1 //===- SROA.cpp - Scalar Replacement Of Aggregates ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This transformation implements the well known scalar replacement of
10 /// aggregates transformation. It tries to identify promotable elements of an
11 /// aggregate alloca, and promote them to registers. It will also try to
12 /// convert uses of an element (or set of elements) of an alloca into a vector
13 /// or bitfield-style integer scalar if appropriate.
14 ///
15 /// It works to do this with minimal slicing of the alloca so that regions
16 /// which are merely transferred in and out of external memory remain unchanged
17 /// and are not decomposed to scalar code.
18 ///
19 /// Because this also performs alloca promotion, it can be thought of as also
20 /// serving the purpose of SSA formation. The algorithm iterates on the
21 /// function until all opportunities for promotion have been realized.
22 ///
23 //===----------------------------------------------------------------------===//
24 
25 #include "llvm/Transforms/Scalar/SROA.h"
26 #include "llvm/ADT/APInt.h"
27 #include "llvm/ADT/ArrayRef.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/PointerIntPair.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SetVector.h"
32 #include "llvm/ADT/SmallBitVector.h"
33 #include "llvm/ADT/SmallPtrSet.h"
34 #include "llvm/ADT/SmallVector.h"
35 #include "llvm/ADT/Statistic.h"
36 #include "llvm/ADT/StringRef.h"
37 #include "llvm/ADT/Twine.h"
38 #include "llvm/ADT/iterator.h"
39 #include "llvm/ADT/iterator_range.h"
40 #include "llvm/Analysis/AssumptionCache.h"
41 #include "llvm/Analysis/GlobalsModRef.h"
42 #include "llvm/Analysis/Loads.h"
43 #include "llvm/Analysis/PtrUseVisitor.h"
44 #include "llvm/Config/llvm-config.h"
45 #include "llvm/IR/BasicBlock.h"
46 #include "llvm/IR/Constant.h"
47 #include "llvm/IR/ConstantFolder.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DIBuilder.h"
50 #include "llvm/IR/DataLayout.h"
51 #include "llvm/IR/DebugInfoMetadata.h"
52 #include "llvm/IR/DerivedTypes.h"
53 #include "llvm/IR/Dominators.h"
54 #include "llvm/IR/Function.h"
55 #include "llvm/IR/GetElementPtrTypeIterator.h"
56 #include "llvm/IR/GlobalAlias.h"
57 #include "llvm/IR/IRBuilder.h"
58 #include "llvm/IR/InstVisitor.h"
59 #include "llvm/IR/InstrTypes.h"
60 #include "llvm/IR/Instruction.h"
61 #include "llvm/IR/Instructions.h"
62 #include "llvm/IR/IntrinsicInst.h"
63 #include "llvm/IR/Intrinsics.h"
64 #include "llvm/IR/LLVMContext.h"
65 #include "llvm/IR/Metadata.h"
66 #include "llvm/IR/Module.h"
67 #include "llvm/IR/Operator.h"
68 #include "llvm/IR/PassManager.h"
69 #include "llvm/IR/Type.h"
70 #include "llvm/IR/Use.h"
71 #include "llvm/IR/User.h"
72 #include "llvm/IR/Value.h"
73 #include "llvm/InitializePasses.h"
74 #include "llvm/Pass.h"
75 #include "llvm/Support/Casting.h"
76 #include "llvm/Support/CommandLine.h"
77 #include "llvm/Support/Compiler.h"
78 #include "llvm/Support/Debug.h"
79 #include "llvm/Support/ErrorHandling.h"
80 #include "llvm/Support/MathExtras.h"
81 #include "llvm/Support/raw_ostream.h"
82 #include "llvm/Transforms/Scalar.h"
83 #include "llvm/Transforms/Utils/Local.h"
84 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
85 #include <algorithm>
86 #include <cassert>
87 #include <chrono>
88 #include <cstddef>
89 #include <cstdint>
90 #include <cstring>
91 #include <iterator>
92 #include <string>
93 #include <tuple>
94 #include <utility>
95 #include <vector>
96 
97 using namespace llvm;
98 using namespace llvm::sroa;
99 
100 #define DEBUG_TYPE "sroa"
101 
102 STATISTIC(NumAllocasAnalyzed, "Number of allocas analyzed for replacement");
103 STATISTIC(NumAllocaPartitions, "Number of alloca partitions formed");
104 STATISTIC(MaxPartitionsPerAlloca, "Maximum number of partitions per alloca");
105 STATISTIC(NumAllocaPartitionUses, "Number of alloca partition uses rewritten");
106 STATISTIC(MaxUsesPerAllocaPartition, "Maximum number of uses of a partition");
107 STATISTIC(NumNewAllocas, "Number of new, smaller allocas introduced");
108 STATISTIC(NumPromoted, "Number of allocas promoted to SSA values");
109 STATISTIC(NumLoadsSpeculated, "Number of loads speculated to allow promotion");
110 STATISTIC(NumDeleted, "Number of instructions deleted");
111 STATISTIC(NumVectorized, "Number of vectorized aggregates");
112 
113 /// Hidden option to experiment with completely strict handling of inbounds
114 /// GEPs.
115 static cl::opt<bool> SROAStrictInbounds("sroa-strict-inbounds", cl::init(false),
116                                         cl::Hidden);
117 
118 namespace {
119 
120 /// A custom IRBuilder inserter which prefixes all names, but only in
121 /// Assert builds.
122 class IRBuilderPrefixedInserter final : public IRBuilderDefaultInserter {
123   std::string Prefix;
124 
125   const Twine getNameWithPrefix(const Twine &Name) const {
126     return Name.isTriviallyEmpty() ? Name : Prefix + Name;
127   }
128 
129 public:
130   void SetNamePrefix(const Twine &P) { Prefix = P.str(); }
131 
132   void InsertHelper(Instruction *I, const Twine &Name, BasicBlock *BB,
133                     BasicBlock::iterator InsertPt) const override {
134     IRBuilderDefaultInserter::InsertHelper(I, getNameWithPrefix(Name), BB,
135                                            InsertPt);
136   }
137 };
138 
139 /// Provide a type for IRBuilder that drops names in release builds.
140 using IRBuilderTy = IRBuilder<ConstantFolder, IRBuilderPrefixedInserter>;
141 
142 /// A used slice of an alloca.
143 ///
144 /// This structure represents a slice of an alloca used by some instruction. It
145 /// stores both the begin and end offsets of this use, a pointer to the use
146 /// itself, and a flag indicating whether we can classify the use as splittable
147 /// or not when forming partitions of the alloca.
148 class Slice {
149   /// The beginning offset of the range.
150   uint64_t BeginOffset = 0;
151 
152   /// The ending offset, not included in the range.
153   uint64_t EndOffset = 0;
154 
155   /// Storage for both the use of this slice and whether it can be
156   /// split.
157   PointerIntPair<Use *, 1, bool> UseAndIsSplittable;
158 
159 public:
160   Slice() = default;
161 
162   Slice(uint64_t BeginOffset, uint64_t EndOffset, Use *U, bool IsSplittable)
163       : BeginOffset(BeginOffset), EndOffset(EndOffset),
164         UseAndIsSplittable(U, IsSplittable) {}
165 
166   uint64_t beginOffset() const { return BeginOffset; }
167   uint64_t endOffset() const { return EndOffset; }
168 
169   bool isSplittable() const { return UseAndIsSplittable.getInt(); }
170   void makeUnsplittable() { UseAndIsSplittable.setInt(false); }
171 
172   Use *getUse() const { return UseAndIsSplittable.getPointer(); }
173 
174   bool isDead() const { return getUse() == nullptr; }
175   void kill() { UseAndIsSplittable.setPointer(nullptr); }
176 
177   /// Support for ordering ranges.
178   ///
179   /// This provides an ordering over ranges such that start offsets are
180   /// always increasing, and within equal start offsets, the end offsets are
181   /// decreasing. Thus the spanning range comes first in a cluster with the
182   /// same start position.
183   bool operator<(const Slice &RHS) const {
184     if (beginOffset() < RHS.beginOffset())
185       return true;
186     if (beginOffset() > RHS.beginOffset())
187       return false;
188     if (isSplittable() != RHS.isSplittable())
189       return !isSplittable();
190     if (endOffset() > RHS.endOffset())
191       return true;
192     return false;
193   }
194 
195   /// Support comparison with a single offset to allow binary searches.
196   friend LLVM_ATTRIBUTE_UNUSED bool operator<(const Slice &LHS,
197                                               uint64_t RHSOffset) {
198     return LHS.beginOffset() < RHSOffset;
199   }
200   friend LLVM_ATTRIBUTE_UNUSED bool operator<(uint64_t LHSOffset,
201                                               const Slice &RHS) {
202     return LHSOffset < RHS.beginOffset();
203   }
204 
205   bool operator==(const Slice &RHS) const {
206     return isSplittable() == RHS.isSplittable() &&
207            beginOffset() == RHS.beginOffset() && endOffset() == RHS.endOffset();
208   }
209   bool operator!=(const Slice &RHS) const { return !operator==(RHS); }
210 };
211 
212 } // end anonymous namespace
213 
214 /// Representation of the alloca slices.
215 ///
216 /// This class represents the slices of an alloca which are formed by its
217 /// various uses. If a pointer escapes, we can't fully build a representation
218 /// for the slices used and we reflect that in this structure. The uses are
219 /// stored, sorted by increasing beginning offset and with unsplittable slices
220 /// starting at a particular offset before splittable slices.
221 class llvm::sroa::AllocaSlices {
222 public:
223   /// Construct the slices of a particular alloca.
224   AllocaSlices(const DataLayout &DL, AllocaInst &AI);
225 
226   /// Test whether a pointer to the allocation escapes our analysis.
227   ///
228   /// If this is true, the slices are never fully built and should be
229   /// ignored.
230   bool isEscaped() const { return PointerEscapingInstr; }
231 
232   /// Support for iterating over the slices.
233   /// @{
234   using iterator = SmallVectorImpl<Slice>::iterator;
235   using range = iterator_range<iterator>;
236 
237   iterator begin() { return Slices.begin(); }
238   iterator end() { return Slices.end(); }
239 
240   using const_iterator = SmallVectorImpl<Slice>::const_iterator;
241   using const_range = iterator_range<const_iterator>;
242 
243   const_iterator begin() const { return Slices.begin(); }
244   const_iterator end() const { return Slices.end(); }
245   /// @}
246 
247   /// Erase a range of slices.
248   void erase(iterator Start, iterator Stop) { Slices.erase(Start, Stop); }
249 
250   /// Insert new slices for this alloca.
251   ///
252   /// This moves the slices into the alloca's slices collection, and re-sorts
253   /// everything so that the usual ordering properties of the alloca's slices
254   /// hold.
255   void insert(ArrayRef<Slice> NewSlices) {
256     int OldSize = Slices.size();
257     Slices.append(NewSlices.begin(), NewSlices.end());
258     auto SliceI = Slices.begin() + OldSize;
259     llvm::sort(SliceI, Slices.end());
260     std::inplace_merge(Slices.begin(), SliceI, Slices.end());
261   }
262 
263   // Forward declare the iterator and range accessor for walking the
264   // partitions.
265   class partition_iterator;
266   iterator_range<partition_iterator> partitions();
267 
268   /// Access the dead users for this alloca.
269   ArrayRef<Instruction *> getDeadUsers() const { return DeadUsers; }
270 
271   /// Access Uses that should be dropped if the alloca is promotable.
272   ArrayRef<Use *> getDeadUsesIfPromotable() const {
273     return DeadUseIfPromotable;
274   }
275 
276   /// Access the dead operands referring to this alloca.
277   ///
278   /// These are operands which have cannot actually be used to refer to the
279   /// alloca as they are outside its range and the user doesn't correct for
280   /// that. These mostly consist of PHI node inputs and the like which we just
281   /// need to replace with undef.
282   ArrayRef<Use *> getDeadOperands() const { return DeadOperands; }
283 
284 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
285   void print(raw_ostream &OS, const_iterator I, StringRef Indent = "  ") const;
286   void printSlice(raw_ostream &OS, const_iterator I,
287                   StringRef Indent = "  ") const;
288   void printUse(raw_ostream &OS, const_iterator I,
289                 StringRef Indent = "  ") const;
290   void print(raw_ostream &OS) const;
291   void dump(const_iterator I) const;
292   void dump() const;
293 #endif
294 
295 private:
296   template <typename DerivedT, typename RetT = void> class BuilderBase;
297   class SliceBuilder;
298 
299   friend class AllocaSlices::SliceBuilder;
300 
301 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
302   /// Handle to alloca instruction to simplify method interfaces.
303   AllocaInst &AI;
304 #endif
305 
306   /// The instruction responsible for this alloca not having a known set
307   /// of slices.
308   ///
309   /// When an instruction (potentially) escapes the pointer to the alloca, we
310   /// store a pointer to that here and abort trying to form slices of the
311   /// alloca. This will be null if the alloca slices are analyzed successfully.
312   Instruction *PointerEscapingInstr;
313 
314   /// The slices of the alloca.
315   ///
316   /// We store a vector of the slices formed by uses of the alloca here. This
317   /// vector is sorted by increasing begin offset, and then the unsplittable
318   /// slices before the splittable ones. See the Slice inner class for more
319   /// details.
320   SmallVector<Slice, 8> Slices;
321 
322   /// Instructions which will become dead if we rewrite the alloca.
323   ///
324   /// Note that these are not separated by slice. This is because we expect an
325   /// alloca to be completely rewritten or not rewritten at all. If rewritten,
326   /// all these instructions can simply be removed and replaced with undef as
327   /// they come from outside of the allocated space.
328   SmallVector<Instruction *, 8> DeadUsers;
329 
330   /// Uses which will become dead if can promote the alloca.
331   SmallVector<Use *, 8> DeadUseIfPromotable;
332 
333   /// Operands which will become dead if we rewrite the alloca.
334   ///
335   /// These are operands that in their particular use can be replaced with
336   /// undef when we rewrite the alloca. These show up in out-of-bounds inputs
337   /// to PHI nodes and the like. They aren't entirely dead (there might be
338   /// a GEP back into the bounds using it elsewhere) and nor is the PHI, but we
339   /// want to swap this particular input for undef to simplify the use lists of
340   /// the alloca.
341   SmallVector<Use *, 8> DeadOperands;
342 };
343 
344 /// A partition of the slices.
345 ///
346 /// An ephemeral representation for a range of slices which can be viewed as
347 /// a partition of the alloca. This range represents a span of the alloca's
348 /// memory which cannot be split, and provides access to all of the slices
349 /// overlapping some part of the partition.
350 ///
351 /// Objects of this type are produced by traversing the alloca's slices, but
352 /// are only ephemeral and not persistent.
353 class llvm::sroa::Partition {
354 private:
355   friend class AllocaSlices;
356   friend class AllocaSlices::partition_iterator;
357 
358   using iterator = AllocaSlices::iterator;
359 
360   /// The beginning and ending offsets of the alloca for this
361   /// partition.
362   uint64_t BeginOffset = 0, EndOffset = 0;
363 
364   /// The start and end iterators of this partition.
365   iterator SI, SJ;
366 
367   /// A collection of split slice tails overlapping the partition.
368   SmallVector<Slice *, 4> SplitTails;
369 
370   /// Raw constructor builds an empty partition starting and ending at
371   /// the given iterator.
372   Partition(iterator SI) : SI(SI), SJ(SI) {}
373 
374 public:
375   /// The start offset of this partition.
376   ///
377   /// All of the contained slices start at or after this offset.
378   uint64_t beginOffset() const { return BeginOffset; }
379 
380   /// The end offset of this partition.
381   ///
382   /// All of the contained slices end at or before this offset.
383   uint64_t endOffset() const { return EndOffset; }
384 
385   /// The size of the partition.
386   ///
387   /// Note that this can never be zero.
388   uint64_t size() const {
389     assert(BeginOffset < EndOffset && "Partitions must span some bytes!");
390     return EndOffset - BeginOffset;
391   }
392 
393   /// Test whether this partition contains no slices, and merely spans
394   /// a region occupied by split slices.
395   bool empty() const { return SI == SJ; }
396 
397   /// \name Iterate slices that start within the partition.
398   /// These may be splittable or unsplittable. They have a begin offset >= the
399   /// partition begin offset.
400   /// @{
401   // FIXME: We should probably define a "concat_iterator" helper and use that
402   // to stitch together pointee_iterators over the split tails and the
403   // contiguous iterators of the partition. That would give a much nicer
404   // interface here. We could then additionally expose filtered iterators for
405   // split, unsplit, and unsplittable splices based on the usage patterns.
406   iterator begin() const { return SI; }
407   iterator end() const { return SJ; }
408   /// @}
409 
410   /// Get the sequence of split slice tails.
411   ///
412   /// These tails are of slices which start before this partition but are
413   /// split and overlap into the partition. We accumulate these while forming
414   /// partitions.
415   ArrayRef<Slice *> splitSliceTails() const { return SplitTails; }
416 };
417 
418 /// An iterator over partitions of the alloca's slices.
419 ///
420 /// This iterator implements the core algorithm for partitioning the alloca's
421 /// slices. It is a forward iterator as we don't support backtracking for
422 /// efficiency reasons, and re-use a single storage area to maintain the
423 /// current set of split slices.
424 ///
425 /// It is templated on the slice iterator type to use so that it can operate
426 /// with either const or non-const slice iterators.
427 class AllocaSlices::partition_iterator
428     : public iterator_facade_base<partition_iterator, std::forward_iterator_tag,
429                                   Partition> {
430   friend class AllocaSlices;
431 
432   /// Most of the state for walking the partitions is held in a class
433   /// with a nice interface for examining them.
434   Partition P;
435 
436   /// We need to keep the end of the slices to know when to stop.
437   AllocaSlices::iterator SE;
438 
439   /// We also need to keep track of the maximum split end offset seen.
440   /// FIXME: Do we really?
441   uint64_t MaxSplitSliceEndOffset = 0;
442 
443   /// Sets the partition to be empty at given iterator, and sets the
444   /// end iterator.
445   partition_iterator(AllocaSlices::iterator SI, AllocaSlices::iterator SE)
446       : P(SI), SE(SE) {
447     // If not already at the end, advance our state to form the initial
448     // partition.
449     if (SI != SE)
450       advance();
451   }
452 
453   /// Advance the iterator to the next partition.
454   ///
455   /// Requires that the iterator not be at the end of the slices.
456   void advance() {
457     assert((P.SI != SE || !P.SplitTails.empty()) &&
458            "Cannot advance past the end of the slices!");
459 
460     // Clear out any split uses which have ended.
461     if (!P.SplitTails.empty()) {
462       if (P.EndOffset >= MaxSplitSliceEndOffset) {
463         // If we've finished all splits, this is easy.
464         P.SplitTails.clear();
465         MaxSplitSliceEndOffset = 0;
466       } else {
467         // Remove the uses which have ended in the prior partition. This
468         // cannot change the max split slice end because we just checked that
469         // the prior partition ended prior to that max.
470         llvm::erase_if(P.SplitTails,
471                        [&](Slice *S) { return S->endOffset() <= P.EndOffset; });
472         assert(llvm::any_of(P.SplitTails,
473                             [&](Slice *S) {
474                               return S->endOffset() == MaxSplitSliceEndOffset;
475                             }) &&
476                "Could not find the current max split slice offset!");
477         assert(llvm::all_of(P.SplitTails,
478                             [&](Slice *S) {
479                               return S->endOffset() <= MaxSplitSliceEndOffset;
480                             }) &&
481                "Max split slice end offset is not actually the max!");
482       }
483     }
484 
485     // If P.SI is already at the end, then we've cleared the split tail and
486     // now have an end iterator.
487     if (P.SI == SE) {
488       assert(P.SplitTails.empty() && "Failed to clear the split slices!");
489       return;
490     }
491 
492     // If we had a non-empty partition previously, set up the state for
493     // subsequent partitions.
494     if (P.SI != P.SJ) {
495       // Accumulate all the splittable slices which started in the old
496       // partition into the split list.
497       for (Slice &S : P)
498         if (S.isSplittable() && S.endOffset() > P.EndOffset) {
499           P.SplitTails.push_back(&S);
500           MaxSplitSliceEndOffset =
501               std::max(S.endOffset(), MaxSplitSliceEndOffset);
502         }
503 
504       // Start from the end of the previous partition.
505       P.SI = P.SJ;
506 
507       // If P.SI is now at the end, we at most have a tail of split slices.
508       if (P.SI == SE) {
509         P.BeginOffset = P.EndOffset;
510         P.EndOffset = MaxSplitSliceEndOffset;
511         return;
512       }
513 
514       // If the we have split slices and the next slice is after a gap and is
515       // not splittable immediately form an empty partition for the split
516       // slices up until the next slice begins.
517       if (!P.SplitTails.empty() && P.SI->beginOffset() != P.EndOffset &&
518           !P.SI->isSplittable()) {
519         P.BeginOffset = P.EndOffset;
520         P.EndOffset = P.SI->beginOffset();
521         return;
522       }
523     }
524 
525     // OK, we need to consume new slices. Set the end offset based on the
526     // current slice, and step SJ past it. The beginning offset of the
527     // partition is the beginning offset of the next slice unless we have
528     // pre-existing split slices that are continuing, in which case we begin
529     // at the prior end offset.
530     P.BeginOffset = P.SplitTails.empty() ? P.SI->beginOffset() : P.EndOffset;
531     P.EndOffset = P.SI->endOffset();
532     ++P.SJ;
533 
534     // There are two strategies to form a partition based on whether the
535     // partition starts with an unsplittable slice or a splittable slice.
536     if (!P.SI->isSplittable()) {
537       // When we're forming an unsplittable region, it must always start at
538       // the first slice and will extend through its end.
539       assert(P.BeginOffset == P.SI->beginOffset());
540 
541       // Form a partition including all of the overlapping slices with this
542       // unsplittable slice.
543       while (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset) {
544         if (!P.SJ->isSplittable())
545           P.EndOffset = std::max(P.EndOffset, P.SJ->endOffset());
546         ++P.SJ;
547       }
548 
549       // We have a partition across a set of overlapping unsplittable
550       // partitions.
551       return;
552     }
553 
554     // If we're starting with a splittable slice, then we need to form
555     // a synthetic partition spanning it and any other overlapping splittable
556     // splices.
557     assert(P.SI->isSplittable() && "Forming a splittable partition!");
558 
559     // Collect all of the overlapping splittable slices.
560     while (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset &&
561            P.SJ->isSplittable()) {
562       P.EndOffset = std::max(P.EndOffset, P.SJ->endOffset());
563       ++P.SJ;
564     }
565 
566     // Back upiP.EndOffset if we ended the span early when encountering an
567     // unsplittable slice. This synthesizes the early end offset of
568     // a partition spanning only splittable slices.
569     if (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset) {
570       assert(!P.SJ->isSplittable());
571       P.EndOffset = P.SJ->beginOffset();
572     }
573   }
574 
575 public:
576   bool operator==(const partition_iterator &RHS) const {
577     assert(SE == RHS.SE &&
578            "End iterators don't match between compared partition iterators!");
579 
580     // The observed positions of partitions is marked by the P.SI iterator and
581     // the emptiness of the split slices. The latter is only relevant when
582     // P.SI == SE, as the end iterator will additionally have an empty split
583     // slices list, but the prior may have the same P.SI and a tail of split
584     // slices.
585     if (P.SI == RHS.P.SI && P.SplitTails.empty() == RHS.P.SplitTails.empty()) {
586       assert(P.SJ == RHS.P.SJ &&
587              "Same set of slices formed two different sized partitions!");
588       assert(P.SplitTails.size() == RHS.P.SplitTails.size() &&
589              "Same slice position with differently sized non-empty split "
590              "slice tails!");
591       return true;
592     }
593     return false;
594   }
595 
596   partition_iterator &operator++() {
597     advance();
598     return *this;
599   }
600 
601   Partition &operator*() { return P; }
602 };
603 
604 /// A forward range over the partitions of the alloca's slices.
605 ///
606 /// This accesses an iterator range over the partitions of the alloca's
607 /// slices. It computes these partitions on the fly based on the overlapping
608 /// offsets of the slices and the ability to split them. It will visit "empty"
609 /// partitions to cover regions of the alloca only accessed via split
610 /// slices.
611 iterator_range<AllocaSlices::partition_iterator> AllocaSlices::partitions() {
612   return make_range(partition_iterator(begin(), end()),
613                     partition_iterator(end(), end()));
614 }
615 
616 static Value *foldSelectInst(SelectInst &SI) {
617   // If the condition being selected on is a constant or the same value is
618   // being selected between, fold the select. Yes this does (rarely) happen
619   // early on.
620   if (ConstantInt *CI = dyn_cast<ConstantInt>(SI.getCondition()))
621     return SI.getOperand(1 + CI->isZero());
622   if (SI.getOperand(1) == SI.getOperand(2))
623     return SI.getOperand(1);
624 
625   return nullptr;
626 }
627 
628 /// A helper that folds a PHI node or a select.
629 static Value *foldPHINodeOrSelectInst(Instruction &I) {
630   if (PHINode *PN = dyn_cast<PHINode>(&I)) {
631     // If PN merges together the same value, return that value.
632     return PN->hasConstantValue();
633   }
634   return foldSelectInst(cast<SelectInst>(I));
635 }
636 
637 /// Builder for the alloca slices.
638 ///
639 /// This class builds a set of alloca slices by recursively visiting the uses
640 /// of an alloca and making a slice for each load and store at each offset.
641 class AllocaSlices::SliceBuilder : public PtrUseVisitor<SliceBuilder> {
642   friend class PtrUseVisitor<SliceBuilder>;
643   friend class InstVisitor<SliceBuilder>;
644 
645   using Base = PtrUseVisitor<SliceBuilder>;
646 
647   const uint64_t AllocSize;
648   AllocaSlices &AS;
649 
650   SmallDenseMap<Instruction *, unsigned> MemTransferSliceMap;
651   SmallDenseMap<Instruction *, uint64_t> PHIOrSelectSizes;
652 
653   /// Set to de-duplicate dead instructions found in the use walk.
654   SmallPtrSet<Instruction *, 4> VisitedDeadInsts;
655 
656 public:
657   SliceBuilder(const DataLayout &DL, AllocaInst &AI, AllocaSlices &AS)
658       : PtrUseVisitor<SliceBuilder>(DL),
659         AllocSize(DL.getTypeAllocSize(AI.getAllocatedType()).getFixedSize()),
660         AS(AS) {}
661 
662 private:
663   void markAsDead(Instruction &I) {
664     if (VisitedDeadInsts.insert(&I).second)
665       AS.DeadUsers.push_back(&I);
666   }
667 
668   void insertUse(Instruction &I, const APInt &Offset, uint64_t Size,
669                  bool IsSplittable = false) {
670     // Completely skip uses which have a zero size or start either before or
671     // past the end of the allocation.
672     if (Size == 0 || Offset.uge(AllocSize)) {
673       LLVM_DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte use @"
674                         << Offset
675                         << " which has zero size or starts outside of the "
676                         << AllocSize << " byte alloca:\n"
677                         << "    alloca: " << AS.AI << "\n"
678                         << "       use: " << I << "\n");
679       return markAsDead(I);
680     }
681 
682     uint64_t BeginOffset = Offset.getZExtValue();
683     uint64_t EndOffset = BeginOffset + Size;
684 
685     // Clamp the end offset to the end of the allocation. Note that this is
686     // formulated to handle even the case where "BeginOffset + Size" overflows.
687     // This may appear superficially to be something we could ignore entirely,
688     // but that is not so! There may be widened loads or PHI-node uses where
689     // some instructions are dead but not others. We can't completely ignore
690     // them, and so have to record at least the information here.
691     assert(AllocSize >= BeginOffset); // Established above.
692     if (Size > AllocSize - BeginOffset) {
693       LLVM_DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @"
694                         << Offset << " to remain within the " << AllocSize
695                         << " byte alloca:\n"
696                         << "    alloca: " << AS.AI << "\n"
697                         << "       use: " << I << "\n");
698       EndOffset = AllocSize;
699     }
700 
701     AS.Slices.push_back(Slice(BeginOffset, EndOffset, U, IsSplittable));
702   }
703 
704   void visitBitCastInst(BitCastInst &BC) {
705     if (BC.use_empty())
706       return markAsDead(BC);
707 
708     return Base::visitBitCastInst(BC);
709   }
710 
711   void visitAddrSpaceCastInst(AddrSpaceCastInst &ASC) {
712     if (ASC.use_empty())
713       return markAsDead(ASC);
714 
715     return Base::visitAddrSpaceCastInst(ASC);
716   }
717 
718   void visitGetElementPtrInst(GetElementPtrInst &GEPI) {
719     if (GEPI.use_empty())
720       return markAsDead(GEPI);
721 
722     if (SROAStrictInbounds && GEPI.isInBounds()) {
723       // FIXME: This is a manually un-factored variant of the basic code inside
724       // of GEPs with checking of the inbounds invariant specified in the
725       // langref in a very strict sense. If we ever want to enable
726       // SROAStrictInbounds, this code should be factored cleanly into
727       // PtrUseVisitor, but it is easier to experiment with SROAStrictInbounds
728       // by writing out the code here where we have the underlying allocation
729       // size readily available.
730       APInt GEPOffset = Offset;
731       const DataLayout &DL = GEPI.getModule()->getDataLayout();
732       for (gep_type_iterator GTI = gep_type_begin(GEPI),
733                              GTE = gep_type_end(GEPI);
734            GTI != GTE; ++GTI) {
735         ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
736         if (!OpC)
737           break;
738 
739         // Handle a struct index, which adds its field offset to the pointer.
740         if (StructType *STy = GTI.getStructTypeOrNull()) {
741           unsigned ElementIdx = OpC->getZExtValue();
742           const StructLayout *SL = DL.getStructLayout(STy);
743           GEPOffset +=
744               APInt(Offset.getBitWidth(), SL->getElementOffset(ElementIdx));
745         } else {
746           // For array or vector indices, scale the index by the size of the
747           // type.
748           APInt Index = OpC->getValue().sextOrTrunc(Offset.getBitWidth());
749           GEPOffset +=
750               Index *
751               APInt(Offset.getBitWidth(),
752                     DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize());
753         }
754 
755         // If this index has computed an intermediate pointer which is not
756         // inbounds, then the result of the GEP is a poison value and we can
757         // delete it and all uses.
758         if (GEPOffset.ugt(AllocSize))
759           return markAsDead(GEPI);
760       }
761     }
762 
763     return Base::visitGetElementPtrInst(GEPI);
764   }
765 
766   void handleLoadOrStore(Type *Ty, Instruction &I, const APInt &Offset,
767                          uint64_t Size, bool IsVolatile) {
768     // We allow splitting of non-volatile loads and stores where the type is an
769     // integer type. These may be used to implement 'memcpy' or other "transfer
770     // of bits" patterns.
771     bool IsSplittable = Ty->isIntegerTy() && !IsVolatile;
772 
773     insertUse(I, Offset, Size, IsSplittable);
774   }
775 
776   void visitLoadInst(LoadInst &LI) {
777     assert((!LI.isSimple() || LI.getType()->isSingleValueType()) &&
778            "All simple FCA loads should have been pre-split");
779 
780     if (!IsOffsetKnown)
781       return PI.setAborted(&LI);
782 
783     if (LI.isVolatile() &&
784         LI.getPointerAddressSpace() != DL.getAllocaAddrSpace())
785       return PI.setAborted(&LI);
786 
787     if (isa<ScalableVectorType>(LI.getType()))
788       return PI.setAborted(&LI);
789 
790     uint64_t Size = DL.getTypeStoreSize(LI.getType()).getFixedSize();
791     return handleLoadOrStore(LI.getType(), LI, Offset, Size, LI.isVolatile());
792   }
793 
794   void visitStoreInst(StoreInst &SI) {
795     Value *ValOp = SI.getValueOperand();
796     if (ValOp == *U)
797       return PI.setEscapedAndAborted(&SI);
798     if (!IsOffsetKnown)
799       return PI.setAborted(&SI);
800 
801     if (SI.isVolatile() &&
802         SI.getPointerAddressSpace() != DL.getAllocaAddrSpace())
803       return PI.setAborted(&SI);
804 
805     if (isa<ScalableVectorType>(ValOp->getType()))
806       return PI.setAborted(&SI);
807 
808     uint64_t Size = DL.getTypeStoreSize(ValOp->getType()).getFixedSize();
809 
810     // If this memory access can be shown to *statically* extend outside the
811     // bounds of the allocation, it's behavior is undefined, so simply
812     // ignore it. Note that this is more strict than the generic clamping
813     // behavior of insertUse. We also try to handle cases which might run the
814     // risk of overflow.
815     // FIXME: We should instead consider the pointer to have escaped if this
816     // function is being instrumented for addressing bugs or race conditions.
817     if (Size > AllocSize || Offset.ugt(AllocSize - Size)) {
818       LLVM_DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte store @"
819                         << Offset << " which extends past the end of the "
820                         << AllocSize << " byte alloca:\n"
821                         << "    alloca: " << AS.AI << "\n"
822                         << "       use: " << SI << "\n");
823       return markAsDead(SI);
824     }
825 
826     assert((!SI.isSimple() || ValOp->getType()->isSingleValueType()) &&
827            "All simple FCA stores should have been pre-split");
828     handleLoadOrStore(ValOp->getType(), SI, Offset, Size, SI.isVolatile());
829   }
830 
831   void visitMemSetInst(MemSetInst &II) {
832     assert(II.getRawDest() == *U && "Pointer use is not the destination?");
833     ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
834     if ((Length && Length->getValue() == 0) ||
835         (IsOffsetKnown && Offset.uge(AllocSize)))
836       // Zero-length mem transfer intrinsics can be ignored entirely.
837       return markAsDead(II);
838 
839     if (!IsOffsetKnown)
840       return PI.setAborted(&II);
841 
842     // Don't replace this with a store with a different address space.  TODO:
843     // Use a store with the casted new alloca?
844     if (II.isVolatile() && II.getDestAddressSpace() != DL.getAllocaAddrSpace())
845       return PI.setAborted(&II);
846 
847     insertUse(II, Offset, Length ? Length->getLimitedValue()
848                                  : AllocSize - Offset.getLimitedValue(),
849               (bool)Length);
850   }
851 
852   void visitMemTransferInst(MemTransferInst &II) {
853     ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
854     if (Length && Length->getValue() == 0)
855       // Zero-length mem transfer intrinsics can be ignored entirely.
856       return markAsDead(II);
857 
858     // Because we can visit these intrinsics twice, also check to see if the
859     // first time marked this instruction as dead. If so, skip it.
860     if (VisitedDeadInsts.count(&II))
861       return;
862 
863     if (!IsOffsetKnown)
864       return PI.setAborted(&II);
865 
866     // Don't replace this with a load/store with a different address space.
867     // TODO: Use a store with the casted new alloca?
868     if (II.isVolatile() &&
869         (II.getDestAddressSpace() != DL.getAllocaAddrSpace() ||
870          II.getSourceAddressSpace() != DL.getAllocaAddrSpace()))
871       return PI.setAborted(&II);
872 
873     // This side of the transfer is completely out-of-bounds, and so we can
874     // nuke the entire transfer. However, we also need to nuke the other side
875     // if already added to our partitions.
876     // FIXME: Yet another place we really should bypass this when
877     // instrumenting for ASan.
878     if (Offset.uge(AllocSize)) {
879       SmallDenseMap<Instruction *, unsigned>::iterator MTPI =
880           MemTransferSliceMap.find(&II);
881       if (MTPI != MemTransferSliceMap.end())
882         AS.Slices[MTPI->second].kill();
883       return markAsDead(II);
884     }
885 
886     uint64_t RawOffset = Offset.getLimitedValue();
887     uint64_t Size = Length ? Length->getLimitedValue() : AllocSize - RawOffset;
888 
889     // Check for the special case where the same exact value is used for both
890     // source and dest.
891     if (*U == II.getRawDest() && *U == II.getRawSource()) {
892       // For non-volatile transfers this is a no-op.
893       if (!II.isVolatile())
894         return markAsDead(II);
895 
896       return insertUse(II, Offset, Size, /*IsSplittable=*/false);
897     }
898 
899     // If we have seen both source and destination for a mem transfer, then
900     // they both point to the same alloca.
901     bool Inserted;
902     SmallDenseMap<Instruction *, unsigned>::iterator MTPI;
903     std::tie(MTPI, Inserted) =
904         MemTransferSliceMap.insert(std::make_pair(&II, AS.Slices.size()));
905     unsigned PrevIdx = MTPI->second;
906     if (!Inserted) {
907       Slice &PrevP = AS.Slices[PrevIdx];
908 
909       // Check if the begin offsets match and this is a non-volatile transfer.
910       // In that case, we can completely elide the transfer.
911       if (!II.isVolatile() && PrevP.beginOffset() == RawOffset) {
912         PrevP.kill();
913         return markAsDead(II);
914       }
915 
916       // Otherwise we have an offset transfer within the same alloca. We can't
917       // split those.
918       PrevP.makeUnsplittable();
919     }
920 
921     // Insert the use now that we've fixed up the splittable nature.
922     insertUse(II, Offset, Size, /*IsSplittable=*/Inserted && Length);
923 
924     // Check that we ended up with a valid index in the map.
925     assert(AS.Slices[PrevIdx].getUse()->getUser() == &II &&
926            "Map index doesn't point back to a slice with this user.");
927   }
928 
929   // Disable SRoA for any intrinsics except for lifetime invariants.
930   // FIXME: What about debug intrinsics? This matches old behavior, but
931   // doesn't make sense.
932   void visitIntrinsicInst(IntrinsicInst &II) {
933     if (II.isDroppable()) {
934       AS.DeadUseIfPromotable.push_back(U);
935       return;
936     }
937 
938     if (!IsOffsetKnown)
939       return PI.setAborted(&II);
940 
941     if (II.isLifetimeStartOrEnd()) {
942       ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0));
943       uint64_t Size = std::min(AllocSize - Offset.getLimitedValue(),
944                                Length->getLimitedValue());
945       insertUse(II, Offset, Size, true);
946       return;
947     }
948 
949     Base::visitIntrinsicInst(II);
950   }
951 
952   Instruction *hasUnsafePHIOrSelectUse(Instruction *Root, uint64_t &Size) {
953     // We consider any PHI or select that results in a direct load or store of
954     // the same offset to be a viable use for slicing purposes. These uses
955     // are considered unsplittable and the size is the maximum loaded or stored
956     // size.
957     SmallPtrSet<Instruction *, 4> Visited;
958     SmallVector<std::pair<Instruction *, Instruction *>, 4> Uses;
959     Visited.insert(Root);
960     Uses.push_back(std::make_pair(cast<Instruction>(*U), Root));
961     const DataLayout &DL = Root->getModule()->getDataLayout();
962     // If there are no loads or stores, the access is dead. We mark that as
963     // a size zero access.
964     Size = 0;
965     do {
966       Instruction *I, *UsedI;
967       std::tie(UsedI, I) = Uses.pop_back_val();
968 
969       if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
970         Size = std::max(Size,
971                         DL.getTypeStoreSize(LI->getType()).getFixedSize());
972         continue;
973       }
974       if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
975         Value *Op = SI->getOperand(0);
976         if (Op == UsedI)
977           return SI;
978         Size = std::max(Size,
979                         DL.getTypeStoreSize(Op->getType()).getFixedSize());
980         continue;
981       }
982 
983       if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
984         if (!GEP->hasAllZeroIndices())
985           return GEP;
986       } else if (!isa<BitCastInst>(I) && !isa<PHINode>(I) &&
987                  !isa<SelectInst>(I) && !isa<AddrSpaceCastInst>(I)) {
988         return I;
989       }
990 
991       for (User *U : I->users())
992         if (Visited.insert(cast<Instruction>(U)).second)
993           Uses.push_back(std::make_pair(I, cast<Instruction>(U)));
994     } while (!Uses.empty());
995 
996     return nullptr;
997   }
998 
999   void visitPHINodeOrSelectInst(Instruction &I) {
1000     assert(isa<PHINode>(I) || isa<SelectInst>(I));
1001     if (I.use_empty())
1002       return markAsDead(I);
1003 
1004     // TODO: We could use SimplifyInstruction here to fold PHINodes and
1005     // SelectInsts. However, doing so requires to change the current
1006     // dead-operand-tracking mechanism. For instance, suppose neither loading
1007     // from %U nor %other traps. Then "load (select undef, %U, %other)" does not
1008     // trap either.  However, if we simply replace %U with undef using the
1009     // current dead-operand-tracking mechanism, "load (select undef, undef,
1010     // %other)" may trap because the select may return the first operand
1011     // "undef".
1012     if (Value *Result = foldPHINodeOrSelectInst(I)) {
1013       if (Result == *U)
1014         // If the result of the constant fold will be the pointer, recurse
1015         // through the PHI/select as if we had RAUW'ed it.
1016         enqueueUsers(I);
1017       else
1018         // Otherwise the operand to the PHI/select is dead, and we can replace
1019         // it with undef.
1020         AS.DeadOperands.push_back(U);
1021 
1022       return;
1023     }
1024 
1025     if (!IsOffsetKnown)
1026       return PI.setAborted(&I);
1027 
1028     // See if we already have computed info on this node.
1029     uint64_t &Size = PHIOrSelectSizes[&I];
1030     if (!Size) {
1031       // This is a new PHI/Select, check for an unsafe use of it.
1032       if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&I, Size))
1033         return PI.setAborted(UnsafeI);
1034     }
1035 
1036     // For PHI and select operands outside the alloca, we can't nuke the entire
1037     // phi or select -- the other side might still be relevant, so we special
1038     // case them here and use a separate structure to track the operands
1039     // themselves which should be replaced with undef.
1040     // FIXME: This should instead be escaped in the event we're instrumenting
1041     // for address sanitization.
1042     if (Offset.uge(AllocSize)) {
1043       AS.DeadOperands.push_back(U);
1044       return;
1045     }
1046 
1047     insertUse(I, Offset, Size);
1048   }
1049 
1050   void visitPHINode(PHINode &PN) { visitPHINodeOrSelectInst(PN); }
1051 
1052   void visitSelectInst(SelectInst &SI) { visitPHINodeOrSelectInst(SI); }
1053 
1054   /// Disable SROA entirely if there are unhandled users of the alloca.
1055   void visitInstruction(Instruction &I) { PI.setAborted(&I); }
1056 };
1057 
1058 AllocaSlices::AllocaSlices(const DataLayout &DL, AllocaInst &AI)
1059     :
1060 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1061       AI(AI),
1062 #endif
1063       PointerEscapingInstr(nullptr) {
1064   SliceBuilder PB(DL, AI, *this);
1065   SliceBuilder::PtrInfo PtrI = PB.visitPtr(AI);
1066   if (PtrI.isEscaped() || PtrI.isAborted()) {
1067     // FIXME: We should sink the escape vs. abort info into the caller nicely,
1068     // possibly by just storing the PtrInfo in the AllocaSlices.
1069     PointerEscapingInstr = PtrI.getEscapingInst() ? PtrI.getEscapingInst()
1070                                                   : PtrI.getAbortingInst();
1071     assert(PointerEscapingInstr && "Did not track a bad instruction");
1072     return;
1073   }
1074 
1075   llvm::erase_if(Slices, [](const Slice &S) { return S.isDead(); });
1076 
1077   // Sort the uses. This arranges for the offsets to be in ascending order,
1078   // and the sizes to be in descending order.
1079   llvm::stable_sort(Slices);
1080 }
1081 
1082 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1083 
1084 void AllocaSlices::print(raw_ostream &OS, const_iterator I,
1085                          StringRef Indent) const {
1086   printSlice(OS, I, Indent);
1087   OS << "\n";
1088   printUse(OS, I, Indent);
1089 }
1090 
1091 void AllocaSlices::printSlice(raw_ostream &OS, const_iterator I,
1092                               StringRef Indent) const {
1093   OS << Indent << "[" << I->beginOffset() << "," << I->endOffset() << ")"
1094      << " slice #" << (I - begin())
1095      << (I->isSplittable() ? " (splittable)" : "");
1096 }
1097 
1098 void AllocaSlices::printUse(raw_ostream &OS, const_iterator I,
1099                             StringRef Indent) const {
1100   OS << Indent << "  used by: " << *I->getUse()->getUser() << "\n";
1101 }
1102 
1103 void AllocaSlices::print(raw_ostream &OS) const {
1104   if (PointerEscapingInstr) {
1105     OS << "Can't analyze slices for alloca: " << AI << "\n"
1106        << "  A pointer to this alloca escaped by:\n"
1107        << "  " << *PointerEscapingInstr << "\n";
1108     return;
1109   }
1110 
1111   OS << "Slices of alloca: " << AI << "\n";
1112   for (const_iterator I = begin(), E = end(); I != E; ++I)
1113     print(OS, I);
1114 }
1115 
1116 LLVM_DUMP_METHOD void AllocaSlices::dump(const_iterator I) const {
1117   print(dbgs(), I);
1118 }
1119 LLVM_DUMP_METHOD void AllocaSlices::dump() const { print(dbgs()); }
1120 
1121 #endif // !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1122 
1123 /// Walk the range of a partitioning looking for a common type to cover this
1124 /// sequence of slices.
1125 static std::pair<Type *, IntegerType *>
1126 findCommonType(AllocaSlices::const_iterator B, AllocaSlices::const_iterator E,
1127                uint64_t EndOffset) {
1128   Type *Ty = nullptr;
1129   bool TyIsCommon = true;
1130   IntegerType *ITy = nullptr;
1131 
1132   // Note that we need to look at *every* alloca slice's Use to ensure we
1133   // always get consistent results regardless of the order of slices.
1134   for (AllocaSlices::const_iterator I = B; I != E; ++I) {
1135     Use *U = I->getUse();
1136     if (isa<IntrinsicInst>(*U->getUser()))
1137       continue;
1138     if (I->beginOffset() != B->beginOffset() || I->endOffset() != EndOffset)
1139       continue;
1140 
1141     Type *UserTy = nullptr;
1142     if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
1143       UserTy = LI->getType();
1144     } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
1145       UserTy = SI->getValueOperand()->getType();
1146     }
1147 
1148     if (IntegerType *UserITy = dyn_cast_or_null<IntegerType>(UserTy)) {
1149       // If the type is larger than the partition, skip it. We only encounter
1150       // this for split integer operations where we want to use the type of the
1151       // entity causing the split. Also skip if the type is not a byte width
1152       // multiple.
1153       if (UserITy->getBitWidth() % 8 != 0 ||
1154           UserITy->getBitWidth() / 8 > (EndOffset - B->beginOffset()))
1155         continue;
1156 
1157       // Track the largest bitwidth integer type used in this way in case there
1158       // is no common type.
1159       if (!ITy || ITy->getBitWidth() < UserITy->getBitWidth())
1160         ITy = UserITy;
1161     }
1162 
1163     // To avoid depending on the order of slices, Ty and TyIsCommon must not
1164     // depend on types skipped above.
1165     if (!UserTy || (Ty && Ty != UserTy))
1166       TyIsCommon = false; // Give up on anything but an iN type.
1167     else
1168       Ty = UserTy;
1169   }
1170 
1171   return {TyIsCommon ? Ty : nullptr, ITy};
1172 }
1173 
1174 /// PHI instructions that use an alloca and are subsequently loaded can be
1175 /// rewritten to load both input pointers in the pred blocks and then PHI the
1176 /// results, allowing the load of the alloca to be promoted.
1177 /// From this:
1178 ///   %P2 = phi [i32* %Alloca, i32* %Other]
1179 ///   %V = load i32* %P2
1180 /// to:
1181 ///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1182 ///   ...
1183 ///   %V2 = load i32* %Other
1184 ///   ...
1185 ///   %V = phi [i32 %V1, i32 %V2]
1186 ///
1187 /// We can do this to a select if its only uses are loads and if the operands
1188 /// to the select can be loaded unconditionally.
1189 ///
1190 /// FIXME: This should be hoisted into a generic utility, likely in
1191 /// Transforms/Util/Local.h
1192 static bool isSafePHIToSpeculate(PHINode &PN) {
1193   const DataLayout &DL = PN.getModule()->getDataLayout();
1194 
1195   // For now, we can only do this promotion if the load is in the same block
1196   // as the PHI, and if there are no stores between the phi and load.
1197   // TODO: Allow recursive phi users.
1198   // TODO: Allow stores.
1199   BasicBlock *BB = PN.getParent();
1200   Align MaxAlign;
1201   uint64_t APWidth = DL.getIndexTypeSizeInBits(PN.getType());
1202   APInt MaxSize(APWidth, 0);
1203   bool HaveLoad = false;
1204   for (User *U : PN.users()) {
1205     LoadInst *LI = dyn_cast<LoadInst>(U);
1206     if (!LI || !LI->isSimple())
1207       return false;
1208 
1209     // For now we only allow loads in the same block as the PHI.  This is
1210     // a common case that happens when instcombine merges two loads through
1211     // a PHI.
1212     if (LI->getParent() != BB)
1213       return false;
1214 
1215     // Ensure that there are no instructions between the PHI and the load that
1216     // could store.
1217     for (BasicBlock::iterator BBI(PN); &*BBI != LI; ++BBI)
1218       if (BBI->mayWriteToMemory())
1219         return false;
1220 
1221     uint64_t Size = DL.getTypeStoreSize(LI->getType()).getFixedSize();
1222     MaxAlign = std::max(MaxAlign, LI->getAlign());
1223     MaxSize = MaxSize.ult(Size) ? APInt(APWidth, Size) : MaxSize;
1224     HaveLoad = true;
1225   }
1226 
1227   if (!HaveLoad)
1228     return false;
1229 
1230   // We can only transform this if it is safe to push the loads into the
1231   // predecessor blocks. The only thing to watch out for is that we can't put
1232   // a possibly trapping load in the predecessor if it is a critical edge.
1233   for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
1234     Instruction *TI = PN.getIncomingBlock(Idx)->getTerminator();
1235     Value *InVal = PN.getIncomingValue(Idx);
1236 
1237     // If the value is produced by the terminator of the predecessor (an
1238     // invoke) or it has side-effects, there is no valid place to put a load
1239     // in the predecessor.
1240     if (TI == InVal || TI->mayHaveSideEffects())
1241       return false;
1242 
1243     // If the predecessor has a single successor, then the edge isn't
1244     // critical.
1245     if (TI->getNumSuccessors() == 1)
1246       continue;
1247 
1248     // If this pointer is always safe to load, or if we can prove that there
1249     // is already a load in the block, then we can move the load to the pred
1250     // block.
1251     if (isSafeToLoadUnconditionally(InVal, MaxAlign, MaxSize, DL, TI))
1252       continue;
1253 
1254     return false;
1255   }
1256 
1257   return true;
1258 }
1259 
1260 static void speculatePHINodeLoads(PHINode &PN) {
1261   LLVM_DEBUG(dbgs() << "    original: " << PN << "\n");
1262 
1263   LoadInst *SomeLoad = cast<LoadInst>(PN.user_back());
1264   Type *LoadTy = SomeLoad->getType();
1265   IRBuilderTy PHIBuilder(&PN);
1266   PHINode *NewPN = PHIBuilder.CreatePHI(LoadTy, PN.getNumIncomingValues(),
1267                                         PN.getName() + ".sroa.speculated");
1268 
1269   // Get the AA tags and alignment to use from one of the loads. It does not
1270   // matter which one we get and if any differ.
1271   AAMDNodes AATags;
1272   SomeLoad->getAAMetadata(AATags);
1273   Align Alignment = SomeLoad->getAlign();
1274 
1275   // Rewrite all loads of the PN to use the new PHI.
1276   while (!PN.use_empty()) {
1277     LoadInst *LI = cast<LoadInst>(PN.user_back());
1278     LI->replaceAllUsesWith(NewPN);
1279     LI->eraseFromParent();
1280   }
1281 
1282   // Inject loads into all of the pred blocks.
1283   DenseMap<BasicBlock*, Value*> InjectedLoads;
1284   for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
1285     BasicBlock *Pred = PN.getIncomingBlock(Idx);
1286     Value *InVal = PN.getIncomingValue(Idx);
1287 
1288     // A PHI node is allowed to have multiple (duplicated) entries for the same
1289     // basic block, as long as the value is the same. So if we already injected
1290     // a load in the predecessor, then we should reuse the same load for all
1291     // duplicated entries.
1292     if (Value* V = InjectedLoads.lookup(Pred)) {
1293       NewPN->addIncoming(V, Pred);
1294       continue;
1295     }
1296 
1297     Instruction *TI = Pred->getTerminator();
1298     IRBuilderTy PredBuilder(TI);
1299 
1300     LoadInst *Load = PredBuilder.CreateAlignedLoad(
1301         LoadTy, InVal, Alignment,
1302         (PN.getName() + ".sroa.speculate.load." + Pred->getName()));
1303     ++NumLoadsSpeculated;
1304     if (AATags)
1305       Load->setAAMetadata(AATags);
1306     NewPN->addIncoming(Load, Pred);
1307     InjectedLoads[Pred] = Load;
1308   }
1309 
1310   LLVM_DEBUG(dbgs() << "          speculated to: " << *NewPN << "\n");
1311   PN.eraseFromParent();
1312 }
1313 
1314 /// Select instructions that use an alloca and are subsequently loaded can be
1315 /// rewritten to load both input pointers and then select between the result,
1316 /// allowing the load of the alloca to be promoted.
1317 /// From this:
1318 ///   %P2 = select i1 %cond, i32* %Alloca, i32* %Other
1319 ///   %V = load i32* %P2
1320 /// to:
1321 ///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1322 ///   %V2 = load i32* %Other
1323 ///   %V = select i1 %cond, i32 %V1, i32 %V2
1324 ///
1325 /// We can do this to a select if its only uses are loads and if the operand
1326 /// to the select can be loaded unconditionally.
1327 static bool isSafeSelectToSpeculate(SelectInst &SI) {
1328   Value *TValue = SI.getTrueValue();
1329   Value *FValue = SI.getFalseValue();
1330   const DataLayout &DL = SI.getModule()->getDataLayout();
1331 
1332   for (User *U : SI.users()) {
1333     LoadInst *LI = dyn_cast<LoadInst>(U);
1334     if (!LI || !LI->isSimple())
1335       return false;
1336 
1337     // Both operands to the select need to be dereferenceable, either
1338     // absolutely (e.g. allocas) or at this point because we can see other
1339     // accesses to it.
1340     if (!isSafeToLoadUnconditionally(TValue, LI->getType(),
1341                                      LI->getAlign(), DL, LI))
1342       return false;
1343     if (!isSafeToLoadUnconditionally(FValue, LI->getType(),
1344                                      LI->getAlign(), DL, LI))
1345       return false;
1346   }
1347 
1348   return true;
1349 }
1350 
1351 static void speculateSelectInstLoads(SelectInst &SI) {
1352   LLVM_DEBUG(dbgs() << "    original: " << SI << "\n");
1353 
1354   IRBuilderTy IRB(&SI);
1355   Value *TV = SI.getTrueValue();
1356   Value *FV = SI.getFalseValue();
1357   // Replace the loads of the select with a select of two loads.
1358   while (!SI.use_empty()) {
1359     LoadInst *LI = cast<LoadInst>(SI.user_back());
1360     assert(LI->isSimple() && "We only speculate simple loads");
1361 
1362     IRB.SetInsertPoint(LI);
1363     LoadInst *TL = IRB.CreateLoad(LI->getType(), TV,
1364                                   LI->getName() + ".sroa.speculate.load.true");
1365     LoadInst *FL = IRB.CreateLoad(LI->getType(), FV,
1366                                   LI->getName() + ".sroa.speculate.load.false");
1367     NumLoadsSpeculated += 2;
1368 
1369     // Transfer alignment and AA info if present.
1370     TL->setAlignment(LI->getAlign());
1371     FL->setAlignment(LI->getAlign());
1372 
1373     AAMDNodes Tags;
1374     LI->getAAMetadata(Tags);
1375     if (Tags) {
1376       TL->setAAMetadata(Tags);
1377       FL->setAAMetadata(Tags);
1378     }
1379 
1380     Value *V = IRB.CreateSelect(SI.getCondition(), TL, FL,
1381                                 LI->getName() + ".sroa.speculated");
1382 
1383     LLVM_DEBUG(dbgs() << "          speculated to: " << *V << "\n");
1384     LI->replaceAllUsesWith(V);
1385     LI->eraseFromParent();
1386   }
1387   SI.eraseFromParent();
1388 }
1389 
1390 /// Build a GEP out of a base pointer and indices.
1391 ///
1392 /// This will return the BasePtr if that is valid, or build a new GEP
1393 /// instruction using the IRBuilder if GEP-ing is needed.
1394 static Value *buildGEP(IRBuilderTy &IRB, Value *BasePtr,
1395                        SmallVectorImpl<Value *> &Indices,
1396                        const Twine &NamePrefix) {
1397   if (Indices.empty())
1398     return BasePtr;
1399 
1400   // A single zero index is a no-op, so check for this and avoid building a GEP
1401   // in that case.
1402   if (Indices.size() == 1 && cast<ConstantInt>(Indices.back())->isZero())
1403     return BasePtr;
1404 
1405   return IRB.CreateInBoundsGEP(BasePtr->getType()->getPointerElementType(),
1406                                BasePtr, Indices, NamePrefix + "sroa_idx");
1407 }
1408 
1409 /// Get a natural GEP off of the BasePtr walking through Ty toward
1410 /// TargetTy without changing the offset of the pointer.
1411 ///
1412 /// This routine assumes we've already established a properly offset GEP with
1413 /// Indices, and arrived at the Ty type. The goal is to continue to GEP with
1414 /// zero-indices down through type layers until we find one the same as
1415 /// TargetTy. If we can't find one with the same type, we at least try to use
1416 /// one with the same size. If none of that works, we just produce the GEP as
1417 /// indicated by Indices to have the correct offset.
1418 static Value *getNaturalGEPWithType(IRBuilderTy &IRB, const DataLayout &DL,
1419                                     Value *BasePtr, Type *Ty, Type *TargetTy,
1420                                     SmallVectorImpl<Value *> &Indices,
1421                                     const Twine &NamePrefix) {
1422   if (Ty == TargetTy)
1423     return buildGEP(IRB, BasePtr, Indices, NamePrefix);
1424 
1425   // Offset size to use for the indices.
1426   unsigned OffsetSize = DL.getIndexTypeSizeInBits(BasePtr->getType());
1427 
1428   // See if we can descend into a struct and locate a field with the correct
1429   // type.
1430   unsigned NumLayers = 0;
1431   Type *ElementTy = Ty;
1432   do {
1433     if (ElementTy->isPointerTy())
1434       break;
1435 
1436     if (ArrayType *ArrayTy = dyn_cast<ArrayType>(ElementTy)) {
1437       ElementTy = ArrayTy->getElementType();
1438       Indices.push_back(IRB.getIntN(OffsetSize, 0));
1439     } else if (VectorType *VectorTy = dyn_cast<VectorType>(ElementTy)) {
1440       ElementTy = VectorTy->getElementType();
1441       Indices.push_back(IRB.getInt32(0));
1442     } else if (StructType *STy = dyn_cast<StructType>(ElementTy)) {
1443       if (STy->element_begin() == STy->element_end())
1444         break; // Nothing left to descend into.
1445       ElementTy = *STy->element_begin();
1446       Indices.push_back(IRB.getInt32(0));
1447     } else {
1448       break;
1449     }
1450     ++NumLayers;
1451   } while (ElementTy != TargetTy);
1452   if (ElementTy != TargetTy)
1453     Indices.erase(Indices.end() - NumLayers, Indices.end());
1454 
1455   return buildGEP(IRB, BasePtr, Indices, NamePrefix);
1456 }
1457 
1458 /// Recursively compute indices for a natural GEP.
1459 ///
1460 /// This is the recursive step for getNaturalGEPWithOffset that walks down the
1461 /// element types adding appropriate indices for the GEP.
1462 static Value *getNaturalGEPRecursively(IRBuilderTy &IRB, const DataLayout &DL,
1463                                        Value *Ptr, Type *Ty, APInt &Offset,
1464                                        Type *TargetTy,
1465                                        SmallVectorImpl<Value *> &Indices,
1466                                        const Twine &NamePrefix) {
1467   if (Offset == 0)
1468     return getNaturalGEPWithType(IRB, DL, Ptr, Ty, TargetTy, Indices,
1469                                  NamePrefix);
1470 
1471   // We can't recurse through pointer types.
1472   if (Ty->isPointerTy())
1473     return nullptr;
1474 
1475   // We try to analyze GEPs over vectors here, but note that these GEPs are
1476   // extremely poorly defined currently. The long-term goal is to remove GEPing
1477   // over a vector from the IR completely.
1478   if (VectorType *VecTy = dyn_cast<VectorType>(Ty)) {
1479     unsigned ElementSizeInBits =
1480         DL.getTypeSizeInBits(VecTy->getScalarType()).getFixedSize();
1481     if (ElementSizeInBits % 8 != 0) {
1482       // GEPs over non-multiple of 8 size vector elements are invalid.
1483       return nullptr;
1484     }
1485     APInt ElementSize(Offset.getBitWidth(), ElementSizeInBits / 8);
1486     APInt NumSkippedElements = Offset.sdiv(ElementSize);
1487     if (NumSkippedElements.ugt(cast<FixedVectorType>(VecTy)->getNumElements()))
1488       return nullptr;
1489     Offset -= NumSkippedElements * ElementSize;
1490     Indices.push_back(IRB.getInt(NumSkippedElements));
1491     return getNaturalGEPRecursively(IRB, DL, Ptr, VecTy->getElementType(),
1492                                     Offset, TargetTy, Indices, NamePrefix);
1493   }
1494 
1495   if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) {
1496     Type *ElementTy = ArrTy->getElementType();
1497     APInt ElementSize(Offset.getBitWidth(),
1498                       DL.getTypeAllocSize(ElementTy).getFixedSize());
1499     APInt NumSkippedElements = Offset.sdiv(ElementSize);
1500     if (NumSkippedElements.ugt(ArrTy->getNumElements()))
1501       return nullptr;
1502 
1503     Offset -= NumSkippedElements * ElementSize;
1504     Indices.push_back(IRB.getInt(NumSkippedElements));
1505     return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy,
1506                                     Indices, NamePrefix);
1507   }
1508 
1509   StructType *STy = dyn_cast<StructType>(Ty);
1510   if (!STy)
1511     return nullptr;
1512 
1513   const StructLayout *SL = DL.getStructLayout(STy);
1514   uint64_t StructOffset = Offset.getZExtValue();
1515   if (StructOffset >= SL->getSizeInBytes())
1516     return nullptr;
1517   unsigned Index = SL->getElementContainingOffset(StructOffset);
1518   Offset -= APInt(Offset.getBitWidth(), SL->getElementOffset(Index));
1519   Type *ElementTy = STy->getElementType(Index);
1520   if (Offset.uge(DL.getTypeAllocSize(ElementTy).getFixedSize()))
1521     return nullptr; // The offset points into alignment padding.
1522 
1523   Indices.push_back(IRB.getInt32(Index));
1524   return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy,
1525                                   Indices, NamePrefix);
1526 }
1527 
1528 /// Get a natural GEP from a base pointer to a particular offset and
1529 /// resulting in a particular type.
1530 ///
1531 /// The goal is to produce a "natural" looking GEP that works with the existing
1532 /// composite types to arrive at the appropriate offset and element type for
1533 /// a pointer. TargetTy is the element type the returned GEP should point-to if
1534 /// possible. We recurse by decreasing Offset, adding the appropriate index to
1535 /// Indices, and setting Ty to the result subtype.
1536 ///
1537 /// If no natural GEP can be constructed, this function returns null.
1538 static Value *getNaturalGEPWithOffset(IRBuilderTy &IRB, const DataLayout &DL,
1539                                       Value *Ptr, APInt Offset, Type *TargetTy,
1540                                       SmallVectorImpl<Value *> &Indices,
1541                                       const Twine &NamePrefix) {
1542   PointerType *Ty = cast<PointerType>(Ptr->getType());
1543 
1544   // Don't consider any GEPs through an i8* as natural unless the TargetTy is
1545   // an i8.
1546   if (Ty == IRB.getInt8PtrTy(Ty->getAddressSpace()) && TargetTy->isIntegerTy(8))
1547     return nullptr;
1548 
1549   Type *ElementTy = Ty->getElementType();
1550   if (!ElementTy->isSized())
1551     return nullptr; // We can't GEP through an unsized element.
1552   if (isa<ScalableVectorType>(ElementTy))
1553     return nullptr;
1554   APInt ElementSize(Offset.getBitWidth(),
1555                     DL.getTypeAllocSize(ElementTy).getFixedSize());
1556   if (ElementSize == 0)
1557     return nullptr; // Zero-length arrays can't help us build a natural GEP.
1558   APInt NumSkippedElements = Offset.sdiv(ElementSize);
1559 
1560   Offset -= NumSkippedElements * ElementSize;
1561   Indices.push_back(IRB.getInt(NumSkippedElements));
1562   return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy,
1563                                   Indices, NamePrefix);
1564 }
1565 
1566 /// Compute an adjusted pointer from Ptr by Offset bytes where the
1567 /// resulting pointer has PointerTy.
1568 ///
1569 /// This tries very hard to compute a "natural" GEP which arrives at the offset
1570 /// and produces the pointer type desired. Where it cannot, it will try to use
1571 /// the natural GEP to arrive at the offset and bitcast to the type. Where that
1572 /// fails, it will try to use an existing i8* and GEP to the byte offset and
1573 /// bitcast to the type.
1574 ///
1575 /// The strategy for finding the more natural GEPs is to peel off layers of the
1576 /// pointer, walking back through bit casts and GEPs, searching for a base
1577 /// pointer from which we can compute a natural GEP with the desired
1578 /// properties. The algorithm tries to fold as many constant indices into
1579 /// a single GEP as possible, thus making each GEP more independent of the
1580 /// surrounding code.
1581 static Value *getAdjustedPtr(IRBuilderTy &IRB, const DataLayout &DL, Value *Ptr,
1582                              APInt Offset, Type *PointerTy,
1583                              const Twine &NamePrefix) {
1584   // Even though we don't look through PHI nodes, we could be called on an
1585   // instruction in an unreachable block, which may be on a cycle.
1586   SmallPtrSet<Value *, 4> Visited;
1587   Visited.insert(Ptr);
1588   SmallVector<Value *, 4> Indices;
1589 
1590   // We may end up computing an offset pointer that has the wrong type. If we
1591   // never are able to compute one directly that has the correct type, we'll
1592   // fall back to it, so keep it and the base it was computed from around here.
1593   Value *OffsetPtr = nullptr;
1594   Value *OffsetBasePtr;
1595 
1596   // Remember any i8 pointer we come across to re-use if we need to do a raw
1597   // byte offset.
1598   Value *Int8Ptr = nullptr;
1599   APInt Int8PtrOffset(Offset.getBitWidth(), 0);
1600 
1601   PointerType *TargetPtrTy = cast<PointerType>(PointerTy);
1602   Type *TargetTy = TargetPtrTy->getElementType();
1603 
1604   // As `addrspacecast` is , `Ptr` (the storage pointer) may have different
1605   // address space from the expected `PointerTy` (the pointer to be used).
1606   // Adjust the pointer type based the original storage pointer.
1607   auto AS = cast<PointerType>(Ptr->getType())->getAddressSpace();
1608   PointerTy = TargetTy->getPointerTo(AS);
1609 
1610   do {
1611     // First fold any existing GEPs into the offset.
1612     while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
1613       APInt GEPOffset(Offset.getBitWidth(), 0);
1614       if (!GEP->accumulateConstantOffset(DL, GEPOffset))
1615         break;
1616       Offset += GEPOffset;
1617       Ptr = GEP->getPointerOperand();
1618       if (!Visited.insert(Ptr).second)
1619         break;
1620     }
1621 
1622     // See if we can perform a natural GEP here.
1623     Indices.clear();
1624     if (Value *P = getNaturalGEPWithOffset(IRB, DL, Ptr, Offset, TargetTy,
1625                                            Indices, NamePrefix)) {
1626       // If we have a new natural pointer at the offset, clear out any old
1627       // offset pointer we computed. Unless it is the base pointer or
1628       // a non-instruction, we built a GEP we don't need. Zap it.
1629       if (OffsetPtr && OffsetPtr != OffsetBasePtr)
1630         if (Instruction *I = dyn_cast<Instruction>(OffsetPtr)) {
1631           assert(I->use_empty() && "Built a GEP with uses some how!");
1632           I->eraseFromParent();
1633         }
1634       OffsetPtr = P;
1635       OffsetBasePtr = Ptr;
1636       // If we also found a pointer of the right type, we're done.
1637       if (P->getType() == PointerTy)
1638         break;
1639     }
1640 
1641     // Stash this pointer if we've found an i8*.
1642     if (Ptr->getType()->isIntegerTy(8)) {
1643       Int8Ptr = Ptr;
1644       Int8PtrOffset = Offset;
1645     }
1646 
1647     // Peel off a layer of the pointer and update the offset appropriately.
1648     if (Operator::getOpcode(Ptr) == Instruction::BitCast) {
1649       Ptr = cast<Operator>(Ptr)->getOperand(0);
1650     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
1651       if (GA->isInterposable())
1652         break;
1653       Ptr = GA->getAliasee();
1654     } else {
1655       break;
1656     }
1657     assert(Ptr->getType()->isPointerTy() && "Unexpected operand type!");
1658   } while (Visited.insert(Ptr).second);
1659 
1660   if (!OffsetPtr) {
1661     if (!Int8Ptr) {
1662       Int8Ptr = IRB.CreateBitCast(
1663           Ptr, IRB.getInt8PtrTy(PointerTy->getPointerAddressSpace()),
1664           NamePrefix + "sroa_raw_cast");
1665       Int8PtrOffset = Offset;
1666     }
1667 
1668     OffsetPtr = Int8PtrOffset == 0
1669                     ? Int8Ptr
1670                     : IRB.CreateInBoundsGEP(IRB.getInt8Ty(), Int8Ptr,
1671                                             IRB.getInt(Int8PtrOffset),
1672                                             NamePrefix + "sroa_raw_idx");
1673   }
1674   Ptr = OffsetPtr;
1675 
1676   // On the off chance we were targeting i8*, guard the bitcast here.
1677   if (cast<PointerType>(Ptr->getType()) != TargetPtrTy) {
1678     Ptr = IRB.CreatePointerBitCastOrAddrSpaceCast(Ptr,
1679                                                   TargetPtrTy,
1680                                                   NamePrefix + "sroa_cast");
1681   }
1682 
1683   return Ptr;
1684 }
1685 
1686 /// Compute the adjusted alignment for a load or store from an offset.
1687 static Align getAdjustedAlignment(Instruction *I, uint64_t Offset) {
1688   return commonAlignment(getLoadStoreAlignment(I), Offset);
1689 }
1690 
1691 /// Test whether we can convert a value from the old to the new type.
1692 ///
1693 /// This predicate should be used to guard calls to convertValue in order to
1694 /// ensure that we only try to convert viable values. The strategy is that we
1695 /// will peel off single element struct and array wrappings to get to an
1696 /// underlying value, and convert that value.
1697 static bool canConvertValue(const DataLayout &DL, Type *OldTy, Type *NewTy) {
1698   if (OldTy == NewTy)
1699     return true;
1700 
1701   // For integer types, we can't handle any bit-width differences. This would
1702   // break both vector conversions with extension and introduce endianness
1703   // issues when in conjunction with loads and stores.
1704   if (isa<IntegerType>(OldTy) && isa<IntegerType>(NewTy)) {
1705     assert(cast<IntegerType>(OldTy)->getBitWidth() !=
1706                cast<IntegerType>(NewTy)->getBitWidth() &&
1707            "We can't have the same bitwidth for different int types");
1708     return false;
1709   }
1710 
1711   if (DL.getTypeSizeInBits(NewTy).getFixedSize() !=
1712       DL.getTypeSizeInBits(OldTy).getFixedSize())
1713     return false;
1714   if (!NewTy->isSingleValueType() || !OldTy->isSingleValueType())
1715     return false;
1716 
1717   // We can convert pointers to integers and vice-versa. Same for vectors
1718   // of pointers and integers.
1719   OldTy = OldTy->getScalarType();
1720   NewTy = NewTy->getScalarType();
1721   if (NewTy->isPointerTy() || OldTy->isPointerTy()) {
1722     if (NewTy->isPointerTy() && OldTy->isPointerTy()) {
1723       unsigned OldAS = OldTy->getPointerAddressSpace();
1724       unsigned NewAS = NewTy->getPointerAddressSpace();
1725       // Convert pointers if they are pointers from the same address space or
1726       // different integral (not non-integral) address spaces with the same
1727       // pointer size.
1728       return OldAS == NewAS ||
1729              (!DL.isNonIntegralAddressSpace(OldAS) &&
1730               !DL.isNonIntegralAddressSpace(NewAS) &&
1731               DL.getPointerSize(OldAS) == DL.getPointerSize(NewAS));
1732     }
1733 
1734     // We can convert integers to integral pointers, but not to non-integral
1735     // pointers.
1736     if (OldTy->isIntegerTy())
1737       return !DL.isNonIntegralPointerType(NewTy);
1738 
1739     // We can convert integral pointers to integers, but non-integral pointers
1740     // need to remain pointers.
1741     if (!DL.isNonIntegralPointerType(OldTy))
1742       return NewTy->isIntegerTy();
1743 
1744     return false;
1745   }
1746 
1747   return true;
1748 }
1749 
1750 /// Generic routine to convert an SSA value to a value of a different
1751 /// type.
1752 ///
1753 /// This will try various different casting techniques, such as bitcasts,
1754 /// inttoptr, and ptrtoint casts. Use the \c canConvertValue predicate to test
1755 /// two types for viability with this routine.
1756 static Value *convertValue(const DataLayout &DL, IRBuilderTy &IRB, Value *V,
1757                            Type *NewTy) {
1758   Type *OldTy = V->getType();
1759   assert(canConvertValue(DL, OldTy, NewTy) && "Value not convertable to type");
1760 
1761   if (OldTy == NewTy)
1762     return V;
1763 
1764   assert(!(isa<IntegerType>(OldTy) && isa<IntegerType>(NewTy)) &&
1765          "Integer types must be the exact same to convert.");
1766 
1767   // See if we need inttoptr for this type pair. May require additional bitcast.
1768   if (OldTy->isIntOrIntVectorTy() && NewTy->isPtrOrPtrVectorTy()) {
1769     // Expand <2 x i32> to i8* --> <2 x i32> to i64 to i8*
1770     // Expand i128 to <2 x i8*> --> i128 to <2 x i64> to <2 x i8*>
1771     // Expand <4 x i32> to <2 x i8*> --> <4 x i32> to <2 x i64> to <2 x i8*>
1772     // Directly handle i64 to i8*
1773     return IRB.CreateIntToPtr(IRB.CreateBitCast(V, DL.getIntPtrType(NewTy)),
1774                               NewTy);
1775   }
1776 
1777   // See if we need ptrtoint for this type pair. May require additional bitcast.
1778   if (OldTy->isPtrOrPtrVectorTy() && NewTy->isIntOrIntVectorTy()) {
1779     // Expand <2 x i8*> to i128 --> <2 x i8*> to <2 x i64> to i128
1780     // Expand i8* to <2 x i32> --> i8* to i64 to <2 x i32>
1781     // Expand <2 x i8*> to <4 x i32> --> <2 x i8*> to <2 x i64> to <4 x i32>
1782     // Expand i8* to i64 --> i8* to i64 to i64
1783     return IRB.CreateBitCast(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)),
1784                              NewTy);
1785   }
1786 
1787   if (OldTy->isPtrOrPtrVectorTy() && NewTy->isPtrOrPtrVectorTy()) {
1788     unsigned OldAS = OldTy->getPointerAddressSpace();
1789     unsigned NewAS = NewTy->getPointerAddressSpace();
1790     // To convert pointers with different address spaces (they are already
1791     // checked convertible, i.e. they have the same pointer size), so far we
1792     // cannot use `bitcast` (which has restrict on the same address space) or
1793     // `addrspacecast` (which is not always no-op casting). Instead, use a pair
1794     // of no-op `ptrtoint`/`inttoptr` casts through an integer with the same bit
1795     // size.
1796     if (OldAS != NewAS) {
1797       assert(DL.getPointerSize(OldAS) == DL.getPointerSize(NewAS));
1798       return IRB.CreateIntToPtr(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)),
1799                                 NewTy);
1800     }
1801   }
1802 
1803   return IRB.CreateBitCast(V, NewTy);
1804 }
1805 
1806 /// Test whether the given slice use can be promoted to a vector.
1807 ///
1808 /// This function is called to test each entry in a partition which is slated
1809 /// for a single slice.
1810 static bool isVectorPromotionViableForSlice(Partition &P, const Slice &S,
1811                                             VectorType *Ty,
1812                                             uint64_t ElementSize,
1813                                             const DataLayout &DL) {
1814   // First validate the slice offsets.
1815   uint64_t BeginOffset =
1816       std::max(S.beginOffset(), P.beginOffset()) - P.beginOffset();
1817   uint64_t BeginIndex = BeginOffset / ElementSize;
1818   if (BeginIndex * ElementSize != BeginOffset ||
1819       BeginIndex >= cast<FixedVectorType>(Ty)->getNumElements())
1820     return false;
1821   uint64_t EndOffset =
1822       std::min(S.endOffset(), P.endOffset()) - P.beginOffset();
1823   uint64_t EndIndex = EndOffset / ElementSize;
1824   if (EndIndex * ElementSize != EndOffset ||
1825       EndIndex > cast<FixedVectorType>(Ty)->getNumElements())
1826     return false;
1827 
1828   assert(EndIndex > BeginIndex && "Empty vector!");
1829   uint64_t NumElements = EndIndex - BeginIndex;
1830   Type *SliceTy = (NumElements == 1)
1831                       ? Ty->getElementType()
1832                       : FixedVectorType::get(Ty->getElementType(), NumElements);
1833 
1834   Type *SplitIntTy =
1835       Type::getIntNTy(Ty->getContext(), NumElements * ElementSize * 8);
1836 
1837   Use *U = S.getUse();
1838 
1839   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) {
1840     if (MI->isVolatile())
1841       return false;
1842     if (!S.isSplittable())
1843       return false; // Skip any unsplittable intrinsics.
1844   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) {
1845     if (!II->isLifetimeStartOrEnd() && !II->isDroppable())
1846       return false;
1847   } else if (U->get()->getType()->getPointerElementType()->isStructTy()) {
1848     // Disable vector promotion when there are loads or stores of an FCA.
1849     return false;
1850   } else if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
1851     if (LI->isVolatile())
1852       return false;
1853     Type *LTy = LI->getType();
1854     if (P.beginOffset() > S.beginOffset() || P.endOffset() < S.endOffset()) {
1855       assert(LTy->isIntegerTy());
1856       LTy = SplitIntTy;
1857     }
1858     if (!canConvertValue(DL, SliceTy, LTy))
1859       return false;
1860   } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
1861     if (SI->isVolatile())
1862       return false;
1863     Type *STy = SI->getValueOperand()->getType();
1864     if (P.beginOffset() > S.beginOffset() || P.endOffset() < S.endOffset()) {
1865       assert(STy->isIntegerTy());
1866       STy = SplitIntTy;
1867     }
1868     if (!canConvertValue(DL, STy, SliceTy))
1869       return false;
1870   } else {
1871     return false;
1872   }
1873 
1874   return true;
1875 }
1876 
1877 /// Test whether the given alloca partitioning and range of slices can be
1878 /// promoted to a vector.
1879 ///
1880 /// This is a quick test to check whether we can rewrite a particular alloca
1881 /// partition (and its newly formed alloca) into a vector alloca with only
1882 /// whole-vector loads and stores such that it could be promoted to a vector
1883 /// SSA value. We only can ensure this for a limited set of operations, and we
1884 /// don't want to do the rewrites unless we are confident that the result will
1885 /// be promotable, so we have an early test here.
1886 static VectorType *isVectorPromotionViable(Partition &P, const DataLayout &DL) {
1887   // Collect the candidate types for vector-based promotion. Also track whether
1888   // we have different element types.
1889   SmallVector<VectorType *, 4> CandidateTys;
1890   Type *CommonEltTy = nullptr;
1891   bool HaveCommonEltTy = true;
1892   auto CheckCandidateType = [&](Type *Ty) {
1893     if (auto *VTy = dyn_cast<VectorType>(Ty)) {
1894       // Return if bitcast to vectors is different for total size in bits.
1895       if (!CandidateTys.empty()) {
1896         VectorType *V = CandidateTys[0];
1897         if (DL.getTypeSizeInBits(VTy).getFixedSize() !=
1898             DL.getTypeSizeInBits(V).getFixedSize()) {
1899           CandidateTys.clear();
1900           return;
1901         }
1902       }
1903       CandidateTys.push_back(VTy);
1904       if (!CommonEltTy)
1905         CommonEltTy = VTy->getElementType();
1906       else if (CommonEltTy != VTy->getElementType())
1907         HaveCommonEltTy = false;
1908     }
1909   };
1910   // Consider any loads or stores that are the exact size of the slice.
1911   for (const Slice &S : P)
1912     if (S.beginOffset() == P.beginOffset() &&
1913         S.endOffset() == P.endOffset()) {
1914       if (auto *LI = dyn_cast<LoadInst>(S.getUse()->getUser()))
1915         CheckCandidateType(LI->getType());
1916       else if (auto *SI = dyn_cast<StoreInst>(S.getUse()->getUser()))
1917         CheckCandidateType(SI->getValueOperand()->getType());
1918     }
1919 
1920   // If we didn't find a vector type, nothing to do here.
1921   if (CandidateTys.empty())
1922     return nullptr;
1923 
1924   // Remove non-integer vector types if we had multiple common element types.
1925   // FIXME: It'd be nice to replace them with integer vector types, but we can't
1926   // do that until all the backends are known to produce good code for all
1927   // integer vector types.
1928   if (!HaveCommonEltTy) {
1929     llvm::erase_if(CandidateTys, [](VectorType *VTy) {
1930       return !VTy->getElementType()->isIntegerTy();
1931     });
1932 
1933     // If there were no integer vector types, give up.
1934     if (CandidateTys.empty())
1935       return nullptr;
1936 
1937     // Rank the remaining candidate vector types. This is easy because we know
1938     // they're all integer vectors. We sort by ascending number of elements.
1939     auto RankVectorTypes = [&DL](VectorType *RHSTy, VectorType *LHSTy) {
1940       (void)DL;
1941       assert(DL.getTypeSizeInBits(RHSTy).getFixedSize() ==
1942                  DL.getTypeSizeInBits(LHSTy).getFixedSize() &&
1943              "Cannot have vector types of different sizes!");
1944       assert(RHSTy->getElementType()->isIntegerTy() &&
1945              "All non-integer types eliminated!");
1946       assert(LHSTy->getElementType()->isIntegerTy() &&
1947              "All non-integer types eliminated!");
1948       return cast<FixedVectorType>(RHSTy)->getNumElements() <
1949              cast<FixedVectorType>(LHSTy)->getNumElements();
1950     };
1951     llvm::sort(CandidateTys, RankVectorTypes);
1952     CandidateTys.erase(
1953         std::unique(CandidateTys.begin(), CandidateTys.end(), RankVectorTypes),
1954         CandidateTys.end());
1955   } else {
1956 // The only way to have the same element type in every vector type is to
1957 // have the same vector type. Check that and remove all but one.
1958 #ifndef NDEBUG
1959     for (VectorType *VTy : CandidateTys) {
1960       assert(VTy->getElementType() == CommonEltTy &&
1961              "Unaccounted for element type!");
1962       assert(VTy == CandidateTys[0] &&
1963              "Different vector types with the same element type!");
1964     }
1965 #endif
1966     CandidateTys.resize(1);
1967   }
1968 
1969   // Try each vector type, and return the one which works.
1970   auto CheckVectorTypeForPromotion = [&](VectorType *VTy) {
1971     uint64_t ElementSize =
1972         DL.getTypeSizeInBits(VTy->getElementType()).getFixedSize();
1973 
1974     // While the definition of LLVM vectors is bitpacked, we don't support sizes
1975     // that aren't byte sized.
1976     if (ElementSize % 8)
1977       return false;
1978     assert((DL.getTypeSizeInBits(VTy).getFixedSize() % 8) == 0 &&
1979            "vector size not a multiple of element size?");
1980     ElementSize /= 8;
1981 
1982     for (const Slice &S : P)
1983       if (!isVectorPromotionViableForSlice(P, S, VTy, ElementSize, DL))
1984         return false;
1985 
1986     for (const Slice *S : P.splitSliceTails())
1987       if (!isVectorPromotionViableForSlice(P, *S, VTy, ElementSize, DL))
1988         return false;
1989 
1990     return true;
1991   };
1992   for (VectorType *VTy : CandidateTys)
1993     if (CheckVectorTypeForPromotion(VTy))
1994       return VTy;
1995 
1996   return nullptr;
1997 }
1998 
1999 /// Test whether a slice of an alloca is valid for integer widening.
2000 ///
2001 /// This implements the necessary checking for the \c isIntegerWideningViable
2002 /// test below on a single slice of the alloca.
2003 static bool isIntegerWideningViableForSlice(const Slice &S,
2004                                             uint64_t AllocBeginOffset,
2005                                             Type *AllocaTy,
2006                                             const DataLayout &DL,
2007                                             bool &WholeAllocaOp) {
2008   uint64_t Size = DL.getTypeStoreSize(AllocaTy).getFixedSize();
2009 
2010   uint64_t RelBegin = S.beginOffset() - AllocBeginOffset;
2011   uint64_t RelEnd = S.endOffset() - AllocBeginOffset;
2012 
2013   // We can't reasonably handle cases where the load or store extends past
2014   // the end of the alloca's type and into its padding.
2015   if (RelEnd > Size)
2016     return false;
2017 
2018   Use *U = S.getUse();
2019 
2020   if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
2021     if (LI->isVolatile())
2022       return false;
2023     // We can't handle loads that extend past the allocated memory.
2024     if (DL.getTypeStoreSize(LI->getType()).getFixedSize() > Size)
2025       return false;
2026     // So far, AllocaSliceRewriter does not support widening split slice tails
2027     // in rewriteIntegerLoad.
2028     if (S.beginOffset() < AllocBeginOffset)
2029       return false;
2030     // Note that we don't count vector loads or stores as whole-alloca
2031     // operations which enable integer widening because we would prefer to use
2032     // vector widening instead.
2033     if (!isa<VectorType>(LI->getType()) && RelBegin == 0 && RelEnd == Size)
2034       WholeAllocaOp = true;
2035     if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) {
2036       if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy).getFixedSize())
2037         return false;
2038     } else if (RelBegin != 0 || RelEnd != Size ||
2039                !canConvertValue(DL, AllocaTy, LI->getType())) {
2040       // Non-integer loads need to be convertible from the alloca type so that
2041       // they are promotable.
2042       return false;
2043     }
2044   } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
2045     Type *ValueTy = SI->getValueOperand()->getType();
2046     if (SI->isVolatile())
2047       return false;
2048     // We can't handle stores that extend past the allocated memory.
2049     if (DL.getTypeStoreSize(ValueTy).getFixedSize() > Size)
2050       return false;
2051     // So far, AllocaSliceRewriter does not support widening split slice tails
2052     // in rewriteIntegerStore.
2053     if (S.beginOffset() < AllocBeginOffset)
2054       return false;
2055     // Note that we don't count vector loads or stores as whole-alloca
2056     // operations which enable integer widening because we would prefer to use
2057     // vector widening instead.
2058     if (!isa<VectorType>(ValueTy) && RelBegin == 0 && RelEnd == Size)
2059       WholeAllocaOp = true;
2060     if (IntegerType *ITy = dyn_cast<IntegerType>(ValueTy)) {
2061       if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy).getFixedSize())
2062         return false;
2063     } else if (RelBegin != 0 || RelEnd != Size ||
2064                !canConvertValue(DL, ValueTy, AllocaTy)) {
2065       // Non-integer stores need to be convertible to the alloca type so that
2066       // they are promotable.
2067       return false;
2068     }
2069   } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) {
2070     if (MI->isVolatile() || !isa<Constant>(MI->getLength()))
2071       return false;
2072     if (!S.isSplittable())
2073       return false; // Skip any unsplittable intrinsics.
2074   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) {
2075     if (!II->isLifetimeStartOrEnd() && !II->isDroppable())
2076       return false;
2077   } else {
2078     return false;
2079   }
2080 
2081   return true;
2082 }
2083 
2084 /// Test whether the given alloca partition's integer operations can be
2085 /// widened to promotable ones.
2086 ///
2087 /// This is a quick test to check whether we can rewrite the integer loads and
2088 /// stores to a particular alloca into wider loads and stores and be able to
2089 /// promote the resulting alloca.
2090 static bool isIntegerWideningViable(Partition &P, Type *AllocaTy,
2091                                     const DataLayout &DL) {
2092   uint64_t SizeInBits = DL.getTypeSizeInBits(AllocaTy).getFixedSize();
2093   // Don't create integer types larger than the maximum bitwidth.
2094   if (SizeInBits > IntegerType::MAX_INT_BITS)
2095     return false;
2096 
2097   // Don't try to handle allocas with bit-padding.
2098   if (SizeInBits != DL.getTypeStoreSizeInBits(AllocaTy).getFixedSize())
2099     return false;
2100 
2101   // We need to ensure that an integer type with the appropriate bitwidth can
2102   // be converted to the alloca type, whatever that is. We don't want to force
2103   // the alloca itself to have an integer type if there is a more suitable one.
2104   Type *IntTy = Type::getIntNTy(AllocaTy->getContext(), SizeInBits);
2105   if (!canConvertValue(DL, AllocaTy, IntTy) ||
2106       !canConvertValue(DL, IntTy, AllocaTy))
2107     return false;
2108 
2109   // While examining uses, we ensure that the alloca has a covering load or
2110   // store. We don't want to widen the integer operations only to fail to
2111   // promote due to some other unsplittable entry (which we may make splittable
2112   // later). However, if there are only splittable uses, go ahead and assume
2113   // that we cover the alloca.
2114   // FIXME: We shouldn't consider split slices that happen to start in the
2115   // partition here...
2116   bool WholeAllocaOp = P.empty() && DL.isLegalInteger(SizeInBits);
2117 
2118   for (const Slice &S : P)
2119     if (!isIntegerWideningViableForSlice(S, P.beginOffset(), AllocaTy, DL,
2120                                          WholeAllocaOp))
2121       return false;
2122 
2123   for (const Slice *S : P.splitSliceTails())
2124     if (!isIntegerWideningViableForSlice(*S, P.beginOffset(), AllocaTy, DL,
2125                                          WholeAllocaOp))
2126       return false;
2127 
2128   return WholeAllocaOp;
2129 }
2130 
2131 static Value *extractInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *V,
2132                              IntegerType *Ty, uint64_t Offset,
2133                              const Twine &Name) {
2134   LLVM_DEBUG(dbgs() << "       start: " << *V << "\n");
2135   IntegerType *IntTy = cast<IntegerType>(V->getType());
2136   assert(DL.getTypeStoreSize(Ty).getFixedSize() + Offset <=
2137              DL.getTypeStoreSize(IntTy).getFixedSize() &&
2138          "Element extends past full value");
2139   uint64_t ShAmt = 8 * Offset;
2140   if (DL.isBigEndian())
2141     ShAmt = 8 * (DL.getTypeStoreSize(IntTy).getFixedSize() -
2142                  DL.getTypeStoreSize(Ty).getFixedSize() - Offset);
2143   if (ShAmt) {
2144     V = IRB.CreateLShr(V, ShAmt, Name + ".shift");
2145     LLVM_DEBUG(dbgs() << "     shifted: " << *V << "\n");
2146   }
2147   assert(Ty->getBitWidth() <= IntTy->getBitWidth() &&
2148          "Cannot extract to a larger integer!");
2149   if (Ty != IntTy) {
2150     V = IRB.CreateTrunc(V, Ty, Name + ".trunc");
2151     LLVM_DEBUG(dbgs() << "     trunced: " << *V << "\n");
2152   }
2153   return V;
2154 }
2155 
2156 static Value *insertInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *Old,
2157                             Value *V, uint64_t Offset, const Twine &Name) {
2158   IntegerType *IntTy = cast<IntegerType>(Old->getType());
2159   IntegerType *Ty = cast<IntegerType>(V->getType());
2160   assert(Ty->getBitWidth() <= IntTy->getBitWidth() &&
2161          "Cannot insert a larger integer!");
2162   LLVM_DEBUG(dbgs() << "       start: " << *V << "\n");
2163   if (Ty != IntTy) {
2164     V = IRB.CreateZExt(V, IntTy, Name + ".ext");
2165     LLVM_DEBUG(dbgs() << "    extended: " << *V << "\n");
2166   }
2167   assert(DL.getTypeStoreSize(Ty).getFixedSize() + Offset <=
2168              DL.getTypeStoreSize(IntTy).getFixedSize() &&
2169          "Element store outside of alloca store");
2170   uint64_t ShAmt = 8 * Offset;
2171   if (DL.isBigEndian())
2172     ShAmt = 8 * (DL.getTypeStoreSize(IntTy).getFixedSize() -
2173                  DL.getTypeStoreSize(Ty).getFixedSize() - Offset);
2174   if (ShAmt) {
2175     V = IRB.CreateShl(V, ShAmt, Name + ".shift");
2176     LLVM_DEBUG(dbgs() << "     shifted: " << *V << "\n");
2177   }
2178 
2179   if (ShAmt || Ty->getBitWidth() < IntTy->getBitWidth()) {
2180     APInt Mask = ~Ty->getMask().zext(IntTy->getBitWidth()).shl(ShAmt);
2181     Old = IRB.CreateAnd(Old, Mask, Name + ".mask");
2182     LLVM_DEBUG(dbgs() << "      masked: " << *Old << "\n");
2183     V = IRB.CreateOr(Old, V, Name + ".insert");
2184     LLVM_DEBUG(dbgs() << "    inserted: " << *V << "\n");
2185   }
2186   return V;
2187 }
2188 
2189 static Value *extractVector(IRBuilderTy &IRB, Value *V, unsigned BeginIndex,
2190                             unsigned EndIndex, const Twine &Name) {
2191   auto *VecTy = cast<FixedVectorType>(V->getType());
2192   unsigned NumElements = EndIndex - BeginIndex;
2193   assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
2194 
2195   if (NumElements == VecTy->getNumElements())
2196     return V;
2197 
2198   if (NumElements == 1) {
2199     V = IRB.CreateExtractElement(V, IRB.getInt32(BeginIndex),
2200                                  Name + ".extract");
2201     LLVM_DEBUG(dbgs() << "     extract: " << *V << "\n");
2202     return V;
2203   }
2204 
2205   SmallVector<int, 8> Mask;
2206   Mask.reserve(NumElements);
2207   for (unsigned i = BeginIndex; i != EndIndex; ++i)
2208     Mask.push_back(i);
2209   V = IRB.CreateShuffleVector(V, Mask, Name + ".extract");
2210   LLVM_DEBUG(dbgs() << "     shuffle: " << *V << "\n");
2211   return V;
2212 }
2213 
2214 static Value *insertVector(IRBuilderTy &IRB, Value *Old, Value *V,
2215                            unsigned BeginIndex, const Twine &Name) {
2216   VectorType *VecTy = cast<VectorType>(Old->getType());
2217   assert(VecTy && "Can only insert a vector into a vector");
2218 
2219   VectorType *Ty = dyn_cast<VectorType>(V->getType());
2220   if (!Ty) {
2221     // Single element to insert.
2222     V = IRB.CreateInsertElement(Old, V, IRB.getInt32(BeginIndex),
2223                                 Name + ".insert");
2224     LLVM_DEBUG(dbgs() << "     insert: " << *V << "\n");
2225     return V;
2226   }
2227 
2228   assert(cast<FixedVectorType>(Ty)->getNumElements() <=
2229              cast<FixedVectorType>(VecTy)->getNumElements() &&
2230          "Too many elements!");
2231   if (cast<FixedVectorType>(Ty)->getNumElements() ==
2232       cast<FixedVectorType>(VecTy)->getNumElements()) {
2233     assert(V->getType() == VecTy && "Vector type mismatch");
2234     return V;
2235   }
2236   unsigned EndIndex = BeginIndex + cast<FixedVectorType>(Ty)->getNumElements();
2237 
2238   // When inserting a smaller vector into the larger to store, we first
2239   // use a shuffle vector to widen it with undef elements, and then
2240   // a second shuffle vector to select between the loaded vector and the
2241   // incoming vector.
2242   SmallVector<int, 8> Mask;
2243   Mask.reserve(cast<FixedVectorType>(VecTy)->getNumElements());
2244   for (unsigned i = 0; i != cast<FixedVectorType>(VecTy)->getNumElements(); ++i)
2245     if (i >= BeginIndex && i < EndIndex)
2246       Mask.push_back(i - BeginIndex);
2247     else
2248       Mask.push_back(-1);
2249   V = IRB.CreateShuffleVector(V, Mask, Name + ".expand");
2250   LLVM_DEBUG(dbgs() << "    shuffle: " << *V << "\n");
2251 
2252   SmallVector<Constant *, 8> Mask2;
2253   Mask2.reserve(cast<FixedVectorType>(VecTy)->getNumElements());
2254   for (unsigned i = 0; i != cast<FixedVectorType>(VecTy)->getNumElements(); ++i)
2255     Mask2.push_back(IRB.getInt1(i >= BeginIndex && i < EndIndex));
2256 
2257   V = IRB.CreateSelect(ConstantVector::get(Mask2), V, Old, Name + "blend");
2258 
2259   LLVM_DEBUG(dbgs() << "    blend: " << *V << "\n");
2260   return V;
2261 }
2262 
2263 /// Visitor to rewrite instructions using p particular slice of an alloca
2264 /// to use a new alloca.
2265 ///
2266 /// Also implements the rewriting to vector-based accesses when the partition
2267 /// passes the isVectorPromotionViable predicate. Most of the rewriting logic
2268 /// lives here.
2269 class llvm::sroa::AllocaSliceRewriter
2270     : public InstVisitor<AllocaSliceRewriter, bool> {
2271   // Befriend the base class so it can delegate to private visit methods.
2272   friend class InstVisitor<AllocaSliceRewriter, bool>;
2273 
2274   using Base = InstVisitor<AllocaSliceRewriter, bool>;
2275 
2276   const DataLayout &DL;
2277   AllocaSlices &AS;
2278   SROA &Pass;
2279   AllocaInst &OldAI, &NewAI;
2280   const uint64_t NewAllocaBeginOffset, NewAllocaEndOffset;
2281   Type *NewAllocaTy;
2282 
2283   // This is a convenience and flag variable that will be null unless the new
2284   // alloca's integer operations should be widened to this integer type due to
2285   // passing isIntegerWideningViable above. If it is non-null, the desired
2286   // integer type will be stored here for easy access during rewriting.
2287   IntegerType *IntTy;
2288 
2289   // If we are rewriting an alloca partition which can be written as pure
2290   // vector operations, we stash extra information here. When VecTy is
2291   // non-null, we have some strict guarantees about the rewritten alloca:
2292   //   - The new alloca is exactly the size of the vector type here.
2293   //   - The accesses all either map to the entire vector or to a single
2294   //     element.
2295   //   - The set of accessing instructions is only one of those handled above
2296   //     in isVectorPromotionViable. Generally these are the same access kinds
2297   //     which are promotable via mem2reg.
2298   VectorType *VecTy;
2299   Type *ElementTy;
2300   uint64_t ElementSize;
2301 
2302   // The original offset of the slice currently being rewritten relative to
2303   // the original alloca.
2304   uint64_t BeginOffset = 0;
2305   uint64_t EndOffset = 0;
2306 
2307   // The new offsets of the slice currently being rewritten relative to the
2308   // original alloca.
2309   uint64_t NewBeginOffset = 0, NewEndOffset = 0;
2310 
2311   uint64_t SliceSize = 0;
2312   bool IsSplittable = false;
2313   bool IsSplit = false;
2314   Use *OldUse = nullptr;
2315   Instruction *OldPtr = nullptr;
2316 
2317   // Track post-rewrite users which are PHI nodes and Selects.
2318   SmallSetVector<PHINode *, 8> &PHIUsers;
2319   SmallSetVector<SelectInst *, 8> &SelectUsers;
2320 
2321   // Utility IR builder, whose name prefix is setup for each visited use, and
2322   // the insertion point is set to point to the user.
2323   IRBuilderTy IRB;
2324 
2325 public:
2326   AllocaSliceRewriter(const DataLayout &DL, AllocaSlices &AS, SROA &Pass,
2327                       AllocaInst &OldAI, AllocaInst &NewAI,
2328                       uint64_t NewAllocaBeginOffset,
2329                       uint64_t NewAllocaEndOffset, bool IsIntegerPromotable,
2330                       VectorType *PromotableVecTy,
2331                       SmallSetVector<PHINode *, 8> &PHIUsers,
2332                       SmallSetVector<SelectInst *, 8> &SelectUsers)
2333       : DL(DL), AS(AS), Pass(Pass), OldAI(OldAI), NewAI(NewAI),
2334         NewAllocaBeginOffset(NewAllocaBeginOffset),
2335         NewAllocaEndOffset(NewAllocaEndOffset),
2336         NewAllocaTy(NewAI.getAllocatedType()),
2337         IntTy(
2338             IsIntegerPromotable
2339                 ? Type::getIntNTy(NewAI.getContext(),
2340                                   DL.getTypeSizeInBits(NewAI.getAllocatedType())
2341                                       .getFixedSize())
2342                 : nullptr),
2343         VecTy(PromotableVecTy),
2344         ElementTy(VecTy ? VecTy->getElementType() : nullptr),
2345         ElementSize(VecTy ? DL.getTypeSizeInBits(ElementTy).getFixedSize() / 8
2346                           : 0),
2347         PHIUsers(PHIUsers), SelectUsers(SelectUsers),
2348         IRB(NewAI.getContext(), ConstantFolder()) {
2349     if (VecTy) {
2350       assert((DL.getTypeSizeInBits(ElementTy).getFixedSize() % 8) == 0 &&
2351              "Only multiple-of-8 sized vector elements are viable");
2352       ++NumVectorized;
2353     }
2354     assert((!IntTy && !VecTy) || (IntTy && !VecTy) || (!IntTy && VecTy));
2355   }
2356 
2357   bool visit(AllocaSlices::const_iterator I) {
2358     bool CanSROA = true;
2359     BeginOffset = I->beginOffset();
2360     EndOffset = I->endOffset();
2361     IsSplittable = I->isSplittable();
2362     IsSplit =
2363         BeginOffset < NewAllocaBeginOffset || EndOffset > NewAllocaEndOffset;
2364     LLVM_DEBUG(dbgs() << "  rewriting " << (IsSplit ? "split " : ""));
2365     LLVM_DEBUG(AS.printSlice(dbgs(), I, ""));
2366     LLVM_DEBUG(dbgs() << "\n");
2367 
2368     // Compute the intersecting offset range.
2369     assert(BeginOffset < NewAllocaEndOffset);
2370     assert(EndOffset > NewAllocaBeginOffset);
2371     NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset);
2372     NewEndOffset = std::min(EndOffset, NewAllocaEndOffset);
2373 
2374     SliceSize = NewEndOffset - NewBeginOffset;
2375 
2376     OldUse = I->getUse();
2377     OldPtr = cast<Instruction>(OldUse->get());
2378 
2379     Instruction *OldUserI = cast<Instruction>(OldUse->getUser());
2380     IRB.SetInsertPoint(OldUserI);
2381     IRB.SetCurrentDebugLocation(OldUserI->getDebugLoc());
2382     IRB.getInserter().SetNamePrefix(
2383         Twine(NewAI.getName()) + "." + Twine(BeginOffset) + ".");
2384 
2385     CanSROA &= visit(cast<Instruction>(OldUse->getUser()));
2386     if (VecTy || IntTy)
2387       assert(CanSROA);
2388     return CanSROA;
2389   }
2390 
2391 private:
2392   // Make sure the other visit overloads are visible.
2393   using Base::visit;
2394 
2395   // Every instruction which can end up as a user must have a rewrite rule.
2396   bool visitInstruction(Instruction &I) {
2397     LLVM_DEBUG(dbgs() << "    !!!! Cannot rewrite: " << I << "\n");
2398     llvm_unreachable("No rewrite rule for this instruction!");
2399   }
2400 
2401   Value *getNewAllocaSlicePtr(IRBuilderTy &IRB, Type *PointerTy) {
2402     // Note that the offset computation can use BeginOffset or NewBeginOffset
2403     // interchangeably for unsplit slices.
2404     assert(IsSplit || BeginOffset == NewBeginOffset);
2405     uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
2406 
2407 #ifndef NDEBUG
2408     StringRef OldName = OldPtr->getName();
2409     // Skip through the last '.sroa.' component of the name.
2410     size_t LastSROAPrefix = OldName.rfind(".sroa.");
2411     if (LastSROAPrefix != StringRef::npos) {
2412       OldName = OldName.substr(LastSROAPrefix + strlen(".sroa."));
2413       // Look for an SROA slice index.
2414       size_t IndexEnd = OldName.find_first_not_of("0123456789");
2415       if (IndexEnd != StringRef::npos && OldName[IndexEnd] == '.') {
2416         // Strip the index and look for the offset.
2417         OldName = OldName.substr(IndexEnd + 1);
2418         size_t OffsetEnd = OldName.find_first_not_of("0123456789");
2419         if (OffsetEnd != StringRef::npos && OldName[OffsetEnd] == '.')
2420           // Strip the offset.
2421           OldName = OldName.substr(OffsetEnd + 1);
2422       }
2423     }
2424     // Strip any SROA suffixes as well.
2425     OldName = OldName.substr(0, OldName.find(".sroa_"));
2426 #endif
2427 
2428     return getAdjustedPtr(IRB, DL, &NewAI,
2429                           APInt(DL.getIndexTypeSizeInBits(PointerTy), Offset),
2430                           PointerTy,
2431 #ifndef NDEBUG
2432                           Twine(OldName) + "."
2433 #else
2434                           Twine()
2435 #endif
2436                           );
2437   }
2438 
2439   /// Compute suitable alignment to access this slice of the *new*
2440   /// alloca.
2441   ///
2442   /// You can optionally pass a type to this routine and if that type's ABI
2443   /// alignment is itself suitable, this will return zero.
2444   Align getSliceAlign() {
2445     return commonAlignment(NewAI.getAlign(),
2446                            NewBeginOffset - NewAllocaBeginOffset);
2447   }
2448 
2449   unsigned getIndex(uint64_t Offset) {
2450     assert(VecTy && "Can only call getIndex when rewriting a vector");
2451     uint64_t RelOffset = Offset - NewAllocaBeginOffset;
2452     assert(RelOffset / ElementSize < UINT32_MAX && "Index out of bounds");
2453     uint32_t Index = RelOffset / ElementSize;
2454     assert(Index * ElementSize == RelOffset);
2455     return Index;
2456   }
2457 
2458   void deleteIfTriviallyDead(Value *V) {
2459     Instruction *I = cast<Instruction>(V);
2460     if (isInstructionTriviallyDead(I))
2461       Pass.DeadInsts.push_back(I);
2462   }
2463 
2464   Value *rewriteVectorizedLoadInst() {
2465     unsigned BeginIndex = getIndex(NewBeginOffset);
2466     unsigned EndIndex = getIndex(NewEndOffset);
2467     assert(EndIndex > BeginIndex && "Empty vector!");
2468 
2469     Value *V = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2470                                      NewAI.getAlign(), "load");
2471     return extractVector(IRB, V, BeginIndex, EndIndex, "vec");
2472   }
2473 
2474   Value *rewriteIntegerLoad(LoadInst &LI) {
2475     assert(IntTy && "We cannot insert an integer to the alloca");
2476     assert(!LI.isVolatile());
2477     Value *V = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2478                                      NewAI.getAlign(), "load");
2479     V = convertValue(DL, IRB, V, IntTy);
2480     assert(NewBeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
2481     uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
2482     if (Offset > 0 || NewEndOffset < NewAllocaEndOffset) {
2483       IntegerType *ExtractTy = Type::getIntNTy(LI.getContext(), SliceSize * 8);
2484       V = extractInteger(DL, IRB, V, ExtractTy, Offset, "extract");
2485     }
2486     // It is possible that the extracted type is not the load type. This
2487     // happens if there is a load past the end of the alloca, and as
2488     // a consequence the slice is narrower but still a candidate for integer
2489     // lowering. To handle this case, we just zero extend the extracted
2490     // integer.
2491     assert(cast<IntegerType>(LI.getType())->getBitWidth() >= SliceSize * 8 &&
2492            "Can only handle an extract for an overly wide load");
2493     if (cast<IntegerType>(LI.getType())->getBitWidth() > SliceSize * 8)
2494       V = IRB.CreateZExt(V, LI.getType());
2495     return V;
2496   }
2497 
2498   bool visitLoadInst(LoadInst &LI) {
2499     LLVM_DEBUG(dbgs() << "    original: " << LI << "\n");
2500     Value *OldOp = LI.getOperand(0);
2501     assert(OldOp == OldPtr);
2502 
2503     AAMDNodes AATags;
2504     LI.getAAMetadata(AATags);
2505 
2506     unsigned AS = LI.getPointerAddressSpace();
2507 
2508     Type *TargetTy = IsSplit ? Type::getIntNTy(LI.getContext(), SliceSize * 8)
2509                              : LI.getType();
2510     const bool IsLoadPastEnd =
2511         DL.getTypeStoreSize(TargetTy).getFixedSize() > SliceSize;
2512     bool IsPtrAdjusted = false;
2513     Value *V;
2514     if (VecTy) {
2515       V = rewriteVectorizedLoadInst();
2516     } else if (IntTy && LI.getType()->isIntegerTy()) {
2517       V = rewriteIntegerLoad(LI);
2518     } else if (NewBeginOffset == NewAllocaBeginOffset &&
2519                NewEndOffset == NewAllocaEndOffset &&
2520                (canConvertValue(DL, NewAllocaTy, TargetTy) ||
2521                 (IsLoadPastEnd && NewAllocaTy->isIntegerTy() &&
2522                  TargetTy->isIntegerTy()))) {
2523       LoadInst *NewLI = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2524                                               NewAI.getAlign(), LI.isVolatile(),
2525                                               LI.getName());
2526       if (AATags)
2527         NewLI->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
2528       if (LI.isVolatile())
2529         NewLI->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
2530       if (NewLI->isAtomic())
2531         NewLI->setAlignment(LI.getAlign());
2532 
2533       // Any !nonnull metadata or !range metadata on the old load is also valid
2534       // on the new load. This is even true in some cases even when the loads
2535       // are different types, for example by mapping !nonnull metadata to
2536       // !range metadata by modeling the null pointer constant converted to the
2537       // integer type.
2538       // FIXME: Add support for range metadata here. Currently the utilities
2539       // for this don't propagate range metadata in trivial cases from one
2540       // integer load to another, don't handle non-addrspace-0 null pointers
2541       // correctly, and don't have any support for mapping ranges as the
2542       // integer type becomes winder or narrower.
2543       if (MDNode *N = LI.getMetadata(LLVMContext::MD_nonnull))
2544         copyNonnullMetadata(LI, N, *NewLI);
2545 
2546       // Try to preserve nonnull metadata
2547       V = NewLI;
2548 
2549       // If this is an integer load past the end of the slice (which means the
2550       // bytes outside the slice are undef or this load is dead) just forcibly
2551       // fix the integer size with correct handling of endianness.
2552       if (auto *AITy = dyn_cast<IntegerType>(NewAllocaTy))
2553         if (auto *TITy = dyn_cast<IntegerType>(TargetTy))
2554           if (AITy->getBitWidth() < TITy->getBitWidth()) {
2555             V = IRB.CreateZExt(V, TITy, "load.ext");
2556             if (DL.isBigEndian())
2557               V = IRB.CreateShl(V, TITy->getBitWidth() - AITy->getBitWidth(),
2558                                 "endian_shift");
2559           }
2560     } else {
2561       Type *LTy = TargetTy->getPointerTo(AS);
2562       LoadInst *NewLI =
2563           IRB.CreateAlignedLoad(TargetTy, getNewAllocaSlicePtr(IRB, LTy),
2564                                 getSliceAlign(), LI.isVolatile(), LI.getName());
2565       if (AATags)
2566         NewLI->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
2567       if (LI.isVolatile())
2568         NewLI->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
2569 
2570       V = NewLI;
2571       IsPtrAdjusted = true;
2572     }
2573     V = convertValue(DL, IRB, V, TargetTy);
2574 
2575     if (IsSplit) {
2576       assert(!LI.isVolatile());
2577       assert(LI.getType()->isIntegerTy() &&
2578              "Only integer type loads and stores are split");
2579       assert(SliceSize < DL.getTypeStoreSize(LI.getType()).getFixedSize() &&
2580              "Split load isn't smaller than original load");
2581       assert(DL.typeSizeEqualsStoreSize(LI.getType()) &&
2582              "Non-byte-multiple bit width");
2583       // Move the insertion point just past the load so that we can refer to it.
2584       IRB.SetInsertPoint(&*std::next(BasicBlock::iterator(&LI)));
2585       // Create a placeholder value with the same type as LI to use as the
2586       // basis for the new value. This allows us to replace the uses of LI with
2587       // the computed value, and then replace the placeholder with LI, leaving
2588       // LI only used for this computation.
2589       Value *Placeholder = new LoadInst(
2590           LI.getType(), UndefValue::get(LI.getType()->getPointerTo(AS)), "",
2591           false, Align(1));
2592       V = insertInteger(DL, IRB, Placeholder, V, NewBeginOffset - BeginOffset,
2593                         "insert");
2594       LI.replaceAllUsesWith(V);
2595       Placeholder->replaceAllUsesWith(&LI);
2596       Placeholder->deleteValue();
2597     } else {
2598       LI.replaceAllUsesWith(V);
2599     }
2600 
2601     Pass.DeadInsts.push_back(&LI);
2602     deleteIfTriviallyDead(OldOp);
2603     LLVM_DEBUG(dbgs() << "          to: " << *V << "\n");
2604     return !LI.isVolatile() && !IsPtrAdjusted;
2605   }
2606 
2607   bool rewriteVectorizedStoreInst(Value *V, StoreInst &SI, Value *OldOp,
2608                                   AAMDNodes AATags) {
2609     if (V->getType() != VecTy) {
2610       unsigned BeginIndex = getIndex(NewBeginOffset);
2611       unsigned EndIndex = getIndex(NewEndOffset);
2612       assert(EndIndex > BeginIndex && "Empty vector!");
2613       unsigned NumElements = EndIndex - BeginIndex;
2614       assert(NumElements <= cast<FixedVectorType>(VecTy)->getNumElements() &&
2615              "Too many elements!");
2616       Type *SliceTy = (NumElements == 1)
2617                           ? ElementTy
2618                           : FixedVectorType::get(ElementTy, NumElements);
2619       if (V->getType() != SliceTy)
2620         V = convertValue(DL, IRB, V, SliceTy);
2621 
2622       // Mix in the existing elements.
2623       Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2624                                          NewAI.getAlign(), "load");
2625       V = insertVector(IRB, Old, V, BeginIndex, "vec");
2626     }
2627     StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlign());
2628     if (AATags)
2629       Store->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
2630     Pass.DeadInsts.push_back(&SI);
2631 
2632     LLVM_DEBUG(dbgs() << "          to: " << *Store << "\n");
2633     return true;
2634   }
2635 
2636   bool rewriteIntegerStore(Value *V, StoreInst &SI, AAMDNodes AATags) {
2637     assert(IntTy && "We cannot extract an integer from the alloca");
2638     assert(!SI.isVolatile());
2639     if (DL.getTypeSizeInBits(V->getType()).getFixedSize() !=
2640         IntTy->getBitWidth()) {
2641       Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2642                                          NewAI.getAlign(), "oldload");
2643       Old = convertValue(DL, IRB, Old, IntTy);
2644       assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
2645       uint64_t Offset = BeginOffset - NewAllocaBeginOffset;
2646       V = insertInteger(DL, IRB, Old, SI.getValueOperand(), Offset, "insert");
2647     }
2648     V = convertValue(DL, IRB, V, NewAllocaTy);
2649     StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlign());
2650     Store->copyMetadata(SI, {LLVMContext::MD_mem_parallel_loop_access,
2651                              LLVMContext::MD_access_group});
2652     if (AATags)
2653       Store->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
2654     Pass.DeadInsts.push_back(&SI);
2655     LLVM_DEBUG(dbgs() << "          to: " << *Store << "\n");
2656     return true;
2657   }
2658 
2659   bool visitStoreInst(StoreInst &SI) {
2660     LLVM_DEBUG(dbgs() << "    original: " << SI << "\n");
2661     Value *OldOp = SI.getOperand(1);
2662     assert(OldOp == OldPtr);
2663 
2664     AAMDNodes AATags;
2665     SI.getAAMetadata(AATags);
2666 
2667     Value *V = SI.getValueOperand();
2668 
2669     // Strip all inbounds GEPs and pointer casts to try to dig out any root
2670     // alloca that should be re-examined after promoting this alloca.
2671     if (V->getType()->isPointerTy())
2672       if (AllocaInst *AI = dyn_cast<AllocaInst>(V->stripInBoundsOffsets()))
2673         Pass.PostPromotionWorklist.insert(AI);
2674 
2675     if (SliceSize < DL.getTypeStoreSize(V->getType()).getFixedSize()) {
2676       assert(!SI.isVolatile());
2677       assert(V->getType()->isIntegerTy() &&
2678              "Only integer type loads and stores are split");
2679       assert(DL.typeSizeEqualsStoreSize(V->getType()) &&
2680              "Non-byte-multiple bit width");
2681       IntegerType *NarrowTy = Type::getIntNTy(SI.getContext(), SliceSize * 8);
2682       V = extractInteger(DL, IRB, V, NarrowTy, NewBeginOffset - BeginOffset,
2683                          "extract");
2684     }
2685 
2686     if (VecTy)
2687       return rewriteVectorizedStoreInst(V, SI, OldOp, AATags);
2688     if (IntTy && V->getType()->isIntegerTy())
2689       return rewriteIntegerStore(V, SI, AATags);
2690 
2691     const bool IsStorePastEnd =
2692         DL.getTypeStoreSize(V->getType()).getFixedSize() > SliceSize;
2693     StoreInst *NewSI;
2694     if (NewBeginOffset == NewAllocaBeginOffset &&
2695         NewEndOffset == NewAllocaEndOffset &&
2696         (canConvertValue(DL, V->getType(), NewAllocaTy) ||
2697          (IsStorePastEnd && NewAllocaTy->isIntegerTy() &&
2698           V->getType()->isIntegerTy()))) {
2699       // If this is an integer store past the end of slice (and thus the bytes
2700       // past that point are irrelevant or this is unreachable), truncate the
2701       // value prior to storing.
2702       if (auto *VITy = dyn_cast<IntegerType>(V->getType()))
2703         if (auto *AITy = dyn_cast<IntegerType>(NewAllocaTy))
2704           if (VITy->getBitWidth() > AITy->getBitWidth()) {
2705             if (DL.isBigEndian())
2706               V = IRB.CreateLShr(V, VITy->getBitWidth() - AITy->getBitWidth(),
2707                                  "endian_shift");
2708             V = IRB.CreateTrunc(V, AITy, "load.trunc");
2709           }
2710 
2711       V = convertValue(DL, IRB, V, NewAllocaTy);
2712       NewSI =
2713           IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlign(), SI.isVolatile());
2714     } else {
2715       unsigned AS = SI.getPointerAddressSpace();
2716       Value *NewPtr = getNewAllocaSlicePtr(IRB, V->getType()->getPointerTo(AS));
2717       NewSI =
2718           IRB.CreateAlignedStore(V, NewPtr, getSliceAlign(), SI.isVolatile());
2719     }
2720     NewSI->copyMetadata(SI, {LLVMContext::MD_mem_parallel_loop_access,
2721                              LLVMContext::MD_access_group});
2722     if (AATags)
2723       NewSI->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
2724     if (SI.isVolatile())
2725       NewSI->setAtomic(SI.getOrdering(), SI.getSyncScopeID());
2726     if (NewSI->isAtomic())
2727       NewSI->setAlignment(SI.getAlign());
2728     Pass.DeadInsts.push_back(&SI);
2729     deleteIfTriviallyDead(OldOp);
2730 
2731     LLVM_DEBUG(dbgs() << "          to: " << *NewSI << "\n");
2732     return NewSI->getPointerOperand() == &NewAI && !SI.isVolatile();
2733   }
2734 
2735   /// Compute an integer value from splatting an i8 across the given
2736   /// number of bytes.
2737   ///
2738   /// Note that this routine assumes an i8 is a byte. If that isn't true, don't
2739   /// call this routine.
2740   /// FIXME: Heed the advice above.
2741   ///
2742   /// \param V The i8 value to splat.
2743   /// \param Size The number of bytes in the output (assuming i8 is one byte)
2744   Value *getIntegerSplat(Value *V, unsigned Size) {
2745     assert(Size > 0 && "Expected a positive number of bytes.");
2746     IntegerType *VTy = cast<IntegerType>(V->getType());
2747     assert(VTy->getBitWidth() == 8 && "Expected an i8 value for the byte");
2748     if (Size == 1)
2749       return V;
2750 
2751     Type *SplatIntTy = Type::getIntNTy(VTy->getContext(), Size * 8);
2752     V = IRB.CreateMul(
2753         IRB.CreateZExt(V, SplatIntTy, "zext"),
2754         ConstantExpr::getUDiv(
2755             Constant::getAllOnesValue(SplatIntTy),
2756             ConstantExpr::getZExt(Constant::getAllOnesValue(V->getType()),
2757                                   SplatIntTy)),
2758         "isplat");
2759     return V;
2760   }
2761 
2762   /// Compute a vector splat for a given element value.
2763   Value *getVectorSplat(Value *V, unsigned NumElements) {
2764     V = IRB.CreateVectorSplat(NumElements, V, "vsplat");
2765     LLVM_DEBUG(dbgs() << "       splat: " << *V << "\n");
2766     return V;
2767   }
2768 
2769   bool visitMemSetInst(MemSetInst &II) {
2770     LLVM_DEBUG(dbgs() << "    original: " << II << "\n");
2771     assert(II.getRawDest() == OldPtr);
2772 
2773     AAMDNodes AATags;
2774     II.getAAMetadata(AATags);
2775 
2776     // If the memset has a variable size, it cannot be split, just adjust the
2777     // pointer to the new alloca.
2778     if (!isa<Constant>(II.getLength())) {
2779       assert(!IsSplit);
2780       assert(NewBeginOffset == BeginOffset);
2781       II.setDest(getNewAllocaSlicePtr(IRB, OldPtr->getType()));
2782       II.setDestAlignment(getSliceAlign());
2783 
2784       deleteIfTriviallyDead(OldPtr);
2785       return false;
2786     }
2787 
2788     // Record this instruction for deletion.
2789     Pass.DeadInsts.push_back(&II);
2790 
2791     Type *AllocaTy = NewAI.getAllocatedType();
2792     Type *ScalarTy = AllocaTy->getScalarType();
2793 
2794     const bool CanContinue = [&]() {
2795       if (VecTy || IntTy)
2796         return true;
2797       if (BeginOffset > NewAllocaBeginOffset ||
2798           EndOffset < NewAllocaEndOffset)
2799         return false;
2800       auto *C = cast<ConstantInt>(II.getLength());
2801       if (C->getBitWidth() > 64)
2802         return false;
2803       const auto Len = C->getZExtValue();
2804       auto *Int8Ty = IntegerType::getInt8Ty(NewAI.getContext());
2805       auto *SrcTy = FixedVectorType::get(Int8Ty, Len);
2806       return canConvertValue(DL, SrcTy, AllocaTy) &&
2807              DL.isLegalInteger(DL.getTypeSizeInBits(ScalarTy).getFixedSize());
2808     }();
2809 
2810     // If this doesn't map cleanly onto the alloca type, and that type isn't
2811     // a single value type, just emit a memset.
2812     if (!CanContinue) {
2813       Type *SizeTy = II.getLength()->getType();
2814       Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset);
2815       CallInst *New = IRB.CreateMemSet(
2816           getNewAllocaSlicePtr(IRB, OldPtr->getType()), II.getValue(), Size,
2817           MaybeAlign(getSliceAlign()), II.isVolatile());
2818       if (AATags)
2819         New->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
2820       LLVM_DEBUG(dbgs() << "          to: " << *New << "\n");
2821       return false;
2822     }
2823 
2824     // If we can represent this as a simple value, we have to build the actual
2825     // value to store, which requires expanding the byte present in memset to
2826     // a sensible representation for the alloca type. This is essentially
2827     // splatting the byte to a sufficiently wide integer, splatting it across
2828     // any desired vector width, and bitcasting to the final type.
2829     Value *V;
2830 
2831     if (VecTy) {
2832       // If this is a memset of a vectorized alloca, insert it.
2833       assert(ElementTy == ScalarTy);
2834 
2835       unsigned BeginIndex = getIndex(NewBeginOffset);
2836       unsigned EndIndex = getIndex(NewEndOffset);
2837       assert(EndIndex > BeginIndex && "Empty vector!");
2838       unsigned NumElements = EndIndex - BeginIndex;
2839       assert(NumElements <= cast<FixedVectorType>(VecTy)->getNumElements() &&
2840              "Too many elements!");
2841 
2842       Value *Splat = getIntegerSplat(
2843           II.getValue(), DL.getTypeSizeInBits(ElementTy).getFixedSize() / 8);
2844       Splat = convertValue(DL, IRB, Splat, ElementTy);
2845       if (NumElements > 1)
2846         Splat = getVectorSplat(Splat, NumElements);
2847 
2848       Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2849                                          NewAI.getAlign(), "oldload");
2850       V = insertVector(IRB, Old, Splat, BeginIndex, "vec");
2851     } else if (IntTy) {
2852       // If this is a memset on an alloca where we can widen stores, insert the
2853       // set integer.
2854       assert(!II.isVolatile());
2855 
2856       uint64_t Size = NewEndOffset - NewBeginOffset;
2857       V = getIntegerSplat(II.getValue(), Size);
2858 
2859       if (IntTy && (BeginOffset != NewAllocaBeginOffset ||
2860                     EndOffset != NewAllocaBeginOffset)) {
2861         Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2862                                            NewAI.getAlign(), "oldload");
2863         Old = convertValue(DL, IRB, Old, IntTy);
2864         uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
2865         V = insertInteger(DL, IRB, Old, V, Offset, "insert");
2866       } else {
2867         assert(V->getType() == IntTy &&
2868                "Wrong type for an alloca wide integer!");
2869       }
2870       V = convertValue(DL, IRB, V, AllocaTy);
2871     } else {
2872       // Established these invariants above.
2873       assert(NewBeginOffset == NewAllocaBeginOffset);
2874       assert(NewEndOffset == NewAllocaEndOffset);
2875 
2876       V = getIntegerSplat(II.getValue(),
2877                           DL.getTypeSizeInBits(ScalarTy).getFixedSize() / 8);
2878       if (VectorType *AllocaVecTy = dyn_cast<VectorType>(AllocaTy))
2879         V = getVectorSplat(
2880             V, cast<FixedVectorType>(AllocaVecTy)->getNumElements());
2881 
2882       V = convertValue(DL, IRB, V, AllocaTy);
2883     }
2884 
2885     StoreInst *New =
2886         IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlign(), II.isVolatile());
2887     if (AATags)
2888       New->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
2889     LLVM_DEBUG(dbgs() << "          to: " << *New << "\n");
2890     return !II.isVolatile();
2891   }
2892 
2893   bool visitMemTransferInst(MemTransferInst &II) {
2894     // Rewriting of memory transfer instructions can be a bit tricky. We break
2895     // them into two categories: split intrinsics and unsplit intrinsics.
2896 
2897     LLVM_DEBUG(dbgs() << "    original: " << II << "\n");
2898 
2899     AAMDNodes AATags;
2900     II.getAAMetadata(AATags);
2901 
2902     bool IsDest = &II.getRawDestUse() == OldUse;
2903     assert((IsDest && II.getRawDest() == OldPtr) ||
2904            (!IsDest && II.getRawSource() == OldPtr));
2905 
2906     MaybeAlign SliceAlign = getSliceAlign();
2907 
2908     // For unsplit intrinsics, we simply modify the source and destination
2909     // pointers in place. This isn't just an optimization, it is a matter of
2910     // correctness. With unsplit intrinsics we may be dealing with transfers
2911     // within a single alloca before SROA ran, or with transfers that have
2912     // a variable length. We may also be dealing with memmove instead of
2913     // memcpy, and so simply updating the pointers is the necessary for us to
2914     // update both source and dest of a single call.
2915     if (!IsSplittable) {
2916       Value *AdjustedPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
2917       if (IsDest) {
2918         II.setDest(AdjustedPtr);
2919         II.setDestAlignment(SliceAlign);
2920       }
2921       else {
2922         II.setSource(AdjustedPtr);
2923         II.setSourceAlignment(SliceAlign);
2924       }
2925 
2926       LLVM_DEBUG(dbgs() << "          to: " << II << "\n");
2927       deleteIfTriviallyDead(OldPtr);
2928       return false;
2929     }
2930     // For split transfer intrinsics we have an incredibly useful assurance:
2931     // the source and destination do not reside within the same alloca, and at
2932     // least one of them does not escape. This means that we can replace
2933     // memmove with memcpy, and we don't need to worry about all manner of
2934     // downsides to splitting and transforming the operations.
2935 
2936     // If this doesn't map cleanly onto the alloca type, and that type isn't
2937     // a single value type, just emit a memcpy.
2938     bool EmitMemCpy =
2939         !VecTy && !IntTy &&
2940         (BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset ||
2941          SliceSize !=
2942              DL.getTypeStoreSize(NewAI.getAllocatedType()).getFixedSize() ||
2943          !NewAI.getAllocatedType()->isSingleValueType());
2944 
2945     // If we're just going to emit a memcpy, the alloca hasn't changed, and the
2946     // size hasn't been shrunk based on analysis of the viable range, this is
2947     // a no-op.
2948     if (EmitMemCpy && &OldAI == &NewAI) {
2949       // Ensure the start lines up.
2950       assert(NewBeginOffset == BeginOffset);
2951 
2952       // Rewrite the size as needed.
2953       if (NewEndOffset != EndOffset)
2954         II.setLength(ConstantInt::get(II.getLength()->getType(),
2955                                       NewEndOffset - NewBeginOffset));
2956       return false;
2957     }
2958     // Record this instruction for deletion.
2959     Pass.DeadInsts.push_back(&II);
2960 
2961     // Strip all inbounds GEPs and pointer casts to try to dig out any root
2962     // alloca that should be re-examined after rewriting this instruction.
2963     Value *OtherPtr = IsDest ? II.getRawSource() : II.getRawDest();
2964     if (AllocaInst *AI =
2965             dyn_cast<AllocaInst>(OtherPtr->stripInBoundsOffsets())) {
2966       assert(AI != &OldAI && AI != &NewAI &&
2967              "Splittable transfers cannot reach the same alloca on both ends.");
2968       Pass.Worklist.insert(AI);
2969     }
2970 
2971     Type *OtherPtrTy = OtherPtr->getType();
2972     unsigned OtherAS = OtherPtrTy->getPointerAddressSpace();
2973 
2974     // Compute the relative offset for the other pointer within the transfer.
2975     unsigned OffsetWidth = DL.getIndexSizeInBits(OtherAS);
2976     APInt OtherOffset(OffsetWidth, NewBeginOffset - BeginOffset);
2977     Align OtherAlign =
2978         (IsDest ? II.getSourceAlign() : II.getDestAlign()).valueOrOne();
2979     OtherAlign =
2980         commonAlignment(OtherAlign, OtherOffset.zextOrTrunc(64).getZExtValue());
2981 
2982     if (EmitMemCpy) {
2983       // Compute the other pointer, folding as much as possible to produce
2984       // a single, simple GEP in most cases.
2985       OtherPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy,
2986                                 OtherPtr->getName() + ".");
2987 
2988       Value *OurPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
2989       Type *SizeTy = II.getLength()->getType();
2990       Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset);
2991 
2992       Value *DestPtr, *SrcPtr;
2993       MaybeAlign DestAlign, SrcAlign;
2994       // Note: IsDest is true iff we're copying into the new alloca slice
2995       if (IsDest) {
2996         DestPtr = OurPtr;
2997         DestAlign = SliceAlign;
2998         SrcPtr = OtherPtr;
2999         SrcAlign = OtherAlign;
3000       } else {
3001         DestPtr = OtherPtr;
3002         DestAlign = OtherAlign;
3003         SrcPtr = OurPtr;
3004         SrcAlign = SliceAlign;
3005       }
3006       CallInst *New = IRB.CreateMemCpy(DestPtr, DestAlign, SrcPtr, SrcAlign,
3007                                        Size, II.isVolatile());
3008       if (AATags)
3009         New->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
3010       LLVM_DEBUG(dbgs() << "          to: " << *New << "\n");
3011       return false;
3012     }
3013 
3014     bool IsWholeAlloca = NewBeginOffset == NewAllocaBeginOffset &&
3015                          NewEndOffset == NewAllocaEndOffset;
3016     uint64_t Size = NewEndOffset - NewBeginOffset;
3017     unsigned BeginIndex = VecTy ? getIndex(NewBeginOffset) : 0;
3018     unsigned EndIndex = VecTy ? getIndex(NewEndOffset) : 0;
3019     unsigned NumElements = EndIndex - BeginIndex;
3020     IntegerType *SubIntTy =
3021         IntTy ? Type::getIntNTy(IntTy->getContext(), Size * 8) : nullptr;
3022 
3023     // Reset the other pointer type to match the register type we're going to
3024     // use, but using the address space of the original other pointer.
3025     Type *OtherTy;
3026     if (VecTy && !IsWholeAlloca) {
3027       if (NumElements == 1)
3028         OtherTy = VecTy->getElementType();
3029       else
3030         OtherTy = FixedVectorType::get(VecTy->getElementType(), NumElements);
3031     } else if (IntTy && !IsWholeAlloca) {
3032       OtherTy = SubIntTy;
3033     } else {
3034       OtherTy = NewAllocaTy;
3035     }
3036     OtherPtrTy = OtherTy->getPointerTo(OtherAS);
3037 
3038     Value *SrcPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy,
3039                                    OtherPtr->getName() + ".");
3040     MaybeAlign SrcAlign = OtherAlign;
3041     Value *DstPtr = &NewAI;
3042     MaybeAlign DstAlign = SliceAlign;
3043     if (!IsDest) {
3044       std::swap(SrcPtr, DstPtr);
3045       std::swap(SrcAlign, DstAlign);
3046     }
3047 
3048     Value *Src;
3049     if (VecTy && !IsWholeAlloca && !IsDest) {
3050       Src = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
3051                                   NewAI.getAlign(), "load");
3052       Src = extractVector(IRB, Src, BeginIndex, EndIndex, "vec");
3053     } else if (IntTy && !IsWholeAlloca && !IsDest) {
3054       Src = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
3055                                   NewAI.getAlign(), "load");
3056       Src = convertValue(DL, IRB, Src, IntTy);
3057       uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
3058       Src = extractInteger(DL, IRB, Src, SubIntTy, Offset, "extract");
3059     } else {
3060       LoadInst *Load = IRB.CreateAlignedLoad(OtherTy, SrcPtr, SrcAlign,
3061                                              II.isVolatile(), "copyload");
3062       if (AATags)
3063         Load->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
3064       Src = Load;
3065     }
3066 
3067     if (VecTy && !IsWholeAlloca && IsDest) {
3068       Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
3069                                          NewAI.getAlign(), "oldload");
3070       Src = insertVector(IRB, Old, Src, BeginIndex, "vec");
3071     } else if (IntTy && !IsWholeAlloca && IsDest) {
3072       Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
3073                                          NewAI.getAlign(), "oldload");
3074       Old = convertValue(DL, IRB, Old, IntTy);
3075       uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
3076       Src = insertInteger(DL, IRB, Old, Src, Offset, "insert");
3077       Src = convertValue(DL, IRB, Src, NewAllocaTy);
3078     }
3079 
3080     StoreInst *Store = cast<StoreInst>(
3081         IRB.CreateAlignedStore(Src, DstPtr, DstAlign, II.isVolatile()));
3082     if (AATags)
3083       Store->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
3084     LLVM_DEBUG(dbgs() << "          to: " << *Store << "\n");
3085     return !II.isVolatile();
3086   }
3087 
3088   bool visitIntrinsicInst(IntrinsicInst &II) {
3089     assert((II.isLifetimeStartOrEnd() || II.isDroppable()) &&
3090            "Unexpected intrinsic!");
3091     LLVM_DEBUG(dbgs() << "    original: " << II << "\n");
3092 
3093     // Record this instruction for deletion.
3094     Pass.DeadInsts.push_back(&II);
3095 
3096     if (II.isDroppable()) {
3097       assert(II.getIntrinsicID() == Intrinsic::assume && "Expected assume");
3098       // TODO For now we forget assumed information, this can be improved.
3099       OldPtr->dropDroppableUsesIn(II);
3100       return true;
3101     }
3102 
3103     assert(II.getArgOperand(1) == OldPtr);
3104     // Lifetime intrinsics are only promotable if they cover the whole alloca.
3105     // Therefore, we drop lifetime intrinsics which don't cover the whole
3106     // alloca.
3107     // (In theory, intrinsics which partially cover an alloca could be
3108     // promoted, but PromoteMemToReg doesn't handle that case.)
3109     // FIXME: Check whether the alloca is promotable before dropping the
3110     // lifetime intrinsics?
3111     if (NewBeginOffset != NewAllocaBeginOffset ||
3112         NewEndOffset != NewAllocaEndOffset)
3113       return true;
3114 
3115     ConstantInt *Size =
3116         ConstantInt::get(cast<IntegerType>(II.getArgOperand(0)->getType()),
3117                          NewEndOffset - NewBeginOffset);
3118     // Lifetime intrinsics always expect an i8* so directly get such a pointer
3119     // for the new alloca slice.
3120     Type *PointerTy = IRB.getInt8PtrTy(OldPtr->getType()->getPointerAddressSpace());
3121     Value *Ptr = getNewAllocaSlicePtr(IRB, PointerTy);
3122     Value *New;
3123     if (II.getIntrinsicID() == Intrinsic::lifetime_start)
3124       New = IRB.CreateLifetimeStart(Ptr, Size);
3125     else
3126       New = IRB.CreateLifetimeEnd(Ptr, Size);
3127 
3128     (void)New;
3129     LLVM_DEBUG(dbgs() << "          to: " << *New << "\n");
3130 
3131     return true;
3132   }
3133 
3134   void fixLoadStoreAlign(Instruction &Root) {
3135     // This algorithm implements the same visitor loop as
3136     // hasUnsafePHIOrSelectUse, and fixes the alignment of each load
3137     // or store found.
3138     SmallPtrSet<Instruction *, 4> Visited;
3139     SmallVector<Instruction *, 4> Uses;
3140     Visited.insert(&Root);
3141     Uses.push_back(&Root);
3142     do {
3143       Instruction *I = Uses.pop_back_val();
3144 
3145       if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
3146         LI->setAlignment(std::min(LI->getAlign(), getSliceAlign()));
3147         continue;
3148       }
3149       if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
3150         SI->setAlignment(std::min(SI->getAlign(), getSliceAlign()));
3151         continue;
3152       }
3153 
3154       assert(isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I) ||
3155              isa<PHINode>(I) || isa<SelectInst>(I) ||
3156              isa<GetElementPtrInst>(I));
3157       for (User *U : I->users())
3158         if (Visited.insert(cast<Instruction>(U)).second)
3159           Uses.push_back(cast<Instruction>(U));
3160     } while (!Uses.empty());
3161   }
3162 
3163   bool visitPHINode(PHINode &PN) {
3164     LLVM_DEBUG(dbgs() << "    original: " << PN << "\n");
3165     assert(BeginOffset >= NewAllocaBeginOffset && "PHIs are unsplittable");
3166     assert(EndOffset <= NewAllocaEndOffset && "PHIs are unsplittable");
3167 
3168     // We would like to compute a new pointer in only one place, but have it be
3169     // as local as possible to the PHI. To do that, we re-use the location of
3170     // the old pointer, which necessarily must be in the right position to
3171     // dominate the PHI.
3172     IRBuilderBase::InsertPointGuard Guard(IRB);
3173     if (isa<PHINode>(OldPtr))
3174       IRB.SetInsertPoint(&*OldPtr->getParent()->getFirstInsertionPt());
3175     else
3176       IRB.SetInsertPoint(OldPtr);
3177     IRB.SetCurrentDebugLocation(OldPtr->getDebugLoc());
3178 
3179     Value *NewPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
3180     // Replace the operands which were using the old pointer.
3181     std::replace(PN.op_begin(), PN.op_end(), cast<Value>(OldPtr), NewPtr);
3182 
3183     LLVM_DEBUG(dbgs() << "          to: " << PN << "\n");
3184     deleteIfTriviallyDead(OldPtr);
3185 
3186     // Fix the alignment of any loads or stores using this PHI node.
3187     fixLoadStoreAlign(PN);
3188 
3189     // PHIs can't be promoted on their own, but often can be speculated. We
3190     // check the speculation outside of the rewriter so that we see the
3191     // fully-rewritten alloca.
3192     PHIUsers.insert(&PN);
3193     return true;
3194   }
3195 
3196   bool visitSelectInst(SelectInst &SI) {
3197     LLVM_DEBUG(dbgs() << "    original: " << SI << "\n");
3198     assert((SI.getTrueValue() == OldPtr || SI.getFalseValue() == OldPtr) &&
3199            "Pointer isn't an operand!");
3200     assert(BeginOffset >= NewAllocaBeginOffset && "Selects are unsplittable");
3201     assert(EndOffset <= NewAllocaEndOffset && "Selects are unsplittable");
3202 
3203     Value *NewPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
3204     // Replace the operands which were using the old pointer.
3205     if (SI.getOperand(1) == OldPtr)
3206       SI.setOperand(1, NewPtr);
3207     if (SI.getOperand(2) == OldPtr)
3208       SI.setOperand(2, NewPtr);
3209 
3210     LLVM_DEBUG(dbgs() << "          to: " << SI << "\n");
3211     deleteIfTriviallyDead(OldPtr);
3212 
3213     // Fix the alignment of any loads or stores using this select.
3214     fixLoadStoreAlign(SI);
3215 
3216     // Selects can't be promoted on their own, but often can be speculated. We
3217     // check the speculation outside of the rewriter so that we see the
3218     // fully-rewritten alloca.
3219     SelectUsers.insert(&SI);
3220     return true;
3221   }
3222 };
3223 
3224 namespace {
3225 
3226 /// Visitor to rewrite aggregate loads and stores as scalar.
3227 ///
3228 /// This pass aggressively rewrites all aggregate loads and stores on
3229 /// a particular pointer (or any pointer derived from it which we can identify)
3230 /// with scalar loads and stores.
3231 class AggLoadStoreRewriter : public InstVisitor<AggLoadStoreRewriter, bool> {
3232   // Befriend the base class so it can delegate to private visit methods.
3233   friend class InstVisitor<AggLoadStoreRewriter, bool>;
3234 
3235   /// Queue of pointer uses to analyze and potentially rewrite.
3236   SmallVector<Use *, 8> Queue;
3237 
3238   /// Set to prevent us from cycling with phi nodes and loops.
3239   SmallPtrSet<User *, 8> Visited;
3240 
3241   /// The current pointer use being rewritten. This is used to dig up the used
3242   /// value (as opposed to the user).
3243   Use *U = nullptr;
3244 
3245   /// Used to calculate offsets, and hence alignment, of subobjects.
3246   const DataLayout &DL;
3247 
3248 public:
3249   AggLoadStoreRewriter(const DataLayout &DL) : DL(DL) {}
3250 
3251   /// Rewrite loads and stores through a pointer and all pointers derived from
3252   /// it.
3253   bool rewrite(Instruction &I) {
3254     LLVM_DEBUG(dbgs() << "  Rewriting FCA loads and stores...\n");
3255     enqueueUsers(I);
3256     bool Changed = false;
3257     while (!Queue.empty()) {
3258       U = Queue.pop_back_val();
3259       Changed |= visit(cast<Instruction>(U->getUser()));
3260     }
3261     return Changed;
3262   }
3263 
3264 private:
3265   /// Enqueue all the users of the given instruction for further processing.
3266   /// This uses a set to de-duplicate users.
3267   void enqueueUsers(Instruction &I) {
3268     for (Use &U : I.uses())
3269       if (Visited.insert(U.getUser()).second)
3270         Queue.push_back(&U);
3271   }
3272 
3273   // Conservative default is to not rewrite anything.
3274   bool visitInstruction(Instruction &I) { return false; }
3275 
3276   /// Generic recursive split emission class.
3277   template <typename Derived> class OpSplitter {
3278   protected:
3279     /// The builder used to form new instructions.
3280     IRBuilderTy IRB;
3281 
3282     /// The indices which to be used with insert- or extractvalue to select the
3283     /// appropriate value within the aggregate.
3284     SmallVector<unsigned, 4> Indices;
3285 
3286     /// The indices to a GEP instruction which will move Ptr to the correct slot
3287     /// within the aggregate.
3288     SmallVector<Value *, 4> GEPIndices;
3289 
3290     /// The base pointer of the original op, used as a base for GEPing the
3291     /// split operations.
3292     Value *Ptr;
3293 
3294     /// The base pointee type being GEPed into.
3295     Type *BaseTy;
3296 
3297     /// Known alignment of the base pointer.
3298     Align BaseAlign;
3299 
3300     /// To calculate offset of each component so we can correctly deduce
3301     /// alignments.
3302     const DataLayout &DL;
3303 
3304     /// Initialize the splitter with an insertion point, Ptr and start with a
3305     /// single zero GEP index.
3306     OpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy,
3307                Align BaseAlign, const DataLayout &DL)
3308         : IRB(InsertionPoint), GEPIndices(1, IRB.getInt32(0)), Ptr(Ptr),
3309           BaseTy(BaseTy), BaseAlign(BaseAlign), DL(DL) {}
3310 
3311   public:
3312     /// Generic recursive split emission routine.
3313     ///
3314     /// This method recursively splits an aggregate op (load or store) into
3315     /// scalar or vector ops. It splits recursively until it hits a single value
3316     /// and emits that single value operation via the template argument.
3317     ///
3318     /// The logic of this routine relies on GEPs and insertvalue and
3319     /// extractvalue all operating with the same fundamental index list, merely
3320     /// formatted differently (GEPs need actual values).
3321     ///
3322     /// \param Ty  The type being split recursively into smaller ops.
3323     /// \param Agg The aggregate value being built up or stored, depending on
3324     /// whether this is splitting a load or a store respectively.
3325     void emitSplitOps(Type *Ty, Value *&Agg, const Twine &Name) {
3326       if (Ty->isSingleValueType()) {
3327         unsigned Offset = DL.getIndexedOffsetInType(BaseTy, GEPIndices);
3328         return static_cast<Derived *>(this)->emitFunc(
3329             Ty, Agg, commonAlignment(BaseAlign, Offset), Name);
3330       }
3331 
3332       if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
3333         unsigned OldSize = Indices.size();
3334         (void)OldSize;
3335         for (unsigned Idx = 0, Size = ATy->getNumElements(); Idx != Size;
3336              ++Idx) {
3337           assert(Indices.size() == OldSize && "Did not return to the old size");
3338           Indices.push_back(Idx);
3339           GEPIndices.push_back(IRB.getInt32(Idx));
3340           emitSplitOps(ATy->getElementType(), Agg, Name + "." + Twine(Idx));
3341           GEPIndices.pop_back();
3342           Indices.pop_back();
3343         }
3344         return;
3345       }
3346 
3347       if (StructType *STy = dyn_cast<StructType>(Ty)) {
3348         unsigned OldSize = Indices.size();
3349         (void)OldSize;
3350         for (unsigned Idx = 0, Size = STy->getNumElements(); Idx != Size;
3351              ++Idx) {
3352           assert(Indices.size() == OldSize && "Did not return to the old size");
3353           Indices.push_back(Idx);
3354           GEPIndices.push_back(IRB.getInt32(Idx));
3355           emitSplitOps(STy->getElementType(Idx), Agg, Name + "." + Twine(Idx));
3356           GEPIndices.pop_back();
3357           Indices.pop_back();
3358         }
3359         return;
3360       }
3361 
3362       llvm_unreachable("Only arrays and structs are aggregate loadable types");
3363     }
3364   };
3365 
3366   struct LoadOpSplitter : public OpSplitter<LoadOpSplitter> {
3367     AAMDNodes AATags;
3368 
3369     LoadOpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy,
3370                    AAMDNodes AATags, Align BaseAlign, const DataLayout &DL)
3371         : OpSplitter<LoadOpSplitter>(InsertionPoint, Ptr, BaseTy, BaseAlign,
3372                                      DL),
3373           AATags(AATags) {}
3374 
3375     /// Emit a leaf load of a single value. This is called at the leaves of the
3376     /// recursive emission to actually load values.
3377     void emitFunc(Type *Ty, Value *&Agg, Align Alignment, const Twine &Name) {
3378       assert(Ty->isSingleValueType());
3379       // Load the single value and insert it using the indices.
3380       Value *GEP =
3381           IRB.CreateInBoundsGEP(BaseTy, Ptr, GEPIndices, Name + ".gep");
3382       LoadInst *Load =
3383           IRB.CreateAlignedLoad(Ty, GEP, Alignment, Name + ".load");
3384 
3385       APInt Offset(
3386           DL.getIndexSizeInBits(Ptr->getType()->getPointerAddressSpace()), 0);
3387       if (AATags &&
3388           GEPOperator::accumulateConstantOffset(BaseTy, GEPIndices, DL, Offset))
3389         Load->setAAMetadata(AATags.shift(Offset.getZExtValue()));
3390 
3391       Agg = IRB.CreateInsertValue(Agg, Load, Indices, Name + ".insert");
3392       LLVM_DEBUG(dbgs() << "          to: " << *Load << "\n");
3393     }
3394   };
3395 
3396   bool visitLoadInst(LoadInst &LI) {
3397     assert(LI.getPointerOperand() == *U);
3398     if (!LI.isSimple() || LI.getType()->isSingleValueType())
3399       return false;
3400 
3401     // We have an aggregate being loaded, split it apart.
3402     LLVM_DEBUG(dbgs() << "    original: " << LI << "\n");
3403     AAMDNodes AATags;
3404     LI.getAAMetadata(AATags);
3405     LoadOpSplitter Splitter(&LI, *U, LI.getType(), AATags,
3406                             getAdjustedAlignment(&LI, 0), DL);
3407     Value *V = UndefValue::get(LI.getType());
3408     Splitter.emitSplitOps(LI.getType(), V, LI.getName() + ".fca");
3409     Visited.erase(&LI);
3410     LI.replaceAllUsesWith(V);
3411     LI.eraseFromParent();
3412     return true;
3413   }
3414 
3415   struct StoreOpSplitter : public OpSplitter<StoreOpSplitter> {
3416     StoreOpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy,
3417                     AAMDNodes AATags, Align BaseAlign, const DataLayout &DL)
3418         : OpSplitter<StoreOpSplitter>(InsertionPoint, Ptr, BaseTy, BaseAlign,
3419                                       DL),
3420           AATags(AATags) {}
3421     AAMDNodes AATags;
3422     /// Emit a leaf store of a single value. This is called at the leaves of the
3423     /// recursive emission to actually produce stores.
3424     void emitFunc(Type *Ty, Value *&Agg, Align Alignment, const Twine &Name) {
3425       assert(Ty->isSingleValueType());
3426       // Extract the single value and store it using the indices.
3427       //
3428       // The gep and extractvalue values are factored out of the CreateStore
3429       // call to make the output independent of the argument evaluation order.
3430       Value *ExtractValue =
3431           IRB.CreateExtractValue(Agg, Indices, Name + ".extract");
3432       Value *InBoundsGEP =
3433           IRB.CreateInBoundsGEP(BaseTy, Ptr, GEPIndices, Name + ".gep");
3434       StoreInst *Store =
3435           IRB.CreateAlignedStore(ExtractValue, InBoundsGEP, Alignment);
3436 
3437       APInt Offset(
3438           DL.getIndexSizeInBits(Ptr->getType()->getPointerAddressSpace()), 0);
3439       if (AATags &&
3440           GEPOperator::accumulateConstantOffset(BaseTy, GEPIndices, DL, Offset))
3441         Store->setAAMetadata(AATags.shift(Offset.getZExtValue()));
3442 
3443       LLVM_DEBUG(dbgs() << "          to: " << *Store << "\n");
3444     }
3445   };
3446 
3447   bool visitStoreInst(StoreInst &SI) {
3448     if (!SI.isSimple() || SI.getPointerOperand() != *U)
3449       return false;
3450     Value *V = SI.getValueOperand();
3451     if (V->getType()->isSingleValueType())
3452       return false;
3453 
3454     // We have an aggregate being stored, split it apart.
3455     LLVM_DEBUG(dbgs() << "    original: " << SI << "\n");
3456     AAMDNodes AATags;
3457     SI.getAAMetadata(AATags);
3458     StoreOpSplitter Splitter(&SI, *U, V->getType(), AATags,
3459                              getAdjustedAlignment(&SI, 0), DL);
3460     Splitter.emitSplitOps(V->getType(), V, V->getName() + ".fca");
3461     Visited.erase(&SI);
3462     SI.eraseFromParent();
3463     return true;
3464   }
3465 
3466   bool visitBitCastInst(BitCastInst &BC) {
3467     enqueueUsers(BC);
3468     return false;
3469   }
3470 
3471   bool visitAddrSpaceCastInst(AddrSpaceCastInst &ASC) {
3472     enqueueUsers(ASC);
3473     return false;
3474   }
3475 
3476   // Fold gep (select cond, ptr1, ptr2) => select cond, gep(ptr1), gep(ptr2)
3477   bool foldGEPSelect(GetElementPtrInst &GEPI) {
3478     if (!GEPI.hasAllConstantIndices())
3479       return false;
3480 
3481     SelectInst *Sel = cast<SelectInst>(GEPI.getPointerOperand());
3482 
3483     LLVM_DEBUG(dbgs() << "  Rewriting gep(select) -> select(gep):"
3484                       << "\n    original: " << *Sel
3485                       << "\n              " << GEPI);
3486 
3487     IRBuilderTy Builder(&GEPI);
3488     SmallVector<Value *, 4> Index(GEPI.indices());
3489     bool IsInBounds = GEPI.isInBounds();
3490 
3491     Value *True = Sel->getTrueValue();
3492     Value *NTrue =
3493         IsInBounds
3494             ? Builder.CreateInBoundsGEP(True, Index,
3495                                         True->getName() + ".sroa.gep")
3496             : Builder.CreateGEP(True, Index, True->getName() + ".sroa.gep");
3497 
3498     Value *False = Sel->getFalseValue();
3499 
3500     Value *NFalse =
3501         IsInBounds
3502             ? Builder.CreateInBoundsGEP(False, Index,
3503                                         False->getName() + ".sroa.gep")
3504             : Builder.CreateGEP(False, Index, False->getName() + ".sroa.gep");
3505 
3506     Value *NSel = Builder.CreateSelect(Sel->getCondition(), NTrue, NFalse,
3507                                        Sel->getName() + ".sroa.sel");
3508     Visited.erase(&GEPI);
3509     GEPI.replaceAllUsesWith(NSel);
3510     GEPI.eraseFromParent();
3511     Instruction *NSelI = cast<Instruction>(NSel);
3512     Visited.insert(NSelI);
3513     enqueueUsers(*NSelI);
3514 
3515     LLVM_DEBUG(dbgs() << "\n          to: " << *NTrue
3516                       << "\n              " << *NFalse
3517                       << "\n              " << *NSel << '\n');
3518 
3519     return true;
3520   }
3521 
3522   // Fold gep (phi ptr1, ptr2) => phi gep(ptr1), gep(ptr2)
3523   bool foldGEPPhi(GetElementPtrInst &GEPI) {
3524     if (!GEPI.hasAllConstantIndices())
3525       return false;
3526 
3527     PHINode *PHI = cast<PHINode>(GEPI.getPointerOperand());
3528     if (GEPI.getParent() != PHI->getParent() ||
3529         llvm::any_of(PHI->incoming_values(), [](Value *In)
3530           { Instruction *I = dyn_cast<Instruction>(In);
3531             return !I || isa<GetElementPtrInst>(I) || isa<PHINode>(I) ||
3532                    succ_empty(I->getParent()) ||
3533                    !I->getParent()->isLegalToHoistInto();
3534           }))
3535       return false;
3536 
3537     LLVM_DEBUG(dbgs() << "  Rewriting gep(phi) -> phi(gep):"
3538                       << "\n    original: " << *PHI
3539                       << "\n              " << GEPI
3540                       << "\n          to: ");
3541 
3542     SmallVector<Value *, 4> Index(GEPI.indices());
3543     bool IsInBounds = GEPI.isInBounds();
3544     IRBuilderTy PHIBuilder(GEPI.getParent()->getFirstNonPHI());
3545     PHINode *NewPN = PHIBuilder.CreatePHI(GEPI.getType(),
3546                                           PHI->getNumIncomingValues(),
3547                                           PHI->getName() + ".sroa.phi");
3548     for (unsigned I = 0, E = PHI->getNumIncomingValues(); I != E; ++I) {
3549       BasicBlock *B = PHI->getIncomingBlock(I);
3550       Value *NewVal = nullptr;
3551       int Idx = NewPN->getBasicBlockIndex(B);
3552       if (Idx >= 0) {
3553         NewVal = NewPN->getIncomingValue(Idx);
3554       } else {
3555         Instruction *In = cast<Instruction>(PHI->getIncomingValue(I));
3556 
3557         IRBuilderTy B(In->getParent(), std::next(In->getIterator()));
3558         NewVal = IsInBounds
3559             ? B.CreateInBoundsGEP(In, Index, In->getName() + ".sroa.gep")
3560             : B.CreateGEP(In, Index, In->getName() + ".sroa.gep");
3561       }
3562       NewPN->addIncoming(NewVal, B);
3563     }
3564 
3565     Visited.erase(&GEPI);
3566     GEPI.replaceAllUsesWith(NewPN);
3567     GEPI.eraseFromParent();
3568     Visited.insert(NewPN);
3569     enqueueUsers(*NewPN);
3570 
3571     LLVM_DEBUG(for (Value *In : NewPN->incoming_values())
3572                  dbgs() << "\n              " << *In;
3573                dbgs() << "\n              " << *NewPN << '\n');
3574 
3575     return true;
3576   }
3577 
3578   bool visitGetElementPtrInst(GetElementPtrInst &GEPI) {
3579     if (isa<SelectInst>(GEPI.getPointerOperand()) &&
3580         foldGEPSelect(GEPI))
3581       return true;
3582 
3583     if (isa<PHINode>(GEPI.getPointerOperand()) &&
3584         foldGEPPhi(GEPI))
3585       return true;
3586 
3587     enqueueUsers(GEPI);
3588     return false;
3589   }
3590 
3591   bool visitPHINode(PHINode &PN) {
3592     enqueueUsers(PN);
3593     return false;
3594   }
3595 
3596   bool visitSelectInst(SelectInst &SI) {
3597     enqueueUsers(SI);
3598     return false;
3599   }
3600 };
3601 
3602 } // end anonymous namespace
3603 
3604 /// Strip aggregate type wrapping.
3605 ///
3606 /// This removes no-op aggregate types wrapping an underlying type. It will
3607 /// strip as many layers of types as it can without changing either the type
3608 /// size or the allocated size.
3609 static Type *stripAggregateTypeWrapping(const DataLayout &DL, Type *Ty) {
3610   if (Ty->isSingleValueType())
3611     return Ty;
3612 
3613   uint64_t AllocSize = DL.getTypeAllocSize(Ty).getFixedSize();
3614   uint64_t TypeSize = DL.getTypeSizeInBits(Ty).getFixedSize();
3615 
3616   Type *InnerTy;
3617   if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) {
3618     InnerTy = ArrTy->getElementType();
3619   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
3620     const StructLayout *SL = DL.getStructLayout(STy);
3621     unsigned Index = SL->getElementContainingOffset(0);
3622     InnerTy = STy->getElementType(Index);
3623   } else {
3624     return Ty;
3625   }
3626 
3627   if (AllocSize > DL.getTypeAllocSize(InnerTy).getFixedSize() ||
3628       TypeSize > DL.getTypeSizeInBits(InnerTy).getFixedSize())
3629     return Ty;
3630 
3631   return stripAggregateTypeWrapping(DL, InnerTy);
3632 }
3633 
3634 /// Try to find a partition of the aggregate type passed in for a given
3635 /// offset and size.
3636 ///
3637 /// This recurses through the aggregate type and tries to compute a subtype
3638 /// based on the offset and size. When the offset and size span a sub-section
3639 /// of an array, it will even compute a new array type for that sub-section,
3640 /// and the same for structs.
3641 ///
3642 /// Note that this routine is very strict and tries to find a partition of the
3643 /// type which produces the *exact* right offset and size. It is not forgiving
3644 /// when the size or offset cause either end of type-based partition to be off.
3645 /// Also, this is a best-effort routine. It is reasonable to give up and not
3646 /// return a type if necessary.
3647 static Type *getTypePartition(const DataLayout &DL, Type *Ty, uint64_t Offset,
3648                               uint64_t Size) {
3649   if (Offset == 0 && DL.getTypeAllocSize(Ty).getFixedSize() == Size)
3650     return stripAggregateTypeWrapping(DL, Ty);
3651   if (Offset > DL.getTypeAllocSize(Ty).getFixedSize() ||
3652       (DL.getTypeAllocSize(Ty).getFixedSize() - Offset) < Size)
3653     return nullptr;
3654 
3655   if (isa<ArrayType>(Ty) || isa<VectorType>(Ty)) {
3656      Type *ElementTy;
3657      uint64_t TyNumElements;
3658      if (auto *AT = dyn_cast<ArrayType>(Ty)) {
3659        ElementTy = AT->getElementType();
3660        TyNumElements = AT->getNumElements();
3661      } else {
3662        // FIXME: This isn't right for vectors with non-byte-sized or
3663        // non-power-of-two sized elements.
3664        auto *VT = cast<FixedVectorType>(Ty);
3665        ElementTy = VT->getElementType();
3666        TyNumElements = VT->getNumElements();
3667     }
3668     uint64_t ElementSize = DL.getTypeAllocSize(ElementTy).getFixedSize();
3669     uint64_t NumSkippedElements = Offset / ElementSize;
3670     if (NumSkippedElements >= TyNumElements)
3671       return nullptr;
3672     Offset -= NumSkippedElements * ElementSize;
3673 
3674     // First check if we need to recurse.
3675     if (Offset > 0 || Size < ElementSize) {
3676       // Bail if the partition ends in a different array element.
3677       if ((Offset + Size) > ElementSize)
3678         return nullptr;
3679       // Recurse through the element type trying to peel off offset bytes.
3680       return getTypePartition(DL, ElementTy, Offset, Size);
3681     }
3682     assert(Offset == 0);
3683 
3684     if (Size == ElementSize)
3685       return stripAggregateTypeWrapping(DL, ElementTy);
3686     assert(Size > ElementSize);
3687     uint64_t NumElements = Size / ElementSize;
3688     if (NumElements * ElementSize != Size)
3689       return nullptr;
3690     return ArrayType::get(ElementTy, NumElements);
3691   }
3692 
3693   StructType *STy = dyn_cast<StructType>(Ty);
3694   if (!STy)
3695     return nullptr;
3696 
3697   const StructLayout *SL = DL.getStructLayout(STy);
3698   if (Offset >= SL->getSizeInBytes())
3699     return nullptr;
3700   uint64_t EndOffset = Offset + Size;
3701   if (EndOffset > SL->getSizeInBytes())
3702     return nullptr;
3703 
3704   unsigned Index = SL->getElementContainingOffset(Offset);
3705   Offset -= SL->getElementOffset(Index);
3706 
3707   Type *ElementTy = STy->getElementType(Index);
3708   uint64_t ElementSize = DL.getTypeAllocSize(ElementTy).getFixedSize();
3709   if (Offset >= ElementSize)
3710     return nullptr; // The offset points into alignment padding.
3711 
3712   // See if any partition must be contained by the element.
3713   if (Offset > 0 || Size < ElementSize) {
3714     if ((Offset + Size) > ElementSize)
3715       return nullptr;
3716     return getTypePartition(DL, ElementTy, Offset, Size);
3717   }
3718   assert(Offset == 0);
3719 
3720   if (Size == ElementSize)
3721     return stripAggregateTypeWrapping(DL, ElementTy);
3722 
3723   StructType::element_iterator EI = STy->element_begin() + Index,
3724                                EE = STy->element_end();
3725   if (EndOffset < SL->getSizeInBytes()) {
3726     unsigned EndIndex = SL->getElementContainingOffset(EndOffset);
3727     if (Index == EndIndex)
3728       return nullptr; // Within a single element and its padding.
3729 
3730     // Don't try to form "natural" types if the elements don't line up with the
3731     // expected size.
3732     // FIXME: We could potentially recurse down through the last element in the
3733     // sub-struct to find a natural end point.
3734     if (SL->getElementOffset(EndIndex) != EndOffset)
3735       return nullptr;
3736 
3737     assert(Index < EndIndex);
3738     EE = STy->element_begin() + EndIndex;
3739   }
3740 
3741   // Try to build up a sub-structure.
3742   StructType *SubTy =
3743       StructType::get(STy->getContext(), makeArrayRef(EI, EE), STy->isPacked());
3744   const StructLayout *SubSL = DL.getStructLayout(SubTy);
3745   if (Size != SubSL->getSizeInBytes())
3746     return nullptr; // The sub-struct doesn't have quite the size needed.
3747 
3748   return SubTy;
3749 }
3750 
3751 /// Pre-split loads and stores to simplify rewriting.
3752 ///
3753 /// We want to break up the splittable load+store pairs as much as
3754 /// possible. This is important to do as a preprocessing step, as once we
3755 /// start rewriting the accesses to partitions of the alloca we lose the
3756 /// necessary information to correctly split apart paired loads and stores
3757 /// which both point into this alloca. The case to consider is something like
3758 /// the following:
3759 ///
3760 ///   %a = alloca [12 x i8]
3761 ///   %gep1 = getelementptr [12 x i8]* %a, i32 0, i32 0
3762 ///   %gep2 = getelementptr [12 x i8]* %a, i32 0, i32 4
3763 ///   %gep3 = getelementptr [12 x i8]* %a, i32 0, i32 8
3764 ///   %iptr1 = bitcast i8* %gep1 to i64*
3765 ///   %iptr2 = bitcast i8* %gep2 to i64*
3766 ///   %fptr1 = bitcast i8* %gep1 to float*
3767 ///   %fptr2 = bitcast i8* %gep2 to float*
3768 ///   %fptr3 = bitcast i8* %gep3 to float*
3769 ///   store float 0.0, float* %fptr1
3770 ///   store float 1.0, float* %fptr2
3771 ///   %v = load i64* %iptr1
3772 ///   store i64 %v, i64* %iptr2
3773 ///   %f1 = load float* %fptr2
3774 ///   %f2 = load float* %fptr3
3775 ///
3776 /// Here we want to form 3 partitions of the alloca, each 4 bytes large, and
3777 /// promote everything so we recover the 2 SSA values that should have been
3778 /// there all along.
3779 ///
3780 /// \returns true if any changes are made.
3781 bool SROA::presplitLoadsAndStores(AllocaInst &AI, AllocaSlices &AS) {
3782   LLVM_DEBUG(dbgs() << "Pre-splitting loads and stores\n");
3783 
3784   // Track the loads and stores which are candidates for pre-splitting here, in
3785   // the order they first appear during the partition scan. These give stable
3786   // iteration order and a basis for tracking which loads and stores we
3787   // actually split.
3788   SmallVector<LoadInst *, 4> Loads;
3789   SmallVector<StoreInst *, 4> Stores;
3790 
3791   // We need to accumulate the splits required of each load or store where we
3792   // can find them via a direct lookup. This is important to cross-check loads
3793   // and stores against each other. We also track the slice so that we can kill
3794   // all the slices that end up split.
3795   struct SplitOffsets {
3796     Slice *S;
3797     std::vector<uint64_t> Splits;
3798   };
3799   SmallDenseMap<Instruction *, SplitOffsets, 8> SplitOffsetsMap;
3800 
3801   // Track loads out of this alloca which cannot, for any reason, be pre-split.
3802   // This is important as we also cannot pre-split stores of those loads!
3803   // FIXME: This is all pretty gross. It means that we can be more aggressive
3804   // in pre-splitting when the load feeding the store happens to come from
3805   // a separate alloca. Put another way, the effectiveness of SROA would be
3806   // decreased by a frontend which just concatenated all of its local allocas
3807   // into one big flat alloca. But defeating such patterns is exactly the job
3808   // SROA is tasked with! Sadly, to not have this discrepancy we would have
3809   // change store pre-splitting to actually force pre-splitting of the load
3810   // that feeds it *and all stores*. That makes pre-splitting much harder, but
3811   // maybe it would make it more principled?
3812   SmallPtrSet<LoadInst *, 8> UnsplittableLoads;
3813 
3814   LLVM_DEBUG(dbgs() << "  Searching for candidate loads and stores\n");
3815   for (auto &P : AS.partitions()) {
3816     for (Slice &S : P) {
3817       Instruction *I = cast<Instruction>(S.getUse()->getUser());
3818       if (!S.isSplittable() || S.endOffset() <= P.endOffset()) {
3819         // If this is a load we have to track that it can't participate in any
3820         // pre-splitting. If this is a store of a load we have to track that
3821         // that load also can't participate in any pre-splitting.
3822         if (auto *LI = dyn_cast<LoadInst>(I))
3823           UnsplittableLoads.insert(LI);
3824         else if (auto *SI = dyn_cast<StoreInst>(I))
3825           if (auto *LI = dyn_cast<LoadInst>(SI->getValueOperand()))
3826             UnsplittableLoads.insert(LI);
3827         continue;
3828       }
3829       assert(P.endOffset() > S.beginOffset() &&
3830              "Empty or backwards partition!");
3831 
3832       // Determine if this is a pre-splittable slice.
3833       if (auto *LI = dyn_cast<LoadInst>(I)) {
3834         assert(!LI->isVolatile() && "Cannot split volatile loads!");
3835 
3836         // The load must be used exclusively to store into other pointers for
3837         // us to be able to arbitrarily pre-split it. The stores must also be
3838         // simple to avoid changing semantics.
3839         auto IsLoadSimplyStored = [](LoadInst *LI) {
3840           for (User *LU : LI->users()) {
3841             auto *SI = dyn_cast<StoreInst>(LU);
3842             if (!SI || !SI->isSimple())
3843               return false;
3844           }
3845           return true;
3846         };
3847         if (!IsLoadSimplyStored(LI)) {
3848           UnsplittableLoads.insert(LI);
3849           continue;
3850         }
3851 
3852         Loads.push_back(LI);
3853       } else if (auto *SI = dyn_cast<StoreInst>(I)) {
3854         if (S.getUse() != &SI->getOperandUse(SI->getPointerOperandIndex()))
3855           // Skip stores *of* pointers. FIXME: This shouldn't even be possible!
3856           continue;
3857         auto *StoredLoad = dyn_cast<LoadInst>(SI->getValueOperand());
3858         if (!StoredLoad || !StoredLoad->isSimple())
3859           continue;
3860         assert(!SI->isVolatile() && "Cannot split volatile stores!");
3861 
3862         Stores.push_back(SI);
3863       } else {
3864         // Other uses cannot be pre-split.
3865         continue;
3866       }
3867 
3868       // Record the initial split.
3869       LLVM_DEBUG(dbgs() << "    Candidate: " << *I << "\n");
3870       auto &Offsets = SplitOffsetsMap[I];
3871       assert(Offsets.Splits.empty() &&
3872              "Should not have splits the first time we see an instruction!");
3873       Offsets.S = &S;
3874       Offsets.Splits.push_back(P.endOffset() - S.beginOffset());
3875     }
3876 
3877     // Now scan the already split slices, and add a split for any of them which
3878     // we're going to pre-split.
3879     for (Slice *S : P.splitSliceTails()) {
3880       auto SplitOffsetsMapI =
3881           SplitOffsetsMap.find(cast<Instruction>(S->getUse()->getUser()));
3882       if (SplitOffsetsMapI == SplitOffsetsMap.end())
3883         continue;
3884       auto &Offsets = SplitOffsetsMapI->second;
3885 
3886       assert(Offsets.S == S && "Found a mismatched slice!");
3887       assert(!Offsets.Splits.empty() &&
3888              "Cannot have an empty set of splits on the second partition!");
3889       assert(Offsets.Splits.back() ==
3890                  P.beginOffset() - Offsets.S->beginOffset() &&
3891              "Previous split does not end where this one begins!");
3892 
3893       // Record each split. The last partition's end isn't needed as the size
3894       // of the slice dictates that.
3895       if (S->endOffset() > P.endOffset())
3896         Offsets.Splits.push_back(P.endOffset() - Offsets.S->beginOffset());
3897     }
3898   }
3899 
3900   // We may have split loads where some of their stores are split stores. For
3901   // such loads and stores, we can only pre-split them if their splits exactly
3902   // match relative to their starting offset. We have to verify this prior to
3903   // any rewriting.
3904   llvm::erase_if(Stores, [&UnsplittableLoads, &SplitOffsetsMap](StoreInst *SI) {
3905     // Lookup the load we are storing in our map of split
3906     // offsets.
3907     auto *LI = cast<LoadInst>(SI->getValueOperand());
3908     // If it was completely unsplittable, then we're done,
3909     // and this store can't be pre-split.
3910     if (UnsplittableLoads.count(LI))
3911       return true;
3912 
3913     auto LoadOffsetsI = SplitOffsetsMap.find(LI);
3914     if (LoadOffsetsI == SplitOffsetsMap.end())
3915       return false; // Unrelated loads are definitely safe.
3916     auto &LoadOffsets = LoadOffsetsI->second;
3917 
3918     // Now lookup the store's offsets.
3919     auto &StoreOffsets = SplitOffsetsMap[SI];
3920 
3921     // If the relative offsets of each split in the load and
3922     // store match exactly, then we can split them and we
3923     // don't need to remove them here.
3924     if (LoadOffsets.Splits == StoreOffsets.Splits)
3925       return false;
3926 
3927     LLVM_DEBUG(dbgs() << "    Mismatched splits for load and store:\n"
3928                       << "      " << *LI << "\n"
3929                       << "      " << *SI << "\n");
3930 
3931     // We've found a store and load that we need to split
3932     // with mismatched relative splits. Just give up on them
3933     // and remove both instructions from our list of
3934     // candidates.
3935     UnsplittableLoads.insert(LI);
3936     return true;
3937   });
3938   // Now we have to go *back* through all the stores, because a later store may
3939   // have caused an earlier store's load to become unsplittable and if it is
3940   // unsplittable for the later store, then we can't rely on it being split in
3941   // the earlier store either.
3942   llvm::erase_if(Stores, [&UnsplittableLoads](StoreInst *SI) {
3943     auto *LI = cast<LoadInst>(SI->getValueOperand());
3944     return UnsplittableLoads.count(LI);
3945   });
3946   // Once we've established all the loads that can't be split for some reason,
3947   // filter any that made it into our list out.
3948   llvm::erase_if(Loads, [&UnsplittableLoads](LoadInst *LI) {
3949     return UnsplittableLoads.count(LI);
3950   });
3951 
3952   // If no loads or stores are left, there is no pre-splitting to be done for
3953   // this alloca.
3954   if (Loads.empty() && Stores.empty())
3955     return false;
3956 
3957   // From here on, we can't fail and will be building new accesses, so rig up
3958   // an IR builder.
3959   IRBuilderTy IRB(&AI);
3960 
3961   // Collect the new slices which we will merge into the alloca slices.
3962   SmallVector<Slice, 4> NewSlices;
3963 
3964   // Track any allocas we end up splitting loads and stores for so we iterate
3965   // on them.
3966   SmallPtrSet<AllocaInst *, 4> ResplitPromotableAllocas;
3967 
3968   // At this point, we have collected all of the loads and stores we can
3969   // pre-split, and the specific splits needed for them. We actually do the
3970   // splitting in a specific order in order to handle when one of the loads in
3971   // the value operand to one of the stores.
3972   //
3973   // First, we rewrite all of the split loads, and just accumulate each split
3974   // load in a parallel structure. We also build the slices for them and append
3975   // them to the alloca slices.
3976   SmallDenseMap<LoadInst *, std::vector<LoadInst *>, 1> SplitLoadsMap;
3977   std::vector<LoadInst *> SplitLoads;
3978   const DataLayout &DL = AI.getModule()->getDataLayout();
3979   for (LoadInst *LI : Loads) {
3980     SplitLoads.clear();
3981 
3982     IntegerType *Ty = cast<IntegerType>(LI->getType());
3983     uint64_t LoadSize = Ty->getBitWidth() / 8;
3984     assert(LoadSize > 0 && "Cannot have a zero-sized integer load!");
3985 
3986     auto &Offsets = SplitOffsetsMap[LI];
3987     assert(LoadSize == Offsets.S->endOffset() - Offsets.S->beginOffset() &&
3988            "Slice size should always match load size exactly!");
3989     uint64_t BaseOffset = Offsets.S->beginOffset();
3990     assert(BaseOffset + LoadSize > BaseOffset &&
3991            "Cannot represent alloca access size using 64-bit integers!");
3992 
3993     Instruction *BasePtr = cast<Instruction>(LI->getPointerOperand());
3994     IRB.SetInsertPoint(LI);
3995 
3996     LLVM_DEBUG(dbgs() << "  Splitting load: " << *LI << "\n");
3997 
3998     uint64_t PartOffset = 0, PartSize = Offsets.Splits.front();
3999     int Idx = 0, Size = Offsets.Splits.size();
4000     for (;;) {
4001       auto *PartTy = Type::getIntNTy(Ty->getContext(), PartSize * 8);
4002       auto AS = LI->getPointerAddressSpace();
4003       auto *PartPtrTy = PartTy->getPointerTo(AS);
4004       LoadInst *PLoad = IRB.CreateAlignedLoad(
4005           PartTy,
4006           getAdjustedPtr(IRB, DL, BasePtr,
4007                          APInt(DL.getIndexSizeInBits(AS), PartOffset),
4008                          PartPtrTy, BasePtr->getName() + "."),
4009           getAdjustedAlignment(LI, PartOffset),
4010           /*IsVolatile*/ false, LI->getName());
4011       PLoad->copyMetadata(*LI, {LLVMContext::MD_mem_parallel_loop_access,
4012                                 LLVMContext::MD_access_group});
4013 
4014       // Append this load onto the list of split loads so we can find it later
4015       // to rewrite the stores.
4016       SplitLoads.push_back(PLoad);
4017 
4018       // Now build a new slice for the alloca.
4019       NewSlices.push_back(
4020           Slice(BaseOffset + PartOffset, BaseOffset + PartOffset + PartSize,
4021                 &PLoad->getOperandUse(PLoad->getPointerOperandIndex()),
4022                 /*IsSplittable*/ false));
4023       LLVM_DEBUG(dbgs() << "    new slice [" << NewSlices.back().beginOffset()
4024                         << ", " << NewSlices.back().endOffset()
4025                         << "): " << *PLoad << "\n");
4026 
4027       // See if we've handled all the splits.
4028       if (Idx >= Size)
4029         break;
4030 
4031       // Setup the next partition.
4032       PartOffset = Offsets.Splits[Idx];
4033       ++Idx;
4034       PartSize = (Idx < Size ? Offsets.Splits[Idx] : LoadSize) - PartOffset;
4035     }
4036 
4037     // Now that we have the split loads, do the slow walk over all uses of the
4038     // load and rewrite them as split stores, or save the split loads to use
4039     // below if the store is going to be split there anyways.
4040     bool DeferredStores = false;
4041     for (User *LU : LI->users()) {
4042       StoreInst *SI = cast<StoreInst>(LU);
4043       if (!Stores.empty() && SplitOffsetsMap.count(SI)) {
4044         DeferredStores = true;
4045         LLVM_DEBUG(dbgs() << "    Deferred splitting of store: " << *SI
4046                           << "\n");
4047         continue;
4048       }
4049 
4050       Value *StoreBasePtr = SI->getPointerOperand();
4051       IRB.SetInsertPoint(SI);
4052 
4053       LLVM_DEBUG(dbgs() << "    Splitting store of load: " << *SI << "\n");
4054 
4055       for (int Idx = 0, Size = SplitLoads.size(); Idx < Size; ++Idx) {
4056         LoadInst *PLoad = SplitLoads[Idx];
4057         uint64_t PartOffset = Idx == 0 ? 0 : Offsets.Splits[Idx - 1];
4058         auto *PartPtrTy =
4059             PLoad->getType()->getPointerTo(SI->getPointerAddressSpace());
4060 
4061         auto AS = SI->getPointerAddressSpace();
4062         StoreInst *PStore = IRB.CreateAlignedStore(
4063             PLoad,
4064             getAdjustedPtr(IRB, DL, StoreBasePtr,
4065                            APInt(DL.getIndexSizeInBits(AS), PartOffset),
4066                            PartPtrTy, StoreBasePtr->getName() + "."),
4067             getAdjustedAlignment(SI, PartOffset),
4068             /*IsVolatile*/ false);
4069         PStore->copyMetadata(*LI, {LLVMContext::MD_mem_parallel_loop_access,
4070                                    LLVMContext::MD_access_group});
4071         LLVM_DEBUG(dbgs() << "      +" << PartOffset << ":" << *PStore << "\n");
4072       }
4073 
4074       // We want to immediately iterate on any allocas impacted by splitting
4075       // this store, and we have to track any promotable alloca (indicated by
4076       // a direct store) as needing to be resplit because it is no longer
4077       // promotable.
4078       if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(StoreBasePtr)) {
4079         ResplitPromotableAllocas.insert(OtherAI);
4080         Worklist.insert(OtherAI);
4081       } else if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(
4082                      StoreBasePtr->stripInBoundsOffsets())) {
4083         Worklist.insert(OtherAI);
4084       }
4085 
4086       // Mark the original store as dead.
4087       DeadInsts.push_back(SI);
4088     }
4089 
4090     // Save the split loads if there are deferred stores among the users.
4091     if (DeferredStores)
4092       SplitLoadsMap.insert(std::make_pair(LI, std::move(SplitLoads)));
4093 
4094     // Mark the original load as dead and kill the original slice.
4095     DeadInsts.push_back(LI);
4096     Offsets.S->kill();
4097   }
4098 
4099   // Second, we rewrite all of the split stores. At this point, we know that
4100   // all loads from this alloca have been split already. For stores of such
4101   // loads, we can simply look up the pre-existing split loads. For stores of
4102   // other loads, we split those loads first and then write split stores of
4103   // them.
4104   for (StoreInst *SI : Stores) {
4105     auto *LI = cast<LoadInst>(SI->getValueOperand());
4106     IntegerType *Ty = cast<IntegerType>(LI->getType());
4107     uint64_t StoreSize = Ty->getBitWidth() / 8;
4108     assert(StoreSize > 0 && "Cannot have a zero-sized integer store!");
4109 
4110     auto &Offsets = SplitOffsetsMap[SI];
4111     assert(StoreSize == Offsets.S->endOffset() - Offsets.S->beginOffset() &&
4112            "Slice size should always match load size exactly!");
4113     uint64_t BaseOffset = Offsets.S->beginOffset();
4114     assert(BaseOffset + StoreSize > BaseOffset &&
4115            "Cannot represent alloca access size using 64-bit integers!");
4116 
4117     Value *LoadBasePtr = LI->getPointerOperand();
4118     Instruction *StoreBasePtr = cast<Instruction>(SI->getPointerOperand());
4119 
4120     LLVM_DEBUG(dbgs() << "  Splitting store: " << *SI << "\n");
4121 
4122     // Check whether we have an already split load.
4123     auto SplitLoadsMapI = SplitLoadsMap.find(LI);
4124     std::vector<LoadInst *> *SplitLoads = nullptr;
4125     if (SplitLoadsMapI != SplitLoadsMap.end()) {
4126       SplitLoads = &SplitLoadsMapI->second;
4127       assert(SplitLoads->size() == Offsets.Splits.size() + 1 &&
4128              "Too few split loads for the number of splits in the store!");
4129     } else {
4130       LLVM_DEBUG(dbgs() << "          of load: " << *LI << "\n");
4131     }
4132 
4133     uint64_t PartOffset = 0, PartSize = Offsets.Splits.front();
4134     int Idx = 0, Size = Offsets.Splits.size();
4135     for (;;) {
4136       auto *PartTy = Type::getIntNTy(Ty->getContext(), PartSize * 8);
4137       auto *LoadPartPtrTy = PartTy->getPointerTo(LI->getPointerAddressSpace());
4138       auto *StorePartPtrTy = PartTy->getPointerTo(SI->getPointerAddressSpace());
4139 
4140       // Either lookup a split load or create one.
4141       LoadInst *PLoad;
4142       if (SplitLoads) {
4143         PLoad = (*SplitLoads)[Idx];
4144       } else {
4145         IRB.SetInsertPoint(LI);
4146         auto AS = LI->getPointerAddressSpace();
4147         PLoad = IRB.CreateAlignedLoad(
4148             PartTy,
4149             getAdjustedPtr(IRB, DL, LoadBasePtr,
4150                            APInt(DL.getIndexSizeInBits(AS), PartOffset),
4151                            LoadPartPtrTy, LoadBasePtr->getName() + "."),
4152             getAdjustedAlignment(LI, PartOffset),
4153             /*IsVolatile*/ false, LI->getName());
4154       }
4155 
4156       // And store this partition.
4157       IRB.SetInsertPoint(SI);
4158       auto AS = SI->getPointerAddressSpace();
4159       StoreInst *PStore = IRB.CreateAlignedStore(
4160           PLoad,
4161           getAdjustedPtr(IRB, DL, StoreBasePtr,
4162                          APInt(DL.getIndexSizeInBits(AS), PartOffset),
4163                          StorePartPtrTy, StoreBasePtr->getName() + "."),
4164           getAdjustedAlignment(SI, PartOffset),
4165           /*IsVolatile*/ false);
4166 
4167       // Now build a new slice for the alloca.
4168       NewSlices.push_back(
4169           Slice(BaseOffset + PartOffset, BaseOffset + PartOffset + PartSize,
4170                 &PStore->getOperandUse(PStore->getPointerOperandIndex()),
4171                 /*IsSplittable*/ false));
4172       LLVM_DEBUG(dbgs() << "    new slice [" << NewSlices.back().beginOffset()
4173                         << ", " << NewSlices.back().endOffset()
4174                         << "): " << *PStore << "\n");
4175       if (!SplitLoads) {
4176         LLVM_DEBUG(dbgs() << "      of split load: " << *PLoad << "\n");
4177       }
4178 
4179       // See if we've finished all the splits.
4180       if (Idx >= Size)
4181         break;
4182 
4183       // Setup the next partition.
4184       PartOffset = Offsets.Splits[Idx];
4185       ++Idx;
4186       PartSize = (Idx < Size ? Offsets.Splits[Idx] : StoreSize) - PartOffset;
4187     }
4188 
4189     // We want to immediately iterate on any allocas impacted by splitting
4190     // this load, which is only relevant if it isn't a load of this alloca and
4191     // thus we didn't already split the loads above. We also have to keep track
4192     // of any promotable allocas we split loads on as they can no longer be
4193     // promoted.
4194     if (!SplitLoads) {
4195       if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(LoadBasePtr)) {
4196         assert(OtherAI != &AI && "We can't re-split our own alloca!");
4197         ResplitPromotableAllocas.insert(OtherAI);
4198         Worklist.insert(OtherAI);
4199       } else if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(
4200                      LoadBasePtr->stripInBoundsOffsets())) {
4201         assert(OtherAI != &AI && "We can't re-split our own alloca!");
4202         Worklist.insert(OtherAI);
4203       }
4204     }
4205 
4206     // Mark the original store as dead now that we've split it up and kill its
4207     // slice. Note that we leave the original load in place unless this store
4208     // was its only use. It may in turn be split up if it is an alloca load
4209     // for some other alloca, but it may be a normal load. This may introduce
4210     // redundant loads, but where those can be merged the rest of the optimizer
4211     // should handle the merging, and this uncovers SSA splits which is more
4212     // important. In practice, the original loads will almost always be fully
4213     // split and removed eventually, and the splits will be merged by any
4214     // trivial CSE, including instcombine.
4215     if (LI->hasOneUse()) {
4216       assert(*LI->user_begin() == SI && "Single use isn't this store!");
4217       DeadInsts.push_back(LI);
4218     }
4219     DeadInsts.push_back(SI);
4220     Offsets.S->kill();
4221   }
4222 
4223   // Remove the killed slices that have ben pre-split.
4224   llvm::erase_if(AS, [](const Slice &S) { return S.isDead(); });
4225 
4226   // Insert our new slices. This will sort and merge them into the sorted
4227   // sequence.
4228   AS.insert(NewSlices);
4229 
4230   LLVM_DEBUG(dbgs() << "  Pre-split slices:\n");
4231 #ifndef NDEBUG
4232   for (auto I = AS.begin(), E = AS.end(); I != E; ++I)
4233     LLVM_DEBUG(AS.print(dbgs(), I, "    "));
4234 #endif
4235 
4236   // Finally, don't try to promote any allocas that new require re-splitting.
4237   // They have already been added to the worklist above.
4238   llvm::erase_if(PromotableAllocas, [&](AllocaInst *AI) {
4239     return ResplitPromotableAllocas.count(AI);
4240   });
4241 
4242   return true;
4243 }
4244 
4245 /// Rewrite an alloca partition's users.
4246 ///
4247 /// This routine drives both of the rewriting goals of the SROA pass. It tries
4248 /// to rewrite uses of an alloca partition to be conducive for SSA value
4249 /// promotion. If the partition needs a new, more refined alloca, this will
4250 /// build that new alloca, preserving as much type information as possible, and
4251 /// rewrite the uses of the old alloca to point at the new one and have the
4252 /// appropriate new offsets. It also evaluates how successful the rewrite was
4253 /// at enabling promotion and if it was successful queues the alloca to be
4254 /// promoted.
4255 AllocaInst *SROA::rewritePartition(AllocaInst &AI, AllocaSlices &AS,
4256                                    Partition &P) {
4257   // Try to compute a friendly type for this partition of the alloca. This
4258   // won't always succeed, in which case we fall back to a legal integer type
4259   // or an i8 array of an appropriate size.
4260   Type *SliceTy = nullptr;
4261   const DataLayout &DL = AI.getModule()->getDataLayout();
4262   std::pair<Type *, IntegerType *> CommonUseTy =
4263       findCommonType(P.begin(), P.end(), P.endOffset());
4264   // Do all uses operate on the same type?
4265   if (CommonUseTy.first)
4266     if (DL.getTypeAllocSize(CommonUseTy.first).getFixedSize() >= P.size())
4267       SliceTy = CommonUseTy.first;
4268   // If not, can we find an appropriate subtype in the original allocated type?
4269   if (!SliceTy)
4270     if (Type *TypePartitionTy = getTypePartition(DL, AI.getAllocatedType(),
4271                                                  P.beginOffset(), P.size()))
4272       SliceTy = TypePartitionTy;
4273   // If still not, can we use the largest bitwidth integer type used?
4274   if (!SliceTy && CommonUseTy.second)
4275     if (DL.getTypeAllocSize(CommonUseTy.second).getFixedSize() >= P.size())
4276       SliceTy = CommonUseTy.second;
4277   if ((!SliceTy || (SliceTy->isArrayTy() &&
4278                     SliceTy->getArrayElementType()->isIntegerTy())) &&
4279       DL.isLegalInteger(P.size() * 8))
4280     SliceTy = Type::getIntNTy(*C, P.size() * 8);
4281   if (!SliceTy)
4282     SliceTy = ArrayType::get(Type::getInt8Ty(*C), P.size());
4283   assert(DL.getTypeAllocSize(SliceTy).getFixedSize() >= P.size());
4284 
4285   bool IsIntegerPromotable = isIntegerWideningViable(P, SliceTy, DL);
4286 
4287   VectorType *VecTy =
4288       IsIntegerPromotable ? nullptr : isVectorPromotionViable(P, DL);
4289   if (VecTy)
4290     SliceTy = VecTy;
4291 
4292   // Check for the case where we're going to rewrite to a new alloca of the
4293   // exact same type as the original, and with the same access offsets. In that
4294   // case, re-use the existing alloca, but still run through the rewriter to
4295   // perform phi and select speculation.
4296   // P.beginOffset() can be non-zero even with the same type in a case with
4297   // out-of-bounds access (e.g. @PR35657 function in SROA/basictest.ll).
4298   AllocaInst *NewAI;
4299   if (SliceTy == AI.getAllocatedType() && P.beginOffset() == 0) {
4300     NewAI = &AI;
4301     // FIXME: We should be able to bail at this point with "nothing changed".
4302     // FIXME: We might want to defer PHI speculation until after here.
4303     // FIXME: return nullptr;
4304   } else {
4305     // Make sure the alignment is compatible with P.beginOffset().
4306     const Align Alignment = commonAlignment(AI.getAlign(), P.beginOffset());
4307     // If we will get at least this much alignment from the type alone, leave
4308     // the alloca's alignment unconstrained.
4309     const bool IsUnconstrained = Alignment <= DL.getABITypeAlign(SliceTy);
4310     NewAI = new AllocaInst(
4311         SliceTy, AI.getType()->getAddressSpace(), nullptr,
4312         IsUnconstrained ? DL.getPrefTypeAlign(SliceTy) : Alignment,
4313         AI.getName() + ".sroa." + Twine(P.begin() - AS.begin()), &AI);
4314     // Copy the old AI debug location over to the new one.
4315     NewAI->setDebugLoc(AI.getDebugLoc());
4316     ++NumNewAllocas;
4317   }
4318 
4319   LLVM_DEBUG(dbgs() << "Rewriting alloca partition "
4320                     << "[" << P.beginOffset() << "," << P.endOffset()
4321                     << ") to: " << *NewAI << "\n");
4322 
4323   // Track the high watermark on the worklist as it is only relevant for
4324   // promoted allocas. We will reset it to this point if the alloca is not in
4325   // fact scheduled for promotion.
4326   unsigned PPWOldSize = PostPromotionWorklist.size();
4327   unsigned NumUses = 0;
4328   SmallSetVector<PHINode *, 8> PHIUsers;
4329   SmallSetVector<SelectInst *, 8> SelectUsers;
4330 
4331   AllocaSliceRewriter Rewriter(DL, AS, *this, AI, *NewAI, P.beginOffset(),
4332                                P.endOffset(), IsIntegerPromotable, VecTy,
4333                                PHIUsers, SelectUsers);
4334   bool Promotable = true;
4335   for (Slice *S : P.splitSliceTails()) {
4336     Promotable &= Rewriter.visit(S);
4337     ++NumUses;
4338   }
4339   for (Slice &S : P) {
4340     Promotable &= Rewriter.visit(&S);
4341     ++NumUses;
4342   }
4343 
4344   NumAllocaPartitionUses += NumUses;
4345   MaxUsesPerAllocaPartition.updateMax(NumUses);
4346 
4347   // Now that we've processed all the slices in the new partition, check if any
4348   // PHIs or Selects would block promotion.
4349   for (PHINode *PHI : PHIUsers)
4350     if (!isSafePHIToSpeculate(*PHI)) {
4351       Promotable = false;
4352       PHIUsers.clear();
4353       SelectUsers.clear();
4354       break;
4355     }
4356 
4357   for (SelectInst *Sel : SelectUsers)
4358     if (!isSafeSelectToSpeculate(*Sel)) {
4359       Promotable = false;
4360       PHIUsers.clear();
4361       SelectUsers.clear();
4362       break;
4363     }
4364 
4365   if (Promotable) {
4366     for (Use *U : AS.getDeadUsesIfPromotable()) {
4367       auto *OldInst = dyn_cast<Instruction>(U->get());
4368       Value::dropDroppableUse(*U);
4369       if (OldInst)
4370         if (isInstructionTriviallyDead(OldInst))
4371           DeadInsts.push_back(OldInst);
4372     }
4373     if (PHIUsers.empty() && SelectUsers.empty()) {
4374       // Promote the alloca.
4375       PromotableAllocas.push_back(NewAI);
4376     } else {
4377       // If we have either PHIs or Selects to speculate, add them to those
4378       // worklists and re-queue the new alloca so that we promote in on the
4379       // next iteration.
4380       for (PHINode *PHIUser : PHIUsers)
4381         SpeculatablePHIs.insert(PHIUser);
4382       for (SelectInst *SelectUser : SelectUsers)
4383         SpeculatableSelects.insert(SelectUser);
4384       Worklist.insert(NewAI);
4385     }
4386   } else {
4387     // Drop any post-promotion work items if promotion didn't happen.
4388     while (PostPromotionWorklist.size() > PPWOldSize)
4389       PostPromotionWorklist.pop_back();
4390 
4391     // We couldn't promote and we didn't create a new partition, nothing
4392     // happened.
4393     if (NewAI == &AI)
4394       return nullptr;
4395 
4396     // If we can't promote the alloca, iterate on it to check for new
4397     // refinements exposed by splitting the current alloca. Don't iterate on an
4398     // alloca which didn't actually change and didn't get promoted.
4399     Worklist.insert(NewAI);
4400   }
4401 
4402   return NewAI;
4403 }
4404 
4405 /// Walks the slices of an alloca and form partitions based on them,
4406 /// rewriting each of their uses.
4407 bool SROA::splitAlloca(AllocaInst &AI, AllocaSlices &AS) {
4408   if (AS.begin() == AS.end())
4409     return false;
4410 
4411   unsigned NumPartitions = 0;
4412   bool Changed = false;
4413   const DataLayout &DL = AI.getModule()->getDataLayout();
4414 
4415   // First try to pre-split loads and stores.
4416   Changed |= presplitLoadsAndStores(AI, AS);
4417 
4418   // Now that we have identified any pre-splitting opportunities,
4419   // mark loads and stores unsplittable except for the following case.
4420   // We leave a slice splittable if all other slices are disjoint or fully
4421   // included in the slice, such as whole-alloca loads and stores.
4422   // If we fail to split these during pre-splitting, we want to force them
4423   // to be rewritten into a partition.
4424   bool IsSorted = true;
4425 
4426   uint64_t AllocaSize =
4427       DL.getTypeAllocSize(AI.getAllocatedType()).getFixedSize();
4428   const uint64_t MaxBitVectorSize = 1024;
4429   if (AllocaSize <= MaxBitVectorSize) {
4430     // If a byte boundary is included in any load or store, a slice starting or
4431     // ending at the boundary is not splittable.
4432     SmallBitVector SplittableOffset(AllocaSize + 1, true);
4433     for (Slice &S : AS)
4434       for (unsigned O = S.beginOffset() + 1;
4435            O < S.endOffset() && O < AllocaSize; O++)
4436         SplittableOffset.reset(O);
4437 
4438     for (Slice &S : AS) {
4439       if (!S.isSplittable())
4440         continue;
4441 
4442       if ((S.beginOffset() > AllocaSize || SplittableOffset[S.beginOffset()]) &&
4443           (S.endOffset() > AllocaSize || SplittableOffset[S.endOffset()]))
4444         continue;
4445 
4446       if (isa<LoadInst>(S.getUse()->getUser()) ||
4447           isa<StoreInst>(S.getUse()->getUser())) {
4448         S.makeUnsplittable();
4449         IsSorted = false;
4450       }
4451     }
4452   }
4453   else {
4454     // We only allow whole-alloca splittable loads and stores
4455     // for a large alloca to avoid creating too large BitVector.
4456     for (Slice &S : AS) {
4457       if (!S.isSplittable())
4458         continue;
4459 
4460       if (S.beginOffset() == 0 && S.endOffset() >= AllocaSize)
4461         continue;
4462 
4463       if (isa<LoadInst>(S.getUse()->getUser()) ||
4464           isa<StoreInst>(S.getUse()->getUser())) {
4465         S.makeUnsplittable();
4466         IsSorted = false;
4467       }
4468     }
4469   }
4470 
4471   if (!IsSorted)
4472     llvm::sort(AS);
4473 
4474   /// Describes the allocas introduced by rewritePartition in order to migrate
4475   /// the debug info.
4476   struct Fragment {
4477     AllocaInst *Alloca;
4478     uint64_t Offset;
4479     uint64_t Size;
4480     Fragment(AllocaInst *AI, uint64_t O, uint64_t S)
4481       : Alloca(AI), Offset(O), Size(S) {}
4482   };
4483   SmallVector<Fragment, 4> Fragments;
4484 
4485   // Rewrite each partition.
4486   for (auto &P : AS.partitions()) {
4487     if (AllocaInst *NewAI = rewritePartition(AI, AS, P)) {
4488       Changed = true;
4489       if (NewAI != &AI) {
4490         uint64_t SizeOfByte = 8;
4491         uint64_t AllocaSize =
4492             DL.getTypeSizeInBits(NewAI->getAllocatedType()).getFixedSize();
4493         // Don't include any padding.
4494         uint64_t Size = std::min(AllocaSize, P.size() * SizeOfByte);
4495         Fragments.push_back(Fragment(NewAI, P.beginOffset() * SizeOfByte, Size));
4496       }
4497     }
4498     ++NumPartitions;
4499   }
4500 
4501   NumAllocaPartitions += NumPartitions;
4502   MaxPartitionsPerAlloca.updateMax(NumPartitions);
4503 
4504   // Migrate debug information from the old alloca to the new alloca(s)
4505   // and the individual partitions.
4506   TinyPtrVector<DbgVariableIntrinsic *> DbgDeclares = FindDbgAddrUses(&AI);
4507   for (DbgVariableIntrinsic *DbgDeclare : DbgDeclares) {
4508     auto *Expr = DbgDeclare->getExpression();
4509     DIBuilder DIB(*AI.getModule(), /*AllowUnresolved*/ false);
4510     uint64_t AllocaSize =
4511         DL.getTypeSizeInBits(AI.getAllocatedType()).getFixedSize();
4512     for (auto Fragment : Fragments) {
4513       // Create a fragment expression describing the new partition or reuse AI's
4514       // expression if there is only one partition.
4515       auto *FragmentExpr = Expr;
4516       if (Fragment.Size < AllocaSize || Expr->isFragment()) {
4517         // If this alloca is already a scalar replacement of a larger aggregate,
4518         // Fragment.Offset describes the offset inside the scalar.
4519         auto ExprFragment = Expr->getFragmentInfo();
4520         uint64_t Offset = ExprFragment ? ExprFragment->OffsetInBits : 0;
4521         uint64_t Start = Offset + Fragment.Offset;
4522         uint64_t Size = Fragment.Size;
4523         if (ExprFragment) {
4524           uint64_t AbsEnd =
4525               ExprFragment->OffsetInBits + ExprFragment->SizeInBits;
4526           if (Start >= AbsEnd)
4527             // No need to describe a SROAed padding.
4528             continue;
4529           Size = std::min(Size, AbsEnd - Start);
4530         }
4531         // The new, smaller fragment is stenciled out from the old fragment.
4532         if (auto OrigFragment = FragmentExpr->getFragmentInfo()) {
4533           assert(Start >= OrigFragment->OffsetInBits &&
4534                  "new fragment is outside of original fragment");
4535           Start -= OrigFragment->OffsetInBits;
4536         }
4537 
4538         // The alloca may be larger than the variable.
4539         auto VarSize = DbgDeclare->getVariable()->getSizeInBits();
4540         if (VarSize) {
4541           if (Size > *VarSize)
4542             Size = *VarSize;
4543           if (Size == 0 || Start + Size > *VarSize)
4544             continue;
4545         }
4546 
4547         // Avoid creating a fragment expression that covers the entire variable.
4548         if (!VarSize || *VarSize != Size) {
4549           if (auto E =
4550                   DIExpression::createFragmentExpression(Expr, Start, Size))
4551             FragmentExpr = *E;
4552           else
4553             continue;
4554         }
4555       }
4556 
4557       // Remove any existing intrinsics on the new alloca describing
4558       // the variable fragment.
4559       for (DbgVariableIntrinsic *OldDII : FindDbgAddrUses(Fragment.Alloca)) {
4560         auto SameVariableFragment = [](const DbgVariableIntrinsic *LHS,
4561                                        const DbgVariableIntrinsic *RHS) {
4562           return LHS->getVariable() == RHS->getVariable() &&
4563                  LHS->getDebugLoc()->getInlinedAt() ==
4564                      RHS->getDebugLoc()->getInlinedAt();
4565         };
4566         if (SameVariableFragment(OldDII, DbgDeclare))
4567           OldDII->eraseFromParent();
4568       }
4569 
4570       DIB.insertDeclare(Fragment.Alloca, DbgDeclare->getVariable(), FragmentExpr,
4571                         DbgDeclare->getDebugLoc(), &AI);
4572     }
4573   }
4574   return Changed;
4575 }
4576 
4577 /// Clobber a use with undef, deleting the used value if it becomes dead.
4578 void SROA::clobberUse(Use &U) {
4579   Value *OldV = U;
4580   // Replace the use with an undef value.
4581   U = UndefValue::get(OldV->getType());
4582 
4583   // Check for this making an instruction dead. We have to garbage collect
4584   // all the dead instructions to ensure the uses of any alloca end up being
4585   // minimal.
4586   if (Instruction *OldI = dyn_cast<Instruction>(OldV))
4587     if (isInstructionTriviallyDead(OldI)) {
4588       DeadInsts.push_back(OldI);
4589     }
4590 }
4591 
4592 /// Analyze an alloca for SROA.
4593 ///
4594 /// This analyzes the alloca to ensure we can reason about it, builds
4595 /// the slices of the alloca, and then hands it off to be split and
4596 /// rewritten as needed.
4597 bool SROA::runOnAlloca(AllocaInst &AI) {
4598   LLVM_DEBUG(dbgs() << "SROA alloca: " << AI << "\n");
4599   ++NumAllocasAnalyzed;
4600 
4601   // Special case dead allocas, as they're trivial.
4602   if (AI.use_empty()) {
4603     AI.eraseFromParent();
4604     return true;
4605   }
4606   const DataLayout &DL = AI.getModule()->getDataLayout();
4607 
4608   // Skip alloca forms that this analysis can't handle.
4609   auto *AT = AI.getAllocatedType();
4610   if (AI.isArrayAllocation() || !AT->isSized() || isa<ScalableVectorType>(AT) ||
4611       DL.getTypeAllocSize(AT).getFixedSize() == 0)
4612     return false;
4613 
4614   bool Changed = false;
4615 
4616   // First, split any FCA loads and stores touching this alloca to promote
4617   // better splitting and promotion opportunities.
4618   AggLoadStoreRewriter AggRewriter(DL);
4619   Changed |= AggRewriter.rewrite(AI);
4620 
4621   // Build the slices using a recursive instruction-visiting builder.
4622   AllocaSlices AS(DL, AI);
4623   LLVM_DEBUG(AS.print(dbgs()));
4624   if (AS.isEscaped())
4625     return Changed;
4626 
4627   // Delete all the dead users of this alloca before splitting and rewriting it.
4628   for (Instruction *DeadUser : AS.getDeadUsers()) {
4629     // Free up everything used by this instruction.
4630     for (Use &DeadOp : DeadUser->operands())
4631       clobberUse(DeadOp);
4632 
4633     // Now replace the uses of this instruction.
4634     DeadUser->replaceAllUsesWith(UndefValue::get(DeadUser->getType()));
4635 
4636     // And mark it for deletion.
4637     DeadInsts.push_back(DeadUser);
4638     Changed = true;
4639   }
4640   for (Use *DeadOp : AS.getDeadOperands()) {
4641     clobberUse(*DeadOp);
4642     Changed = true;
4643   }
4644 
4645   // No slices to split. Leave the dead alloca for a later pass to clean up.
4646   if (AS.begin() == AS.end())
4647     return Changed;
4648 
4649   Changed |= splitAlloca(AI, AS);
4650 
4651   LLVM_DEBUG(dbgs() << "  Speculating PHIs\n");
4652   while (!SpeculatablePHIs.empty())
4653     speculatePHINodeLoads(*SpeculatablePHIs.pop_back_val());
4654 
4655   LLVM_DEBUG(dbgs() << "  Speculating Selects\n");
4656   while (!SpeculatableSelects.empty())
4657     speculateSelectInstLoads(*SpeculatableSelects.pop_back_val());
4658 
4659   return Changed;
4660 }
4661 
4662 /// Delete the dead instructions accumulated in this run.
4663 ///
4664 /// Recursively deletes the dead instructions we've accumulated. This is done
4665 /// at the very end to maximize locality of the recursive delete and to
4666 /// minimize the problems of invalidated instruction pointers as such pointers
4667 /// are used heavily in the intermediate stages of the algorithm.
4668 ///
4669 /// We also record the alloca instructions deleted here so that they aren't
4670 /// subsequently handed to mem2reg to promote.
4671 bool SROA::deleteDeadInstructions(
4672     SmallPtrSetImpl<AllocaInst *> &DeletedAllocas) {
4673   bool Changed = false;
4674   while (!DeadInsts.empty()) {
4675     Instruction *I = dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val());
4676     if (!I) continue;
4677     LLVM_DEBUG(dbgs() << "Deleting dead instruction: " << *I << "\n");
4678 
4679     // If the instruction is an alloca, find the possible dbg.declare connected
4680     // to it, and remove it too. We must do this before calling RAUW or we will
4681     // not be able to find it.
4682     if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
4683       DeletedAllocas.insert(AI);
4684       for (DbgVariableIntrinsic *OldDII : FindDbgAddrUses(AI))
4685         OldDII->eraseFromParent();
4686     }
4687 
4688     I->replaceAllUsesWith(UndefValue::get(I->getType()));
4689 
4690     for (Use &Operand : I->operands())
4691       if (Instruction *U = dyn_cast<Instruction>(Operand)) {
4692         // Zero out the operand and see if it becomes trivially dead.
4693         Operand = nullptr;
4694         if (isInstructionTriviallyDead(U))
4695           DeadInsts.push_back(U);
4696       }
4697 
4698     ++NumDeleted;
4699     I->eraseFromParent();
4700     Changed = true;
4701   }
4702   return Changed;
4703 }
4704 
4705 /// Promote the allocas, using the best available technique.
4706 ///
4707 /// This attempts to promote whatever allocas have been identified as viable in
4708 /// the PromotableAllocas list. If that list is empty, there is nothing to do.
4709 /// This function returns whether any promotion occurred.
4710 bool SROA::promoteAllocas(Function &F) {
4711   if (PromotableAllocas.empty())
4712     return false;
4713 
4714   NumPromoted += PromotableAllocas.size();
4715 
4716   LLVM_DEBUG(dbgs() << "Promoting allocas with mem2reg...\n");
4717   PromoteMemToReg(PromotableAllocas, *DT, AC);
4718   PromotableAllocas.clear();
4719   return true;
4720 }
4721 
4722 PreservedAnalyses SROA::runImpl(Function &F, DominatorTree &RunDT,
4723                                 AssumptionCache &RunAC) {
4724   LLVM_DEBUG(dbgs() << "SROA function: " << F.getName() << "\n");
4725   C = &F.getContext();
4726   DT = &RunDT;
4727   AC = &RunAC;
4728 
4729   BasicBlock &EntryBB = F.getEntryBlock();
4730   for (BasicBlock::iterator I = EntryBB.begin(), E = std::prev(EntryBB.end());
4731        I != E; ++I) {
4732     if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
4733       if (isa<ScalableVectorType>(AI->getAllocatedType())) {
4734         if (isAllocaPromotable(AI))
4735           PromotableAllocas.push_back(AI);
4736       } else {
4737         Worklist.insert(AI);
4738       }
4739     }
4740   }
4741 
4742   bool Changed = false;
4743   // A set of deleted alloca instruction pointers which should be removed from
4744   // the list of promotable allocas.
4745   SmallPtrSet<AllocaInst *, 4> DeletedAllocas;
4746 
4747   do {
4748     while (!Worklist.empty()) {
4749       Changed |= runOnAlloca(*Worklist.pop_back_val());
4750       Changed |= deleteDeadInstructions(DeletedAllocas);
4751 
4752       // Remove the deleted allocas from various lists so that we don't try to
4753       // continue processing them.
4754       if (!DeletedAllocas.empty()) {
4755         auto IsInSet = [&](AllocaInst *AI) { return DeletedAllocas.count(AI); };
4756         Worklist.remove_if(IsInSet);
4757         PostPromotionWorklist.remove_if(IsInSet);
4758         llvm::erase_if(PromotableAllocas, IsInSet);
4759         DeletedAllocas.clear();
4760       }
4761     }
4762 
4763     Changed |= promoteAllocas(F);
4764 
4765     Worklist = PostPromotionWorklist;
4766     PostPromotionWorklist.clear();
4767   } while (!Worklist.empty());
4768 
4769   if (!Changed)
4770     return PreservedAnalyses::all();
4771 
4772   PreservedAnalyses PA;
4773   PA.preserveSet<CFGAnalyses>();
4774   PA.preserve<GlobalsAA>();
4775   return PA;
4776 }
4777 
4778 PreservedAnalyses SROA::run(Function &F, FunctionAnalysisManager &AM) {
4779   return runImpl(F, AM.getResult<DominatorTreeAnalysis>(F),
4780                  AM.getResult<AssumptionAnalysis>(F));
4781 }
4782 
4783 /// A legacy pass for the legacy pass manager that wraps the \c SROA pass.
4784 ///
4785 /// This is in the llvm namespace purely to allow it to be a friend of the \c
4786 /// SROA pass.
4787 class llvm::sroa::SROALegacyPass : public FunctionPass {
4788   /// The SROA implementation.
4789   SROA Impl;
4790 
4791 public:
4792   static char ID;
4793 
4794   SROALegacyPass() : FunctionPass(ID) {
4795     initializeSROALegacyPassPass(*PassRegistry::getPassRegistry());
4796   }
4797 
4798   bool runOnFunction(Function &F) override {
4799     if (skipFunction(F))
4800       return false;
4801 
4802     auto PA = Impl.runImpl(
4803         F, getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
4804         getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F));
4805     return !PA.areAllPreserved();
4806   }
4807 
4808   void getAnalysisUsage(AnalysisUsage &AU) const override {
4809     AU.addRequired<AssumptionCacheTracker>();
4810     AU.addRequired<DominatorTreeWrapperPass>();
4811     AU.addPreserved<GlobalsAAWrapperPass>();
4812     AU.setPreservesCFG();
4813   }
4814 
4815   StringRef getPassName() const override { return "SROA"; }
4816 };
4817 
4818 char SROALegacyPass::ID = 0;
4819 
4820 FunctionPass *llvm::createSROAPass() { return new SROALegacyPass(); }
4821 
4822 INITIALIZE_PASS_BEGIN(SROALegacyPass, "sroa",
4823                       "Scalar Replacement Of Aggregates", false, false)
4824 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
4825 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
4826 INITIALIZE_PASS_END(SROALegacyPass, "sroa", "Scalar Replacement Of Aggregates",
4827                     false, false)
4828