1 //===- FixIrreducible.cpp - Convert irreducible control-flow into loops ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // An irreducible SCC is one which has multiple "header" blocks, i.e., blocks
10 // with control-flow edges incident from outside the SCC.  This pass converts a
11 // irreducible SCC into a natural loop by applying the following transformation:
12 //
13 // 1. Collect the set of headers H of the SCC.
14 // 2. Collect the set of predecessors P of these headers. These may be inside as
15 //    well as outside the SCC.
16 // 3. Create block N and redirect every edge from set P to set H through N.
17 //
18 // This converts the SCC into a natural loop with N as the header: N is the only
19 // block with edges incident from outside the SCC, and all backedges in the SCC
20 // are incident on N, i.e., for every backedge, the head now dominates the tail.
21 //
22 // INPUT CFG: The blocks A and B form an irreducible loop with two headers.
23 //
24 //                        Entry
25 //                       /     \
26 //                      v       v
27 //                      A ----> B
28 //                      ^      /|
29 //                       `----' |
30 //                              v
31 //                             Exit
32 //
33 // OUTPUT CFG: Edges incident on A and B are now redirected through a
34 // new block N, forming a natural loop consisting of N, A and B.
35 //
36 //                        Entry
37 //                          |
38 //                          v
39 //                    .---> N <---.
40 //                   /     / \     \
41 //                  |     /   \     |
42 //                  \    v     v    /
43 //                   `-- A     B --'
44 //                             |
45 //                             v
46 //                            Exit
47 //
48 // The transformation is applied to every maximal SCC that is not already
49 // recognized as a loop. The pass operates on all maximal SCCs found in the
50 // function body outside of any loop, as well as those found inside each loop,
51 // including inside any newly created loops. This ensures that any SCC hidden
52 // inside a maximal SCC is also transformed.
53 //
54 // The actual transformation is handled by function CreateControlFlowHub, which
55 // takes a set of incoming blocks (the predecessors) and outgoing blocks (the
56 // headers). The function also moves every PHINode in an outgoing block to the
57 // hub. Since the hub dominates all the outgoing blocks, each such PHINode
58 // continues to dominate its uses. Since every header in an SCC has at least two
59 // predecessors, every value used in the header (or later) but defined in a
60 // predecessor (or earlier) is represented by a PHINode in a header. Hence the
61 // above handling of PHINodes is sufficient and no further processing is
62 // required to restore SSA.
63 //
64 // Limitation: The pass cannot handle switch statements and indirect
65 //             branches. Both must be lowered to plain branches first.
66 //
67 //===----------------------------------------------------------------------===//
68 
69 #include "llvm/Transforms/Utils/FixIrreducible.h"
70 #include "llvm/ADT/SCCIterator.h"
71 #include "llvm/Analysis/LoopIterator.h"
72 #include "llvm/InitializePasses.h"
73 #include "llvm/Pass.h"
74 #include "llvm/Transforms/Utils.h"
75 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
76 
77 #define DEBUG_TYPE "fix-irreducible"
78 
79 using namespace llvm;
80 
81 namespace {
82 struct FixIrreducible : public FunctionPass {
83   static char ID;
84   FixIrreducible() : FunctionPass(ID) {
85     initializeFixIrreduciblePass(*PassRegistry::getPassRegistry());
86   }
87 
88   void getAnalysisUsage(AnalysisUsage &AU) const override {
89     AU.addRequiredID(LowerSwitchID);
90     AU.addRequired<DominatorTreeWrapperPass>();
91     AU.addRequired<LoopInfoWrapperPass>();
92     AU.addPreservedID(LowerSwitchID);
93     AU.addPreserved<DominatorTreeWrapperPass>();
94     AU.addPreserved<LoopInfoWrapperPass>();
95   }
96 
97   bool runOnFunction(Function &F) override;
98 };
99 } // namespace
100 
101 char FixIrreducible::ID = 0;
102 
103 FunctionPass *llvm::createFixIrreduciblePass() { return new FixIrreducible(); }
104 
105 INITIALIZE_PASS_BEGIN(FixIrreducible, "fix-irreducible",
106                       "Convert irreducible control-flow into natural loops",
107                       false /* Only looks at CFG */, false /* Analysis Pass */)
108 INITIALIZE_PASS_DEPENDENCY(LowerSwitchLegacyPass)
109 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
110 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
111 INITIALIZE_PASS_END(FixIrreducible, "fix-irreducible",
112                     "Convert irreducible control-flow into natural loops",
113                     false /* Only looks at CFG */, false /* Analysis Pass */)
114 
115 // When a new loop is created, existing children of the parent loop may now be
116 // fully inside the new loop. Reconnect these as children of the new loop.
117 static void reconnectChildLoops(LoopInfo &LI, Loop *ParentLoop, Loop *NewLoop,
118                                 SetVector<BasicBlock *> &Blocks,
119                                 SetVector<BasicBlock *> &Headers) {
120   auto &CandidateLoops = ParentLoop ? ParentLoop->getSubLoopsVector()
121                                     : LI.getTopLevelLoopsVector();
122   // The new loop cannot be its own child, and any candidate is a
123   // child iff its header is owned by the new loop. Move all the
124   // children to a new vector.
125   auto FirstChild = std::partition(
126       CandidateLoops.begin(), CandidateLoops.end(), [&](Loop *L) {
127         return L == NewLoop || Blocks.count(L->getHeader()) == 0;
128       });
129   SmallVector<Loop *, 8> ChildLoops(FirstChild, CandidateLoops.end());
130   CandidateLoops.erase(FirstChild, CandidateLoops.end());
131 
132   for (Loop *Child : ChildLoops) {
133     LLVM_DEBUG(dbgs() << "child loop: " << Child->getHeader()->getName()
134                       << "\n");
135     // TODO: A child loop whose header is also a header in the current
136     // SCC gets destroyed since its backedges are removed. That may
137     // not be necessary if we can retain such backedges.
138     if (Headers.count(Child->getHeader())) {
139       for (auto BB : Child->blocks()) {
140         LI.changeLoopFor(BB, NewLoop);
141         LLVM_DEBUG(dbgs() << "moved block from child: " << BB->getName()
142                           << "\n");
143       }
144       LI.destroy(Child);
145       LLVM_DEBUG(dbgs() << "subsumed child loop (common header)\n");
146       continue;
147     }
148 
149     Child->setParentLoop(nullptr);
150     NewLoop->addChildLoop(Child);
151     LLVM_DEBUG(dbgs() << "added child loop to new loop\n");
152   }
153 }
154 
155 // Given a set of blocks and headers in an irreducible SCC, convert it into a
156 // natural loop. Also insert this new loop at its appropriate place in the
157 // hierarchy of loops.
158 static void createNaturalLoopInternal(LoopInfo &LI, DominatorTree &DT,
159                                       Loop *ParentLoop,
160                                       SetVector<BasicBlock *> &Blocks,
161                                       SetVector<BasicBlock *> &Headers) {
162 #ifndef NDEBUG
163   // All headers are part of the SCC
164   for (auto H : Headers) {
165     assert(Blocks.count(H));
166   }
167 #endif
168 
169   SetVector<BasicBlock *> Predecessors;
170   for (auto H : Headers) {
171     for (auto P : predecessors(H)) {
172       Predecessors.insert(P);
173     }
174   }
175 
176   LLVM_DEBUG(
177       dbgs() << "Found predecessors:";
178       for (auto P : Predecessors) {
179         dbgs() << " " << P->getName();
180       }
181       dbgs() << "\n");
182 
183   // Redirect all the backedges through a "hub" consisting of a series
184   // of guard blocks that manage the flow of control from the
185   // predecessors to the headers.
186   SmallVector<BasicBlock *, 8> GuardBlocks;
187   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
188   CreateControlFlowHub(&DTU, GuardBlocks, Predecessors, Headers, "irr");
189 #if defined(EXPENSIVE_CHECKS)
190   assert(DT.verify(DominatorTree::VerificationLevel::Full));
191 #else
192   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
193 #endif
194 
195   // Create a new loop from the now-transformed cycle
196   auto NewLoop = LI.AllocateLoop();
197   if (ParentLoop) {
198     ParentLoop->addChildLoop(NewLoop);
199   } else {
200     LI.addTopLevelLoop(NewLoop);
201   }
202 
203   // Add the guard blocks to the new loop. The first guard block is
204   // the head of all the backedges, and it is the first to be inserted
205   // in the loop. This ensures that it is recognized as the
206   // header. Since the new loop is already in LoopInfo, the new blocks
207   // are also propagated up the chain of parent loops.
208   for (auto G : GuardBlocks) {
209     LLVM_DEBUG(dbgs() << "added guard block: " << G->getName() << "\n");
210     NewLoop->addBasicBlockToLoop(G, LI);
211   }
212 
213   // Add the SCC blocks to the new loop.
214   for (auto BB : Blocks) {
215     NewLoop->addBlockEntry(BB);
216     if (LI.getLoopFor(BB) == ParentLoop) {
217       LLVM_DEBUG(dbgs() << "moved block from parent: " << BB->getName()
218                         << "\n");
219       LI.changeLoopFor(BB, NewLoop);
220     } else {
221       LLVM_DEBUG(dbgs() << "added block from child: " << BB->getName() << "\n");
222     }
223   }
224   LLVM_DEBUG(dbgs() << "header for new loop: "
225                     << NewLoop->getHeader()->getName() << "\n");
226 
227   reconnectChildLoops(LI, ParentLoop, NewLoop, Blocks, Headers);
228 
229   NewLoop->verifyLoop();
230   if (ParentLoop) {
231     ParentLoop->verifyLoop();
232   }
233 #if defined(EXPENSIVE_CHECKS)
234   LI.verify(DT);
235 #endif // EXPENSIVE_CHECKS
236 }
237 
238 namespace llvm {
239 // Enable the graph traits required for traversing a Loop body.
240 template <> struct GraphTraits<Loop> : LoopBodyTraits {};
241 } // namespace llvm
242 
243 // Overloaded wrappers to go with the function template below.
244 static BasicBlock *unwrapBlock(BasicBlock *B) { return B; }
245 static BasicBlock *unwrapBlock(LoopBodyTraits::NodeRef &N) { return N.second; }
246 
247 static void createNaturalLoop(LoopInfo &LI, DominatorTree &DT, Function *F,
248                               SetVector<BasicBlock *> &Blocks,
249                               SetVector<BasicBlock *> &Headers) {
250   createNaturalLoopInternal(LI, DT, nullptr, Blocks, Headers);
251 }
252 
253 static void createNaturalLoop(LoopInfo &LI, DominatorTree &DT, Loop &L,
254                               SetVector<BasicBlock *> &Blocks,
255                               SetVector<BasicBlock *> &Headers) {
256   createNaturalLoopInternal(LI, DT, &L, Blocks, Headers);
257 }
258 
259 // Convert irreducible SCCs; Graph G may be a Function* or a Loop&.
260 template <class Graph>
261 static bool makeReducible(LoopInfo &LI, DominatorTree &DT, Graph &&G) {
262   bool Changed = false;
263   for (auto Scc = scc_begin(G); !Scc.isAtEnd(); ++Scc) {
264     if (Scc->size() < 2)
265       continue;
266     SetVector<BasicBlock *> Blocks;
267     LLVM_DEBUG(dbgs() << "Found SCC:");
268     for (auto N : *Scc) {
269       auto BB = unwrapBlock(N);
270       LLVM_DEBUG(dbgs() << " " << BB->getName());
271       Blocks.insert(BB);
272     }
273     LLVM_DEBUG(dbgs() << "\n");
274 
275     // Minor optimization: The SCC blocks are usually discovered in an order
276     // that is the opposite of the order in which these blocks appear as branch
277     // targets. This results in a lot of condition inversions in the control
278     // flow out of the new ControlFlowHub, which can be mitigated if the orders
279     // match. So we discover the headers using the reverse of the block order.
280     SetVector<BasicBlock *> Headers;
281     LLVM_DEBUG(dbgs() << "Found headers:");
282     for (auto BB : reverse(Blocks)) {
283       for (const auto P : predecessors(BB)) {
284         // Skip unreachable predecessors.
285         if (!DT.isReachableFromEntry(P))
286           continue;
287         if (!Blocks.count(P)) {
288           LLVM_DEBUG(dbgs() << " " << BB->getName());
289           Headers.insert(BB);
290           break;
291         }
292       }
293     }
294     LLVM_DEBUG(dbgs() << "\n");
295 
296     if (Headers.size() == 1) {
297       assert(LI.isLoopHeader(Headers.front()));
298       LLVM_DEBUG(dbgs() << "Natural loop with a single header: skipped\n");
299       continue;
300     }
301     createNaturalLoop(LI, DT, G, Blocks, Headers);
302     Changed = true;
303   }
304   return Changed;
305 }
306 
307 static bool FixIrreducibleImpl(Function &F, LoopInfo &LI, DominatorTree &DT) {
308   LLVM_DEBUG(dbgs() << "===== Fix irreducible control-flow in function: "
309                     << F.getName() << "\n");
310 
311   bool Changed = false;
312   SmallVector<Loop *, 8> WorkList;
313 
314   LLVM_DEBUG(dbgs() << "visiting top-level\n");
315   Changed |= makeReducible(LI, DT, &F);
316 
317   // Any SCCs reduced are now already in the list of top-level loops, so simply
318   // add them all to the worklist.
319   append_range(WorkList, LI);
320 
321   while (!WorkList.empty()) {
322     auto L = WorkList.pop_back_val();
323     LLVM_DEBUG(dbgs() << "visiting loop with header "
324                       << L->getHeader()->getName() << "\n");
325     Changed |= makeReducible(LI, DT, *L);
326     // Any SCCs reduced are now already in the list of child loops, so simply
327     // add them all to the worklist.
328     WorkList.append(L->begin(), L->end());
329   }
330 
331   return Changed;
332 }
333 
334 bool FixIrreducible::runOnFunction(Function &F) {
335   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
336   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
337   return FixIrreducibleImpl(F, LI, DT);
338 }
339 
340 PreservedAnalyses FixIrreduciblePass::run(Function &F,
341                                           FunctionAnalysisManager &AM) {
342   auto &LI = AM.getResult<LoopAnalysis>(F);
343   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
344   if (!FixIrreducibleImpl(F, LI, DT))
345     return PreservedAnalyses::all();
346   PreservedAnalyses PA;
347   PA.preserve<LoopAnalysis>();
348   PA.preserve<DominatorTreeAnalysis>();
349   return PA;
350 }
351