1 //===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file transforms calls of the current function (self recursion) followed
10 // by a return instruction with a branch to the entry of the function, creating
11 // a loop.  This pass also implements the following extensions to the basic
12 // algorithm:
13 //
14 //  1. Trivial instructions between the call and return do not prevent the
15 //     transformation from taking place, though currently the analysis cannot
16 //     support moving any really useful instructions (only dead ones).
17 //  2. This pass transforms functions that are prevented from being tail
18 //     recursive by an associative and commutative expression to use an
19 //     accumulator variable, thus compiling the typical naive factorial or
20 //     'fib' implementation into efficient code.
21 //  3. TRE is performed if the function returns void, if the return
22 //     returns the result returned by the call, or if the function returns a
23 //     run-time constant on all exits from the function.  It is possible, though
24 //     unlikely, that the return returns something else (like constant 0), and
25 //     can still be TRE'd.  It can be TRE'd if ALL OTHER return instructions in
26 //     the function return the exact same value.
27 //  4. If it can prove that callees do not access their caller stack frame,
28 //     they are marked as eligible for tail call elimination (by the code
29 //     generator).
30 //
31 // There are several improvements that could be made:
32 //
33 //  1. If the function has any alloca instructions, these instructions will be
34 //     moved out of the entry block of the function, causing them to be
35 //     evaluated each time through the tail recursion.  Safely keeping allocas
36 //     in the entry block requires analysis to proves that the tail-called
37 //     function does not read or write the stack object.
38 //  2. Tail recursion is only performed if the call immediately precedes the
39 //     return instruction.  It's possible that there could be a jump between
40 //     the call and the return.
41 //  3. There can be intervening operations between the call and the return that
42 //     prevent the TRE from occurring.  For example, there could be GEP's and
43 //     stores to memory that will not be read or written by the call.  This
44 //     requires some substantial analysis (such as with DSA) to prove safe to
45 //     move ahead of the call, but doing so could allow many more TREs to be
46 //     performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark.
47 //  4. The algorithm we use to detect if callees access their caller stack
48 //     frames is very primitive.
49 //
50 //===----------------------------------------------------------------------===//
51 
52 #include "llvm/Transforms/Scalar/TailRecursionElimination.h"
53 #include "llvm/ADT/STLExtras.h"
54 #include "llvm/ADT/SmallPtrSet.h"
55 #include "llvm/ADT/Statistic.h"
56 #include "llvm/Analysis/CFG.h"
57 #include "llvm/Analysis/CaptureTracking.h"
58 #include "llvm/Analysis/DomTreeUpdater.h"
59 #include "llvm/Analysis/GlobalsModRef.h"
60 #include "llvm/Analysis/InlineCost.h"
61 #include "llvm/Analysis/InstructionSimplify.h"
62 #include "llvm/Analysis/Loads.h"
63 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
64 #include "llvm/Analysis/PostDominators.h"
65 #include "llvm/Analysis/TargetTransformInfo.h"
66 #include "llvm/IR/CFG.h"
67 #include "llvm/IR/Constants.h"
68 #include "llvm/IR/DataLayout.h"
69 #include "llvm/IR/DerivedTypes.h"
70 #include "llvm/IR/DiagnosticInfo.h"
71 #include "llvm/IR/Dominators.h"
72 #include "llvm/IR/Function.h"
73 #include "llvm/IR/InstIterator.h"
74 #include "llvm/IR/Instructions.h"
75 #include "llvm/IR/IntrinsicInst.h"
76 #include "llvm/IR/Module.h"
77 #include "llvm/IR/ValueHandle.h"
78 #include "llvm/InitializePasses.h"
79 #include "llvm/Pass.h"
80 #include "llvm/Support/Debug.h"
81 #include "llvm/Support/raw_ostream.h"
82 #include "llvm/Transforms/Scalar.h"
83 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
84 using namespace llvm;
85 
86 #define DEBUG_TYPE "tailcallelim"
87 
88 STATISTIC(NumEliminated, "Number of tail calls removed");
89 STATISTIC(NumRetDuped,   "Number of return duplicated");
90 STATISTIC(NumAccumAdded, "Number of accumulators introduced");
91 
92 /// Scan the specified function for alloca instructions.
93 /// If it contains any dynamic allocas, returns false.
94 static bool canTRE(Function &F) {
95   // FIXME: The code generator produces really bad code when an 'escaping
96   // alloca' is changed from being a static alloca to being a dynamic alloca.
97   // Until this is resolved, disable this transformation if that would ever
98   // happen.  This bug is PR962.
99   return llvm::all_of(instructions(F), [](Instruction &I) {
100     auto *AI = dyn_cast<AllocaInst>(&I);
101     return !AI || AI->isStaticAlloca();
102   });
103 }
104 
105 namespace {
106 struct AllocaDerivedValueTracker {
107   // Start at a root value and walk its use-def chain to mark calls that use the
108   // value or a derived value in AllocaUsers, and places where it may escape in
109   // EscapePoints.
110   void walk(Value *Root) {
111     SmallVector<Use *, 32> Worklist;
112     SmallPtrSet<Use *, 32> Visited;
113 
114     auto AddUsesToWorklist = [&](Value *V) {
115       for (auto &U : V->uses()) {
116         if (!Visited.insert(&U).second)
117           continue;
118         Worklist.push_back(&U);
119       }
120     };
121 
122     AddUsesToWorklist(Root);
123 
124     while (!Worklist.empty()) {
125       Use *U = Worklist.pop_back_val();
126       Instruction *I = cast<Instruction>(U->getUser());
127 
128       switch (I->getOpcode()) {
129       case Instruction::Call:
130       case Instruction::Invoke: {
131         auto &CB = cast<CallBase>(*I);
132         // If the alloca-derived argument is passed byval it is not an escape
133         // point, or a use of an alloca. Calling with byval copies the contents
134         // of the alloca into argument registers or stack slots, which exist
135         // beyond the lifetime of the current frame.
136         if (CB.isArgOperand(U) && CB.isByValArgument(CB.getArgOperandNo(U)))
137           continue;
138         bool IsNocapture =
139             CB.isDataOperand(U) && CB.doesNotCapture(CB.getDataOperandNo(U));
140         callUsesLocalStack(CB, IsNocapture);
141         if (IsNocapture) {
142           // If the alloca-derived argument is passed in as nocapture, then it
143           // can't propagate to the call's return. That would be capturing.
144           continue;
145         }
146         break;
147       }
148       case Instruction::Load: {
149         // The result of a load is not alloca-derived (unless an alloca has
150         // otherwise escaped, but this is a local analysis).
151         continue;
152       }
153       case Instruction::Store: {
154         if (U->getOperandNo() == 0)
155           EscapePoints.insert(I);
156         continue;  // Stores have no users to analyze.
157       }
158       case Instruction::BitCast:
159       case Instruction::GetElementPtr:
160       case Instruction::PHI:
161       case Instruction::Select:
162       case Instruction::AddrSpaceCast:
163         break;
164       default:
165         EscapePoints.insert(I);
166         break;
167       }
168 
169       AddUsesToWorklist(I);
170     }
171   }
172 
173   void callUsesLocalStack(CallBase &CB, bool IsNocapture) {
174     // Add it to the list of alloca users.
175     AllocaUsers.insert(&CB);
176 
177     // If it's nocapture then it can't capture this alloca.
178     if (IsNocapture)
179       return;
180 
181     // If it can write to memory, it can leak the alloca value.
182     if (!CB.onlyReadsMemory())
183       EscapePoints.insert(&CB);
184   }
185 
186   SmallPtrSet<Instruction *, 32> AllocaUsers;
187   SmallPtrSet<Instruction *, 32> EscapePoints;
188 };
189 }
190 
191 static bool markTails(Function &F, bool &AllCallsAreTailCalls,
192                       OptimizationRemarkEmitter *ORE) {
193   if (F.callsFunctionThatReturnsTwice())
194     return false;
195   AllCallsAreTailCalls = true;
196 
197   // The local stack holds all alloca instructions and all byval arguments.
198   AllocaDerivedValueTracker Tracker;
199   for (Argument &Arg : F.args()) {
200     if (Arg.hasByValAttr())
201       Tracker.walk(&Arg);
202   }
203   for (auto &BB : F) {
204     for (auto &I : BB)
205       if (AllocaInst *AI = dyn_cast<AllocaInst>(&I))
206         Tracker.walk(AI);
207   }
208 
209   bool Modified = false;
210 
211   // Track whether a block is reachable after an alloca has escaped. Blocks that
212   // contain the escaping instruction will be marked as being visited without an
213   // escaped alloca, since that is how the block began.
214   enum VisitType {
215     UNVISITED,
216     UNESCAPED,
217     ESCAPED
218   };
219   DenseMap<BasicBlock *, VisitType> Visited;
220 
221   // We propagate the fact that an alloca has escaped from block to successor.
222   // Visit the blocks that are propagating the escapedness first. To do this, we
223   // maintain two worklists.
224   SmallVector<BasicBlock *, 32> WorklistUnescaped, WorklistEscaped;
225 
226   // We may enter a block and visit it thinking that no alloca has escaped yet,
227   // then see an escape point and go back around a loop edge and come back to
228   // the same block twice. Because of this, we defer setting tail on calls when
229   // we first encounter them in a block. Every entry in this list does not
230   // statically use an alloca via use-def chain analysis, but may find an alloca
231   // through other means if the block turns out to be reachable after an escape
232   // point.
233   SmallVector<CallInst *, 32> DeferredTails;
234 
235   BasicBlock *BB = &F.getEntryBlock();
236   VisitType Escaped = UNESCAPED;
237   do {
238     for (auto &I : *BB) {
239       if (Tracker.EscapePoints.count(&I))
240         Escaped = ESCAPED;
241 
242       CallInst *CI = dyn_cast<CallInst>(&I);
243       // A PseudoProbeInst has the IntrInaccessibleMemOnly tag hence it is
244       // considered accessing memory and will be marked as a tail call if we
245       // don't bail out here.
246       if (!CI || CI->isTailCall() || isa<DbgInfoIntrinsic>(&I) ||
247           isa<PseudoProbeInst>(&I))
248         continue;
249 
250       bool IsNoTail = CI->isNoTailCall() || CI->hasOperandBundles();
251 
252       if (!IsNoTail && CI->doesNotAccessMemory()) {
253         // A call to a readnone function whose arguments are all things computed
254         // outside this function can be marked tail. Even if you stored the
255         // alloca address into a global, a readnone function can't load the
256         // global anyhow.
257         //
258         // Note that this runs whether we know an alloca has escaped or not. If
259         // it has, then we can't trust Tracker.AllocaUsers to be accurate.
260         bool SafeToTail = true;
261         for (auto &Arg : CI->arg_operands()) {
262           if (isa<Constant>(Arg.getUser()))
263             continue;
264           if (Argument *A = dyn_cast<Argument>(Arg.getUser()))
265             if (!A->hasByValAttr())
266               continue;
267           SafeToTail = false;
268           break;
269         }
270         if (SafeToTail) {
271           using namespace ore;
272           ORE->emit([&]() {
273             return OptimizationRemark(DEBUG_TYPE, "tailcall-readnone", CI)
274                    << "marked as tail call candidate (readnone)";
275           });
276           CI->setTailCall();
277           Modified = true;
278           continue;
279         }
280       }
281 
282       if (!IsNoTail && Escaped == UNESCAPED && !Tracker.AllocaUsers.count(CI)) {
283         DeferredTails.push_back(CI);
284       } else {
285         AllCallsAreTailCalls = false;
286       }
287     }
288 
289     for (auto *SuccBB : successors(BB)) {
290       auto &State = Visited[SuccBB];
291       if (State < Escaped) {
292         State = Escaped;
293         if (State == ESCAPED)
294           WorklistEscaped.push_back(SuccBB);
295         else
296           WorklistUnescaped.push_back(SuccBB);
297       }
298     }
299 
300     if (!WorklistEscaped.empty()) {
301       BB = WorklistEscaped.pop_back_val();
302       Escaped = ESCAPED;
303     } else {
304       BB = nullptr;
305       while (!WorklistUnescaped.empty()) {
306         auto *NextBB = WorklistUnescaped.pop_back_val();
307         if (Visited[NextBB] == UNESCAPED) {
308           BB = NextBB;
309           Escaped = UNESCAPED;
310           break;
311         }
312       }
313     }
314   } while (BB);
315 
316   for (CallInst *CI : DeferredTails) {
317     if (Visited[CI->getParent()] != ESCAPED) {
318       // If the escape point was part way through the block, calls after the
319       // escape point wouldn't have been put into DeferredTails.
320       LLVM_DEBUG(dbgs() << "Marked as tail call candidate: " << *CI << "\n");
321       CI->setTailCall();
322       Modified = true;
323     } else {
324       AllCallsAreTailCalls = false;
325     }
326   }
327 
328   return Modified;
329 }
330 
331 /// Return true if it is safe to move the specified
332 /// instruction from after the call to before the call, assuming that all
333 /// instructions between the call and this instruction are movable.
334 ///
335 static bool canMoveAboveCall(Instruction *I, CallInst *CI, AliasAnalysis *AA) {
336   // FIXME: We can move load/store/call/free instructions above the call if the
337   // call does not mod/ref the memory location being processed.
338   if (I->mayHaveSideEffects())  // This also handles volatile loads.
339     return false;
340 
341   if (LoadInst *L = dyn_cast<LoadInst>(I)) {
342     // Loads may always be moved above calls without side effects.
343     if (CI->mayHaveSideEffects()) {
344       // Non-volatile loads may be moved above a call with side effects if it
345       // does not write to memory and the load provably won't trap.
346       // Writes to memory only matter if they may alias the pointer
347       // being loaded from.
348       const DataLayout &DL = L->getModule()->getDataLayout();
349       if (isModSet(AA->getModRefInfo(CI, MemoryLocation::get(L))) ||
350           !isSafeToLoadUnconditionally(L->getPointerOperand(), L->getType(),
351                                        L->getAlign(), DL, L))
352         return false;
353     }
354   }
355 
356   // Otherwise, if this is a side-effect free instruction, check to make sure
357   // that it does not use the return value of the call.  If it doesn't use the
358   // return value of the call, it must only use things that are defined before
359   // the call, or movable instructions between the call and the instruction
360   // itself.
361   return !is_contained(I->operands(), CI);
362 }
363 
364 static bool canTransformAccumulatorRecursion(Instruction *I, CallInst *CI) {
365   if (!I->isAssociative() || !I->isCommutative())
366     return false;
367 
368   assert(I->getNumOperands() == 2 &&
369          "Associative/commutative operations should have 2 args!");
370 
371   // Exactly one operand should be the result of the call instruction.
372   if ((I->getOperand(0) == CI && I->getOperand(1) == CI) ||
373       (I->getOperand(0) != CI && I->getOperand(1) != CI))
374     return false;
375 
376   // The only user of this instruction we allow is a single return instruction.
377   if (!I->hasOneUse() || !isa<ReturnInst>(I->user_back()))
378     return false;
379 
380   return true;
381 }
382 
383 static Instruction *firstNonDbg(BasicBlock::iterator I) {
384   while (isa<DbgInfoIntrinsic>(I))
385     ++I;
386   return &*I;
387 }
388 
389 namespace {
390 class TailRecursionEliminator {
391   Function &F;
392   const TargetTransformInfo *TTI;
393   AliasAnalysis *AA;
394   OptimizationRemarkEmitter *ORE;
395   DomTreeUpdater &DTU;
396 
397   // The below are shared state we want to have available when eliminating any
398   // calls in the function. There values should be populated by
399   // createTailRecurseLoopHeader the first time we find a call we can eliminate.
400   BasicBlock *HeaderBB = nullptr;
401   SmallVector<PHINode *, 8> ArgumentPHIs;
402   bool RemovableCallsMustBeMarkedTail = false;
403 
404   // PHI node to store our return value.
405   PHINode *RetPN = nullptr;
406 
407   // i1 PHI node to track if we have a valid return value stored in RetPN.
408   PHINode *RetKnownPN = nullptr;
409 
410   // Vector of select instructions we insereted. These selects use RetKnownPN
411   // to either propagate RetPN or select a new return value.
412   SmallVector<SelectInst *, 8> RetSelects;
413 
414   // The below are shared state needed when performing accumulator recursion.
415   // There values should be populated by insertAccumulator the first time we
416   // find an elimination that requires an accumulator.
417 
418   // PHI node to store our current accumulated value.
419   PHINode *AccPN = nullptr;
420 
421   // The instruction doing the accumulating.
422   Instruction *AccumulatorRecursionInstr = nullptr;
423 
424   TailRecursionEliminator(Function &F, const TargetTransformInfo *TTI,
425                           AliasAnalysis *AA, OptimizationRemarkEmitter *ORE,
426                           DomTreeUpdater &DTU)
427       : F(F), TTI(TTI), AA(AA), ORE(ORE), DTU(DTU) {}
428 
429   CallInst *findTRECandidate(BasicBlock *BB,
430                              bool CannotTailCallElimCallsMarkedTail);
431 
432   void createTailRecurseLoopHeader(CallInst *CI);
433 
434   void insertAccumulator(Instruction *AccRecInstr);
435 
436   bool eliminateCall(CallInst *CI);
437 
438   void cleanupAndFinalize();
439 
440   bool processBlock(BasicBlock &BB, bool CannotTailCallElimCallsMarkedTail);
441 
442 public:
443   static bool eliminate(Function &F, const TargetTransformInfo *TTI,
444                         AliasAnalysis *AA, OptimizationRemarkEmitter *ORE,
445                         DomTreeUpdater &DTU);
446 };
447 } // namespace
448 
449 CallInst *TailRecursionEliminator::findTRECandidate(
450     BasicBlock *BB, bool CannotTailCallElimCallsMarkedTail) {
451   Instruction *TI = BB->getTerminator();
452 
453   if (&BB->front() == TI) // Make sure there is something before the terminator.
454     return nullptr;
455 
456   // Scan backwards from the return, checking to see if there is a tail call in
457   // this block.  If so, set CI to it.
458   CallInst *CI = nullptr;
459   BasicBlock::iterator BBI(TI);
460   while (true) {
461     CI = dyn_cast<CallInst>(BBI);
462     if (CI && CI->getCalledFunction() == &F)
463       break;
464 
465     if (BBI == BB->begin())
466       return nullptr;          // Didn't find a potential tail call.
467     --BBI;
468   }
469 
470   // If this call is marked as a tail call, and if there are dynamic allocas in
471   // the function, we cannot perform this optimization.
472   if (CI->isTailCall() && CannotTailCallElimCallsMarkedTail)
473     return nullptr;
474 
475   // As a special case, detect code like this:
476   //   double fabs(double f) { return __builtin_fabs(f); } // a 'fabs' call
477   // and disable this xform in this case, because the code generator will
478   // lower the call to fabs into inline code.
479   if (BB == &F.getEntryBlock() &&
480       firstNonDbg(BB->front().getIterator()) == CI &&
481       firstNonDbg(std::next(BB->begin())) == TI && CI->getCalledFunction() &&
482       !TTI->isLoweredToCall(CI->getCalledFunction())) {
483     // A single-block function with just a call and a return. Check that
484     // the arguments match.
485     auto I = CI->arg_begin(), E = CI->arg_end();
486     Function::arg_iterator FI = F.arg_begin(), FE = F.arg_end();
487     for (; I != E && FI != FE; ++I, ++FI)
488       if (*I != &*FI) break;
489     if (I == E && FI == FE)
490       return nullptr;
491   }
492 
493   return CI;
494 }
495 
496 void TailRecursionEliminator::createTailRecurseLoopHeader(CallInst *CI) {
497   HeaderBB = &F.getEntryBlock();
498   BasicBlock *NewEntry = BasicBlock::Create(F.getContext(), "", &F, HeaderBB);
499   NewEntry->takeName(HeaderBB);
500   HeaderBB->setName("tailrecurse");
501   BranchInst *BI = BranchInst::Create(HeaderBB, NewEntry);
502   BI->setDebugLoc(CI->getDebugLoc());
503 
504   // If this function has self recursive calls in the tail position where some
505   // are marked tail and some are not, only transform one flavor or another.
506   // We have to choose whether we move allocas in the entry block to the new
507   // entry block or not, so we can't make a good choice for both. We make this
508   // decision here based on whether the first call we found to remove is
509   // marked tail.
510   // NOTE: We could do slightly better here in the case that the function has
511   // no entry block allocas.
512   RemovableCallsMustBeMarkedTail = CI->isTailCall();
513 
514   // If this tail call is marked 'tail' and if there are any allocas in the
515   // entry block, move them up to the new entry block.
516   if (RemovableCallsMustBeMarkedTail)
517     // Move all fixed sized allocas from HeaderBB to NewEntry.
518     for (BasicBlock::iterator OEBI = HeaderBB->begin(), E = HeaderBB->end(),
519                               NEBI = NewEntry->begin();
520          OEBI != E;)
521       if (AllocaInst *AI = dyn_cast<AllocaInst>(OEBI++))
522         if (isa<ConstantInt>(AI->getArraySize()))
523           AI->moveBefore(&*NEBI);
524 
525   // Now that we have created a new block, which jumps to the entry
526   // block, insert a PHI node for each argument of the function.
527   // For now, we initialize each PHI to only have the real arguments
528   // which are passed in.
529   Instruction *InsertPos = &HeaderBB->front();
530   for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
531     PHINode *PN =
532         PHINode::Create(I->getType(), 2, I->getName() + ".tr", InsertPos);
533     I->replaceAllUsesWith(PN); // Everyone use the PHI node now!
534     PN->addIncoming(&*I, NewEntry);
535     ArgumentPHIs.push_back(PN);
536   }
537 
538   // If the function doen't return void, create the RetPN and RetKnownPN PHI
539   // nodes to track our return value. We initialize RetPN with undef and
540   // RetKnownPN with false since we can't know our return value at function
541   // entry.
542   Type *RetType = F.getReturnType();
543   if (!RetType->isVoidTy()) {
544     Type *BoolType = Type::getInt1Ty(F.getContext());
545     RetPN = PHINode::Create(RetType, 2, "ret.tr", InsertPos);
546     RetKnownPN = PHINode::Create(BoolType, 2, "ret.known.tr", InsertPos);
547 
548     RetPN->addIncoming(UndefValue::get(RetType), NewEntry);
549     RetKnownPN->addIncoming(ConstantInt::getFalse(BoolType), NewEntry);
550   }
551 
552   // The entry block was changed from HeaderBB to NewEntry.
553   // The forward DominatorTree needs to be recalculated when the EntryBB is
554   // changed. In this corner-case we recalculate the entire tree.
555   DTU.recalculate(*NewEntry->getParent());
556 }
557 
558 void TailRecursionEliminator::insertAccumulator(Instruction *AccRecInstr) {
559   assert(!AccPN && "Trying to insert multiple accumulators");
560 
561   AccumulatorRecursionInstr = AccRecInstr;
562 
563   // Start by inserting a new PHI node for the accumulator.
564   pred_iterator PB = pred_begin(HeaderBB), PE = pred_end(HeaderBB);
565   AccPN = PHINode::Create(F.getReturnType(), std::distance(PB, PE) + 1,
566                           "accumulator.tr", &HeaderBB->front());
567 
568   // Loop over all of the predecessors of the tail recursion block.  For the
569   // real entry into the function we seed the PHI with the identity constant for
570   // the accumulation operation.  For any other existing branches to this block
571   // (due to other tail recursions eliminated) the accumulator is not modified.
572   // Because we haven't added the branch in the current block to HeaderBB yet,
573   // it will not show up as a predecessor.
574   for (pred_iterator PI = PB; PI != PE; ++PI) {
575     BasicBlock *P = *PI;
576     if (P == &F.getEntryBlock()) {
577       Constant *Identity = ConstantExpr::getBinOpIdentity(
578           AccRecInstr->getOpcode(), AccRecInstr->getType());
579       AccPN->addIncoming(Identity, P);
580     } else {
581       AccPN->addIncoming(AccPN, P);
582     }
583   }
584 
585   ++NumAccumAdded;
586 }
587 
588 bool TailRecursionEliminator::eliminateCall(CallInst *CI) {
589   ReturnInst *Ret = cast<ReturnInst>(CI->getParent()->getTerminator());
590 
591   // Ok, we found a potential tail call.  We can currently only transform the
592   // tail call if all of the instructions between the call and the return are
593   // movable to above the call itself, leaving the call next to the return.
594   // Check that this is the case now.
595   Instruction *AccRecInstr = nullptr;
596   BasicBlock::iterator BBI(CI);
597   for (++BBI; &*BBI != Ret; ++BBI) {
598     if (canMoveAboveCall(&*BBI, CI, AA))
599       continue;
600 
601     // If we can't move the instruction above the call, it might be because it
602     // is an associative and commutative operation that could be transformed
603     // using accumulator recursion elimination.  Check to see if this is the
604     // case, and if so, remember which instruction accumulates for later.
605     if (AccPN || !canTransformAccumulatorRecursion(&*BBI, CI))
606       return false; // We cannot eliminate the tail recursion!
607 
608     // Yes, this is accumulator recursion.  Remember which instruction
609     // accumulates.
610     AccRecInstr = &*BBI;
611   }
612 
613   BasicBlock *BB = Ret->getParent();
614 
615   using namespace ore;
616   ORE->emit([&]() {
617     return OptimizationRemark(DEBUG_TYPE, "tailcall-recursion", CI)
618            << "transforming tail recursion into loop";
619   });
620 
621   // OK! We can transform this tail call.  If this is the first one found,
622   // create the new entry block, allowing us to branch back to the old entry.
623   if (!HeaderBB)
624     createTailRecurseLoopHeader(CI);
625 
626   if (RemovableCallsMustBeMarkedTail && !CI->isTailCall())
627     return false;
628 
629   // Ok, now that we know we have a pseudo-entry block WITH all of the
630   // required PHI nodes, add entries into the PHI node for the actual
631   // parameters passed into the tail-recursive call.
632   for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i)
633     ArgumentPHIs[i]->addIncoming(CI->getArgOperand(i), BB);
634 
635   if (AccRecInstr) {
636     insertAccumulator(AccRecInstr);
637 
638     // Rewrite the accumulator recursion instruction so that it does not use
639     // the result of the call anymore, instead, use the PHI node we just
640     // inserted.
641     AccRecInstr->setOperand(AccRecInstr->getOperand(0) != CI, AccPN);
642   }
643 
644   // Update our return value tracking
645   if (RetPN) {
646     if (Ret->getReturnValue() == CI || AccRecInstr) {
647       // Defer selecting a return value
648       RetPN->addIncoming(RetPN, BB);
649       RetKnownPN->addIncoming(RetKnownPN, BB);
650     } else {
651       // We found a return value we want to use, insert a select instruction to
652       // select it if we don't already know what our return value will be and
653       // store the result in our return value PHI node.
654       SelectInst *SI = SelectInst::Create(
655           RetKnownPN, RetPN, Ret->getReturnValue(), "current.ret.tr", Ret);
656       RetSelects.push_back(SI);
657 
658       RetPN->addIncoming(SI, BB);
659       RetKnownPN->addIncoming(ConstantInt::getTrue(RetKnownPN->getType()), BB);
660     }
661 
662     if (AccPN)
663       AccPN->addIncoming(AccRecInstr ? AccRecInstr : AccPN, BB);
664   }
665 
666   // Now that all of the PHI nodes are in place, remove the call and
667   // ret instructions, replacing them with an unconditional branch.
668   BranchInst *NewBI = BranchInst::Create(HeaderBB, Ret);
669   NewBI->setDebugLoc(CI->getDebugLoc());
670 
671   BB->getInstList().erase(Ret);  // Remove return.
672   BB->getInstList().erase(CI);   // Remove call.
673   DTU.applyUpdates({{DominatorTree::Insert, BB, HeaderBB}});
674   ++NumEliminated;
675   return true;
676 }
677 
678 void TailRecursionEliminator::cleanupAndFinalize() {
679   // If we eliminated any tail recursions, it's possible that we inserted some
680   // silly PHI nodes which just merge an initial value (the incoming operand)
681   // with themselves.  Check to see if we did and clean up our mess if so.  This
682   // occurs when a function passes an argument straight through to its tail
683   // call.
684   for (PHINode *PN : ArgumentPHIs) {
685     // If the PHI Node is a dynamic constant, replace it with the value it is.
686     if (Value *PNV = SimplifyInstruction(PN, F.getParent()->getDataLayout())) {
687       PN->replaceAllUsesWith(PNV);
688       PN->eraseFromParent();
689     }
690   }
691 
692   if (RetPN) {
693     if (RetSelects.empty()) {
694       // If we didn't insert any select instructions, then we know we didn't
695       // store a return value and we can remove the PHI nodes we inserted.
696       RetPN->dropAllReferences();
697       RetPN->eraseFromParent();
698 
699       RetKnownPN->dropAllReferences();
700       RetKnownPN->eraseFromParent();
701 
702       if (AccPN) {
703         // We need to insert a copy of our accumulator instruction before any
704         // return in the function, and return its result instead.
705         Instruction *AccRecInstr = AccumulatorRecursionInstr;
706         for (BasicBlock &BB : F) {
707           ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator());
708           if (!RI)
709             continue;
710 
711           Instruction *AccRecInstrNew = AccRecInstr->clone();
712           AccRecInstrNew->setName("accumulator.ret.tr");
713           AccRecInstrNew->setOperand(AccRecInstr->getOperand(0) == AccPN,
714                                      RI->getOperand(0));
715           AccRecInstrNew->insertBefore(RI);
716           RI->setOperand(0, AccRecInstrNew);
717         }
718       }
719     } else {
720       // We need to insert a select instruction before any return left in the
721       // function to select our stored return value if we have one.
722       for (BasicBlock &BB : F) {
723         ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator());
724         if (!RI)
725           continue;
726 
727         SelectInst *SI = SelectInst::Create(
728             RetKnownPN, RetPN, RI->getOperand(0), "current.ret.tr", RI);
729         RetSelects.push_back(SI);
730         RI->setOperand(0, SI);
731       }
732 
733       if (AccPN) {
734         // We need to insert a copy of our accumulator instruction before any
735         // of the selects we inserted, and select its result instead.
736         Instruction *AccRecInstr = AccumulatorRecursionInstr;
737         for (SelectInst *SI : RetSelects) {
738           Instruction *AccRecInstrNew = AccRecInstr->clone();
739           AccRecInstrNew->setName("accumulator.ret.tr");
740           AccRecInstrNew->setOperand(AccRecInstr->getOperand(0) == AccPN,
741                                      SI->getFalseValue());
742           AccRecInstrNew->insertBefore(SI);
743           SI->setFalseValue(AccRecInstrNew);
744         }
745       }
746     }
747   }
748 }
749 
750 bool TailRecursionEliminator::processBlock(
751     BasicBlock &BB, bool CannotTailCallElimCallsMarkedTail) {
752   Instruction *TI = BB.getTerminator();
753 
754   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
755     if (BI->isConditional())
756       return false;
757 
758     BasicBlock *Succ = BI->getSuccessor(0);
759     ReturnInst *Ret = dyn_cast<ReturnInst>(Succ->getFirstNonPHIOrDbg(true));
760 
761     if (!Ret)
762       return false;
763 
764     CallInst *CI = findTRECandidate(&BB, CannotTailCallElimCallsMarkedTail);
765 
766     if (!CI)
767       return false;
768 
769     LLVM_DEBUG(dbgs() << "FOLDING: " << *Succ
770                       << "INTO UNCOND BRANCH PRED: " << BB);
771     FoldReturnIntoUncondBranch(Ret, Succ, &BB, &DTU);
772     ++NumRetDuped;
773 
774     // If all predecessors of Succ have been eliminated by
775     // FoldReturnIntoUncondBranch, delete it.  It is important to empty it,
776     // because the ret instruction in there is still using a value which
777     // eliminateCall will attempt to remove.  This block can only contain
778     // instructions that can't have uses, therefore it is safe to remove.
779     if (pred_empty(Succ))
780       DTU.deleteBB(Succ);
781 
782     eliminateCall(CI);
783     return true;
784   } else if (isa<ReturnInst>(TI)) {
785     CallInst *CI = findTRECandidate(&BB, CannotTailCallElimCallsMarkedTail);
786 
787     if (CI)
788       return eliminateCall(CI);
789   }
790 
791   return false;
792 }
793 
794 bool TailRecursionEliminator::eliminate(Function &F,
795                                         const TargetTransformInfo *TTI,
796                                         AliasAnalysis *AA,
797                                         OptimizationRemarkEmitter *ORE,
798                                         DomTreeUpdater &DTU) {
799   if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true")
800     return false;
801 
802   bool MadeChange = false;
803   bool AllCallsAreTailCalls = false;
804   MadeChange |= markTails(F, AllCallsAreTailCalls, ORE);
805   if (!AllCallsAreTailCalls)
806     return MadeChange;
807 
808   // If this function is a varargs function, we won't be able to PHI the args
809   // right, so don't even try to convert it...
810   if (F.getFunctionType()->isVarArg())
811     return MadeChange;
812 
813   // If false, we cannot perform TRE on tail calls marked with the 'tail'
814   // attribute, because doing so would cause the stack size to increase (real
815   // TRE would deallocate variable sized allocas, TRE doesn't).
816   bool CanTRETailMarkedCall = canTRE(F);
817 
818   // Change any tail recursive calls to loops.
819   TailRecursionEliminator TRE(F, TTI, AA, ORE, DTU);
820 
821   for (BasicBlock &BB : F)
822     MadeChange |= TRE.processBlock(BB, !CanTRETailMarkedCall);
823 
824   TRE.cleanupAndFinalize();
825 
826   return MadeChange;
827 }
828 
829 namespace {
830 struct TailCallElim : public FunctionPass {
831   static char ID; // Pass identification, replacement for typeid
832   TailCallElim() : FunctionPass(ID) {
833     initializeTailCallElimPass(*PassRegistry::getPassRegistry());
834   }
835 
836   void getAnalysisUsage(AnalysisUsage &AU) const override {
837     AU.addRequired<TargetTransformInfoWrapperPass>();
838     AU.addRequired<AAResultsWrapperPass>();
839     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
840     AU.addPreserved<GlobalsAAWrapperPass>();
841     AU.addPreserved<DominatorTreeWrapperPass>();
842     AU.addPreserved<PostDominatorTreeWrapperPass>();
843   }
844 
845   bool runOnFunction(Function &F) override {
846     if (skipFunction(F))
847       return false;
848 
849     auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
850     auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
851     auto *PDTWP = getAnalysisIfAvailable<PostDominatorTreeWrapperPass>();
852     auto *PDT = PDTWP ? &PDTWP->getPostDomTree() : nullptr;
853     // There is no noticable performance difference here between Lazy and Eager
854     // UpdateStrategy based on some test results. It is feasible to switch the
855     // UpdateStrategy to Lazy if we find it profitable later.
856     DomTreeUpdater DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Eager);
857 
858     return TailRecursionEliminator::eliminate(
859         F, &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F),
860         &getAnalysis<AAResultsWrapperPass>().getAAResults(),
861         &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(), DTU);
862   }
863 };
864 }
865 
866 char TailCallElim::ID = 0;
867 INITIALIZE_PASS_BEGIN(TailCallElim, "tailcallelim", "Tail Call Elimination",
868                       false, false)
869 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
870 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
871 INITIALIZE_PASS_END(TailCallElim, "tailcallelim", "Tail Call Elimination",
872                     false, false)
873 
874 // Public interface to the TailCallElimination pass
875 FunctionPass *llvm::createTailCallEliminationPass() {
876   return new TailCallElim();
877 }
878 
879 PreservedAnalyses TailCallElimPass::run(Function &F,
880                                         FunctionAnalysisManager &AM) {
881 
882   TargetTransformInfo &TTI = AM.getResult<TargetIRAnalysis>(F);
883   AliasAnalysis &AA = AM.getResult<AAManager>(F);
884   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
885   auto *DT = AM.getCachedResult<DominatorTreeAnalysis>(F);
886   auto *PDT = AM.getCachedResult<PostDominatorTreeAnalysis>(F);
887   // There is no noticable performance difference here between Lazy and Eager
888   // UpdateStrategy based on some test results. It is feasible to switch the
889   // UpdateStrategy to Lazy if we find it profitable later.
890   DomTreeUpdater DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Eager);
891   bool Changed = TailRecursionEliminator::eliminate(F, &TTI, &AA, &ORE, DTU);
892 
893   if (!Changed)
894     return PreservedAnalyses::all();
895   PreservedAnalyses PA;
896   PA.preserve<GlobalsAA>();
897   PA.preserve<DominatorTreeAnalysis>();
898   PA.preserve<PostDominatorTreeAnalysis>();
899   return PA;
900 }
901