1 //===- BreakCriticalEdges.cpp - Critical Edge Elimination Pass ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // BreakCriticalEdges pass - Break all of the critical edges in the CFG by
10 // inserting a dummy basic block.  This pass may be "required" by passes that
11 // cannot deal with critical edges.  For this usage, the structure type is
12 // forward declared.  This pass obviously invalidates the CFG, but can update
13 // dominator trees.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/Transforms/Utils/BreakCriticalEdges.h"
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/BlockFrequencyInfo.h"
22 #include "llvm/Analysis/BranchProbabilityInfo.h"
23 #include "llvm/Analysis/CFG.h"
24 #include "llvm/Analysis/LoopInfo.h"
25 #include "llvm/Analysis/MemorySSAUpdater.h"
26 #include "llvm/Analysis/PostDominators.h"
27 #include "llvm/IR/CFG.h"
28 #include "llvm/IR/Dominators.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/Type.h"
31 #include "llvm/InitializePasses.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Transforms/Utils.h"
34 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
35 #include "llvm/Transforms/Utils/Cloning.h"
36 #include "llvm/Transforms/Utils/ValueMapper.h"
37 using namespace llvm;
38 
39 #define DEBUG_TYPE "break-crit-edges"
40 
41 STATISTIC(NumBroken, "Number of blocks inserted");
42 
43 namespace {
44   struct BreakCriticalEdges : public FunctionPass {
45     static char ID; // Pass identification, replacement for typeid
46     BreakCriticalEdges() : FunctionPass(ID) {
47       initializeBreakCriticalEdgesPass(*PassRegistry::getPassRegistry());
48     }
49 
50     bool runOnFunction(Function &F) override {
51       auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
52       auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
53 
54       auto *PDTWP = getAnalysisIfAvailable<PostDominatorTreeWrapperPass>();
55       auto *PDT = PDTWP ? &PDTWP->getPostDomTree() : nullptr;
56 
57       auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
58       auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
59       unsigned N =
60           SplitAllCriticalEdges(F, CriticalEdgeSplittingOptions(DT, LI, nullptr, PDT));
61       NumBroken += N;
62       return N > 0;
63     }
64 
65     void getAnalysisUsage(AnalysisUsage &AU) const override {
66       AU.addPreserved<DominatorTreeWrapperPass>();
67       AU.addPreserved<LoopInfoWrapperPass>();
68 
69       // No loop canonicalization guarantees are broken by this pass.
70       AU.addPreservedID(LoopSimplifyID);
71     }
72   };
73 }
74 
75 char BreakCriticalEdges::ID = 0;
76 INITIALIZE_PASS(BreakCriticalEdges, "break-crit-edges",
77                 "Break critical edges in CFG", false, false)
78 
79 // Publicly exposed interface to pass...
80 char &llvm::BreakCriticalEdgesID = BreakCriticalEdges::ID;
81 FunctionPass *llvm::createBreakCriticalEdgesPass() {
82   return new BreakCriticalEdges();
83 }
84 
85 PreservedAnalyses BreakCriticalEdgesPass::run(Function &F,
86                                               FunctionAnalysisManager &AM) {
87   auto *DT = AM.getCachedResult<DominatorTreeAnalysis>(F);
88   auto *LI = AM.getCachedResult<LoopAnalysis>(F);
89   unsigned N = SplitAllCriticalEdges(F, CriticalEdgeSplittingOptions(DT, LI));
90   NumBroken += N;
91   if (N == 0)
92     return PreservedAnalyses::all();
93   PreservedAnalyses PA;
94   PA.preserve<DominatorTreeAnalysis>();
95   PA.preserve<LoopAnalysis>();
96   return PA;
97 }
98 
99 //===----------------------------------------------------------------------===//
100 //    Implementation of the external critical edge manipulation functions
101 //===----------------------------------------------------------------------===//
102 
103 /// When a loop exit edge is split, LCSSA form may require new PHIs in the new
104 /// exit block. This function inserts the new PHIs, as needed. Preds is a list
105 /// of preds inside the loop, SplitBB is the new loop exit block, and DestBB is
106 /// the old loop exit, now the successor of SplitBB.
107 static void createPHIsForSplitLoopExit(ArrayRef<BasicBlock *> Preds,
108                                        BasicBlock *SplitBB,
109                                        BasicBlock *DestBB) {
110   // SplitBB shouldn't have anything non-trivial in it yet.
111   assert((SplitBB->getFirstNonPHI() == SplitBB->getTerminator() ||
112           SplitBB->isLandingPad()) && "SplitBB has non-PHI nodes!");
113 
114   // For each PHI in the destination block.
115   for (PHINode &PN : DestBB->phis()) {
116     unsigned Idx = PN.getBasicBlockIndex(SplitBB);
117     Value *V = PN.getIncomingValue(Idx);
118 
119     // If the input is a PHI which already satisfies LCSSA, don't create
120     // a new one.
121     if (const PHINode *VP = dyn_cast<PHINode>(V))
122       if (VP->getParent() == SplitBB)
123         continue;
124 
125     // Otherwise a new PHI is needed. Create one and populate it.
126     PHINode *NewPN = PHINode::Create(
127         PN.getType(), Preds.size(), "split",
128         SplitBB->isLandingPad() ? &SplitBB->front() : SplitBB->getTerminator());
129     for (unsigned i = 0, e = Preds.size(); i != e; ++i)
130       NewPN->addIncoming(V, Preds[i]);
131 
132     // Update the original PHI.
133     PN.setIncomingValue(Idx, NewPN);
134   }
135 }
136 
137 BasicBlock *
138 llvm::SplitCriticalEdge(Instruction *TI, unsigned SuccNum,
139                         const CriticalEdgeSplittingOptions &Options) {
140   if (!isCriticalEdge(TI, SuccNum, Options.MergeIdenticalEdges))
141     return nullptr;
142 
143   assert(!isa<IndirectBrInst>(TI) &&
144          "Cannot split critical edge from IndirectBrInst");
145 
146   BasicBlock *TIBB = TI->getParent();
147   BasicBlock *DestBB = TI->getSuccessor(SuccNum);
148 
149   // Splitting the critical edge to a pad block is non-trivial. Don't do
150   // it in this generic function.
151   if (DestBB->isEHPad()) return nullptr;
152 
153   if (Options.IgnoreUnreachableDests &&
154       isa<UnreachableInst>(DestBB->getFirstNonPHIOrDbgOrLifetime()))
155     return nullptr;
156 
157   auto *LI = Options.LI;
158   SmallVector<BasicBlock *, 4> LoopPreds;
159   // Check if extra modifications will be required to preserve loop-simplify
160   // form after splitting. If it would require splitting blocks with IndirectBr
161   // terminators, bail out if preserving loop-simplify form is requested.
162   if (LI) {
163     if (Loop *TIL = LI->getLoopFor(TIBB)) {
164 
165       // The only that we can break LoopSimplify form by splitting a critical
166       // edge is if after the split there exists some edge from TIL to DestBB
167       // *and* the only edge into DestBB from outside of TIL is that of
168       // NewBB. If the first isn't true, then LoopSimplify still holds, NewBB
169       // is the new exit block and it has no non-loop predecessors. If the
170       // second isn't true, then DestBB was not in LoopSimplify form prior to
171       // the split as it had a non-loop predecessor. In both of these cases,
172       // the predecessor must be directly in TIL, not in a subloop, or again
173       // LoopSimplify doesn't hold.
174       for (pred_iterator I = pred_begin(DestBB), E = pred_end(DestBB); I != E;
175            ++I) {
176         BasicBlock *P = *I;
177         if (P == TIBB)
178           continue; // The new block is known.
179         if (LI->getLoopFor(P) != TIL) {
180           // No need to re-simplify, it wasn't to start with.
181           LoopPreds.clear();
182           break;
183         }
184         LoopPreds.push_back(P);
185       }
186       // Loop-simplify form can be preserved, if we can split all in-loop
187       // predecessors.
188       if (any_of(LoopPreds, [](BasicBlock *Pred) {
189             return isa<IndirectBrInst>(Pred->getTerminator());
190           })) {
191         if (Options.PreserveLoopSimplify)
192           return nullptr;
193         LoopPreds.clear();
194       }
195     }
196   }
197 
198   // Create a new basic block, linking it into the CFG.
199   BasicBlock *NewBB = BasicBlock::Create(TI->getContext(),
200                       TIBB->getName() + "." + DestBB->getName() + "_crit_edge");
201   // Create our unconditional branch.
202   BranchInst *NewBI = BranchInst::Create(DestBB, NewBB);
203   NewBI->setDebugLoc(TI->getDebugLoc());
204 
205   // Insert the block into the function... right after the block TI lives in.
206   Function &F = *TIBB->getParent();
207   Function::iterator FBBI = TIBB->getIterator();
208   F.getBasicBlockList().insert(++FBBI, NewBB);
209 
210   // Branch to the new block, breaking the edge.
211   TI->setSuccessor(SuccNum, NewBB);
212 
213   // If there are any PHI nodes in DestBB, we need to update them so that they
214   // merge incoming values from NewBB instead of from TIBB.
215   {
216     unsigned BBIdx = 0;
217     for (BasicBlock::iterator I = DestBB->begin(); isa<PHINode>(I); ++I) {
218       // We no longer enter through TIBB, now we come in through NewBB.
219       // Revector exactly one entry in the PHI node that used to come from
220       // TIBB to come from NewBB.
221       PHINode *PN = cast<PHINode>(I);
222 
223       // Reuse the previous value of BBIdx if it lines up.  In cases where we
224       // have multiple phi nodes with *lots* of predecessors, this is a speed
225       // win because we don't have to scan the PHI looking for TIBB.  This
226       // happens because the BB list of PHI nodes are usually in the same
227       // order.
228       if (PN->getIncomingBlock(BBIdx) != TIBB)
229         BBIdx = PN->getBasicBlockIndex(TIBB);
230       PN->setIncomingBlock(BBIdx, NewBB);
231     }
232   }
233 
234   // If there are any other edges from TIBB to DestBB, update those to go
235   // through the split block, making those edges non-critical as well (and
236   // reducing the number of phi entries in the DestBB if relevant).
237   if (Options.MergeIdenticalEdges) {
238     for (unsigned i = SuccNum+1, e = TI->getNumSuccessors(); i != e; ++i) {
239       if (TI->getSuccessor(i) != DestBB) continue;
240 
241       // Remove an entry for TIBB from DestBB phi nodes.
242       DestBB->removePredecessor(TIBB, Options.KeepOneInputPHIs);
243 
244       // We found another edge to DestBB, go to NewBB instead.
245       TI->setSuccessor(i, NewBB);
246     }
247   }
248 
249   // If we have nothing to update, just return.
250   auto *DT = Options.DT;
251   auto *PDT = Options.PDT;
252   auto *MSSAU = Options.MSSAU;
253   if (MSSAU)
254     MSSAU->wireOldPredecessorsToNewImmediatePredecessor(
255         DestBB, NewBB, {TIBB}, Options.MergeIdenticalEdges);
256 
257   if (!DT && !PDT && !LI)
258     return NewBB;
259 
260   if (DT || PDT) {
261     // Update the DominatorTree.
262     //       ---> NewBB -----\
263     //      /                 V
264     //  TIBB -------\\------> DestBB
265     //
266     // First, inform the DT about the new path from TIBB to DestBB via NewBB,
267     // then delete the old edge from TIBB to DestBB. By doing this in that order
268     // DestBB stays reachable in the DT the whole time and its subtree doesn't
269     // get disconnected.
270     SmallVector<DominatorTree::UpdateType, 3> Updates;
271     Updates.push_back({DominatorTree::Insert, TIBB, NewBB});
272     Updates.push_back({DominatorTree::Insert, NewBB, DestBB});
273     if (llvm::find(successors(TIBB), DestBB) == succ_end(TIBB))
274       Updates.push_back({DominatorTree::Delete, TIBB, DestBB});
275 
276     if (DT)
277       DT->applyUpdates(Updates);
278     if (PDT)
279       PDT->applyUpdates(Updates);
280   }
281 
282   // Update LoopInfo if it is around.
283   if (LI) {
284     if (Loop *TIL = LI->getLoopFor(TIBB)) {
285       // If one or the other blocks were not in a loop, the new block is not
286       // either, and thus LI doesn't need to be updated.
287       if (Loop *DestLoop = LI->getLoopFor(DestBB)) {
288         if (TIL == DestLoop) {
289           // Both in the same loop, the NewBB joins loop.
290           DestLoop->addBasicBlockToLoop(NewBB, *LI);
291         } else if (TIL->contains(DestLoop)) {
292           // Edge from an outer loop to an inner loop.  Add to the outer loop.
293           TIL->addBasicBlockToLoop(NewBB, *LI);
294         } else if (DestLoop->contains(TIL)) {
295           // Edge from an inner loop to an outer loop.  Add to the outer loop.
296           DestLoop->addBasicBlockToLoop(NewBB, *LI);
297         } else {
298           // Edge from two loops with no containment relation.  Because these
299           // are natural loops, we know that the destination block must be the
300           // header of its loop (adding a branch into a loop elsewhere would
301           // create an irreducible loop).
302           assert(DestLoop->getHeader() == DestBB &&
303                  "Should not create irreducible loops!");
304           if (Loop *P = DestLoop->getParentLoop())
305             P->addBasicBlockToLoop(NewBB, *LI);
306         }
307       }
308 
309       // If TIBB is in a loop and DestBB is outside of that loop, we may need
310       // to update LoopSimplify form and LCSSA form.
311       if (!TIL->contains(DestBB)) {
312         assert(!TIL->contains(NewBB) &&
313                "Split point for loop exit is contained in loop!");
314 
315         // Update LCSSA form in the newly created exit block.
316         if (Options.PreserveLCSSA) {
317           createPHIsForSplitLoopExit(TIBB, NewBB, DestBB);
318         }
319 
320         if (!LoopPreds.empty()) {
321           assert(!DestBB->isEHPad() && "We don't split edges to EH pads!");
322           BasicBlock *NewExitBB = SplitBlockPredecessors(
323               DestBB, LoopPreds, "split", DT, LI, MSSAU, Options.PreserveLCSSA);
324           if (Options.PreserveLCSSA)
325             createPHIsForSplitLoopExit(LoopPreds, NewExitBB, DestBB);
326         }
327       }
328     }
329   }
330 
331   return NewBB;
332 }
333 
334 // Return the unique indirectbr predecessor of a block. This may return null
335 // even if such a predecessor exists, if it's not useful for splitting.
336 // If a predecessor is found, OtherPreds will contain all other (non-indirectbr)
337 // predecessors of BB.
338 static BasicBlock *
339 findIBRPredecessor(BasicBlock *BB, SmallVectorImpl<BasicBlock *> &OtherPreds) {
340   // If the block doesn't have any PHIs, we don't care about it, since there's
341   // no point in splitting it.
342   PHINode *PN = dyn_cast<PHINode>(BB->begin());
343   if (!PN)
344     return nullptr;
345 
346   // Verify we have exactly one IBR predecessor.
347   // Conservatively bail out if one of the other predecessors is not a "regular"
348   // terminator (that is, not a switch or a br).
349   BasicBlock *IBB = nullptr;
350   for (unsigned Pred = 0, E = PN->getNumIncomingValues(); Pred != E; ++Pred) {
351     BasicBlock *PredBB = PN->getIncomingBlock(Pred);
352     Instruction *PredTerm = PredBB->getTerminator();
353     switch (PredTerm->getOpcode()) {
354     case Instruction::IndirectBr:
355       if (IBB)
356         return nullptr;
357       IBB = PredBB;
358       break;
359     case Instruction::Br:
360     case Instruction::Switch:
361       OtherPreds.push_back(PredBB);
362       continue;
363     default:
364       return nullptr;
365     }
366   }
367 
368   return IBB;
369 }
370 
371 bool llvm::SplitIndirectBrCriticalEdges(Function &F,
372                                         BranchProbabilityInfo *BPI,
373                                         BlockFrequencyInfo *BFI) {
374   // Check whether the function has any indirectbrs, and collect which blocks
375   // they may jump to. Since most functions don't have indirect branches,
376   // this lowers the common case's overhead to O(Blocks) instead of O(Edges).
377   SmallSetVector<BasicBlock *, 16> Targets;
378   for (auto &BB : F) {
379     auto *IBI = dyn_cast<IndirectBrInst>(BB.getTerminator());
380     if (!IBI)
381       continue;
382 
383     for (unsigned Succ = 0, E = IBI->getNumSuccessors(); Succ != E; ++Succ)
384       Targets.insert(IBI->getSuccessor(Succ));
385   }
386 
387   if (Targets.empty())
388     return false;
389 
390   bool ShouldUpdateAnalysis = BPI && BFI;
391   bool Changed = false;
392   for (BasicBlock *Target : Targets) {
393     SmallVector<BasicBlock *, 16> OtherPreds;
394     BasicBlock *IBRPred = findIBRPredecessor(Target, OtherPreds);
395     // If we did not found an indirectbr, or the indirectbr is the only
396     // incoming edge, this isn't the kind of edge we're looking for.
397     if (!IBRPred || OtherPreds.empty())
398       continue;
399 
400     // Don't even think about ehpads/landingpads.
401     Instruction *FirstNonPHI = Target->getFirstNonPHI();
402     if (FirstNonPHI->isEHPad() || Target->isLandingPad())
403       continue;
404 
405     // Remember edge probabilities if needed.
406     SmallVector<BranchProbability, 4> EdgeProbabilities;
407     if (ShouldUpdateAnalysis) {
408       EdgeProbabilities.reserve(Target->getTerminator()->getNumSuccessors());
409       for (unsigned I = 0, E = Target->getTerminator()->getNumSuccessors();
410            I < E; ++I)
411         EdgeProbabilities.emplace_back(BPI->getEdgeProbability(Target, I));
412       BPI->eraseBlock(Target);
413     }
414 
415     BasicBlock *BodyBlock = Target->splitBasicBlock(FirstNonPHI, ".split");
416     if (ShouldUpdateAnalysis) {
417       // Copy the BFI/BPI from Target to BodyBlock.
418       BPI->setEdgeProbability(BodyBlock, EdgeProbabilities);
419       BFI->setBlockFreq(BodyBlock, BFI->getBlockFreq(Target).getFrequency());
420     }
421     // It's possible Target was its own successor through an indirectbr.
422     // In this case, the indirectbr now comes from BodyBlock.
423     if (IBRPred == Target)
424       IBRPred = BodyBlock;
425 
426     // At this point Target only has PHIs, and BodyBlock has the rest of the
427     // block's body. Create a copy of Target that will be used by the "direct"
428     // preds.
429     ValueToValueMapTy VMap;
430     BasicBlock *DirectSucc = CloneBasicBlock(Target, VMap, ".clone", &F);
431 
432     BlockFrequency BlockFreqForDirectSucc;
433     for (BasicBlock *Pred : OtherPreds) {
434       // If the target is a loop to itself, then the terminator of the split
435       // block (BodyBlock) needs to be updated.
436       BasicBlock *Src = Pred != Target ? Pred : BodyBlock;
437       Src->getTerminator()->replaceUsesOfWith(Target, DirectSucc);
438       if (ShouldUpdateAnalysis)
439         BlockFreqForDirectSucc += BFI->getBlockFreq(Src) *
440             BPI->getEdgeProbability(Src, DirectSucc);
441     }
442     if (ShouldUpdateAnalysis) {
443       BFI->setBlockFreq(DirectSucc, BlockFreqForDirectSucc.getFrequency());
444       BlockFrequency NewBlockFreqForTarget =
445           BFI->getBlockFreq(Target) - BlockFreqForDirectSucc;
446       BFI->setBlockFreq(Target, NewBlockFreqForTarget.getFrequency());
447     }
448 
449     // Ok, now fix up the PHIs. We know the two blocks only have PHIs, and that
450     // they are clones, so the number of PHIs are the same.
451     // (a) Remove the edge coming from IBRPred from the "Direct" PHI
452     // (b) Leave that as the only edge in the "Indirect" PHI.
453     // (c) Merge the two in the body block.
454     BasicBlock::iterator Indirect = Target->begin(),
455                          End = Target->getFirstNonPHI()->getIterator();
456     BasicBlock::iterator Direct = DirectSucc->begin();
457     BasicBlock::iterator MergeInsert = BodyBlock->getFirstInsertionPt();
458 
459     assert(&*End == Target->getTerminator() &&
460            "Block was expected to only contain PHIs");
461 
462     while (Indirect != End) {
463       PHINode *DirPHI = cast<PHINode>(Direct);
464       PHINode *IndPHI = cast<PHINode>(Indirect);
465 
466       // Now, clean up - the direct block shouldn't get the indirect value,
467       // and vice versa.
468       DirPHI->removeIncomingValue(IBRPred);
469       Direct++;
470 
471       // Advance the pointer here, to avoid invalidation issues when the old
472       // PHI is erased.
473       Indirect++;
474 
475       PHINode *NewIndPHI = PHINode::Create(IndPHI->getType(), 1, "ind", IndPHI);
476       NewIndPHI->addIncoming(IndPHI->getIncomingValueForBlock(IBRPred),
477                              IBRPred);
478 
479       // Create a PHI in the body block, to merge the direct and indirect
480       // predecessors.
481       PHINode *MergePHI =
482           PHINode::Create(IndPHI->getType(), 2, "merge", &*MergeInsert);
483       MergePHI->addIncoming(NewIndPHI, Target);
484       MergePHI->addIncoming(DirPHI, DirectSucc);
485 
486       IndPHI->replaceAllUsesWith(MergePHI);
487       IndPHI->eraseFromParent();
488     }
489 
490     Changed = true;
491   }
492 
493   return Changed;
494 }
495