1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Rewrite call/invoke instructions so as to make potential relocations
10 // performed by the garbage collector explicit in the IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/RewriteStatepointsForGC.h"
15 
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/MapVector.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/iterator_range.h"
28 #include "llvm/Analysis/DomTreeUpdater.h"
29 #include "llvm/Analysis/TargetLibraryInfo.h"
30 #include "llvm/Analysis/TargetTransformInfo.h"
31 #include "llvm/IR/Argument.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/BasicBlock.h"
34 #include "llvm/IR/CallingConv.h"
35 #include "llvm/IR/Constant.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/DataLayout.h"
38 #include "llvm/IR/DerivedTypes.h"
39 #include "llvm/IR/Dominators.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/IRBuilder.h"
42 #include "llvm/IR/InstIterator.h"
43 #include "llvm/IR/InstrTypes.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Intrinsics.h"
48 #include "llvm/IR/LLVMContext.h"
49 #include "llvm/IR/MDBuilder.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/IR/Statepoint.h"
53 #include "llvm/IR/Type.h"
54 #include "llvm/IR/User.h"
55 #include "llvm/IR/Value.h"
56 #include "llvm/IR/ValueHandle.h"
57 #include "llvm/InitializePasses.h"
58 #include "llvm/Pass.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Compiler.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/raw_ostream.h"
65 #include "llvm/Transforms/Scalar.h"
66 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
67 #include "llvm/Transforms/Utils/Local.h"
68 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
69 #include <algorithm>
70 #include <cassert>
71 #include <cstddef>
72 #include <cstdint>
73 #include <iterator>
74 #include <set>
75 #include <string>
76 #include <utility>
77 #include <vector>
78 
79 #define DEBUG_TYPE "rewrite-statepoints-for-gc"
80 
81 using namespace llvm;
82 
83 // Print the liveset found at the insert location
84 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden,
85                                   cl::init(false));
86 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden,
87                                       cl::init(false));
88 
89 // Print out the base pointers for debugging
90 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden,
91                                        cl::init(false));
92 
93 // Cost threshold measuring when it is profitable to rematerialize value instead
94 // of relocating it
95 static cl::opt<unsigned>
96 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden,
97                            cl::init(6));
98 
99 #ifdef EXPENSIVE_CHECKS
100 static bool ClobberNonLive = true;
101 #else
102 static bool ClobberNonLive = false;
103 #endif
104 
105 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live",
106                                                   cl::location(ClobberNonLive),
107                                                   cl::Hidden);
108 
109 static cl::opt<bool>
110     AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info",
111                                    cl::Hidden, cl::init(true));
112 
113 /// The IR fed into RewriteStatepointsForGC may have had attributes and
114 /// metadata implying dereferenceability that are no longer valid/correct after
115 /// RewriteStatepointsForGC has run. This is because semantically, after
116 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire
117 /// heap. stripNonValidData (conservatively) restores
118 /// correctness by erasing all attributes in the module that externally imply
119 /// dereferenceability. Similar reasoning also applies to the noalias
120 /// attributes and metadata. gc.statepoint can touch the entire heap including
121 /// noalias objects.
122 /// Apart from attributes and metadata, we also remove instructions that imply
123 /// constant physical memory: llvm.invariant.start.
124 static void stripNonValidData(Module &M);
125 
126 static bool shouldRewriteStatepointsIn(Function &F);
127 
128 PreservedAnalyses RewriteStatepointsForGC::run(Module &M,
129                                                ModuleAnalysisManager &AM) {
130   bool Changed = false;
131   auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
132   for (Function &F : M) {
133     // Nothing to do for declarations.
134     if (F.isDeclaration() || F.empty())
135       continue;
136 
137     // Policy choice says not to rewrite - the most common reason is that we're
138     // compiling code without a GCStrategy.
139     if (!shouldRewriteStatepointsIn(F))
140       continue;
141 
142     auto &DT = FAM.getResult<DominatorTreeAnalysis>(F);
143     auto &TTI = FAM.getResult<TargetIRAnalysis>(F);
144     auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F);
145     Changed |= runOnFunction(F, DT, TTI, TLI);
146   }
147   if (!Changed)
148     return PreservedAnalyses::all();
149 
150   // stripNonValidData asserts that shouldRewriteStatepointsIn
151   // returns true for at least one function in the module.  Since at least
152   // one function changed, we know that the precondition is satisfied.
153   stripNonValidData(M);
154 
155   PreservedAnalyses PA;
156   PA.preserve<TargetIRAnalysis>();
157   PA.preserve<TargetLibraryAnalysis>();
158   return PA;
159 }
160 
161 namespace {
162 
163 class RewriteStatepointsForGCLegacyPass : public ModulePass {
164   RewriteStatepointsForGC Impl;
165 
166 public:
167   static char ID; // Pass identification, replacement for typeid
168 
169   RewriteStatepointsForGCLegacyPass() : ModulePass(ID), Impl() {
170     initializeRewriteStatepointsForGCLegacyPassPass(
171         *PassRegistry::getPassRegistry());
172   }
173 
174   bool runOnModule(Module &M) override {
175     bool Changed = false;
176     for (Function &F : M) {
177       // Nothing to do for declarations.
178       if (F.isDeclaration() || F.empty())
179         continue;
180 
181       // Policy choice says not to rewrite - the most common reason is that
182       // we're compiling code without a GCStrategy.
183       if (!shouldRewriteStatepointsIn(F))
184         continue;
185 
186       TargetTransformInfo &TTI =
187           getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
188       const TargetLibraryInfo &TLI =
189           getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
190       auto &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
191 
192       Changed |= Impl.runOnFunction(F, DT, TTI, TLI);
193     }
194 
195     if (!Changed)
196       return false;
197 
198     // stripNonValidData asserts that shouldRewriteStatepointsIn
199     // returns true for at least one function in the module.  Since at least
200     // one function changed, we know that the precondition is satisfied.
201     stripNonValidData(M);
202     return true;
203   }
204 
205   void getAnalysisUsage(AnalysisUsage &AU) const override {
206     // We add and rewrite a bunch of instructions, but don't really do much
207     // else.  We could in theory preserve a lot more analyses here.
208     AU.addRequired<DominatorTreeWrapperPass>();
209     AU.addRequired<TargetTransformInfoWrapperPass>();
210     AU.addRequired<TargetLibraryInfoWrapperPass>();
211   }
212 };
213 
214 } // end anonymous namespace
215 
216 char RewriteStatepointsForGCLegacyPass::ID = 0;
217 
218 ModulePass *llvm::createRewriteStatepointsForGCLegacyPass() {
219   return new RewriteStatepointsForGCLegacyPass();
220 }
221 
222 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGCLegacyPass,
223                       "rewrite-statepoints-for-gc",
224                       "Make relocations explicit at statepoints", false, false)
225 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
226 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
227 INITIALIZE_PASS_END(RewriteStatepointsForGCLegacyPass,
228                     "rewrite-statepoints-for-gc",
229                     "Make relocations explicit at statepoints", false, false)
230 
231 namespace {
232 
233 struct GCPtrLivenessData {
234   /// Values defined in this block.
235   MapVector<BasicBlock *, SetVector<Value *>> KillSet;
236 
237   /// Values used in this block (and thus live); does not included values
238   /// killed within this block.
239   MapVector<BasicBlock *, SetVector<Value *>> LiveSet;
240 
241   /// Values live into this basic block (i.e. used by any
242   /// instruction in this basic block or ones reachable from here)
243   MapVector<BasicBlock *, SetVector<Value *>> LiveIn;
244 
245   /// Values live out of this basic block (i.e. live into
246   /// any successor block)
247   MapVector<BasicBlock *, SetVector<Value *>> LiveOut;
248 };
249 
250 // The type of the internal cache used inside the findBasePointers family
251 // of functions.  From the callers perspective, this is an opaque type and
252 // should not be inspected.
253 //
254 // In the actual implementation this caches two relations:
255 // - The base relation itself (i.e. this pointer is based on that one)
256 // - The base defining value relation (i.e. before base_phi insertion)
257 // Generally, after the execution of a full findBasePointer call, only the
258 // base relation will remain.  Internally, we add a mixture of the two
259 // types, then update all the second type to the first type
260 using DefiningValueMapTy = MapVector<Value *, Value *>;
261 using StatepointLiveSetTy = SetVector<Value *>;
262 using RematerializedValueMapTy =
263     MapVector<AssertingVH<Instruction>, AssertingVH<Value>>;
264 
265 struct PartiallyConstructedSafepointRecord {
266   /// The set of values known to be live across this safepoint
267   StatepointLiveSetTy LiveSet;
268 
269   /// Mapping from live pointers to a base-defining-value
270   MapVector<Value *, Value *> PointerToBase;
271 
272   /// The *new* gc.statepoint instruction itself.  This produces the token
273   /// that normal path gc.relocates and the gc.result are tied to.
274   Instruction *StatepointToken;
275 
276   /// Instruction to which exceptional gc relocates are attached
277   /// Makes it easier to iterate through them during relocationViaAlloca.
278   Instruction *UnwindToken;
279 
280   /// Record live values we are rematerialized instead of relocating.
281   /// They are not included into 'LiveSet' field.
282   /// Maps rematerialized copy to it's original value.
283   RematerializedValueMapTy RematerializedValues;
284 };
285 
286 } // end anonymous namespace
287 
288 static ArrayRef<Use> GetDeoptBundleOperands(const CallBase *Call) {
289   Optional<OperandBundleUse> DeoptBundle =
290       Call->getOperandBundle(LLVMContext::OB_deopt);
291 
292   if (!DeoptBundle.hasValue()) {
293     assert(AllowStatepointWithNoDeoptInfo &&
294            "Found non-leaf call without deopt info!");
295     return None;
296   }
297 
298   return DeoptBundle.getValue().Inputs;
299 }
300 
301 /// Compute the live-in set for every basic block in the function
302 static void computeLiveInValues(DominatorTree &DT, Function &F,
303                                 GCPtrLivenessData &Data);
304 
305 /// Given results from the dataflow liveness computation, find the set of live
306 /// Values at a particular instruction.
307 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data,
308                               StatepointLiveSetTy &out);
309 
310 // TODO: Once we can get to the GCStrategy, this becomes
311 // Optional<bool> isGCManagedPointer(const Type *Ty) const override {
312 
313 static bool isGCPointerType(Type *T) {
314   if (auto *PT = dyn_cast<PointerType>(T))
315     // For the sake of this example GC, we arbitrarily pick addrspace(1) as our
316     // GC managed heap.  We know that a pointer into this heap needs to be
317     // updated and that no other pointer does.
318     return PT->getAddressSpace() == 1;
319   return false;
320 }
321 
322 // Return true if this type is one which a) is a gc pointer or contains a GC
323 // pointer and b) is of a type this code expects to encounter as a live value.
324 // (The insertion code will assert that a type which matches (a) and not (b)
325 // is not encountered.)
326 static bool isHandledGCPointerType(Type *T) {
327   // We fully support gc pointers
328   if (isGCPointerType(T))
329     return true;
330   // We partially support vectors of gc pointers. The code will assert if it
331   // can't handle something.
332   if (auto VT = dyn_cast<VectorType>(T))
333     if (isGCPointerType(VT->getElementType()))
334       return true;
335   return false;
336 }
337 
338 #ifndef NDEBUG
339 /// Returns true if this type contains a gc pointer whether we know how to
340 /// handle that type or not.
341 static bool containsGCPtrType(Type *Ty) {
342   if (isGCPointerType(Ty))
343     return true;
344   if (VectorType *VT = dyn_cast<VectorType>(Ty))
345     return isGCPointerType(VT->getScalarType());
346   if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
347     return containsGCPtrType(AT->getElementType());
348   if (StructType *ST = dyn_cast<StructType>(Ty))
349     return llvm::any_of(ST->elements(), containsGCPtrType);
350   return false;
351 }
352 
353 // Returns true if this is a type which a) is a gc pointer or contains a GC
354 // pointer and b) is of a type which the code doesn't expect (i.e. first class
355 // aggregates).  Used to trip assertions.
356 static bool isUnhandledGCPointerType(Type *Ty) {
357   return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty);
358 }
359 #endif
360 
361 // Return the name of the value suffixed with the provided value, or if the
362 // value didn't have a name, the default value specified.
363 static std::string suffixed_name_or(Value *V, StringRef Suffix,
364                                     StringRef DefaultName) {
365   return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str();
366 }
367 
368 // Conservatively identifies any definitions which might be live at the
369 // given instruction. The  analysis is performed immediately before the
370 // given instruction. Values defined by that instruction are not considered
371 // live.  Values used by that instruction are considered live.
372 static void analyzeParsePointLiveness(
373     DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData, CallBase *Call,
374     PartiallyConstructedSafepointRecord &Result) {
375   StatepointLiveSetTy LiveSet;
376   findLiveSetAtInst(Call, OriginalLivenessData, LiveSet);
377 
378   if (PrintLiveSet) {
379     dbgs() << "Live Variables:\n";
380     for (Value *V : LiveSet)
381       dbgs() << " " << V->getName() << " " << *V << "\n";
382   }
383   if (PrintLiveSetSize) {
384     dbgs() << "Safepoint For: " << Call->getCalledValue()->getName() << "\n";
385     dbgs() << "Number live values: " << LiveSet.size() << "\n";
386   }
387   Result.LiveSet = LiveSet;
388 }
389 
390 static bool isKnownBaseResult(Value *V);
391 
392 namespace {
393 
394 /// A single base defining value - An immediate base defining value for an
395 /// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'.
396 /// For instructions which have multiple pointer [vector] inputs or that
397 /// transition between vector and scalar types, there is no immediate base
398 /// defining value.  The 'base defining value' for 'Def' is the transitive
399 /// closure of this relation stopping at the first instruction which has no
400 /// immediate base defining value.  The b.d.v. might itself be a base pointer,
401 /// but it can also be an arbitrary derived pointer.
402 struct BaseDefiningValueResult {
403   /// Contains the value which is the base defining value.
404   Value * const BDV;
405 
406   /// True if the base defining value is also known to be an actual base
407   /// pointer.
408   const bool IsKnownBase;
409 
410   BaseDefiningValueResult(Value *BDV, bool IsKnownBase)
411     : BDV(BDV), IsKnownBase(IsKnownBase) {
412 #ifndef NDEBUG
413     // Check consistency between new and old means of checking whether a BDV is
414     // a base.
415     bool MustBeBase = isKnownBaseResult(BDV);
416     assert(!MustBeBase || MustBeBase == IsKnownBase);
417 #endif
418   }
419 };
420 
421 } // end anonymous namespace
422 
423 static BaseDefiningValueResult findBaseDefiningValue(Value *I);
424 
425 /// Return a base defining value for the 'Index' element of the given vector
426 /// instruction 'I'.  If Index is null, returns a BDV for the entire vector
427 /// 'I'.  As an optimization, this method will try to determine when the
428 /// element is known to already be a base pointer.  If this can be established,
429 /// the second value in the returned pair will be true.  Note that either a
430 /// vector or a pointer typed value can be returned.  For the former, the
431 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'.
432 /// If the later, the return pointer is a BDV (or possibly a base) for the
433 /// particular element in 'I'.
434 static BaseDefiningValueResult
435 findBaseDefiningValueOfVector(Value *I) {
436   // Each case parallels findBaseDefiningValue below, see that code for
437   // detailed motivation.
438 
439   if (isa<Argument>(I))
440     // An incoming argument to the function is a base pointer
441     return BaseDefiningValueResult(I, true);
442 
443   if (isa<Constant>(I))
444     // Base of constant vector consists only of constant null pointers.
445     // For reasoning see similar case inside 'findBaseDefiningValue' function.
446     return BaseDefiningValueResult(ConstantAggregateZero::get(I->getType()),
447                                    true);
448 
449   if (isa<LoadInst>(I))
450     return BaseDefiningValueResult(I, true);
451 
452   if (isa<InsertElementInst>(I))
453     // We don't know whether this vector contains entirely base pointers or
454     // not.  To be conservatively correct, we treat it as a BDV and will
455     // duplicate code as needed to construct a parallel vector of bases.
456     return BaseDefiningValueResult(I, false);
457 
458   if (isa<ShuffleVectorInst>(I))
459     // We don't know whether this vector contains entirely base pointers or
460     // not.  To be conservatively correct, we treat it as a BDV and will
461     // duplicate code as needed to construct a parallel vector of bases.
462     // TODO: There a number of local optimizations which could be applied here
463     // for particular sufflevector patterns.
464     return BaseDefiningValueResult(I, false);
465 
466   // The behavior of getelementptr instructions is the same for vector and
467   // non-vector data types.
468   if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
469     return findBaseDefiningValue(GEP->getPointerOperand());
470 
471   // If the pointer comes through a bitcast of a vector of pointers to
472   // a vector of another type of pointer, then look through the bitcast
473   if (auto *BC = dyn_cast<BitCastInst>(I))
474     return findBaseDefiningValue(BC->getOperand(0));
475 
476   // We assume that functions in the source language only return base
477   // pointers.  This should probably be generalized via attributes to support
478   // both source language and internal functions.
479   if (isa<CallInst>(I) || isa<InvokeInst>(I))
480     return BaseDefiningValueResult(I, true);
481 
482   // A PHI or Select is a base defining value.  The outer findBasePointer
483   // algorithm is responsible for constructing a base value for this BDV.
484   assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
485          "unknown vector instruction - no base found for vector element");
486   return BaseDefiningValueResult(I, false);
487 }
488 
489 /// Helper function for findBasePointer - Will return a value which either a)
490 /// defines the base pointer for the input, b) blocks the simple search
491 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change
492 /// from pointer to vector type or back.
493 static BaseDefiningValueResult findBaseDefiningValue(Value *I) {
494   assert(I->getType()->isPtrOrPtrVectorTy() &&
495          "Illegal to ask for the base pointer of a non-pointer type");
496 
497   if (I->getType()->isVectorTy())
498     return findBaseDefiningValueOfVector(I);
499 
500   if (isa<Argument>(I))
501     // An incoming argument to the function is a base pointer
502     // We should have never reached here if this argument isn't an gc value
503     return BaseDefiningValueResult(I, true);
504 
505   if (isa<Constant>(I)) {
506     // We assume that objects with a constant base (e.g. a global) can't move
507     // and don't need to be reported to the collector because they are always
508     // live. Besides global references, all kinds of constants (e.g. undef,
509     // constant expressions, null pointers) can be introduced by the inliner or
510     // the optimizer, especially on dynamically dead paths.
511     // Here we treat all of them as having single null base. By doing this we
512     // trying to avoid problems reporting various conflicts in a form of
513     // "phi (const1, const2)" or "phi (const, regular gc ptr)".
514     // See constant.ll file for relevant test cases.
515 
516     return BaseDefiningValueResult(
517         ConstantPointerNull::get(cast<PointerType>(I->getType())), true);
518   }
519 
520   if (CastInst *CI = dyn_cast<CastInst>(I)) {
521     Value *Def = CI->stripPointerCasts();
522     // If stripping pointer casts changes the address space there is an
523     // addrspacecast in between.
524     assert(cast<PointerType>(Def->getType())->getAddressSpace() ==
525                cast<PointerType>(CI->getType())->getAddressSpace() &&
526            "unsupported addrspacecast");
527     // If we find a cast instruction here, it means we've found a cast which is
528     // not simply a pointer cast (i.e. an inttoptr).  We don't know how to
529     // handle int->ptr conversion.
530     assert(!isa<CastInst>(Def) && "shouldn't find another cast here");
531     return findBaseDefiningValue(Def);
532   }
533 
534   if (isa<LoadInst>(I))
535     // The value loaded is an gc base itself
536     return BaseDefiningValueResult(I, true);
537 
538   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I))
539     // The base of this GEP is the base
540     return findBaseDefiningValue(GEP->getPointerOperand());
541 
542   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
543     switch (II->getIntrinsicID()) {
544     default:
545       // fall through to general call handling
546       break;
547     case Intrinsic::experimental_gc_statepoint:
548       llvm_unreachable("statepoints don't produce pointers");
549     case Intrinsic::experimental_gc_relocate:
550       // Rerunning safepoint insertion after safepoints are already
551       // inserted is not supported.  It could probably be made to work,
552       // but why are you doing this?  There's no good reason.
553       llvm_unreachable("repeat safepoint insertion is not supported");
554     case Intrinsic::gcroot:
555       // Currently, this mechanism hasn't been extended to work with gcroot.
556       // There's no reason it couldn't be, but I haven't thought about the
557       // implications much.
558       llvm_unreachable(
559           "interaction with the gcroot mechanism is not supported");
560     }
561   }
562   // We assume that functions in the source language only return base
563   // pointers.  This should probably be generalized via attributes to support
564   // both source language and internal functions.
565   if (isa<CallInst>(I) || isa<InvokeInst>(I))
566     return BaseDefiningValueResult(I, true);
567 
568   // TODO: I have absolutely no idea how to implement this part yet.  It's not
569   // necessarily hard, I just haven't really looked at it yet.
570   assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented");
571 
572   if (isa<AtomicCmpXchgInst>(I))
573     // A CAS is effectively a atomic store and load combined under a
574     // predicate.  From the perspective of base pointers, we just treat it
575     // like a load.
576     return BaseDefiningValueResult(I, true);
577 
578   assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are "
579                                    "binary ops which don't apply to pointers");
580 
581   // The aggregate ops.  Aggregates can either be in the heap or on the
582   // stack, but in either case, this is simply a field load.  As a result,
583   // this is a defining definition of the base just like a load is.
584   if (isa<ExtractValueInst>(I))
585     return BaseDefiningValueResult(I, true);
586 
587   // We should never see an insert vector since that would require we be
588   // tracing back a struct value not a pointer value.
589   assert(!isa<InsertValueInst>(I) &&
590          "Base pointer for a struct is meaningless");
591 
592   // An extractelement produces a base result exactly when it's input does.
593   // We may need to insert a parallel instruction to extract the appropriate
594   // element out of the base vector corresponding to the input. Given this,
595   // it's analogous to the phi and select case even though it's not a merge.
596   if (isa<ExtractElementInst>(I))
597     // Note: There a lot of obvious peephole cases here.  This are deliberately
598     // handled after the main base pointer inference algorithm to make writing
599     // test cases to exercise that code easier.
600     return BaseDefiningValueResult(I, false);
601 
602   // The last two cases here don't return a base pointer.  Instead, they
603   // return a value which dynamically selects from among several base
604   // derived pointers (each with it's own base potentially).  It's the job of
605   // the caller to resolve these.
606   assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
607          "missing instruction case in findBaseDefiningValing");
608   return BaseDefiningValueResult(I, false);
609 }
610 
611 /// Returns the base defining value for this value.
612 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) {
613   Value *&Cached = Cache[I];
614   if (!Cached) {
615     Cached = findBaseDefiningValue(I).BDV;
616     LLVM_DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> "
617                       << Cached->getName() << "\n");
618   }
619   assert(Cache[I] != nullptr);
620   return Cached;
621 }
622 
623 /// Return a base pointer for this value if known.  Otherwise, return it's
624 /// base defining value.
625 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) {
626   Value *Def = findBaseDefiningValueCached(I, Cache);
627   auto Found = Cache.find(Def);
628   if (Found != Cache.end()) {
629     // Either a base-of relation, or a self reference.  Caller must check.
630     return Found->second;
631   }
632   // Only a BDV available
633   return Def;
634 }
635 
636 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV,
637 /// is it known to be a base pointer?  Or do we need to continue searching.
638 static bool isKnownBaseResult(Value *V) {
639   if (!isa<PHINode>(V) && !isa<SelectInst>(V) &&
640       !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) &&
641       !isa<ShuffleVectorInst>(V)) {
642     // no recursion possible
643     return true;
644   }
645   if (isa<Instruction>(V) &&
646       cast<Instruction>(V)->getMetadata("is_base_value")) {
647     // This is a previously inserted base phi or select.  We know
648     // that this is a base value.
649     return true;
650   }
651 
652   // We need to keep searching
653   return false;
654 }
655 
656 namespace {
657 
658 /// Models the state of a single base defining value in the findBasePointer
659 /// algorithm for determining where a new instruction is needed to propagate
660 /// the base of this BDV.
661 class BDVState {
662 public:
663   enum Status { Unknown, Base, Conflict };
664 
665   BDVState() : BaseValue(nullptr) {}
666 
667   explicit BDVState(Status Status, Value *BaseValue = nullptr)
668       : Status(Status), BaseValue(BaseValue) {
669     assert(Status != Base || BaseValue);
670   }
671 
672   explicit BDVState(Value *BaseValue) : Status(Base), BaseValue(BaseValue) {}
673 
674   Status getStatus() const { return Status; }
675   Value *getBaseValue() const { return BaseValue; }
676 
677   bool isBase() const { return getStatus() == Base; }
678   bool isUnknown() const { return getStatus() == Unknown; }
679   bool isConflict() const { return getStatus() == Conflict; }
680 
681   bool operator==(const BDVState &Other) const {
682     return BaseValue == Other.BaseValue && Status == Other.Status;
683   }
684 
685   bool operator!=(const BDVState &other) const { return !(*this == other); }
686 
687   LLVM_DUMP_METHOD
688   void dump() const {
689     print(dbgs());
690     dbgs() << '\n';
691   }
692 
693   void print(raw_ostream &OS) const {
694     switch (getStatus()) {
695     case Unknown:
696       OS << "U";
697       break;
698     case Base:
699       OS << "B";
700       break;
701     case Conflict:
702       OS << "C";
703       break;
704     }
705     OS << " (" << getBaseValue() << " - "
706        << (getBaseValue() ? getBaseValue()->getName() : "nullptr") << "): ";
707   }
708 
709 private:
710   Status Status = Unknown;
711   AssertingVH<Value> BaseValue; // Non-null only if Status == Base.
712 };
713 
714 } // end anonymous namespace
715 
716 #ifndef NDEBUG
717 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) {
718   State.print(OS);
719   return OS;
720 }
721 #endif
722 
723 static BDVState meetBDVStateImpl(const BDVState &LHS, const BDVState &RHS) {
724   switch (LHS.getStatus()) {
725   case BDVState::Unknown:
726     return RHS;
727 
728   case BDVState::Base:
729     assert(LHS.getBaseValue() && "can't be null");
730     if (RHS.isUnknown())
731       return LHS;
732 
733     if (RHS.isBase()) {
734       if (LHS.getBaseValue() == RHS.getBaseValue()) {
735         assert(LHS == RHS && "equality broken!");
736         return LHS;
737       }
738       return BDVState(BDVState::Conflict);
739     }
740     assert(RHS.isConflict() && "only three states!");
741     return BDVState(BDVState::Conflict);
742 
743   case BDVState::Conflict:
744     return LHS;
745   }
746   llvm_unreachable("only three states!");
747 }
748 
749 // Values of type BDVState form a lattice, and this function implements the meet
750 // operation.
751 static BDVState meetBDVState(const BDVState &LHS, const BDVState &RHS) {
752   BDVState Result = meetBDVStateImpl(LHS, RHS);
753   assert(Result == meetBDVStateImpl(RHS, LHS) &&
754          "Math is wrong: meet does not commute!");
755   return Result;
756 }
757 
758 /// For a given value or instruction, figure out what base ptr its derived from.
759 /// For gc objects, this is simply itself.  On success, returns a value which is
760 /// the base pointer.  (This is reliable and can be used for relocation.)  On
761 /// failure, returns nullptr.
762 static Value *findBasePointer(Value *I, DefiningValueMapTy &Cache) {
763   Value *Def = findBaseOrBDV(I, Cache);
764 
765   if (isKnownBaseResult(Def))
766     return Def;
767 
768   // Here's the rough algorithm:
769   // - For every SSA value, construct a mapping to either an actual base
770   //   pointer or a PHI which obscures the base pointer.
771   // - Construct a mapping from PHI to unknown TOP state.  Use an
772   //   optimistic algorithm to propagate base pointer information.  Lattice
773   //   looks like:
774   //   UNKNOWN
775   //   b1 b2 b3 b4
776   //   CONFLICT
777   //   When algorithm terminates, all PHIs will either have a single concrete
778   //   base or be in a conflict state.
779   // - For every conflict, insert a dummy PHI node without arguments.  Add
780   //   these to the base[Instruction] = BasePtr mapping.  For every
781   //   non-conflict, add the actual base.
782   //  - For every conflict, add arguments for the base[a] of each input
783   //   arguments.
784   //
785   // Note: A simpler form of this would be to add the conflict form of all
786   // PHIs without running the optimistic algorithm.  This would be
787   // analogous to pessimistic data flow and would likely lead to an
788   // overall worse solution.
789 
790 #ifndef NDEBUG
791   auto isExpectedBDVType = [](Value *BDV) {
792     return isa<PHINode>(BDV) || isa<SelectInst>(BDV) ||
793            isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV) ||
794            isa<ShuffleVectorInst>(BDV);
795   };
796 #endif
797 
798   // Once populated, will contain a mapping from each potentially non-base BDV
799   // to a lattice value (described above) which corresponds to that BDV.
800   // We use the order of insertion (DFS over the def/use graph) to provide a
801   // stable deterministic ordering for visiting DenseMaps (which are unordered)
802   // below.  This is important for deterministic compilation.
803   MapVector<Value *, BDVState> States;
804 
805   // Recursively fill in all base defining values reachable from the initial
806   // one for which we don't already know a definite base value for
807   /* scope */ {
808     SmallVector<Value*, 16> Worklist;
809     Worklist.push_back(Def);
810     States.insert({Def, BDVState()});
811     while (!Worklist.empty()) {
812       Value *Current = Worklist.pop_back_val();
813       assert(!isKnownBaseResult(Current) && "why did it get added?");
814 
815       auto visitIncomingValue = [&](Value *InVal) {
816         Value *Base = findBaseOrBDV(InVal, Cache);
817         if (isKnownBaseResult(Base))
818           // Known bases won't need new instructions introduced and can be
819           // ignored safely
820           return;
821         assert(isExpectedBDVType(Base) && "the only non-base values "
822                "we see should be base defining values");
823         if (States.insert(std::make_pair(Base, BDVState())).second)
824           Worklist.push_back(Base);
825       };
826       if (PHINode *PN = dyn_cast<PHINode>(Current)) {
827         for (Value *InVal : PN->incoming_values())
828           visitIncomingValue(InVal);
829       } else if (SelectInst *SI = dyn_cast<SelectInst>(Current)) {
830         visitIncomingValue(SI->getTrueValue());
831         visitIncomingValue(SI->getFalseValue());
832       } else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) {
833         visitIncomingValue(EE->getVectorOperand());
834       } else if (auto *IE = dyn_cast<InsertElementInst>(Current)) {
835         visitIncomingValue(IE->getOperand(0)); // vector operand
836         visitIncomingValue(IE->getOperand(1)); // scalar operand
837       } else if (auto *SV = dyn_cast<ShuffleVectorInst>(Current)) {
838         visitIncomingValue(SV->getOperand(0));
839         visitIncomingValue(SV->getOperand(1));
840       }
841       else {
842         llvm_unreachable("Unimplemented instruction case");
843       }
844     }
845   }
846 
847 #ifndef NDEBUG
848   LLVM_DEBUG(dbgs() << "States after initialization:\n");
849   for (auto Pair : States) {
850     LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
851   }
852 #endif
853 
854   // Return a phi state for a base defining value.  We'll generate a new
855   // base state for known bases and expect to find a cached state otherwise.
856   auto getStateForBDV = [&](Value *baseValue) {
857     if (isKnownBaseResult(baseValue))
858       return BDVState(baseValue);
859     auto I = States.find(baseValue);
860     assert(I != States.end() && "lookup failed!");
861     return I->second;
862   };
863 
864   bool Progress = true;
865   while (Progress) {
866 #ifndef NDEBUG
867     const size_t OldSize = States.size();
868 #endif
869     Progress = false;
870     // We're only changing values in this loop, thus safe to keep iterators.
871     // Since this is computing a fixed point, the order of visit does not
872     // effect the result.  TODO: We could use a worklist here and make this run
873     // much faster.
874     for (auto Pair : States) {
875       Value *BDV = Pair.first;
876       assert(!isKnownBaseResult(BDV) && "why did it get added?");
877 
878       // Given an input value for the current instruction, return a BDVState
879       // instance which represents the BDV of that value.
880       auto getStateForInput = [&](Value *V) mutable {
881         Value *BDV = findBaseOrBDV(V, Cache);
882         return getStateForBDV(BDV);
883       };
884 
885       BDVState NewState;
886       if (SelectInst *SI = dyn_cast<SelectInst>(BDV)) {
887         NewState = meetBDVState(NewState, getStateForInput(SI->getTrueValue()));
888         NewState =
889             meetBDVState(NewState, getStateForInput(SI->getFalseValue()));
890       } else if (PHINode *PN = dyn_cast<PHINode>(BDV)) {
891         for (Value *Val : PN->incoming_values())
892           NewState = meetBDVState(NewState, getStateForInput(Val));
893       } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) {
894         // The 'meet' for an extractelement is slightly trivial, but it's still
895         // useful in that it drives us to conflict if our input is.
896         NewState =
897             meetBDVState(NewState, getStateForInput(EE->getVectorOperand()));
898       } else if (auto *IE = dyn_cast<InsertElementInst>(BDV)){
899         // Given there's a inherent type mismatch between the operands, will
900         // *always* produce Conflict.
901         NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(0)));
902         NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(1)));
903       } else {
904         // The only instance this does not return a Conflict is when both the
905         // vector operands are the same vector.
906         auto *SV = cast<ShuffleVectorInst>(BDV);
907         NewState = meetBDVState(NewState, getStateForInput(SV->getOperand(0)));
908         NewState = meetBDVState(NewState, getStateForInput(SV->getOperand(1)));
909       }
910 
911       BDVState OldState = States[BDV];
912       if (OldState != NewState) {
913         Progress = true;
914         States[BDV] = NewState;
915       }
916     }
917 
918     assert(OldSize == States.size() &&
919            "fixed point shouldn't be adding any new nodes to state");
920   }
921 
922 #ifndef NDEBUG
923   LLVM_DEBUG(dbgs() << "States after meet iteration:\n");
924   for (auto Pair : States) {
925     LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
926   }
927 #endif
928 
929   // Insert Phis for all conflicts
930   // TODO: adjust naming patterns to avoid this order of iteration dependency
931   for (auto Pair : States) {
932     Instruction *I = cast<Instruction>(Pair.first);
933     BDVState State = Pair.second;
934     assert(!isKnownBaseResult(I) && "why did it get added?");
935     assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
936 
937     // extractelement instructions are a bit special in that we may need to
938     // insert an extract even when we know an exact base for the instruction.
939     // The problem is that we need to convert from a vector base to a scalar
940     // base for the particular indice we're interested in.
941     if (State.isBase() && isa<ExtractElementInst>(I) &&
942         isa<VectorType>(State.getBaseValue()->getType())) {
943       auto *EE = cast<ExtractElementInst>(I);
944       // TODO: In many cases, the new instruction is just EE itself.  We should
945       // exploit this, but can't do it here since it would break the invariant
946       // about the BDV not being known to be a base.
947       auto *BaseInst = ExtractElementInst::Create(
948           State.getBaseValue(), EE->getIndexOperand(), "base_ee", EE);
949       BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
950       States[I] = BDVState(BDVState::Base, BaseInst);
951     }
952 
953     // Since we're joining a vector and scalar base, they can never be the
954     // same.  As a result, we should always see insert element having reached
955     // the conflict state.
956     assert(!isa<InsertElementInst>(I) || State.isConflict());
957 
958     if (!State.isConflict())
959       continue;
960 
961     /// Create and insert a new instruction which will represent the base of
962     /// the given instruction 'I'.
963     auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* {
964       if (isa<PHINode>(I)) {
965         BasicBlock *BB = I->getParent();
966         int NumPreds = pred_size(BB);
967         assert(NumPreds > 0 && "how did we reach here");
968         std::string Name = suffixed_name_or(I, ".base", "base_phi");
969         return PHINode::Create(I->getType(), NumPreds, Name, I);
970       } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
971         // The undef will be replaced later
972         UndefValue *Undef = UndefValue::get(SI->getType());
973         std::string Name = suffixed_name_or(I, ".base", "base_select");
974         return SelectInst::Create(SI->getCondition(), Undef, Undef, Name, SI);
975       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
976         UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType());
977         std::string Name = suffixed_name_or(I, ".base", "base_ee");
978         return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name,
979                                           EE);
980       } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
981         UndefValue *VecUndef = UndefValue::get(IE->getOperand(0)->getType());
982         UndefValue *ScalarUndef = UndefValue::get(IE->getOperand(1)->getType());
983         std::string Name = suffixed_name_or(I, ".base", "base_ie");
984         return InsertElementInst::Create(VecUndef, ScalarUndef,
985                                          IE->getOperand(2), Name, IE);
986       } else {
987         auto *SV = cast<ShuffleVectorInst>(I);
988         UndefValue *VecUndef = UndefValue::get(SV->getOperand(0)->getType());
989         std::string Name = suffixed_name_or(I, ".base", "base_sv");
990         return new ShuffleVectorInst(VecUndef, VecUndef, SV->getOperand(2),
991                                      Name, SV);
992       }
993     };
994     Instruction *BaseInst = MakeBaseInstPlaceholder(I);
995     // Add metadata marking this as a base value
996     BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
997     States[I] = BDVState(BDVState::Conflict, BaseInst);
998   }
999 
1000   // Returns a instruction which produces the base pointer for a given
1001   // instruction.  The instruction is assumed to be an input to one of the BDVs
1002   // seen in the inference algorithm above.  As such, we must either already
1003   // know it's base defining value is a base, or have inserted a new
1004   // instruction to propagate the base of it's BDV and have entered that newly
1005   // introduced instruction into the state table.  In either case, we are
1006   // assured to be able to determine an instruction which produces it's base
1007   // pointer.
1008   auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) {
1009     Value *BDV = findBaseOrBDV(Input, Cache);
1010     Value *Base = nullptr;
1011     if (isKnownBaseResult(BDV)) {
1012       Base = BDV;
1013     } else {
1014       // Either conflict or base.
1015       assert(States.count(BDV));
1016       Base = States[BDV].getBaseValue();
1017     }
1018     assert(Base && "Can't be null");
1019     // The cast is needed since base traversal may strip away bitcasts
1020     if (Base->getType() != Input->getType() && InsertPt)
1021       Base = new BitCastInst(Base, Input->getType(), "cast", InsertPt);
1022     return Base;
1023   };
1024 
1025   // Fixup all the inputs of the new PHIs.  Visit order needs to be
1026   // deterministic and predictable because we're naming newly created
1027   // instructions.
1028   for (auto Pair : States) {
1029     Instruction *BDV = cast<Instruction>(Pair.first);
1030     BDVState State = Pair.second;
1031 
1032     assert(!isKnownBaseResult(BDV) && "why did it get added?");
1033     assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
1034     if (!State.isConflict())
1035       continue;
1036 
1037     if (PHINode *BasePHI = dyn_cast<PHINode>(State.getBaseValue())) {
1038       PHINode *PN = cast<PHINode>(BDV);
1039       unsigned NumPHIValues = PN->getNumIncomingValues();
1040       for (unsigned i = 0; i < NumPHIValues; i++) {
1041         Value *InVal = PN->getIncomingValue(i);
1042         BasicBlock *InBB = PN->getIncomingBlock(i);
1043 
1044         // If we've already seen InBB, add the same incoming value
1045         // we added for it earlier.  The IR verifier requires phi
1046         // nodes with multiple entries from the same basic block
1047         // to have the same incoming value for each of those
1048         // entries.  If we don't do this check here and basephi
1049         // has a different type than base, we'll end up adding two
1050         // bitcasts (and hence two distinct values) as incoming
1051         // values for the same basic block.
1052 
1053         int BlockIndex = BasePHI->getBasicBlockIndex(InBB);
1054         if (BlockIndex != -1) {
1055           Value *OldBase = BasePHI->getIncomingValue(BlockIndex);
1056           BasePHI->addIncoming(OldBase, InBB);
1057 
1058 #ifndef NDEBUG
1059           Value *Base = getBaseForInput(InVal, nullptr);
1060           // In essence this assert states: the only way two values
1061           // incoming from the same basic block may be different is by
1062           // being different bitcasts of the same value.  A cleanup
1063           // that remains TODO is changing findBaseOrBDV to return an
1064           // llvm::Value of the correct type (and still remain pure).
1065           // This will remove the need to add bitcasts.
1066           assert(Base->stripPointerCasts() == OldBase->stripPointerCasts() &&
1067                  "Sanity -- findBaseOrBDV should be pure!");
1068 #endif
1069           continue;
1070         }
1071 
1072         // Find the instruction which produces the base for each input.  We may
1073         // need to insert a bitcast in the incoming block.
1074         // TODO: Need to split critical edges if insertion is needed
1075         Value *Base = getBaseForInput(InVal, InBB->getTerminator());
1076         BasePHI->addIncoming(Base, InBB);
1077       }
1078       assert(BasePHI->getNumIncomingValues() == NumPHIValues);
1079     } else if (SelectInst *BaseSI =
1080                    dyn_cast<SelectInst>(State.getBaseValue())) {
1081       SelectInst *SI = cast<SelectInst>(BDV);
1082 
1083       // Find the instruction which produces the base for each input.
1084       // We may need to insert a bitcast.
1085       BaseSI->setTrueValue(getBaseForInput(SI->getTrueValue(), BaseSI));
1086       BaseSI->setFalseValue(getBaseForInput(SI->getFalseValue(), BaseSI));
1087     } else if (auto *BaseEE =
1088                    dyn_cast<ExtractElementInst>(State.getBaseValue())) {
1089       Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand();
1090       // Find the instruction which produces the base for each input.  We may
1091       // need to insert a bitcast.
1092       BaseEE->setOperand(0, getBaseForInput(InVal, BaseEE));
1093     } else if (auto *BaseIE = dyn_cast<InsertElementInst>(State.getBaseValue())){
1094       auto *BdvIE = cast<InsertElementInst>(BDV);
1095       auto UpdateOperand = [&](int OperandIdx) {
1096         Value *InVal = BdvIE->getOperand(OperandIdx);
1097         Value *Base = getBaseForInput(InVal, BaseIE);
1098         BaseIE->setOperand(OperandIdx, Base);
1099       };
1100       UpdateOperand(0); // vector operand
1101       UpdateOperand(1); // scalar operand
1102     } else {
1103       auto *BaseSV = cast<ShuffleVectorInst>(State.getBaseValue());
1104       auto *BdvSV = cast<ShuffleVectorInst>(BDV);
1105       auto UpdateOperand = [&](int OperandIdx) {
1106         Value *InVal = BdvSV->getOperand(OperandIdx);
1107         Value *Base = getBaseForInput(InVal, BaseSV);
1108         BaseSV->setOperand(OperandIdx, Base);
1109       };
1110       UpdateOperand(0); // vector operand
1111       UpdateOperand(1); // vector operand
1112     }
1113   }
1114 
1115   // Cache all of our results so we can cheaply reuse them
1116   // NOTE: This is actually two caches: one of the base defining value
1117   // relation and one of the base pointer relation!  FIXME
1118   for (auto Pair : States) {
1119     auto *BDV = Pair.first;
1120     Value *Base = Pair.second.getBaseValue();
1121     assert(BDV && Base);
1122     assert(!isKnownBaseResult(BDV) && "why did it get added?");
1123 
1124     LLVM_DEBUG(
1125         dbgs() << "Updating base value cache"
1126                << " for: " << BDV->getName() << " from: "
1127                << (Cache.count(BDV) ? Cache[BDV]->getName().str() : "none")
1128                << " to: " << Base->getName() << "\n");
1129 
1130     if (Cache.count(BDV)) {
1131       assert(isKnownBaseResult(Base) &&
1132              "must be something we 'know' is a base pointer");
1133       // Once we transition from the BDV relation being store in the Cache to
1134       // the base relation being stored, it must be stable
1135       assert((!isKnownBaseResult(Cache[BDV]) || Cache[BDV] == Base) &&
1136              "base relation should be stable");
1137     }
1138     Cache[BDV] = Base;
1139   }
1140   assert(Cache.count(Def));
1141   return Cache[Def];
1142 }
1143 
1144 // For a set of live pointers (base and/or derived), identify the base
1145 // pointer of the object which they are derived from.  This routine will
1146 // mutate the IR graph as needed to make the 'base' pointer live at the
1147 // definition site of 'derived'.  This ensures that any use of 'derived' can
1148 // also use 'base'.  This may involve the insertion of a number of
1149 // additional PHI nodes.
1150 //
1151 // preconditions: live is a set of pointer type Values
1152 //
1153 // side effects: may insert PHI nodes into the existing CFG, will preserve
1154 // CFG, will not remove or mutate any existing nodes
1155 //
1156 // post condition: PointerToBase contains one (derived, base) pair for every
1157 // pointer in live.  Note that derived can be equal to base if the original
1158 // pointer was a base pointer.
1159 static void
1160 findBasePointers(const StatepointLiveSetTy &live,
1161                  MapVector<Value *, Value *> &PointerToBase,
1162                  DominatorTree *DT, DefiningValueMapTy &DVCache) {
1163   for (Value *ptr : live) {
1164     Value *base = findBasePointer(ptr, DVCache);
1165     assert(base && "failed to find base pointer");
1166     PointerToBase[ptr] = base;
1167     assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) ||
1168             DT->dominates(cast<Instruction>(base)->getParent(),
1169                           cast<Instruction>(ptr)->getParent())) &&
1170            "The base we found better dominate the derived pointer");
1171   }
1172 }
1173 
1174 /// Find the required based pointers (and adjust the live set) for the given
1175 /// parse point.
1176 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache,
1177                              CallBase *Call,
1178                              PartiallyConstructedSafepointRecord &result) {
1179   MapVector<Value *, Value *> PointerToBase;
1180   findBasePointers(result.LiveSet, PointerToBase, &DT, DVCache);
1181 
1182   if (PrintBasePointers) {
1183     errs() << "Base Pairs (w/o Relocation):\n";
1184     for (auto &Pair : PointerToBase) {
1185       errs() << " derived ";
1186       Pair.first->printAsOperand(errs(), false);
1187       errs() << " base ";
1188       Pair.second->printAsOperand(errs(), false);
1189       errs() << "\n";;
1190     }
1191   }
1192 
1193   result.PointerToBase = PointerToBase;
1194 }
1195 
1196 /// Given an updated version of the dataflow liveness results, update the
1197 /// liveset and base pointer maps for the call site CS.
1198 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
1199                                   CallBase *Call,
1200                                   PartiallyConstructedSafepointRecord &result);
1201 
1202 static void recomputeLiveInValues(
1203     Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate,
1204     MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
1205   // TODO-PERF: reuse the original liveness, then simply run the dataflow
1206   // again.  The old values are still live and will help it stabilize quickly.
1207   GCPtrLivenessData RevisedLivenessData;
1208   computeLiveInValues(DT, F, RevisedLivenessData);
1209   for (size_t i = 0; i < records.size(); i++) {
1210     struct PartiallyConstructedSafepointRecord &info = records[i];
1211     recomputeLiveInValues(RevisedLivenessData, toUpdate[i], info);
1212   }
1213 }
1214 
1215 // When inserting gc.relocate and gc.result calls, we need to ensure there are
1216 // no uses of the original value / return value between the gc.statepoint and
1217 // the gc.relocate / gc.result call.  One case which can arise is a phi node
1218 // starting one of the successor blocks.  We also need to be able to insert the
1219 // gc.relocates only on the path which goes through the statepoint.  We might
1220 // need to split an edge to make this possible.
1221 static BasicBlock *
1222 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent,
1223                             DominatorTree &DT) {
1224   BasicBlock *Ret = BB;
1225   if (!BB->getUniquePredecessor())
1226     Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT);
1227 
1228   // Now that 'Ret' has unique predecessor we can safely remove all phi nodes
1229   // from it
1230   FoldSingleEntryPHINodes(Ret);
1231   assert(!isa<PHINode>(Ret->begin()) &&
1232          "All PHI nodes should have been removed!");
1233 
1234   // At this point, we can safely insert a gc.relocate or gc.result as the first
1235   // instruction in Ret if needed.
1236   return Ret;
1237 }
1238 
1239 // Create new attribute set containing only attributes which can be transferred
1240 // from original call to the safepoint.
1241 static AttributeList legalizeCallAttributes(AttributeList AL) {
1242   if (AL.isEmpty())
1243     return AL;
1244 
1245   // Remove the readonly, readnone, and statepoint function attributes.
1246   AttrBuilder FnAttrs = AL.getFnAttributes();
1247   FnAttrs.removeAttribute(Attribute::ReadNone);
1248   FnAttrs.removeAttribute(Attribute::ReadOnly);
1249   for (Attribute A : AL.getFnAttributes()) {
1250     if (isStatepointDirectiveAttr(A))
1251       FnAttrs.remove(A);
1252   }
1253 
1254   // Just skip parameter and return attributes for now
1255   LLVMContext &Ctx = AL.getContext();
1256   return AttributeList::get(Ctx, AttributeList::FunctionIndex,
1257                             AttributeSet::get(Ctx, FnAttrs));
1258 }
1259 
1260 /// Helper function to place all gc relocates necessary for the given
1261 /// statepoint.
1262 /// Inputs:
1263 ///   liveVariables - list of variables to be relocated.
1264 ///   liveStart - index of the first live variable.
1265 ///   basePtrs - base pointers.
1266 ///   statepointToken - statepoint instruction to which relocates should be
1267 ///   bound.
1268 ///   Builder - Llvm IR builder to be used to construct new calls.
1269 static void CreateGCRelocates(ArrayRef<Value *> LiveVariables,
1270                               const int LiveStart,
1271                               ArrayRef<Value *> BasePtrs,
1272                               Instruction *StatepointToken,
1273                               IRBuilder<> Builder) {
1274   if (LiveVariables.empty())
1275     return;
1276 
1277   auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) {
1278     auto ValIt = llvm::find(LiveVec, Val);
1279     assert(ValIt != LiveVec.end() && "Val not found in LiveVec!");
1280     size_t Index = std::distance(LiveVec.begin(), ValIt);
1281     assert(Index < LiveVec.size() && "Bug in std::find?");
1282     return Index;
1283   };
1284   Module *M = StatepointToken->getModule();
1285 
1286   // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose
1287   // element type is i8 addrspace(1)*). We originally generated unique
1288   // declarations for each pointer type, but this proved problematic because
1289   // the intrinsic mangling code is incomplete and fragile.  Since we're moving
1290   // towards a single unified pointer type anyways, we can just cast everything
1291   // to an i8* of the right address space.  A bitcast is added later to convert
1292   // gc_relocate to the actual value's type.
1293   auto getGCRelocateDecl = [&] (Type *Ty) {
1294     assert(isHandledGCPointerType(Ty));
1295     auto AS = Ty->getScalarType()->getPointerAddressSpace();
1296     Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS);
1297     if (auto *VT = dyn_cast<VectorType>(Ty))
1298       NewTy = VectorType::get(NewTy, VT->getNumElements());
1299     return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate,
1300                                      {NewTy});
1301   };
1302 
1303   // Lazily populated map from input types to the canonicalized form mentioned
1304   // in the comment above.  This should probably be cached somewhere more
1305   // broadly.
1306   DenseMap<Type *, Function *> TypeToDeclMap;
1307 
1308   for (unsigned i = 0; i < LiveVariables.size(); i++) {
1309     // Generate the gc.relocate call and save the result
1310     Value *BaseIdx =
1311       Builder.getInt32(LiveStart + FindIndex(LiveVariables, BasePtrs[i]));
1312     Value *LiveIdx = Builder.getInt32(LiveStart + i);
1313 
1314     Type *Ty = LiveVariables[i]->getType();
1315     if (!TypeToDeclMap.count(Ty))
1316       TypeToDeclMap[Ty] = getGCRelocateDecl(Ty);
1317     Function *GCRelocateDecl = TypeToDeclMap[Ty];
1318 
1319     // only specify a debug name if we can give a useful one
1320     CallInst *Reloc = Builder.CreateCall(
1321         GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx},
1322         suffixed_name_or(LiveVariables[i], ".relocated", ""));
1323     // Trick CodeGen into thinking there are lots of free registers at this
1324     // fake call.
1325     Reloc->setCallingConv(CallingConv::Cold);
1326   }
1327 }
1328 
1329 namespace {
1330 
1331 /// This struct is used to defer RAUWs and `eraseFromParent` s.  Using this
1332 /// avoids having to worry about keeping around dangling pointers to Values.
1333 class DeferredReplacement {
1334   AssertingVH<Instruction> Old;
1335   AssertingVH<Instruction> New;
1336   bool IsDeoptimize = false;
1337 
1338   DeferredReplacement() = default;
1339 
1340 public:
1341   static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) {
1342     assert(Old != New && Old && New &&
1343            "Cannot RAUW equal values or to / from null!");
1344 
1345     DeferredReplacement D;
1346     D.Old = Old;
1347     D.New = New;
1348     return D;
1349   }
1350 
1351   static DeferredReplacement createDelete(Instruction *ToErase) {
1352     DeferredReplacement D;
1353     D.Old = ToErase;
1354     return D;
1355   }
1356 
1357   static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) {
1358 #ifndef NDEBUG
1359     auto *F = cast<CallInst>(Old)->getCalledFunction();
1360     assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize &&
1361            "Only way to construct a deoptimize deferred replacement");
1362 #endif
1363     DeferredReplacement D;
1364     D.Old = Old;
1365     D.IsDeoptimize = true;
1366     return D;
1367   }
1368 
1369   /// Does the task represented by this instance.
1370   void doReplacement() {
1371     Instruction *OldI = Old;
1372     Instruction *NewI = New;
1373 
1374     assert(OldI != NewI && "Disallowed at construction?!");
1375     assert((!IsDeoptimize || !New) &&
1376            "Deoptimize intrinsics are not replaced!");
1377 
1378     Old = nullptr;
1379     New = nullptr;
1380 
1381     if (NewI)
1382       OldI->replaceAllUsesWith(NewI);
1383 
1384     if (IsDeoptimize) {
1385       // Note: we've inserted instructions, so the call to llvm.deoptimize may
1386       // not necessarily be followed by the matching return.
1387       auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator());
1388       new UnreachableInst(RI->getContext(), RI);
1389       RI->eraseFromParent();
1390     }
1391 
1392     OldI->eraseFromParent();
1393   }
1394 };
1395 
1396 } // end anonymous namespace
1397 
1398 static StringRef getDeoptLowering(CallBase *Call) {
1399   const char *DeoptLowering = "deopt-lowering";
1400   if (Call->hasFnAttr(DeoptLowering)) {
1401     // FIXME: Calls have a *really* confusing interface around attributes
1402     // with values.
1403     const AttributeList &CSAS = Call->getAttributes();
1404     if (CSAS.hasAttribute(AttributeList::FunctionIndex, DeoptLowering))
1405       return CSAS.getAttribute(AttributeList::FunctionIndex, DeoptLowering)
1406           .getValueAsString();
1407     Function *F = Call->getCalledFunction();
1408     assert(F && F->hasFnAttribute(DeoptLowering));
1409     return F->getFnAttribute(DeoptLowering).getValueAsString();
1410   }
1411   return "live-through";
1412 }
1413 
1414 static void
1415 makeStatepointExplicitImpl(CallBase *Call, /* to replace */
1416                            const SmallVectorImpl<Value *> &BasePtrs,
1417                            const SmallVectorImpl<Value *> &LiveVariables,
1418                            PartiallyConstructedSafepointRecord &Result,
1419                            std::vector<DeferredReplacement> &Replacements) {
1420   assert(BasePtrs.size() == LiveVariables.size());
1421 
1422   // Then go ahead and use the builder do actually do the inserts.  We insert
1423   // immediately before the previous instruction under the assumption that all
1424   // arguments will be available here.  We can't insert afterwards since we may
1425   // be replacing a terminator.
1426   IRBuilder<> Builder(Call);
1427 
1428   ArrayRef<Value *> GCArgs(LiveVariables);
1429   uint64_t StatepointID = StatepointDirectives::DefaultStatepointID;
1430   uint32_t NumPatchBytes = 0;
1431   uint32_t Flags = uint32_t(StatepointFlags::None);
1432 
1433   ArrayRef<Use> CallArgs(Call->arg_begin(), Call->arg_end());
1434   ArrayRef<Use> DeoptArgs = GetDeoptBundleOperands(Call);
1435   ArrayRef<Use> TransitionArgs;
1436   if (auto TransitionBundle =
1437           Call->getOperandBundle(LLVMContext::OB_gc_transition)) {
1438     Flags |= uint32_t(StatepointFlags::GCTransition);
1439     TransitionArgs = TransitionBundle->Inputs;
1440   }
1441 
1442   // Instead of lowering calls to @llvm.experimental.deoptimize as normal calls
1443   // with a return value, we lower then as never returning calls to
1444   // __llvm_deoptimize that are followed by unreachable to get better codegen.
1445   bool IsDeoptimize = false;
1446 
1447   StatepointDirectives SD =
1448       parseStatepointDirectivesFromAttrs(Call->getAttributes());
1449   if (SD.NumPatchBytes)
1450     NumPatchBytes = *SD.NumPatchBytes;
1451   if (SD.StatepointID)
1452     StatepointID = *SD.StatepointID;
1453 
1454   // Pass through the requested lowering if any.  The default is live-through.
1455   StringRef DeoptLowering = getDeoptLowering(Call);
1456   if (DeoptLowering.equals("live-in"))
1457     Flags |= uint32_t(StatepointFlags::DeoptLiveIn);
1458   else {
1459     assert(DeoptLowering.equals("live-through") && "Unsupported value!");
1460   }
1461 
1462   Value *CallTarget = Call->getCalledValue();
1463   if (Function *F = dyn_cast<Function>(CallTarget)) {
1464     if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize) {
1465       // Calls to llvm.experimental.deoptimize are lowered to calls to the
1466       // __llvm_deoptimize symbol.  We want to resolve this now, since the
1467       // verifier does not allow taking the address of an intrinsic function.
1468 
1469       SmallVector<Type *, 8> DomainTy;
1470       for (Value *Arg : CallArgs)
1471         DomainTy.push_back(Arg->getType());
1472       auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy,
1473                                     /* isVarArg = */ false);
1474 
1475       // Note: CallTarget can be a bitcast instruction of a symbol if there are
1476       // calls to @llvm.experimental.deoptimize with different argument types in
1477       // the same module.  This is fine -- we assume the frontend knew what it
1478       // was doing when generating this kind of IR.
1479       CallTarget = F->getParent()
1480                        ->getOrInsertFunction("__llvm_deoptimize", FTy)
1481                        .getCallee();
1482 
1483       IsDeoptimize = true;
1484     }
1485   }
1486 
1487   // Create the statepoint given all the arguments
1488   Instruction *Token = nullptr;
1489   if (auto *CI = dyn_cast<CallInst>(Call)) {
1490     CallInst *SPCall = Builder.CreateGCStatepointCall(
1491         StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs,
1492         TransitionArgs, DeoptArgs, GCArgs, "safepoint_token");
1493 
1494     SPCall->setTailCallKind(CI->getTailCallKind());
1495     SPCall->setCallingConv(CI->getCallingConv());
1496 
1497     // Currently we will fail on parameter attributes and on certain
1498     // function attributes.  In case if we can handle this set of attributes -
1499     // set up function attrs directly on statepoint and return attrs later for
1500     // gc_result intrinsic.
1501     SPCall->setAttributes(legalizeCallAttributes(CI->getAttributes()));
1502 
1503     Token = SPCall;
1504 
1505     // Put the following gc_result and gc_relocate calls immediately after the
1506     // the old call (which we're about to delete)
1507     assert(CI->getNextNode() && "Not a terminator, must have next!");
1508     Builder.SetInsertPoint(CI->getNextNode());
1509     Builder.SetCurrentDebugLocation(CI->getNextNode()->getDebugLoc());
1510   } else {
1511     auto *II = cast<InvokeInst>(Call);
1512 
1513     // Insert the new invoke into the old block.  We'll remove the old one in a
1514     // moment at which point this will become the new terminator for the
1515     // original block.
1516     InvokeInst *SPInvoke = Builder.CreateGCStatepointInvoke(
1517         StatepointID, NumPatchBytes, CallTarget, II->getNormalDest(),
1518         II->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs, GCArgs,
1519         "statepoint_token");
1520 
1521     SPInvoke->setCallingConv(II->getCallingConv());
1522 
1523     // Currently we will fail on parameter attributes and on certain
1524     // function attributes.  In case if we can handle this set of attributes -
1525     // set up function attrs directly on statepoint and return attrs later for
1526     // gc_result intrinsic.
1527     SPInvoke->setAttributes(legalizeCallAttributes(II->getAttributes()));
1528 
1529     Token = SPInvoke;
1530 
1531     // Generate gc relocates in exceptional path
1532     BasicBlock *UnwindBlock = II->getUnwindDest();
1533     assert(!isa<PHINode>(UnwindBlock->begin()) &&
1534            UnwindBlock->getUniquePredecessor() &&
1535            "can't safely insert in this block!");
1536 
1537     Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt());
1538     Builder.SetCurrentDebugLocation(II->getDebugLoc());
1539 
1540     // Attach exceptional gc relocates to the landingpad.
1541     Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst();
1542     Result.UnwindToken = ExceptionalToken;
1543 
1544     const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx();
1545     CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, ExceptionalToken,
1546                       Builder);
1547 
1548     // Generate gc relocates and returns for normal block
1549     BasicBlock *NormalDest = II->getNormalDest();
1550     assert(!isa<PHINode>(NormalDest->begin()) &&
1551            NormalDest->getUniquePredecessor() &&
1552            "can't safely insert in this block!");
1553 
1554     Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt());
1555 
1556     // gc relocates will be generated later as if it were regular call
1557     // statepoint
1558   }
1559   assert(Token && "Should be set in one of the above branches!");
1560 
1561   if (IsDeoptimize) {
1562     // If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we
1563     // transform the tail-call like structure to a call to a void function
1564     // followed by unreachable to get better codegen.
1565     Replacements.push_back(
1566         DeferredReplacement::createDeoptimizeReplacement(Call));
1567   } else {
1568     Token->setName("statepoint_token");
1569     if (!Call->getType()->isVoidTy() && !Call->use_empty()) {
1570       StringRef Name = Call->hasName() ? Call->getName() : "";
1571       CallInst *GCResult = Builder.CreateGCResult(Token, Call->getType(), Name);
1572       GCResult->setAttributes(
1573           AttributeList::get(GCResult->getContext(), AttributeList::ReturnIndex,
1574                              Call->getAttributes().getRetAttributes()));
1575 
1576       // We cannot RAUW or delete CS.getInstruction() because it could be in the
1577       // live set of some other safepoint, in which case that safepoint's
1578       // PartiallyConstructedSafepointRecord will hold a raw pointer to this
1579       // llvm::Instruction.  Instead, we defer the replacement and deletion to
1580       // after the live sets have been made explicit in the IR, and we no longer
1581       // have raw pointers to worry about.
1582       Replacements.emplace_back(
1583           DeferredReplacement::createRAUW(Call, GCResult));
1584     } else {
1585       Replacements.emplace_back(DeferredReplacement::createDelete(Call));
1586     }
1587   }
1588 
1589   Result.StatepointToken = Token;
1590 
1591   // Second, create a gc.relocate for every live variable
1592   const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx();
1593   CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, Token, Builder);
1594 }
1595 
1596 // Replace an existing gc.statepoint with a new one and a set of gc.relocates
1597 // which make the relocations happening at this safepoint explicit.
1598 //
1599 // WARNING: Does not do any fixup to adjust users of the original live
1600 // values.  That's the callers responsibility.
1601 static void
1602 makeStatepointExplicit(DominatorTree &DT, CallBase *Call,
1603                        PartiallyConstructedSafepointRecord &Result,
1604                        std::vector<DeferredReplacement> &Replacements) {
1605   const auto &LiveSet = Result.LiveSet;
1606   const auto &PointerToBase = Result.PointerToBase;
1607 
1608   // Convert to vector for efficient cross referencing.
1609   SmallVector<Value *, 64> BaseVec, LiveVec;
1610   LiveVec.reserve(LiveSet.size());
1611   BaseVec.reserve(LiveSet.size());
1612   for (Value *L : LiveSet) {
1613     LiveVec.push_back(L);
1614     assert(PointerToBase.count(L));
1615     Value *Base = PointerToBase.find(L)->second;
1616     BaseVec.push_back(Base);
1617   }
1618   assert(LiveVec.size() == BaseVec.size());
1619 
1620   // Do the actual rewriting and delete the old statepoint
1621   makeStatepointExplicitImpl(Call, BaseVec, LiveVec, Result, Replacements);
1622 }
1623 
1624 // Helper function for the relocationViaAlloca.
1625 //
1626 // It receives iterator to the statepoint gc relocates and emits a store to the
1627 // assigned location (via allocaMap) for the each one of them.  It adds the
1628 // visited values into the visitedLiveValues set, which we will later use them
1629 // for sanity checking.
1630 static void
1631 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs,
1632                        DenseMap<Value *, AllocaInst *> &AllocaMap,
1633                        DenseSet<Value *> &VisitedLiveValues) {
1634   for (User *U : GCRelocs) {
1635     GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U);
1636     if (!Relocate)
1637       continue;
1638 
1639     Value *OriginalValue = Relocate->getDerivedPtr();
1640     assert(AllocaMap.count(OriginalValue));
1641     Value *Alloca = AllocaMap[OriginalValue];
1642 
1643     // Emit store into the related alloca
1644     // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to
1645     // the correct type according to alloca.
1646     assert(Relocate->getNextNode() &&
1647            "Should always have one since it's not a terminator");
1648     IRBuilder<> Builder(Relocate->getNextNode());
1649     Value *CastedRelocatedValue =
1650       Builder.CreateBitCast(Relocate,
1651                             cast<AllocaInst>(Alloca)->getAllocatedType(),
1652                             suffixed_name_or(Relocate, ".casted", ""));
1653 
1654     StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca);
1655     Store->insertAfter(cast<Instruction>(CastedRelocatedValue));
1656 
1657 #ifndef NDEBUG
1658     VisitedLiveValues.insert(OriginalValue);
1659 #endif
1660   }
1661 }
1662 
1663 // Helper function for the "relocationViaAlloca". Similar to the
1664 // "insertRelocationStores" but works for rematerialized values.
1665 static void insertRematerializationStores(
1666     const RematerializedValueMapTy &RematerializedValues,
1667     DenseMap<Value *, AllocaInst *> &AllocaMap,
1668     DenseSet<Value *> &VisitedLiveValues) {
1669   for (auto RematerializedValuePair: RematerializedValues) {
1670     Instruction *RematerializedValue = RematerializedValuePair.first;
1671     Value *OriginalValue = RematerializedValuePair.second;
1672 
1673     assert(AllocaMap.count(OriginalValue) &&
1674            "Can not find alloca for rematerialized value");
1675     Value *Alloca = AllocaMap[OriginalValue];
1676 
1677     StoreInst *Store = new StoreInst(RematerializedValue, Alloca);
1678     Store->insertAfter(RematerializedValue);
1679 
1680 #ifndef NDEBUG
1681     VisitedLiveValues.insert(OriginalValue);
1682 #endif
1683   }
1684 }
1685 
1686 /// Do all the relocation update via allocas and mem2reg
1687 static void relocationViaAlloca(
1688     Function &F, DominatorTree &DT, ArrayRef<Value *> Live,
1689     ArrayRef<PartiallyConstructedSafepointRecord> Records) {
1690 #ifndef NDEBUG
1691   // record initial number of (static) allocas; we'll check we have the same
1692   // number when we get done.
1693   int InitialAllocaNum = 0;
1694   for (Instruction &I : F.getEntryBlock())
1695     if (isa<AllocaInst>(I))
1696       InitialAllocaNum++;
1697 #endif
1698 
1699   // TODO-PERF: change data structures, reserve
1700   DenseMap<Value *, AllocaInst *> AllocaMap;
1701   SmallVector<AllocaInst *, 200> PromotableAllocas;
1702   // Used later to chack that we have enough allocas to store all values
1703   std::size_t NumRematerializedValues = 0;
1704   PromotableAllocas.reserve(Live.size());
1705 
1706   // Emit alloca for "LiveValue" and record it in "allocaMap" and
1707   // "PromotableAllocas"
1708   const DataLayout &DL = F.getParent()->getDataLayout();
1709   auto emitAllocaFor = [&](Value *LiveValue) {
1710     AllocaInst *Alloca = new AllocaInst(LiveValue->getType(),
1711                                         DL.getAllocaAddrSpace(), "",
1712                                         F.getEntryBlock().getFirstNonPHI());
1713     AllocaMap[LiveValue] = Alloca;
1714     PromotableAllocas.push_back(Alloca);
1715   };
1716 
1717   // Emit alloca for each live gc pointer
1718   for (Value *V : Live)
1719     emitAllocaFor(V);
1720 
1721   // Emit allocas for rematerialized values
1722   for (const auto &Info : Records)
1723     for (auto RematerializedValuePair : Info.RematerializedValues) {
1724       Value *OriginalValue = RematerializedValuePair.second;
1725       if (AllocaMap.count(OriginalValue) != 0)
1726         continue;
1727 
1728       emitAllocaFor(OriginalValue);
1729       ++NumRematerializedValues;
1730     }
1731 
1732   // The next two loops are part of the same conceptual operation.  We need to
1733   // insert a store to the alloca after the original def and at each
1734   // redefinition.  We need to insert a load before each use.  These are split
1735   // into distinct loops for performance reasons.
1736 
1737   // Update gc pointer after each statepoint: either store a relocated value or
1738   // null (if no relocated value was found for this gc pointer and it is not a
1739   // gc_result).  This must happen before we update the statepoint with load of
1740   // alloca otherwise we lose the link between statepoint and old def.
1741   for (const auto &Info : Records) {
1742     Value *Statepoint = Info.StatepointToken;
1743 
1744     // This will be used for consistency check
1745     DenseSet<Value *> VisitedLiveValues;
1746 
1747     // Insert stores for normal statepoint gc relocates
1748     insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues);
1749 
1750     // In case if it was invoke statepoint
1751     // we will insert stores for exceptional path gc relocates.
1752     if (isa<InvokeInst>(Statepoint)) {
1753       insertRelocationStores(Info.UnwindToken->users(), AllocaMap,
1754                              VisitedLiveValues);
1755     }
1756 
1757     // Do similar thing with rematerialized values
1758     insertRematerializationStores(Info.RematerializedValues, AllocaMap,
1759                                   VisitedLiveValues);
1760 
1761     if (ClobberNonLive) {
1762       // As a debugging aid, pretend that an unrelocated pointer becomes null at
1763       // the gc.statepoint.  This will turn some subtle GC problems into
1764       // slightly easier to debug SEGVs.  Note that on large IR files with
1765       // lots of gc.statepoints this is extremely costly both memory and time
1766       // wise.
1767       SmallVector<AllocaInst *, 64> ToClobber;
1768       for (auto Pair : AllocaMap) {
1769         Value *Def = Pair.first;
1770         AllocaInst *Alloca = Pair.second;
1771 
1772         // This value was relocated
1773         if (VisitedLiveValues.count(Def)) {
1774           continue;
1775         }
1776         ToClobber.push_back(Alloca);
1777       }
1778 
1779       auto InsertClobbersAt = [&](Instruction *IP) {
1780         for (auto *AI : ToClobber) {
1781           auto PT = cast<PointerType>(AI->getAllocatedType());
1782           Constant *CPN = ConstantPointerNull::get(PT);
1783           StoreInst *Store = new StoreInst(CPN, AI);
1784           Store->insertBefore(IP);
1785         }
1786       };
1787 
1788       // Insert the clobbering stores.  These may get intermixed with the
1789       // gc.results and gc.relocates, but that's fine.
1790       if (auto II = dyn_cast<InvokeInst>(Statepoint)) {
1791         InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt());
1792         InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt());
1793       } else {
1794         InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode());
1795       }
1796     }
1797   }
1798 
1799   // Update use with load allocas and add store for gc_relocated.
1800   for (auto Pair : AllocaMap) {
1801     Value *Def = Pair.first;
1802     AllocaInst *Alloca = Pair.second;
1803 
1804     // We pre-record the uses of allocas so that we dont have to worry about
1805     // later update that changes the user information..
1806 
1807     SmallVector<Instruction *, 20> Uses;
1808     // PERF: trade a linear scan for repeated reallocation
1809     Uses.reserve(Def->getNumUses());
1810     for (User *U : Def->users()) {
1811       if (!isa<ConstantExpr>(U)) {
1812         // If the def has a ConstantExpr use, then the def is either a
1813         // ConstantExpr use itself or null.  In either case
1814         // (recursively in the first, directly in the second), the oop
1815         // it is ultimately dependent on is null and this particular
1816         // use does not need to be fixed up.
1817         Uses.push_back(cast<Instruction>(U));
1818       }
1819     }
1820 
1821     llvm::sort(Uses);
1822     auto Last = std::unique(Uses.begin(), Uses.end());
1823     Uses.erase(Last, Uses.end());
1824 
1825     for (Instruction *Use : Uses) {
1826       if (isa<PHINode>(Use)) {
1827         PHINode *Phi = cast<PHINode>(Use);
1828         for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) {
1829           if (Def == Phi->getIncomingValue(i)) {
1830             LoadInst *Load =
1831                 new LoadInst(Alloca->getAllocatedType(), Alloca, "",
1832                              Phi->getIncomingBlock(i)->getTerminator());
1833             Phi->setIncomingValue(i, Load);
1834           }
1835         }
1836       } else {
1837         LoadInst *Load =
1838             new LoadInst(Alloca->getAllocatedType(), Alloca, "", Use);
1839         Use->replaceUsesOfWith(Def, Load);
1840       }
1841     }
1842 
1843     // Emit store for the initial gc value.  Store must be inserted after load,
1844     // otherwise store will be in alloca's use list and an extra load will be
1845     // inserted before it.
1846     StoreInst *Store = new StoreInst(Def, Alloca);
1847     if (Instruction *Inst = dyn_cast<Instruction>(Def)) {
1848       if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) {
1849         // InvokeInst is a terminator so the store need to be inserted into its
1850         // normal destination block.
1851         BasicBlock *NormalDest = Invoke->getNormalDest();
1852         Store->insertBefore(NormalDest->getFirstNonPHI());
1853       } else {
1854         assert(!Inst->isTerminator() &&
1855                "The only terminator that can produce a value is "
1856                "InvokeInst which is handled above.");
1857         Store->insertAfter(Inst);
1858       }
1859     } else {
1860       assert(isa<Argument>(Def));
1861       Store->insertAfter(cast<Instruction>(Alloca));
1862     }
1863   }
1864 
1865   assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues &&
1866          "we must have the same allocas with lives");
1867   if (!PromotableAllocas.empty()) {
1868     // Apply mem2reg to promote alloca to SSA
1869     PromoteMemToReg(PromotableAllocas, DT);
1870   }
1871 
1872 #ifndef NDEBUG
1873   for (auto &I : F.getEntryBlock())
1874     if (isa<AllocaInst>(I))
1875       InitialAllocaNum--;
1876   assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas");
1877 #endif
1878 }
1879 
1880 /// Implement a unique function which doesn't require we sort the input
1881 /// vector.  Doing so has the effect of changing the output of a couple of
1882 /// tests in ways which make them less useful in testing fused safepoints.
1883 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) {
1884   SmallSet<T, 8> Seen;
1885   Vec.erase(remove_if(Vec, [&](const T &V) { return !Seen.insert(V).second; }),
1886             Vec.end());
1887 }
1888 
1889 /// Insert holders so that each Value is obviously live through the entire
1890 /// lifetime of the call.
1891 static void insertUseHolderAfter(CallBase *Call, const ArrayRef<Value *> Values,
1892                                  SmallVectorImpl<CallInst *> &Holders) {
1893   if (Values.empty())
1894     // No values to hold live, might as well not insert the empty holder
1895     return;
1896 
1897   Module *M = Call->getModule();
1898   // Use a dummy vararg function to actually hold the values live
1899   FunctionCallee Func = M->getOrInsertFunction(
1900       "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true));
1901   if (isa<CallInst>(Call)) {
1902     // For call safepoints insert dummy calls right after safepoint
1903     Holders.push_back(
1904         CallInst::Create(Func, Values, "", &*++Call->getIterator()));
1905     return;
1906   }
1907   // For invoke safepooints insert dummy calls both in normal and
1908   // exceptional destination blocks
1909   auto *II = cast<InvokeInst>(Call);
1910   Holders.push_back(CallInst::Create(
1911       Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt()));
1912   Holders.push_back(CallInst::Create(
1913       Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt()));
1914 }
1915 
1916 static void findLiveReferences(
1917     Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate,
1918     MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
1919   GCPtrLivenessData OriginalLivenessData;
1920   computeLiveInValues(DT, F, OriginalLivenessData);
1921   for (size_t i = 0; i < records.size(); i++) {
1922     struct PartiallyConstructedSafepointRecord &info = records[i];
1923     analyzeParsePointLiveness(DT, OriginalLivenessData, toUpdate[i], info);
1924   }
1925 }
1926 
1927 // Helper function for the "rematerializeLiveValues". It walks use chain
1928 // starting from the "CurrentValue" until it reaches the root of the chain, i.e.
1929 // the base or a value it cannot process. Only "simple" values are processed
1930 // (currently it is GEP's and casts). The returned root is  examined by the
1931 // callers of findRematerializableChainToBasePointer.  Fills "ChainToBase" array
1932 // with all visited values.
1933 static Value* findRematerializableChainToBasePointer(
1934   SmallVectorImpl<Instruction*> &ChainToBase,
1935   Value *CurrentValue) {
1936   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) {
1937     ChainToBase.push_back(GEP);
1938     return findRematerializableChainToBasePointer(ChainToBase,
1939                                                   GEP->getPointerOperand());
1940   }
1941 
1942   if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) {
1943     if (!CI->isNoopCast(CI->getModule()->getDataLayout()))
1944       return CI;
1945 
1946     ChainToBase.push_back(CI);
1947     return findRematerializableChainToBasePointer(ChainToBase,
1948                                                   CI->getOperand(0));
1949   }
1950 
1951   // We have reached the root of the chain, which is either equal to the base or
1952   // is the first unsupported value along the use chain.
1953   return CurrentValue;
1954 }
1955 
1956 // Helper function for the "rematerializeLiveValues". Compute cost of the use
1957 // chain we are going to rematerialize.
1958 static unsigned
1959 chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain,
1960                        TargetTransformInfo &TTI) {
1961   unsigned Cost = 0;
1962 
1963   for (Instruction *Instr : Chain) {
1964     if (CastInst *CI = dyn_cast<CastInst>(Instr)) {
1965       assert(CI->isNoopCast(CI->getModule()->getDataLayout()) &&
1966              "non noop cast is found during rematerialization");
1967 
1968       Type *SrcTy = CI->getOperand(0)->getType();
1969       Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy, CI);
1970 
1971     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) {
1972       // Cost of the address calculation
1973       Type *ValTy = GEP->getSourceElementType();
1974       Cost += TTI.getAddressComputationCost(ValTy);
1975 
1976       // And cost of the GEP itself
1977       // TODO: Use TTI->getGEPCost here (it exists, but appears to be not
1978       //       allowed for the external usage)
1979       if (!GEP->hasAllConstantIndices())
1980         Cost += 2;
1981 
1982     } else {
1983       llvm_unreachable("unsupported instruction type during rematerialization");
1984     }
1985   }
1986 
1987   return Cost;
1988 }
1989 
1990 static bool AreEquivalentPhiNodes(PHINode &OrigRootPhi, PHINode &AlternateRootPhi) {
1991   unsigned PhiNum = OrigRootPhi.getNumIncomingValues();
1992   if (PhiNum != AlternateRootPhi.getNumIncomingValues() ||
1993       OrigRootPhi.getParent() != AlternateRootPhi.getParent())
1994     return false;
1995   // Map of incoming values and their corresponding basic blocks of
1996   // OrigRootPhi.
1997   SmallDenseMap<Value *, BasicBlock *, 8> CurrentIncomingValues;
1998   for (unsigned i = 0; i < PhiNum; i++)
1999     CurrentIncomingValues[OrigRootPhi.getIncomingValue(i)] =
2000         OrigRootPhi.getIncomingBlock(i);
2001 
2002   // Both current and base PHIs should have same incoming values and
2003   // the same basic blocks corresponding to the incoming values.
2004   for (unsigned i = 0; i < PhiNum; i++) {
2005     auto CIVI =
2006         CurrentIncomingValues.find(AlternateRootPhi.getIncomingValue(i));
2007     if (CIVI == CurrentIncomingValues.end())
2008       return false;
2009     BasicBlock *CurrentIncomingBB = CIVI->second;
2010     if (CurrentIncomingBB != AlternateRootPhi.getIncomingBlock(i))
2011       return false;
2012   }
2013   return true;
2014 }
2015 
2016 // From the statepoint live set pick values that are cheaper to recompute then
2017 // to relocate. Remove this values from the live set, rematerialize them after
2018 // statepoint and record them in "Info" structure. Note that similar to
2019 // relocated values we don't do any user adjustments here.
2020 static void rematerializeLiveValues(CallBase *Call,
2021                                     PartiallyConstructedSafepointRecord &Info,
2022                                     TargetTransformInfo &TTI) {
2023   const unsigned int ChainLengthThreshold = 10;
2024 
2025   // Record values we are going to delete from this statepoint live set.
2026   // We can not di this in following loop due to iterator invalidation.
2027   SmallVector<Value *, 32> LiveValuesToBeDeleted;
2028 
2029   for (Value *LiveValue: Info.LiveSet) {
2030     // For each live pointer find its defining chain
2031     SmallVector<Instruction *, 3> ChainToBase;
2032     assert(Info.PointerToBase.count(LiveValue));
2033     Value *RootOfChain =
2034       findRematerializableChainToBasePointer(ChainToBase,
2035                                              LiveValue);
2036 
2037     // Nothing to do, or chain is too long
2038     if ( ChainToBase.size() == 0 ||
2039         ChainToBase.size() > ChainLengthThreshold)
2040       continue;
2041 
2042     // Handle the scenario where the RootOfChain is not equal to the
2043     // Base Value, but they are essentially the same phi values.
2044     if (RootOfChain != Info.PointerToBase[LiveValue]) {
2045       PHINode *OrigRootPhi = dyn_cast<PHINode>(RootOfChain);
2046       PHINode *AlternateRootPhi = dyn_cast<PHINode>(Info.PointerToBase[LiveValue]);
2047       if (!OrigRootPhi || !AlternateRootPhi)
2048         continue;
2049       // PHI nodes that have the same incoming values, and belonging to the same
2050       // basic blocks are essentially the same SSA value.  When the original phi
2051       // has incoming values with different base pointers, the original phi is
2052       // marked as conflict, and an additional `AlternateRootPhi` with the same
2053       // incoming values get generated by the findBasePointer function. We need
2054       // to identify the newly generated AlternateRootPhi (.base version of phi)
2055       // and RootOfChain (the original phi node itself) are the same, so that we
2056       // can rematerialize the gep and casts. This is a workaround for the
2057       // deficiency in the findBasePointer algorithm.
2058       if (!AreEquivalentPhiNodes(*OrigRootPhi, *AlternateRootPhi))
2059         continue;
2060       // Now that the phi nodes are proved to be the same, assert that
2061       // findBasePointer's newly generated AlternateRootPhi is present in the
2062       // liveset of the call.
2063       assert(Info.LiveSet.count(AlternateRootPhi));
2064     }
2065     // Compute cost of this chain
2066     unsigned Cost = chainToBasePointerCost(ChainToBase, TTI);
2067     // TODO: We can also account for cases when we will be able to remove some
2068     //       of the rematerialized values by later optimization passes. I.e if
2069     //       we rematerialized several intersecting chains. Or if original values
2070     //       don't have any uses besides this statepoint.
2071 
2072     // For invokes we need to rematerialize each chain twice - for normal and
2073     // for unwind basic blocks. Model this by multiplying cost by two.
2074     if (isa<InvokeInst>(Call)) {
2075       Cost *= 2;
2076     }
2077     // If it's too expensive - skip it
2078     if (Cost >= RematerializationThreshold)
2079       continue;
2080 
2081     // Remove value from the live set
2082     LiveValuesToBeDeleted.push_back(LiveValue);
2083 
2084     // Clone instructions and record them inside "Info" structure
2085 
2086     // Walk backwards to visit top-most instructions first
2087     std::reverse(ChainToBase.begin(), ChainToBase.end());
2088 
2089     // Utility function which clones all instructions from "ChainToBase"
2090     // and inserts them before "InsertBefore". Returns rematerialized value
2091     // which should be used after statepoint.
2092     auto rematerializeChain = [&ChainToBase](
2093         Instruction *InsertBefore, Value *RootOfChain, Value *AlternateLiveBase) {
2094       Instruction *LastClonedValue = nullptr;
2095       Instruction *LastValue = nullptr;
2096       for (Instruction *Instr: ChainToBase) {
2097         // Only GEP's and casts are supported as we need to be careful to not
2098         // introduce any new uses of pointers not in the liveset.
2099         // Note that it's fine to introduce new uses of pointers which were
2100         // otherwise not used after this statepoint.
2101         assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr));
2102 
2103         Instruction *ClonedValue = Instr->clone();
2104         ClonedValue->insertBefore(InsertBefore);
2105         ClonedValue->setName(Instr->getName() + ".remat");
2106 
2107         // If it is not first instruction in the chain then it uses previously
2108         // cloned value. We should update it to use cloned value.
2109         if (LastClonedValue) {
2110           assert(LastValue);
2111           ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue);
2112 #ifndef NDEBUG
2113           for (auto OpValue : ClonedValue->operand_values()) {
2114             // Assert that cloned instruction does not use any instructions from
2115             // this chain other than LastClonedValue
2116             assert(!is_contained(ChainToBase, OpValue) &&
2117                    "incorrect use in rematerialization chain");
2118             // Assert that the cloned instruction does not use the RootOfChain
2119             // or the AlternateLiveBase.
2120             assert(OpValue != RootOfChain && OpValue != AlternateLiveBase);
2121           }
2122 #endif
2123         } else {
2124           // For the first instruction, replace the use of unrelocated base i.e.
2125           // RootOfChain/OrigRootPhi, with the corresponding PHI present in the
2126           // live set. They have been proved to be the same PHI nodes.  Note
2127           // that the *only* use of the RootOfChain in the ChainToBase list is
2128           // the first Value in the list.
2129           if (RootOfChain != AlternateLiveBase)
2130             ClonedValue->replaceUsesOfWith(RootOfChain, AlternateLiveBase);
2131         }
2132 
2133         LastClonedValue = ClonedValue;
2134         LastValue = Instr;
2135       }
2136       assert(LastClonedValue);
2137       return LastClonedValue;
2138     };
2139 
2140     // Different cases for calls and invokes. For invokes we need to clone
2141     // instructions both on normal and unwind path.
2142     if (isa<CallInst>(Call)) {
2143       Instruction *InsertBefore = Call->getNextNode();
2144       assert(InsertBefore);
2145       Instruction *RematerializedValue = rematerializeChain(
2146           InsertBefore, RootOfChain, Info.PointerToBase[LiveValue]);
2147       Info.RematerializedValues[RematerializedValue] = LiveValue;
2148     } else {
2149       auto *Invoke = cast<InvokeInst>(Call);
2150 
2151       Instruction *NormalInsertBefore =
2152           &*Invoke->getNormalDest()->getFirstInsertionPt();
2153       Instruction *UnwindInsertBefore =
2154           &*Invoke->getUnwindDest()->getFirstInsertionPt();
2155 
2156       Instruction *NormalRematerializedValue = rematerializeChain(
2157           NormalInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]);
2158       Instruction *UnwindRematerializedValue = rematerializeChain(
2159           UnwindInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]);
2160 
2161       Info.RematerializedValues[NormalRematerializedValue] = LiveValue;
2162       Info.RematerializedValues[UnwindRematerializedValue] = LiveValue;
2163     }
2164   }
2165 
2166   // Remove rematerializaed values from the live set
2167   for (auto LiveValue: LiveValuesToBeDeleted) {
2168     Info.LiveSet.remove(LiveValue);
2169   }
2170 }
2171 
2172 static bool insertParsePoints(Function &F, DominatorTree &DT,
2173                               TargetTransformInfo &TTI,
2174                               SmallVectorImpl<CallBase *> &ToUpdate) {
2175 #ifndef NDEBUG
2176   // sanity check the input
2177   std::set<CallBase *> Uniqued;
2178   Uniqued.insert(ToUpdate.begin(), ToUpdate.end());
2179   assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!");
2180 
2181   for (CallBase *Call : ToUpdate)
2182     assert(Call->getFunction() == &F);
2183 #endif
2184 
2185   // When inserting gc.relocates for invokes, we need to be able to insert at
2186   // the top of the successor blocks.  See the comment on
2187   // normalForInvokeSafepoint on exactly what is needed.  Note that this step
2188   // may restructure the CFG.
2189   for (CallBase *Call : ToUpdate) {
2190     auto *II = dyn_cast<InvokeInst>(Call);
2191     if (!II)
2192       continue;
2193     normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT);
2194     normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT);
2195   }
2196 
2197   // A list of dummy calls added to the IR to keep various values obviously
2198   // live in the IR.  We'll remove all of these when done.
2199   SmallVector<CallInst *, 64> Holders;
2200 
2201   // Insert a dummy call with all of the deopt operands we'll need for the
2202   // actual safepoint insertion as arguments.  This ensures reference operands
2203   // in the deopt argument list are considered live through the safepoint (and
2204   // thus makes sure they get relocated.)
2205   for (CallBase *Call : ToUpdate) {
2206     SmallVector<Value *, 64> DeoptValues;
2207 
2208     for (Value *Arg : GetDeoptBundleOperands(Call)) {
2209       assert(!isUnhandledGCPointerType(Arg->getType()) &&
2210              "support for FCA unimplemented");
2211       if (isHandledGCPointerType(Arg->getType()))
2212         DeoptValues.push_back(Arg);
2213     }
2214 
2215     insertUseHolderAfter(Call, DeoptValues, Holders);
2216   }
2217 
2218   SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size());
2219 
2220   // A) Identify all gc pointers which are statically live at the given call
2221   // site.
2222   findLiveReferences(F, DT, ToUpdate, Records);
2223 
2224   // B) Find the base pointers for each live pointer
2225   /* scope for caching */ {
2226     // Cache the 'defining value' relation used in the computation and
2227     // insertion of base phis and selects.  This ensures that we don't insert
2228     // large numbers of duplicate base_phis.
2229     DefiningValueMapTy DVCache;
2230 
2231     for (size_t i = 0; i < Records.size(); i++) {
2232       PartiallyConstructedSafepointRecord &info = Records[i];
2233       findBasePointers(DT, DVCache, ToUpdate[i], info);
2234     }
2235   } // end of cache scope
2236 
2237   // The base phi insertion logic (for any safepoint) may have inserted new
2238   // instructions which are now live at some safepoint.  The simplest such
2239   // example is:
2240   // loop:
2241   //   phi a  <-- will be a new base_phi here
2242   //   safepoint 1 <-- that needs to be live here
2243   //   gep a + 1
2244   //   safepoint 2
2245   //   br loop
2246   // We insert some dummy calls after each safepoint to definitely hold live
2247   // the base pointers which were identified for that safepoint.  We'll then
2248   // ask liveness for _every_ base inserted to see what is now live.  Then we
2249   // remove the dummy calls.
2250   Holders.reserve(Holders.size() + Records.size());
2251   for (size_t i = 0; i < Records.size(); i++) {
2252     PartiallyConstructedSafepointRecord &Info = Records[i];
2253 
2254     SmallVector<Value *, 128> Bases;
2255     for (auto Pair : Info.PointerToBase)
2256       Bases.push_back(Pair.second);
2257 
2258     insertUseHolderAfter(ToUpdate[i], Bases, Holders);
2259   }
2260 
2261   // By selecting base pointers, we've effectively inserted new uses. Thus, we
2262   // need to rerun liveness.  We may *also* have inserted new defs, but that's
2263   // not the key issue.
2264   recomputeLiveInValues(F, DT, ToUpdate, Records);
2265 
2266   if (PrintBasePointers) {
2267     for (auto &Info : Records) {
2268       errs() << "Base Pairs: (w/Relocation)\n";
2269       for (auto Pair : Info.PointerToBase) {
2270         errs() << " derived ";
2271         Pair.first->printAsOperand(errs(), false);
2272         errs() << " base ";
2273         Pair.second->printAsOperand(errs(), false);
2274         errs() << "\n";
2275       }
2276     }
2277   }
2278 
2279   // It is possible that non-constant live variables have a constant base.  For
2280   // example, a GEP with a variable offset from a global.  In this case we can
2281   // remove it from the liveset.  We already don't add constants to the liveset
2282   // because we assume they won't move at runtime and the GC doesn't need to be
2283   // informed about them.  The same reasoning applies if the base is constant.
2284   // Note that the relocation placement code relies on this filtering for
2285   // correctness as it expects the base to be in the liveset, which isn't true
2286   // if the base is constant.
2287   for (auto &Info : Records)
2288     for (auto &BasePair : Info.PointerToBase)
2289       if (isa<Constant>(BasePair.second))
2290         Info.LiveSet.remove(BasePair.first);
2291 
2292   for (CallInst *CI : Holders)
2293     CI->eraseFromParent();
2294 
2295   Holders.clear();
2296 
2297   // In order to reduce live set of statepoint we might choose to rematerialize
2298   // some values instead of relocating them. This is purely an optimization and
2299   // does not influence correctness.
2300   for (size_t i = 0; i < Records.size(); i++)
2301     rematerializeLiveValues(ToUpdate[i], Records[i], TTI);
2302 
2303   // We need this to safely RAUW and delete call or invoke return values that
2304   // may themselves be live over a statepoint.  For details, please see usage in
2305   // makeStatepointExplicitImpl.
2306   std::vector<DeferredReplacement> Replacements;
2307 
2308   // Now run through and replace the existing statepoints with new ones with
2309   // the live variables listed.  We do not yet update uses of the values being
2310   // relocated. We have references to live variables that need to
2311   // survive to the last iteration of this loop.  (By construction, the
2312   // previous statepoint can not be a live variable, thus we can and remove
2313   // the old statepoint calls as we go.)
2314   for (size_t i = 0; i < Records.size(); i++)
2315     makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements);
2316 
2317   ToUpdate.clear(); // prevent accident use of invalid calls.
2318 
2319   for (auto &PR : Replacements)
2320     PR.doReplacement();
2321 
2322   Replacements.clear();
2323 
2324   for (auto &Info : Records) {
2325     // These live sets may contain state Value pointers, since we replaced calls
2326     // with operand bundles with calls wrapped in gc.statepoint, and some of
2327     // those calls may have been def'ing live gc pointers.  Clear these out to
2328     // avoid accidentally using them.
2329     //
2330     // TODO: We should create a separate data structure that does not contain
2331     // these live sets, and migrate to using that data structure from this point
2332     // onward.
2333     Info.LiveSet.clear();
2334     Info.PointerToBase.clear();
2335   }
2336 
2337   // Do all the fixups of the original live variables to their relocated selves
2338   SmallVector<Value *, 128> Live;
2339   for (size_t i = 0; i < Records.size(); i++) {
2340     PartiallyConstructedSafepointRecord &Info = Records[i];
2341 
2342     // We can't simply save the live set from the original insertion.  One of
2343     // the live values might be the result of a call which needs a safepoint.
2344     // That Value* no longer exists and we need to use the new gc_result.
2345     // Thankfully, the live set is embedded in the statepoint (and updated), so
2346     // we just grab that.
2347     Statepoint Statepoint(Info.StatepointToken);
2348     Live.insert(Live.end(), Statepoint.gc_args_begin(),
2349                 Statepoint.gc_args_end());
2350 #ifndef NDEBUG
2351     // Do some basic sanity checks on our liveness results before performing
2352     // relocation.  Relocation can and will turn mistakes in liveness results
2353     // into non-sensical code which is must harder to debug.
2354     // TODO: It would be nice to test consistency as well
2355     assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) &&
2356            "statepoint must be reachable or liveness is meaningless");
2357     for (Value *V : Statepoint.gc_args()) {
2358       if (!isa<Instruction>(V))
2359         // Non-instruction values trivial dominate all possible uses
2360         continue;
2361       auto *LiveInst = cast<Instruction>(V);
2362       assert(DT.isReachableFromEntry(LiveInst->getParent()) &&
2363              "unreachable values should never be live");
2364       assert(DT.dominates(LiveInst, Info.StatepointToken) &&
2365              "basic SSA liveness expectation violated by liveness analysis");
2366     }
2367 #endif
2368   }
2369   unique_unsorted(Live);
2370 
2371 #ifndef NDEBUG
2372   // sanity check
2373   for (auto *Ptr : Live)
2374     assert(isHandledGCPointerType(Ptr->getType()) &&
2375            "must be a gc pointer type");
2376 #endif
2377 
2378   relocationViaAlloca(F, DT, Live, Records);
2379   return !Records.empty();
2380 }
2381 
2382 // Handles both return values and arguments for Functions and calls.
2383 template <typename AttrHolder>
2384 static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH,
2385                                       unsigned Index) {
2386   AttrBuilder R;
2387   if (AH.getDereferenceableBytes(Index))
2388     R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable,
2389                                   AH.getDereferenceableBytes(Index)));
2390   if (AH.getDereferenceableOrNullBytes(Index))
2391     R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull,
2392                                   AH.getDereferenceableOrNullBytes(Index)));
2393   if (AH.getAttributes().hasAttribute(Index, Attribute::NoAlias))
2394     R.addAttribute(Attribute::NoAlias);
2395 
2396   if (!R.empty())
2397     AH.setAttributes(AH.getAttributes().removeAttributes(Ctx, Index, R));
2398 }
2399 
2400 static void stripNonValidAttributesFromPrototype(Function &F) {
2401   LLVMContext &Ctx = F.getContext();
2402 
2403   for (Argument &A : F.args())
2404     if (isa<PointerType>(A.getType()))
2405       RemoveNonValidAttrAtIndex(Ctx, F,
2406                                 A.getArgNo() + AttributeList::FirstArgIndex);
2407 
2408   if (isa<PointerType>(F.getReturnType()))
2409     RemoveNonValidAttrAtIndex(Ctx, F, AttributeList::ReturnIndex);
2410 }
2411 
2412 /// Certain metadata on instructions are invalid after running RS4GC.
2413 /// Optimizations that run after RS4GC can incorrectly use this metadata to
2414 /// optimize functions. We drop such metadata on the instruction.
2415 static void stripInvalidMetadataFromInstruction(Instruction &I) {
2416   if (!isa<LoadInst>(I) && !isa<StoreInst>(I))
2417     return;
2418   // These are the attributes that are still valid on loads and stores after
2419   // RS4GC.
2420   // The metadata implying dereferenceability and noalias are (conservatively)
2421   // dropped.  This is because semantically, after RewriteStatepointsForGC runs,
2422   // all calls to gc.statepoint "free" the entire heap. Also, gc.statepoint can
2423   // touch the entire heap including noalias objects. Note: The reasoning is
2424   // same as stripping the dereferenceability and noalias attributes that are
2425   // analogous to the metadata counterparts.
2426   // We also drop the invariant.load metadata on the load because that metadata
2427   // implies the address operand to the load points to memory that is never
2428   // changed once it became dereferenceable. This is no longer true after RS4GC.
2429   // Similar reasoning applies to invariant.group metadata, which applies to
2430   // loads within a group.
2431   unsigned ValidMetadataAfterRS4GC[] = {LLVMContext::MD_tbaa,
2432                          LLVMContext::MD_range,
2433                          LLVMContext::MD_alias_scope,
2434                          LLVMContext::MD_nontemporal,
2435                          LLVMContext::MD_nonnull,
2436                          LLVMContext::MD_align,
2437                          LLVMContext::MD_type};
2438 
2439   // Drops all metadata on the instruction other than ValidMetadataAfterRS4GC.
2440   I.dropUnknownNonDebugMetadata(ValidMetadataAfterRS4GC);
2441 }
2442 
2443 static void stripNonValidDataFromBody(Function &F) {
2444   if (F.empty())
2445     return;
2446 
2447   LLVMContext &Ctx = F.getContext();
2448   MDBuilder Builder(Ctx);
2449 
2450   // Set of invariantstart instructions that we need to remove.
2451   // Use this to avoid invalidating the instruction iterator.
2452   SmallVector<IntrinsicInst*, 12> InvariantStartInstructions;
2453 
2454   for (Instruction &I : instructions(F)) {
2455     // invariant.start on memory location implies that the referenced memory
2456     // location is constant and unchanging. This is no longer true after
2457     // RewriteStatepointsForGC runs because there can be calls to gc.statepoint
2458     // which frees the entire heap and the presence of invariant.start allows
2459     // the optimizer to sink the load of a memory location past a statepoint,
2460     // which is incorrect.
2461     if (auto *II = dyn_cast<IntrinsicInst>(&I))
2462       if (II->getIntrinsicID() == Intrinsic::invariant_start) {
2463         InvariantStartInstructions.push_back(II);
2464         continue;
2465       }
2466 
2467     if (MDNode *Tag = I.getMetadata(LLVMContext::MD_tbaa)) {
2468       MDNode *MutableTBAA = Builder.createMutableTBAAAccessTag(Tag);
2469       I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA);
2470     }
2471 
2472     stripInvalidMetadataFromInstruction(I);
2473 
2474     if (auto *Call = dyn_cast<CallBase>(&I)) {
2475       for (int i = 0, e = Call->arg_size(); i != e; i++)
2476         if (isa<PointerType>(Call->getArgOperand(i)->getType()))
2477           RemoveNonValidAttrAtIndex(Ctx, *Call,
2478                                     i + AttributeList::FirstArgIndex);
2479       if (isa<PointerType>(Call->getType()))
2480         RemoveNonValidAttrAtIndex(Ctx, *Call, AttributeList::ReturnIndex);
2481     }
2482   }
2483 
2484   // Delete the invariant.start instructions and RAUW undef.
2485   for (auto *II : InvariantStartInstructions) {
2486     II->replaceAllUsesWith(UndefValue::get(II->getType()));
2487     II->eraseFromParent();
2488   }
2489 }
2490 
2491 /// Returns true if this function should be rewritten by this pass.  The main
2492 /// point of this function is as an extension point for custom logic.
2493 static bool shouldRewriteStatepointsIn(Function &F) {
2494   // TODO: This should check the GCStrategy
2495   if (F.hasGC()) {
2496     const auto &FunctionGCName = F.getGC();
2497     const StringRef StatepointExampleName("statepoint-example");
2498     const StringRef CoreCLRName("coreclr");
2499     return (StatepointExampleName == FunctionGCName) ||
2500            (CoreCLRName == FunctionGCName);
2501   } else
2502     return false;
2503 }
2504 
2505 static void stripNonValidData(Module &M) {
2506 #ifndef NDEBUG
2507   assert(llvm::any_of(M, shouldRewriteStatepointsIn) && "precondition!");
2508 #endif
2509 
2510   for (Function &F : M)
2511     stripNonValidAttributesFromPrototype(F);
2512 
2513   for (Function &F : M)
2514     stripNonValidDataFromBody(F);
2515 }
2516 
2517 bool RewriteStatepointsForGC::runOnFunction(Function &F, DominatorTree &DT,
2518                                             TargetTransformInfo &TTI,
2519                                             const TargetLibraryInfo &TLI) {
2520   assert(!F.isDeclaration() && !F.empty() &&
2521          "need function body to rewrite statepoints in");
2522   assert(shouldRewriteStatepointsIn(F) && "mismatch in rewrite decision");
2523 
2524   auto NeedsRewrite = [&TLI](Instruction &I) {
2525     if (const auto *Call = dyn_cast<CallBase>(&I))
2526       return !callsGCLeafFunction(Call, TLI) && !isStatepoint(Call);
2527     return false;
2528   };
2529 
2530   // Delete any unreachable statepoints so that we don't have unrewritten
2531   // statepoints surviving this pass.  This makes testing easier and the
2532   // resulting IR less confusing to human readers.
2533   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
2534   bool MadeChange = removeUnreachableBlocks(F, &DTU);
2535   // Flush the Dominator Tree.
2536   DTU.getDomTree();
2537 
2538   // Gather all the statepoints which need rewritten.  Be careful to only
2539   // consider those in reachable code since we need to ask dominance queries
2540   // when rewriting.  We'll delete the unreachable ones in a moment.
2541   SmallVector<CallBase *, 64> ParsePointNeeded;
2542   for (Instruction &I : instructions(F)) {
2543     // TODO: only the ones with the flag set!
2544     if (NeedsRewrite(I)) {
2545       // NOTE removeUnreachableBlocks() is stronger than
2546       // DominatorTree::isReachableFromEntry(). In other words
2547       // removeUnreachableBlocks can remove some blocks for which
2548       // isReachableFromEntry() returns true.
2549       assert(DT.isReachableFromEntry(I.getParent()) &&
2550             "no unreachable blocks expected");
2551       ParsePointNeeded.push_back(cast<CallBase>(&I));
2552     }
2553   }
2554 
2555   // Return early if no work to do.
2556   if (ParsePointNeeded.empty())
2557     return MadeChange;
2558 
2559   // As a prepass, go ahead and aggressively destroy single entry phi nodes.
2560   // These are created by LCSSA.  They have the effect of increasing the size
2561   // of liveness sets for no good reason.  It may be harder to do this post
2562   // insertion since relocations and base phis can confuse things.
2563   for (BasicBlock &BB : F)
2564     if (BB.getUniquePredecessor()) {
2565       MadeChange = true;
2566       FoldSingleEntryPHINodes(&BB);
2567     }
2568 
2569   // Before we start introducing relocations, we want to tweak the IR a bit to
2570   // avoid unfortunate code generation effects.  The main example is that we
2571   // want to try to make sure the comparison feeding a branch is after any
2572   // safepoints.  Otherwise, we end up with a comparison of pre-relocation
2573   // values feeding a branch after relocation.  This is semantically correct,
2574   // but results in extra register pressure since both the pre-relocation and
2575   // post-relocation copies must be available in registers.  For code without
2576   // relocations this is handled elsewhere, but teaching the scheduler to
2577   // reverse the transform we're about to do would be slightly complex.
2578   // Note: This may extend the live range of the inputs to the icmp and thus
2579   // increase the liveset of any statepoint we move over.  This is profitable
2580   // as long as all statepoints are in rare blocks.  If we had in-register
2581   // lowering for live values this would be a much safer transform.
2582   auto getConditionInst = [](Instruction *TI) -> Instruction * {
2583     if (auto *BI = dyn_cast<BranchInst>(TI))
2584       if (BI->isConditional())
2585         return dyn_cast<Instruction>(BI->getCondition());
2586     // TODO: Extend this to handle switches
2587     return nullptr;
2588   };
2589   for (BasicBlock &BB : F) {
2590     Instruction *TI = BB.getTerminator();
2591     if (auto *Cond = getConditionInst(TI))
2592       // TODO: Handle more than just ICmps here.  We should be able to move
2593       // most instructions without side effects or memory access.
2594       if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) {
2595         MadeChange = true;
2596         Cond->moveBefore(TI);
2597       }
2598   }
2599 
2600   // Nasty workaround - The base computation code in the main algorithm doesn't
2601   // consider the fact that a GEP can be used to convert a scalar to a vector.
2602   // The right fix for this is to integrate GEPs into the base rewriting
2603   // algorithm properly, this is just a short term workaround to prevent
2604   // crashes by canonicalizing such GEPs into fully vector GEPs.
2605   for (Instruction &I : instructions(F)) {
2606     if (!isa<GetElementPtrInst>(I))
2607       continue;
2608 
2609     unsigned VF = 0;
2610     for (unsigned i = 0; i < I.getNumOperands(); i++)
2611       if (I.getOperand(i)->getType()->isVectorTy()) {
2612         assert(VF == 0 ||
2613                VF == I.getOperand(i)->getType()->getVectorNumElements());
2614         VF = I.getOperand(i)->getType()->getVectorNumElements();
2615       }
2616 
2617     // It's the vector to scalar traversal through the pointer operand which
2618     // confuses base pointer rewriting, so limit ourselves to that case.
2619     if (!I.getOperand(0)->getType()->isVectorTy() && VF != 0) {
2620       IRBuilder<> B(&I);
2621       auto *Splat = B.CreateVectorSplat(VF, I.getOperand(0));
2622       I.setOperand(0, Splat);
2623       MadeChange = true;
2624     }
2625   }
2626 
2627   MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded);
2628   return MadeChange;
2629 }
2630 
2631 // liveness computation via standard dataflow
2632 // -------------------------------------------------------------------
2633 
2634 // TODO: Consider using bitvectors for liveness, the set of potentially
2635 // interesting values should be small and easy to pre-compute.
2636 
2637 /// Compute the live-in set for the location rbegin starting from
2638 /// the live-out set of the basic block
2639 static void computeLiveInValues(BasicBlock::reverse_iterator Begin,
2640                                 BasicBlock::reverse_iterator End,
2641                                 SetVector<Value *> &LiveTmp) {
2642   for (auto &I : make_range(Begin, End)) {
2643     // KILL/Def - Remove this definition from LiveIn
2644     LiveTmp.remove(&I);
2645 
2646     // Don't consider *uses* in PHI nodes, we handle their contribution to
2647     // predecessor blocks when we seed the LiveOut sets
2648     if (isa<PHINode>(I))
2649       continue;
2650 
2651     // USE - Add to the LiveIn set for this instruction
2652     for (Value *V : I.operands()) {
2653       assert(!isUnhandledGCPointerType(V->getType()) &&
2654              "support for FCA unimplemented");
2655       if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
2656         // The choice to exclude all things constant here is slightly subtle.
2657         // There are two independent reasons:
2658         // - We assume that things which are constant (from LLVM's definition)
2659         // do not move at runtime.  For example, the address of a global
2660         // variable is fixed, even though it's contents may not be.
2661         // - Second, we can't disallow arbitrary inttoptr constants even
2662         // if the language frontend does.  Optimization passes are free to
2663         // locally exploit facts without respect to global reachability.  This
2664         // can create sections of code which are dynamically unreachable and
2665         // contain just about anything.  (see constants.ll in tests)
2666         LiveTmp.insert(V);
2667       }
2668     }
2669   }
2670 }
2671 
2672 static void computeLiveOutSeed(BasicBlock *BB, SetVector<Value *> &LiveTmp) {
2673   for (BasicBlock *Succ : successors(BB)) {
2674     for (auto &I : *Succ) {
2675       PHINode *PN = dyn_cast<PHINode>(&I);
2676       if (!PN)
2677         break;
2678 
2679       Value *V = PN->getIncomingValueForBlock(BB);
2680       assert(!isUnhandledGCPointerType(V->getType()) &&
2681              "support for FCA unimplemented");
2682       if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V))
2683         LiveTmp.insert(V);
2684     }
2685   }
2686 }
2687 
2688 static SetVector<Value *> computeKillSet(BasicBlock *BB) {
2689   SetVector<Value *> KillSet;
2690   for (Instruction &I : *BB)
2691     if (isHandledGCPointerType(I.getType()))
2692       KillSet.insert(&I);
2693   return KillSet;
2694 }
2695 
2696 #ifndef NDEBUG
2697 /// Check that the items in 'Live' dominate 'TI'.  This is used as a basic
2698 /// sanity check for the liveness computation.
2699 static void checkBasicSSA(DominatorTree &DT, SetVector<Value *> &Live,
2700                           Instruction *TI, bool TermOkay = false) {
2701   for (Value *V : Live) {
2702     if (auto *I = dyn_cast<Instruction>(V)) {
2703       // The terminator can be a member of the LiveOut set.  LLVM's definition
2704       // of instruction dominance states that V does not dominate itself.  As
2705       // such, we need to special case this to allow it.
2706       if (TermOkay && TI == I)
2707         continue;
2708       assert(DT.dominates(I, TI) &&
2709              "basic SSA liveness expectation violated by liveness analysis");
2710     }
2711   }
2712 }
2713 
2714 /// Check that all the liveness sets used during the computation of liveness
2715 /// obey basic SSA properties.  This is useful for finding cases where we miss
2716 /// a def.
2717 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data,
2718                           BasicBlock &BB) {
2719   checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator());
2720   checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true);
2721   checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator());
2722 }
2723 #endif
2724 
2725 static void computeLiveInValues(DominatorTree &DT, Function &F,
2726                                 GCPtrLivenessData &Data) {
2727   SmallSetVector<BasicBlock *, 32> Worklist;
2728 
2729   // Seed the liveness for each individual block
2730   for (BasicBlock &BB : F) {
2731     Data.KillSet[&BB] = computeKillSet(&BB);
2732     Data.LiveSet[&BB].clear();
2733     computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]);
2734 
2735 #ifndef NDEBUG
2736     for (Value *Kill : Data.KillSet[&BB])
2737       assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill");
2738 #endif
2739 
2740     Data.LiveOut[&BB] = SetVector<Value *>();
2741     computeLiveOutSeed(&BB, Data.LiveOut[&BB]);
2742     Data.LiveIn[&BB] = Data.LiveSet[&BB];
2743     Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]);
2744     Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]);
2745     if (!Data.LiveIn[&BB].empty())
2746       Worklist.insert(pred_begin(&BB), pred_end(&BB));
2747   }
2748 
2749   // Propagate that liveness until stable
2750   while (!Worklist.empty()) {
2751     BasicBlock *BB = Worklist.pop_back_val();
2752 
2753     // Compute our new liveout set, then exit early if it hasn't changed despite
2754     // the contribution of our successor.
2755     SetVector<Value *> LiveOut = Data.LiveOut[BB];
2756     const auto OldLiveOutSize = LiveOut.size();
2757     for (BasicBlock *Succ : successors(BB)) {
2758       assert(Data.LiveIn.count(Succ));
2759       LiveOut.set_union(Data.LiveIn[Succ]);
2760     }
2761     // assert OutLiveOut is a subset of LiveOut
2762     if (OldLiveOutSize == LiveOut.size()) {
2763       // If the sets are the same size, then we didn't actually add anything
2764       // when unioning our successors LiveIn.  Thus, the LiveIn of this block
2765       // hasn't changed.
2766       continue;
2767     }
2768     Data.LiveOut[BB] = LiveOut;
2769 
2770     // Apply the effects of this basic block
2771     SetVector<Value *> LiveTmp = LiveOut;
2772     LiveTmp.set_union(Data.LiveSet[BB]);
2773     LiveTmp.set_subtract(Data.KillSet[BB]);
2774 
2775     assert(Data.LiveIn.count(BB));
2776     const SetVector<Value *> &OldLiveIn = Data.LiveIn[BB];
2777     // assert: OldLiveIn is a subset of LiveTmp
2778     if (OldLiveIn.size() != LiveTmp.size()) {
2779       Data.LiveIn[BB] = LiveTmp;
2780       Worklist.insert(pred_begin(BB), pred_end(BB));
2781     }
2782   } // while (!Worklist.empty())
2783 
2784 #ifndef NDEBUG
2785   // Sanity check our output against SSA properties.  This helps catch any
2786   // missing kills during the above iteration.
2787   for (BasicBlock &BB : F)
2788     checkBasicSSA(DT, Data, BB);
2789 #endif
2790 }
2791 
2792 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data,
2793                               StatepointLiveSetTy &Out) {
2794   BasicBlock *BB = Inst->getParent();
2795 
2796   // Note: The copy is intentional and required
2797   assert(Data.LiveOut.count(BB));
2798   SetVector<Value *> LiveOut = Data.LiveOut[BB];
2799 
2800   // We want to handle the statepoint itself oddly.  It's
2801   // call result is not live (normal), nor are it's arguments
2802   // (unless they're used again later).  This adjustment is
2803   // specifically what we need to relocate
2804   computeLiveInValues(BB->rbegin(), ++Inst->getIterator().getReverse(),
2805                       LiveOut);
2806   LiveOut.remove(Inst);
2807   Out.insert(LiveOut.begin(), LiveOut.end());
2808 }
2809 
2810 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
2811                                   CallBase *Call,
2812                                   PartiallyConstructedSafepointRecord &Info) {
2813   StatepointLiveSetTy Updated;
2814   findLiveSetAtInst(Call, RevisedLivenessData, Updated);
2815 
2816   // We may have base pointers which are now live that weren't before.  We need
2817   // to update the PointerToBase structure to reflect this.
2818   for (auto V : Updated)
2819     if (Info.PointerToBase.insert({V, V}).second) {
2820       assert(isKnownBaseResult(V) &&
2821              "Can't find base for unexpected live value!");
2822       continue;
2823     }
2824 
2825 #ifndef NDEBUG
2826   for (auto V : Updated)
2827     assert(Info.PointerToBase.count(V) &&
2828            "Must be able to find base for live value!");
2829 #endif
2830 
2831   // Remove any stale base mappings - this can happen since our liveness is
2832   // more precise then the one inherent in the base pointer analysis.
2833   DenseSet<Value *> ToErase;
2834   for (auto KVPair : Info.PointerToBase)
2835     if (!Updated.count(KVPair.first))
2836       ToErase.insert(KVPair.first);
2837 
2838   for (auto *V : ToErase)
2839     Info.PointerToBase.erase(V);
2840 
2841 #ifndef NDEBUG
2842   for (auto KVPair : Info.PointerToBase)
2843     assert(Updated.count(KVPair.first) && "record for non-live value");
2844 #endif
2845 
2846   Info.LiveSet = Updated;
2847 }
2848