1 //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass transforms loops by placing phi nodes at the end of the loops for
10 // all values that are live across the loop boundary.  For example, it turns
11 // the left into the right code:
12 //
13 // for (...)                for (...)
14 //   if (c)                   if (c)
15 //     X1 = ...                 X1 = ...
16 //   else                     else
17 //     X2 = ...                 X2 = ...
18 //   X3 = phi(X1, X2)         X3 = phi(X1, X2)
19 // ... = X3 + 4             X4 = phi(X3)
20 //                          ... = X4 + 4
21 //
22 // This is still valid LLVM; the extra phi nodes are purely redundant, and will
23 // be trivially eliminated by InstCombine.  The major benefit of this
24 // transformation is that it makes many other loop optimizations, such as
25 // LoopUnswitching, simpler.
26 //
27 //===----------------------------------------------------------------------===//
28 
29 #include "llvm/Transforms/Utils/LCSSA.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/Analysis/AliasAnalysis.h"
33 #include "llvm/Analysis/BasicAliasAnalysis.h"
34 #include "llvm/Analysis/BranchProbabilityInfo.h"
35 #include "llvm/Analysis/GlobalsModRef.h"
36 #include "llvm/Analysis/LoopInfo.h"
37 #include "llvm/Analysis/LoopPass.h"
38 #include "llvm/Analysis/MemorySSA.h"
39 #include "llvm/Analysis/ScalarEvolution.h"
40 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
41 #include "llvm/IR/DebugInfo.h"
42 #include "llvm/IR/Dominators.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/IntrinsicInst.h"
45 #include "llvm/IR/PredIteratorCache.h"
46 #include "llvm/InitializePasses.h"
47 #include "llvm/Pass.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Transforms/Utils.h"
50 #include "llvm/Transforms/Utils/LoopUtils.h"
51 #include "llvm/Transforms/Utils/SSAUpdater.h"
52 using namespace llvm;
53 
54 #define DEBUG_TYPE "lcssa"
55 
56 STATISTIC(NumLCSSA, "Number of live out of a loop variables");
57 
58 #ifdef EXPENSIVE_CHECKS
59 static bool VerifyLoopLCSSA = true;
60 #else
61 static bool VerifyLoopLCSSA = false;
62 #endif
63 static cl::opt<bool, true>
64     VerifyLoopLCSSAFlag("verify-loop-lcssa", cl::location(VerifyLoopLCSSA),
65                         cl::Hidden,
66                         cl::desc("Verify loop lcssa form (time consuming)"));
67 
68 /// Return true if the specified block is in the list.
69 static bool isExitBlock(BasicBlock *BB,
70                         const SmallVectorImpl<BasicBlock *> &ExitBlocks) {
71   return is_contained(ExitBlocks, BB);
72 }
73 
74 /// For every instruction from the worklist, check to see if it has any uses
75 /// that are outside the current loop.  If so, insert LCSSA PHI nodes and
76 /// rewrite the uses.
77 bool llvm::formLCSSAForInstructions(SmallVectorImpl<Instruction *> &Worklist,
78                                     const DominatorTree &DT, const LoopInfo &LI,
79                                     ScalarEvolution *SE,
80                                     SmallVectorImpl<PHINode *> *PHIsToRemove,
81                                     SmallVectorImpl<PHINode *> *InsertedPHIs) {
82   SmallVector<Use *, 16> UsesToRewrite;
83   SmallSetVector<PHINode *, 16> LocalPHIsToRemove;
84   PredIteratorCache PredCache;
85   bool Changed = false;
86 
87   // Cache the Loop ExitBlocks across this loop.  We expect to get a lot of
88   // instructions within the same loops, computing the exit blocks is
89   // expensive, and we're not mutating the loop structure.
90   SmallDenseMap<Loop*, SmallVector<BasicBlock *,1>> LoopExitBlocks;
91 
92   while (!Worklist.empty()) {
93     UsesToRewrite.clear();
94 
95     Instruction *I = Worklist.pop_back_val();
96     assert(!I->getType()->isTokenTy() && "Tokens shouldn't be in the worklist");
97     BasicBlock *InstBB = I->getParent();
98     Loop *L = LI.getLoopFor(InstBB);
99     assert(L && "Instruction belongs to a BB that's not part of a loop");
100     if (!LoopExitBlocks.count(L))
101       L->getExitBlocks(LoopExitBlocks[L]);
102     assert(LoopExitBlocks.count(L));
103     const SmallVectorImpl<BasicBlock *> &ExitBlocks = LoopExitBlocks[L];
104 
105     if (ExitBlocks.empty())
106       continue;
107 
108     for (Use &U : make_early_inc_range(I->uses())) {
109       Instruction *User = cast<Instruction>(U.getUser());
110       BasicBlock *UserBB = User->getParent();
111 
112       // Skip uses in unreachable blocks.
113       if (!DT.isReachableFromEntry(UserBB)) {
114         U.set(PoisonValue::get(I->getType()));
115         continue;
116       }
117 
118       // For practical purposes, we consider that the use in a PHI
119       // occurs in the respective predecessor block. For more info,
120       // see the `phi` doc in LangRef and the LCSSA doc.
121       if (auto *PN = dyn_cast<PHINode>(User))
122         UserBB = PN->getIncomingBlock(U);
123 
124       if (InstBB != UserBB && !L->contains(UserBB))
125         UsesToRewrite.push_back(&U);
126     }
127 
128     // If there are no uses outside the loop, exit with no change.
129     if (UsesToRewrite.empty())
130       continue;
131 
132     ++NumLCSSA; // We are applying the transformation
133 
134     // Invoke instructions are special in that their result value is not
135     // available along their unwind edge. The code below tests to see whether
136     // DomBB dominates the value, so adjust DomBB to the normal destination
137     // block, which is effectively where the value is first usable.
138     BasicBlock *DomBB = InstBB;
139     if (auto *Inv = dyn_cast<InvokeInst>(I))
140       DomBB = Inv->getNormalDest();
141 
142     const DomTreeNode *DomNode = DT.getNode(DomBB);
143 
144     SmallVector<PHINode *, 16> AddedPHIs;
145     SmallVector<PHINode *, 8> PostProcessPHIs;
146 
147     SmallVector<PHINode *, 4> LocalInsertedPHIs;
148     SSAUpdater SSAUpdate(&LocalInsertedPHIs);
149     SSAUpdate.Initialize(I->getType(), I->getName());
150 
151     // Insert the LCSSA phi's into all of the exit blocks dominated by the
152     // value, and add them to the Phi's map.
153     bool HasSCEV = SE && SE->isSCEVable(I->getType()) &&
154                    SE->getExistingSCEV(I) != nullptr;
155     for (BasicBlock *ExitBB : ExitBlocks) {
156       if (!DT.dominates(DomNode, DT.getNode(ExitBB)))
157         continue;
158 
159       // If we already inserted something for this BB, don't reprocess it.
160       if (SSAUpdate.HasValueForBlock(ExitBB))
161         continue;
162       PHINode *PN = PHINode::Create(I->getType(), PredCache.size(ExitBB),
163                                     I->getName() + ".lcssa", &ExitBB->front());
164       if (InsertedPHIs)
165         InsertedPHIs->push_back(PN);
166       // Get the debug location from the original instruction.
167       PN->setDebugLoc(I->getDebugLoc());
168 
169       // Add inputs from inside the loop for this PHI. This is valid
170       // because `I` dominates `ExitBB` (checked above).  This implies
171       // that every incoming block/edge is dominated by `I` as well,
172       // i.e. we can add uses of `I` to those incoming edges/append to the incoming
173       // blocks without violating the SSA dominance property.
174       for (BasicBlock *Pred : PredCache.get(ExitBB)) {
175         PN->addIncoming(I, Pred);
176 
177         // If the exit block has a predecessor not within the loop, arrange for
178         // the incoming value use corresponding to that predecessor to be
179         // rewritten in terms of a different LCSSA PHI.
180         if (!L->contains(Pred))
181           UsesToRewrite.push_back(
182               &PN->getOperandUse(PN->getOperandNumForIncomingValue(
183                   PN->getNumIncomingValues() - 1)));
184       }
185 
186       AddedPHIs.push_back(PN);
187 
188       // Remember that this phi makes the value alive in this block.
189       SSAUpdate.AddAvailableValue(ExitBB, PN);
190 
191       // LoopSimplify might fail to simplify some loops (e.g. when indirect
192       // branches are involved). In such situations, it might happen that an
193       // exit for Loop L1 is the header of a disjoint Loop L2. Thus, when we
194       // create PHIs in such an exit block, we are also inserting PHIs into L2's
195       // header. This could break LCSSA form for L2 because these inserted PHIs
196       // can also have uses outside of L2. Remember all PHIs in such situation
197       // as to revisit than later on. FIXME: Remove this if indirectbr support
198       // into LoopSimplify gets improved.
199       if (auto *OtherLoop = LI.getLoopFor(ExitBB))
200         if (!L->contains(OtherLoop))
201           PostProcessPHIs.push_back(PN);
202 
203       // If we have a cached SCEV for the original instruction, make sure the
204       // new LCSSA phi node is also cached. This makes sures that BECounts
205       // based on it will be invalidated when the LCSSA phi node is invalidated,
206       // which some passes rely on.
207       if (HasSCEV)
208         SE->getSCEV(PN);
209     }
210 
211     // Rewrite all uses outside the loop in terms of the new PHIs we just
212     // inserted.
213     for (Use *UseToRewrite : UsesToRewrite) {
214       Instruction *User = cast<Instruction>(UseToRewrite->getUser());
215       BasicBlock *UserBB = User->getParent();
216 
217       // For practical purposes, we consider that the use in a PHI
218       // occurs in the respective predecessor block. For more info,
219       // see the `phi` doc in LangRef and the LCSSA doc.
220       if (auto *PN = dyn_cast<PHINode>(User))
221         UserBB = PN->getIncomingBlock(*UseToRewrite);
222 
223       // If this use is in an exit block, rewrite to use the newly inserted PHI.
224       // This is required for correctness because SSAUpdate doesn't handle uses
225       // in the same block.  It assumes the PHI we inserted is at the end of the
226       // block.
227       if (isa<PHINode>(UserBB->begin()) && isExitBlock(UserBB, ExitBlocks)) {
228         UseToRewrite->set(&UserBB->front());
229         continue;
230       }
231 
232       // If we added a single PHI, it must dominate all uses and we can directly
233       // rename it.
234       if (AddedPHIs.size() == 1) {
235         UseToRewrite->set(AddedPHIs[0]);
236         continue;
237       }
238 
239       // Otherwise, do full PHI insertion.
240       SSAUpdate.RewriteUse(*UseToRewrite);
241     }
242 
243     SmallVector<DbgValueInst *, 4> DbgValues;
244     llvm::findDbgValues(DbgValues, I);
245 
246     // Update pre-existing debug value uses that reside outside the loop.
247     for (auto *DVI : DbgValues) {
248       BasicBlock *UserBB = DVI->getParent();
249       if (InstBB == UserBB || L->contains(UserBB))
250         continue;
251       // We currently only handle debug values residing in blocks that were
252       // traversed while rewriting the uses. If we inserted just a single PHI,
253       // we will handle all relevant debug values.
254       Value *V = AddedPHIs.size() == 1 ? AddedPHIs[0]
255                                        : SSAUpdate.FindValueForBlock(UserBB);
256       if (V)
257         DVI->replaceVariableLocationOp(I, V);
258     }
259 
260     // SSAUpdater might have inserted phi-nodes inside other loops. We'll need
261     // to post-process them to keep LCSSA form.
262     for (PHINode *InsertedPN : LocalInsertedPHIs) {
263       if (auto *OtherLoop = LI.getLoopFor(InsertedPN->getParent()))
264         if (!L->contains(OtherLoop))
265           PostProcessPHIs.push_back(InsertedPN);
266       if (InsertedPHIs)
267         InsertedPHIs->push_back(InsertedPN);
268     }
269 
270     // Post process PHI instructions that were inserted into another disjoint
271     // loop and update their exits properly.
272     for (auto *PostProcessPN : PostProcessPHIs)
273       if (!PostProcessPN->use_empty())
274         Worklist.push_back(PostProcessPN);
275 
276     // Keep track of PHI nodes that we want to remove because they did not have
277     // any uses rewritten.
278     for (PHINode *PN : AddedPHIs)
279       if (PN->use_empty())
280         LocalPHIsToRemove.insert(PN);
281 
282     Changed = true;
283   }
284 
285   // Remove PHI nodes that did not have any uses rewritten or add them to
286   // PHIsToRemove, so the caller can remove them after some additional cleanup.
287   // We need to redo the use_empty() check here, because even if the PHI node
288   // wasn't used when added to LocalPHIsToRemove, later added PHI nodes can be
289   // using it.  This cleanup is not guaranteed to handle trees/cycles of PHI
290   // nodes that only are used by each other. Such situations has only been
291   // noticed when the input IR contains unreachable code, and leaving some extra
292   // redundant PHI nodes in such situations is considered a minor problem.
293   if (PHIsToRemove) {
294     PHIsToRemove->append(LocalPHIsToRemove.begin(), LocalPHIsToRemove.end());
295   } else {
296     for (PHINode *PN : LocalPHIsToRemove)
297       if (PN->use_empty())
298         PN->eraseFromParent();
299   }
300   return Changed;
301 }
302 
303 // Compute the set of BasicBlocks in the loop `L` dominating at least one exit.
304 static void computeBlocksDominatingExits(
305     Loop &L, const DominatorTree &DT, SmallVector<BasicBlock *, 8> &ExitBlocks,
306     SmallSetVector<BasicBlock *, 8> &BlocksDominatingExits) {
307   // We start from the exit blocks, as every block trivially dominates itself
308   // (not strictly).
309   SmallVector<BasicBlock *, 8> BBWorklist(ExitBlocks);
310 
311   while (!BBWorklist.empty()) {
312     BasicBlock *BB = BBWorklist.pop_back_val();
313 
314     // Check if this is a loop header. If this is the case, we're done.
315     if (L.getHeader() == BB)
316       continue;
317 
318     // Otherwise, add its immediate predecessor in the dominator tree to the
319     // worklist, unless we visited it already.
320     BasicBlock *IDomBB = DT.getNode(BB)->getIDom()->getBlock();
321 
322     // Exit blocks can have an immediate dominator not belonging to the
323     // loop. For an exit block to be immediately dominated by another block
324     // outside the loop, it implies not all paths from that dominator, to the
325     // exit block, go through the loop.
326     // Example:
327     //
328     // |---- A
329     // |     |
330     // |     B<--
331     // |     |  |
332     // |---> C --
333     //       |
334     //       D
335     //
336     // C is the exit block of the loop and it's immediately dominated by A,
337     // which doesn't belong to the loop.
338     if (!L.contains(IDomBB))
339       continue;
340 
341     if (BlocksDominatingExits.insert(IDomBB))
342       BBWorklist.push_back(IDomBB);
343   }
344 }
345 
346 bool llvm::formLCSSA(Loop &L, const DominatorTree &DT, const LoopInfo *LI,
347                      ScalarEvolution *SE) {
348   bool Changed = false;
349 
350 #ifdef EXPENSIVE_CHECKS
351   // Verify all sub-loops are in LCSSA form already.
352   for (Loop *SubLoop: L) {
353     (void)SubLoop; // Silence unused variable warning.
354     assert(SubLoop->isRecursivelyLCSSAForm(DT, *LI) && "Subloop not in LCSSA!");
355   }
356 #endif
357 
358   SmallVector<BasicBlock *, 8> ExitBlocks;
359   L.getExitBlocks(ExitBlocks);
360   if (ExitBlocks.empty())
361     return false;
362 
363   SmallSetVector<BasicBlock *, 8> BlocksDominatingExits;
364 
365   // We want to avoid use-scanning leveraging dominance informations.
366   // If a block doesn't dominate any of the loop exits, the none of the values
367   // defined in the loop can be used outside.
368   // We compute the set of blocks fullfilling the conditions in advance
369   // walking the dominator tree upwards until we hit a loop header.
370   computeBlocksDominatingExits(L, DT, ExitBlocks, BlocksDominatingExits);
371 
372   SmallVector<Instruction *, 8> Worklist;
373 
374   // Look at all the instructions in the loop, checking to see if they have uses
375   // outside the loop.  If so, put them into the worklist to rewrite those uses.
376   for (BasicBlock *BB : BlocksDominatingExits) {
377     // Skip blocks that are part of any sub-loops, they must be in LCSSA
378     // already.
379     if (LI->getLoopFor(BB) != &L)
380       continue;
381     for (Instruction &I : *BB) {
382       // Reject two common cases fast: instructions with no uses (like stores)
383       // and instructions with one use that is in the same block as this.
384       if (I.use_empty() ||
385           (I.hasOneUse() && I.user_back()->getParent() == BB &&
386            !isa<PHINode>(I.user_back())))
387         continue;
388 
389       // Tokens cannot be used in PHI nodes, so we skip over them.
390       // We can run into tokens which are live out of a loop with catchswitch
391       // instructions in Windows EH if the catchswitch has one catchpad which
392       // is inside the loop and another which is not.
393       if (I.getType()->isTokenTy())
394         continue;
395 
396       Worklist.push_back(&I);
397     }
398   }
399 
400   Changed = formLCSSAForInstructions(Worklist, DT, *LI, SE);
401 
402   assert(L.isLCSSAForm(DT));
403 
404   return Changed;
405 }
406 
407 /// Process a loop nest depth first.
408 bool llvm::formLCSSARecursively(Loop &L, const DominatorTree &DT,
409                                 const LoopInfo *LI, ScalarEvolution *SE) {
410   bool Changed = false;
411 
412   // Recurse depth-first through inner loops.
413   for (Loop *SubLoop : L.getSubLoops())
414     Changed |= formLCSSARecursively(*SubLoop, DT, LI, SE);
415 
416   Changed |= formLCSSA(L, DT, LI, SE);
417   return Changed;
418 }
419 
420 /// Process all loops in the function, inner-most out.
421 static bool formLCSSAOnAllLoops(const LoopInfo *LI, const DominatorTree &DT,
422                                 ScalarEvolution *SE) {
423   bool Changed = false;
424   for (const auto &L : *LI)
425     Changed |= formLCSSARecursively(*L, DT, LI, SE);
426   return Changed;
427 }
428 
429 namespace {
430 struct LCSSAWrapperPass : public FunctionPass {
431   static char ID; // Pass identification, replacement for typeid
432   LCSSAWrapperPass() : FunctionPass(ID) {
433     initializeLCSSAWrapperPassPass(*PassRegistry::getPassRegistry());
434   }
435 
436   // Cached analysis information for the current function.
437   DominatorTree *DT;
438   LoopInfo *LI;
439   ScalarEvolution *SE;
440 
441   bool runOnFunction(Function &F) override;
442   void verifyAnalysis() const override {
443     // This check is very expensive. On the loop intensive compiles it may cause
444     // up to 10x slowdown. Currently it's disabled by default. LPPassManager
445     // always does limited form of the LCSSA verification. Similar reasoning
446     // was used for the LoopInfo verifier.
447     if (VerifyLoopLCSSA) {
448       assert(all_of(*LI,
449                     [&](Loop *L) {
450                       return L->isRecursivelyLCSSAForm(*DT, *LI);
451                     }) &&
452              "LCSSA form is broken!");
453     }
454   };
455 
456   /// This transformation requires natural loop information & requires that
457   /// loop preheaders be inserted into the CFG.  It maintains both of these,
458   /// as well as the CFG.  It also requires dominator information.
459   void getAnalysisUsage(AnalysisUsage &AU) const override {
460     AU.setPreservesCFG();
461 
462     AU.addRequired<DominatorTreeWrapperPass>();
463     AU.addRequired<LoopInfoWrapperPass>();
464     AU.addPreservedID(LoopSimplifyID);
465     AU.addPreserved<AAResultsWrapperPass>();
466     AU.addPreserved<BasicAAWrapperPass>();
467     AU.addPreserved<GlobalsAAWrapperPass>();
468     AU.addPreserved<ScalarEvolutionWrapperPass>();
469     AU.addPreserved<SCEVAAWrapperPass>();
470     AU.addPreserved<BranchProbabilityInfoWrapperPass>();
471     AU.addPreserved<MemorySSAWrapperPass>();
472 
473     // This is needed to perform LCSSA verification inside LPPassManager
474     AU.addRequired<LCSSAVerificationPass>();
475     AU.addPreserved<LCSSAVerificationPass>();
476   }
477 };
478 }
479 
480 char LCSSAWrapperPass::ID = 0;
481 INITIALIZE_PASS_BEGIN(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass",
482                       false, false)
483 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
484 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
485 INITIALIZE_PASS_DEPENDENCY(LCSSAVerificationPass)
486 INITIALIZE_PASS_END(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass",
487                     false, false)
488 
489 Pass *llvm::createLCSSAPass() { return new LCSSAWrapperPass(); }
490 char &llvm::LCSSAID = LCSSAWrapperPass::ID;
491 
492 /// Transform \p F into loop-closed SSA form.
493 bool LCSSAWrapperPass::runOnFunction(Function &F) {
494   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
495   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
496   auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
497   SE = SEWP ? &SEWP->getSE() : nullptr;
498 
499   return formLCSSAOnAllLoops(LI, *DT, SE);
500 }
501 
502 PreservedAnalyses LCSSAPass::run(Function &F, FunctionAnalysisManager &AM) {
503   auto &LI = AM.getResult<LoopAnalysis>(F);
504   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
505   auto *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F);
506   if (!formLCSSAOnAllLoops(&LI, DT, SE))
507     return PreservedAnalyses::all();
508 
509   PreservedAnalyses PA;
510   PA.preserveSet<CFGAnalyses>();
511   PA.preserve<ScalarEvolutionAnalysis>();
512   // BPI maps terminators to probabilities, since we don't modify the CFG, no
513   // updates are needed to preserve it.
514   PA.preserve<BranchProbabilityAnalysis>();
515   PA.preserve<MemorySSAAnalysis>();
516   return PA;
517 }
518