1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements some loop unrolling utilities. It does not define any
10 // actual pass or policy, but provides a single function to perform loop
11 // unrolling.
12 //
13 // The process of unrolling can produce extraneous basic blocks linked with
14 // unconditional branches.  This will be corrected in the future.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/ADT/ilist_iterator.h"
27 #include "llvm/ADT/iterator_range.h"
28 #include "llvm/Analysis/AssumptionCache.h"
29 #include "llvm/Analysis/DomTreeUpdater.h"
30 #include "llvm/Analysis/InstructionSimplify.h"
31 #include "llvm/Analysis/LoopInfo.h"
32 #include "llvm/Analysis/LoopIterator.h"
33 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
34 #include "llvm/Analysis/ScalarEvolution.h"
35 #include "llvm/IR/BasicBlock.h"
36 #include "llvm/IR/CFG.h"
37 #include "llvm/IR/Constants.h"
38 #include "llvm/IR/DebugInfoMetadata.h"
39 #include "llvm/IR/DebugLoc.h"
40 #include "llvm/IR/DiagnosticInfo.h"
41 #include "llvm/IR/Dominators.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/Instruction.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/IntrinsicInst.h"
46 #include "llvm/IR/Metadata.h"
47 #include "llvm/IR/Module.h"
48 #include "llvm/IR/PatternMatch.h"
49 #include "llvm/IR/Use.h"
50 #include "llvm/IR/User.h"
51 #include "llvm/IR/ValueHandle.h"
52 #include "llvm/IR/ValueMap.h"
53 #include "llvm/Support/Casting.h"
54 #include "llvm/Support/CommandLine.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/GenericDomTree.h"
57 #include "llvm/Support/MathExtras.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
60 #include "llvm/Transforms/Utils/Cloning.h"
61 #include "llvm/Transforms/Utils/Local.h"
62 #include "llvm/Transforms/Utils/LoopSimplify.h"
63 #include "llvm/Transforms/Utils/LoopUtils.h"
64 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
65 #include "llvm/Transforms/Utils/UnrollLoop.h"
66 #include "llvm/Transforms/Utils/ValueMapper.h"
67 #include <algorithm>
68 #include <assert.h>
69 #include <numeric>
70 #include <type_traits>
71 #include <vector>
72 
73 namespace llvm {
74 class DataLayout;
75 class Value;
76 } // namespace llvm
77 
78 using namespace llvm;
79 
80 #define DEBUG_TYPE "loop-unroll"
81 
82 // TODO: Should these be here or in LoopUnroll?
83 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
84 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
85 STATISTIC(NumUnrolledNotLatch, "Number of loops unrolled without a conditional "
86                                "latch (completely or otherwise)");
87 
88 static cl::opt<bool>
89 UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden,
90                     cl::desc("Allow runtime unrolled loops to be unrolled "
91                              "with epilog instead of prolog."));
92 
93 static cl::opt<bool>
94 UnrollVerifyDomtree("unroll-verify-domtree", cl::Hidden,
95                     cl::desc("Verify domtree after unrolling"),
96 #ifdef EXPENSIVE_CHECKS
97     cl::init(true)
98 #else
99     cl::init(false)
100 #endif
101                     );
102 
103 static cl::opt<bool>
104 UnrollVerifyLoopInfo("unroll-verify-loopinfo", cl::Hidden,
105                     cl::desc("Verify loopinfo after unrolling"),
106 #ifdef EXPENSIVE_CHECKS
107     cl::init(true)
108 #else
109     cl::init(false)
110 #endif
111                     );
112 
113 
114 /// Check if unrolling created a situation where we need to insert phi nodes to
115 /// preserve LCSSA form.
116 /// \param Blocks is a vector of basic blocks representing unrolled loop.
117 /// \param L is the outer loop.
118 /// It's possible that some of the blocks are in L, and some are not. In this
119 /// case, if there is a use is outside L, and definition is inside L, we need to
120 /// insert a phi-node, otherwise LCSSA will be broken.
121 /// The function is just a helper function for llvm::UnrollLoop that returns
122 /// true if this situation occurs, indicating that LCSSA needs to be fixed.
123 static bool needToInsertPhisForLCSSA(Loop *L,
124                                      const std::vector<BasicBlock *> &Blocks,
125                                      LoopInfo *LI) {
126   for (BasicBlock *BB : Blocks) {
127     if (LI->getLoopFor(BB) == L)
128       continue;
129     for (Instruction &I : *BB) {
130       for (Use &U : I.operands()) {
131         if (const auto *Def = dyn_cast<Instruction>(U)) {
132           Loop *DefLoop = LI->getLoopFor(Def->getParent());
133           if (!DefLoop)
134             continue;
135           if (DefLoop->contains(L))
136             return true;
137         }
138       }
139     }
140   }
141   return false;
142 }
143 
144 /// Adds ClonedBB to LoopInfo, creates a new loop for ClonedBB if necessary
145 /// and adds a mapping from the original loop to the new loop to NewLoops.
146 /// Returns nullptr if no new loop was created and a pointer to the
147 /// original loop OriginalBB was part of otherwise.
148 const Loop* llvm::addClonedBlockToLoopInfo(BasicBlock *OriginalBB,
149                                            BasicBlock *ClonedBB, LoopInfo *LI,
150                                            NewLoopsMap &NewLoops) {
151   // Figure out which loop New is in.
152   const Loop *OldLoop = LI->getLoopFor(OriginalBB);
153   assert(OldLoop && "Should (at least) be in the loop being unrolled!");
154 
155   Loop *&NewLoop = NewLoops[OldLoop];
156   if (!NewLoop) {
157     // Found a new sub-loop.
158     assert(OriginalBB == OldLoop->getHeader() &&
159            "Header should be first in RPO");
160 
161     NewLoop = LI->AllocateLoop();
162     Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop());
163 
164     if (NewLoopParent)
165       NewLoopParent->addChildLoop(NewLoop);
166     else
167       LI->addTopLevelLoop(NewLoop);
168 
169     NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
170     return OldLoop;
171   } else {
172     NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
173     return nullptr;
174   }
175 }
176 
177 /// The function chooses which type of unroll (epilog or prolog) is more
178 /// profitabale.
179 /// Epilog unroll is more profitable when there is PHI that starts from
180 /// constant.  In this case epilog will leave PHI start from constant,
181 /// but prolog will convert it to non-constant.
182 ///
183 /// loop:
184 ///   PN = PHI [I, Latch], [CI, PreHeader]
185 ///   I = foo(PN)
186 ///   ...
187 ///
188 /// Epilog unroll case.
189 /// loop:
190 ///   PN = PHI [I2, Latch], [CI, PreHeader]
191 ///   I1 = foo(PN)
192 ///   I2 = foo(I1)
193 ///   ...
194 /// Prolog unroll case.
195 ///   NewPN = PHI [PrologI, Prolog], [CI, PreHeader]
196 /// loop:
197 ///   PN = PHI [I2, Latch], [NewPN, PreHeader]
198 ///   I1 = foo(PN)
199 ///   I2 = foo(I1)
200 ///   ...
201 ///
202 static bool isEpilogProfitable(Loop *L) {
203   BasicBlock *PreHeader = L->getLoopPreheader();
204   BasicBlock *Header = L->getHeader();
205   assert(PreHeader && Header);
206   for (const PHINode &PN : Header->phis()) {
207     if (isa<ConstantInt>(PN.getIncomingValueForBlock(PreHeader)))
208       return true;
209   }
210   return false;
211 }
212 
213 /// Perform some cleanup and simplifications on loops after unrolling. It is
214 /// useful to simplify the IV's in the new loop, as well as do a quick
215 /// simplify/dce pass of the instructions.
216 void llvm::simplifyLoopAfterUnroll(Loop *L, bool SimplifyIVs, LoopInfo *LI,
217                                    ScalarEvolution *SE, DominatorTree *DT,
218                                    AssumptionCache *AC,
219                                    const TargetTransformInfo *TTI) {
220   using namespace llvm::PatternMatch;
221 
222   // Simplify any new induction variables in the partially unrolled loop.
223   if (SE && SimplifyIVs) {
224     SmallVector<WeakTrackingVH, 16> DeadInsts;
225     simplifyLoopIVs(L, SE, DT, LI, TTI, DeadInsts);
226 
227     // Aggressively clean up dead instructions that simplifyLoopIVs already
228     // identified. Any remaining should be cleaned up below.
229     while (!DeadInsts.empty()) {
230       Value *V = DeadInsts.pop_back_val();
231       if (Instruction *Inst = dyn_cast_or_null<Instruction>(V))
232         RecursivelyDeleteTriviallyDeadInstructions(Inst);
233     }
234   }
235 
236   // At this point, the code is well formed.  Perform constprop, instsimplify,
237   // and dce.
238   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
239   SmallVector<WeakTrackingVH, 16> DeadInsts;
240   for (BasicBlock *BB : L->getBlocks()) {
241     for (Instruction &Inst : llvm::make_early_inc_range(*BB)) {
242       if (Value *V = simplifyInstruction(&Inst, {DL, nullptr, DT, AC}))
243         if (LI->replacementPreservesLCSSAForm(&Inst, V))
244           Inst.replaceAllUsesWith(V);
245       if (isInstructionTriviallyDead(&Inst))
246         DeadInsts.emplace_back(&Inst);
247 
248       // Fold ((add X, C1), C2) to (add X, C1+C2). This is very common in
249       // unrolled loops, and handling this early allows following code to
250       // identify the IV as a "simple recurrence" without first folding away
251       // a long chain of adds.
252       {
253         Value *X;
254         const APInt *C1, *C2;
255         if (match(&Inst, m_Add(m_Add(m_Value(X), m_APInt(C1)), m_APInt(C2)))) {
256           auto *InnerI = dyn_cast<Instruction>(Inst.getOperand(0));
257           auto *InnerOBO = cast<OverflowingBinaryOperator>(Inst.getOperand(0));
258           bool SignedOverflow;
259           APInt NewC = C1->sadd_ov(*C2, SignedOverflow);
260           Inst.setOperand(0, X);
261           Inst.setOperand(1, ConstantInt::get(Inst.getType(), NewC));
262           Inst.setHasNoUnsignedWrap(Inst.hasNoUnsignedWrap() &&
263                                     InnerOBO->hasNoUnsignedWrap());
264           Inst.setHasNoSignedWrap(Inst.hasNoSignedWrap() &&
265                                   InnerOBO->hasNoSignedWrap() &&
266                                   !SignedOverflow);
267           if (InnerI && isInstructionTriviallyDead(InnerI))
268             DeadInsts.emplace_back(InnerI);
269         }
270       }
271     }
272     // We can't do recursive deletion until we're done iterating, as we might
273     // have a phi which (potentially indirectly) uses instructions later in
274     // the block we're iterating through.
275     RecursivelyDeleteTriviallyDeadInstructions(DeadInsts);
276   }
277 }
278 
279 /// Unroll the given loop by Count. The loop must be in LCSSA form.  Unrolling
280 /// can only fail when the loop's latch block is not terminated by a conditional
281 /// branch instruction. However, if the trip count (and multiple) are not known,
282 /// loop unrolling will mostly produce more code that is no faster.
283 ///
284 /// If Runtime is true then UnrollLoop will try to insert a prologue or
285 /// epilogue that ensures the latch has a trip multiple of Count. UnrollLoop
286 /// will not runtime-unroll the loop if computing the run-time trip count will
287 /// be expensive and AllowExpensiveTripCount is false.
288 ///
289 /// The LoopInfo Analysis that is passed will be kept consistent.
290 ///
291 /// This utility preserves LoopInfo. It will also preserve ScalarEvolution and
292 /// DominatorTree if they are non-null.
293 ///
294 /// If RemainderLoop is non-null, it will receive the remainder loop (if
295 /// required and not fully unrolled).
296 LoopUnrollResult llvm::UnrollLoop(Loop *L, UnrollLoopOptions ULO, LoopInfo *LI,
297                                   ScalarEvolution *SE, DominatorTree *DT,
298                                   AssumptionCache *AC,
299                                   const TargetTransformInfo *TTI,
300                                   OptimizationRemarkEmitter *ORE,
301                                   bool PreserveLCSSA, Loop **RemainderLoop) {
302   assert(DT && "DomTree is required");
303 
304   if (!L->getLoopPreheader()) {
305     LLVM_DEBUG(dbgs() << "  Can't unroll; loop preheader-insertion failed.\n");
306     return LoopUnrollResult::Unmodified;
307   }
308 
309   if (!L->getLoopLatch()) {
310     LLVM_DEBUG(dbgs() << "  Can't unroll; loop exit-block-insertion failed.\n");
311     return LoopUnrollResult::Unmodified;
312   }
313 
314   // Loops with indirectbr cannot be cloned.
315   if (!L->isSafeToClone()) {
316     LLVM_DEBUG(dbgs() << "  Can't unroll; Loop body cannot be cloned.\n");
317     return LoopUnrollResult::Unmodified;
318   }
319 
320   if (L->getHeader()->hasAddressTaken()) {
321     // The loop-rotate pass can be helpful to avoid this in many cases.
322     LLVM_DEBUG(
323         dbgs() << "  Won't unroll loop: address of header block is taken.\n");
324     return LoopUnrollResult::Unmodified;
325   }
326 
327   assert(ULO.Count > 0);
328 
329   // All these values should be taken only after peeling because they might have
330   // changed.
331   BasicBlock *Preheader = L->getLoopPreheader();
332   BasicBlock *Header = L->getHeader();
333   BasicBlock *LatchBlock = L->getLoopLatch();
334   SmallVector<BasicBlock *, 4> ExitBlocks;
335   L->getExitBlocks(ExitBlocks);
336   std::vector<BasicBlock *> OriginalLoopBlocks = L->getBlocks();
337 
338   const unsigned MaxTripCount = SE->getSmallConstantMaxTripCount(L);
339   const bool MaxOrZero = SE->isBackedgeTakenCountMaxOrZero(L);
340   unsigned EstimatedLoopInvocationWeight = 0;
341   std::optional<unsigned> OriginalTripCount =
342       llvm::getLoopEstimatedTripCount(L, &EstimatedLoopInvocationWeight);
343 
344   // Effectively "DCE" unrolled iterations that are beyond the max tripcount
345   // and will never be executed.
346   if (MaxTripCount && ULO.Count > MaxTripCount)
347     ULO.Count = MaxTripCount;
348 
349   struct ExitInfo {
350     unsigned TripCount;
351     unsigned TripMultiple;
352     unsigned BreakoutTrip;
353     bool ExitOnTrue;
354     BasicBlock *FirstExitingBlock = nullptr;
355     SmallVector<BasicBlock *> ExitingBlocks;
356   };
357   DenseMap<BasicBlock *, ExitInfo> ExitInfos;
358   SmallVector<BasicBlock *, 4> ExitingBlocks;
359   L->getExitingBlocks(ExitingBlocks);
360   for (auto *ExitingBlock : ExitingBlocks) {
361     // The folding code is not prepared to deal with non-branch instructions
362     // right now.
363     auto *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
364     if (!BI)
365       continue;
366 
367     ExitInfo &Info = ExitInfos.try_emplace(ExitingBlock).first->second;
368     Info.TripCount = SE->getSmallConstantTripCount(L, ExitingBlock);
369     Info.TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock);
370     if (Info.TripCount != 0) {
371       Info.BreakoutTrip = Info.TripCount % ULO.Count;
372       Info.TripMultiple = 0;
373     } else {
374       Info.BreakoutTrip = Info.TripMultiple =
375           (unsigned)std::gcd(ULO.Count, Info.TripMultiple);
376     }
377     Info.ExitOnTrue = !L->contains(BI->getSuccessor(0));
378     Info.ExitingBlocks.push_back(ExitingBlock);
379     LLVM_DEBUG(dbgs() << "  Exiting block %" << ExitingBlock->getName()
380                       << ": TripCount=" << Info.TripCount
381                       << ", TripMultiple=" << Info.TripMultiple
382                       << ", BreakoutTrip=" << Info.BreakoutTrip << "\n");
383   }
384 
385   // Are we eliminating the loop control altogether?  Note that we can know
386   // we're eliminating the backedge without knowing exactly which iteration
387   // of the unrolled body exits.
388   const bool CompletelyUnroll = ULO.Count == MaxTripCount;
389 
390   const bool PreserveOnlyFirst = CompletelyUnroll && MaxOrZero;
391 
392   // There's no point in performing runtime unrolling if this unroll count
393   // results in a full unroll.
394   if (CompletelyUnroll)
395     ULO.Runtime = false;
396 
397   // Go through all exits of L and see if there are any phi-nodes there. We just
398   // conservatively assume that they're inserted to preserve LCSSA form, which
399   // means that complete unrolling might break this form. We need to either fix
400   // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For
401   // now we just recompute LCSSA for the outer loop, but it should be possible
402   // to fix it in-place.
403   bool NeedToFixLCSSA =
404       PreserveLCSSA && CompletelyUnroll &&
405       any_of(ExitBlocks,
406              [](const BasicBlock *BB) { return isa<PHINode>(BB->begin()); });
407 
408   // The current loop unroll pass can unroll loops that have
409   // (1) single latch; and
410   // (2a) latch is unconditional; or
411   // (2b) latch is conditional and is an exiting block
412   // FIXME: The implementation can be extended to work with more complicated
413   // cases, e.g. loops with multiple latches.
414   BranchInst *LatchBI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
415 
416   // A conditional branch which exits the loop, which can be optimized to an
417   // unconditional branch in the unrolled loop in some cases.
418   bool LatchIsExiting = L->isLoopExiting(LatchBlock);
419   if (!LatchBI || (LatchBI->isConditional() && !LatchIsExiting)) {
420     LLVM_DEBUG(
421         dbgs() << "Can't unroll; a conditional latch must exit the loop");
422     return LoopUnrollResult::Unmodified;
423   }
424 
425   // Loops containing convergent instructions cannot use runtime unrolling,
426   // as the prologue/epilogue may add additional control-dependencies to
427   // convergent operations.
428   LLVM_DEBUG(
429       {
430         bool HasConvergent = false;
431         for (auto &BB : L->blocks())
432           for (auto &I : *BB)
433             if (auto *CB = dyn_cast<CallBase>(&I))
434               HasConvergent |= CB->isConvergent();
435         assert((!HasConvergent || !ULO.Runtime) &&
436                "Can't runtime unroll if loop contains a convergent operation.");
437       });
438 
439   bool EpilogProfitability =
440       UnrollRuntimeEpilog.getNumOccurrences() ? UnrollRuntimeEpilog
441                                               : isEpilogProfitable(L);
442 
443   if (ULO.Runtime &&
444       !UnrollRuntimeLoopRemainder(L, ULO.Count, ULO.AllowExpensiveTripCount,
445                                   EpilogProfitability, ULO.UnrollRemainder,
446                                   ULO.ForgetAllSCEV, LI, SE, DT, AC, TTI,
447                                   PreserveLCSSA, RemainderLoop)) {
448     if (ULO.Force)
449       ULO.Runtime = false;
450     else {
451       LLVM_DEBUG(dbgs() << "Won't unroll; remainder loop could not be "
452                            "generated when assuming runtime trip count\n");
453       return LoopUnrollResult::Unmodified;
454     }
455   }
456 
457   using namespace ore;
458   // Report the unrolling decision.
459   if (CompletelyUnroll) {
460     LLVM_DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName()
461                       << " with trip count " << ULO.Count << "!\n");
462     if (ORE)
463       ORE->emit([&]() {
464         return OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(),
465                                   L->getHeader())
466                << "completely unrolled loop with "
467                << NV("UnrollCount", ULO.Count) << " iterations";
468       });
469   } else {
470     LLVM_DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() << " by "
471                       << ULO.Count);
472     if (ULO.Runtime)
473       LLVM_DEBUG(dbgs() << " with run-time trip count");
474     LLVM_DEBUG(dbgs() << "!\n");
475 
476     if (ORE)
477       ORE->emit([&]() {
478         OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(),
479                                 L->getHeader());
480         Diag << "unrolled loop by a factor of " << NV("UnrollCount", ULO.Count);
481         if (ULO.Runtime)
482           Diag << " with run-time trip count";
483         return Diag;
484       });
485   }
486 
487   // We are going to make changes to this loop. SCEV may be keeping cached info
488   // about it, in particular about backedge taken count. The changes we make
489   // are guaranteed to invalidate this information for our loop. It is tempting
490   // to only invalidate the loop being unrolled, but it is incorrect as long as
491   // all exiting branches from all inner loops have impact on the outer loops,
492   // and if something changes inside them then any of outer loops may also
493   // change. When we forget outermost loop, we also forget all contained loops
494   // and this is what we need here.
495   if (SE) {
496     if (ULO.ForgetAllSCEV)
497       SE->forgetAllLoops();
498     else {
499       SE->forgetTopmostLoop(L);
500       SE->forgetBlockAndLoopDispositions();
501     }
502   }
503 
504   if (!LatchIsExiting)
505     ++NumUnrolledNotLatch;
506 
507   // For the first iteration of the loop, we should use the precloned values for
508   // PHI nodes.  Insert associations now.
509   ValueToValueMapTy LastValueMap;
510   std::vector<PHINode*> OrigPHINode;
511   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
512     OrigPHINode.push_back(cast<PHINode>(I));
513   }
514 
515   std::vector<BasicBlock *> Headers;
516   std::vector<BasicBlock *> Latches;
517   Headers.push_back(Header);
518   Latches.push_back(LatchBlock);
519 
520   // The current on-the-fly SSA update requires blocks to be processed in
521   // reverse postorder so that LastValueMap contains the correct value at each
522   // exit.
523   LoopBlocksDFS DFS(L);
524   DFS.perform(LI);
525 
526   // Stash the DFS iterators before adding blocks to the loop.
527   LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
528   LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();
529 
530   std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks();
531 
532   // Loop Unrolling might create new loops. While we do preserve LoopInfo, we
533   // might break loop-simplified form for these loops (as they, e.g., would
534   // share the same exit blocks). We'll keep track of loops for which we can
535   // break this so that later we can re-simplify them.
536   SmallSetVector<Loop *, 4> LoopsToSimplify;
537   for (Loop *SubLoop : *L)
538     LoopsToSimplify.insert(SubLoop);
539 
540   // When a FSDiscriminator is enabled, we don't need to add the multiply
541   // factors to the discriminators.
542   if (Header->getParent()->shouldEmitDebugInfoForProfiling() &&
543       !EnableFSDiscriminator)
544     for (BasicBlock *BB : L->getBlocks())
545       for (Instruction &I : *BB)
546         if (!I.isDebugOrPseudoInst())
547           if (const DILocation *DIL = I.getDebugLoc()) {
548             auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(ULO.Count);
549             if (NewDIL)
550               I.setDebugLoc(*NewDIL);
551             else
552               LLVM_DEBUG(dbgs()
553                          << "Failed to create new discriminator: "
554                          << DIL->getFilename() << " Line: " << DIL->getLine());
555           }
556 
557   // Identify what noalias metadata is inside the loop: if it is inside the
558   // loop, the associated metadata must be cloned for each iteration.
559   SmallVector<MDNode *, 6> LoopLocalNoAliasDeclScopes;
560   identifyNoAliasScopesToClone(L->getBlocks(), LoopLocalNoAliasDeclScopes);
561 
562   // We place the unrolled iterations immediately after the original loop
563   // latch.  This is a reasonable default placement if we don't have block
564   // frequencies, and if we do, well the layout will be adjusted later.
565   auto BlockInsertPt = std::next(LatchBlock->getIterator());
566   for (unsigned It = 1; It != ULO.Count; ++It) {
567     SmallVector<BasicBlock *, 8> NewBlocks;
568     SmallDenseMap<const Loop *, Loop *, 4> NewLoops;
569     NewLoops[L] = L;
570 
571     for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
572       ValueToValueMapTy VMap;
573       BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
574       Header->getParent()->insert(BlockInsertPt, New);
575 
576       assert((*BB != Header || LI->getLoopFor(*BB) == L) &&
577              "Header should not be in a sub-loop");
578       // Tell LI about New.
579       const Loop *OldLoop = addClonedBlockToLoopInfo(*BB, New, LI, NewLoops);
580       if (OldLoop)
581         LoopsToSimplify.insert(NewLoops[OldLoop]);
582 
583       if (*BB == Header)
584         // Loop over all of the PHI nodes in the block, changing them to use
585         // the incoming values from the previous block.
586         for (PHINode *OrigPHI : OrigPHINode) {
587           PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]);
588           Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
589           if (Instruction *InValI = dyn_cast<Instruction>(InVal))
590             if (It > 1 && L->contains(InValI))
591               InVal = LastValueMap[InValI];
592           VMap[OrigPHI] = InVal;
593           NewPHI->eraseFromParent();
594         }
595 
596       // Update our running map of newest clones
597       LastValueMap[*BB] = New;
598       for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
599            VI != VE; ++VI)
600         LastValueMap[VI->first] = VI->second;
601 
602       // Add phi entries for newly created values to all exit blocks.
603       for (BasicBlock *Succ : successors(*BB)) {
604         if (L->contains(Succ))
605           continue;
606         for (PHINode &PHI : Succ->phis()) {
607           Value *Incoming = PHI.getIncomingValueForBlock(*BB);
608           ValueToValueMapTy::iterator It = LastValueMap.find(Incoming);
609           if (It != LastValueMap.end())
610             Incoming = It->second;
611           PHI.addIncoming(Incoming, New);
612           SE->forgetValue(&PHI);
613         }
614       }
615       // Keep track of new headers and latches as we create them, so that
616       // we can insert the proper branches later.
617       if (*BB == Header)
618         Headers.push_back(New);
619       if (*BB == LatchBlock)
620         Latches.push_back(New);
621 
622       // Keep track of the exiting block and its successor block contained in
623       // the loop for the current iteration.
624       auto ExitInfoIt = ExitInfos.find(*BB);
625       if (ExitInfoIt != ExitInfos.end())
626         ExitInfoIt->second.ExitingBlocks.push_back(New);
627 
628       NewBlocks.push_back(New);
629       UnrolledLoopBlocks.push_back(New);
630 
631       // Update DomTree: since we just copy the loop body, and each copy has a
632       // dedicated entry block (copy of the header block), this header's copy
633       // dominates all copied blocks. That means, dominance relations in the
634       // copied body are the same as in the original body.
635       if (*BB == Header)
636         DT->addNewBlock(New, Latches[It - 1]);
637       else {
638         auto BBDomNode = DT->getNode(*BB);
639         auto BBIDom = BBDomNode->getIDom();
640         BasicBlock *OriginalBBIDom = BBIDom->getBlock();
641         DT->addNewBlock(
642             New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)]));
643       }
644     }
645 
646     // Remap all instructions in the most recent iteration
647     remapInstructionsInBlocks(NewBlocks, LastValueMap);
648     for (BasicBlock *NewBlock : NewBlocks)
649       for (Instruction &I : *NewBlock)
650         if (auto *II = dyn_cast<AssumeInst>(&I))
651           AC->registerAssumption(II);
652 
653     {
654       // Identify what other metadata depends on the cloned version. After
655       // cloning, replace the metadata with the corrected version for both
656       // memory instructions and noalias intrinsics.
657       std::string ext = (Twine("It") + Twine(It)).str();
658       cloneAndAdaptNoAliasScopes(LoopLocalNoAliasDeclScopes, NewBlocks,
659                                  Header->getContext(), ext);
660     }
661   }
662 
663   // Loop over the PHI nodes in the original block, setting incoming values.
664   for (PHINode *PN : OrigPHINode) {
665     if (CompletelyUnroll) {
666       PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
667       PN->eraseFromParent();
668     } else if (ULO.Count > 1) {
669       Value *InVal = PN->removeIncomingValue(LatchBlock, false);
670       // If this value was defined in the loop, take the value defined by the
671       // last iteration of the loop.
672       if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
673         if (L->contains(InValI))
674           InVal = LastValueMap[InVal];
675       }
676       assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch");
677       PN->addIncoming(InVal, Latches.back());
678     }
679   }
680 
681   // Connect latches of the unrolled iterations to the headers of the next
682   // iteration. Currently they point to the header of the same iteration.
683   for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
684     unsigned j = (i + 1) % e;
685     Latches[i]->getTerminator()->replaceSuccessorWith(Headers[i], Headers[j]);
686   }
687 
688   // Update dominators of blocks we might reach through exits.
689   // Immediate dominator of such block might change, because we add more
690   // routes which can lead to the exit: we can now reach it from the copied
691   // iterations too.
692   if (ULO.Count > 1) {
693     for (auto *BB : OriginalLoopBlocks) {
694       auto *BBDomNode = DT->getNode(BB);
695       SmallVector<BasicBlock *, 16> ChildrenToUpdate;
696       for (auto *ChildDomNode : BBDomNode->children()) {
697         auto *ChildBB = ChildDomNode->getBlock();
698         if (!L->contains(ChildBB))
699           ChildrenToUpdate.push_back(ChildBB);
700       }
701       // The new idom of the block will be the nearest common dominator
702       // of all copies of the previous idom. This is equivalent to the
703       // nearest common dominator of the previous idom and the first latch,
704       // which dominates all copies of the previous idom.
705       BasicBlock *NewIDom = DT->findNearestCommonDominator(BB, LatchBlock);
706       for (auto *ChildBB : ChildrenToUpdate)
707         DT->changeImmediateDominator(ChildBB, NewIDom);
708     }
709   }
710 
711   assert(!UnrollVerifyDomtree ||
712          DT->verify(DominatorTree::VerificationLevel::Fast));
713 
714   SmallVector<DominatorTree::UpdateType> DTUpdates;
715   auto SetDest = [&](BasicBlock *Src, bool WillExit, bool ExitOnTrue) {
716     auto *Term = cast<BranchInst>(Src->getTerminator());
717     const unsigned Idx = ExitOnTrue ^ WillExit;
718     BasicBlock *Dest = Term->getSuccessor(Idx);
719     BasicBlock *DeadSucc = Term->getSuccessor(1-Idx);
720 
721     // Remove predecessors from all non-Dest successors.
722     DeadSucc->removePredecessor(Src, /* KeepOneInputPHIs */ true);
723 
724     // Replace the conditional branch with an unconditional one.
725     BranchInst::Create(Dest, Term);
726     Term->eraseFromParent();
727 
728     DTUpdates.emplace_back(DominatorTree::Delete, Src, DeadSucc);
729   };
730 
731   auto WillExit = [&](const ExitInfo &Info, unsigned i, unsigned j,
732                       bool IsLatch) -> std::optional<bool> {
733     if (CompletelyUnroll) {
734       if (PreserveOnlyFirst) {
735         if (i == 0)
736           return std::nullopt;
737         return j == 0;
738       }
739       // Complete (but possibly inexact) unrolling
740       if (j == 0)
741         return true;
742       if (Info.TripCount && j != Info.TripCount)
743         return false;
744       return std::nullopt;
745     }
746 
747     if (ULO.Runtime) {
748       // If runtime unrolling inserts a prologue, information about non-latch
749       // exits may be stale.
750       if (IsLatch && j != 0)
751         return false;
752       return std::nullopt;
753     }
754 
755     if (j != Info.BreakoutTrip &&
756         (Info.TripMultiple == 0 || j % Info.TripMultiple != 0)) {
757       // If we know the trip count or a multiple of it, we can safely use an
758       // unconditional branch for some iterations.
759       return false;
760     }
761     return std::nullopt;
762   };
763 
764   // Fold branches for iterations where we know that they will exit or not
765   // exit.
766   for (auto &Pair : ExitInfos) {
767     ExitInfo &Info = Pair.second;
768     for (unsigned i = 0, e = Info.ExitingBlocks.size(); i != e; ++i) {
769       // The branch destination.
770       unsigned j = (i + 1) % e;
771       bool IsLatch = Pair.first == LatchBlock;
772       std::optional<bool> KnownWillExit = WillExit(Info, i, j, IsLatch);
773       if (!KnownWillExit) {
774         if (!Info.FirstExitingBlock)
775           Info.FirstExitingBlock = Info.ExitingBlocks[i];
776         continue;
777       }
778 
779       // We don't fold known-exiting branches for non-latch exits here,
780       // because this ensures that both all loop blocks and all exit blocks
781       // remain reachable in the CFG.
782       // TODO: We could fold these branches, but it would require much more
783       // sophisticated updates to LoopInfo.
784       if (*KnownWillExit && !IsLatch) {
785         if (!Info.FirstExitingBlock)
786           Info.FirstExitingBlock = Info.ExitingBlocks[i];
787         continue;
788       }
789 
790       SetDest(Info.ExitingBlocks[i], *KnownWillExit, Info.ExitOnTrue);
791     }
792   }
793 
794   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
795   DomTreeUpdater *DTUToUse = &DTU;
796   if (ExitingBlocks.size() == 1 && ExitInfos.size() == 1) {
797     // Manually update the DT if there's a single exiting node. In that case
798     // there's a single exit node and it is sufficient to update the nodes
799     // immediately dominated by the original exiting block. They will become
800     // dominated by the first exiting block that leaves the loop after
801     // unrolling. Note that the CFG inside the loop does not change, so there's
802     // no need to update the DT inside the unrolled loop.
803     DTUToUse = nullptr;
804     auto &[OriginalExit, Info] = *ExitInfos.begin();
805     if (!Info.FirstExitingBlock)
806       Info.FirstExitingBlock = Info.ExitingBlocks.back();
807     for (auto *C : to_vector(DT->getNode(OriginalExit)->children())) {
808       if (L->contains(C->getBlock()))
809         continue;
810       C->setIDom(DT->getNode(Info.FirstExitingBlock));
811     }
812   } else {
813     DTU.applyUpdates(DTUpdates);
814   }
815 
816   // When completely unrolling, the last latch becomes unreachable.
817   if (!LatchIsExiting && CompletelyUnroll) {
818     // There is no need to update the DT here, because there must be a unique
819     // latch. Hence if the latch is not exiting it must directly branch back to
820     // the original loop header and does not dominate any nodes.
821     assert(LatchBlock->getSingleSuccessor() && "Loop with multiple latches?");
822     changeToUnreachable(Latches.back()->getTerminator(), PreserveLCSSA);
823   }
824 
825   // Merge adjacent basic blocks, if possible.
826   for (BasicBlock *Latch : Latches) {
827     BranchInst *Term = dyn_cast<BranchInst>(Latch->getTerminator());
828     assert((Term ||
829             (CompletelyUnroll && !LatchIsExiting && Latch == Latches.back())) &&
830            "Need a branch as terminator, except when fully unrolling with "
831            "unconditional latch");
832     if (Term && Term->isUnconditional()) {
833       BasicBlock *Dest = Term->getSuccessor(0);
834       BasicBlock *Fold = Dest->getUniquePredecessor();
835       if (MergeBlockIntoPredecessor(Dest, /*DTU=*/DTUToUse, LI,
836                                     /*MSSAU=*/nullptr, /*MemDep=*/nullptr,
837                                     /*PredecessorWithTwoSuccessors=*/false,
838                                     DTUToUse ? nullptr : DT)) {
839         // Dest has been folded into Fold. Update our worklists accordingly.
840         std::replace(Latches.begin(), Latches.end(), Dest, Fold);
841         llvm::erase_value(UnrolledLoopBlocks, Dest);
842       }
843     }
844   }
845 
846   if (DTUToUse) {
847     // Apply updates to the DomTree.
848     DT = &DTU.getDomTree();
849   }
850   assert(!UnrollVerifyDomtree ||
851          DT->verify(DominatorTree::VerificationLevel::Fast));
852 
853   // At this point, the code is well formed.  We now simplify the unrolled loop,
854   // doing constant propagation and dead code elimination as we go.
855   simplifyLoopAfterUnroll(L, !CompletelyUnroll && ULO.Count > 1, LI, SE, DT, AC,
856                           TTI);
857 
858   NumCompletelyUnrolled += CompletelyUnroll;
859   ++NumUnrolled;
860 
861   Loop *OuterL = L->getParentLoop();
862   // Update LoopInfo if the loop is completely removed.
863   if (CompletelyUnroll) {
864     LI->erase(L);
865     // We shouldn't try to use `L` anymore.
866     L = nullptr;
867   } else if (OriginalTripCount) {
868     // Update the trip count. Note that the remainder has already logic
869     // computing it in `UnrollRuntimeLoopRemainder`.
870     setLoopEstimatedTripCount(L, *OriginalTripCount / ULO.Count,
871                               EstimatedLoopInvocationWeight);
872   }
873 
874   // LoopInfo should not be valid, confirm that.
875   if (UnrollVerifyLoopInfo)
876     LI->verify(*DT);
877 
878   // After complete unrolling most of the blocks should be contained in OuterL.
879   // However, some of them might happen to be out of OuterL (e.g. if they
880   // precede a loop exit). In this case we might need to insert PHI nodes in
881   // order to preserve LCSSA form.
882   // We don't need to check this if we already know that we need to fix LCSSA
883   // form.
884   // TODO: For now we just recompute LCSSA for the outer loop in this case, but
885   // it should be possible to fix it in-place.
886   if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA)
887     NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI);
888 
889   // Make sure that loop-simplify form is preserved. We want to simplify
890   // at least one layer outside of the loop that was unrolled so that any
891   // changes to the parent loop exposed by the unrolling are considered.
892   if (OuterL) {
893     // OuterL includes all loops for which we can break loop-simplify, so
894     // it's sufficient to simplify only it (it'll recursively simplify inner
895     // loops too).
896     if (NeedToFixLCSSA) {
897       // LCSSA must be performed on the outermost affected loop. The unrolled
898       // loop's last loop latch is guaranteed to be in the outermost loop
899       // after LoopInfo's been updated by LoopInfo::erase.
900       Loop *LatchLoop = LI->getLoopFor(Latches.back());
901       Loop *FixLCSSALoop = OuterL;
902       if (!FixLCSSALoop->contains(LatchLoop))
903         while (FixLCSSALoop->getParentLoop() != LatchLoop)
904           FixLCSSALoop = FixLCSSALoop->getParentLoop();
905 
906       formLCSSARecursively(*FixLCSSALoop, *DT, LI, SE);
907     } else if (PreserveLCSSA) {
908       assert(OuterL->isLCSSAForm(*DT) &&
909              "Loops should be in LCSSA form after loop-unroll.");
910     }
911 
912     // TODO: That potentially might be compile-time expensive. We should try
913     // to fix the loop-simplified form incrementally.
914     simplifyLoop(OuterL, DT, LI, SE, AC, nullptr, PreserveLCSSA);
915   } else {
916     // Simplify loops for which we might've broken loop-simplify form.
917     for (Loop *SubLoop : LoopsToSimplify)
918       simplifyLoop(SubLoop, DT, LI, SE, AC, nullptr, PreserveLCSSA);
919   }
920 
921   return CompletelyUnroll ? LoopUnrollResult::FullyUnrolled
922                           : LoopUnrollResult::PartiallyUnrolled;
923 }
924 
925 /// Given an llvm.loop loop id metadata node, returns the loop hint metadata
926 /// node with the given name (for example, "llvm.loop.unroll.count"). If no
927 /// such metadata node exists, then nullptr is returned.
928 MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) {
929   // First operand should refer to the loop id itself.
930   assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
931   assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
932 
933   for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
934     MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
935     if (!MD)
936       continue;
937 
938     MDString *S = dyn_cast<MDString>(MD->getOperand(0));
939     if (!S)
940       continue;
941 
942     if (Name.equals(S->getString()))
943       return MD;
944   }
945   return nullptr;
946 }
947