1 //===- LowerSwitch.cpp - Eliminate Switch instructions --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The LowerSwitch transformation rewrites switch instructions with a sequence
10 // of branches, which allows targets to get away with not implementing the
11 // switch instruction until it is convenient.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/LowerSwitch.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/Analysis/AssumptionCache.h"
21 #include "llvm/Analysis/LazyValueInfo.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/CFG.h"
25 #include "llvm/IR/ConstantRange.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/InstrTypes.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/PassManager.h"
31 #include "llvm/IR/Value.h"
32 #include "llvm/InitializePasses.h"
33 #include "llvm/Pass.h"
34 #include "llvm/Support/Casting.h"
35 #include "llvm/Support/Compiler.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/KnownBits.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include "llvm/Transforms/Utils.h"
40 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
41 #include <algorithm>
42 #include <cassert>
43 #include <cstdint>
44 #include <iterator>
45 #include <vector>
46 
47 using namespace llvm;
48 
49 #define DEBUG_TYPE "lower-switch"
50 
51 namespace {
52 
53 struct IntRange {
54   APInt Low, High;
55 };
56 
57 } // end anonymous namespace
58 
59 namespace {
60 // Return true iff R is covered by Ranges.
61 bool IsInRanges(const IntRange &R, const std::vector<IntRange> &Ranges) {
62   // Note: Ranges must be sorted, non-overlapping and non-adjacent.
63 
64   // Find the first range whose High field is >= R.High,
65   // then check if the Low field is <= R.Low. If so, we
66   // have a Range that covers R.
67   auto I = llvm::lower_bound(
68       Ranges, R, [](IntRange A, IntRange B) { return A.High.slt(B.High); });
69   return I != Ranges.end() && I->Low.sle(R.Low);
70 }
71 
72 struct CaseRange {
73   ConstantInt *Low;
74   ConstantInt *High;
75   BasicBlock *BB;
76 
77   CaseRange(ConstantInt *low, ConstantInt *high, BasicBlock *bb)
78       : Low(low), High(high), BB(bb) {}
79 };
80 
81 using CaseVector = std::vector<CaseRange>;
82 using CaseItr = std::vector<CaseRange>::iterator;
83 
84 /// The comparison function for sorting the switch case values in the vector.
85 /// WARNING: Case ranges should be disjoint!
86 struct CaseCmp {
87   bool operator()(const CaseRange &C1, const CaseRange &C2) {
88     const ConstantInt *CI1 = cast<const ConstantInt>(C1.Low);
89     const ConstantInt *CI2 = cast<const ConstantInt>(C2.High);
90     return CI1->getValue().slt(CI2->getValue());
91   }
92 };
93 
94 /// Used for debugging purposes.
95 LLVM_ATTRIBUTE_USED
96 raw_ostream &operator<<(raw_ostream &O, const CaseVector &C) {
97   O << "[";
98 
99   for (CaseVector::const_iterator B = C.begin(), E = C.end(); B != E;) {
100     O << "[" << B->Low->getValue() << ", " << B->High->getValue() << "]";
101     if (++B != E)
102       O << ", ";
103   }
104 
105   return O << "]";
106 }
107 
108 /// Update the first occurrence of the "switch statement" BB in the PHI
109 /// node with the "new" BB. The other occurrences will:
110 ///
111 /// 1) Be updated by subsequent calls to this function.  Switch statements may
112 /// have more than one outcoming edge into the same BB if they all have the same
113 /// value. When the switch statement is converted these incoming edges are now
114 /// coming from multiple BBs.
115 /// 2) Removed if subsequent incoming values now share the same case, i.e.,
116 /// multiple outcome edges are condensed into one. This is necessary to keep the
117 /// number of phi values equal to the number of branches to SuccBB.
118 void FixPhis(BasicBlock *SuccBB, BasicBlock *OrigBB, BasicBlock *NewBB,
119              const APInt &NumMergedCases) {
120   for (auto &I : SuccBB->phis()) {
121     PHINode *PN = cast<PHINode>(&I);
122 
123     // Only update the first occurrence if NewBB exists.
124     unsigned Idx = 0, E = PN->getNumIncomingValues();
125     APInt LocalNumMergedCases = NumMergedCases;
126     for (; Idx != E && NewBB; ++Idx) {
127       if (PN->getIncomingBlock(Idx) == OrigBB) {
128         PN->setIncomingBlock(Idx, NewBB);
129         break;
130       }
131     }
132 
133     // Skip the updated incoming block so that it will not be removed.
134     if (NewBB)
135       ++Idx;
136 
137     // Remove additional occurrences coming from condensed cases and keep the
138     // number of incoming values equal to the number of branches to SuccBB.
139     SmallVector<unsigned, 8> Indices;
140     for (; LocalNumMergedCases.ugt(0) && Idx < E; ++Idx)
141       if (PN->getIncomingBlock(Idx) == OrigBB) {
142         Indices.push_back(Idx);
143         LocalNumMergedCases -= 1;
144       }
145     // Remove incoming values in the reverse order to prevent invalidating
146     // *successive* index.
147     for (unsigned III : llvm::reverse(Indices))
148       PN->removeIncomingValue(III);
149   }
150 }
151 
152 /// Create a new leaf block for the binary lookup tree. It checks if the
153 /// switch's value == the case's value. If not, then it jumps to the default
154 /// branch. At this point in the tree, the value can't be another valid case
155 /// value, so the jump to the "default" branch is warranted.
156 BasicBlock *NewLeafBlock(CaseRange &Leaf, Value *Val, ConstantInt *LowerBound,
157                          ConstantInt *UpperBound, BasicBlock *OrigBlock,
158                          BasicBlock *Default) {
159   Function *F = OrigBlock->getParent();
160   BasicBlock *NewLeaf = BasicBlock::Create(Val->getContext(), "LeafBlock");
161   F->insert(++OrigBlock->getIterator(), NewLeaf);
162 
163   // Emit comparison
164   ICmpInst *Comp = nullptr;
165   if (Leaf.Low == Leaf.High) {
166     // Make the seteq instruction...
167     Comp =
168         new ICmpInst(*NewLeaf, ICmpInst::ICMP_EQ, Val, Leaf.Low, "SwitchLeaf");
169   } else {
170     // Make range comparison
171     if (Leaf.Low == LowerBound) {
172       // Val >= Min && Val <= Hi --> Val <= Hi
173       Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_SLE, Val, Leaf.High,
174                           "SwitchLeaf");
175     } else if (Leaf.High == UpperBound) {
176       // Val <= Max && Val >= Lo --> Val >= Lo
177       Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_SGE, Val, Leaf.Low,
178                           "SwitchLeaf");
179     } else if (Leaf.Low->isZero()) {
180       // Val >= 0 && Val <= Hi --> Val <=u Hi
181       Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Val, Leaf.High,
182                           "SwitchLeaf");
183     } else {
184       // Emit V-Lo <=u Hi-Lo
185       Constant *NegLo = ConstantExpr::getNeg(Leaf.Low);
186       Instruction *Add = BinaryOperator::CreateAdd(
187           Val, NegLo, Val->getName() + ".off", NewLeaf);
188       Constant *UpperBound = ConstantExpr::getAdd(NegLo, Leaf.High);
189       Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Add, UpperBound,
190                           "SwitchLeaf");
191     }
192   }
193 
194   // Make the conditional branch...
195   BasicBlock *Succ = Leaf.BB;
196   BranchInst::Create(Succ, Default, Comp, NewLeaf);
197 
198   // Update the PHI incoming value/block for the default.
199   for (auto &I : Default->phis()) {
200     PHINode *PN = cast<PHINode>(&I);
201     auto *V = PN->getIncomingValueForBlock(OrigBlock);
202     PN->addIncoming(V, NewLeaf);
203   }
204 
205   // If there were any PHI nodes in this successor, rewrite one entry
206   // from OrigBlock to come from NewLeaf.
207   for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
208     PHINode *PN = cast<PHINode>(I);
209     // Remove all but one incoming entries from the cluster
210     APInt Range = Leaf.High->getValue() - Leaf.Low->getValue();
211     for (APInt j(Range.getBitWidth(), 0, true); j.slt(Range); ++j) {
212       PN->removeIncomingValue(OrigBlock);
213     }
214 
215     int BlockIdx = PN->getBasicBlockIndex(OrigBlock);
216     assert(BlockIdx != -1 && "Switch didn't go to this successor??");
217     PN->setIncomingBlock((unsigned)BlockIdx, NewLeaf);
218   }
219 
220   return NewLeaf;
221 }
222 
223 /// Convert the switch statement into a binary lookup of the case values.
224 /// The function recursively builds this tree. LowerBound and UpperBound are
225 /// used to keep track of the bounds for Val that have already been checked by
226 /// a block emitted by one of the previous calls to switchConvert in the call
227 /// stack.
228 BasicBlock *SwitchConvert(CaseItr Begin, CaseItr End, ConstantInt *LowerBound,
229                           ConstantInt *UpperBound, Value *Val,
230                           BasicBlock *Predecessor, BasicBlock *OrigBlock,
231                           BasicBlock *Default,
232                           const std::vector<IntRange> &UnreachableRanges) {
233   assert(LowerBound && UpperBound && "Bounds must be initialized");
234   unsigned Size = End - Begin;
235 
236   if (Size == 1) {
237     // Check if the Case Range is perfectly squeezed in between
238     // already checked Upper and Lower bounds. If it is then we can avoid
239     // emitting the code that checks if the value actually falls in the range
240     // because the bounds already tell us so.
241     if (Begin->Low == LowerBound && Begin->High == UpperBound) {
242       APInt NumMergedCases = UpperBound->getValue() - LowerBound->getValue();
243       FixPhis(Begin->BB, OrigBlock, Predecessor, NumMergedCases);
244       return Begin->BB;
245     }
246     return NewLeafBlock(*Begin, Val, LowerBound, UpperBound, OrigBlock,
247                         Default);
248   }
249 
250   unsigned Mid = Size / 2;
251   std::vector<CaseRange> LHS(Begin, Begin + Mid);
252   LLVM_DEBUG(dbgs() << "LHS: " << LHS << "\n");
253   std::vector<CaseRange> RHS(Begin + Mid, End);
254   LLVM_DEBUG(dbgs() << "RHS: " << RHS << "\n");
255 
256   CaseRange &Pivot = *(Begin + Mid);
257   LLVM_DEBUG(dbgs() << "Pivot ==> [" << Pivot.Low->getValue() << ", "
258                     << Pivot.High->getValue() << "]\n");
259 
260   // NewLowerBound here should never be the integer minimal value.
261   // This is because it is computed from a case range that is never
262   // the smallest, so there is always a case range that has at least
263   // a smaller value.
264   ConstantInt *NewLowerBound = Pivot.Low;
265 
266   // Because NewLowerBound is never the smallest representable integer
267   // it is safe here to subtract one.
268   ConstantInt *NewUpperBound = ConstantInt::get(NewLowerBound->getContext(),
269                                                 NewLowerBound->getValue() - 1);
270 
271   if (!UnreachableRanges.empty()) {
272     // Check if the gap between LHS's highest and NewLowerBound is unreachable.
273     APInt GapLow = LHS.back().High->getValue() + 1;
274     APInt GapHigh = NewLowerBound->getValue() - 1;
275     IntRange Gap = {GapLow, GapHigh};
276     if (GapHigh.sge(GapLow) && IsInRanges(Gap, UnreachableRanges))
277       NewUpperBound = LHS.back().High;
278   }
279 
280   LLVM_DEBUG(dbgs() << "LHS Bounds ==> [" << LowerBound->getValue() << ", "
281                     << NewUpperBound->getValue() << "]\n"
282                     << "RHS Bounds ==> [" << NewLowerBound->getValue() << ", "
283                     << UpperBound->getValue() << "]\n");
284 
285   // Create a new node that checks if the value is < pivot. Go to the
286   // left branch if it is and right branch if not.
287   Function *F = OrigBlock->getParent();
288   BasicBlock *NewNode = BasicBlock::Create(Val->getContext(), "NodeBlock");
289 
290   ICmpInst *Comp = new ICmpInst(ICmpInst::ICMP_SLT, Val, Pivot.Low, "Pivot");
291 
292   BasicBlock *LBranch =
293       SwitchConvert(LHS.begin(), LHS.end(), LowerBound, NewUpperBound, Val,
294                     NewNode, OrigBlock, Default, UnreachableRanges);
295   BasicBlock *RBranch =
296       SwitchConvert(RHS.begin(), RHS.end(), NewLowerBound, UpperBound, Val,
297                     NewNode, OrigBlock, Default, UnreachableRanges);
298 
299   F->insert(++OrigBlock->getIterator(), NewNode);
300   Comp->insertInto(NewNode, NewNode->end());
301 
302   BranchInst::Create(LBranch, RBranch, Comp, NewNode);
303   return NewNode;
304 }
305 
306 /// Transform simple list of \p SI's cases into list of CaseRange's \p Cases.
307 /// \post \p Cases wouldn't contain references to \p SI's default BB.
308 /// \returns Number of \p SI's cases that do not reference \p SI's default BB.
309 unsigned Clusterify(CaseVector &Cases, SwitchInst *SI) {
310   unsigned NumSimpleCases = 0;
311 
312   // Start with "simple" cases
313   for (auto Case : SI->cases()) {
314     if (Case.getCaseSuccessor() == SI->getDefaultDest())
315       continue;
316     Cases.push_back(CaseRange(Case.getCaseValue(), Case.getCaseValue(),
317                               Case.getCaseSuccessor()));
318     ++NumSimpleCases;
319   }
320 
321   llvm::sort(Cases, CaseCmp());
322 
323   // Merge case into clusters
324   if (Cases.size() >= 2) {
325     CaseItr I = Cases.begin();
326     for (CaseItr J = std::next(I), E = Cases.end(); J != E; ++J) {
327       const APInt &nextValue = J->Low->getValue();
328       const APInt &currentValue = I->High->getValue();
329       BasicBlock *nextBB = J->BB;
330       BasicBlock *currentBB = I->BB;
331 
332       // If the two neighboring cases go to the same destination, merge them
333       // into a single case.
334       assert(nextValue.sgt(currentValue) &&
335              "Cases should be strictly ascending");
336       if ((nextValue == currentValue + 1) && (currentBB == nextBB)) {
337         I->High = J->High;
338         // FIXME: Combine branch weights.
339       } else if (++I != J) {
340         *I = *J;
341       }
342     }
343     Cases.erase(std::next(I), Cases.end());
344   }
345 
346   return NumSimpleCases;
347 }
348 
349 /// Replace the specified switch instruction with a sequence of chained if-then
350 /// insts in a balanced binary search.
351 void ProcessSwitchInst(SwitchInst *SI,
352                        SmallPtrSetImpl<BasicBlock *> &DeleteList,
353                        AssumptionCache *AC, LazyValueInfo *LVI) {
354   BasicBlock *OrigBlock = SI->getParent();
355   Function *F = OrigBlock->getParent();
356   Value *Val = SI->getCondition(); // The value we are switching on...
357   BasicBlock *Default = SI->getDefaultDest();
358 
359   // Don't handle unreachable blocks. If there are successors with phis, this
360   // would leave them behind with missing predecessors.
361   if ((OrigBlock != &F->getEntryBlock() && pred_empty(OrigBlock)) ||
362       OrigBlock->getSinglePredecessor() == OrigBlock) {
363     DeleteList.insert(OrigBlock);
364     return;
365   }
366 
367   // Prepare cases vector.
368   CaseVector Cases;
369   const unsigned NumSimpleCases = Clusterify(Cases, SI);
370   IntegerType *IT = cast<IntegerType>(SI->getCondition()->getType());
371   const unsigned BitWidth = IT->getBitWidth();
372   // Explictly use higher precision to prevent unsigned overflow where
373   // `UnsignedMax - 0 + 1 == 0`
374   APInt UnsignedZero(BitWidth + 1, 0);
375   APInt UnsignedMax = APInt::getMaxValue(BitWidth);
376   LLVM_DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
377                     << ". Total non-default cases: " << NumSimpleCases
378                     << "\nCase clusters: " << Cases << "\n");
379 
380   // If there is only the default destination, just branch.
381   if (Cases.empty()) {
382     BranchInst::Create(Default, OrigBlock);
383     // Remove all the references from Default's PHIs to OrigBlock, but one.
384     FixPhis(Default, OrigBlock, OrigBlock, UnsignedMax);
385     SI->eraseFromParent();
386     return;
387   }
388 
389   ConstantInt *LowerBound = nullptr;
390   ConstantInt *UpperBound = nullptr;
391   bool DefaultIsUnreachableFromSwitch = false;
392 
393   if (isa<UnreachableInst>(Default->getFirstNonPHIOrDbg())) {
394     // Make the bounds tightly fitted around the case value range, because we
395     // know that the value passed to the switch must be exactly one of the case
396     // values.
397     LowerBound = Cases.front().Low;
398     UpperBound = Cases.back().High;
399     DefaultIsUnreachableFromSwitch = true;
400   } else {
401     // Constraining the range of the value being switched over helps eliminating
402     // unreachable BBs and minimizing the number of `add` instructions
403     // newLeafBlock ends up emitting. Running CorrelatedValuePropagation after
404     // LowerSwitch isn't as good, and also much more expensive in terms of
405     // compile time for the following reasons:
406     // 1. it processes many kinds of instructions, not just switches;
407     // 2. even if limited to icmp instructions only, it will have to process
408     //    roughly C icmp's per switch, where C is the number of cases in the
409     //    switch, while LowerSwitch only needs to call LVI once per switch.
410     const DataLayout &DL = F->getParent()->getDataLayout();
411     KnownBits Known = computeKnownBits(Val, DL, /*Depth=*/0, AC, SI);
412     // TODO Shouldn't this create a signed range?
413     ConstantRange KnownBitsRange =
414         ConstantRange::fromKnownBits(Known, /*IsSigned=*/false);
415     const ConstantRange LVIRange =
416         LVI->getConstantRange(Val, SI, /*UndefAllowed*/ false);
417     ConstantRange ValRange = KnownBitsRange.intersectWith(LVIRange);
418     // We delegate removal of unreachable non-default cases to other passes. In
419     // the unlikely event that some of them survived, we just conservatively
420     // maintain the invariant that all the cases lie between the bounds. This
421     // may, however, still render the default case effectively unreachable.
422     const APInt &Low = Cases.front().Low->getValue();
423     const APInt &High = Cases.back().High->getValue();
424     APInt Min = APIntOps::smin(ValRange.getSignedMin(), Low);
425     APInt Max = APIntOps::smax(ValRange.getSignedMax(), High);
426 
427     LowerBound = ConstantInt::get(SI->getContext(), Min);
428     UpperBound = ConstantInt::get(SI->getContext(), Max);
429     DefaultIsUnreachableFromSwitch = (Min + (NumSimpleCases - 1) == Max);
430   }
431 
432   std::vector<IntRange> UnreachableRanges;
433 
434   if (DefaultIsUnreachableFromSwitch) {
435     DenseMap<BasicBlock *, APInt> Popularity;
436     APInt MaxPop(UnsignedZero);
437     BasicBlock *PopSucc = nullptr;
438 
439     APInt SignedMax = APInt::getSignedMaxValue(BitWidth);
440     APInt SignedMin = APInt::getSignedMinValue(BitWidth);
441     IntRange R = {SignedMin, SignedMax};
442     UnreachableRanges.push_back(R);
443     for (const auto &I : Cases) {
444       const APInt &Low = I.Low->getValue();
445       const APInt &High = I.High->getValue();
446 
447       IntRange &LastRange = UnreachableRanges.back();
448       if (LastRange.Low.eq(Low)) {
449         // There is nothing left of the previous range.
450         UnreachableRanges.pop_back();
451       } else {
452         // Terminate the previous range.
453         assert(Low.sgt(LastRange.Low));
454         LastRange.High = Low - 1;
455       }
456       if (High.ne(SignedMax)) {
457         IntRange R = {High + 1, SignedMax};
458         UnreachableRanges.push_back(R);
459       }
460 
461       // Count popularity.
462       assert(High.sge(Low) && "Popularity shouldn't be negative.");
463       APInt N = High.sext(BitWidth + 1) - Low.sext(BitWidth + 1) + 1;
464       // Explict insert to make sure the bitwidth of APInts match
465       APInt &Pop = Popularity.insert({I.BB, APInt(UnsignedZero)}).first->second;
466       if ((Pop += N).ugt(MaxPop)) {
467         MaxPop = Pop;
468         PopSucc = I.BB;
469       }
470     }
471 #ifndef NDEBUG
472     /* UnreachableRanges should be sorted and the ranges non-adjacent. */
473     for (auto I = UnreachableRanges.begin(), E = UnreachableRanges.end();
474          I != E; ++I) {
475       assert(I->Low.sle(I->High));
476       auto Next = I + 1;
477       if (Next != E) {
478         assert(Next->Low.sgt(I->High));
479       }
480     }
481 #endif
482 
483     // As the default block in the switch is unreachable, update the PHI nodes
484     // (remove all of the references to the default block) to reflect this.
485     const unsigned NumDefaultEdges = SI->getNumCases() + 1 - NumSimpleCases;
486     for (unsigned I = 0; I < NumDefaultEdges; ++I)
487       Default->removePredecessor(OrigBlock);
488 
489     // Use the most popular block as the new default, reducing the number of
490     // cases.
491     Default = PopSucc;
492     llvm::erase_if(Cases,
493                    [PopSucc](const CaseRange &R) { return R.BB == PopSucc; });
494 
495     // If there are no cases left, just branch.
496     if (Cases.empty()) {
497       BranchInst::Create(Default, OrigBlock);
498       SI->eraseFromParent();
499       // As all the cases have been replaced with a single branch, only keep
500       // one entry in the PHI nodes.
501       if (!MaxPop.isZero())
502         for (APInt I(UnsignedZero); I.ult(MaxPop - 1); ++I)
503           PopSucc->removePredecessor(OrigBlock);
504       return;
505     }
506 
507     // If the condition was a PHI node with the switch block as a predecessor
508     // removing predecessors may have caused the condition to be erased.
509     // Getting the condition value again here protects against that.
510     Val = SI->getCondition();
511   }
512 
513   BasicBlock *SwitchBlock =
514       SwitchConvert(Cases.begin(), Cases.end(), LowerBound, UpperBound, Val,
515                     OrigBlock, OrigBlock, Default, UnreachableRanges);
516 
517   // We have added incoming values for newly-created predecessors in
518   // NewLeafBlock(). The only meaningful work we offload to FixPhis() is to
519   // remove the incoming values from OrigBlock. There might be a special case
520   // that SwitchBlock is the same as Default, under which the PHIs in Default
521   // are fixed inside SwitchConvert().
522   if (SwitchBlock != Default)
523     FixPhis(Default, OrigBlock, nullptr, UnsignedMax);
524 
525   // Branch to our shiny new if-then stuff...
526   BranchInst::Create(SwitchBlock, OrigBlock);
527 
528   // We are now done with the switch instruction, delete it.
529   BasicBlock *OldDefault = SI->getDefaultDest();
530   SI->eraseFromParent();
531 
532   // If the Default block has no more predecessors just add it to DeleteList.
533   if (pred_empty(OldDefault))
534     DeleteList.insert(OldDefault);
535 }
536 
537 bool LowerSwitch(Function &F, LazyValueInfo *LVI, AssumptionCache *AC) {
538   bool Changed = false;
539   SmallPtrSet<BasicBlock *, 8> DeleteList;
540 
541   // We use make_early_inc_range here so that we don't traverse new blocks.
542   for (BasicBlock &Cur : llvm::make_early_inc_range(F)) {
543     // If the block is a dead Default block that will be deleted later, don't
544     // waste time processing it.
545     if (DeleteList.count(&Cur))
546       continue;
547 
548     if (SwitchInst *SI = dyn_cast<SwitchInst>(Cur.getTerminator())) {
549       Changed = true;
550       ProcessSwitchInst(SI, DeleteList, AC, LVI);
551     }
552   }
553 
554   for (BasicBlock *BB : DeleteList) {
555     LVI->eraseBlock(BB);
556     DeleteDeadBlock(BB);
557   }
558 
559   return Changed;
560 }
561 
562 /// Replace all SwitchInst instructions with chained branch instructions.
563 class LowerSwitchLegacyPass : public FunctionPass {
564 public:
565   // Pass identification, replacement for typeid
566   static char ID;
567 
568   LowerSwitchLegacyPass() : FunctionPass(ID) {
569     initializeLowerSwitchLegacyPassPass(*PassRegistry::getPassRegistry());
570   }
571 
572   bool runOnFunction(Function &F) override;
573 
574   void getAnalysisUsage(AnalysisUsage &AU) const override {
575     AU.addRequired<LazyValueInfoWrapperPass>();
576   }
577 };
578 
579 } // end anonymous namespace
580 
581 char LowerSwitchLegacyPass::ID = 0;
582 
583 // Publicly exposed interface to pass...
584 char &llvm::LowerSwitchID = LowerSwitchLegacyPass::ID;
585 
586 INITIALIZE_PASS_BEGIN(LowerSwitchLegacyPass, "lowerswitch",
587                       "Lower SwitchInst's to branches", false, false)
588 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
589 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
590 INITIALIZE_PASS_END(LowerSwitchLegacyPass, "lowerswitch",
591                     "Lower SwitchInst's to branches", false, false)
592 
593 // createLowerSwitchPass - Interface to this file...
594 FunctionPass *llvm::createLowerSwitchPass() {
595   return new LowerSwitchLegacyPass();
596 }
597 
598 bool LowerSwitchLegacyPass::runOnFunction(Function &F) {
599   LazyValueInfo *LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI();
600   auto *ACT = getAnalysisIfAvailable<AssumptionCacheTracker>();
601   AssumptionCache *AC = ACT ? &ACT->getAssumptionCache(F) : nullptr;
602   return LowerSwitch(F, LVI, AC);
603 }
604 
605 PreservedAnalyses LowerSwitchPass::run(Function &F,
606                                        FunctionAnalysisManager &AM) {
607   LazyValueInfo *LVI = &AM.getResult<LazyValueAnalysis>(F);
608   AssumptionCache *AC = AM.getCachedResult<AssumptionAnalysis>(F);
609   return LowerSwitch(F, LVI, AC) ? PreservedAnalyses::none()
610                                  : PreservedAnalyses::all();
611 }
612