited;
948 
949   auto Enqueue = [&](Value *V) {
950     auto *I = dyn_cast<Instruction>(V);
951     // Each node of an `or` reduction must be an instruction,
952     if (!I)
953       return false; // Node is certainly not part of an `or` load reduction.
954     // Only process instructions we have never processed before.
955     if (Visited.insert(I).second)
956       Worklist.emplace_back(I);
957     return true; // Will need to look at parent nodes.
958   };
959 
960   if (!Enqueue(Or))
961     return false; // Not an `or` reduction pattern.
962 
963   while (!Worklist.empty()) {
964     auto *I = Worklist.pop_back_val();
965 
966     // Okay, which instruction is this node?
967     switch (I->getOpcode()) {
968     case Instruction::Or:
969       // Got an `or` node. That's fine, just recurse into it's operands.
970       for (Value *Op : I->operands())
971         if (!Enqueue(Op))
972           return false; // Not an `or` reduction pattern.
973       continue;
974 
975     case Instruction::Shl:
976     case Instruction::ZExt:
977       // `shl`/`zext` nodes are fine, just recurse into their base operand.
978       if (!Enqueue(I->getOperand(0)))
979         return false; // Not an `or` reduction pattern.
980       continue;
981 
982     case Instruction::Load:
983       // Perfect, `load` node means we've reached an edge of the graph.
984       continue;
985 
986     default:        // Unknown node.
987       return false; // Not an `or` reduction pattern.
988     }
989   }
990 
991   return true;
992 }
993 
994 /// Return true if it may be profitable to convert this (X|Y) into (X+Y).
995 static bool shouldConvertOrWithNoCommonBitsToAdd(Instruction *Or) {
996   // Don't bother to convert this up unless either the LHS is an associable add
997   // or subtract or mul or if this is only used by one of the above.
998   // This is only a compile-time improvement, it is not needed for correctness!
999   auto isInteresting = [](Value *V) {
1000     for (auto Op : {Instruction::Add, Instruction::Sub, Instruction::Mul,
1001                     Instruction::Shl})
1002       if (isReassociableOp(V, Op))
1003         return true;
1004     return false;
1005   };
1006 
1007   if (any_of(Or->operands(), isInteresting))
1008     return true;
1009 
1010   Value *VB = Or->user_back();
1011   if (Or->hasOneUse() && isInteresting(VB))
1012     return true;
1013 
1014   return false;
1015 }
1016 
1017 /// If we have (X|Y), and iff X and Y have no common bits set,
1018 /// transform this into (X+Y) to allow arithmetics reassociation.
1019 static BinaryOperator *convertOrWithNoCommonBitsToAdd(Instruction *Or) {
1020   // Convert an or into an add.
1021   BinaryOperator *New =
1022       CreateAdd(Or->getOperand(0), Or->getOperand(1), "", Or, Or);
1023   New->setHasNoSignedWrap();
1024   New->setHasNoUnsignedWrap();
1025   New->takeName(Or);
1026 
1027   // Everyone now refers to the add instruction.
1028   Or->replaceAllUsesWith(New);
1029   New->setDebugLoc(Or->getDebugLoc());
1030 
1031   LLVM_DEBUG(dbgs() << "Converted or into an add: " << *New << '\n');
1032   return New;
1033 }
1034 
1035 /// Return true if we should break up this subtract of X-Y into (X + -Y).
1036 static bool ShouldBreakUpSubtract(Instruction *Sub) {
1037   // If this is a negation, we can't split it up!
1038   if (match(Sub, m_Neg(m_Value())) || match(Sub, m_FNeg(m_Value())))
1039     return false;
1040 
1041   // Don't breakup X - undef.
1042   if (isa<UndefValue>(Sub->getOperand(1)))
1043     return false;
1044 
1045   // Don't bother to break this up unless either the LHS is an associable add or
1046   // subtract or if this is only used by one.
1047   Value *V0 = Sub->getOperand(0);
1048   if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) ||
1049       isReassociableOp(V0, Instruction::Sub, Instruction::FSub))
1050     return true;
1051   Value *V1 = Sub->getOperand(1);
1052   if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) ||
1053       isReassociableOp(V1, Instruction::Sub, Instruction::FSub))
1054     return true;
1055   Value *VB = Sub->user_back();
1056   if (Sub->hasOneUse() &&
1057       (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) ||
1058        isReassociableOp(VB, Instruction::Sub, Instruction::FSub)))
1059     return true;
1060 
1061   return false;
1062 }
1063 
1064 /// If we have (X-Y), and if either X is an add, or if this is only used by an
1065 /// add, transform this into (X+(0-Y)) to promote better reassociation.
1066 static BinaryOperator *BreakUpSubtract(Instruction *Sub,
1067                                        ReassociatePass::OrderedSet &ToRedo) {
1068   // Convert a subtract into an add and a neg instruction. This allows sub
1069   // instructions to be commuted with other add instructions.
1070   //
1071   // Calculate the negative value of Operand 1 of the sub instruction,
1072   // and set it as the RHS of the add instruction we just made.
1073   Value *NegVal = NegateValue(Sub->getOperand(1), Sub, ToRedo);
1074   BinaryOperator *New = CreateAdd(Sub->getOperand(0), NegVal, "", Sub, Sub);
1075   Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
1076   Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
1077   New->takeName(Sub);
1078 
1079   // Everyone now refers to the add instruction.
1080   Sub->replaceAllUsesWith(New);
1081   New->setDebugLoc(Sub->getDebugLoc());
1082 
1083   LLVM_DEBUG(dbgs() << "Negated: " << *New << '\n');
1084   return New;
1085 }
1086 
1087 /// If this is a shift of a reassociable multiply or is used by one, change
1088 /// this into a multiply by a constant to assist with further reassociation.
1089 static BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
1090   Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
1091   auto *SA = cast<ConstantInt>(Shl->getOperand(1));
1092   MulCst = ConstantExpr::getShl(MulCst, SA);
1093 
1094   BinaryOperator *Mul =
1095     BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
1096   Shl->setOperand(0, PoisonValue::get(Shl->getType())); // Drop use of op.
1097   Mul->takeName(Shl);
1098 
1099   // Everyone now refers to the mul instruction.
1100   Shl->replaceAllUsesWith(Mul);
1101   Mul->setDebugLoc(Shl->getDebugLoc());
1102 
1103   // We can safely preserve the nuw flag in all cases.  It's also safe to turn a
1104   // nuw nsw shl into a nuw nsw mul.  However, nsw in isolation requires special
1105   // handling.  It can be preserved as long as we're not left shifting by
1106   // bitwidth - 1.
1107   bool NSW = cast<BinaryOperator>(Shl)->hasNoSignedWrap();
1108   bool NUW = cast<BinaryOperator>(Shl)->hasNoUnsignedWrap();
1109   unsigned BitWidth = Shl->getType()->getIntegerBitWidth();
1110   if (NSW && (NUW || SA->getValue().ult(BitWidth - 1)))
1111     Mul->setHasNoSignedWrap(true);
1112   Mul->setHasNoUnsignedWrap(NUW);
1113   return Mul;
1114 }
1115 
1116 /// Scan backwards and forwards among values with the same rank as element i
1117 /// to see if X exists.  If X does not exist, return i.  This is useful when
1118 /// scanning for 'x' when we see '-x' because they both get the same rank.
1119 static unsigned FindInOperandList(const SmallVectorImpl<ValueEntry> &Ops,
1120                                   unsigned i, Value *X) {
1121   unsigned XRank = Ops[i].Rank;
1122   unsigned e = Ops.size();
1123   for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) {
1124     if (Ops[j].Op == X)
1125       return j;
1126     if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
1127       if (Instruction *I2 = dyn_cast<Instruction>(X))
1128         if (I1->isIdenticalTo(I2))
1129           return j;
1130   }
1131   // Scan backwards.
1132   for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) {
1133     if (Ops[j].Op == X)
1134       return j;
1135     if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
1136       if (Instruction *I2 = dyn_cast<Instruction>(X))
1137         if (I1->isIdenticalTo(I2))
1138           return j;
1139   }
1140   return i;
1141 }
1142 
1143 /// Emit a tree of add instructions, summing Ops together
1144 /// and returning the result.  Insert the tree before I.
1145 static Value *EmitAddTreeOfValues(Instruction *I,
1146                                   SmallVectorImpl<WeakTrackingVH> &Ops) {
1147   if (Ops.size() == 1) return Ops.back();
1148 
1149   Value *V1 = Ops.pop_back_val();
1150   Value *V2 = EmitAddTreeOfValues(I, Ops);
1151   return CreateAdd(V2, V1, "reass.add", I, I);
1152 }
1153 
1154 /// If V is an expression tree that is a multiplication sequence,
1155 /// and if this sequence contains a multiply by Factor,
1156 /// remove Factor from the tree and return the new tree.
1157 Value *ReassociatePass::RemoveFactorFromExpression(Value *V, Value *Factor) {
1158   BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
1159   if (!BO)
1160     return nullptr;
1161 
1162   SmallVector<RepeatedValue, 8> Tree;
1163   MadeChange |= LinearizeExprTree(BO, Tree, RedoInsts);
1164   SmallVector<ValueEntry, 8> Factors;
1165   Factors.reserve(Tree.size());
1166   for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
1167     RepeatedValue E = Tree[i];
1168     Factors.append(E.second.getZExtValue(),
1169                    ValueEntry(getRank(E.first), E.first));
1170   }
1171 
1172   bool FoundFactor = false;
1173   bool NeedsNegate = false;
1174   for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1175     if (Factors[i].Op == Factor) {
1176       FoundFactor = true;
1177       Factors.erase(Factors.begin()+i);
1178       break;
1179     }
1180 
1181     // If this is a negative version of this factor, remove it.
1182     if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) {
1183       if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
1184         if (FC1->getValue() == -FC2->getValue()) {
1185           FoundFactor = NeedsNegate = true;
1186           Factors.erase(Factors.begin()+i);
1187           break;
1188         }
1189     } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) {
1190       if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) {
1191         const APFloat &F1 = FC1->getValueAPF();
1192         APFloat F2(FC2->getValueAPF());
1193         F2.changeSign();
1194         if (F1 == F2) {
1195           FoundFactor = NeedsNegate = true;
1196           Factors.erase(Factors.begin() + i);
1197           break;
1198         }
1199       }
1200     }
1201   }
1202 
1203   if (!FoundFactor) {
1204     // Make sure to restore the operands to the expression tree.
1205     RewriteExprTree(BO, Factors);
1206     return nullptr;
1207   }
1208 
1209   BasicBlock::iterator InsertPt = ++BO->getIterator();
1210 
1211   // If this was just a single multiply, remove the multiply and return the only
1212   // remaining operand.
1213   if (Factors.size() == 1) {
1214     RedoInsts.insert(BO);
1215     V = Factors[0].Op;
1216   } else {
1217     RewriteExprTree(BO, Factors);
1218     V = BO;
1219   }
1220 
1221   if (NeedsNegate)
1222     V = CreateNeg(V, "neg", &*InsertPt, BO);
1223 
1224   return V;
1225 }
1226 
1227 /// If V is a single-use multiply, recursively add its operands as factors,
1228 /// otherwise add V to the list of factors.
1229 ///
1230 /// Ops is the top-level list of add operands we're trying to factor.
1231 static void FindSingleUseMultiplyFactors(Value *V,
1232                                          SmallVectorImpl<Value*> &Factors) {
1233   BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
1234   if (!BO) {
1235     Factors.push_back(V);
1236     return;
1237   }
1238 
1239   // Otherwise, add the LHS and RHS to the list of factors.
1240   FindSingleUseMultiplyFactors(BO->getOperand(1), Factors);
1241   FindSingleUseMultiplyFactors(BO->getOperand(0), Factors);
1242 }
1243 
1244 /// Optimize a series of operands to an 'and', 'or', or 'xor' instruction.
1245 /// This optimizes based on identities.  If it can be reduced to a single Value,
1246 /// it is returned, otherwise the Ops list is mutated as necessary.
1247 static Value *OptimizeAndOrXor(unsigned Opcode,
1248                                SmallVectorImpl<ValueEntry> &Ops) {
1249   // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
1250   // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
1251   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1252     // First, check for X and ~X in the operand list.
1253     assert(i < Ops.size());
1254     Value *X;
1255     if (match(Ops[i].Op, m_Not(m_Value(X)))) {    // Cannot occur for ^.
1256       unsigned FoundX = FindInOperandList(Ops, i, X);
1257       if (FoundX != i) {
1258         if (Opcode == Instruction::And)   // ...&X&~X = 0
1259           return Constant::getNullValue(X->getType());
1260 
1261         if (Opcode == Instruction::Or)    // ...|X|~X = -1
1262           return Constant::getAllOnesValue(X->getType());
1263       }
1264     }
1265 
1266     // Next, check for duplicate pairs of values, which we assume are next to
1267     // each other, due to our sorting criteria.
1268     assert(i < Ops.size());
1269     if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
1270       if (Opcode == Instruction::And || Opcode == Instruction::Or) {
1271         // Drop duplicate values for And and Or.
1272         Ops.erase(Ops.begin()+i);
1273         --i; --e;
1274         ++NumAnnihil;
1275         continue;
1276       }
1277 
1278       // Drop pairs of values for Xor.
1279       assert(Opcode == Instruction::Xor);
1280       if (e == 2)
1281         return Constant::getNullValue(Ops[0].Op->getType());
1282 
1283       // Y ^ X^X -> Y
1284       Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1285       i -= 1; e -= 2;
1286       ++NumAnnihil;
1287     }
1288   }
1289   return nullptr;
1290 }
1291 
1292 /// Helper function of CombineXorOpnd(). It creates a bitwise-and
1293 /// instruction with the given two operands, and return the resulting
1294 /// instruction. There are two special cases: 1) if the constant operand is 0,
1295 /// it will return NULL. 2) if the constant is ~0, the symbolic operand will
1296 /// be returned.
1297 static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd,
1298                              const APInt &ConstOpnd) {
1299   if (ConstOpnd.isZero())
1300     return nullptr;
1301 
1302   if (ConstOpnd.isAllOnes())
1303     return Opnd;
1304 
1305   Instruction *I = BinaryOperator::CreateAnd(
1306       Opnd, ConstantInt::get(Opnd->getType(), ConstOpnd), "and.ra",
1307       InsertBefore);
1308   I->setDebugLoc(InsertBefore->getDebugLoc());
1309   return I;
1310 }
1311 
1312 // Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd"
1313 // into "R ^ C", where C would be 0, and R is a symbolic value.
1314 //
1315 // If it was successful, true is returned, and the "R" and "C" is returned
1316 // via "Res" and "ConstOpnd", respectively; otherwise, false is returned,
1317 // and both "Res" and "ConstOpnd" remain unchanged.
1318 bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1319                                      APInt &ConstOpnd, Value *&Res) {
1320   // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2
1321   //                       = ((x | c1) ^ c1) ^ (c1 ^ c2)
1322   //                       = (x & ~c1) ^ (c1 ^ c2)
1323   // It is useful only when c1 == c2.
1324   if (!Opnd1->isOrExpr() || Opnd1->getConstPart().isZero())
1325     return false;
1326 
1327   if (!Opnd1->getValue()->hasOneUse())
1328     return false;
1329 
1330   const APInt &C1 = Opnd1->getConstPart();
1331   if (C1 != ConstOpnd)
1332     return false;
1333 
1334   Value *X = Opnd1->getSymbolicPart();
1335   Res = createAndInstr(I, X, ~C1);
1336   // ConstOpnd was C2, now C1 ^ C2.
1337   ConstOpnd ^= C1;
1338 
1339   if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1340     RedoInsts.insert(T);
1341   return true;
1342 }
1343 
1344 // Helper function of OptimizeXor(). It tries to simplify
1345 // "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a
1346 // symbolic value.
1347 //
1348 // If it was successful, true is returned, and the "R" and "C" is returned
1349 // via "Res" and "ConstOpnd", respectively (If the entire expression is
1350 // evaluated to a constant, the Res is set to NULL); otherwise, false is
1351 // returned, and both "Res" and "ConstOpnd" remain unchanged.
1352 bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1353                                      XorOpnd *Opnd2, APInt &ConstOpnd,
1354                                      Value *&Res) {
1355   Value *X = Opnd1->getSymbolicPart();
1356   if (X != Opnd2->getSymbolicPart())
1357     return false;
1358 
1359   // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.)
1360   int DeadInstNum = 1;
1361   if (Opnd1->getValue()->hasOneUse())
1362     DeadInstNum++;
1363   if (Opnd2->getValue()->hasOneUse())
1364     DeadInstNum++;
1365 
1366   // Xor-Rule 2:
1367   //  (x | c1) ^ (x & c2)
1368   //   = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1
1369   //   = (x & ~c1) ^ (x & c2) ^ c1               // Xor-Rule 1
1370   //   = (x & c3) ^ c1, where c3 = ~c1 ^ c2      // Xor-rule 3
1371   //
1372   if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) {
1373     if (Opnd2->isOrExpr())
1374       std::swap(Opnd1, Opnd2);
1375 
1376     const APInt &C1 = Opnd1->getConstPart();
1377     const APInt &C2 = Opnd2->getConstPart();
1378     APInt C3((~C1) ^ C2);
1379 
1380     // Do not increase code size!
1381     if (!C3.isZero() && !C3.isAllOnes()) {
1382       int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2;
1383       if (NewInstNum > DeadInstNum)
1384         return false;
1385     }
1386 
1387     Res = createAndInstr(I, X, C3);
1388     ConstOpnd ^= C1;
1389   } else if (Opnd1->isOrExpr()) {
1390     // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2
1391     //
1392     const APInt &C1 = Opnd1->getConstPart();
1393     const APInt &C2 = Opnd2->getConstPart();
1394     APInt C3 = C1 ^ C2;
1395 
1396     // Do not increase code size
1397     if (!C3.isZero() && !C3.isAllOnes()) {
1398       int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2;
1399       if (NewInstNum > DeadInstNum)
1400         return false;
1401     }
1402 
1403     Res = createAndInstr(I, X, C3);
1404     ConstOpnd ^= C3;
1405   } else {
1406     // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2))
1407     //
1408     const APInt &C1 = Opnd1->getConstPart();
1409     const APInt &C2 = Opnd2->getConstPart();
1410     APInt C3 = C1 ^ C2;
1411     Res = createAndInstr(I, X, C3);
1412   }
1413 
1414   // Put the original operands in the Redo list; hope they will be deleted
1415   // as dead code.
1416   if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1417     RedoInsts.insert(T);
1418   if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue()))
1419     RedoInsts.insert(T);
1420 
1421   return true;
1422 }
1423 
1424 /// Optimize a series of operands to an 'xor' instruction. If it can be reduced
1425 /// to a single Value, it is returned, otherwise the Ops list is mutated as
1426 /// necessary.
1427 Value *ReassociatePass::OptimizeXor(Instruction *I,
1428                                     SmallVectorImpl<ValueEntry> &Ops) {
1429   if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops))
1430     return V;
1431 
1432   if (Ops.size() == 1)
1433     return nullptr;
1434 
1435   SmallVector<XorOpnd, 8> Opnds;
1436   SmallVector<XorOpnd*, 8> OpndPtrs;
1437   Type *Ty = Ops[0].Op->getType();
1438   APInt ConstOpnd(Ty->getScalarSizeInBits(), 0);
1439 
1440   // Step 1: Convert ValueEntry to XorOpnd
1441   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1442     Value *V = Ops[i].Op;
1443     const APInt *C;
1444     // TODO: Support non-splat vectors.
1445     if (match(V, m_APInt(C))) {
1446       ConstOpnd ^= *C;
1447     } else {
1448       XorOpnd O(V);
1449       O.setSymbolicRank(getRank(O.getSymbolicPart()));
1450       Opnds.push_back(O);
1451     }
1452   }
1453 
1454   // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds".
1455   //  It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate
1456   //  the "OpndPtrs" as well. For the similar reason, do not fuse this loop
1457   //  with the previous loop --- the iterator of the "Opnds" may be invalidated
1458   //  when new elements are added to the vector.
1459   for (unsigned i = 0, e = Opnds.size(); i != e; ++i)
1460     OpndPtrs.push_back(&Opnds[i]);
1461 
1462   // Step 2: Sort the Xor-Operands in a way such that the operands containing
1463   //  the same symbolic value cluster together. For instance, the input operand
1464   //  sequence ("x | 123", "y & 456", "x & 789") will be sorted into:
1465   //  ("x | 123", "x & 789", "y & 456").
1466   //
1467   //  The purpose is twofold:
1468   //  1) Cluster together the operands sharing the same symbolic-value.
1469   //  2) Operand having smaller symbolic-value-rank is permuted earlier, which
1470   //     could potentially shorten crital path, and expose more loop-invariants.
1471   //     Note that values' rank are basically defined in RPO order (FIXME).
1472   //     So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier
1473   //     than Y which is defined earlier than Z. Permute "x | 1", "Y & 2",
1474   //     "z" in the order of X-Y-Z is better than any other orders.
1475   llvm::stable_sort(OpndPtrs, [](XorOpnd *LHS, XorOpnd *RHS) {
1476     return LHS->getSymbolicRank() < RHS->getSymbolicRank();
1477   });
1478 
1479   // Step 3: Combine adjacent operands
1480   XorOpnd *PrevOpnd = nullptr;
1481   bool Changed = false;
1482   for (unsigned i = 0, e = Opnds.size(); i < e; i++) {
1483     XorOpnd *CurrOpnd = OpndPtrs[i];
1484     // The combined value
1485     Value *CV;
1486 
1487     // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd"
1488     if (!ConstOpnd.isZero() && CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) {
1489       Changed = true;
1490       if (CV)
1491         *CurrOpnd = XorOpnd(CV);
1492       else {
1493         CurrOpnd->Invalidate();
1494         continue;
1495       }
1496     }
1497 
1498     if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) {
1499       PrevOpnd = CurrOpnd;
1500       continue;
1501     }
1502 
1503     // step 3.2: When previous and current operands share the same symbolic
1504     //  value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd"
1505     if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) {
1506       // Remove previous operand
1507       PrevOpnd->Invalidate();
1508       if (CV) {
1509         *CurrOpnd = XorOpnd(CV);
1510         PrevOpnd = CurrOpnd;
1511       } else {
1512         CurrOpnd->Invalidate();
1513         PrevOpnd = nullptr;
1514       }
1515       Changed = true;
1516     }
1517   }
1518 
1519   // Step 4: Reassemble the Ops
1520   if (Changed) {
1521     Ops.clear();
1522     for (unsigned int i = 0, e = Opnds.size(); i < e; i++) {
1523       XorOpnd &O = Opnds[i];
1524       if (O.isInvalid())
1525         continue;
1526       ValueEntry VE(getRank(O.getValue()), O.getValue());
1527       Ops.push_back(VE);
1528     }
1529     if (!ConstOpnd.isZero()) {
1530       Value *C = ConstantInt::get(Ty, ConstOpnd);
1531       ValueEntry VE(getRank(C), C);
1532       Ops.push_back(VE);
1533     }
1534     unsigned Sz = Ops.size();
1535     if (Sz == 1)
1536       return Ops.back().Op;
1537     if (Sz == 0) {
1538       assert(ConstOpnd.isZero());
1539       return ConstantInt::get(Ty, ConstOpnd);
1540     }
1541   }
1542 
1543   return nullptr;
1544 }
1545 
1546 /// Optimize a series of operands to an 'add' instruction.  This
1547 /// optimizes based on identities.  If it can be reduced to a single Value, it
1548 /// is returned, otherwise the Ops list is mutated as necessary.
1549 Value *ReassociatePass::OptimizeAdd(Instruction *I,
1550                                     SmallVectorImpl<ValueEntry> &Ops) {
1551   // Scan the operand lists looking for X and -X pairs.  If we find any, we
1552   // can simplify expressions like X+-X == 0 and X+~X ==-1.  While we're at it,
1553   // scan for any
1554   // duplicates.  We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
1555 
1556   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1557     Value *TheOp = Ops[i].Op;
1558     // Check to see if we've seen this operand before.  If so, we factor all
1559     // instances of the operand together.  Due to our sorting criteria, we know
1560     // that these need to be next to each other in the vector.
1561     if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
1562       // Rescan the list, remove all instances of this operand from the expr.
1563       unsigned NumFound = 0;
1564       do {
1565         Ops.erase(Ops.begin()+i);
1566         ++NumFound;
1567       } while (i != Ops.size() && Ops[i].Op == TheOp);
1568 
1569       LLVM_DEBUG(dbgs() << "\nFACTORING [" << NumFound << "]: " << *TheOp
1570                         << '\n');
1571       ++NumFactor;
1572 
1573       // Insert a new multiply.
1574       Type *Ty = TheOp->getType();
1575       Constant *C = Ty->isIntOrIntVectorTy() ?
1576         ConstantInt::get(Ty, NumFound) : ConstantFP::get(Ty, NumFound);
1577       Instruction *Mul = CreateMul(TheOp, C, "factor", I, I);
1578 
1579       // Now that we have inserted a multiply, optimize it. This allows us to
1580       // handle cases that require multiple factoring steps, such as this:
1581       // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
1582       RedoInsts.insert(Mul);
1583 
1584       // If every add operand was a duplicate, return the multiply.
1585       if (Ops.empty())
1586         return Mul;
1587 
1588       // Otherwise, we had some input that didn't have the dupe, such as
1589       // "A + A + B" -> "A*2 + B".  Add the new multiply to the list of
1590       // things being added by this operation.
1591       Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
1592 
1593       --i;
1594       e = Ops.size();
1595       continue;
1596     }
1597 
1598     // Check for X and -X or X and ~X in the operand list.
1599     Value *X;
1600     if (!match(TheOp, m_Neg(m_Value(X))) && !match(TheOp, m_Not(m_Value(X))) &&
1601         !match(TheOp, m_FNeg(m_Value(X))))
1602       continue;
1603 
1604     unsigned FoundX = FindInOperandList(Ops, i, X);
1605     if (FoundX == i)
1606       continue;
1607 
1608     // Remove X and -X from the operand list.
1609     if (Ops.size() == 2 &&
1610         (match(TheOp, m_Neg(m_Value())) || match(TheOp, m_FNeg(m_Value()))))
1611       return Constant::getNullValue(X->getType());
1612 
1613     // Remove X and ~X from the operand list.
1614     if (Ops.size() == 2 && match(TheOp, m_Not(m_Value())))
1615       return Constant::getAllOnesValue(X->getType());
1616 
1617     Ops.erase(Ops.begin()+i);
1618     if (i < FoundX)
1619       --FoundX;
1620     else
1621       --i;   // Need to back up an extra one.
1622     Ops.erase(Ops.begin()+FoundX);
1623     ++NumAnnihil;
1624     --i;     // Revisit element.
1625     e -= 2;  // Removed two elements.
1626 
1627     // if X and ~X we append -1 to the operand list.
1628     if (match(TheOp, m_Not(m_Value()))) {
1629       Value *V = Constant::getAllOnesValue(X->getType());
1630       Ops.insert(Ops.end(), ValueEntry(getRank(V), V));
1631       e += 1;
1632     }
1633   }
1634 
1635   // Scan the operand list, checking to see if there are any common factors
1636   // between operands.  Consider something like A*A+A*B*C+D.  We would like to
1637   // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
1638   // To efficiently find this, we count the number of times a factor occurs
1639   // for any ADD operands that are MULs.
1640   DenseMap<Value*, unsigned> FactorOccurrences;
1641 
1642   // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
1643   // where they are actually the same multiply.
1644   unsigned MaxOcc = 0;
1645   Value *MaxOccVal = nullptr;
1646   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1647     BinaryOperator *BOp =
1648         isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
1649     if (!BOp)
1650       continue;
1651 
1652     // Compute all of the factors of this added value.
1653     SmallVector<Value*, 8> Factors;
1654     FindSingleUseMultiplyFactors(BOp, Factors);
1655     assert(Factors.size() > 1 && "Bad linearize!");
1656 
1657     // Add one to FactorOccurrences for each unique factor in this op.
1658     SmallPtrSet<Value*, 8> Duplicates;
1659     for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1660       Value *Factor = Factors[i];
1661       if (!Duplicates.insert(Factor).second)
1662         continue;
1663 
1664       unsigned Occ = ++FactorOccurrences[Factor];
1665       if (Occ > MaxOcc) {
1666         MaxOcc = Occ;
1667         MaxOccVal = Factor;
1668       }
1669 
1670       // If Factor is a negative constant, add the negated value as a factor
1671       // because we can percolate the negate out.  Watch for minint, which
1672       // cannot be positivified.
1673       if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) {
1674         if (CI->isNegative() && !CI->isMinValue(true)) {
1675           Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
1676           if (!Duplicates.insert(Factor).second)
1677             continue;
1678           unsigned Occ = ++FactorOccurrences[Factor];
1679           if (Occ > MaxOcc) {
1680             MaxOcc = Occ;
1681             MaxOccVal = Factor;
1682           }
1683         }
1684       } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) {
1685         if (CF->isNegative()) {
1686           APFloat F(CF->getValueAPF());
1687           F.changeSign();
1688           Factor = ConstantFP::get(CF->getContext(), F);
1689           if (!Duplicates.insert(Factor).second)
1690             continue;
1691           unsigned Occ = ++FactorOccurrences[Factor];
1692           if (Occ > MaxOcc) {
1693             MaxOcc = Occ;
1694             MaxOccVal = Factor;
1695           }
1696         }
1697       }
1698     }
1699   }
1700 
1701   // If any factor occurred more than one time, we can pull it out.
1702   if (MaxOcc > 1) {
1703     LLVM_DEBUG(dbgs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal
1704                       << '\n');
1705     ++NumFactor;
1706 
1707     // Create a new instruction that uses the MaxOccVal twice.  If we don't do
1708     // this, we could otherwise run into situations where removing a factor
1709     // from an expression will drop a use of maxocc, and this can cause
1710     // RemoveFactorFromExpression on successive values to behave differently.
1711     Instruction *DummyInst =
1712         I->getType()->isIntOrIntVectorTy()
1713             ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal)
1714             : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal);
1715 
1716     SmallVector<WeakTrackingVH, 4> NewMulOps;
1717     for (unsigned i = 0; i != Ops.size(); ++i) {
1718       // Only try to remove factors from expressions we're allowed to.
1719       BinaryOperator *BOp =
1720           isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
1721       if (!BOp)
1722         continue;
1723 
1724       if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
1725         // The factorized operand may occur several times.  Convert them all in
1726         // one fell swoop.
1727         for (unsigned j = Ops.size(); j != i;) {
1728           --j;
1729           if (Ops[j].Op == Ops[i].Op) {
1730             NewMulOps.push_back(V);
1731             Ops.erase(Ops.begin()+j);
1732           }
1733         }
1734         --i;
1735       }
1736     }
1737 
1738     // No need for extra uses anymore.
1739     DummyInst->deleteValue();
1740 
1741     unsigned NumAddedValues = NewMulOps.size();
1742     Value *V = EmitAddTreeOfValues(I, NewMulOps);
1743 
1744     // Now that we have inserted the add tree, optimize it. This allows us to
1745     // handle cases that require multiple factoring steps, such as this:
1746     // A*A*B + A*A*C   -->   A*(A*B+A*C)   -->   A*(A*(B+C))
1747     assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
1748     (void)NumAddedValues;
1749     if (Instruction *VI = dyn_cast<Instruction>(V))
1750       RedoInsts.insert(VI);
1751 
1752     // Create the multiply.
1753     Instruction *V2 = CreateMul(V, MaxOccVal, "reass.mul", I, I);
1754 
1755     // Rerun associate on the multiply in case the inner expression turned into
1756     // a multiply.  We want to make sure that we keep things in canonical form.
1757     RedoInsts.insert(V2);
1758 
1759     // If every add operand included the factor (e.g. "A*B + A*C"), then the
1760     // entire result expression is just the multiply "A*(B+C)".
1761     if (Ops.empty())
1762       return V2;
1763 
1764     // Otherwise, we had some input that didn't have the factor, such as
1765     // "A*B + A*C + D" -> "A*(B+C) + D".  Add the new multiply to the list of
1766     // things being added by this operation.
1767     Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
1768   }
1769 
1770   return nullptr;
1771 }
1772 
1773 /// Build up a vector of value/power pairs factoring a product.
1774 ///
1775 /// Given a series of multiplication operands, build a vector of factors and
1776 /// the powers each is raised to when forming the final product. Sort them in
1777 /// the order of descending power.
1778 ///
1779 ///      (x*x)          -> [(x, 2)]
1780 ///     ((x*x)*x)       -> [(x, 3)]
1781 ///   ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
1782 ///
1783 /// \returns Whether any factors have a power greater than one.
1784 static bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
1785                                    SmallVectorImpl<Factor> &Factors) {
1786   // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
1787   // Compute the sum of powers of simplifiable factors.
1788   unsigned FactorPowerSum = 0;
1789   for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
1790     Value *Op = Ops[Idx-1].Op;
1791 
1792     // Count the number of occurrences of this value.
1793     unsigned Count = 1;
1794     for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
1795       ++Count;
1796     // Track for simplification all factors which occur 2 or more times.
1797     if (Count > 1)
1798       FactorPowerSum += Count;
1799   }
1800 
1801   // We can only simplify factors if the sum of the powers of our simplifiable
1802   // factors is 4 or higher. When that is the case, we will *always* have
1803   // a simplification. This is an important invariant to prevent cyclicly
1804   // trying to simplify already minimal formations.
1805   if (FactorPowerSum < 4)
1806     return false;
1807 
1808   // Now gather the simplifiable factors, removing them from Ops.
1809   FactorPowerSum = 0;
1810   for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
1811     Value *Op = Ops[Idx-1].Op;
1812 
1813     // Count the number of occurrences of this value.
1814     unsigned Count = 1;
1815     for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
1816       ++Count;
1817     if (Count == 1)
1818       continue;
1819     // Move an even number of occurrences to Factors.
1820     Count &= ~1U;
1821     Idx -= Count;
1822     FactorPowerSum += Count;
1823     Factors.push_back(Factor(Op, Count));
1824     Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
1825   }
1826 
1827   // None of the adjustments above should have reduced the sum of factor powers
1828   // below our mininum of '4'.
1829   assert(FactorPowerSum >= 4);
1830 
1831   llvm::stable_sort(Factors, [](const Factor &LHS, const Factor &RHS) {
1832     return LHS.Power > RHS.Power;
1833   });
1834   return true;
1835 }
1836 
1837 /// Build a tree of multiplies, computing the product of Ops.
1838 static Value *buildMultiplyTree(IRBuilderBase &Builder,
1839                                 SmallVectorImpl<Value*> &Ops) {
1840   if (Ops.size() == 1)
1841     return Ops.back();
1842 
1843   Value *LHS = Ops.pop_back_val();
1844   do {
1845     if (LHS->getType()->isIntOrIntVectorTy())
1846       LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
1847     else
1848       LHS = Builder.CreateFMul(LHS, Ops.pop_back_val());
1849   } while (!Ops.empty());
1850 
1851   return LHS;
1852 }
1853 
1854 /// Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
1855 ///
1856 /// Given a vector of values raised to various powers, where no two values are
1857 /// equal and the powers are sorted in decreasing order, compute the minimal
1858 /// DAG of multiplies to compute the final product, and return that product
1859 /// value.
1860 Value *
1861 ReassociatePass::buildMinimalMultiplyDAG(IRBuilderBase &Builder,
1862                                          SmallVectorImpl<Factor> &Factors) {
1863   assert(Factors[0].Power);
1864   SmallVector<Value *, 4> OuterProduct;
1865   for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
1866        Idx < Size && Factors[Idx].Power > 0; ++Idx) {
1867     if (Factors[Idx].Power != Factors[LastIdx].Power) {
1868       LastIdx = Idx;
1869       continue;
1870     }
1871 
1872     // We want to multiply across all the factors with the same power so that
1873     // we can raise them to that power as a single entity. Build a mini tree
1874     // for that.
1875     SmallVector<Value *, 4> InnerProduct;
1876     InnerProduct.push_back(Factors[LastIdx].Base);
1877     do {
1878       InnerProduct.push_back(Factors[Idx].Base);
1879       ++Idx;
1880     } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
1881 
1882     // Reset the base value of the first factor to the new expression tree.
1883     // We'll remove all the factors with the same power in a second pass.
1884     Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
1885     if (Instruction *MI = dyn_cast<Instruction>(M))
1886       RedoInsts.insert(MI);
1887 
1888     LastIdx = Idx;
1889   }
1890   // Unique factors with equal powers -- we've folded them into the first one's
1891   // base.
1892   Factors.erase(std::unique(Factors.begin(), Factors.end(),
1893                             [](const Factor &LHS, const Factor &RHS) {
1894                               return LHS.Power == RHS.Power;
1895                             }),
1896                 Factors.end());
1897 
1898   // Iteratively collect the base of each factor with an add power into the
1899   // outer product, and halve each power in preparation for squaring the
1900   // expression.
1901   for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
1902     if (Factors[Idx].Power & 1)
1903       OuterProduct.push_back(Factors[Idx].Base);
1904     Factors[Idx].Power >>= 1;
1905   }
1906   if (Factors[0].Power) {
1907     Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
1908     OuterProduct.push_back(SquareRoot);
1909     OuterProduct.push_back(SquareRoot);
1910   }
1911   if (OuterProduct.size() == 1)
1912     return OuterProduct.front();
1913 
1914   Value *V = buildMultiplyTree(Builder, OuterProduct);
1915   return V;
1916 }
1917 
1918 Value *ReassociatePass::OptimizeMul(BinaryOperator *I,
1919                                     SmallVectorImpl<ValueEntry> &Ops) {
1920   // We can only optimize the multiplies when there is a chain of more than
1921   // three, such that a balanced tree might require fewer total multiplies.
1922   if (Ops.size() < 4)
1923     return nullptr;
1924 
1925   // Try to turn linear trees of multiplies without other uses of the
1926   // intermediate stages into minimal multiply DAGs with perfect sub-expression
1927   // re-use.
1928   SmallVector<Factor, 4> Factors;
1929   if (!collectMultiplyFactors(Ops, Factors))
1930     return nullptr; // All distinct factors, so nothing left for us to do.
1931 
1932   IRBuilder<> Builder(I);
1933   // The reassociate transformation for FP operations is performed only
1934   // if unsafe algebra is permitted by FastMathFlags. Propagate those flags
1935   // to the newly generated operations.
1936   if (auto FPI = dyn_cast<FPMathOperator>(I))
1937     Builder.setFastMathFlags(FPI->getFastMathFlags());
1938 
1939   Value *V = buildMinimalMultiplyDAG(Builder, Factors);
1940   if (Ops.empty())
1941     return V;
1942 
1943   ValueEntry NewEntry = ValueEntry(getRank(V), V);
1944   Ops.insert(llvm::lower_bound(Ops, NewEntry), NewEntry);
1945   return nullptr;
1946 }
1947 
1948 Value *ReassociatePass::OptimizeExpression(BinaryOperator *I,
1949                                            SmallVectorImpl<ValueEntry> &Ops) {
1950   // Now that we have the linearized expression tree, try to optimize it.
1951   // Start by folding any constants that we found.
1952   const DataLayout &DL = I->getModule()->getDataLayout();
1953   Constant *Cst = nullptr;
1954   unsigned Opcode = I->getOpcode();
1955   while (!Ops.empty()) {
1956     if (auto *C = dyn_cast<Constant>(Ops.back().Op)) {
1957       if (!Cst) {
1958         Ops.pop_back();
1959         Cst = C;
1960         continue;
1961       }
1962       if (Constant *Res = ConstantFoldBinaryOpOperands(Opcode, C, Cst, DL)) {
1963         Ops.pop_back();
1964         Cst = Res;
1965         continue;
1966       }
1967     }
1968     break;
1969   }
1970   // If there was nothing but constants then we are done.
1971   if (Ops.empty())
1972     return Cst;
1973 
1974   // Put the combined constant back at the end of the operand list, except if
1975   // there is no point.  For example, an add of 0 gets dropped here, while a
1976   // multiplication by zero turns the whole expression into zero.
1977   if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) {
1978     if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType()))
1979       return Cst;
1980     Ops.push_back(ValueEntry(0, Cst));
1981   }
1982 
1983   if (Ops.size() == 1) return Ops[0].Op;
1984 
1985   // Handle destructive annihilation due to identities between elements in the
1986   // argument list here.
1987   unsigned NumOps = Ops.size();
1988   switch (Opcode) {
1989   default: break;
1990   case Instruction::And:
1991   case Instruction::Or:
1992     if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
1993       return Result;
1994     break;
1995 
1996   case Instruction::Xor:
1997     if (Value *Result = OptimizeXor(I, Ops))
1998       return Result;
1999     break;
2000 
2001   case Instruction::Add:
2002   case Instruction::FAdd:
2003     if (Value *Result = OptimizeAdd(I, Ops))
2004       return Result;
2005     break;
2006 
2007   case Instruction::Mul:
2008   case Instruction::FMul:
2009     if (Value *Result = OptimizeMul(I, Ops))
2010       return Result;
2011     break;
2012   }
2013 
2014   if (Ops.size() != NumOps)
2015     return OptimizeExpression(I, Ops);
2016   return nullptr;
2017 }
2018 
2019 // Remove dead instructions and if any operands are trivially dead add them to
2020 // Insts so they will be removed as well.
2021 void ReassociatePass::RecursivelyEraseDeadInsts(Instruction *I,
2022                                                 OrderedSet &Insts) {
2023   assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
2024   SmallVector<Value *, 4> Ops(I->operands());
2025   ValueRankMap.erase(I);
2026   Insts.remove(I);
2027   RedoInsts.remove(I);
2028   llvm::salvageDebugInfo(*I);
2029   I->eraseFromParent();
2030   for (auto Op : Ops)
2031     if (Instruction *OpInst = dyn_cast<Instruction>(Op))
2032       if (OpInst->use_empty())
2033         Insts.insert(OpInst);
2034 }
2035 
2036 /// Zap the given instruction, adding interesting operands to the work list.
2037 void ReassociatePass::EraseInst(Instruction *I) {
2038   assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
2039   LLVM_DEBUG(dbgs() << "Erasing dead inst: "; I->dump());
2040 
2041   SmallVector<Value *, 8> Ops(I->operands());
2042   // Erase the dead instruction.
2043   ValueRankMap.erase(I);
2044   RedoInsts.remove(I);
2045   llvm::salvageDebugInfo(*I);
2046   I->eraseFromParent();
2047   // Optimize its operands.
2048   SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes.
2049   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2050     if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
2051       // If this is a node in an expression tree, climb to the expression root
2052       // and add that since that's where optimization actually happens.
2053       unsigned Opcode = Op->getOpcode();
2054       while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode &&
2055              Visited.insert(Op).second)
2056         Op = Op->user_back();
2057 
2058       // The instruction we're going to push may be coming from a
2059       // dead block, and Reassociate skips the processing of unreachable
2060       // blocks because it's a waste of time and also because it can
2061       // lead to infinite loop due to LLVM's non-standard definition
2062       // of dominance.
2063       if (ValueRankMap.find(Op) != ValueRankMap.end())
2064         RedoInsts.insert(Op);
2065     }
2066 
2067   MadeChange = true;
2068 }
2069 
2070 /// Recursively analyze an expression to build a list of instructions that have
2071 /// negative floating-point constant operands. The caller can then transform
2072 /// the list to create positive constants for better reassociation and CSE.
2073 static void getNegatibleInsts(Value *V,
2074                               SmallVectorImpl<Instruction *> &Candidates) {
2075   // Handle only one-use instructions. Combining negations does not justify
2076   // replicating instructions.
2077   Instruction *I;
2078   if (!match(V, m_OneUse(m_Instruction(I))))
2079     return;
2080 
2081   // Handle expressions of multiplications and divisions.
2082   // TODO: This could look through floating-point casts.
2083   const APFloat *C;
2084   switch (I->getOpcode()) {
2085     case Instruction::FMul:
2086       // Not expecting non-canonical code here. Bail out and wait.
2087       if (match(I->getOperand(0), m_Constant()))
2088         break;
2089 
2090       if (match(I->getOperand(1), m_APFloat(C)) && C->isNegative()) {
2091         Candidates.push_back(I);
2092         LLVM_DEBUG(dbgs() << "FMul with negative constant: " << *I << '\n');
2093       }
2094       getNegatibleInsts(I->getOperand(0), Candidates);
2095       getNegatibleInsts(I->getOperand(1), Candidates);
2096       break;
2097     case Instruction::FDiv:
2098       // Not expecting non-canonical code here. Bail out and wait.
2099       if (match(I->getOperand(0), m_Constant()) &&
2100           match(I->getOperand(1), m_Constant()))
2101         break;
2102 
2103       if ((match(I->getOperand(0), m_APFloat(C)) && C->isNegative()) ||
2104           (match(I->getOperand(1), m_APFloat(C)) && C->isNegative())) {
2105         Candidates.push_back(I);
2106         LLVM_DEBUG(dbgs() << "FDiv with negative constant: " << *I << '\n');
2107       }
2108       getNegatibleInsts(I->getOperand(0), Candidates);
2109       getNegatibleInsts(I->getOperand(1), Candidates);
2110       break;
2111     default:
2112       break;
2113   }
2114 }
2115 
2116 /// Given an fadd/fsub with an operand that is a one-use instruction
2117 /// (the fadd/fsub), try to change negative floating-point constants into
2118 /// positive constants to increase potential for reassociation and CSE.
2119 Instruction *ReassociatePass::canonicalizeNegFPConstantsForOp(Instruction *I,
2120                                                               Instruction *Op,
2121                                                               Value *OtherOp) {
2122   assert((I->getOpcode() == Instruction::FAdd ||
2123           I->getOpcode() == Instruction::FSub) && "Expected fadd/fsub");
2124 
2125   // Collect instructions with negative FP constants from the subtree that ends
2126   // in Op.
2127   SmallVector<Instruction *, 4> Candidates;
2128   getNegatibleInsts(Op, Candidates);
2129   if (Candidates.empty())
2130     return nullptr;
2131 
2132   // Don't canonicalize x + (-Constant * y) -> x - (Constant * y), if the
2133   // resulting subtract will be broken up later.  This can get us into an
2134   // infinite loop during reassociation.
2135   bool IsFSub = I->getOpcode() == Instruction::FSub;
2136   bool NeedsSubtract = !IsFSub && Candidates.size() % 2 == 1;
2137   if (NeedsSubtract && ShouldBreakUpSubtract(I))
2138     return nullptr;
2139 
2140   for (Instruction *Negatible : Candidates) {
2141     const APFloat *C;
2142     if (match(Negatible->getOperand(0), m_APFloat(C))) {
2143       assert(!match(Negatible->getOperand(1), m_Constant()) &&
2144              "Expecting only 1 constant operand");
2145       assert(C->isNegative() && "Expected negative FP constant");
2146       Negatible->setOperand(0, ConstantFP::get(Negatible->getType(), abs(*C)));
2147       MadeChange = true;
2148     }
2149     if (match(Negatible->getOperand(1), m_APFloat(C))) {
2150       assert(!match(Negatible->getOperand(0), m_Constant()) &&
2151              "Expecting only 1 constant operand");
2152       assert(C->isNegative() && "Expected negative FP constant");
2153       Negatible->setOperand(1, ConstantFP::get(Negatible->getType(), abs(*C)));
2154       MadeChange = true;
2155     }
2156   }
2157   assert(MadeChange == true && "Negative constant candidate was not changed");
2158 
2159   // Negations cancelled out.
2160   if (Candidates.size() % 2 == 0)
2161     return I;
2162 
2163   // Negate the final operand in the expression by flipping the opcode of this
2164   // fadd/fsub.
2165   assert(Candidates.size() % 2 == 1 && "Expected odd number");
2166   IRBuilder<> Builder(I);
2167   Value *NewInst = IsFSub ? Builder.CreateFAddFMF(OtherOp, Op, I)
2168                           : Builder.CreateFSubFMF(OtherOp, Op, I);
2169   I->replaceAllUsesWith(NewInst);
2170   RedoInsts.insert(I);
2171   return dyn_cast<Instruction>(NewInst);
2172 }
2173 
2174 /// Canonicalize expressions that contain a negative floating-point constant
2175 /// of the following form:
2176 ///   OtherOp + (subtree) -> OtherOp {+/-} (canonical subtree)
2177 ///   (subtree) + OtherOp -> OtherOp {+/-} (canonical subtree)
2178 ///   OtherOp - (subtree) -> OtherOp {+/-} (canonical subtree)
2179 ///
2180 /// The fadd/fsub opcode may be switched to allow folding a negation into the
2181 /// input instruction.
2182 Instruction *ReassociatePass::canonicalizeNegFPConstants(Instruction *I) {
2183   LLVM_DEBUG(dbgs() << "Combine negations for: " << *I << '\n');
2184   Value *X;
2185   Instruction *Op;
2186   if (match(I, m_FAdd(m_Value(X), m_OneUse(m_Instruction(Op)))))
2187     if (Instruction *R = canonicalizeNegFPConstantsForOp(I, Op, X))
2188       I = R;
2189   if (match(I, m_FAdd(m_OneUse(m_Instruction(Op)), m_Value(X))))
2190     if (Instruction *R = canonicalizeNegFPConstantsForOp(I, Op, X))
2191       I = R;
2192   if (match(I, m_FSub(m_Value(X), m_OneUse(m_Instruction(Op)))))
2193     if (Instruction *R = canonicalizeNegFPConstantsForOp(I, Op, X))
2194       I = R;
2195   return I;
2196 }
2197 
2198 /// Inspect and optimize the given instruction. Note that erasing
2199 /// instructions is not allowed.
2200 void ReassociatePass::OptimizeInst(Instruction *I) {
2201   // Only consider operations that we understand.
2202   if (!isa<UnaryOperator>(I) && !isa<BinaryOperator>(I))
2203     return;
2204 
2205   if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1)))
2206     // If an operand of this shift is a reassociable multiply, or if the shift
2207     // is used by a reassociable multiply or add, turn into a multiply.
2208     if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
2209         (I->hasOneUse() &&
2210          (isReassociableOp(I->user_back(), Instruction::Mul) ||
2211           isReassociableOp(I->user_back(), Instruction::Add)))) {
2212       Instruction *NI = ConvertShiftToMul(I);
2213       RedoInsts.insert(I);
2214       MadeChange = true;
2215       I = NI;
2216     }
2217 
2218   // Commute binary operators, to canonicalize the order of their operands.
2219   // This can potentially expose more CSE opportunities, and makes writing other
2220   // transformations simpler.
2221   if (I->isCommutative())
2222     canonicalizeOperands(I);
2223 
2224   // Canonicalize negative constants out of expressions.
2225   if (Instruction *Res = canonicalizeNegFPConstants(I))
2226     I = Res;
2227 
2228   // Don't optimize floating-point instructions unless they have the
2229   // appropriate FastMathFlags for reassociation enabled.
2230   if (isa<FPMathOperator>(I) && !hasFPAssociativeFlags(I))
2231     return;
2232 
2233   // Do not reassociate boolean (i1) expressions.  We want to preserve the
2234   // original order of evaluation for short-circuited comparisons that
2235   // SimplifyCFG has folded to AND/OR expressions.  If the expression
2236   // is not further optimized, it is likely to be transformed back to a
2237   // short-circuited form for code gen, and the source order may have been
2238   // optimized for the most likely conditions.
2239   if (I->getType()->isIntegerTy(1))
2240     return;
2241 
2242   // If this is a bitwise or instruction of operands
2243   // with no common bits set, convert it to X+Y.
2244   if (I->getOpcode() == Instruction::Or &&
2245       shouldConvertOrWithNoCommonBitsToAdd(I) && !isLoadCombineCandidate(I) &&
2246       haveNoCommonBitsSet(I->getOperand(0), I->getOperand(1),
2247                           I->getModule()->getDataLayout(), /*AC=*/nullptr, I,
2248                           /*DT=*/nullptr)) {
2249     Instruction *NI = convertOrWithNoCommonBitsToAdd(I);
2250     RedoInsts.insert(I);
2251     MadeChange = true;
2252     I = NI;
2253   }
2254 
2255   // If this is a subtract instruction which is not already in negate form,
2256   // see if we can convert it to X+-Y.
2257   if (I->getOpcode() == Instruction::Sub) {
2258     if (ShouldBreakUpSubtract(I)) {
2259       Instruction *NI = BreakUpSubtract(I, RedoInsts);
2260       RedoInsts.insert(I);
2261       MadeChange = true;
2262       I = NI;
2263     } else if (match(I, m_Neg(m_Value()))) {
2264       // Otherwise, this is a negation.  See if the operand is a multiply tree
2265       // and if this is not an inner node of a multiply tree.
2266       if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
2267           (!I->hasOneUse() ||
2268            !isReassociableOp(I->user_back(), Instruction::Mul))) {
2269         Instruction *NI = LowerNegateToMultiply(I);
2270         // If the negate was simplified, revisit the users to see if we can
2271         // reassociate further.
2272         for (User *U : NI->users()) {
2273           if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
2274             RedoInsts.insert(Tmp);
2275         }
2276         RedoInsts.insert(I);
2277         MadeChange = true;
2278         I = NI;
2279       }
2280     }
2281   } else if (I->getOpcode() == Instruction::FNeg ||
2282              I->getOpcode() == Instruction::FSub) {
2283     if (ShouldBreakUpSubtract(I)) {
2284       Instruction *NI = BreakUpSubtract(I, RedoInsts);
2285       RedoInsts.insert(I);
2286       MadeChange = true;
2287       I = NI;
2288     } else if (match(I, m_FNeg(m_Value()))) {
2289       // Otherwise, this is a negation.  See if the operand is a multiply tree
2290       // and if this is not an inner node of a multiply tree.
2291       Value *Op = isa<BinaryOperator>(I) ? I->getOperand(1) :
2292                                            I->getOperand(0);
2293       if (isReassociableOp(Op, Instruction::FMul) &&
2294           (!I->hasOneUse() ||
2295            !isReassociableOp(I->user_back(), Instruction::FMul))) {
2296         // If the negate was simplified, revisit the users to see if we can
2297         // reassociate further.
2298         Instruction *NI = LowerNegateToMultiply(I);
2299         for (User *U : NI->users()) {
2300           if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
2301             RedoInsts.insert(Tmp);
2302         }
2303         RedoInsts.insert(I);
2304         MadeChange = true;
2305         I = NI;
2306       }
2307     }
2308   }
2309 
2310   // If this instruction is an associative binary operator, process it.
2311   if (!I->isAssociative()) return;
2312   BinaryOperator *BO = cast<BinaryOperator>(I);
2313 
2314   // If this is an interior node of a reassociable tree, ignore it until we
2315   // get to the root of the tree, to avoid N^2 analysis.
2316   unsigned Opcode = BO->getOpcode();
2317   if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode) {
2318     // During the initial run we will get to the root of the tree.
2319     // But if we get here while we are redoing instructions, there is no
2320     // guarantee that the root will be visited. So Redo later
2321     if (BO->user_back() != BO &&
2322         BO->getParent() == BO->user_back()->getParent())
2323       RedoInsts.insert(BO->user_back());
2324     return;
2325   }
2326 
2327   // If this is an add tree that is used by a sub instruction, ignore it
2328   // until we process the subtract.
2329   if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
2330       cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub)
2331     return;
2332   if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd &&
2333       cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub)
2334     return;
2335 
2336   ReassociateExpression(BO);
2337 }
2338 
2339 void ReassociatePass::ReassociateExpression(BinaryOperator *I) {
2340   // First, walk the expression tree, linearizing the tree, collecting the
2341   // operand information.
2342   SmallVector<RepeatedValue, 8> Tree;
2343   MadeChange |= LinearizeExprTree(I, Tree, RedoInsts);
2344   SmallVector<ValueEntry, 8> Ops;
2345   Ops.reserve(Tree.size());
2346   for (const RepeatedValue &E : Tree)
2347     Ops.append(E.second.getZExtValue(), ValueEntry(getRank(E.first), E.first));
2348 
2349   LLVM_DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
2350 
2351   // Now that we have linearized the tree to a list and have gathered all of
2352   // the operands and their ranks, sort the operands by their rank.  Use a
2353   // stable_sort so that values with equal ranks will have their relative
2354   // positions maintained (and so the compiler is deterministic).  Note that
2355   // this sorts so that the highest ranking values end up at the beginning of
2356   // the vector.
2357   llvm::stable_sort(Ops);
2358 
2359   // Now that we have the expression tree in a convenient
2360   // sorted form, optimize it globally if possible.
2361   if (Value *V = OptimizeExpression(I, Ops)) {
2362     if (V == I)
2363       // Self-referential expression in unreachable code.
2364       return;
2365     // This expression tree simplified to something that isn't a tree,
2366     // eliminate it.
2367     LLVM_DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
2368     I->replaceAllUsesWith(V);
2369     if (Instruction *VI = dyn_cast<Instruction>(V))
2370       if (I->getDebugLoc())
2371         VI->setDebugLoc(I->getDebugLoc());
2372     RedoInsts.insert(I);
2373     ++NumAnnihil;
2374     return;
2375   }
2376 
2377   // We want to sink immediates as deeply as possible except in the case where
2378   // this is a multiply tree used only by an add, and the immediate is a -1.
2379   // In this case we reassociate to put the negation on the outside so that we
2380   // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
2381   if (I->hasOneUse()) {
2382     if (I->getOpcode() == Instruction::Mul &&
2383         cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add &&
2384         isa<ConstantInt>(Ops.back().Op) &&
2385         cast<ConstantInt>(Ops.back().Op)->isMinusOne()) {
2386       ValueEntry Tmp = Ops.pop_back_val();
2387       Ops.insert(Ops.begin(), Tmp);
2388     } else if (I->getOpcode() == Instruction::FMul &&
2389                cast<Instruction>(I->user_back())->getOpcode() ==
2390                    Instruction::FAdd &&
2391                isa<ConstantFP>(Ops.back().Op) &&
2392                cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) {
2393       ValueEntry Tmp = Ops.pop_back_val();
2394       Ops.insert(Ops.begin(), Tmp);
2395     }
2396   }
2397 
2398   LLVM_DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
2399 
2400   if (Ops.size() == 1) {
2401     if (Ops[0].Op == I)
2402       // Self-referential expression in unreachable code.
2403       return;
2404 
2405     // This expression tree simplified to something that isn't a tree,
2406     // eliminate it.
2407     I->replaceAllUsesWith(Ops[0].Op);
2408     if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
2409       OI->setDebugLoc(I->getDebugLoc());
2410     RedoInsts.insert(I);
2411     return;
2412   }
2413 
2414   if (Ops.size() > 2 && Ops.size() <= GlobalReassociateLimit) {
2415     // Find the pair with the highest count in the pairmap and move it to the
2416     // back of the list so that it can later be CSE'd.
2417     // example:
2418     //   a*b*c*d*e
2419     // if c*e is the most "popular" pair, we can express this as
2420     //   (((c*e)*d)*b)*a
2421     unsigned Max = 1;
2422     unsigned BestRank = 0;
2423     std::pair<unsigned, unsigned> BestPair;
2424     unsigned Idx = I->getOpcode() - Instruction::BinaryOpsBegin;
2425     for (unsigned i = 0; i < Ops.size() - 1; ++i)
2426       for (unsigned j = i + 1; j < Ops.size(); ++j) {
2427         unsigned Score = 0;
2428         Value *Op0 = Ops[i].Op;
2429         Value *Op1 = Ops[j].Op;
2430         if (std::less<Value *>()(Op1, Op0))
2431           std::swap(Op0, Op1);
2432         auto it = PairMap[Idx].find({Op0, Op1});
2433         if (it != PairMap[Idx].end()) {
2434           // Functions like BreakUpSubtract() can erase the Values we're using
2435           // as keys and create new Values after we built the PairMap. There's a
2436           // small chance that the new nodes can have the same address as
2437           // something already in the table. We shouldn't accumulate the stored
2438           // score in that case as it refers to the wrong Value.
2439           if (it->second.isValid())
2440             Score += it->second.Score;
2441         }
2442 
2443         unsigned MaxRank = std::max(Ops[i].Rank, Ops[j].Rank);
2444         if (Score > Max || (Score == Max && MaxRank < BestRank)) {
2445           BestPair = {i, j};
2446           Max = Score;
2447           BestRank = MaxRank;
2448         }
2449       }
2450     if (Max > 1) {
2451       auto Op0 = Ops[BestPair.first];
2452       auto Op1 = Ops[BestPair.second];
2453       Ops.erase(&Ops[BestPair.second]);
2454       Ops.erase(&Ops[BestPair.first]);
2455       Ops.push_back(Op0);
2456       Ops.push_back(Op1);
2457     }
2458   }
2459   // Now that we ordered and optimized the expressions, splat them back into
2460   // the expression tree, removing any unneeded nodes.
2461   RewriteExprTree(I, Ops);
2462 }
2463 
2464 void
2465 ReassociatePass::BuildPairMap(ReversePostOrderTraversal<Function *> &RPOT) {
2466   // Make a "pairmap" of how often each operand pair occurs.
2467   for (BasicBlock *BI : RPOT) {
2468     for (Instruction &I : *BI) {
2469       if (!I.isAssociative())
2470         continue;
2471 
2472       // Ignore nodes that aren't at the root of trees.
2473       if (I.hasOneUse() && I.user_back()->getOpcode() == I.getOpcode())
2474         continue;
2475 
2476       // Collect all operands in a single reassociable expression.
2477       // Since Reassociate has already been run once, we can assume things
2478       // are already canonical according to Reassociation's regime.
2479       SmallVector<Value *, 8> Worklist = { I.getOperand(0), I.getOperand(1) };
2480       SmallVector<Value *, 8> Ops;
2481       while (!Worklist.empty() && Ops.size() <= GlobalReassociateLimit) {
2482         Value *Op = Worklist.pop_back_val();
2483         Instruction *OpI = dyn_cast<Instruction>(Op);
2484         if (!OpI || OpI->getOpcode() != I.getOpcode() || !OpI->hasOneUse()) {
2485           Ops.push_back(Op);
2486           continue;
2487         }
2488         // Be paranoid about self-referencing expressions in unreachable code.
2489         if (OpI->getOperand(0) != OpI)
2490           Worklist.push_back(OpI->getOperand(0));
2491         if (OpI->getOperand(1) != OpI)
2492           Worklist.push_back(OpI->getOperand(1));
2493       }
2494       // Skip extremely long expressions.
2495       if (Ops.size() > GlobalReassociateLimit)
2496         continue;
2497 
2498       // Add all pairwise combinations of operands to the pair map.
2499       unsigned BinaryIdx = I.getOpcode() - Instruction::BinaryOpsBegin;
2500       SmallSet<std::pair<Value *, Value*>, 32> Visited;
2501       for (unsigned i = 0; i < Ops.size() - 1; ++i) {
2502         for (unsigned j = i + 1; j < Ops.size(); ++j) {
2503           // Canonicalize operand orderings.
2504           Value *Op0 = Ops[i];
2505           Value *Op1 = Ops[j];
2506           if (std::less<Value *>()(Op1, Op0))
2507             std::swap(Op0, Op1);
2508           if (!Visited.insert({Op0, Op1}).second)
2509             continue;
2510           auto res = PairMap[BinaryIdx].insert({{Op0, Op1}, {Op0, Op1, 1}});
2511           if (!res.second) {
2512             // If either key value has been erased then we've got the same
2513             // address by coincidence. That can't happen here because nothing is
2514             // erasing values but it can happen by the time we're querying the
2515             // map.
2516             assert(res.first->second.isValid() && "WeakVH invalidated");
2517             ++res.first->second.Score;
2518           }
2519         }
2520       }
2521     }
2522   }
2523 }
2524 
2525 PreservedAnalyses ReassociatePass::run(Function &F, FunctionAnalysisManager &) {
2526   // Get the functions basic blocks in Reverse Post Order. This order is used by
2527   // BuildRankMap to pre calculate ranks correctly. It also excludes dead basic
2528   // blocks (it has been seen that the analysis in this pass could hang when
2529   // analysing dead basic blocks).
2530   ReversePostOrderTraversal<Function *> RPOT(&F);
2531 
2532   // Calculate the rank map for F.
2533   BuildRankMap(F, RPOT);
2534 
2535   // Build the pair map before running reassociate.
2536   // Technically this would be more accurate if we did it after one round
2537   // of reassociation, but in practice it doesn't seem to help much on
2538   // real-world code, so don't waste the compile time running reassociate
2539   // twice.
2540   // If a user wants, they could expicitly run reassociate twice in their
2541   // pass pipeline for further potential gains.
2542   // It might also be possible to update the pair map during runtime, but the
2543   // overhead of that may be large if there's many reassociable chains.
2544   BuildPairMap(RPOT);
2545 
2546   MadeChange = false;
2547 
2548   // Traverse the same blocks that were analysed by BuildRankMap.
2549   for (BasicBlock *BI : RPOT) {
2550     assert(RankMap.count(&*BI) && "BB should be ranked.");
2551     // Optimize every instruction in the basic block.
2552     for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE;)
2553       if (isInstructionTriviallyDead(&*II)) {
2554         EraseInst(&*II++);
2555       } else {
2556         OptimizeInst(&*II);
2557         assert(II->getParent() == &*BI && "Moved to a different block!");
2558         ++II;
2559       }
2560 
2561     // Make a copy of all the instructions to be redone so we can remove dead
2562     // instructions.
2563     OrderedSet ToRedo(RedoInsts);
2564     // Iterate over all instructions to be reevaluated and remove trivially dead
2565     // instructions. If any operand of the trivially dead instruction becomes
2566     // dead mark it for deletion as well. Continue this process until all
2567     // trivially dead instructions have been removed.
2568     while (!ToRedo.empty()) {
2569       Instruction *I = ToRedo.pop_back_val();
2570       if (isInstructionTriviallyDead(I)) {
2571         RecursivelyEraseDeadInsts(I, ToRedo);
2572         MadeChange = true;
2573       }
2574     }
2575 
2576     // Now that we have removed dead instructions, we can reoptimize the
2577     // remaining instructions.
2578     while (!RedoInsts.empty()) {
2579       Instruction *I = RedoInsts.front();
2580       RedoInsts.erase(RedoInsts.begin());
2581       if (isInstructionTriviallyDead(I))
2582         EraseInst(I);
2583       else
2584         OptimizeInst(I);
2585     }
2586   }
2587 
2588   // We are done with the rank map and pair map.
2589   RankMap.clear();
2590   ValueRankMap.clear();
2591   for (auto &Entry : PairMap)
2592     Entry.clear();
2593 
2594   if (MadeChange) {
2595     PreservedAnalyses PA;
2596     PA.preserveSet<CFGAnalyses>();
2597     return PA;
2598   }
2599 
2600   return PreservedAnalyses::all();
2601 }
2602 
2603 namespace {
2604 
2605   class ReassociateLegacyPass : public FunctionPass {
2606     ReassociatePass Impl;
2607 
2608   public:
2609     static char ID; // Pass identification, replacement for typeid
2610 
2611     ReassociateLegacyPass() : FunctionPass(ID) {
2612       initializeReassociateLegacyPassPass(*PassRegistry::getPassRegistry());
2613     }
2614 
2615     bool runOnFunction(Function &F) override {
2616       if (skipFunction(F))
2617         return false;
2618 
2619       FunctionAnalysisManager DummyFAM;
2620       auto PA = Impl.run(F, DummyFAM);
2621       return !PA.areAllPreserved();
2622     }
2623 
2624     void getAnalysisUsage(AnalysisUsage &AU) const override {
2625       AU.setPreservesCFG();
2626       AU.addPreserved<AAResultsWrapperPass>();
2627       AU.addPreserved<BasicAAWrapperPass>();
2628       AU.addPreserved<GlobalsAAWrapperPass>();
2629     }
2630   };
2631 
2632 } // end anonymous namespace
2633 
2634 char ReassociateLegacyPass::ID = 0;
2635 
2636 INITIALIZE_PASS(ReassociateLegacyPass, "reassociate",
2637                 "Reassociate expressions", false, false)
2638 
2639 // Public interface to the Reassociate pass
2640 FunctionPass *llvm::createReassociatePass() {
2641   return new ReassociateLegacyPass();
2642 }
2643