1 //===- BreakCriticalEdges.cpp - Critical Edge Elimination Pass ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // BreakCriticalEdges pass - Break all of the critical edges in the CFG by
10 // inserting a dummy basic block.  This pass may be "required" by passes that
11 // cannot deal with critical edges.  For this usage, the structure type is
12 // forward declared.  This pass obviously invalidates the CFG, but can update
13 // dominator trees.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/Transforms/Utils/BreakCriticalEdges.h"
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/BlockFrequencyInfo.h"
22 #include "llvm/Analysis/BranchProbabilityInfo.h"
23 #include "llvm/Analysis/CFG.h"
24 #include "llvm/Analysis/LoopInfo.h"
25 #include "llvm/Analysis/MemorySSAUpdater.h"
26 #include "llvm/Analysis/PostDominators.h"
27 #include "llvm/IR/CFG.h"
28 #include "llvm/IR/Dominators.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/InitializePasses.h"
31 #include "llvm/Transforms/Utils.h"
32 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
33 #include "llvm/Transforms/Utils/Cloning.h"
34 #include "llvm/Transforms/Utils/ValueMapper.h"
35 using namespace llvm;
36 
37 #define DEBUG_TYPE "break-crit-edges"
38 
39 STATISTIC(NumBroken, "Number of blocks inserted");
40 
41 namespace {
42   struct BreakCriticalEdges : public FunctionPass {
43     static char ID; // Pass identification, replacement for typeid
44     BreakCriticalEdges() : FunctionPass(ID) {
45       initializeBreakCriticalEdgesPass(*PassRegistry::getPassRegistry());
46     }
47 
48     bool runOnFunction(Function &F) override {
49       auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
50       auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
51 
52       auto *PDTWP = getAnalysisIfAvailable<PostDominatorTreeWrapperPass>();
53       auto *PDT = PDTWP ? &PDTWP->getPostDomTree() : nullptr;
54 
55       auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
56       auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
57       unsigned N =
58           SplitAllCriticalEdges(F, CriticalEdgeSplittingOptions(DT, LI, nullptr, PDT));
59       NumBroken += N;
60       return N > 0;
61     }
62 
63     void getAnalysisUsage(AnalysisUsage &AU) const override {
64       AU.addPreserved<DominatorTreeWrapperPass>();
65       AU.addPreserved<LoopInfoWrapperPass>();
66 
67       // No loop canonicalization guarantees are broken by this pass.
68       AU.addPreservedID(LoopSimplifyID);
69     }
70   };
71 }
72 
73 char BreakCriticalEdges::ID = 0;
74 INITIALIZE_PASS(BreakCriticalEdges, "break-crit-edges",
75                 "Break critical edges in CFG", false, false)
76 
77 // Publicly exposed interface to pass...
78 char &llvm::BreakCriticalEdgesID = BreakCriticalEdges::ID;
79 FunctionPass *llvm::createBreakCriticalEdgesPass() {
80   return new BreakCriticalEdges();
81 }
82 
83 PreservedAnalyses BreakCriticalEdgesPass::run(Function &F,
84                                               FunctionAnalysisManager &AM) {
85   auto *DT = AM.getCachedResult<DominatorTreeAnalysis>(F);
86   auto *LI = AM.getCachedResult<LoopAnalysis>(F);
87   unsigned N = SplitAllCriticalEdges(F, CriticalEdgeSplittingOptions(DT, LI));
88   NumBroken += N;
89   if (N == 0)
90     return PreservedAnalyses::all();
91   PreservedAnalyses PA;
92   PA.preserve<DominatorTreeAnalysis>();
93   PA.preserve<LoopAnalysis>();
94   return PA;
95 }
96 
97 //===----------------------------------------------------------------------===//
98 //    Implementation of the external critical edge manipulation functions
99 //===----------------------------------------------------------------------===//
100 
101 BasicBlock *llvm::SplitCriticalEdge(Instruction *TI, unsigned SuccNum,
102                                     const CriticalEdgeSplittingOptions &Options,
103                                     const Twine &BBName) {
104   if (!isCriticalEdge(TI, SuccNum, Options.MergeIdenticalEdges))
105     return nullptr;
106 
107   return SplitKnownCriticalEdge(TI, SuccNum, Options, BBName);
108 }
109 
110 BasicBlock *
111 llvm::SplitKnownCriticalEdge(Instruction *TI, unsigned SuccNum,
112                              const CriticalEdgeSplittingOptions &Options,
113                              const Twine &BBName) {
114   assert(!isa<IndirectBrInst>(TI) &&
115          "Cannot split critical edge from IndirectBrInst");
116 
117   BasicBlock *TIBB = TI->getParent();
118   BasicBlock *DestBB = TI->getSuccessor(SuccNum);
119 
120   // Splitting the critical edge to a pad block is non-trivial. Don't do
121   // it in this generic function.
122   if (DestBB->isEHPad()) return nullptr;
123 
124   if (Options.IgnoreUnreachableDests &&
125       isa<UnreachableInst>(DestBB->getFirstNonPHIOrDbgOrLifetime()))
126     return nullptr;
127 
128   auto *LI = Options.LI;
129   SmallVector<BasicBlock *, 4> LoopPreds;
130   // Check if extra modifications will be required to preserve loop-simplify
131   // form after splitting. If it would require splitting blocks with IndirectBr
132   // terminators, bail out if preserving loop-simplify form is requested.
133   if (LI) {
134     if (Loop *TIL = LI->getLoopFor(TIBB)) {
135 
136       // The only way that we can break LoopSimplify form by splitting a
137       // critical edge is if after the split there exists some edge from TIL to
138       // DestBB *and* the only edge into DestBB from outside of TIL is that of
139       // NewBB. If the first isn't true, then LoopSimplify still holds, NewBB
140       // is the new exit block and it has no non-loop predecessors. If the
141       // second isn't true, then DestBB was not in LoopSimplify form prior to
142       // the split as it had a non-loop predecessor. In both of these cases,
143       // the predecessor must be directly in TIL, not in a subloop, or again
144       // LoopSimplify doesn't hold.
145       for (BasicBlock *P : predecessors(DestBB)) {
146         if (P == TIBB)
147           continue; // The new block is known.
148         if (LI->getLoopFor(P) != TIL) {
149           // No need to re-simplify, it wasn't to start with.
150           LoopPreds.clear();
151           break;
152         }
153         LoopPreds.push_back(P);
154       }
155       // Loop-simplify form can be preserved, if we can split all in-loop
156       // predecessors.
157       if (any_of(LoopPreds, [](BasicBlock *Pred) {
158             return isa<IndirectBrInst>(Pred->getTerminator());
159           })) {
160         if (Options.PreserveLoopSimplify)
161           return nullptr;
162         LoopPreds.clear();
163       }
164     }
165   }
166 
167   // Create a new basic block, linking it into the CFG.
168   BasicBlock *NewBB = nullptr;
169   if (BBName.str() != "")
170     NewBB = BasicBlock::Create(TI->getContext(), BBName);
171   else
172     NewBB = BasicBlock::Create(TI->getContext(), TIBB->getName() + "." +
173                                                      DestBB->getName() +
174                                                      "_crit_edge");
175   // Create our unconditional branch.
176   BranchInst *NewBI = BranchInst::Create(DestBB, NewBB);
177   NewBI->setDebugLoc(TI->getDebugLoc());
178 
179   // Insert the block into the function... right after the block TI lives in.
180   Function &F = *TIBB->getParent();
181   Function::iterator FBBI = TIBB->getIterator();
182   F.insert(++FBBI, NewBB);
183 
184   // Branch to the new block, breaking the edge.
185   TI->setSuccessor(SuccNum, NewBB);
186 
187   // If there are any PHI nodes in DestBB, we need to update them so that they
188   // merge incoming values from NewBB instead of from TIBB.
189   {
190     unsigned BBIdx = 0;
191     for (BasicBlock::iterator I = DestBB->begin(); isa<PHINode>(I); ++I) {
192       // We no longer enter through TIBB, now we come in through NewBB.
193       // Revector exactly one entry in the PHI node that used to come from
194       // TIBB to come from NewBB.
195       PHINode *PN = cast<PHINode>(I);
196 
197       // Reuse the previous value of BBIdx if it lines up.  In cases where we
198       // have multiple phi nodes with *lots* of predecessors, this is a speed
199       // win because we don't have to scan the PHI looking for TIBB.  This
200       // happens because the BB list of PHI nodes are usually in the same
201       // order.
202       if (PN->getIncomingBlock(BBIdx) != TIBB)
203         BBIdx = PN->getBasicBlockIndex(TIBB);
204       PN->setIncomingBlock(BBIdx, NewBB);
205     }
206   }
207 
208   // If there are any other edges from TIBB to DestBB, update those to go
209   // through the split block, making those edges non-critical as well (and
210   // reducing the number of phi entries in the DestBB if relevant).
211   if (Options.MergeIdenticalEdges) {
212     for (unsigned i = SuccNum+1, e = TI->getNumSuccessors(); i != e; ++i) {
213       if (TI->getSuccessor(i) != DestBB) continue;
214 
215       // Remove an entry for TIBB from DestBB phi nodes.
216       DestBB->removePredecessor(TIBB, Options.KeepOneInputPHIs);
217 
218       // We found another edge to DestBB, go to NewBB instead.
219       TI->setSuccessor(i, NewBB);
220     }
221   }
222 
223   // If we have nothing to update, just return.
224   auto *DT = Options.DT;
225   auto *PDT = Options.PDT;
226   auto *MSSAU = Options.MSSAU;
227   if (MSSAU)
228     MSSAU->wireOldPredecessorsToNewImmediatePredecessor(
229         DestBB, NewBB, {TIBB}, Options.MergeIdenticalEdges);
230 
231   if (!DT && !PDT && !LI)
232     return NewBB;
233 
234   if (DT || PDT) {
235     // Update the DominatorTree.
236     //       ---> NewBB -----\
237     //      /                 V
238     //  TIBB -------\\------> DestBB
239     //
240     // First, inform the DT about the new path from TIBB to DestBB via NewBB,
241     // then delete the old edge from TIBB to DestBB. By doing this in that order
242     // DestBB stays reachable in the DT the whole time and its subtree doesn't
243     // get disconnected.
244     SmallVector<DominatorTree::UpdateType, 3> Updates;
245     Updates.push_back({DominatorTree::Insert, TIBB, NewBB});
246     Updates.push_back({DominatorTree::Insert, NewBB, DestBB});
247     if (!llvm::is_contained(successors(TIBB), DestBB))
248       Updates.push_back({DominatorTree::Delete, TIBB, DestBB});
249 
250     if (DT)
251       DT->applyUpdates(Updates);
252     if (PDT)
253       PDT->applyUpdates(Updates);
254   }
255 
256   // Update LoopInfo if it is around.
257   if (LI) {
258     if (Loop *TIL = LI->getLoopFor(TIBB)) {
259       // If one or the other blocks were not in a loop, the new block is not
260       // either, and thus LI doesn't need to be updated.
261       if (Loop *DestLoop = LI->getLoopFor(DestBB)) {
262         if (TIL == DestLoop) {
263           // Both in the same loop, the NewBB joins loop.
264           DestLoop->addBasicBlockToLoop(NewBB, *LI);
265         } else if (TIL->contains(DestLoop)) {
266           // Edge from an outer loop to an inner loop.  Add to the outer loop.
267           TIL->addBasicBlockToLoop(NewBB, *LI);
268         } else if (DestLoop->contains(TIL)) {
269           // Edge from an inner loop to an outer loop.  Add to the outer loop.
270           DestLoop->addBasicBlockToLoop(NewBB, *LI);
271         } else {
272           // Edge from two loops with no containment relation.  Because these
273           // are natural loops, we know that the destination block must be the
274           // header of its loop (adding a branch into a loop elsewhere would
275           // create an irreducible loop).
276           assert(DestLoop->getHeader() == DestBB &&
277                  "Should not create irreducible loops!");
278           if (Loop *P = DestLoop->getParentLoop())
279             P->addBasicBlockToLoop(NewBB, *LI);
280         }
281       }
282 
283       // If TIBB is in a loop and DestBB is outside of that loop, we may need
284       // to update LoopSimplify form and LCSSA form.
285       if (!TIL->contains(DestBB)) {
286         assert(!TIL->contains(NewBB) &&
287                "Split point for loop exit is contained in loop!");
288 
289         // Update LCSSA form in the newly created exit block.
290         if (Options.PreserveLCSSA) {
291           createPHIsForSplitLoopExit(TIBB, NewBB, DestBB);
292         }
293 
294         if (!LoopPreds.empty()) {
295           assert(!DestBB->isEHPad() && "We don't split edges to EH pads!");
296           BasicBlock *NewExitBB = SplitBlockPredecessors(
297               DestBB, LoopPreds, "split", DT, LI, MSSAU, Options.PreserveLCSSA);
298           if (Options.PreserveLCSSA)
299             createPHIsForSplitLoopExit(LoopPreds, NewExitBB, DestBB);
300         }
301       }
302     }
303   }
304 
305   return NewBB;
306 }
307 
308 // Return the unique indirectbr predecessor of a block. This may return null
309 // even if such a predecessor exists, if it's not useful for splitting.
310 // If a predecessor is found, OtherPreds will contain all other (non-indirectbr)
311 // predecessors of BB.
312 static BasicBlock *
313 findIBRPredecessor(BasicBlock *BB, SmallVectorImpl<BasicBlock *> &OtherPreds) {
314   // Verify we have exactly one IBR predecessor.
315   // Conservatively bail out if one of the other predecessors is not a "regular"
316   // terminator (that is, not a switch or a br).
317   BasicBlock *IBB = nullptr;
318   for (BasicBlock *PredBB : predecessors(BB)) {
319     Instruction *PredTerm = PredBB->getTerminator();
320     switch (PredTerm->getOpcode()) {
321     case Instruction::IndirectBr:
322       if (IBB)
323         return nullptr;
324       IBB = PredBB;
325       break;
326     case Instruction::Br:
327     case Instruction::Switch:
328       OtherPreds.push_back(PredBB);
329       continue;
330     default:
331       return nullptr;
332     }
333   }
334 
335   return IBB;
336 }
337 
338 bool llvm::SplitIndirectBrCriticalEdges(Function &F,
339                                         bool IgnoreBlocksWithoutPHI,
340                                         BranchProbabilityInfo *BPI,
341                                         BlockFrequencyInfo *BFI) {
342   // Check whether the function has any indirectbrs, and collect which blocks
343   // they may jump to. Since most functions don't have indirect branches,
344   // this lowers the common case's overhead to O(Blocks) instead of O(Edges).
345   SmallSetVector<BasicBlock *, 16> Targets;
346   for (auto &BB : F) {
347     auto *IBI = dyn_cast<IndirectBrInst>(BB.getTerminator());
348     if (!IBI)
349       continue;
350 
351     for (unsigned Succ = 0, E = IBI->getNumSuccessors(); Succ != E; ++Succ)
352       Targets.insert(IBI->getSuccessor(Succ));
353   }
354 
355   if (Targets.empty())
356     return false;
357 
358   bool ShouldUpdateAnalysis = BPI && BFI;
359   bool Changed = false;
360   for (BasicBlock *Target : Targets) {
361     if (IgnoreBlocksWithoutPHI && Target->phis().empty())
362       continue;
363 
364     SmallVector<BasicBlock *, 16> OtherPreds;
365     BasicBlock *IBRPred = findIBRPredecessor(Target, OtherPreds);
366     // If we did not found an indirectbr, or the indirectbr is the only
367     // incoming edge, this isn't the kind of edge we're looking for.
368     if (!IBRPred || OtherPreds.empty())
369       continue;
370 
371     // Don't even think about ehpads/landingpads.
372     Instruction *FirstNonPHI = Target->getFirstNonPHI();
373     if (FirstNonPHI->isEHPad() || Target->isLandingPad())
374       continue;
375 
376     // Remember edge probabilities if needed.
377     SmallVector<BranchProbability, 4> EdgeProbabilities;
378     if (ShouldUpdateAnalysis) {
379       EdgeProbabilities.reserve(Target->getTerminator()->getNumSuccessors());
380       for (unsigned I = 0, E = Target->getTerminator()->getNumSuccessors();
381            I < E; ++I)
382         EdgeProbabilities.emplace_back(BPI->getEdgeProbability(Target, I));
383       BPI->eraseBlock(Target);
384     }
385 
386     BasicBlock *BodyBlock = Target->splitBasicBlock(FirstNonPHI, ".split");
387     if (ShouldUpdateAnalysis) {
388       // Copy the BFI/BPI from Target to BodyBlock.
389       BPI->setEdgeProbability(BodyBlock, EdgeProbabilities);
390       BFI->setBlockFreq(BodyBlock, BFI->getBlockFreq(Target).getFrequency());
391     }
392     // It's possible Target was its own successor through an indirectbr.
393     // In this case, the indirectbr now comes from BodyBlock.
394     if (IBRPred == Target)
395       IBRPred = BodyBlock;
396 
397     // At this point Target only has PHIs, and BodyBlock has the rest of the
398     // block's body. Create a copy of Target that will be used by the "direct"
399     // preds.
400     ValueToValueMapTy VMap;
401     BasicBlock *DirectSucc = CloneBasicBlock(Target, VMap, ".clone", &F);
402 
403     BlockFrequency BlockFreqForDirectSucc;
404     for (BasicBlock *Pred : OtherPreds) {
405       // If the target is a loop to itself, then the terminator of the split
406       // block (BodyBlock) needs to be updated.
407       BasicBlock *Src = Pred != Target ? Pred : BodyBlock;
408       Src->getTerminator()->replaceUsesOfWith(Target, DirectSucc);
409       if (ShouldUpdateAnalysis)
410         BlockFreqForDirectSucc += BFI->getBlockFreq(Src) *
411             BPI->getEdgeProbability(Src, DirectSucc);
412     }
413     if (ShouldUpdateAnalysis) {
414       BFI->setBlockFreq(DirectSucc, BlockFreqForDirectSucc.getFrequency());
415       BlockFrequency NewBlockFreqForTarget =
416           BFI->getBlockFreq(Target) - BlockFreqForDirectSucc;
417       BFI->setBlockFreq(Target, NewBlockFreqForTarget.getFrequency());
418     }
419 
420     // Ok, now fix up the PHIs. We know the two blocks only have PHIs, and that
421     // they are clones, so the number of PHIs are the same.
422     // (a) Remove the edge coming from IBRPred from the "Direct" PHI
423     // (b) Leave that as the only edge in the "Indirect" PHI.
424     // (c) Merge the two in the body block.
425     BasicBlock::iterator Indirect = Target->begin(),
426                          End = Target->getFirstNonPHI()->getIterator();
427     BasicBlock::iterator Direct = DirectSucc->begin();
428     BasicBlock::iterator MergeInsert = BodyBlock->getFirstInsertionPt();
429 
430     assert(&*End == Target->getTerminator() &&
431            "Block was expected to only contain PHIs");
432 
433     while (Indirect != End) {
434       PHINode *DirPHI = cast<PHINode>(Direct);
435       PHINode *IndPHI = cast<PHINode>(Indirect);
436 
437       // Now, clean up - the direct block shouldn't get the indirect value,
438       // and vice versa.
439       DirPHI->removeIncomingValue(IBRPred);
440       Direct++;
441 
442       // Advance the pointer here, to avoid invalidation issues when the old
443       // PHI is erased.
444       Indirect++;
445 
446       PHINode *NewIndPHI = PHINode::Create(IndPHI->getType(), 1, "ind", IndPHI);
447       NewIndPHI->addIncoming(IndPHI->getIncomingValueForBlock(IBRPred),
448                              IBRPred);
449 
450       // Create a PHI in the body block, to merge the direct and indirect
451       // predecessors.
452       PHINode *MergePHI =
453           PHINode::Create(IndPHI->getType(), 2, "merge", &*MergeInsert);
454       MergePHI->addIncoming(NewIndPHI, Target);
455       MergePHI->addIncoming(DirPHI, DirectSucc);
456 
457       IndPHI->replaceAllUsesWith(MergePHI);
458       IndPHI->eraseFromParent();
459     }
460 
461     Changed = true;
462   }
463 
464   return Changed;
465 }
466