1 //===- StructurizeCFG.cpp -------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Transforms/Scalar/StructurizeCFG.h"
10 #include "llvm/ADT/DenseMap.h"
11 #include "llvm/ADT/MapVector.h"
12 #include "llvm/ADT/SCCIterator.h"
13 #include "llvm/ADT/STLExtras.h"
14 #include "llvm/ADT/SmallPtrSet.h"
15 #include "llvm/ADT/SmallSet.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/Analysis/InstructionSimplify.h"
18 #include "llvm/Analysis/RegionInfo.h"
19 #include "llvm/Analysis/RegionIterator.h"
20 #include "llvm/Analysis/RegionPass.h"
21 #include "llvm/Analysis/UniformityAnalysis.h"
22 #include "llvm/IR/BasicBlock.h"
23 #include "llvm/IR/CFG.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/Dominators.h"
26 #include "llvm/IR/Function.h"
27 #include "llvm/IR/InstrTypes.h"
28 #include "llvm/IR/Instruction.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/Metadata.h"
31 #include "llvm/IR/PassManager.h"
32 #include "llvm/IR/PatternMatch.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/IR/Use.h"
35 #include "llvm/IR/Value.h"
36 #include "llvm/IR/ValueHandle.h"
37 #include "llvm/InitializePasses.h"
38 #include "llvm/Pass.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/CommandLine.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include "llvm/Transforms/Scalar.h"
44 #include "llvm/Transforms/Utils.h"
45 #include "llvm/Transforms/Utils/Local.h"
46 #include "llvm/Transforms/Utils/SSAUpdater.h"
47 #include <algorithm>
48 #include <cassert>
49 #include <utility>
50 
51 using namespace llvm;
52 using namespace llvm::PatternMatch;
53 
54 #define DEBUG_TYPE "structurizecfg"
55 
56 // The name for newly created blocks.
57 const char FlowBlockName[] = "Flow";
58 
59 namespace {
60 
61 static cl::opt<bool> ForceSkipUniformRegions(
62   "structurizecfg-skip-uniform-regions",
63   cl::Hidden,
64   cl::desc("Force whether the StructurizeCFG pass skips uniform regions"),
65   cl::init(false));
66 
67 static cl::opt<bool>
68     RelaxedUniformRegions("structurizecfg-relaxed-uniform-regions", cl::Hidden,
69                           cl::desc("Allow relaxed uniform region checks"),
70                           cl::init(true));
71 
72 // Definition of the complex types used in this pass.
73 
74 using BBValuePair = std::pair<BasicBlock *, Value *>;
75 
76 using RNVector = SmallVector<RegionNode *, 8>;
77 using BBVector = SmallVector<BasicBlock *, 8>;
78 using BranchVector = SmallVector<BranchInst *, 8>;
79 using BBValueVector = SmallVector<BBValuePair, 2>;
80 
81 using BBSet = SmallPtrSet<BasicBlock *, 8>;
82 
83 using PhiMap = MapVector<PHINode *, BBValueVector>;
84 using BB2BBVecMap = MapVector<BasicBlock *, BBVector>;
85 
86 using BBPhiMap = DenseMap<BasicBlock *, PhiMap>;
87 using BBPredicates = DenseMap<BasicBlock *, Value *>;
88 using PredMap = DenseMap<BasicBlock *, BBPredicates>;
89 using BB2BBMap = DenseMap<BasicBlock *, BasicBlock *>;
90 
91 using BranchDebugLocMap = DenseMap<BasicBlock *, DebugLoc>;
92 
93 // A traits type that is intended to be used in graph algorithms. The graph
94 // traits starts at an entry node, and traverses the RegionNodes that are in
95 // the Nodes set.
96 struct SubGraphTraits {
97   using NodeRef = std::pair<RegionNode *, SmallDenseSet<RegionNode *> *>;
98   using BaseSuccIterator = GraphTraits<RegionNode *>::ChildIteratorType;
99 
100   // This wraps a set of Nodes into the iterator, so we know which edges to
101   // filter out.
102   class WrappedSuccIterator
103       : public iterator_adaptor_base<
104             WrappedSuccIterator, BaseSuccIterator,
105             typename std::iterator_traits<BaseSuccIterator>::iterator_category,
106             NodeRef, std::ptrdiff_t, NodeRef *, NodeRef> {
107     SmallDenseSet<RegionNode *> *Nodes;
108 
109   public:
110     WrappedSuccIterator(BaseSuccIterator It, SmallDenseSet<RegionNode *> *Nodes)
111         : iterator_adaptor_base(It), Nodes(Nodes) {}
112 
113     NodeRef operator*() const { return {*I, Nodes}; }
114   };
115 
116   static bool filterAll(const NodeRef &N) { return true; }
117   static bool filterSet(const NodeRef &N) { return N.second->count(N.first); }
118 
119   using ChildIteratorType =
120       filter_iterator<WrappedSuccIterator, bool (*)(const NodeRef &)>;
121 
122   static NodeRef getEntryNode(Region *R) {
123     return {GraphTraits<Region *>::getEntryNode(R), nullptr};
124   }
125 
126   static NodeRef getEntryNode(NodeRef N) { return N; }
127 
128   static iterator_range<ChildIteratorType> children(const NodeRef &N) {
129     auto *filter = N.second ? &filterSet : &filterAll;
130     return make_filter_range(
131         make_range<WrappedSuccIterator>(
132             {GraphTraits<RegionNode *>::child_begin(N.first), N.second},
133             {GraphTraits<RegionNode *>::child_end(N.first), N.second}),
134         filter);
135   }
136 
137   static ChildIteratorType child_begin(const NodeRef &N) {
138     return children(N).begin();
139   }
140 
141   static ChildIteratorType child_end(const NodeRef &N) {
142     return children(N).end();
143   }
144 };
145 
146 /// Finds the nearest common dominator of a set of BasicBlocks.
147 ///
148 /// For every BB you add to the set, you can specify whether we "remember" the
149 /// block.  When you get the common dominator, you can also ask whether it's one
150 /// of the blocks we remembered.
151 class NearestCommonDominator {
152   DominatorTree *DT;
153   BasicBlock *Result = nullptr;
154   bool ResultIsRemembered = false;
155 
156   /// Add BB to the resulting dominator.
157   void addBlock(BasicBlock *BB, bool Remember) {
158     if (!Result) {
159       Result = BB;
160       ResultIsRemembered = Remember;
161       return;
162     }
163 
164     BasicBlock *NewResult = DT->findNearestCommonDominator(Result, BB);
165     if (NewResult != Result)
166       ResultIsRemembered = false;
167     if (NewResult == BB)
168       ResultIsRemembered |= Remember;
169     Result = NewResult;
170   }
171 
172 public:
173   explicit NearestCommonDominator(DominatorTree *DomTree) : DT(DomTree) {}
174 
175   void addBlock(BasicBlock *BB) {
176     addBlock(BB, /* Remember = */ false);
177   }
178 
179   void addAndRememberBlock(BasicBlock *BB) {
180     addBlock(BB, /* Remember = */ true);
181   }
182 
183   /// Get the nearest common dominator of all the BBs added via addBlock() and
184   /// addAndRememberBlock().
185   BasicBlock *result() { return Result; }
186 
187   /// Is the BB returned by getResult() one of the blocks we added to the set
188   /// with addAndRememberBlock()?
189   bool resultIsRememberedBlock() { return ResultIsRemembered; }
190 };
191 
192 /// Transforms the control flow graph on one single entry/exit region
193 /// at a time.
194 ///
195 /// After the transform all "If"/"Then"/"Else" style control flow looks like
196 /// this:
197 ///
198 /// \verbatim
199 /// 1
200 /// ||
201 /// | |
202 /// 2 |
203 /// | /
204 /// |/
205 /// 3
206 /// ||   Where:
207 /// | |  1 = "If" block, calculates the condition
208 /// 4 |  2 = "Then" subregion, runs if the condition is true
209 /// | /  3 = "Flow" blocks, newly inserted flow blocks, rejoins the flow
210 /// |/   4 = "Else" optional subregion, runs if the condition is false
211 /// 5    5 = "End" block, also rejoins the control flow
212 /// \endverbatim
213 ///
214 /// Control flow is expressed as a branch where the true exit goes into the
215 /// "Then"/"Else" region, while the false exit skips the region
216 /// The condition for the optional "Else" region is expressed as a PHI node.
217 /// The incoming values of the PHI node are true for the "If" edge and false
218 /// for the "Then" edge.
219 ///
220 /// Additionally to that even complicated loops look like this:
221 ///
222 /// \verbatim
223 /// 1
224 /// ||
225 /// | |
226 /// 2 ^  Where:
227 /// | /  1 = "Entry" block
228 /// |/   2 = "Loop" optional subregion, with all exits at "Flow" block
229 /// 3    3 = "Flow" block, with back edge to entry block
230 /// |
231 /// \endverbatim
232 ///
233 /// The back edge of the "Flow" block is always on the false side of the branch
234 /// while the true side continues the general flow. So the loop condition
235 /// consist of a network of PHI nodes where the true incoming values expresses
236 /// breaks and the false values expresses continue states.
237 
238 class StructurizeCFG {
239   Type *Boolean;
240   ConstantInt *BoolTrue;
241   ConstantInt *BoolFalse;
242   Value *BoolPoison;
243 
244   Function *Func;
245   Region *ParentRegion;
246 
247   UniformityInfo *UA = nullptr;
248   DominatorTree *DT;
249 
250   SmallVector<RegionNode *, 8> Order;
251   BBSet Visited;
252   BBSet FlowSet;
253 
254   SmallVector<WeakVH, 8> AffectedPhis;
255   BBPhiMap DeletedPhis;
256   BB2BBVecMap AddedPhis;
257 
258   PredMap Predicates;
259   BranchVector Conditions;
260 
261   BB2BBMap Loops;
262   PredMap LoopPreds;
263   BranchVector LoopConds;
264 
265   BranchDebugLocMap TermDL;
266 
267   RegionNode *PrevNode;
268 
269   void orderNodes();
270 
271   void analyzeLoops(RegionNode *N);
272 
273   Value *buildCondition(BranchInst *Term, unsigned Idx, bool Invert);
274 
275   void gatherPredicates(RegionNode *N);
276 
277   void collectInfos();
278 
279   void insertConditions(bool Loops);
280 
281   void simplifyConditions();
282 
283   void delPhiValues(BasicBlock *From, BasicBlock *To);
284 
285   void addPhiValues(BasicBlock *From, BasicBlock *To);
286 
287   void findUndefBlocks(BasicBlock *PHIBlock,
288                        const SmallSet<BasicBlock *, 8> &Incomings,
289                        SmallVector<BasicBlock *> &UndefBlks) const;
290   void setPhiValues();
291 
292   void simplifyAffectedPhis();
293 
294   void killTerminator(BasicBlock *BB);
295 
296   void changeExit(RegionNode *Node, BasicBlock *NewExit,
297                   bool IncludeDominator);
298 
299   BasicBlock *getNextFlow(BasicBlock *Dominator);
300 
301   BasicBlock *needPrefix(bool NeedEmpty);
302 
303   BasicBlock *needPostfix(BasicBlock *Flow, bool ExitUseAllowed);
304 
305   void setPrevNode(BasicBlock *BB);
306 
307   bool dominatesPredicates(BasicBlock *BB, RegionNode *Node);
308 
309   bool isPredictableTrue(RegionNode *Node);
310 
311   void wireFlow(bool ExitUseAllowed, BasicBlock *LoopEnd);
312 
313   void handleLoops(bool ExitUseAllowed, BasicBlock *LoopEnd);
314 
315   void createFlow();
316 
317   void rebuildSSA();
318 
319 public:
320   void init(Region *R);
321   bool run(Region *R, DominatorTree *DT);
322   bool makeUniformRegion(Region *R, UniformityInfo &UA);
323 };
324 
325 class StructurizeCFGLegacyPass : public RegionPass {
326   bool SkipUniformRegions;
327 
328 public:
329   static char ID;
330 
331   explicit StructurizeCFGLegacyPass(bool SkipUniformRegions_ = false)
332       : RegionPass(ID), SkipUniformRegions(SkipUniformRegions_) {
333     if (ForceSkipUniformRegions.getNumOccurrences())
334       SkipUniformRegions = ForceSkipUniformRegions.getValue();
335     initializeStructurizeCFGLegacyPassPass(*PassRegistry::getPassRegistry());
336   }
337 
338   bool runOnRegion(Region *R, RGPassManager &RGM) override {
339     StructurizeCFG SCFG;
340     SCFG.init(R);
341     if (SkipUniformRegions) {
342       UniformityInfo &UA =
343           getAnalysis<UniformityInfoWrapperPass>().getUniformityInfo();
344       if (SCFG.makeUniformRegion(R, UA))
345         return false;
346     }
347     DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
348     return SCFG.run(R, DT);
349   }
350 
351   StringRef getPassName() const override { return "Structurize control flow"; }
352 
353   void getAnalysisUsage(AnalysisUsage &AU) const override {
354     if (SkipUniformRegions)
355       AU.addRequired<UniformityInfoWrapperPass>();
356     AU.addRequiredID(LowerSwitchID);
357     AU.addRequired<DominatorTreeWrapperPass>();
358 
359     AU.addPreserved<DominatorTreeWrapperPass>();
360     RegionPass::getAnalysisUsage(AU);
361   }
362 };
363 
364 } // end anonymous namespace
365 
366 char StructurizeCFGLegacyPass::ID = 0;
367 
368 INITIALIZE_PASS_BEGIN(StructurizeCFGLegacyPass, "structurizecfg",
369                       "Structurize the CFG", false, false)
370 INITIALIZE_PASS_DEPENDENCY(UniformityInfoWrapperPass)
371 INITIALIZE_PASS_DEPENDENCY(LowerSwitchLegacyPass)
372 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
373 INITIALIZE_PASS_DEPENDENCY(RegionInfoPass)
374 INITIALIZE_PASS_END(StructurizeCFGLegacyPass, "structurizecfg",
375                     "Structurize the CFG", false, false)
376 
377 /// Build up the general order of nodes, by performing a topological sort of the
378 /// parent region's nodes, while ensuring that there is no outer cycle node
379 /// between any two inner cycle nodes.
380 void StructurizeCFG::orderNodes() {
381   Order.resize(std::distance(GraphTraits<Region *>::nodes_begin(ParentRegion),
382                              GraphTraits<Region *>::nodes_end(ParentRegion)));
383   if (Order.empty())
384     return;
385 
386   SmallDenseSet<RegionNode *> Nodes;
387   auto EntryNode = SubGraphTraits::getEntryNode(ParentRegion);
388 
389   // A list of range indices of SCCs in Order, to be processed.
390   SmallVector<std::pair<unsigned, unsigned>, 8> WorkList;
391   unsigned I = 0, E = Order.size();
392   while (true) {
393     // Run through all the SCCs in the subgraph starting with Entry.
394     for (auto SCCI =
395              scc_iterator<SubGraphTraits::NodeRef, SubGraphTraits>::begin(
396                  EntryNode);
397          !SCCI.isAtEnd(); ++SCCI) {
398       auto &SCC = *SCCI;
399 
400       // An SCC up to the size of 2, can be reduced to an entry (the last node),
401       // and a possible additional node. Therefore, it is already in order, and
402       // there is no need to add it to the work-list.
403       unsigned Size = SCC.size();
404       if (Size > 2)
405         WorkList.emplace_back(I, I + Size);
406 
407       // Add the SCC nodes to the Order array.
408       for (const auto &N : SCC) {
409         assert(I < E && "SCC size mismatch!");
410         Order[I++] = N.first;
411       }
412     }
413     assert(I == E && "SCC size mismatch!");
414 
415     // If there are no more SCCs to order, then we are done.
416     if (WorkList.empty())
417       break;
418 
419     std::tie(I, E) = WorkList.pop_back_val();
420 
421     // Collect the set of nodes in the SCC's subgraph. These are only the
422     // possible child nodes; we do not add the entry (last node) otherwise we
423     // will have the same exact SCC all over again.
424     Nodes.clear();
425     Nodes.insert(Order.begin() + I, Order.begin() + E - 1);
426 
427     // Update the entry node.
428     EntryNode.first = Order[E - 1];
429     EntryNode.second = &Nodes;
430   }
431 }
432 
433 /// Determine the end of the loops
434 void StructurizeCFG::analyzeLoops(RegionNode *N) {
435   if (N->isSubRegion()) {
436     // Test for exit as back edge
437     BasicBlock *Exit = N->getNodeAs<Region>()->getExit();
438     if (Visited.count(Exit))
439       Loops[Exit] = N->getEntry();
440 
441   } else {
442     // Test for successors as back edge
443     BasicBlock *BB = N->getNodeAs<BasicBlock>();
444     BranchInst *Term = cast<BranchInst>(BB->getTerminator());
445 
446     for (BasicBlock *Succ : Term->successors())
447       if (Visited.count(Succ))
448         Loops[Succ] = BB;
449   }
450 }
451 
452 /// Build the condition for one edge
453 Value *StructurizeCFG::buildCondition(BranchInst *Term, unsigned Idx,
454                                       bool Invert) {
455   Value *Cond = Invert ? BoolFalse : BoolTrue;
456   if (Term->isConditional()) {
457     Cond = Term->getCondition();
458 
459     if (Idx != (unsigned)Invert)
460       Cond = invertCondition(Cond);
461   }
462   return Cond;
463 }
464 
465 /// Analyze the predecessors of each block and build up predicates
466 void StructurizeCFG::gatherPredicates(RegionNode *N) {
467   RegionInfo *RI = ParentRegion->getRegionInfo();
468   BasicBlock *BB = N->getEntry();
469   BBPredicates &Pred = Predicates[BB];
470   BBPredicates &LPred = LoopPreds[BB];
471 
472   for (BasicBlock *P : predecessors(BB)) {
473     // Ignore it if it's a branch from outside into our region entry
474     if (!ParentRegion->contains(P))
475       continue;
476 
477     Region *R = RI->getRegionFor(P);
478     if (R == ParentRegion) {
479       // It's a top level block in our region
480       BranchInst *Term = cast<BranchInst>(P->getTerminator());
481       for (unsigned i = 0, e = Term->getNumSuccessors(); i != e; ++i) {
482         BasicBlock *Succ = Term->getSuccessor(i);
483         if (Succ != BB)
484           continue;
485 
486         if (Visited.count(P)) {
487           // Normal forward edge
488           if (Term->isConditional()) {
489             // Try to treat it like an ELSE block
490             BasicBlock *Other = Term->getSuccessor(!i);
491             if (Visited.count(Other) && !Loops.count(Other) &&
492                 !Pred.count(Other) && !Pred.count(P)) {
493 
494               Pred[Other] = BoolFalse;
495               Pred[P] = BoolTrue;
496               continue;
497             }
498           }
499           Pred[P] = buildCondition(Term, i, false);
500         } else {
501           // Back edge
502           LPred[P] = buildCondition(Term, i, true);
503         }
504       }
505     } else {
506       // It's an exit from a sub region
507       while (R->getParent() != ParentRegion)
508         R = R->getParent();
509 
510       // Edge from inside a subregion to its entry, ignore it
511       if (*R == *N)
512         continue;
513 
514       BasicBlock *Entry = R->getEntry();
515       if (Visited.count(Entry))
516         Pred[Entry] = BoolTrue;
517       else
518         LPred[Entry] = BoolFalse;
519     }
520   }
521 }
522 
523 /// Collect various loop and predicate infos
524 void StructurizeCFG::collectInfos() {
525   // Reset predicate
526   Predicates.clear();
527 
528   // and loop infos
529   Loops.clear();
530   LoopPreds.clear();
531 
532   // Reset the visited nodes
533   Visited.clear();
534 
535   for (RegionNode *RN : reverse(Order)) {
536     LLVM_DEBUG(dbgs() << "Visiting: "
537                       << (RN->isSubRegion() ? "SubRegion with entry: " : "")
538                       << RN->getEntry()->getName() << "\n");
539 
540     // Analyze all the conditions leading to a node
541     gatherPredicates(RN);
542 
543     // Remember that we've seen this node
544     Visited.insert(RN->getEntry());
545 
546     // Find the last back edges
547     analyzeLoops(RN);
548   }
549 
550   // Reset the collected term debug locations
551   TermDL.clear();
552 
553   for (BasicBlock &BB : *Func) {
554     if (const DebugLoc &DL = BB.getTerminator()->getDebugLoc())
555       TermDL[&BB] = DL;
556   }
557 }
558 
559 /// Insert the missing branch conditions
560 void StructurizeCFG::insertConditions(bool Loops) {
561   BranchVector &Conds = Loops ? LoopConds : Conditions;
562   Value *Default = Loops ? BoolTrue : BoolFalse;
563   SSAUpdater PhiInserter;
564 
565   for (BranchInst *Term : Conds) {
566     assert(Term->isConditional());
567 
568     BasicBlock *Parent = Term->getParent();
569     BasicBlock *SuccTrue = Term->getSuccessor(0);
570     BasicBlock *SuccFalse = Term->getSuccessor(1);
571 
572     PhiInserter.Initialize(Boolean, "");
573     PhiInserter.AddAvailableValue(&Func->getEntryBlock(), Default);
574     PhiInserter.AddAvailableValue(Loops ? SuccFalse : Parent, Default);
575 
576     BBPredicates &Preds = Loops ? LoopPreds[SuccFalse] : Predicates[SuccTrue];
577 
578     NearestCommonDominator Dominator(DT);
579     Dominator.addBlock(Parent);
580 
581     Value *ParentValue = nullptr;
582     for (std::pair<BasicBlock *, Value *> BBAndPred : Preds) {
583       BasicBlock *BB = BBAndPred.first;
584       Value *Pred = BBAndPred.second;
585 
586       if (BB == Parent) {
587         ParentValue = Pred;
588         break;
589       }
590       PhiInserter.AddAvailableValue(BB, Pred);
591       Dominator.addAndRememberBlock(BB);
592     }
593 
594     if (ParentValue) {
595       Term->setCondition(ParentValue);
596     } else {
597       if (!Dominator.resultIsRememberedBlock())
598         PhiInserter.AddAvailableValue(Dominator.result(), Default);
599 
600       Term->setCondition(PhiInserter.GetValueInMiddleOfBlock(Parent));
601     }
602   }
603 }
604 
605 /// Simplify any inverted conditions that were built by buildConditions.
606 void StructurizeCFG::simplifyConditions() {
607   SmallVector<Instruction *> InstToErase;
608   for (auto &I : concat<PredMap::value_type>(Predicates, LoopPreds)) {
609     auto &Preds = I.second;
610     for (auto &J : Preds) {
611       auto &Cond = J.second;
612       Instruction *Inverted;
613       if (match(Cond, m_Not(m_OneUse(m_Instruction(Inverted)))) &&
614           !Cond->use_empty()) {
615         if (auto *InvertedCmp = dyn_cast<CmpInst>(Inverted)) {
616           InvertedCmp->setPredicate(InvertedCmp->getInversePredicate());
617           Cond->replaceAllUsesWith(InvertedCmp);
618           InstToErase.push_back(cast<Instruction>(Cond));
619         }
620       }
621     }
622   }
623   for (auto *I : InstToErase)
624     I->eraseFromParent();
625 }
626 
627 /// Remove all PHI values coming from "From" into "To" and remember
628 /// them in DeletedPhis
629 void StructurizeCFG::delPhiValues(BasicBlock *From, BasicBlock *To) {
630   PhiMap &Map = DeletedPhis[To];
631   for (PHINode &Phi : To->phis()) {
632     bool Recorded = false;
633     while (Phi.getBasicBlockIndex(From) != -1) {
634       Value *Deleted = Phi.removeIncomingValue(From, false);
635       Map[&Phi].push_back(std::make_pair(From, Deleted));
636       if (!Recorded) {
637         AffectedPhis.push_back(&Phi);
638         Recorded = true;
639       }
640     }
641   }
642 }
643 
644 /// Add a dummy PHI value as soon as we knew the new predecessor
645 void StructurizeCFG::addPhiValues(BasicBlock *From, BasicBlock *To) {
646   for (PHINode &Phi : To->phis()) {
647     Value *Undef = UndefValue::get(Phi.getType());
648     Phi.addIncoming(Undef, From);
649   }
650   AddedPhis[To].push_back(From);
651 }
652 
653 /// When we are reconstructing a PHI inside \p PHIBlock with incoming values
654 /// from predecessors \p Incomings, we have a chance to mark the available value
655 /// from some blocks as undefined. The function will find out all such blocks
656 /// and return in \p UndefBlks.
657 void StructurizeCFG::findUndefBlocks(
658     BasicBlock *PHIBlock, const SmallSet<BasicBlock *, 8> &Incomings,
659     SmallVector<BasicBlock *> &UndefBlks) const {
660   //  We may get a post-structured CFG like below:
661   //
662   //  | P1
663   //  |/
664   //  F1
665   //  |\
666   //  | N
667   //  |/
668   //  F2
669   //  |\
670   //  | P2
671   //  |/
672   //  F3
673   //  |\
674   //  B
675   //
676   // B is the block that has a PHI being reconstructed. P1/P2 are predecessors
677   // of B before structurization. F1/F2/F3 are flow blocks inserted during
678   // structurization process. Block N is not a predecessor of B before
679   // structurization, but are placed between the predecessors(P1/P2) of B after
680   // structurization. This usually means that threads went to N never take the
681   // path N->F2->F3->B. For example, the threads take the branch F1->N may
682   // always take the branch F2->P2. So, when we are reconstructing a PHI
683   // originally in B, we can safely say the incoming value from N is undefined.
684   SmallSet<BasicBlock *, 8> VisitedBlock;
685   SmallVector<BasicBlock *, 8> Stack;
686   if (PHIBlock == ParentRegion->getExit()) {
687     for (auto P : predecessors(PHIBlock)) {
688       if (ParentRegion->contains(P))
689         Stack.push_back(P);
690     }
691   } else {
692     append_range(Stack, predecessors(PHIBlock));
693   }
694 
695   // Do a backward traversal over the CFG, and stop further searching if
696   // the block is not a Flow. If a block is neither flow block nor the
697   // incoming predecessor, then the incoming value from the block is
698   // undefined value for the PHI being reconstructed.
699   while (!Stack.empty()) {
700     BasicBlock *Current = Stack.pop_back_val();
701     if (VisitedBlock.contains(Current))
702       continue;
703 
704     VisitedBlock.insert(Current);
705     if (FlowSet.contains(Current)) {
706       for (auto P : predecessors(Current))
707         Stack.push_back(P);
708     } else if (!Incomings.contains(Current)) {
709       UndefBlks.push_back(Current);
710     }
711   }
712 }
713 
714 /// Add the real PHI value as soon as everything is set up
715 void StructurizeCFG::setPhiValues() {
716   SmallVector<PHINode *, 8> InsertedPhis;
717   SSAUpdater Updater(&InsertedPhis);
718   for (const auto &AddedPhi : AddedPhis) {
719     BasicBlock *To = AddedPhi.first;
720     const BBVector &From = AddedPhi.second;
721 
722     if (!DeletedPhis.count(To))
723       continue;
724 
725     SmallVector<BasicBlock *> UndefBlks;
726     bool CachedUndefs = false;
727     PhiMap &Map = DeletedPhis[To];
728     for (const auto &PI : Map) {
729       PHINode *Phi = PI.first;
730       Value *Undef = UndefValue::get(Phi->getType());
731       Updater.Initialize(Phi->getType(), "");
732       Updater.AddAvailableValue(&Func->getEntryBlock(), Undef);
733       Updater.AddAvailableValue(To, Undef);
734 
735       SmallSet<BasicBlock *, 8> Incomings;
736       SmallVector<BasicBlock *> ConstantPreds;
737       for (const auto &VI : PI.second) {
738         Incomings.insert(VI.first);
739         Updater.AddAvailableValue(VI.first, VI.second);
740         if (isa<Constant>(VI.second))
741           ConstantPreds.push_back(VI.first);
742       }
743 
744       if (!CachedUndefs) {
745         findUndefBlocks(To, Incomings, UndefBlks);
746         CachedUndefs = true;
747       }
748 
749       for (auto UB : UndefBlks) {
750         // If this undef block is dominated by any predecessor(before
751         // structurization) of reconstructed PHI with constant incoming value,
752         // don't mark the available value as undefined. Setting undef to such
753         // block will stop us from getting optimal phi insertion.
754         if (any_of(ConstantPreds,
755                    [&](BasicBlock *CP) { return DT->dominates(CP, UB); }))
756           continue;
757         Updater.AddAvailableValue(UB, Undef);
758       }
759 
760       for (BasicBlock *FI : From)
761         Phi->setIncomingValueForBlock(FI, Updater.GetValueAtEndOfBlock(FI));
762       AffectedPhis.push_back(Phi);
763     }
764 
765     DeletedPhis.erase(To);
766   }
767   assert(DeletedPhis.empty());
768 
769   AffectedPhis.append(InsertedPhis.begin(), InsertedPhis.end());
770 }
771 
772 void StructurizeCFG::simplifyAffectedPhis() {
773   bool Changed;
774   do {
775     Changed = false;
776     SimplifyQuery Q(Func->getParent()->getDataLayout());
777     Q.DT = DT;
778     // Setting CanUseUndef to true might extend value liveness, set it to false
779     // to achieve better register pressure.
780     Q.CanUseUndef = false;
781     for (WeakVH VH : AffectedPhis) {
782       if (auto Phi = dyn_cast_or_null<PHINode>(VH)) {
783         if (auto NewValue = simplifyInstruction(Phi, Q)) {
784           Phi->replaceAllUsesWith(NewValue);
785           Phi->eraseFromParent();
786           Changed = true;
787         }
788       }
789     }
790   } while (Changed);
791 }
792 
793 /// Remove phi values from all successors and then remove the terminator.
794 void StructurizeCFG::killTerminator(BasicBlock *BB) {
795   Instruction *Term = BB->getTerminator();
796   if (!Term)
797     return;
798 
799   for (BasicBlock *Succ : successors(BB))
800     delPhiValues(BB, Succ);
801 
802   Term->eraseFromParent();
803 }
804 
805 /// Let node exit(s) point to NewExit
806 void StructurizeCFG::changeExit(RegionNode *Node, BasicBlock *NewExit,
807                                 bool IncludeDominator) {
808   if (Node->isSubRegion()) {
809     Region *SubRegion = Node->getNodeAs<Region>();
810     BasicBlock *OldExit = SubRegion->getExit();
811     BasicBlock *Dominator = nullptr;
812 
813     // Find all the edges from the sub region to the exit.
814     // We use make_early_inc_range here because we modify BB's terminator.
815     for (BasicBlock *BB : llvm::make_early_inc_range(predecessors(OldExit))) {
816       if (!SubRegion->contains(BB))
817         continue;
818 
819       // Modify the edges to point to the new exit
820       delPhiValues(BB, OldExit);
821       BB->getTerminator()->replaceUsesOfWith(OldExit, NewExit);
822       addPhiValues(BB, NewExit);
823 
824       // Find the new dominator (if requested)
825       if (IncludeDominator) {
826         if (!Dominator)
827           Dominator = BB;
828         else
829           Dominator = DT->findNearestCommonDominator(Dominator, BB);
830       }
831     }
832 
833     // Change the dominator (if requested)
834     if (Dominator)
835       DT->changeImmediateDominator(NewExit, Dominator);
836 
837     // Update the region info
838     SubRegion->replaceExit(NewExit);
839   } else {
840     BasicBlock *BB = Node->getNodeAs<BasicBlock>();
841     killTerminator(BB);
842     BranchInst *Br = BranchInst::Create(NewExit, BB);
843     Br->setDebugLoc(TermDL[BB]);
844     addPhiValues(BB, NewExit);
845     if (IncludeDominator)
846       DT->changeImmediateDominator(NewExit, BB);
847   }
848 }
849 
850 /// Create a new flow node and update dominator tree and region info
851 BasicBlock *StructurizeCFG::getNextFlow(BasicBlock *Dominator) {
852   LLVMContext &Context = Func->getContext();
853   BasicBlock *Insert = Order.empty() ? ParentRegion->getExit() :
854                        Order.back()->getEntry();
855   BasicBlock *Flow = BasicBlock::Create(Context, FlowBlockName,
856                                         Func, Insert);
857   FlowSet.insert(Flow);
858 
859   // use a temporary variable to avoid a use-after-free if the map's storage is
860   // reallocated
861   DebugLoc DL = TermDL[Dominator];
862   TermDL[Flow] = std::move(DL);
863 
864   DT->addNewBlock(Flow, Dominator);
865   ParentRegion->getRegionInfo()->setRegionFor(Flow, ParentRegion);
866   return Flow;
867 }
868 
869 /// Create a new or reuse the previous node as flow node
870 BasicBlock *StructurizeCFG::needPrefix(bool NeedEmpty) {
871   BasicBlock *Entry = PrevNode->getEntry();
872 
873   if (!PrevNode->isSubRegion()) {
874     killTerminator(Entry);
875     if (!NeedEmpty || Entry->getFirstInsertionPt() == Entry->end())
876       return Entry;
877   }
878 
879   // create a new flow node
880   BasicBlock *Flow = getNextFlow(Entry);
881 
882   // and wire it up
883   changeExit(PrevNode, Flow, true);
884   PrevNode = ParentRegion->getBBNode(Flow);
885   return Flow;
886 }
887 
888 /// Returns the region exit if possible, otherwise just a new flow node
889 BasicBlock *StructurizeCFG::needPostfix(BasicBlock *Flow,
890                                         bool ExitUseAllowed) {
891   if (!Order.empty() || !ExitUseAllowed)
892     return getNextFlow(Flow);
893 
894   BasicBlock *Exit = ParentRegion->getExit();
895   DT->changeImmediateDominator(Exit, Flow);
896   addPhiValues(Flow, Exit);
897   return Exit;
898 }
899 
900 /// Set the previous node
901 void StructurizeCFG::setPrevNode(BasicBlock *BB) {
902   PrevNode = ParentRegion->contains(BB) ? ParentRegion->getBBNode(BB)
903                                         : nullptr;
904 }
905 
906 /// Does BB dominate all the predicates of Node?
907 bool StructurizeCFG::dominatesPredicates(BasicBlock *BB, RegionNode *Node) {
908   BBPredicates &Preds = Predicates[Node->getEntry()];
909   return llvm::all_of(Preds, [&](std::pair<BasicBlock *, Value *> Pred) {
910     return DT->dominates(BB, Pred.first);
911   });
912 }
913 
914 /// Can we predict that this node will always be called?
915 bool StructurizeCFG::isPredictableTrue(RegionNode *Node) {
916   BBPredicates &Preds = Predicates[Node->getEntry()];
917   bool Dominated = false;
918 
919   // Regionentry is always true
920   if (!PrevNode)
921     return true;
922 
923   for (std::pair<BasicBlock*, Value*> Pred : Preds) {
924     BasicBlock *BB = Pred.first;
925     Value *V = Pred.second;
926 
927     if (V != BoolTrue)
928       return false;
929 
930     if (!Dominated && DT->dominates(BB, PrevNode->getEntry()))
931       Dominated = true;
932   }
933 
934   // TODO: The dominator check is too strict
935   return Dominated;
936 }
937 
938 /// Take one node from the order vector and wire it up
939 void StructurizeCFG::wireFlow(bool ExitUseAllowed,
940                               BasicBlock *LoopEnd) {
941   RegionNode *Node = Order.pop_back_val();
942   Visited.insert(Node->getEntry());
943 
944   if (isPredictableTrue(Node)) {
945     // Just a linear flow
946     if (PrevNode) {
947       changeExit(PrevNode, Node->getEntry(), true);
948     }
949     PrevNode = Node;
950   } else {
951     // Insert extra prefix node (or reuse last one)
952     BasicBlock *Flow = needPrefix(false);
953 
954     // Insert extra postfix node (or use exit instead)
955     BasicBlock *Entry = Node->getEntry();
956     BasicBlock *Next = needPostfix(Flow, ExitUseAllowed);
957 
958     // let it point to entry and next block
959     BranchInst *Br = BranchInst::Create(Entry, Next, BoolPoison, Flow);
960     Br->setDebugLoc(TermDL[Flow]);
961     Conditions.push_back(Br);
962     addPhiValues(Flow, Entry);
963     DT->changeImmediateDominator(Entry, Flow);
964 
965     PrevNode = Node;
966     while (!Order.empty() && !Visited.count(LoopEnd) &&
967            dominatesPredicates(Entry, Order.back())) {
968       handleLoops(false, LoopEnd);
969     }
970 
971     changeExit(PrevNode, Next, false);
972     setPrevNode(Next);
973   }
974 }
975 
976 void StructurizeCFG::handleLoops(bool ExitUseAllowed,
977                                  BasicBlock *LoopEnd) {
978   RegionNode *Node = Order.back();
979   BasicBlock *LoopStart = Node->getEntry();
980 
981   if (!Loops.count(LoopStart)) {
982     wireFlow(ExitUseAllowed, LoopEnd);
983     return;
984   }
985 
986   if (!isPredictableTrue(Node))
987     LoopStart = needPrefix(true);
988 
989   LoopEnd = Loops[Node->getEntry()];
990   wireFlow(false, LoopEnd);
991   while (!Visited.count(LoopEnd)) {
992     handleLoops(false, LoopEnd);
993   }
994 
995   assert(LoopStart != &LoopStart->getParent()->getEntryBlock());
996 
997   // Create an extra loop end node
998   LoopEnd = needPrefix(false);
999   BasicBlock *Next = needPostfix(LoopEnd, ExitUseAllowed);
1000   BranchInst *Br = BranchInst::Create(Next, LoopStart, BoolPoison, LoopEnd);
1001   Br->setDebugLoc(TermDL[LoopEnd]);
1002   LoopConds.push_back(Br);
1003   addPhiValues(LoopEnd, LoopStart);
1004   setPrevNode(Next);
1005 }
1006 
1007 /// After this function control flow looks like it should be, but
1008 /// branches and PHI nodes only have undefined conditions.
1009 void StructurizeCFG::createFlow() {
1010   BasicBlock *Exit = ParentRegion->getExit();
1011   bool EntryDominatesExit = DT->dominates(ParentRegion->getEntry(), Exit);
1012 
1013   AffectedPhis.clear();
1014   DeletedPhis.clear();
1015   AddedPhis.clear();
1016   Conditions.clear();
1017   LoopConds.clear();
1018 
1019   PrevNode = nullptr;
1020   Visited.clear();
1021 
1022   while (!Order.empty()) {
1023     handleLoops(EntryDominatesExit, nullptr);
1024   }
1025 
1026   if (PrevNode)
1027     changeExit(PrevNode, Exit, EntryDominatesExit);
1028   else
1029     assert(EntryDominatesExit);
1030 }
1031 
1032 /// Handle a rare case where the disintegrated nodes instructions
1033 /// no longer dominate all their uses. Not sure if this is really necessary
1034 void StructurizeCFG::rebuildSSA() {
1035   SSAUpdater Updater;
1036   for (BasicBlock *BB : ParentRegion->blocks())
1037     for (Instruction &I : *BB) {
1038       bool Initialized = false;
1039       // We may modify the use list as we iterate over it, so we use
1040       // make_early_inc_range.
1041       for (Use &U : llvm::make_early_inc_range(I.uses())) {
1042         Instruction *User = cast<Instruction>(U.getUser());
1043         if (User->getParent() == BB) {
1044           continue;
1045         } else if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1046           if (UserPN->getIncomingBlock(U) == BB)
1047             continue;
1048         }
1049 
1050         if (DT->dominates(&I, User))
1051           continue;
1052 
1053         if (!Initialized) {
1054           Value *Undef = UndefValue::get(I.getType());
1055           Updater.Initialize(I.getType(), "");
1056           Updater.AddAvailableValue(&Func->getEntryBlock(), Undef);
1057           Updater.AddAvailableValue(BB, &I);
1058           Initialized = true;
1059         }
1060         Updater.RewriteUseAfterInsertions(U);
1061       }
1062     }
1063 }
1064 
1065 static bool hasOnlyUniformBranches(Region *R, unsigned UniformMDKindID,
1066                                    const UniformityInfo &UA) {
1067   // Bool for if all sub-regions are uniform.
1068   bool SubRegionsAreUniform = true;
1069   // Count of how many direct children are conditional.
1070   unsigned ConditionalDirectChildren = 0;
1071 
1072   for (auto *E : R->elements()) {
1073     if (!E->isSubRegion()) {
1074       auto Br = dyn_cast<BranchInst>(E->getEntry()->getTerminator());
1075       if (!Br || !Br->isConditional())
1076         continue;
1077 
1078       if (!UA.isUniform(Br))
1079         return false;
1080 
1081       // One of our direct children is conditional.
1082       ConditionalDirectChildren++;
1083 
1084       LLVM_DEBUG(dbgs() << "BB: " << Br->getParent()->getName()
1085                         << " has uniform terminator\n");
1086     } else {
1087       // Explicitly refuse to treat regions as uniform if they have non-uniform
1088       // subregions. We cannot rely on UniformityAnalysis for branches in
1089       // subregions because those branches may have been removed and re-created,
1090       // so we look for our metadata instead.
1091       //
1092       // Warning: It would be nice to treat regions as uniform based only on
1093       // their direct child basic blocks' terminators, regardless of whether
1094       // subregions are uniform or not. However, this requires a very careful
1095       // look at SIAnnotateControlFlow to make sure nothing breaks there.
1096       for (auto *BB : E->getNodeAs<Region>()->blocks()) {
1097         auto Br = dyn_cast<BranchInst>(BB->getTerminator());
1098         if (!Br || !Br->isConditional())
1099           continue;
1100 
1101         if (!Br->getMetadata(UniformMDKindID)) {
1102           // Early exit if we cannot have relaxed uniform regions.
1103           if (!RelaxedUniformRegions)
1104             return false;
1105 
1106           SubRegionsAreUniform = false;
1107           break;
1108         }
1109       }
1110     }
1111   }
1112 
1113   // Our region is uniform if:
1114   // 1. All conditional branches that are direct children are uniform (checked
1115   // above).
1116   // 2. And either:
1117   //   a. All sub-regions are uniform.
1118   //   b. There is one or less conditional branches among the direct children.
1119   return SubRegionsAreUniform || (ConditionalDirectChildren <= 1);
1120 }
1121 
1122 void StructurizeCFG::init(Region *R) {
1123   LLVMContext &Context = R->getEntry()->getContext();
1124 
1125   Boolean = Type::getInt1Ty(Context);
1126   BoolTrue = ConstantInt::getTrue(Context);
1127   BoolFalse = ConstantInt::getFalse(Context);
1128   BoolPoison = PoisonValue::get(Boolean);
1129 
1130   this->UA = nullptr;
1131 }
1132 
1133 bool StructurizeCFG::makeUniformRegion(Region *R, UniformityInfo &UA) {
1134   if (R->isTopLevelRegion())
1135     return false;
1136 
1137   this->UA = &UA;
1138 
1139   // TODO: We could probably be smarter here with how we handle sub-regions.
1140   // We currently rely on the fact that metadata is set by earlier invocations
1141   // of the pass on sub-regions, and that this metadata doesn't get lost --
1142   // but we shouldn't rely on metadata for correctness!
1143   unsigned UniformMDKindID =
1144       R->getEntry()->getContext().getMDKindID("structurizecfg.uniform");
1145 
1146   if (hasOnlyUniformBranches(R, UniformMDKindID, UA)) {
1147     LLVM_DEBUG(dbgs() << "Skipping region with uniform control flow: " << *R
1148                       << '\n');
1149 
1150     // Mark all direct child block terminators as having been treated as
1151     // uniform. To account for a possible future in which non-uniform
1152     // sub-regions are treated more cleverly, indirect children are not
1153     // marked as uniform.
1154     MDNode *MD = MDNode::get(R->getEntry()->getParent()->getContext(), {});
1155     for (RegionNode *E : R->elements()) {
1156       if (E->isSubRegion())
1157         continue;
1158 
1159       if (Instruction *Term = E->getEntry()->getTerminator())
1160         Term->setMetadata(UniformMDKindID, MD);
1161     }
1162 
1163     return true;
1164   }
1165   return false;
1166 }
1167 
1168 /// Run the transformation for each region found
1169 bool StructurizeCFG::run(Region *R, DominatorTree *DT) {
1170   if (R->isTopLevelRegion())
1171     return false;
1172 
1173   this->DT = DT;
1174 
1175   Func = R->getEntry()->getParent();
1176   ParentRegion = R;
1177 
1178   orderNodes();
1179   collectInfos();
1180   createFlow();
1181   insertConditions(false);
1182   insertConditions(true);
1183   setPhiValues();
1184   simplifyConditions();
1185   simplifyAffectedPhis();
1186   rebuildSSA();
1187 
1188   // Cleanup
1189   Order.clear();
1190   Visited.clear();
1191   DeletedPhis.clear();
1192   AddedPhis.clear();
1193   Predicates.clear();
1194   Conditions.clear();
1195   Loops.clear();
1196   LoopPreds.clear();
1197   LoopConds.clear();
1198   FlowSet.clear();
1199   TermDL.clear();
1200 
1201   return true;
1202 }
1203 
1204 Pass *llvm::createStructurizeCFGPass(bool SkipUniformRegions) {
1205   return new StructurizeCFGLegacyPass(SkipUniformRegions);
1206 }
1207 
1208 static void addRegionIntoQueue(Region &R, std::vector<Region *> &Regions) {
1209   Regions.push_back(&R);
1210   for (const auto &E : R)
1211     addRegionIntoQueue(*E, Regions);
1212 }
1213 
1214 PreservedAnalyses StructurizeCFGPass::run(Function &F,
1215                                           FunctionAnalysisManager &AM) {
1216 
1217   bool Changed = false;
1218   DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F);
1219   auto &RI = AM.getResult<RegionInfoAnalysis>(F);
1220   std::vector<Region *> Regions;
1221   addRegionIntoQueue(*RI.getTopLevelRegion(), Regions);
1222   while (!Regions.empty()) {
1223     Region *R = Regions.back();
1224     StructurizeCFG SCFG;
1225     SCFG.init(R);
1226     Changed |= SCFG.run(R, DT);
1227     Regions.pop_back();
1228   }
1229   if (!Changed)
1230     return PreservedAnalyses::all();
1231   PreservedAnalyses PA;
1232   PA.preserve<DominatorTreeAnalysis>();
1233   return PA;
1234 }
1235