1 //===- CloneFunction.cpp - Clone a function into another function ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the CloneFunctionInto interface, which is used as the
10 // low-level function cloner.  This is used by the CloneFunction and function
11 // inliner to do the dirty work of copying the body of a function around.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/Analysis/ConstantFolding.h"
18 #include "llvm/Analysis/DomTreeUpdater.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/IR/CFG.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DebugInfo.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/GlobalVariable.h"
27 #include "llvm/IR/Instructions.h"
28 #include "llvm/IR/IntrinsicInst.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/IR/Metadata.h"
31 #include "llvm/IR/Module.h"
32 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
33 #include "llvm/Transforms/Utils/Cloning.h"
34 #include "llvm/Transforms/Utils/Local.h"
35 #include "llvm/Transforms/Utils/ValueMapper.h"
36 #include <map>
37 using namespace llvm;
38 
39 /// See comments in Cloning.h.
40 BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB, ValueToValueMapTy &VMap,
41                                   const Twine &NameSuffix, Function *F,
42                                   ClonedCodeInfo *CodeInfo,
43                                   DebugInfoFinder *DIFinder) {
44   DenseMap<const MDNode *, MDNode *> Cache;
45   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F);
46   if (BB->hasName())
47     NewBB->setName(BB->getName() + NameSuffix);
48 
49   bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
50   Module *TheModule = F ? F->getParent() : nullptr;
51 
52   // Loop over all instructions, and copy them over.
53   for (const Instruction &I : *BB) {
54     if (DIFinder && TheModule)
55       DIFinder->processInstruction(*TheModule, I);
56 
57     Instruction *NewInst = I.clone();
58     if (I.hasName())
59       NewInst->setName(I.getName() + NameSuffix);
60     NewBB->getInstList().push_back(NewInst);
61     VMap[&I] = NewInst; // Add instruction map to value.
62 
63     hasCalls |= (isa<CallInst>(I) && !isa<DbgInfoIntrinsic>(I));
64     if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
65       if (isa<ConstantInt>(AI->getArraySize()))
66         hasStaticAllocas = true;
67       else
68         hasDynamicAllocas = true;
69     }
70   }
71 
72   if (CodeInfo) {
73     CodeInfo->ContainsCalls          |= hasCalls;
74     CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
75     CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
76                                         BB != &BB->getParent()->getEntryBlock();
77   }
78   return NewBB;
79 }
80 
81 // Clone OldFunc into NewFunc, transforming the old arguments into references to
82 // VMap values.
83 //
84 void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
85                              ValueToValueMapTy &VMap,
86                              bool ModuleLevelChanges,
87                              SmallVectorImpl<ReturnInst*> &Returns,
88                              const char *NameSuffix, ClonedCodeInfo *CodeInfo,
89                              ValueMapTypeRemapper *TypeMapper,
90                              ValueMaterializer *Materializer) {
91   assert(NameSuffix && "NameSuffix cannot be null!");
92 
93 #ifndef NDEBUG
94   for (const Argument &I : OldFunc->args())
95     assert(VMap.count(&I) && "No mapping from source argument specified!");
96 #endif
97 
98   // Copy all attributes other than those stored in the AttributeList.  We need
99   // to remap the parameter indices of the AttributeList.
100   AttributeList NewAttrs = NewFunc->getAttributes();
101   NewFunc->copyAttributesFrom(OldFunc);
102   NewFunc->setAttributes(NewAttrs);
103 
104   // Fix up the personality function that got copied over.
105   if (OldFunc->hasPersonalityFn())
106     NewFunc->setPersonalityFn(
107         MapValue(OldFunc->getPersonalityFn(), VMap,
108                  ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
109                  TypeMapper, Materializer));
110 
111   SmallVector<AttributeSet, 4> NewArgAttrs(NewFunc->arg_size());
112   AttributeList OldAttrs = OldFunc->getAttributes();
113 
114   // Clone any argument attributes that are present in the VMap.
115   for (const Argument &OldArg : OldFunc->args()) {
116     if (Argument *NewArg = dyn_cast<Argument>(VMap[&OldArg])) {
117       NewArgAttrs[NewArg->getArgNo()] =
118           OldAttrs.getParamAttributes(OldArg.getArgNo());
119     }
120   }
121 
122   NewFunc->setAttributes(
123       AttributeList::get(NewFunc->getContext(), OldAttrs.getFnAttributes(),
124                          OldAttrs.getRetAttributes(), NewArgAttrs));
125 
126   bool MustCloneSP =
127       OldFunc->getParent() && OldFunc->getParent() == NewFunc->getParent();
128   DISubprogram *SP = OldFunc->getSubprogram();
129   if (SP) {
130     assert(!MustCloneSP || ModuleLevelChanges);
131     // Add mappings for some DebugInfo nodes that we don't want duplicated
132     // even if they're distinct.
133     auto &MD = VMap.MD();
134     MD[SP->getUnit()].reset(SP->getUnit());
135     MD[SP->getType()].reset(SP->getType());
136     MD[SP->getFile()].reset(SP->getFile());
137     // If we're not cloning into the same module, no need to clone the
138     // subprogram
139     if (!MustCloneSP)
140       MD[SP].reset(SP);
141   }
142 
143   SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
144   OldFunc->getAllMetadata(MDs);
145   for (auto MD : MDs) {
146     NewFunc->addMetadata(
147         MD.first,
148         *MapMetadata(MD.second, VMap,
149                      ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
150                      TypeMapper, Materializer));
151   }
152 
153   // When we remap instructions, we want to avoid duplicating inlined
154   // DISubprograms, so record all subprograms we find as we duplicate
155   // instructions and then freeze them in the MD map.
156   // We also record information about dbg.value and dbg.declare to avoid
157   // duplicating the types.
158   DebugInfoFinder DIFinder;
159 
160   // Loop over all of the basic blocks in the function, cloning them as
161   // appropriate.  Note that we save BE this way in order to handle cloning of
162   // recursive functions into themselves.
163   //
164   for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
165        BI != BE; ++BI) {
166     const BasicBlock &BB = *BI;
167 
168     // Create a new basic block and copy instructions into it!
169     BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo,
170                                       ModuleLevelChanges ? &DIFinder : nullptr);
171 
172     // Add basic block mapping.
173     VMap[&BB] = CBB;
174 
175     // It is only legal to clone a function if a block address within that
176     // function is never referenced outside of the function.  Given that, we
177     // want to map block addresses from the old function to block addresses in
178     // the clone. (This is different from the generic ValueMapper
179     // implementation, which generates an invalid blockaddress when
180     // cloning a function.)
181     if (BB.hasAddressTaken()) {
182       Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
183                                               const_cast<BasicBlock*>(&BB));
184       VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB);
185     }
186 
187     // Note return instructions for the caller.
188     if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator()))
189       Returns.push_back(RI);
190   }
191 
192   for (DISubprogram *ISP : DIFinder.subprograms())
193     if (ISP != SP)
194       VMap.MD()[ISP].reset(ISP);
195 
196   for (DICompileUnit *CU : DIFinder.compile_units())
197     VMap.MD()[CU].reset(CU);
198 
199   for (DIType *Type : DIFinder.types())
200     VMap.MD()[Type].reset(Type);
201 
202   // Loop over all of the instructions in the function, fixing up operand
203   // references as we go.  This uses VMap to do all the hard work.
204   for (Function::iterator BB =
205            cast<BasicBlock>(VMap[&OldFunc->front()])->getIterator(),
206                           BE = NewFunc->end();
207        BB != BE; ++BB)
208     // Loop over all instructions, fixing each one as we find it...
209     for (Instruction &II : *BB)
210       RemapInstruction(&II, VMap,
211                        ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
212                        TypeMapper, Materializer);
213 
214   // Register all DICompileUnits of the old parent module in the new parent module
215   auto* OldModule = OldFunc->getParent();
216   auto* NewModule = NewFunc->getParent();
217   if (OldModule && NewModule && OldModule != NewModule && DIFinder.compile_unit_count()) {
218     auto* NMD = NewModule->getOrInsertNamedMetadata("llvm.dbg.cu");
219     // Avoid multiple insertions of the same DICompileUnit to NMD.
220     SmallPtrSet<const void*, 8> Visited;
221     for (auto* Operand : NMD->operands())
222       Visited.insert(Operand);
223     for (auto* Unit : DIFinder.compile_units())
224       // VMap.MD()[Unit] == Unit
225       if (Visited.insert(Unit).second)
226         NMD->addOperand(Unit);
227   }
228 }
229 
230 /// Return a copy of the specified function and add it to that function's
231 /// module.  Also, any references specified in the VMap are changed to refer to
232 /// their mapped value instead of the original one.  If any of the arguments to
233 /// the function are in the VMap, the arguments are deleted from the resultant
234 /// function.  The VMap is updated to include mappings from all of the
235 /// instructions and basicblocks in the function from their old to new values.
236 ///
237 Function *llvm::CloneFunction(Function *F, ValueToValueMapTy &VMap,
238                               ClonedCodeInfo *CodeInfo) {
239   std::vector<Type*> ArgTypes;
240 
241   // The user might be deleting arguments to the function by specifying them in
242   // the VMap.  If so, we need to not add the arguments to the arg ty vector
243   //
244   for (const Argument &I : F->args())
245     if (VMap.count(&I) == 0) // Haven't mapped the argument to anything yet?
246       ArgTypes.push_back(I.getType());
247 
248   // Create a new function type...
249   FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(),
250                                     ArgTypes, F->getFunctionType()->isVarArg());
251 
252   // Create the new function...
253   Function *NewF = Function::Create(FTy, F->getLinkage(), F->getAddressSpace(),
254                                     F->getName(), F->getParent());
255 
256   // Loop over the arguments, copying the names of the mapped arguments over...
257   Function::arg_iterator DestI = NewF->arg_begin();
258   for (const Argument & I : F->args())
259     if (VMap.count(&I) == 0) {     // Is this argument preserved?
260       DestI->setName(I.getName()); // Copy the name over...
261       VMap[&I] = &*DestI++;        // Add mapping to VMap
262     }
263 
264   SmallVector<ReturnInst*, 8> Returns;  // Ignore returns cloned.
265   CloneFunctionInto(NewF, F, VMap, F->getSubprogram() != nullptr, Returns, "",
266                     CodeInfo);
267 
268   return NewF;
269 }
270 
271 
272 
273 namespace {
274   /// This is a private class used to implement CloneAndPruneFunctionInto.
275   struct PruningFunctionCloner {
276     Function *NewFunc;
277     const Function *OldFunc;
278     ValueToValueMapTy &VMap;
279     bool ModuleLevelChanges;
280     const char *NameSuffix;
281     ClonedCodeInfo *CodeInfo;
282 
283   public:
284     PruningFunctionCloner(Function *newFunc, const Function *oldFunc,
285                           ValueToValueMapTy &valueMap, bool moduleLevelChanges,
286                           const char *nameSuffix, ClonedCodeInfo *codeInfo)
287         : NewFunc(newFunc), OldFunc(oldFunc), VMap(valueMap),
288           ModuleLevelChanges(moduleLevelChanges), NameSuffix(nameSuffix),
289           CodeInfo(codeInfo) {}
290 
291     /// The specified block is found to be reachable, clone it and
292     /// anything that it can reach.
293     void CloneBlock(const BasicBlock *BB,
294                     BasicBlock::const_iterator StartingInst,
295                     std::vector<const BasicBlock*> &ToClone);
296   };
297 }
298 
299 /// The specified block is found to be reachable, clone it and
300 /// anything that it can reach.
301 void PruningFunctionCloner::CloneBlock(const BasicBlock *BB,
302                                        BasicBlock::const_iterator StartingInst,
303                                        std::vector<const BasicBlock*> &ToClone){
304   WeakTrackingVH &BBEntry = VMap[BB];
305 
306   // Have we already cloned this block?
307   if (BBEntry) return;
308 
309   // Nope, clone it now.
310   BasicBlock *NewBB;
311   BBEntry = NewBB = BasicBlock::Create(BB->getContext());
312   if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
313 
314   // It is only legal to clone a function if a block address within that
315   // function is never referenced outside of the function.  Given that, we
316   // want to map block addresses from the old function to block addresses in
317   // the clone. (This is different from the generic ValueMapper
318   // implementation, which generates an invalid blockaddress when
319   // cloning a function.)
320   //
321   // Note that we don't need to fix the mapping for unreachable blocks;
322   // the default mapping there is safe.
323   if (BB->hasAddressTaken()) {
324     Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
325                                             const_cast<BasicBlock*>(BB));
326     VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB);
327   }
328 
329   bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
330 
331   // Loop over all instructions, and copy them over, DCE'ing as we go.  This
332   // loop doesn't include the terminator.
333   for (BasicBlock::const_iterator II = StartingInst, IE = --BB->end();
334        II != IE; ++II) {
335 
336     Instruction *NewInst = II->clone();
337 
338     // Eagerly remap operands to the newly cloned instruction, except for PHI
339     // nodes for which we defer processing until we update the CFG.
340     if (!isa<PHINode>(NewInst)) {
341       RemapInstruction(NewInst, VMap,
342                        ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
343 
344       // If we can simplify this instruction to some other value, simply add
345       // a mapping to that value rather than inserting a new instruction into
346       // the basic block.
347       if (Value *V =
348               SimplifyInstruction(NewInst, BB->getModule()->getDataLayout())) {
349         // On the off-chance that this simplifies to an instruction in the old
350         // function, map it back into the new function.
351         if (NewFunc != OldFunc)
352           if (Value *MappedV = VMap.lookup(V))
353             V = MappedV;
354 
355         if (!NewInst->mayHaveSideEffects()) {
356           VMap[&*II] = V;
357           NewInst->deleteValue();
358           continue;
359         }
360       }
361     }
362 
363     if (II->hasName())
364       NewInst->setName(II->getName()+NameSuffix);
365     VMap[&*II] = NewInst; // Add instruction map to value.
366     NewBB->getInstList().push_back(NewInst);
367     hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
368 
369     if (CodeInfo)
370       if (auto CS = ImmutableCallSite(&*II))
371         if (CS.hasOperandBundles())
372           CodeInfo->OperandBundleCallSites.push_back(NewInst);
373 
374     if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
375       if (isa<ConstantInt>(AI->getArraySize()))
376         hasStaticAllocas = true;
377       else
378         hasDynamicAllocas = true;
379     }
380   }
381 
382   // Finally, clone over the terminator.
383   const Instruction *OldTI = BB->getTerminator();
384   bool TerminatorDone = false;
385   if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) {
386     if (BI->isConditional()) {
387       // If the condition was a known constant in the callee...
388       ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
389       // Or is a known constant in the caller...
390       if (!Cond) {
391         Value *V = VMap.lookup(BI->getCondition());
392         Cond = dyn_cast_or_null<ConstantInt>(V);
393       }
394 
395       // Constant fold to uncond branch!
396       if (Cond) {
397         BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue());
398         VMap[OldTI] = BranchInst::Create(Dest, NewBB);
399         ToClone.push_back(Dest);
400         TerminatorDone = true;
401       }
402     }
403   } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) {
404     // If switching on a value known constant in the caller.
405     ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
406     if (!Cond) { // Or known constant after constant prop in the callee...
407       Value *V = VMap.lookup(SI->getCondition());
408       Cond = dyn_cast_or_null<ConstantInt>(V);
409     }
410     if (Cond) {     // Constant fold to uncond branch!
411       SwitchInst::ConstCaseHandle Case = *SI->findCaseValue(Cond);
412       BasicBlock *Dest = const_cast<BasicBlock*>(Case.getCaseSuccessor());
413       VMap[OldTI] = BranchInst::Create(Dest, NewBB);
414       ToClone.push_back(Dest);
415       TerminatorDone = true;
416     }
417   }
418 
419   if (!TerminatorDone) {
420     Instruction *NewInst = OldTI->clone();
421     if (OldTI->hasName())
422       NewInst->setName(OldTI->getName()+NameSuffix);
423     NewBB->getInstList().push_back(NewInst);
424     VMap[OldTI] = NewInst;             // Add instruction map to value.
425 
426     if (CodeInfo)
427       if (auto CS = ImmutableCallSite(OldTI))
428         if (CS.hasOperandBundles())
429           CodeInfo->OperandBundleCallSites.push_back(NewInst);
430 
431     // Recursively clone any reachable successor blocks.
432     const Instruction *TI = BB->getTerminator();
433     for (const BasicBlock *Succ : successors(TI))
434       ToClone.push_back(Succ);
435   }
436 
437   if (CodeInfo) {
438     CodeInfo->ContainsCalls          |= hasCalls;
439     CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
440     CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
441       BB != &BB->getParent()->front();
442   }
443 }
444 
445 /// This works like CloneAndPruneFunctionInto, except that it does not clone the
446 /// entire function. Instead it starts at an instruction provided by the caller
447 /// and copies (and prunes) only the code reachable from that instruction.
448 void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc,
449                                      const Instruction *StartingInst,
450                                      ValueToValueMapTy &VMap,
451                                      bool ModuleLevelChanges,
452                                      SmallVectorImpl<ReturnInst *> &Returns,
453                                      const char *NameSuffix,
454                                      ClonedCodeInfo *CodeInfo) {
455   assert(NameSuffix && "NameSuffix cannot be null!");
456 
457   ValueMapTypeRemapper *TypeMapper = nullptr;
458   ValueMaterializer *Materializer = nullptr;
459 
460 #ifndef NDEBUG
461   // If the cloning starts at the beginning of the function, verify that
462   // the function arguments are mapped.
463   if (!StartingInst)
464     for (const Argument &II : OldFunc->args())
465       assert(VMap.count(&II) && "No mapping from source argument specified!");
466 #endif
467 
468   PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges,
469                             NameSuffix, CodeInfo);
470   const BasicBlock *StartingBB;
471   if (StartingInst)
472     StartingBB = StartingInst->getParent();
473   else {
474     StartingBB = &OldFunc->getEntryBlock();
475     StartingInst = &StartingBB->front();
476   }
477 
478   // Clone the entry block, and anything recursively reachable from it.
479   std::vector<const BasicBlock*> CloneWorklist;
480   PFC.CloneBlock(StartingBB, StartingInst->getIterator(), CloneWorklist);
481   while (!CloneWorklist.empty()) {
482     const BasicBlock *BB = CloneWorklist.back();
483     CloneWorklist.pop_back();
484     PFC.CloneBlock(BB, BB->begin(), CloneWorklist);
485   }
486 
487   // Loop over all of the basic blocks in the old function.  If the block was
488   // reachable, we have cloned it and the old block is now in the value map:
489   // insert it into the new function in the right order.  If not, ignore it.
490   //
491   // Defer PHI resolution until rest of function is resolved.
492   SmallVector<const PHINode*, 16> PHIToResolve;
493   for (const BasicBlock &BI : *OldFunc) {
494     Value *V = VMap.lookup(&BI);
495     BasicBlock *NewBB = cast_or_null<BasicBlock>(V);
496     if (!NewBB) continue;  // Dead block.
497 
498     // Add the new block to the new function.
499     NewFunc->getBasicBlockList().push_back(NewBB);
500 
501     // Handle PHI nodes specially, as we have to remove references to dead
502     // blocks.
503     for (const PHINode &PN : BI.phis()) {
504       // PHI nodes may have been remapped to non-PHI nodes by the caller or
505       // during the cloning process.
506       if (isa<PHINode>(VMap[&PN]))
507         PHIToResolve.push_back(&PN);
508       else
509         break;
510     }
511 
512     // Finally, remap the terminator instructions, as those can't be remapped
513     // until all BBs are mapped.
514     RemapInstruction(NewBB->getTerminator(), VMap,
515                      ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
516                      TypeMapper, Materializer);
517   }
518 
519   // Defer PHI resolution until rest of function is resolved, PHI resolution
520   // requires the CFG to be up-to-date.
521   for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) {
522     const PHINode *OPN = PHIToResolve[phino];
523     unsigned NumPreds = OPN->getNumIncomingValues();
524     const BasicBlock *OldBB = OPN->getParent();
525     BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]);
526 
527     // Map operands for blocks that are live and remove operands for blocks
528     // that are dead.
529     for (; phino != PHIToResolve.size() &&
530          PHIToResolve[phino]->getParent() == OldBB; ++phino) {
531       OPN = PHIToResolve[phino];
532       PHINode *PN = cast<PHINode>(VMap[OPN]);
533       for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) {
534         Value *V = VMap.lookup(PN->getIncomingBlock(pred));
535         if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) {
536           Value *InVal = MapValue(PN->getIncomingValue(pred),
537                                   VMap,
538                         ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
539           assert(InVal && "Unknown input value?");
540           PN->setIncomingValue(pred, InVal);
541           PN->setIncomingBlock(pred, MappedBlock);
542         } else {
543           PN->removeIncomingValue(pred, false);
544           --pred;  // Revisit the next entry.
545           --e;
546         }
547       }
548     }
549 
550     // The loop above has removed PHI entries for those blocks that are dead
551     // and has updated others.  However, if a block is live (i.e. copied over)
552     // but its terminator has been changed to not go to this block, then our
553     // phi nodes will have invalid entries.  Update the PHI nodes in this
554     // case.
555     PHINode *PN = cast<PHINode>(NewBB->begin());
556     NumPreds = pred_size(NewBB);
557     if (NumPreds != PN->getNumIncomingValues()) {
558       assert(NumPreds < PN->getNumIncomingValues());
559       // Count how many times each predecessor comes to this block.
560       std::map<BasicBlock*, unsigned> PredCount;
561       for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB);
562            PI != E; ++PI)
563         --PredCount[*PI];
564 
565       // Figure out how many entries to remove from each PHI.
566       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
567         ++PredCount[PN->getIncomingBlock(i)];
568 
569       // At this point, the excess predecessor entries are positive in the
570       // map.  Loop over all of the PHIs and remove excess predecessor
571       // entries.
572       BasicBlock::iterator I = NewBB->begin();
573       for (; (PN = dyn_cast<PHINode>(I)); ++I) {
574         for (const auto &PCI : PredCount) {
575           BasicBlock *Pred = PCI.first;
576           for (unsigned NumToRemove = PCI.second; NumToRemove; --NumToRemove)
577             PN->removeIncomingValue(Pred, false);
578         }
579       }
580     }
581 
582     // If the loops above have made these phi nodes have 0 or 1 operand,
583     // replace them with undef or the input value.  We must do this for
584     // correctness, because 0-operand phis are not valid.
585     PN = cast<PHINode>(NewBB->begin());
586     if (PN->getNumIncomingValues() == 0) {
587       BasicBlock::iterator I = NewBB->begin();
588       BasicBlock::const_iterator OldI = OldBB->begin();
589       while ((PN = dyn_cast<PHINode>(I++))) {
590         Value *NV = UndefValue::get(PN->getType());
591         PN->replaceAllUsesWith(NV);
592         assert(VMap[&*OldI] == PN && "VMap mismatch");
593         VMap[&*OldI] = NV;
594         PN->eraseFromParent();
595         ++OldI;
596       }
597     }
598   }
599 
600   // Make a second pass over the PHINodes now that all of them have been
601   // remapped into the new function, simplifying the PHINode and performing any
602   // recursive simplifications exposed. This will transparently update the
603   // WeakTrackingVH in the VMap. Notably, we rely on that so that if we coalesce
604   // two PHINodes, the iteration over the old PHIs remains valid, and the
605   // mapping will just map us to the new node (which may not even be a PHI
606   // node).
607   const DataLayout &DL = NewFunc->getParent()->getDataLayout();
608   SmallSetVector<const Value *, 8> Worklist;
609   for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx)
610     if (isa<PHINode>(VMap[PHIToResolve[Idx]]))
611       Worklist.insert(PHIToResolve[Idx]);
612 
613   // Note that we must test the size on each iteration, the worklist can grow.
614   for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
615     const Value *OrigV = Worklist[Idx];
616     auto *I = dyn_cast_or_null<Instruction>(VMap.lookup(OrigV));
617     if (!I)
618       continue;
619 
620     // Skip over non-intrinsic callsites, we don't want to remove any nodes from
621     // the CGSCC.
622     CallSite CS = CallSite(I);
623     if (CS && CS.getCalledFunction() && !CS.getCalledFunction()->isIntrinsic())
624       continue;
625 
626     // See if this instruction simplifies.
627     Value *SimpleV = SimplifyInstruction(I, DL);
628     if (!SimpleV)
629       continue;
630 
631     // Stash away all the uses of the old instruction so we can check them for
632     // recursive simplifications after a RAUW. This is cheaper than checking all
633     // uses of To on the recursive step in most cases.
634     for (const User *U : OrigV->users())
635       Worklist.insert(cast<Instruction>(U));
636 
637     // Replace the instruction with its simplified value.
638     I->replaceAllUsesWith(SimpleV);
639 
640     // If the original instruction had no side effects, remove it.
641     if (isInstructionTriviallyDead(I))
642       I->eraseFromParent();
643     else
644       VMap[OrigV] = I;
645   }
646 
647   // Now that the inlined function body has been fully constructed, go through
648   // and zap unconditional fall-through branches. This happens all the time when
649   // specializing code: code specialization turns conditional branches into
650   // uncond branches, and this code folds them.
651   Function::iterator Begin = cast<BasicBlock>(VMap[StartingBB])->getIterator();
652   Function::iterator I = Begin;
653   while (I != NewFunc->end()) {
654     // We need to simplify conditional branches and switches with a constant
655     // operand. We try to prune these out when cloning, but if the
656     // simplification required looking through PHI nodes, those are only
657     // available after forming the full basic block. That may leave some here,
658     // and we still want to prune the dead code as early as possible.
659     //
660     // Do the folding before we check if the block is dead since we want code
661     // like
662     //  bb:
663     //    br i1 undef, label %bb, label %bb
664     // to be simplified to
665     //  bb:
666     //    br label %bb
667     // before we call I->getSinglePredecessor().
668     ConstantFoldTerminator(&*I);
669 
670     // Check if this block has become dead during inlining or other
671     // simplifications. Note that the first block will appear dead, as it has
672     // not yet been wired up properly.
673     if (I != Begin && (pred_begin(&*I) == pred_end(&*I) ||
674                        I->getSinglePredecessor() == &*I)) {
675       BasicBlock *DeadBB = &*I++;
676       DeleteDeadBlock(DeadBB);
677       continue;
678     }
679 
680     BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator());
681     if (!BI || BI->isConditional()) { ++I; continue; }
682 
683     BasicBlock *Dest = BI->getSuccessor(0);
684     if (!Dest->getSinglePredecessor()) {
685       ++I; continue;
686     }
687 
688     // We shouldn't be able to get single-entry PHI nodes here, as instsimplify
689     // above should have zapped all of them..
690     assert(!isa<PHINode>(Dest->begin()));
691 
692     // We know all single-entry PHI nodes in the inlined function have been
693     // removed, so we just need to splice the blocks.
694     BI->eraseFromParent();
695 
696     // Make all PHI nodes that referred to Dest now refer to I as their source.
697     Dest->replaceAllUsesWith(&*I);
698 
699     // Move all the instructions in the succ to the pred.
700     I->getInstList().splice(I->end(), Dest->getInstList());
701 
702     // Remove the dest block.
703     Dest->eraseFromParent();
704 
705     // Do not increment I, iteratively merge all things this block branches to.
706   }
707 
708   // Make a final pass over the basic blocks from the old function to gather
709   // any return instructions which survived folding. We have to do this here
710   // because we can iteratively remove and merge returns above.
711   for (Function::iterator I = cast<BasicBlock>(VMap[StartingBB])->getIterator(),
712                           E = NewFunc->end();
713        I != E; ++I)
714     if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator()))
715       Returns.push_back(RI);
716 }
717 
718 
719 /// This works exactly like CloneFunctionInto,
720 /// except that it does some simple constant prop and DCE on the fly.  The
721 /// effect of this is to copy significantly less code in cases where (for
722 /// example) a function call with constant arguments is inlined, and those
723 /// constant arguments cause a significant amount of code in the callee to be
724 /// dead.  Since this doesn't produce an exact copy of the input, it can't be
725 /// used for things like CloneFunction or CloneModule.
726 void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
727                                      ValueToValueMapTy &VMap,
728                                      bool ModuleLevelChanges,
729                                      SmallVectorImpl<ReturnInst*> &Returns,
730                                      const char *NameSuffix,
731                                      ClonedCodeInfo *CodeInfo,
732                                      Instruction *TheCall) {
733   CloneAndPruneIntoFromInst(NewFunc, OldFunc, &OldFunc->front().front(), VMap,
734                             ModuleLevelChanges, Returns, NameSuffix, CodeInfo);
735 }
736 
737 /// Remaps instructions in \p Blocks using the mapping in \p VMap.
738 void llvm::remapInstructionsInBlocks(
739     const SmallVectorImpl<BasicBlock *> &Blocks, ValueToValueMapTy &VMap) {
740   // Rewrite the code to refer to itself.
741   for (auto *BB : Blocks)
742     for (auto &Inst : *BB)
743       RemapInstruction(&Inst, VMap,
744                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
745 }
746 
747 /// Clones a loop \p OrigLoop.  Returns the loop and the blocks in \p
748 /// Blocks.
749 ///
750 /// Updates LoopInfo and DominatorTree assuming the loop is dominated by block
751 /// \p LoopDomBB.  Insert the new blocks before block specified in \p Before.
752 Loop *llvm::cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB,
753                                    Loop *OrigLoop, ValueToValueMapTy &VMap,
754                                    const Twine &NameSuffix, LoopInfo *LI,
755                                    DominatorTree *DT,
756                                    SmallVectorImpl<BasicBlock *> &Blocks) {
757   Function *F = OrigLoop->getHeader()->getParent();
758   Loop *ParentLoop = OrigLoop->getParentLoop();
759   DenseMap<Loop *, Loop *> LMap;
760 
761   Loop *NewLoop = LI->AllocateLoop();
762   LMap[OrigLoop] = NewLoop;
763   if (ParentLoop)
764     ParentLoop->addChildLoop(NewLoop);
765   else
766     LI->addTopLevelLoop(NewLoop);
767 
768   BasicBlock *OrigPH = OrigLoop->getLoopPreheader();
769   assert(OrigPH && "No preheader");
770   BasicBlock *NewPH = CloneBasicBlock(OrigPH, VMap, NameSuffix, F);
771   // To rename the loop PHIs.
772   VMap[OrigPH] = NewPH;
773   Blocks.push_back(NewPH);
774 
775   // Update LoopInfo.
776   if (ParentLoop)
777     ParentLoop->addBasicBlockToLoop(NewPH, *LI);
778 
779   // Update DominatorTree.
780   DT->addNewBlock(NewPH, LoopDomBB);
781 
782   for (Loop *CurLoop : OrigLoop->getLoopsInPreorder()) {
783     Loop *&NewLoop = LMap[CurLoop];
784     if (!NewLoop) {
785       NewLoop = LI->AllocateLoop();
786 
787       // Establish the parent/child relationship.
788       Loop *OrigParent = CurLoop->getParentLoop();
789       assert(OrigParent && "Could not find the original parent loop");
790       Loop *NewParentLoop = LMap[OrigParent];
791       assert(NewParentLoop && "Could not find the new parent loop");
792 
793       NewParentLoop->addChildLoop(NewLoop);
794     }
795   }
796 
797   for (BasicBlock *BB : OrigLoop->getBlocks()) {
798     Loop *CurLoop = LI->getLoopFor(BB);
799     Loop *&NewLoop = LMap[CurLoop];
800     assert(NewLoop && "Expecting new loop to be allocated");
801 
802     BasicBlock *NewBB = CloneBasicBlock(BB, VMap, NameSuffix, F);
803     VMap[BB] = NewBB;
804 
805     // Update LoopInfo.
806     NewLoop->addBasicBlockToLoop(NewBB, *LI);
807     if (BB == CurLoop->getHeader())
808       NewLoop->moveToHeader(NewBB);
809 
810     // Add DominatorTree node. After seeing all blocks, update to correct
811     // IDom.
812     DT->addNewBlock(NewBB, NewPH);
813 
814     Blocks.push_back(NewBB);
815   }
816 
817   for (BasicBlock *BB : OrigLoop->getBlocks()) {
818     // Update DominatorTree.
819     BasicBlock *IDomBB = DT->getNode(BB)->getIDom()->getBlock();
820     DT->changeImmediateDominator(cast<BasicBlock>(VMap[BB]),
821                                  cast<BasicBlock>(VMap[IDomBB]));
822   }
823 
824   // Move them physically from the end of the block list.
825   F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(),
826                                 NewPH);
827   F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(),
828                                 NewLoop->getHeader()->getIterator(), F->end());
829 
830   return NewLoop;
831 }
832 
833 /// Duplicate non-Phi instructions from the beginning of block up to
834 /// StopAt instruction into a split block between BB and its predecessor.
835 BasicBlock *llvm::DuplicateInstructionsInSplitBetween(
836     BasicBlock *BB, BasicBlock *PredBB, Instruction *StopAt,
837     ValueToValueMapTy &ValueMapping, DomTreeUpdater &DTU) {
838 
839   assert(count(successors(PredBB), BB) == 1 &&
840          "There must be a single edge between PredBB and BB!");
841   // We are going to have to map operands from the original BB block to the new
842   // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
843   // account for entry from PredBB.
844   BasicBlock::iterator BI = BB->begin();
845   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
846     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
847 
848   BasicBlock *NewBB = SplitEdge(PredBB, BB);
849   NewBB->setName(PredBB->getName() + ".split");
850   Instruction *NewTerm = NewBB->getTerminator();
851 
852   // FIXME: SplitEdge does not yet take a DTU, so we include the split edge
853   //        in the update set here.
854   DTU.applyUpdates({{DominatorTree::Delete, PredBB, BB},
855                     {DominatorTree::Insert, PredBB, NewBB},
856                     {DominatorTree::Insert, NewBB, BB}});
857 
858   // Clone the non-phi instructions of BB into NewBB, keeping track of the
859   // mapping and using it to remap operands in the cloned instructions.
860   // Stop once we see the terminator too. This covers the case where BB's
861   // terminator gets replaced and StopAt == BB's terminator.
862   for (; StopAt != &*BI && BB->getTerminator() != &*BI; ++BI) {
863     Instruction *New = BI->clone();
864     New->setName(BI->getName());
865     New->insertBefore(NewTerm);
866     ValueMapping[&*BI] = New;
867 
868     // Remap operands to patch up intra-block references.
869     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
870       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
871         auto I = ValueMapping.find(Inst);
872         if (I != ValueMapping.end())
873           New->setOperand(i, I->second);
874       }
875   }
876 
877   return NewBB;
878 }
879