1 //===- LowerSwitch.cpp - Eliminate Switch instructions --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The LowerSwitch transformation rewrites switch instructions with a sequence
10 // of branches, which allows targets to get away with not implementing the
11 // switch instruction until it is convenient.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/LowerSwitch.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/Analysis/AssumptionCache.h"
21 #include "llvm/Analysis/LazyValueInfo.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/CFG.h"
25 #include "llvm/IR/ConstantRange.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/InstrTypes.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/PassManager.h"
31 #include "llvm/IR/Value.h"
32 #include "llvm/InitializePasses.h"
33 #include "llvm/Pass.h"
34 #include "llvm/Support/Casting.h"
35 #include "llvm/Support/Compiler.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/KnownBits.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include "llvm/Transforms/Utils.h"
40 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
41 #include <algorithm>
42 #include <cassert>
43 #include <cstdint>
44 #include <iterator>
45 #include <limits>
46 #include <vector>
47 
48 using namespace llvm;
49 
50 #define DEBUG_TYPE "lower-switch"
51 
52 namespace {
53 
54   struct IntRange {
55     int64_t Low, High;
56   };
57 
58 } // end anonymous namespace
59 
60 namespace {
61 // Return true iff R is covered by Ranges.
62 bool IsInRanges(const IntRange &R, const std::vector<IntRange> &Ranges) {
63   // Note: Ranges must be sorted, non-overlapping and non-adjacent.
64 
65   // Find the first range whose High field is >= R.High,
66   // then check if the Low field is <= R.Low. If so, we
67   // have a Range that covers R.
68   auto I = llvm::lower_bound(
69       Ranges, R, [](IntRange A, IntRange B) { return A.High < B.High; });
70   return I != Ranges.end() && I->Low <= R.Low;
71 }
72 
73 struct CaseRange {
74   ConstantInt *Low;
75   ConstantInt *High;
76   BasicBlock *BB;
77 
78   CaseRange(ConstantInt *low, ConstantInt *high, BasicBlock *bb)
79       : Low(low), High(high), BB(bb) {}
80 };
81 
82 using CaseVector = std::vector<CaseRange>;
83 using CaseItr = std::vector<CaseRange>::iterator;
84 
85 /// The comparison function for sorting the switch case values in the vector.
86 /// WARNING: Case ranges should be disjoint!
87 struct CaseCmp {
88   bool operator()(const CaseRange &C1, const CaseRange &C2) {
89     const ConstantInt *CI1 = cast<const ConstantInt>(C1.Low);
90     const ConstantInt *CI2 = cast<const ConstantInt>(C2.High);
91     return CI1->getValue().slt(CI2->getValue());
92   }
93 };
94 
95 /// Used for debugging purposes.
96 LLVM_ATTRIBUTE_USED
97 raw_ostream &operator<<(raw_ostream &O, const CaseVector &C) {
98   O << "[";
99 
100   for (CaseVector::const_iterator B = C.begin(), E = C.end(); B != E;) {
101     O << "[" << B->Low->getValue() << ", " << B->High->getValue() << "]";
102     if (++B != E)
103       O << ", ";
104   }
105 
106   return O << "]";
107 }
108 
109 /// Update the first occurrence of the "switch statement" BB in the PHI
110 /// node with the "new" BB. The other occurrences will:
111 ///
112 /// 1) Be updated by subsequent calls to this function.  Switch statements may
113 /// have more than one outcoming edge into the same BB if they all have the same
114 /// value. When the switch statement is converted these incoming edges are now
115 /// coming from multiple BBs.
116 /// 2) Removed if subsequent incoming values now share the same case, i.e.,
117 /// multiple outcome edges are condensed into one. This is necessary to keep the
118 /// number of phi values equal to the number of branches to SuccBB.
119 void FixPhis(
120     BasicBlock *SuccBB, BasicBlock *OrigBB, BasicBlock *NewBB,
121     const unsigned NumMergedCases = std::numeric_limits<unsigned>::max()) {
122   for (auto &I : SuccBB->phis()) {
123     PHINode *PN = cast<PHINode>(&I);
124 
125     // Only update the first occurrence if NewBB exists.
126     unsigned Idx = 0, E = PN->getNumIncomingValues();
127     unsigned LocalNumMergedCases = NumMergedCases;
128     for (; Idx != E && NewBB; ++Idx) {
129       if (PN->getIncomingBlock(Idx) == OrigBB) {
130         PN->setIncomingBlock(Idx, NewBB);
131         break;
132       }
133     }
134 
135     // Skip the updated incoming block so that it will not be removed.
136     if (NewBB)
137       ++Idx;
138 
139     // Remove additional occurrences coming from condensed cases and keep the
140     // number of incoming values equal to the number of branches to SuccBB.
141     SmallVector<unsigned, 8> Indices;
142     for (; LocalNumMergedCases > 0 && Idx < E; ++Idx)
143       if (PN->getIncomingBlock(Idx) == OrigBB) {
144         Indices.push_back(Idx);
145         LocalNumMergedCases--;
146       }
147     // Remove incoming values in the reverse order to prevent invalidating
148     // *successive* index.
149     for (unsigned III : llvm::reverse(Indices))
150       PN->removeIncomingValue(III);
151   }
152 }
153 
154 /// Create a new leaf block for the binary lookup tree. It checks if the
155 /// switch's value == the case's value. If not, then it jumps to the default
156 /// branch. At this point in the tree, the value can't be another valid case
157 /// value, so the jump to the "default" branch is warranted.
158 BasicBlock *NewLeafBlock(CaseRange &Leaf, Value *Val, ConstantInt *LowerBound,
159                          ConstantInt *UpperBound, BasicBlock *OrigBlock,
160                          BasicBlock *Default) {
161   Function *F = OrigBlock->getParent();
162   BasicBlock *NewLeaf = BasicBlock::Create(Val->getContext(), "LeafBlock");
163   F->getBasicBlockList().insert(++OrigBlock->getIterator(), NewLeaf);
164 
165   // Emit comparison
166   ICmpInst *Comp = nullptr;
167   if (Leaf.Low == Leaf.High) {
168     // Make the seteq instruction...
169     Comp =
170         new ICmpInst(*NewLeaf, ICmpInst::ICMP_EQ, Val, Leaf.Low, "SwitchLeaf");
171   } else {
172     // Make range comparison
173     if (Leaf.Low == LowerBound) {
174       // Val >= Min && Val <= Hi --> Val <= Hi
175       Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_SLE, Val, Leaf.High,
176                           "SwitchLeaf");
177     } else if (Leaf.High == UpperBound) {
178       // Val <= Max && Val >= Lo --> Val >= Lo
179       Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_SGE, Val, Leaf.Low,
180                           "SwitchLeaf");
181     } else if (Leaf.Low->isZero()) {
182       // Val >= 0 && Val <= Hi --> Val <=u Hi
183       Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Val, Leaf.High,
184                           "SwitchLeaf");
185     } else {
186       // Emit V-Lo <=u Hi-Lo
187       Constant *NegLo = ConstantExpr::getNeg(Leaf.Low);
188       Instruction *Add = BinaryOperator::CreateAdd(
189           Val, NegLo, Val->getName() + ".off", NewLeaf);
190       Constant *UpperBound = ConstantExpr::getAdd(NegLo, Leaf.High);
191       Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Add, UpperBound,
192                           "SwitchLeaf");
193     }
194   }
195 
196   // Make the conditional branch...
197   BasicBlock *Succ = Leaf.BB;
198   BranchInst::Create(Succ, Default, Comp, NewLeaf);
199 
200   // Update the PHI incoming value/block for the default.
201   for (auto &I : Default->phis()) {
202     PHINode *PN = cast<PHINode>(&I);
203     auto *V = PN->getIncomingValueForBlock(OrigBlock);
204     PN->addIncoming(V, NewLeaf);
205   }
206 
207   // If there were any PHI nodes in this successor, rewrite one entry
208   // from OrigBlock to come from NewLeaf.
209   for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
210     PHINode *PN = cast<PHINode>(I);
211     // Remove all but one incoming entries from the cluster
212     uint64_t Range = Leaf.High->getSExtValue() - Leaf.Low->getSExtValue();
213     for (uint64_t j = 0; j < Range; ++j) {
214       PN->removeIncomingValue(OrigBlock);
215     }
216 
217     int BlockIdx = PN->getBasicBlockIndex(OrigBlock);
218     assert(BlockIdx != -1 && "Switch didn't go to this successor??");
219     PN->setIncomingBlock((unsigned)BlockIdx, NewLeaf);
220   }
221 
222   return NewLeaf;
223 }
224 
225 /// Convert the switch statement into a binary lookup of the case values.
226 /// The function recursively builds this tree. LowerBound and UpperBound are
227 /// used to keep track of the bounds for Val that have already been checked by
228 /// a block emitted by one of the previous calls to switchConvert in the call
229 /// stack.
230 BasicBlock *SwitchConvert(CaseItr Begin, CaseItr End, ConstantInt *LowerBound,
231                           ConstantInt *UpperBound, Value *Val,
232                           BasicBlock *Predecessor, BasicBlock *OrigBlock,
233                           BasicBlock *Default,
234                           const std::vector<IntRange> &UnreachableRanges) {
235   assert(LowerBound && UpperBound && "Bounds must be initialized");
236   unsigned Size = End - Begin;
237 
238   if (Size == 1) {
239     // Check if the Case Range is perfectly squeezed in between
240     // already checked Upper and Lower bounds. If it is then we can avoid
241     // emitting the code that checks if the value actually falls in the range
242     // because the bounds already tell us so.
243     if (Begin->Low == LowerBound && Begin->High == UpperBound) {
244       unsigned NumMergedCases = 0;
245       NumMergedCases = UpperBound->getSExtValue() - LowerBound->getSExtValue();
246       FixPhis(Begin->BB, OrigBlock, Predecessor, NumMergedCases);
247       return Begin->BB;
248     }
249     return NewLeafBlock(*Begin, Val, LowerBound, UpperBound, OrigBlock,
250                         Default);
251   }
252 
253   unsigned Mid = Size / 2;
254   std::vector<CaseRange> LHS(Begin, Begin + Mid);
255   LLVM_DEBUG(dbgs() << "LHS: " << LHS << "\n");
256   std::vector<CaseRange> RHS(Begin + Mid, End);
257   LLVM_DEBUG(dbgs() << "RHS: " << RHS << "\n");
258 
259   CaseRange &Pivot = *(Begin + Mid);
260   LLVM_DEBUG(dbgs() << "Pivot ==> [" << Pivot.Low->getValue() << ", "
261                     << Pivot.High->getValue() << "]\n");
262 
263   // NewLowerBound here should never be the integer minimal value.
264   // This is because it is computed from a case range that is never
265   // the smallest, so there is always a case range that has at least
266   // a smaller value.
267   ConstantInt *NewLowerBound = Pivot.Low;
268 
269   // Because NewLowerBound is never the smallest representable integer
270   // it is safe here to subtract one.
271   ConstantInt *NewUpperBound = ConstantInt::get(NewLowerBound->getContext(),
272                                                 NewLowerBound->getValue() - 1);
273 
274   if (!UnreachableRanges.empty()) {
275     // Check if the gap between LHS's highest and NewLowerBound is unreachable.
276     int64_t GapLow = LHS.back().High->getSExtValue() + 1;
277     int64_t GapHigh = NewLowerBound->getSExtValue() - 1;
278     IntRange Gap = { GapLow, GapHigh };
279     if (GapHigh >= GapLow && IsInRanges(Gap, UnreachableRanges))
280       NewUpperBound = LHS.back().High;
281   }
282 
283   LLVM_DEBUG(dbgs() << "LHS Bounds ==> [" << LowerBound->getSExtValue() << ", "
284                     << NewUpperBound->getSExtValue() << "]\n"
285                     << "RHS Bounds ==> [" << NewLowerBound->getSExtValue()
286                     << ", " << UpperBound->getSExtValue() << "]\n");
287 
288   // Create a new node that checks if the value is < pivot. Go to the
289   // left branch if it is and right branch if not.
290   Function* F = OrigBlock->getParent();
291   BasicBlock* NewNode = BasicBlock::Create(Val->getContext(), "NodeBlock");
292 
293   ICmpInst* Comp = new ICmpInst(ICmpInst::ICMP_SLT,
294                                 Val, Pivot.Low, "Pivot");
295 
296   BasicBlock *LBranch =
297       SwitchConvert(LHS.begin(), LHS.end(), LowerBound, NewUpperBound, Val,
298                     NewNode, OrigBlock, Default, UnreachableRanges);
299   BasicBlock *RBranch =
300       SwitchConvert(RHS.begin(), RHS.end(), NewLowerBound, UpperBound, Val,
301                     NewNode, OrigBlock, Default, UnreachableRanges);
302 
303   F->getBasicBlockList().insert(++OrigBlock->getIterator(), NewNode);
304   NewNode->getInstList().push_back(Comp);
305 
306   BranchInst::Create(LBranch, RBranch, Comp, NewNode);
307   return NewNode;
308 }
309 
310 /// Transform simple list of \p SI's cases into list of CaseRange's \p Cases.
311 /// \post \p Cases wouldn't contain references to \p SI's default BB.
312 /// \returns Number of \p SI's cases that do not reference \p SI's default BB.
313 unsigned Clusterify(CaseVector &Cases, SwitchInst *SI) {
314   unsigned NumSimpleCases = 0;
315 
316   // Start with "simple" cases
317   for (auto Case : SI->cases()) {
318     if (Case.getCaseSuccessor() == SI->getDefaultDest())
319       continue;
320     Cases.push_back(CaseRange(Case.getCaseValue(), Case.getCaseValue(),
321                               Case.getCaseSuccessor()));
322     ++NumSimpleCases;
323   }
324 
325   llvm::sort(Cases, CaseCmp());
326 
327   // Merge case into clusters
328   if (Cases.size() >= 2) {
329     CaseItr I = Cases.begin();
330     for (CaseItr J = std::next(I), E = Cases.end(); J != E; ++J) {
331       int64_t nextValue = J->Low->getSExtValue();
332       int64_t currentValue = I->High->getSExtValue();
333       BasicBlock* nextBB = J->BB;
334       BasicBlock* currentBB = I->BB;
335 
336       // If the two neighboring cases go to the same destination, merge them
337       // into a single case.
338       assert(nextValue > currentValue && "Cases should be strictly ascending");
339       if ((nextValue == currentValue + 1) && (currentBB == nextBB)) {
340         I->High = J->High;
341         // FIXME: Combine branch weights.
342       } else if (++I != J) {
343         *I = *J;
344       }
345     }
346     Cases.erase(std::next(I), Cases.end());
347   }
348 
349   return NumSimpleCases;
350 }
351 
352 /// Replace the specified switch instruction with a sequence of chained if-then
353 /// insts in a balanced binary search.
354 void ProcessSwitchInst(SwitchInst *SI,
355                        SmallPtrSetImpl<BasicBlock *> &DeleteList,
356                        AssumptionCache *AC, LazyValueInfo *LVI) {
357   BasicBlock *OrigBlock = SI->getParent();
358   Function *F = OrigBlock->getParent();
359   Value *Val = SI->getCondition();  // The value we are switching on...
360   BasicBlock* Default = SI->getDefaultDest();
361 
362   // Don't handle unreachable blocks. If there are successors with phis, this
363   // would leave them behind with missing predecessors.
364   if ((OrigBlock != &F->getEntryBlock() && pred_empty(OrigBlock)) ||
365       OrigBlock->getSinglePredecessor() == OrigBlock) {
366     DeleteList.insert(OrigBlock);
367     return;
368   }
369 
370   // Prepare cases vector.
371   CaseVector Cases;
372   const unsigned NumSimpleCases = Clusterify(Cases, SI);
373   LLVM_DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
374                     << ". Total non-default cases: " << NumSimpleCases
375                     << "\nCase clusters: " << Cases << "\n");
376 
377   // If there is only the default destination, just branch.
378   if (Cases.empty()) {
379     BranchInst::Create(Default, OrigBlock);
380     // Remove all the references from Default's PHIs to OrigBlock, but one.
381     FixPhis(Default, OrigBlock, OrigBlock);
382     SI->eraseFromParent();
383     return;
384   }
385 
386   ConstantInt *LowerBound = nullptr;
387   ConstantInt *UpperBound = nullptr;
388   bool DefaultIsUnreachableFromSwitch = false;
389 
390   if (isa<UnreachableInst>(Default->getFirstNonPHIOrDbg())) {
391     // Make the bounds tightly fitted around the case value range, because we
392     // know that the value passed to the switch must be exactly one of the case
393     // values.
394     LowerBound = Cases.front().Low;
395     UpperBound = Cases.back().High;
396     DefaultIsUnreachableFromSwitch = true;
397   } else {
398     // Constraining the range of the value being switched over helps eliminating
399     // unreachable BBs and minimizing the number of `add` instructions
400     // newLeafBlock ends up emitting. Running CorrelatedValuePropagation after
401     // LowerSwitch isn't as good, and also much more expensive in terms of
402     // compile time for the following reasons:
403     // 1. it processes many kinds of instructions, not just switches;
404     // 2. even if limited to icmp instructions only, it will have to process
405     //    roughly C icmp's per switch, where C is the number of cases in the
406     //    switch, while LowerSwitch only needs to call LVI once per switch.
407     const DataLayout &DL = F->getParent()->getDataLayout();
408     KnownBits Known = computeKnownBits(Val, DL, /*Depth=*/0, AC, SI);
409     // TODO Shouldn't this create a signed range?
410     ConstantRange KnownBitsRange =
411         ConstantRange::fromKnownBits(Known, /*IsSigned=*/false);
412     const ConstantRange LVIRange = LVI->getConstantRange(Val, SI);
413     ConstantRange ValRange = KnownBitsRange.intersectWith(LVIRange);
414     // We delegate removal of unreachable non-default cases to other passes. In
415     // the unlikely event that some of them survived, we just conservatively
416     // maintain the invariant that all the cases lie between the bounds. This
417     // may, however, still render the default case effectively unreachable.
418     APInt Low = Cases.front().Low->getValue();
419     APInt High = Cases.back().High->getValue();
420     APInt Min = APIntOps::smin(ValRange.getSignedMin(), Low);
421     APInt Max = APIntOps::smax(ValRange.getSignedMax(), High);
422 
423     LowerBound = ConstantInt::get(SI->getContext(), Min);
424     UpperBound = ConstantInt::get(SI->getContext(), Max);
425     DefaultIsUnreachableFromSwitch = (Min + (NumSimpleCases - 1) == Max);
426   }
427 
428   std::vector<IntRange> UnreachableRanges;
429 
430   if (DefaultIsUnreachableFromSwitch) {
431     DenseMap<BasicBlock *, unsigned> Popularity;
432     unsigned MaxPop = 0;
433     BasicBlock *PopSucc = nullptr;
434 
435     IntRange R = {std::numeric_limits<int64_t>::min(),
436                   std::numeric_limits<int64_t>::max()};
437     UnreachableRanges.push_back(R);
438     for (const auto &I : Cases) {
439       int64_t Low = I.Low->getSExtValue();
440       int64_t High = I.High->getSExtValue();
441 
442       IntRange &LastRange = UnreachableRanges.back();
443       if (LastRange.Low == Low) {
444         // There is nothing left of the previous range.
445         UnreachableRanges.pop_back();
446       } else {
447         // Terminate the previous range.
448         assert(Low > LastRange.Low);
449         LastRange.High = Low - 1;
450       }
451       if (High != std::numeric_limits<int64_t>::max()) {
452         IntRange R = { High + 1, std::numeric_limits<int64_t>::max() };
453         UnreachableRanges.push_back(R);
454       }
455 
456       // Count popularity.
457       int64_t N = High - Low + 1;
458       unsigned &Pop = Popularity[I.BB];
459       if ((Pop += N) > MaxPop) {
460         MaxPop = Pop;
461         PopSucc = I.BB;
462       }
463     }
464 #ifndef NDEBUG
465     /* UnreachableRanges should be sorted and the ranges non-adjacent. */
466     for (auto I = UnreachableRanges.begin(), E = UnreachableRanges.end();
467          I != E; ++I) {
468       assert(I->Low <= I->High);
469       auto Next = I + 1;
470       if (Next != E) {
471         assert(Next->Low > I->High);
472       }
473     }
474 #endif
475 
476     // As the default block in the switch is unreachable, update the PHI nodes
477     // (remove all of the references to the default block) to reflect this.
478     const unsigned NumDefaultEdges = SI->getNumCases() + 1 - NumSimpleCases;
479     for (unsigned I = 0; I < NumDefaultEdges; ++I)
480       Default->removePredecessor(OrigBlock);
481 
482     // Use the most popular block as the new default, reducing the number of
483     // cases.
484     assert(MaxPop > 0 && PopSucc);
485     Default = PopSucc;
486     llvm::erase_if(Cases,
487                    [PopSucc](const CaseRange &R) { return R.BB == PopSucc; });
488 
489     // If there are no cases left, just branch.
490     if (Cases.empty()) {
491       BranchInst::Create(Default, OrigBlock);
492       SI->eraseFromParent();
493       // As all the cases have been replaced with a single branch, only keep
494       // one entry in the PHI nodes.
495       for (unsigned I = 0 ; I < (MaxPop - 1) ; ++I)
496         PopSucc->removePredecessor(OrigBlock);
497       return;
498     }
499 
500     // If the condition was a PHI node with the switch block as a predecessor
501     // removing predecessors may have caused the condition to be erased.
502     // Getting the condition value again here protects against that.
503     Val = SI->getCondition();
504   }
505 
506   BasicBlock *SwitchBlock =
507       SwitchConvert(Cases.begin(), Cases.end(), LowerBound, UpperBound, Val,
508                     OrigBlock, OrigBlock, Default, UnreachableRanges);
509 
510   // We have added incoming values for newly-created predecessors in
511   // NewLeafBlock(). The only meaningful work we offload to FixPhis() is to
512   // remove the incoming values from OrigBlock. There might be a special case
513   // that SwitchBlock is the same as Default, under which the PHIs in Default
514   // are fixed inside SwitchConvert().
515   if (SwitchBlock != Default)
516     FixPhis(Default, OrigBlock, nullptr);
517 
518   // Branch to our shiny new if-then stuff...
519   BranchInst::Create(SwitchBlock, OrigBlock);
520 
521   // We are now done with the switch instruction, delete it.
522   BasicBlock *OldDefault = SI->getDefaultDest();
523   OrigBlock->getInstList().erase(SI);
524 
525   // If the Default block has no more predecessors just add it to DeleteList.
526   if (pred_empty(OldDefault))
527     DeleteList.insert(OldDefault);
528 }
529 
530 bool LowerSwitch(Function &F, LazyValueInfo *LVI, AssumptionCache *AC) {
531   bool Changed = false;
532   SmallPtrSet<BasicBlock *, 8> DeleteList;
533 
534   // We use make_early_inc_range here so that we don't traverse new blocks.
535   for (BasicBlock &Cur : llvm::make_early_inc_range(F)) {
536     // If the block is a dead Default block that will be deleted later, don't
537     // waste time processing it.
538     if (DeleteList.count(&Cur))
539       continue;
540 
541     if (SwitchInst *SI = dyn_cast<SwitchInst>(Cur.getTerminator())) {
542       Changed = true;
543       ProcessSwitchInst(SI, DeleteList, AC, LVI);
544     }
545   }
546 
547   for (BasicBlock *BB : DeleteList) {
548     LVI->eraseBlock(BB);
549     DeleteDeadBlock(BB);
550   }
551 
552   return Changed;
553 }
554 
555 /// Replace all SwitchInst instructions with chained branch instructions.
556 class LowerSwitchLegacyPass : public FunctionPass {
557 public:
558   // Pass identification, replacement for typeid
559   static char ID;
560 
561   LowerSwitchLegacyPass() : FunctionPass(ID) {
562     initializeLowerSwitchLegacyPassPass(*PassRegistry::getPassRegistry());
563   }
564 
565   bool runOnFunction(Function &F) override;
566 
567   void getAnalysisUsage(AnalysisUsage &AU) const override {
568     AU.addRequired<LazyValueInfoWrapperPass>();
569   }
570 };
571 
572 } // end anonymous namespace
573 
574 char LowerSwitchLegacyPass::ID = 0;
575 
576 // Publicly exposed interface to pass...
577 char &llvm::LowerSwitchID = LowerSwitchLegacyPass::ID;
578 
579 INITIALIZE_PASS_BEGIN(LowerSwitchLegacyPass, "lowerswitch",
580                       "Lower SwitchInst's to branches", false, false)
581 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
582 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
583 INITIALIZE_PASS_END(LowerSwitchLegacyPass, "lowerswitch",
584                     "Lower SwitchInst's to branches", false, false)
585 
586 // createLowerSwitchPass - Interface to this file...
587 FunctionPass *llvm::createLowerSwitchPass() {
588   return new LowerSwitchLegacyPass();
589 }
590 
591 bool LowerSwitchLegacyPass::runOnFunction(Function &F) {
592   LazyValueInfo *LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI();
593   auto *ACT = getAnalysisIfAvailable<AssumptionCacheTracker>();
594   AssumptionCache *AC = ACT ? &ACT->getAssumptionCache(F) : nullptr;
595   return LowerSwitch(F, LVI, AC);
596 }
597 
598 PreservedAnalyses LowerSwitchPass::run(Function &F,
599                                        FunctionAnalysisManager &AM) {
600   LazyValueInfo *LVI = &AM.getResult<LazyValueAnalysis>(F);
601   AssumptionCache *AC = AM.getCachedResult<AssumptionAnalysis>(F);
602   return LowerSwitch(F, LVI, AC) ? PreservedAnalyses::none()
603                                  : PreservedAnalyses::all();
604 }
605