1 //===-- PredicateInfo.cpp - PredicateInfo Builder--------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------===//
8 //
9 // This file implements the PredicateInfo class.
10 //
11 //===----------------------------------------------------------------===//
12 
13 #include "llvm/Transforms/Utils/PredicateInfo.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/DepthFirstIterator.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/ADT/StringExtras.h"
20 #include "llvm/Analysis/AssumptionCache.h"
21 #include "llvm/Analysis/CFG.h"
22 #include "llvm/IR/AssemblyAnnotationWriter.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/Dominators.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/IRBuilder.h"
27 #include "llvm/IR/InstIterator.h"
28 #include "llvm/IR/IntrinsicInst.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/IR/Metadata.h"
31 #include "llvm/IR/Module.h"
32 #include "llvm/IR/PatternMatch.h"
33 #include "llvm/InitializePasses.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/DebugCounter.h"
37 #include "llvm/Support/FormattedStream.h"
38 #include "llvm/Transforms/Utils.h"
39 #include <algorithm>
40 #define DEBUG_TYPE "predicateinfo"
41 using namespace llvm;
42 using namespace PatternMatch;
43 
44 INITIALIZE_PASS_BEGIN(PredicateInfoPrinterLegacyPass, "print-predicateinfo",
45                       "PredicateInfo Printer", false, false)
46 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
47 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
48 INITIALIZE_PASS_END(PredicateInfoPrinterLegacyPass, "print-predicateinfo",
49                     "PredicateInfo Printer", false, false)
50 static cl::opt<bool> VerifyPredicateInfo(
51     "verify-predicateinfo", cl::init(false), cl::Hidden,
52     cl::desc("Verify PredicateInfo in legacy printer pass."));
53 DEBUG_COUNTER(RenameCounter, "predicateinfo-rename",
54               "Controls which variables are renamed with predicateinfo");
55 
56 // Maximum number of conditions considered for renaming for each branch/assume.
57 // This limits renaming of deep and/or chains.
58 static const unsigned MaxCondsPerBranch = 8;
59 
60 namespace {
61 // Given a predicate info that is a type of branching terminator, get the
62 // branching block.
63 const BasicBlock *getBranchBlock(const PredicateBase *PB) {
64   assert(isa<PredicateWithEdge>(PB) &&
65          "Only branches and switches should have PHIOnly defs that "
66          "require branch blocks.");
67   return cast<PredicateWithEdge>(PB)->From;
68 }
69 
70 // Given a predicate info that is a type of branching terminator, get the
71 // branching terminator.
72 static Instruction *getBranchTerminator(const PredicateBase *PB) {
73   assert(isa<PredicateWithEdge>(PB) &&
74          "Not a predicate info type we know how to get a terminator from.");
75   return cast<PredicateWithEdge>(PB)->From->getTerminator();
76 }
77 
78 // Given a predicate info that is a type of branching terminator, get the
79 // edge this predicate info represents
80 const std::pair<BasicBlock *, BasicBlock *>
81 getBlockEdge(const PredicateBase *PB) {
82   assert(isa<PredicateWithEdge>(PB) &&
83          "Not a predicate info type we know how to get an edge from.");
84   const auto *PEdge = cast<PredicateWithEdge>(PB);
85   return std::make_pair(PEdge->From, PEdge->To);
86 }
87 }
88 
89 namespace llvm {
90 enum LocalNum {
91   // Operations that must appear first in the block.
92   LN_First,
93   // Operations that are somewhere in the middle of the block, and are sorted on
94   // demand.
95   LN_Middle,
96   // Operations that must appear last in a block, like successor phi node uses.
97   LN_Last
98 };
99 
100 // Associate global and local DFS info with defs and uses, so we can sort them
101 // into a global domination ordering.
102 struct ValueDFS {
103   int DFSIn = 0;
104   int DFSOut = 0;
105   unsigned int LocalNum = LN_Middle;
106   // Only one of Def or Use will be set.
107   Value *Def = nullptr;
108   Use *U = nullptr;
109   // Neither PInfo nor EdgeOnly participate in the ordering
110   PredicateBase *PInfo = nullptr;
111   bool EdgeOnly = false;
112 };
113 
114 // Perform a strict weak ordering on instructions and arguments.
115 static bool valueComesBefore(const Value *A, const Value *B) {
116   auto *ArgA = dyn_cast_or_null<Argument>(A);
117   auto *ArgB = dyn_cast_or_null<Argument>(B);
118   if (ArgA && !ArgB)
119     return true;
120   if (ArgB && !ArgA)
121     return false;
122   if (ArgA && ArgB)
123     return ArgA->getArgNo() < ArgB->getArgNo();
124   return cast<Instruction>(A)->comesBefore(cast<Instruction>(B));
125 }
126 
127 // This compares ValueDFS structures. Doing so allows us to walk the minimum
128 // number of instructions necessary to compute our def/use ordering.
129 struct ValueDFS_Compare {
130   DominatorTree &DT;
131   ValueDFS_Compare(DominatorTree &DT) : DT(DT) {}
132 
133   bool operator()(const ValueDFS &A, const ValueDFS &B) const {
134     if (&A == &B)
135       return false;
136     // The only case we can't directly compare them is when they in the same
137     // block, and both have localnum == middle.  In that case, we have to use
138     // comesbefore to see what the real ordering is, because they are in the
139     // same basic block.
140 
141     assert((A.DFSIn != B.DFSIn || A.DFSOut == B.DFSOut) &&
142            "Equal DFS-in numbers imply equal out numbers");
143     bool SameBlock = A.DFSIn == B.DFSIn;
144 
145     // We want to put the def that will get used for a given set of phi uses,
146     // before those phi uses.
147     // So we sort by edge, then by def.
148     // Note that only phi nodes uses and defs can come last.
149     if (SameBlock && A.LocalNum == LN_Last && B.LocalNum == LN_Last)
150       return comparePHIRelated(A, B);
151 
152     bool isADef = A.Def;
153     bool isBDef = B.Def;
154     if (!SameBlock || A.LocalNum != LN_Middle || B.LocalNum != LN_Middle)
155       return std::tie(A.DFSIn, A.LocalNum, isADef) <
156              std::tie(B.DFSIn, B.LocalNum, isBDef);
157     return localComesBefore(A, B);
158   }
159 
160   // For a phi use, or a non-materialized def, return the edge it represents.
161   const std::pair<BasicBlock *, BasicBlock *>
162   getBlockEdge(const ValueDFS &VD) const {
163     if (!VD.Def && VD.U) {
164       auto *PHI = cast<PHINode>(VD.U->getUser());
165       return std::make_pair(PHI->getIncomingBlock(*VD.U), PHI->getParent());
166     }
167     // This is really a non-materialized def.
168     return ::getBlockEdge(VD.PInfo);
169   }
170 
171   // For two phi related values, return the ordering.
172   bool comparePHIRelated(const ValueDFS &A, const ValueDFS &B) const {
173     BasicBlock *ASrc, *ADest, *BSrc, *BDest;
174     std::tie(ASrc, ADest) = getBlockEdge(A);
175     std::tie(BSrc, BDest) = getBlockEdge(B);
176 
177 #ifndef NDEBUG
178     // This function should only be used for values in the same BB, check that.
179     DomTreeNode *DomASrc = DT.getNode(ASrc);
180     DomTreeNode *DomBSrc = DT.getNode(BSrc);
181     assert(DomASrc->getDFSNumIn() == (unsigned)A.DFSIn &&
182            "DFS numbers for A should match the ones of the source block");
183     assert(DomBSrc->getDFSNumIn() == (unsigned)B.DFSIn &&
184            "DFS numbers for B should match the ones of the source block");
185     assert(A.DFSIn == B.DFSIn && "Values must be in the same block");
186 #endif
187     (void)ASrc;
188     (void)BSrc;
189 
190     // Use DFS numbers to compare destination blocks, to guarantee a
191     // deterministic order.
192     DomTreeNode *DomADest = DT.getNode(ADest);
193     DomTreeNode *DomBDest = DT.getNode(BDest);
194     unsigned AIn = DomADest->getDFSNumIn();
195     unsigned BIn = DomBDest->getDFSNumIn();
196     bool isADef = A.Def;
197     bool isBDef = B.Def;
198     assert((!A.Def || !A.U) && (!B.Def || !B.U) &&
199            "Def and U cannot be set at the same time");
200     // Now sort by edge destination and then defs before uses.
201     return std::tie(AIn, isADef) < std::tie(BIn, isBDef);
202   }
203 
204   // Get the definition of an instruction that occurs in the middle of a block.
205   Value *getMiddleDef(const ValueDFS &VD) const {
206     if (VD.Def)
207       return VD.Def;
208     // It's possible for the defs and uses to be null.  For branches, the local
209     // numbering will say the placed predicaeinfos should go first (IE
210     // LN_beginning), so we won't be in this function. For assumes, we will end
211     // up here, beause we need to order the def we will place relative to the
212     // assume.  So for the purpose of ordering, we pretend the def is right
213     // after the assume, because that is where we will insert the info.
214     if (!VD.U) {
215       assert(VD.PInfo &&
216              "No def, no use, and no predicateinfo should not occur");
217       assert(isa<PredicateAssume>(VD.PInfo) &&
218              "Middle of block should only occur for assumes");
219       return cast<PredicateAssume>(VD.PInfo)->AssumeInst->getNextNode();
220     }
221     return nullptr;
222   }
223 
224   // Return either the Def, if it's not null, or the user of the Use, if the def
225   // is null.
226   const Instruction *getDefOrUser(const Value *Def, const Use *U) const {
227     if (Def)
228       return cast<Instruction>(Def);
229     return cast<Instruction>(U->getUser());
230   }
231 
232   // This performs the necessary local basic block ordering checks to tell
233   // whether A comes before B, where both are in the same basic block.
234   bool localComesBefore(const ValueDFS &A, const ValueDFS &B) const {
235     auto *ADef = getMiddleDef(A);
236     auto *BDef = getMiddleDef(B);
237 
238     // See if we have real values or uses. If we have real values, we are
239     // guaranteed they are instructions or arguments. No matter what, we are
240     // guaranteed they are in the same block if they are instructions.
241     auto *ArgA = dyn_cast_or_null<Argument>(ADef);
242     auto *ArgB = dyn_cast_or_null<Argument>(BDef);
243 
244     if (ArgA || ArgB)
245       return valueComesBefore(ArgA, ArgB);
246 
247     auto *AInst = getDefOrUser(ADef, A.U);
248     auto *BInst = getDefOrUser(BDef, B.U);
249     return valueComesBefore(AInst, BInst);
250   }
251 };
252 
253 class PredicateInfoBuilder {
254   // Used to store information about each value we might rename.
255   struct ValueInfo {
256     SmallVector<PredicateBase *, 4> Infos;
257   };
258 
259   PredicateInfo &PI;
260   Function &F;
261   DominatorTree &DT;
262   AssumptionCache &AC;
263 
264   // This stores info about each operand or comparison result we make copies
265   // of. The real ValueInfos start at index 1, index 0 is unused so that we
266   // can more easily detect invalid indexing.
267   SmallVector<ValueInfo, 32> ValueInfos;
268 
269   // This gives the index into the ValueInfos array for a given Value. Because
270   // 0 is not a valid Value Info index, you can use DenseMap::lookup and tell
271   // whether it returned a valid result.
272   DenseMap<Value *, unsigned int> ValueInfoNums;
273 
274   // The set of edges along which we can only handle phi uses, due to critical
275   // edges.
276   DenseSet<std::pair<BasicBlock *, BasicBlock *>> EdgeUsesOnly;
277 
278   ValueInfo &getOrCreateValueInfo(Value *);
279   const ValueInfo &getValueInfo(Value *) const;
280 
281   void processAssume(IntrinsicInst *, BasicBlock *,
282                      SmallVectorImpl<Value *> &OpsToRename);
283   void processBranch(BranchInst *, BasicBlock *,
284                      SmallVectorImpl<Value *> &OpsToRename);
285   void processSwitch(SwitchInst *, BasicBlock *,
286                      SmallVectorImpl<Value *> &OpsToRename);
287   void renameUses(SmallVectorImpl<Value *> &OpsToRename);
288   void addInfoFor(SmallVectorImpl<Value *> &OpsToRename, Value *Op,
289                   PredicateBase *PB);
290 
291   typedef SmallVectorImpl<ValueDFS> ValueDFSStack;
292   void convertUsesToDFSOrdered(Value *, SmallVectorImpl<ValueDFS> &);
293   Value *materializeStack(unsigned int &, ValueDFSStack &, Value *);
294   bool stackIsInScope(const ValueDFSStack &, const ValueDFS &) const;
295   void popStackUntilDFSScope(ValueDFSStack &, const ValueDFS &);
296 
297 public:
298   PredicateInfoBuilder(PredicateInfo &PI, Function &F, DominatorTree &DT,
299                        AssumptionCache &AC)
300       : PI(PI), F(F), DT(DT), AC(AC) {
301     // Push an empty operand info so that we can detect 0 as not finding one
302     ValueInfos.resize(1);
303   }
304 
305   void buildPredicateInfo();
306 };
307 
308 bool PredicateInfoBuilder::stackIsInScope(const ValueDFSStack &Stack,
309                                           const ValueDFS &VDUse) const {
310   if (Stack.empty())
311     return false;
312   // If it's a phi only use, make sure it's for this phi node edge, and that the
313   // use is in a phi node.  If it's anything else, and the top of the stack is
314   // EdgeOnly, we need to pop the stack.  We deliberately sort phi uses next to
315   // the defs they must go with so that we can know it's time to pop the stack
316   // when we hit the end of the phi uses for a given def.
317   if (Stack.back().EdgeOnly) {
318     if (!VDUse.U)
319       return false;
320     auto *PHI = dyn_cast<PHINode>(VDUse.U->getUser());
321     if (!PHI)
322       return false;
323     // Check edge
324     BasicBlock *EdgePred = PHI->getIncomingBlock(*VDUse.U);
325     if (EdgePred != getBranchBlock(Stack.back().PInfo))
326       return false;
327 
328     // Use dominates, which knows how to handle edge dominance.
329     return DT.dominates(getBlockEdge(Stack.back().PInfo), *VDUse.U);
330   }
331 
332   return (VDUse.DFSIn >= Stack.back().DFSIn &&
333           VDUse.DFSOut <= Stack.back().DFSOut);
334 }
335 
336 void PredicateInfoBuilder::popStackUntilDFSScope(ValueDFSStack &Stack,
337                                                  const ValueDFS &VD) {
338   while (!Stack.empty() && !stackIsInScope(Stack, VD))
339     Stack.pop_back();
340 }
341 
342 // Convert the uses of Op into a vector of uses, associating global and local
343 // DFS info with each one.
344 void PredicateInfoBuilder::convertUsesToDFSOrdered(
345     Value *Op, SmallVectorImpl<ValueDFS> &DFSOrderedSet) {
346   for (auto &U : Op->uses()) {
347     if (auto *I = dyn_cast<Instruction>(U.getUser())) {
348       ValueDFS VD;
349       // Put the phi node uses in the incoming block.
350       BasicBlock *IBlock;
351       if (auto *PN = dyn_cast<PHINode>(I)) {
352         IBlock = PN->getIncomingBlock(U);
353         // Make phi node users appear last in the incoming block
354         // they are from.
355         VD.LocalNum = LN_Last;
356       } else {
357         // If it's not a phi node use, it is somewhere in the middle of the
358         // block.
359         IBlock = I->getParent();
360         VD.LocalNum = LN_Middle;
361       }
362       DomTreeNode *DomNode = DT.getNode(IBlock);
363       // It's possible our use is in an unreachable block. Skip it if so.
364       if (!DomNode)
365         continue;
366       VD.DFSIn = DomNode->getDFSNumIn();
367       VD.DFSOut = DomNode->getDFSNumOut();
368       VD.U = &U;
369       DFSOrderedSet.push_back(VD);
370     }
371   }
372 }
373 
374 bool shouldRename(Value *V) {
375   // Only want real values, not constants.  Additionally, operands with one use
376   // are only being used in the comparison, which means they will not be useful
377   // for us to consider for predicateinfo.
378   return (isa<Instruction>(V) || isa<Argument>(V)) && !V->hasOneUse();
379 }
380 
381 // Collect relevant operations from Comparison that we may want to insert copies
382 // for.
383 void collectCmpOps(CmpInst *Comparison, SmallVectorImpl<Value *> &CmpOperands) {
384   auto *Op0 = Comparison->getOperand(0);
385   auto *Op1 = Comparison->getOperand(1);
386   if (Op0 == Op1)
387     return;
388 
389   CmpOperands.push_back(Op0);
390   CmpOperands.push_back(Op1);
391 }
392 
393 // Add Op, PB to the list of value infos for Op, and mark Op to be renamed.
394 void PredicateInfoBuilder::addInfoFor(SmallVectorImpl<Value *> &OpsToRename,
395                                       Value *Op, PredicateBase *PB) {
396   auto &OperandInfo = getOrCreateValueInfo(Op);
397   if (OperandInfo.Infos.empty())
398     OpsToRename.push_back(Op);
399   PI.AllInfos.push_back(PB);
400   OperandInfo.Infos.push_back(PB);
401 }
402 
403 // Process an assume instruction and place relevant operations we want to rename
404 // into OpsToRename.
405 void PredicateInfoBuilder::processAssume(
406     IntrinsicInst *II, BasicBlock *AssumeBB,
407     SmallVectorImpl<Value *> &OpsToRename) {
408   SmallVector<Value *, 4> Worklist;
409   SmallPtrSet<Value *, 4> Visited;
410   Worklist.push_back(II->getOperand(0));
411   while (!Worklist.empty()) {
412     Value *Cond = Worklist.pop_back_val();
413     if (!Visited.insert(Cond).second)
414       continue;
415     if (Visited.size() > MaxCondsPerBranch)
416       break;
417 
418     Value *Op0, *Op1;
419     if (match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
420       Worklist.push_back(Op1);
421       Worklist.push_back(Op0);
422     }
423 
424     SmallVector<Value *, 4> Values;
425     Values.push_back(Cond);
426     if (auto *Cmp = dyn_cast<CmpInst>(Cond))
427       collectCmpOps(Cmp, Values);
428 
429     for (Value *V : Values) {
430       if (shouldRename(V)) {
431         auto *PA = new PredicateAssume(V, II, Cond);
432         addInfoFor(OpsToRename, V, PA);
433       }
434     }
435   }
436 }
437 
438 // Process a block terminating branch, and place relevant operations to be
439 // renamed into OpsToRename.
440 void PredicateInfoBuilder::processBranch(
441     BranchInst *BI, BasicBlock *BranchBB,
442     SmallVectorImpl<Value *> &OpsToRename) {
443   BasicBlock *FirstBB = BI->getSuccessor(0);
444   BasicBlock *SecondBB = BI->getSuccessor(1);
445 
446   for (BasicBlock *Succ : {FirstBB, SecondBB}) {
447     bool TakenEdge = Succ == FirstBB;
448     // Don't try to insert on a self-edge. This is mainly because we will
449     // eliminate during renaming anyway.
450     if (Succ == BranchBB)
451       continue;
452 
453     SmallVector<Value *, 4> Worklist;
454     SmallPtrSet<Value *, 4> Visited;
455     Worklist.push_back(BI->getCondition());
456     while (!Worklist.empty()) {
457       Value *Cond = Worklist.pop_back_val();
458       if (!Visited.insert(Cond).second)
459         continue;
460       if (Visited.size() > MaxCondsPerBranch)
461         break;
462 
463       Value *Op0, *Op1;
464       if (TakenEdge ? match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))
465                     : match(Cond, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) {
466         Worklist.push_back(Op1);
467         Worklist.push_back(Op0);
468       }
469 
470       SmallVector<Value *, 4> Values;
471       Values.push_back(Cond);
472       if (auto *Cmp = dyn_cast<CmpInst>(Cond))
473         collectCmpOps(Cmp, Values);
474 
475       for (Value *V : Values) {
476         if (shouldRename(V)) {
477           PredicateBase *PB =
478               new PredicateBranch(V, BranchBB, Succ, Cond, TakenEdge);
479           addInfoFor(OpsToRename, V, PB);
480           if (!Succ->getSinglePredecessor())
481             EdgeUsesOnly.insert({BranchBB, Succ});
482         }
483       }
484     }
485   }
486 }
487 // Process a block terminating switch, and place relevant operations to be
488 // renamed into OpsToRename.
489 void PredicateInfoBuilder::processSwitch(
490     SwitchInst *SI, BasicBlock *BranchBB,
491     SmallVectorImpl<Value *> &OpsToRename) {
492   Value *Op = SI->getCondition();
493   if ((!isa<Instruction>(Op) && !isa<Argument>(Op)) || Op->hasOneUse())
494     return;
495 
496   // Remember how many outgoing edges there are to every successor.
497   SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges;
498   for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
499     BasicBlock *TargetBlock = SI->getSuccessor(i);
500     ++SwitchEdges[TargetBlock];
501   }
502 
503   // Now propagate info for each case value
504   for (auto C : SI->cases()) {
505     BasicBlock *TargetBlock = C.getCaseSuccessor();
506     if (SwitchEdges.lookup(TargetBlock) == 1) {
507       PredicateSwitch *PS = new PredicateSwitch(
508           Op, SI->getParent(), TargetBlock, C.getCaseValue(), SI);
509       addInfoFor(OpsToRename, Op, PS);
510       if (!TargetBlock->getSinglePredecessor())
511         EdgeUsesOnly.insert({BranchBB, TargetBlock});
512     }
513   }
514 }
515 
516 // Build predicate info for our function
517 void PredicateInfoBuilder::buildPredicateInfo() {
518   DT.updateDFSNumbers();
519   // Collect operands to rename from all conditional branch terminators, as well
520   // as assume statements.
521   SmallVector<Value *, 8> OpsToRename;
522   for (auto DTN : depth_first(DT.getRootNode())) {
523     BasicBlock *BranchBB = DTN->getBlock();
524     if (auto *BI = dyn_cast<BranchInst>(BranchBB->getTerminator())) {
525       if (!BI->isConditional())
526         continue;
527       // Can't insert conditional information if they all go to the same place.
528       if (BI->getSuccessor(0) == BI->getSuccessor(1))
529         continue;
530       processBranch(BI, BranchBB, OpsToRename);
531     } else if (auto *SI = dyn_cast<SwitchInst>(BranchBB->getTerminator())) {
532       processSwitch(SI, BranchBB, OpsToRename);
533     }
534   }
535   for (auto &Assume : AC.assumptions()) {
536     if (auto *II = dyn_cast_or_null<IntrinsicInst>(Assume))
537       if (DT.isReachableFromEntry(II->getParent()))
538         processAssume(II, II->getParent(), OpsToRename);
539   }
540   // Now rename all our operations.
541   renameUses(OpsToRename);
542 }
543 
544 // Create a ssa_copy declaration with custom mangling, because
545 // Intrinsic::getDeclaration does not handle overloaded unnamed types properly:
546 // all unnamed types get mangled to the same string. We use the pointer
547 // to the type as name here, as it guarantees unique names for different
548 // types and we remove the declarations when destroying PredicateInfo.
549 // It is a workaround for PR38117, because solving it in a fully general way is
550 // tricky (FIXME).
551 static Function *getCopyDeclaration(Module *M, Type *Ty) {
552   std::string Name = "llvm.ssa.copy." + utostr((uintptr_t) Ty);
553   return cast<Function>(
554       M->getOrInsertFunction(Name,
555                              getType(M->getContext(), Intrinsic::ssa_copy, Ty))
556           .getCallee());
557 }
558 
559 // Given the renaming stack, make all the operands currently on the stack real
560 // by inserting them into the IR.  Return the last operation's value.
561 Value *PredicateInfoBuilder::materializeStack(unsigned int &Counter,
562                                              ValueDFSStack &RenameStack,
563                                              Value *OrigOp) {
564   // Find the first thing we have to materialize
565   auto RevIter = RenameStack.rbegin();
566   for (; RevIter != RenameStack.rend(); ++RevIter)
567     if (RevIter->Def)
568       break;
569 
570   size_t Start = RevIter - RenameStack.rbegin();
571   // The maximum number of things we should be trying to materialize at once
572   // right now is 4, depending on if we had an assume, a branch, and both used
573   // and of conditions.
574   for (auto RenameIter = RenameStack.end() - Start;
575        RenameIter != RenameStack.end(); ++RenameIter) {
576     auto *Op =
577         RenameIter == RenameStack.begin() ? OrigOp : (RenameIter - 1)->Def;
578     ValueDFS &Result = *RenameIter;
579     auto *ValInfo = Result.PInfo;
580     ValInfo->RenamedOp = (RenameStack.end() - Start) == RenameStack.begin()
581                              ? OrigOp
582                              : (RenameStack.end() - Start - 1)->Def;
583     // For edge predicates, we can just place the operand in the block before
584     // the terminator.  For assume, we have to place it right before the assume
585     // to ensure we dominate all of our uses.  Always insert right before the
586     // relevant instruction (terminator, assume), so that we insert in proper
587     // order in the case of multiple predicateinfo in the same block.
588     if (isa<PredicateWithEdge>(ValInfo)) {
589       IRBuilder<> B(getBranchTerminator(ValInfo));
590       Function *IF = getCopyDeclaration(F.getParent(), Op->getType());
591       if (IF->users().empty())
592         PI.CreatedDeclarations.insert(IF);
593       CallInst *PIC =
594           B.CreateCall(IF, Op, Op->getName() + "." + Twine(Counter++));
595       PI.PredicateMap.insert({PIC, ValInfo});
596       Result.Def = PIC;
597     } else {
598       auto *PAssume = dyn_cast<PredicateAssume>(ValInfo);
599       assert(PAssume &&
600              "Should not have gotten here without it being an assume");
601       // Insert the predicate directly after the assume. While it also holds
602       // directly before it, assume(i1 true) is not a useful fact.
603       IRBuilder<> B(PAssume->AssumeInst->getNextNode());
604       Function *IF = getCopyDeclaration(F.getParent(), Op->getType());
605       if (IF->users().empty())
606         PI.CreatedDeclarations.insert(IF);
607       CallInst *PIC = B.CreateCall(IF, Op);
608       PI.PredicateMap.insert({PIC, ValInfo});
609       Result.Def = PIC;
610     }
611   }
612   return RenameStack.back().Def;
613 }
614 
615 // Instead of the standard SSA renaming algorithm, which is O(Number of
616 // instructions), and walks the entire dominator tree, we walk only the defs +
617 // uses.  The standard SSA renaming algorithm does not really rely on the
618 // dominator tree except to order the stack push/pops of the renaming stacks, so
619 // that defs end up getting pushed before hitting the correct uses.  This does
620 // not require the dominator tree, only the *order* of the dominator tree. The
621 // complete and correct ordering of the defs and uses, in dominator tree is
622 // contained in the DFS numbering of the dominator tree. So we sort the defs and
623 // uses into the DFS ordering, and then just use the renaming stack as per
624 // normal, pushing when we hit a def (which is a predicateinfo instruction),
625 // popping when we are out of the dfs scope for that def, and replacing any uses
626 // with top of stack if it exists.  In order to handle liveness without
627 // propagating liveness info, we don't actually insert the predicateinfo
628 // instruction def until we see a use that it would dominate.  Once we see such
629 // a use, we materialize the predicateinfo instruction in the right place and
630 // use it.
631 //
632 // TODO: Use this algorithm to perform fast single-variable renaming in
633 // promotememtoreg and memoryssa.
634 void PredicateInfoBuilder::renameUses(SmallVectorImpl<Value *> &OpsToRename) {
635   ValueDFS_Compare Compare(DT);
636   // Compute liveness, and rename in O(uses) per Op.
637   for (auto *Op : OpsToRename) {
638     LLVM_DEBUG(dbgs() << "Visiting " << *Op << "\n");
639     unsigned Counter = 0;
640     SmallVector<ValueDFS, 16> OrderedUses;
641     const auto &ValueInfo = getValueInfo(Op);
642     // Insert the possible copies into the def/use list.
643     // They will become real copies if we find a real use for them, and never
644     // created otherwise.
645     for (auto &PossibleCopy : ValueInfo.Infos) {
646       ValueDFS VD;
647       // Determine where we are going to place the copy by the copy type.
648       // The predicate info for branches always come first, they will get
649       // materialized in the split block at the top of the block.
650       // The predicate info for assumes will be somewhere in the middle,
651       // it will get materialized in front of the assume.
652       if (const auto *PAssume = dyn_cast<PredicateAssume>(PossibleCopy)) {
653         VD.LocalNum = LN_Middle;
654         DomTreeNode *DomNode = DT.getNode(PAssume->AssumeInst->getParent());
655         if (!DomNode)
656           continue;
657         VD.DFSIn = DomNode->getDFSNumIn();
658         VD.DFSOut = DomNode->getDFSNumOut();
659         VD.PInfo = PossibleCopy;
660         OrderedUses.push_back(VD);
661       } else if (isa<PredicateWithEdge>(PossibleCopy)) {
662         // If we can only do phi uses, we treat it like it's in the branch
663         // block, and handle it specially. We know that it goes last, and only
664         // dominate phi uses.
665         auto BlockEdge = getBlockEdge(PossibleCopy);
666         if (EdgeUsesOnly.count(BlockEdge)) {
667           VD.LocalNum = LN_Last;
668           auto *DomNode = DT.getNode(BlockEdge.first);
669           if (DomNode) {
670             VD.DFSIn = DomNode->getDFSNumIn();
671             VD.DFSOut = DomNode->getDFSNumOut();
672             VD.PInfo = PossibleCopy;
673             VD.EdgeOnly = true;
674             OrderedUses.push_back(VD);
675           }
676         } else {
677           // Otherwise, we are in the split block (even though we perform
678           // insertion in the branch block).
679           // Insert a possible copy at the split block and before the branch.
680           VD.LocalNum = LN_First;
681           auto *DomNode = DT.getNode(BlockEdge.second);
682           if (DomNode) {
683             VD.DFSIn = DomNode->getDFSNumIn();
684             VD.DFSOut = DomNode->getDFSNumOut();
685             VD.PInfo = PossibleCopy;
686             OrderedUses.push_back(VD);
687           }
688         }
689       }
690     }
691 
692     convertUsesToDFSOrdered(Op, OrderedUses);
693     // Here we require a stable sort because we do not bother to try to
694     // assign an order to the operands the uses represent. Thus, two
695     // uses in the same instruction do not have a strict sort order
696     // currently and will be considered equal. We could get rid of the
697     // stable sort by creating one if we wanted.
698     llvm::stable_sort(OrderedUses, Compare);
699     SmallVector<ValueDFS, 8> RenameStack;
700     // For each use, sorted into dfs order, push values and replaces uses with
701     // top of stack, which will represent the reaching def.
702     for (auto &VD : OrderedUses) {
703       // We currently do not materialize copy over copy, but we should decide if
704       // we want to.
705       bool PossibleCopy = VD.PInfo != nullptr;
706       if (RenameStack.empty()) {
707         LLVM_DEBUG(dbgs() << "Rename Stack is empty\n");
708       } else {
709         LLVM_DEBUG(dbgs() << "Rename Stack Top DFS numbers are ("
710                           << RenameStack.back().DFSIn << ","
711                           << RenameStack.back().DFSOut << ")\n");
712       }
713 
714       LLVM_DEBUG(dbgs() << "Current DFS numbers are (" << VD.DFSIn << ","
715                         << VD.DFSOut << ")\n");
716 
717       bool ShouldPush = (VD.Def || PossibleCopy);
718       bool OutOfScope = !stackIsInScope(RenameStack, VD);
719       if (OutOfScope || ShouldPush) {
720         // Sync to our current scope.
721         popStackUntilDFSScope(RenameStack, VD);
722         if (ShouldPush) {
723           RenameStack.push_back(VD);
724         }
725       }
726       // If we get to this point, and the stack is empty we must have a use
727       // with no renaming needed, just skip it.
728       if (RenameStack.empty())
729         continue;
730       // Skip values, only want to rename the uses
731       if (VD.Def || PossibleCopy)
732         continue;
733       if (!DebugCounter::shouldExecute(RenameCounter)) {
734         LLVM_DEBUG(dbgs() << "Skipping execution due to debug counter\n");
735         continue;
736       }
737       ValueDFS &Result = RenameStack.back();
738 
739       // If the possible copy dominates something, materialize our stack up to
740       // this point. This ensures every comparison that affects our operation
741       // ends up with predicateinfo.
742       if (!Result.Def)
743         Result.Def = materializeStack(Counter, RenameStack, Op);
744 
745       LLVM_DEBUG(dbgs() << "Found replacement " << *Result.Def << " for "
746                         << *VD.U->get() << " in " << *(VD.U->getUser())
747                         << "\n");
748       assert(DT.dominates(cast<Instruction>(Result.Def), *VD.U) &&
749              "Predicateinfo def should have dominated this use");
750       VD.U->set(Result.Def);
751     }
752   }
753 }
754 
755 PredicateInfoBuilder::ValueInfo &
756 PredicateInfoBuilder::getOrCreateValueInfo(Value *Operand) {
757   auto OIN = ValueInfoNums.find(Operand);
758   if (OIN == ValueInfoNums.end()) {
759     // This will grow it
760     ValueInfos.resize(ValueInfos.size() + 1);
761     // This will use the new size and give us a 0 based number of the info
762     auto InsertResult = ValueInfoNums.insert({Operand, ValueInfos.size() - 1});
763     assert(InsertResult.second && "Value info number already existed?");
764     return ValueInfos[InsertResult.first->second];
765   }
766   return ValueInfos[OIN->second];
767 }
768 
769 const PredicateInfoBuilder::ValueInfo &
770 PredicateInfoBuilder::getValueInfo(Value *Operand) const {
771   auto OINI = ValueInfoNums.lookup(Operand);
772   assert(OINI != 0 && "Operand was not really in the Value Info Numbers");
773   assert(OINI < ValueInfos.size() &&
774          "Value Info Number greater than size of Value Info Table");
775   return ValueInfos[OINI];
776 }
777 
778 PredicateInfo::PredicateInfo(Function &F, DominatorTree &DT,
779                              AssumptionCache &AC)
780     : F(F) {
781   PredicateInfoBuilder Builder(*this, F, DT, AC);
782   Builder.buildPredicateInfo();
783 }
784 
785 // Remove all declarations we created . The PredicateInfo consumers are
786 // responsible for remove the ssa_copy calls created.
787 PredicateInfo::~PredicateInfo() {
788   // Collect function pointers in set first, as SmallSet uses a SmallVector
789   // internally and we have to remove the asserting value handles first.
790   SmallPtrSet<Function *, 20> FunctionPtrs;
791   for (auto &F : CreatedDeclarations)
792     FunctionPtrs.insert(&*F);
793   CreatedDeclarations.clear();
794 
795   for (Function *F : FunctionPtrs) {
796     assert(F->user_begin() == F->user_end() &&
797            "PredicateInfo consumer did not remove all SSA copies.");
798     F->eraseFromParent();
799   }
800 }
801 
802 Optional<PredicateConstraint> PredicateBase::getConstraint() const {
803   switch (Type) {
804   case PT_Assume:
805   case PT_Branch: {
806     bool TrueEdge = true;
807     if (auto *PBranch = dyn_cast<PredicateBranch>(this))
808       TrueEdge = PBranch->TrueEdge;
809 
810     if (Condition == RenamedOp) {
811       return {{CmpInst::ICMP_EQ,
812                TrueEdge ? ConstantInt::getTrue(Condition->getType())
813                         : ConstantInt::getFalse(Condition->getType())}};
814     }
815 
816     CmpInst *Cmp = dyn_cast<CmpInst>(Condition);
817     if (!Cmp) {
818       // TODO: Make this an assertion once RenamedOp is fully accurate.
819       return None;
820     }
821 
822     CmpInst::Predicate Pred;
823     Value *OtherOp;
824     if (Cmp->getOperand(0) == RenamedOp) {
825       Pred = Cmp->getPredicate();
826       OtherOp = Cmp->getOperand(1);
827     } else if (Cmp->getOperand(1) == RenamedOp) {
828       Pred = Cmp->getSwappedPredicate();
829       OtherOp = Cmp->getOperand(0);
830     } else {
831       // TODO: Make this an assertion once RenamedOp is fully accurate.
832       return None;
833     }
834 
835     // Invert predicate along false edge.
836     if (!TrueEdge)
837       Pred = CmpInst::getInversePredicate(Pred);
838 
839     return {{Pred, OtherOp}};
840   }
841   case PT_Switch:
842     if (Condition != RenamedOp) {
843       // TODO: Make this an assertion once RenamedOp is fully accurate.
844       return None;
845     }
846 
847     return {{CmpInst::ICMP_EQ, cast<PredicateSwitch>(this)->CaseValue}};
848   }
849   llvm_unreachable("Unknown predicate type");
850 }
851 
852 void PredicateInfo::verifyPredicateInfo() const {}
853 
854 char PredicateInfoPrinterLegacyPass::ID = 0;
855 
856 PredicateInfoPrinterLegacyPass::PredicateInfoPrinterLegacyPass()
857     : FunctionPass(ID) {
858   initializePredicateInfoPrinterLegacyPassPass(
859       *PassRegistry::getPassRegistry());
860 }
861 
862 void PredicateInfoPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const {
863   AU.setPreservesAll();
864   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
865   AU.addRequired<AssumptionCacheTracker>();
866 }
867 
868 // Replace ssa_copy calls created by PredicateInfo with their operand.
869 static void replaceCreatedSSACopys(PredicateInfo &PredInfo, Function &F) {
870   for (auto I = inst_begin(F), E = inst_end(F); I != E;) {
871     Instruction *Inst = &*I++;
872     const auto *PI = PredInfo.getPredicateInfoFor(Inst);
873     auto *II = dyn_cast<IntrinsicInst>(Inst);
874     if (!PI || !II || II->getIntrinsicID() != Intrinsic::ssa_copy)
875       continue;
876 
877     Inst->replaceAllUsesWith(II->getOperand(0));
878     Inst->eraseFromParent();
879   }
880 }
881 
882 bool PredicateInfoPrinterLegacyPass::runOnFunction(Function &F) {
883   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
884   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
885   auto PredInfo = std::make_unique<PredicateInfo>(F, DT, AC);
886   PredInfo->print(dbgs());
887   if (VerifyPredicateInfo)
888     PredInfo->verifyPredicateInfo();
889 
890   replaceCreatedSSACopys(*PredInfo, F);
891   return false;
892 }
893 
894 PreservedAnalyses PredicateInfoPrinterPass::run(Function &F,
895                                                 FunctionAnalysisManager &AM) {
896   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
897   auto &AC = AM.getResult<AssumptionAnalysis>(F);
898   OS << "PredicateInfo for function: " << F.getName() << "\n";
899   auto PredInfo = std::make_unique<PredicateInfo>(F, DT, AC);
900   PredInfo->print(OS);
901 
902   replaceCreatedSSACopys(*PredInfo, F);
903   return PreservedAnalyses::all();
904 }
905 
906 /// An assembly annotator class to print PredicateInfo information in
907 /// comments.
908 class PredicateInfoAnnotatedWriter : public AssemblyAnnotationWriter {
909   friend class PredicateInfo;
910   const PredicateInfo *PredInfo;
911 
912 public:
913   PredicateInfoAnnotatedWriter(const PredicateInfo *M) : PredInfo(M) {}
914 
915   void emitBasicBlockStartAnnot(const BasicBlock *BB,
916                                 formatted_raw_ostream &OS) override {}
917 
918   void emitInstructionAnnot(const Instruction *I,
919                             formatted_raw_ostream &OS) override {
920     if (const auto *PI = PredInfo->getPredicateInfoFor(I)) {
921       OS << "; Has predicate info\n";
922       if (const auto *PB = dyn_cast<PredicateBranch>(PI)) {
923         OS << "; branch predicate info { TrueEdge: " << PB->TrueEdge
924            << " Comparison:" << *PB->Condition << " Edge: [";
925         PB->From->printAsOperand(OS);
926         OS << ",";
927         PB->To->printAsOperand(OS);
928         OS << "]";
929       } else if (const auto *PS = dyn_cast<PredicateSwitch>(PI)) {
930         OS << "; switch predicate info { CaseValue: " << *PS->CaseValue
931            << " Switch:" << *PS->Switch << " Edge: [";
932         PS->From->printAsOperand(OS);
933         OS << ",";
934         PS->To->printAsOperand(OS);
935         OS << "]";
936       } else if (const auto *PA = dyn_cast<PredicateAssume>(PI)) {
937         OS << "; assume predicate info {"
938            << " Comparison:" << *PA->Condition;
939       }
940       OS << ", RenamedOp: ";
941       PI->RenamedOp->printAsOperand(OS, false);
942       OS << " }\n";
943     }
944   }
945 };
946 
947 void PredicateInfo::print(raw_ostream &OS) const {
948   PredicateInfoAnnotatedWriter Writer(this);
949   F.print(OS, &Writer);
950 }
951 
952 void PredicateInfo::dump() const {
953   PredicateInfoAnnotatedWriter Writer(this);
954   F.print(dbgs(), &Writer);
955 }
956 
957 PreservedAnalyses PredicateInfoVerifierPass::run(Function &F,
958                                                  FunctionAnalysisManager &AM) {
959   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
960   auto &AC = AM.getResult<AssumptionAnalysis>(F);
961   std::make_unique<PredicateInfo>(F, DT, AC)->verifyPredicateInfo();
962 
963   return PreservedAnalyses::all();
964 }
965 }
966