1 //===- Scalarizer.cpp - Scalarize vector operations -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass converts vector operations into scalar operations, in order
10 // to expose optimization opportunities on the individual scalar operations.
11 // It is mainly intended for targets that do not have vector units, but it
12 // may also be useful for revectorizing code to different vector widths.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Transforms/Scalar/Scalarizer.h"
17 #include "llvm/ADT/PostOrderIterator.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/Twine.h"
20 #include "llvm/Analysis/VectorUtils.h"
21 #include "llvm/IR/Argument.h"
22 #include "llvm/IR/BasicBlock.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/Dominators.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/IRBuilder.h"
29 #include "llvm/IR/InstVisitor.h"
30 #include "llvm/IR/InstrTypes.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/LLVMContext.h"
35 #include "llvm/IR/Module.h"
36 #include "llvm/IR/Type.h"
37 #include "llvm/IR/Value.h"
38 #include "llvm/InitializePasses.h"
39 #include "llvm/Pass.h"
40 #include "llvm/Support/Casting.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Transforms/Utils/Local.h"
43 #include <cassert>
44 #include <cstdint>
45 #include <iterator>
46 #include <map>
47 #include <utility>
48 
49 using namespace llvm;
50 
51 #define DEBUG_TYPE "scalarizer"
52 
53 static cl::opt<bool> ClScalarizeVariableInsertExtract(
54     "scalarize-variable-insert-extract", cl::init(true), cl::Hidden,
55     cl::desc("Allow the scalarizer pass to scalarize "
56              "insertelement/extractelement with variable index"));
57 
58 // This is disabled by default because having separate loads and stores
59 // makes it more likely that the -combiner-alias-analysis limits will be
60 // reached.
61 static cl::opt<bool> ClScalarizeLoadStore(
62     "scalarize-load-store", cl::init(false), cl::Hidden,
63     cl::desc("Allow the scalarizer pass to scalarize loads and store"));
64 
65 namespace {
66 
67 BasicBlock::iterator skipPastPhiNodesAndDbg(BasicBlock::iterator Itr) {
68   BasicBlock *BB = Itr->getParent();
69   if (isa<PHINode>(Itr))
70     Itr = BB->getFirstInsertionPt();
71   if (Itr != BB->end())
72     Itr = skipDebugIntrinsics(Itr);
73   return Itr;
74 }
75 
76 // Used to store the scattered form of a vector.
77 using ValueVector = SmallVector<Value *, 8>;
78 
79 // Used to map a vector Value to its scattered form.  We use std::map
80 // because we want iterators to persist across insertion and because the
81 // values are relatively large.
82 using ScatterMap = std::map<Value *, ValueVector>;
83 
84 // Lists Instructions that have been replaced with scalar implementations,
85 // along with a pointer to their scattered forms.
86 using GatherList = SmallVector<std::pair<Instruction *, ValueVector *>, 16>;
87 
88 // Provides a very limited vector-like interface for lazily accessing one
89 // component of a scattered vector or vector pointer.
90 class Scatterer {
91 public:
92   Scatterer() = default;
93 
94   // Scatter V into Size components.  If new instructions are needed,
95   // insert them before BBI in BB.  If Cache is nonnull, use it to cache
96   // the results.
97   Scatterer(BasicBlock *bb, BasicBlock::iterator bbi, Value *v, Type *PtrElemTy,
98             ValueVector *cachePtr = nullptr);
99 
100   // Return component I, creating a new Value for it if necessary.
101   Value *operator[](unsigned I);
102 
103   // Return the number of components.
104   unsigned size() const { return Size; }
105 
106 private:
107   BasicBlock *BB;
108   BasicBlock::iterator BBI;
109   Value *V;
110   Type *PtrElemTy;
111   ValueVector *CachePtr;
112   ValueVector Tmp;
113   unsigned Size;
114 };
115 
116 // FCmpSpliiter(FCI)(Builder, X, Y, Name) uses Builder to create an FCmp
117 // called Name that compares X and Y in the same way as FCI.
118 struct FCmpSplitter {
119   FCmpSplitter(FCmpInst &fci) : FCI(fci) {}
120 
121   Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
122                     const Twine &Name) const {
123     return Builder.CreateFCmp(FCI.getPredicate(), Op0, Op1, Name);
124   }
125 
126   FCmpInst &FCI;
127 };
128 
129 // ICmpSpliiter(ICI)(Builder, X, Y, Name) uses Builder to create an ICmp
130 // called Name that compares X and Y in the same way as ICI.
131 struct ICmpSplitter {
132   ICmpSplitter(ICmpInst &ici) : ICI(ici) {}
133 
134   Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
135                     const Twine &Name) const {
136     return Builder.CreateICmp(ICI.getPredicate(), Op0, Op1, Name);
137   }
138 
139   ICmpInst &ICI;
140 };
141 
142 // UnarySpliiter(UO)(Builder, X, Name) uses Builder to create
143 // a unary operator like UO called Name with operand X.
144 struct UnarySplitter {
145   UnarySplitter(UnaryOperator &uo) : UO(uo) {}
146 
147   Value *operator()(IRBuilder<> &Builder, Value *Op, const Twine &Name) const {
148     return Builder.CreateUnOp(UO.getOpcode(), Op, Name);
149   }
150 
151   UnaryOperator &UO;
152 };
153 
154 // BinarySpliiter(BO)(Builder, X, Y, Name) uses Builder to create
155 // a binary operator like BO called Name with operands X and Y.
156 struct BinarySplitter {
157   BinarySplitter(BinaryOperator &bo) : BO(bo) {}
158 
159   Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
160                     const Twine &Name) const {
161     return Builder.CreateBinOp(BO.getOpcode(), Op0, Op1, Name);
162   }
163 
164   BinaryOperator &BO;
165 };
166 
167 // Information about a load or store that we're scalarizing.
168 struct VectorLayout {
169   VectorLayout() = default;
170 
171   // Return the alignment of element I.
172   Align getElemAlign(unsigned I) {
173     return commonAlignment(VecAlign, I * ElemSize);
174   }
175 
176   // The type of the vector.
177   VectorType *VecTy = nullptr;
178 
179   // The type of each element.
180   Type *ElemTy = nullptr;
181 
182   // The alignment of the vector.
183   Align VecAlign;
184 
185   // The size of each element.
186   uint64_t ElemSize = 0;
187 };
188 
189 template <typename T>
190 T getWithDefaultOverride(const cl::opt<T> &ClOption,
191                          const llvm::Optional<T> &DefaultOverride) {
192   return ClOption.getNumOccurrences() ? ClOption
193                                       : DefaultOverride.value_or(ClOption);
194 }
195 
196 class ScalarizerVisitor : public InstVisitor<ScalarizerVisitor, bool> {
197 public:
198   ScalarizerVisitor(unsigned ParallelLoopAccessMDKind, DominatorTree *DT,
199                     ScalarizerPassOptions Options)
200       : ParallelLoopAccessMDKind(ParallelLoopAccessMDKind), DT(DT),
201         ScalarizeVariableInsertExtract(
202             getWithDefaultOverride(ClScalarizeVariableInsertExtract,
203                                    Options.ScalarizeVariableInsertExtract)),
204         ScalarizeLoadStore(getWithDefaultOverride(ClScalarizeLoadStore,
205                                                   Options.ScalarizeLoadStore)) {
206   }
207 
208   bool visit(Function &F);
209 
210   // InstVisitor methods.  They return true if the instruction was scalarized,
211   // false if nothing changed.
212   bool visitInstruction(Instruction &I) { return false; }
213   bool visitSelectInst(SelectInst &SI);
214   bool visitICmpInst(ICmpInst &ICI);
215   bool visitFCmpInst(FCmpInst &FCI);
216   bool visitUnaryOperator(UnaryOperator &UO);
217   bool visitBinaryOperator(BinaryOperator &BO);
218   bool visitGetElementPtrInst(GetElementPtrInst &GEPI);
219   bool visitCastInst(CastInst &CI);
220   bool visitBitCastInst(BitCastInst &BCI);
221   bool visitInsertElementInst(InsertElementInst &IEI);
222   bool visitExtractElementInst(ExtractElementInst &EEI);
223   bool visitShuffleVectorInst(ShuffleVectorInst &SVI);
224   bool visitPHINode(PHINode &PHI);
225   bool visitLoadInst(LoadInst &LI);
226   bool visitStoreInst(StoreInst &SI);
227   bool visitCallInst(CallInst &ICI);
228 
229 private:
230   Scatterer scatter(Instruction *Point, Value *V, Type *PtrElemTy = nullptr);
231   void gather(Instruction *Op, const ValueVector &CV);
232   void replaceUses(Instruction *Op, Value *CV);
233   bool canTransferMetadata(unsigned Kind);
234   void transferMetadataAndIRFlags(Instruction *Op, const ValueVector &CV);
235   Optional<VectorLayout> getVectorLayout(Type *Ty, Align Alignment,
236                                          const DataLayout &DL);
237   bool finish();
238 
239   template<typename T> bool splitUnary(Instruction &, const T &);
240   template<typename T> bool splitBinary(Instruction &, const T &);
241 
242   bool splitCall(CallInst &CI);
243 
244   ScatterMap Scattered;
245   GatherList Gathered;
246   bool Scalarized;
247 
248   SmallVector<WeakTrackingVH, 32> PotentiallyDeadInstrs;
249 
250   unsigned ParallelLoopAccessMDKind;
251 
252   DominatorTree *DT;
253 
254   const bool ScalarizeVariableInsertExtract;
255   const bool ScalarizeLoadStore;
256 };
257 
258 class ScalarizerLegacyPass : public FunctionPass {
259 public:
260   static char ID;
261 
262   ScalarizerLegacyPass() : FunctionPass(ID) {
263     initializeScalarizerLegacyPassPass(*PassRegistry::getPassRegistry());
264   }
265 
266   bool runOnFunction(Function &F) override;
267 
268   void getAnalysisUsage(AnalysisUsage& AU) const override {
269     AU.addRequired<DominatorTreeWrapperPass>();
270     AU.addPreserved<DominatorTreeWrapperPass>();
271   }
272 };
273 
274 } // end anonymous namespace
275 
276 char ScalarizerLegacyPass::ID = 0;
277 INITIALIZE_PASS_BEGIN(ScalarizerLegacyPass, "scalarizer",
278                       "Scalarize vector operations", false, false)
279 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
280 INITIALIZE_PASS_END(ScalarizerLegacyPass, "scalarizer",
281                     "Scalarize vector operations", false, false)
282 
283 Scatterer::Scatterer(BasicBlock *bb, BasicBlock::iterator bbi, Value *v,
284                      Type *PtrElemTy, ValueVector *cachePtr)
285     : BB(bb), BBI(bbi), V(v), PtrElemTy(PtrElemTy), CachePtr(cachePtr) {
286   Type *Ty = V->getType();
287   if (Ty->isPointerTy()) {
288     assert(cast<PointerType>(Ty)->isOpaqueOrPointeeTypeMatches(PtrElemTy) &&
289            "Pointer element type mismatch");
290     Ty = PtrElemTy;
291   }
292   Size = cast<FixedVectorType>(Ty)->getNumElements();
293   if (!CachePtr)
294     Tmp.resize(Size, nullptr);
295   else if (CachePtr->empty())
296     CachePtr->resize(Size, nullptr);
297   else
298     assert(Size == CachePtr->size() && "Inconsistent vector sizes");
299 }
300 
301 // Return component I, creating a new Value for it if necessary.
302 Value *Scatterer::operator[](unsigned I) {
303   ValueVector &CV = (CachePtr ? *CachePtr : Tmp);
304   // Try to reuse a previous value.
305   if (CV[I])
306     return CV[I];
307   IRBuilder<> Builder(BB, BBI);
308   if (PtrElemTy) {
309     Type *VectorElemTy = cast<VectorType>(PtrElemTy)->getElementType();
310     if (!CV[0]) {
311       Type *NewPtrTy = PointerType::get(
312           VectorElemTy, V->getType()->getPointerAddressSpace());
313       CV[0] = Builder.CreateBitCast(V, NewPtrTy, V->getName() + ".i0");
314     }
315     if (I != 0)
316       CV[I] = Builder.CreateConstGEP1_32(VectorElemTy, CV[0], I,
317                                          V->getName() + ".i" + Twine(I));
318   } else {
319     // Search through a chain of InsertElementInsts looking for element I.
320     // Record other elements in the cache.  The new V is still suitable
321     // for all uncached indices.
322     while (true) {
323       InsertElementInst *Insert = dyn_cast<InsertElementInst>(V);
324       if (!Insert)
325         break;
326       ConstantInt *Idx = dyn_cast<ConstantInt>(Insert->getOperand(2));
327       if (!Idx)
328         break;
329       unsigned J = Idx->getZExtValue();
330       V = Insert->getOperand(0);
331       if (I == J) {
332         CV[J] = Insert->getOperand(1);
333         return CV[J];
334       } else if (!CV[J]) {
335         // Only cache the first entry we find for each index we're not actively
336         // searching for. This prevents us from going too far up the chain and
337         // caching incorrect entries.
338         CV[J] = Insert->getOperand(1);
339       }
340     }
341     CV[I] = Builder.CreateExtractElement(V, Builder.getInt32(I),
342                                          V->getName() + ".i" + Twine(I));
343   }
344   return CV[I];
345 }
346 
347 bool ScalarizerLegacyPass::runOnFunction(Function &F) {
348   if (skipFunction(F))
349     return false;
350 
351   Module &M = *F.getParent();
352   unsigned ParallelLoopAccessMDKind =
353       M.getContext().getMDKindID("llvm.mem.parallel_loop_access");
354   DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
355   ScalarizerVisitor Impl(ParallelLoopAccessMDKind, DT, ScalarizerPassOptions());
356   return Impl.visit(F);
357 }
358 
359 FunctionPass *llvm::createScalarizerPass() {
360   return new ScalarizerLegacyPass();
361 }
362 
363 bool ScalarizerVisitor::visit(Function &F) {
364   assert(Gathered.empty() && Scattered.empty());
365 
366   Scalarized = false;
367 
368   // To ensure we replace gathered components correctly we need to do an ordered
369   // traversal of the basic blocks in the function.
370   ReversePostOrderTraversal<BasicBlock *> RPOT(&F.getEntryBlock());
371   for (BasicBlock *BB : RPOT) {
372     for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) {
373       Instruction *I = &*II;
374       bool Done = InstVisitor::visit(I);
375       ++II;
376       if (Done && I->getType()->isVoidTy())
377         I->eraseFromParent();
378     }
379   }
380   return finish();
381 }
382 
383 // Return a scattered form of V that can be accessed by Point.  V must be a
384 // vector or a pointer to a vector.
385 Scatterer ScalarizerVisitor::scatter(Instruction *Point, Value *V,
386                                      Type *PtrElemTy) {
387   if (Argument *VArg = dyn_cast<Argument>(V)) {
388     // Put the scattered form of arguments in the entry block,
389     // so that it can be used everywhere.
390     Function *F = VArg->getParent();
391     BasicBlock *BB = &F->getEntryBlock();
392     return Scatterer(BB, BB->begin(), V, PtrElemTy, &Scattered[V]);
393   }
394   if (Instruction *VOp = dyn_cast<Instruction>(V)) {
395     // When scalarizing PHI nodes we might try to examine/rewrite InsertElement
396     // nodes in predecessors. If those predecessors are unreachable from entry,
397     // then the IR in those blocks could have unexpected properties resulting in
398     // infinite loops in Scatterer::operator[]. By simply treating values
399     // originating from instructions in unreachable blocks as undef we do not
400     // need to analyse them further.
401     if (!DT->isReachableFromEntry(VOp->getParent()))
402       return Scatterer(Point->getParent(), Point->getIterator(),
403                        PoisonValue::get(V->getType()), PtrElemTy);
404     // Put the scattered form of an instruction directly after the
405     // instruction, skipping over PHI nodes and debug intrinsics.
406     BasicBlock *BB = VOp->getParent();
407     return Scatterer(
408         BB, skipPastPhiNodesAndDbg(std::next(BasicBlock::iterator(VOp))), V,
409         PtrElemTy, &Scattered[V]);
410   }
411   // In the fallback case, just put the scattered before Point and
412   // keep the result local to Point.
413   return Scatterer(Point->getParent(), Point->getIterator(), V, PtrElemTy);
414 }
415 
416 // Replace Op with the gathered form of the components in CV.  Defer the
417 // deletion of Op and creation of the gathered form to the end of the pass,
418 // so that we can avoid creating the gathered form if all uses of Op are
419 // replaced with uses of CV.
420 void ScalarizerVisitor::gather(Instruction *Op, const ValueVector &CV) {
421   transferMetadataAndIRFlags(Op, CV);
422 
423   // If we already have a scattered form of Op (created from ExtractElements
424   // of Op itself), replace them with the new form.
425   ValueVector &SV = Scattered[Op];
426   if (!SV.empty()) {
427     for (unsigned I = 0, E = SV.size(); I != E; ++I) {
428       Value *V = SV[I];
429       if (V == nullptr || SV[I] == CV[I])
430         continue;
431 
432       Instruction *Old = cast<Instruction>(V);
433       if (isa<Instruction>(CV[I]))
434         CV[I]->takeName(Old);
435       Old->replaceAllUsesWith(CV[I]);
436       PotentiallyDeadInstrs.emplace_back(Old);
437     }
438   }
439   SV = CV;
440   Gathered.push_back(GatherList::value_type(Op, &SV));
441 }
442 
443 // Replace Op with CV and collect Op has a potentially dead instruction.
444 void ScalarizerVisitor::replaceUses(Instruction *Op, Value *CV) {
445   if (CV != Op) {
446     Op->replaceAllUsesWith(CV);
447     PotentiallyDeadInstrs.emplace_back(Op);
448     Scalarized = true;
449   }
450 }
451 
452 // Return true if it is safe to transfer the given metadata tag from
453 // vector to scalar instructions.
454 bool ScalarizerVisitor::canTransferMetadata(unsigned Tag) {
455   return (Tag == LLVMContext::MD_tbaa
456           || Tag == LLVMContext::MD_fpmath
457           || Tag == LLVMContext::MD_tbaa_struct
458           || Tag == LLVMContext::MD_invariant_load
459           || Tag == LLVMContext::MD_alias_scope
460           || Tag == LLVMContext::MD_noalias
461           || Tag == ParallelLoopAccessMDKind
462           || Tag == LLVMContext::MD_access_group);
463 }
464 
465 // Transfer metadata from Op to the instructions in CV if it is known
466 // to be safe to do so.
467 void ScalarizerVisitor::transferMetadataAndIRFlags(Instruction *Op,
468                                                    const ValueVector &CV) {
469   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
470   Op->getAllMetadataOtherThanDebugLoc(MDs);
471   for (unsigned I = 0, E = CV.size(); I != E; ++I) {
472     if (Instruction *New = dyn_cast<Instruction>(CV[I])) {
473       for (const auto &MD : MDs)
474         if (canTransferMetadata(MD.first))
475           New->setMetadata(MD.first, MD.second);
476       New->copyIRFlags(Op);
477       if (Op->getDebugLoc() && !New->getDebugLoc())
478         New->setDebugLoc(Op->getDebugLoc());
479     }
480   }
481 }
482 
483 // Try to fill in Layout from Ty, returning true on success.  Alignment is
484 // the alignment of the vector, or None if the ABI default should be used.
485 Optional<VectorLayout>
486 ScalarizerVisitor::getVectorLayout(Type *Ty, Align Alignment,
487                                    const DataLayout &DL) {
488   VectorLayout Layout;
489   // Make sure we're dealing with a vector.
490   Layout.VecTy = dyn_cast<VectorType>(Ty);
491   if (!Layout.VecTy)
492     return None;
493   // Check that we're dealing with full-byte elements.
494   Layout.ElemTy = Layout.VecTy->getElementType();
495   if (!DL.typeSizeEqualsStoreSize(Layout.ElemTy))
496     return None;
497   Layout.VecAlign = Alignment;
498   Layout.ElemSize = DL.getTypeStoreSize(Layout.ElemTy);
499   return Layout;
500 }
501 
502 // Scalarize one-operand instruction I, using Split(Builder, X, Name)
503 // to create an instruction like I with operand X and name Name.
504 template<typename Splitter>
505 bool ScalarizerVisitor::splitUnary(Instruction &I, const Splitter &Split) {
506   VectorType *VT = dyn_cast<VectorType>(I.getType());
507   if (!VT)
508     return false;
509 
510   unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements();
511   IRBuilder<> Builder(&I);
512   Scatterer Op = scatter(&I, I.getOperand(0));
513   assert(Op.size() == NumElems && "Mismatched unary operation");
514   ValueVector Res;
515   Res.resize(NumElems);
516   for (unsigned Elem = 0; Elem < NumElems; ++Elem)
517     Res[Elem] = Split(Builder, Op[Elem], I.getName() + ".i" + Twine(Elem));
518   gather(&I, Res);
519   return true;
520 }
521 
522 // Scalarize two-operand instruction I, using Split(Builder, X, Y, Name)
523 // to create an instruction like I with operands X and Y and name Name.
524 template<typename Splitter>
525 bool ScalarizerVisitor::splitBinary(Instruction &I, const Splitter &Split) {
526   VectorType *VT = dyn_cast<VectorType>(I.getType());
527   if (!VT)
528     return false;
529 
530   unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements();
531   IRBuilder<> Builder(&I);
532   Scatterer VOp0 = scatter(&I, I.getOperand(0));
533   Scatterer VOp1 = scatter(&I, I.getOperand(1));
534   assert(VOp0.size() == NumElems && "Mismatched binary operation");
535   assert(VOp1.size() == NumElems && "Mismatched binary operation");
536   ValueVector Res;
537   Res.resize(NumElems);
538   for (unsigned Elem = 0; Elem < NumElems; ++Elem) {
539     Value *Op0 = VOp0[Elem];
540     Value *Op1 = VOp1[Elem];
541     Res[Elem] = Split(Builder, Op0, Op1, I.getName() + ".i" + Twine(Elem));
542   }
543   gather(&I, Res);
544   return true;
545 }
546 
547 static bool isTriviallyScalariable(Intrinsic::ID ID) {
548   return isTriviallyVectorizable(ID);
549 }
550 
551 // All of the current scalarizable intrinsics only have one mangled type.
552 static Function *getScalarIntrinsicDeclaration(Module *M,
553                                                Intrinsic::ID ID,
554                                                ArrayRef<Type*> Tys) {
555   return Intrinsic::getDeclaration(M, ID, Tys);
556 }
557 
558 /// If a call to a vector typed intrinsic function, split into a scalar call per
559 /// element if possible for the intrinsic.
560 bool ScalarizerVisitor::splitCall(CallInst &CI) {
561   VectorType *VT = dyn_cast<VectorType>(CI.getType());
562   if (!VT)
563     return false;
564 
565   Function *F = CI.getCalledFunction();
566   if (!F)
567     return false;
568 
569   Intrinsic::ID ID = F->getIntrinsicID();
570   if (ID == Intrinsic::not_intrinsic || !isTriviallyScalariable(ID))
571     return false;
572 
573   unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements();
574   unsigned NumArgs = CI.arg_size();
575 
576   ValueVector ScalarOperands(NumArgs);
577   SmallVector<Scatterer, 8> Scattered(NumArgs);
578 
579   Scattered.resize(NumArgs);
580 
581   SmallVector<llvm::Type *, 3> Tys;
582   Tys.push_back(VT->getScalarType());
583 
584   // Assumes that any vector type has the same number of elements as the return
585   // vector type, which is true for all current intrinsics.
586   for (unsigned I = 0; I != NumArgs; ++I) {
587     Value *OpI = CI.getOperand(I);
588     if (OpI->getType()->isVectorTy()) {
589       Scattered[I] = scatter(&CI, OpI);
590       assert(Scattered[I].size() == NumElems && "mismatched call operands");
591       if (isVectorIntrinsicWithOverloadTypeAtArg(ID, I))
592         Tys.push_back(OpI->getType()->getScalarType());
593     } else {
594       ScalarOperands[I] = OpI;
595       if (isVectorIntrinsicWithOverloadTypeAtArg(ID, I))
596         Tys.push_back(OpI->getType());
597     }
598   }
599 
600   ValueVector Res(NumElems);
601   ValueVector ScalarCallOps(NumArgs);
602 
603   Function *NewIntrin = getScalarIntrinsicDeclaration(F->getParent(), ID, Tys);
604   IRBuilder<> Builder(&CI);
605 
606   // Perform actual scalarization, taking care to preserve any scalar operands.
607   for (unsigned Elem = 0; Elem < NumElems; ++Elem) {
608     ScalarCallOps.clear();
609 
610     for (unsigned J = 0; J != NumArgs; ++J) {
611       if (isVectorIntrinsicWithScalarOpAtArg(ID, J))
612         ScalarCallOps.push_back(ScalarOperands[J]);
613       else
614         ScalarCallOps.push_back(Scattered[J][Elem]);
615     }
616 
617     Res[Elem] = Builder.CreateCall(NewIntrin, ScalarCallOps,
618                                    CI.getName() + ".i" + Twine(Elem));
619   }
620 
621   gather(&CI, Res);
622   return true;
623 }
624 
625 bool ScalarizerVisitor::visitSelectInst(SelectInst &SI) {
626   VectorType *VT = dyn_cast<VectorType>(SI.getType());
627   if (!VT)
628     return false;
629 
630   unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements();
631   IRBuilder<> Builder(&SI);
632   Scatterer VOp1 = scatter(&SI, SI.getOperand(1));
633   Scatterer VOp2 = scatter(&SI, SI.getOperand(2));
634   assert(VOp1.size() == NumElems && "Mismatched select");
635   assert(VOp2.size() == NumElems && "Mismatched select");
636   ValueVector Res;
637   Res.resize(NumElems);
638 
639   if (SI.getOperand(0)->getType()->isVectorTy()) {
640     Scatterer VOp0 = scatter(&SI, SI.getOperand(0));
641     assert(VOp0.size() == NumElems && "Mismatched select");
642     for (unsigned I = 0; I < NumElems; ++I) {
643       Value *Op0 = VOp0[I];
644       Value *Op1 = VOp1[I];
645       Value *Op2 = VOp2[I];
646       Res[I] = Builder.CreateSelect(Op0, Op1, Op2,
647                                     SI.getName() + ".i" + Twine(I));
648     }
649   } else {
650     Value *Op0 = SI.getOperand(0);
651     for (unsigned I = 0; I < NumElems; ++I) {
652       Value *Op1 = VOp1[I];
653       Value *Op2 = VOp2[I];
654       Res[I] = Builder.CreateSelect(Op0, Op1, Op2,
655                                     SI.getName() + ".i" + Twine(I));
656     }
657   }
658   gather(&SI, Res);
659   return true;
660 }
661 
662 bool ScalarizerVisitor::visitICmpInst(ICmpInst &ICI) {
663   return splitBinary(ICI, ICmpSplitter(ICI));
664 }
665 
666 bool ScalarizerVisitor::visitFCmpInst(FCmpInst &FCI) {
667   return splitBinary(FCI, FCmpSplitter(FCI));
668 }
669 
670 bool ScalarizerVisitor::visitUnaryOperator(UnaryOperator &UO) {
671   return splitUnary(UO, UnarySplitter(UO));
672 }
673 
674 bool ScalarizerVisitor::visitBinaryOperator(BinaryOperator &BO) {
675   return splitBinary(BO, BinarySplitter(BO));
676 }
677 
678 bool ScalarizerVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) {
679   VectorType *VT = dyn_cast<VectorType>(GEPI.getType());
680   if (!VT)
681     return false;
682 
683   IRBuilder<> Builder(&GEPI);
684   unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements();
685   unsigned NumIndices = GEPI.getNumIndices();
686 
687   // The base pointer might be scalar even if it's a vector GEP. In those cases,
688   // splat the pointer into a vector value, and scatter that vector.
689   Value *Op0 = GEPI.getOperand(0);
690   if (!Op0->getType()->isVectorTy())
691     Op0 = Builder.CreateVectorSplat(NumElems, Op0);
692   Scatterer Base = scatter(&GEPI, Op0);
693 
694   SmallVector<Scatterer, 8> Ops;
695   Ops.resize(NumIndices);
696   for (unsigned I = 0; I < NumIndices; ++I) {
697     Value *Op = GEPI.getOperand(I + 1);
698 
699     // The indices might be scalars even if it's a vector GEP. In those cases,
700     // splat the scalar into a vector value, and scatter that vector.
701     if (!Op->getType()->isVectorTy())
702       Op = Builder.CreateVectorSplat(NumElems, Op);
703 
704     Ops[I] = scatter(&GEPI, Op);
705   }
706 
707   ValueVector Res;
708   Res.resize(NumElems);
709   for (unsigned I = 0; I < NumElems; ++I) {
710     SmallVector<Value *, 8> Indices;
711     Indices.resize(NumIndices);
712     for (unsigned J = 0; J < NumIndices; ++J)
713       Indices[J] = Ops[J][I];
714     Res[I] = Builder.CreateGEP(GEPI.getSourceElementType(), Base[I], Indices,
715                                GEPI.getName() + ".i" + Twine(I));
716     if (GEPI.isInBounds())
717       if (GetElementPtrInst *NewGEPI = dyn_cast<GetElementPtrInst>(Res[I]))
718         NewGEPI->setIsInBounds();
719   }
720   gather(&GEPI, Res);
721   return true;
722 }
723 
724 bool ScalarizerVisitor::visitCastInst(CastInst &CI) {
725   VectorType *VT = dyn_cast<VectorType>(CI.getDestTy());
726   if (!VT)
727     return false;
728 
729   unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements();
730   IRBuilder<> Builder(&CI);
731   Scatterer Op0 = scatter(&CI, CI.getOperand(0));
732   assert(Op0.size() == NumElems && "Mismatched cast");
733   ValueVector Res;
734   Res.resize(NumElems);
735   for (unsigned I = 0; I < NumElems; ++I)
736     Res[I] = Builder.CreateCast(CI.getOpcode(), Op0[I], VT->getElementType(),
737                                 CI.getName() + ".i" + Twine(I));
738   gather(&CI, Res);
739   return true;
740 }
741 
742 bool ScalarizerVisitor::visitBitCastInst(BitCastInst &BCI) {
743   VectorType *DstVT = dyn_cast<VectorType>(BCI.getDestTy());
744   VectorType *SrcVT = dyn_cast<VectorType>(BCI.getSrcTy());
745   if (!DstVT || !SrcVT)
746     return false;
747 
748   unsigned DstNumElems = cast<FixedVectorType>(DstVT)->getNumElements();
749   unsigned SrcNumElems = cast<FixedVectorType>(SrcVT)->getNumElements();
750   IRBuilder<> Builder(&BCI);
751   Scatterer Op0 = scatter(&BCI, BCI.getOperand(0));
752   ValueVector Res;
753   Res.resize(DstNumElems);
754 
755   if (DstNumElems == SrcNumElems) {
756     for (unsigned I = 0; I < DstNumElems; ++I)
757       Res[I] = Builder.CreateBitCast(Op0[I], DstVT->getElementType(),
758                                      BCI.getName() + ".i" + Twine(I));
759   } else if (DstNumElems > SrcNumElems) {
760     // <M x t1> -> <N*M x t2>.  Convert each t1 to <N x t2> and copy the
761     // individual elements to the destination.
762     unsigned FanOut = DstNumElems / SrcNumElems;
763     auto *MidTy = FixedVectorType::get(DstVT->getElementType(), FanOut);
764     unsigned ResI = 0;
765     for (unsigned Op0I = 0; Op0I < SrcNumElems; ++Op0I) {
766       Value *V = Op0[Op0I];
767       Instruction *VI;
768       // Look through any existing bitcasts before converting to <N x t2>.
769       // In the best case, the resulting conversion might be a no-op.
770       while ((VI = dyn_cast<Instruction>(V)) &&
771              VI->getOpcode() == Instruction::BitCast)
772         V = VI->getOperand(0);
773       V = Builder.CreateBitCast(V, MidTy, V->getName() + ".cast");
774       Scatterer Mid = scatter(&BCI, V);
775       for (unsigned MidI = 0; MidI < FanOut; ++MidI)
776         Res[ResI++] = Mid[MidI];
777     }
778   } else {
779     // <N*M x t1> -> <M x t2>.  Convert each group of <N x t1> into a t2.
780     unsigned FanIn = SrcNumElems / DstNumElems;
781     auto *MidTy = FixedVectorType::get(SrcVT->getElementType(), FanIn);
782     unsigned Op0I = 0;
783     for (unsigned ResI = 0; ResI < DstNumElems; ++ResI) {
784       Value *V = PoisonValue::get(MidTy);
785       for (unsigned MidI = 0; MidI < FanIn; ++MidI)
786         V = Builder.CreateInsertElement(V, Op0[Op0I++], Builder.getInt32(MidI),
787                                         BCI.getName() + ".i" + Twine(ResI)
788                                         + ".upto" + Twine(MidI));
789       Res[ResI] = Builder.CreateBitCast(V, DstVT->getElementType(),
790                                         BCI.getName() + ".i" + Twine(ResI));
791     }
792   }
793   gather(&BCI, Res);
794   return true;
795 }
796 
797 bool ScalarizerVisitor::visitInsertElementInst(InsertElementInst &IEI) {
798   VectorType *VT = dyn_cast<VectorType>(IEI.getType());
799   if (!VT)
800     return false;
801 
802   unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements();
803   IRBuilder<> Builder(&IEI);
804   Scatterer Op0 = scatter(&IEI, IEI.getOperand(0));
805   Value *NewElt = IEI.getOperand(1);
806   Value *InsIdx = IEI.getOperand(2);
807 
808   ValueVector Res;
809   Res.resize(NumElems);
810 
811   if (auto *CI = dyn_cast<ConstantInt>(InsIdx)) {
812     for (unsigned I = 0; I < NumElems; ++I)
813       Res[I] = CI->getValue().getZExtValue() == I ? NewElt : Op0[I];
814   } else {
815     if (!ScalarizeVariableInsertExtract)
816       return false;
817 
818     for (unsigned I = 0; I < NumElems; ++I) {
819       Value *ShouldReplace =
820           Builder.CreateICmpEQ(InsIdx, ConstantInt::get(InsIdx->getType(), I),
821                                InsIdx->getName() + ".is." + Twine(I));
822       Value *OldElt = Op0[I];
823       Res[I] = Builder.CreateSelect(ShouldReplace, NewElt, OldElt,
824                                     IEI.getName() + ".i" + Twine(I));
825     }
826   }
827 
828   gather(&IEI, Res);
829   return true;
830 }
831 
832 bool ScalarizerVisitor::visitExtractElementInst(ExtractElementInst &EEI) {
833   VectorType *VT = dyn_cast<VectorType>(EEI.getOperand(0)->getType());
834   if (!VT)
835     return false;
836 
837   unsigned NumSrcElems = cast<FixedVectorType>(VT)->getNumElements();
838   IRBuilder<> Builder(&EEI);
839   Scatterer Op0 = scatter(&EEI, EEI.getOperand(0));
840   Value *ExtIdx = EEI.getOperand(1);
841 
842   if (auto *CI = dyn_cast<ConstantInt>(ExtIdx)) {
843     Value *Res = Op0[CI->getValue().getZExtValue()];
844     replaceUses(&EEI, Res);
845     return true;
846   }
847 
848   if (!ScalarizeVariableInsertExtract)
849     return false;
850 
851   Value *Res = UndefValue::get(VT->getElementType());
852   for (unsigned I = 0; I < NumSrcElems; ++I) {
853     Value *ShouldExtract =
854         Builder.CreateICmpEQ(ExtIdx, ConstantInt::get(ExtIdx->getType(), I),
855                              ExtIdx->getName() + ".is." + Twine(I));
856     Value *Elt = Op0[I];
857     Res = Builder.CreateSelect(ShouldExtract, Elt, Res,
858                                EEI.getName() + ".upto" + Twine(I));
859   }
860   replaceUses(&EEI, Res);
861   return true;
862 }
863 
864 bool ScalarizerVisitor::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
865   VectorType *VT = dyn_cast<VectorType>(SVI.getType());
866   if (!VT)
867     return false;
868 
869   unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements();
870   Scatterer Op0 = scatter(&SVI, SVI.getOperand(0));
871   Scatterer Op1 = scatter(&SVI, SVI.getOperand(1));
872   ValueVector Res;
873   Res.resize(NumElems);
874 
875   for (unsigned I = 0; I < NumElems; ++I) {
876     int Selector = SVI.getMaskValue(I);
877     if (Selector < 0)
878       Res[I] = UndefValue::get(VT->getElementType());
879     else if (unsigned(Selector) < Op0.size())
880       Res[I] = Op0[Selector];
881     else
882       Res[I] = Op1[Selector - Op0.size()];
883   }
884   gather(&SVI, Res);
885   return true;
886 }
887 
888 bool ScalarizerVisitor::visitPHINode(PHINode &PHI) {
889   VectorType *VT = dyn_cast<VectorType>(PHI.getType());
890   if (!VT)
891     return false;
892 
893   unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements();
894   IRBuilder<> Builder(&PHI);
895   ValueVector Res;
896   Res.resize(NumElems);
897 
898   unsigned NumOps = PHI.getNumOperands();
899   for (unsigned I = 0; I < NumElems; ++I)
900     Res[I] = Builder.CreatePHI(VT->getElementType(), NumOps,
901                                PHI.getName() + ".i" + Twine(I));
902 
903   for (unsigned I = 0; I < NumOps; ++I) {
904     Scatterer Op = scatter(&PHI, PHI.getIncomingValue(I));
905     BasicBlock *IncomingBlock = PHI.getIncomingBlock(I);
906     for (unsigned J = 0; J < NumElems; ++J)
907       cast<PHINode>(Res[J])->addIncoming(Op[J], IncomingBlock);
908   }
909   gather(&PHI, Res);
910   return true;
911 }
912 
913 bool ScalarizerVisitor::visitLoadInst(LoadInst &LI) {
914   if (!ScalarizeLoadStore)
915     return false;
916   if (!LI.isSimple())
917     return false;
918 
919   Optional<VectorLayout> Layout = getVectorLayout(
920       LI.getType(), LI.getAlign(), LI.getModule()->getDataLayout());
921   if (!Layout)
922     return false;
923 
924   unsigned NumElems = cast<FixedVectorType>(Layout->VecTy)->getNumElements();
925   IRBuilder<> Builder(&LI);
926   Scatterer Ptr = scatter(&LI, LI.getPointerOperand(), LI.getType());
927   ValueVector Res;
928   Res.resize(NumElems);
929 
930   for (unsigned I = 0; I < NumElems; ++I)
931     Res[I] = Builder.CreateAlignedLoad(Layout->VecTy->getElementType(), Ptr[I],
932                                        Align(Layout->getElemAlign(I)),
933                                        LI.getName() + ".i" + Twine(I));
934   gather(&LI, Res);
935   return true;
936 }
937 
938 bool ScalarizerVisitor::visitStoreInst(StoreInst &SI) {
939   if (!ScalarizeLoadStore)
940     return false;
941   if (!SI.isSimple())
942     return false;
943 
944   Value *FullValue = SI.getValueOperand();
945   Optional<VectorLayout> Layout = getVectorLayout(
946       FullValue->getType(), SI.getAlign(), SI.getModule()->getDataLayout());
947   if (!Layout)
948     return false;
949 
950   unsigned NumElems = cast<FixedVectorType>(Layout->VecTy)->getNumElements();
951   IRBuilder<> Builder(&SI);
952   Scatterer VPtr = scatter(&SI, SI.getPointerOperand(), FullValue->getType());
953   Scatterer VVal = scatter(&SI, FullValue);
954 
955   ValueVector Stores;
956   Stores.resize(NumElems);
957   for (unsigned I = 0; I < NumElems; ++I) {
958     Value *Val = VVal[I];
959     Value *Ptr = VPtr[I];
960     Stores[I] = Builder.CreateAlignedStore(Val, Ptr, Layout->getElemAlign(I));
961   }
962   transferMetadataAndIRFlags(&SI, Stores);
963   return true;
964 }
965 
966 bool ScalarizerVisitor::visitCallInst(CallInst &CI) {
967   return splitCall(CI);
968 }
969 
970 // Delete the instructions that we scalarized.  If a full vector result
971 // is still needed, recreate it using InsertElements.
972 bool ScalarizerVisitor::finish() {
973   // The presence of data in Gathered or Scattered indicates changes
974   // made to the Function.
975   if (Gathered.empty() && Scattered.empty() && !Scalarized)
976     return false;
977   for (const auto &GMI : Gathered) {
978     Instruction *Op = GMI.first;
979     ValueVector &CV = *GMI.second;
980     if (!Op->use_empty()) {
981       // The value is still needed, so recreate it using a series of
982       // InsertElements.
983       Value *Res = PoisonValue::get(Op->getType());
984       if (auto *Ty = dyn_cast<VectorType>(Op->getType())) {
985         BasicBlock *BB = Op->getParent();
986         unsigned Count = cast<FixedVectorType>(Ty)->getNumElements();
987         IRBuilder<> Builder(Op);
988         if (isa<PHINode>(Op))
989           Builder.SetInsertPoint(BB, BB->getFirstInsertionPt());
990         for (unsigned I = 0; I < Count; ++I)
991           Res = Builder.CreateInsertElement(Res, CV[I], Builder.getInt32(I),
992                                             Op->getName() + ".upto" + Twine(I));
993         Res->takeName(Op);
994       } else {
995         assert(CV.size() == 1 && Op->getType() == CV[0]->getType());
996         Res = CV[0];
997         if (Op == Res)
998           continue;
999       }
1000       Op->replaceAllUsesWith(Res);
1001     }
1002     PotentiallyDeadInstrs.emplace_back(Op);
1003   }
1004   Gathered.clear();
1005   Scattered.clear();
1006   Scalarized = false;
1007 
1008   RecursivelyDeleteTriviallyDeadInstructionsPermissive(PotentiallyDeadInstrs);
1009 
1010   return true;
1011 }
1012 
1013 PreservedAnalyses ScalarizerPass::run(Function &F, FunctionAnalysisManager &AM) {
1014   Module &M = *F.getParent();
1015   unsigned ParallelLoopAccessMDKind =
1016       M.getContext().getMDKindID("llvm.mem.parallel_loop_access");
1017   DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F);
1018   ScalarizerVisitor Impl(ParallelLoopAccessMDKind, DT, Options);
1019   bool Changed = Impl.visit(F);
1020   PreservedAnalyses PA;
1021   PA.preserve<DominatorTreeAnalysis>();
1022   return Changed ? PA : PreservedAnalyses::all();
1023 }
1024