1 //===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file promotes memory references to be register references.  It promotes
10 // alloca instructions which only have loads and stores as uses.  An alloca is
11 // transformed by using iterated dominator frontiers to place PHI nodes, then
12 // traversing the function in depth-first order to rewrite loads and stores as
13 // appropriate.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/ADT/TinyPtrVector.h"
24 #include "llvm/ADT/Twine.h"
25 #include "llvm/Analysis/AssumptionCache.h"
26 #include "llvm/Analysis/InstructionSimplify.h"
27 #include "llvm/Analysis/IteratedDominanceFrontier.h"
28 #include "llvm/Transforms/Utils/Local.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CFG.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DIBuilder.h"
35 #include "llvm/IR/DerivedTypes.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/InstrTypes.h"
39 #include "llvm/IR/Instruction.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/Intrinsics.h"
43 #include "llvm/IR/LLVMContext.h"
44 #include "llvm/IR/Module.h"
45 #include "llvm/IR/Type.h"
46 #include "llvm/IR/User.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
49 #include <algorithm>
50 #include <cassert>
51 #include <iterator>
52 #include <utility>
53 #include <vector>
54 
55 using namespace llvm;
56 
57 #define DEBUG_TYPE "mem2reg"
58 
59 STATISTIC(NumLocalPromoted, "Number of alloca's promoted within one block");
60 STATISTIC(NumSingleStore,   "Number of alloca's promoted with a single store");
61 STATISTIC(NumDeadAlloca,    "Number of dead alloca's removed");
62 STATISTIC(NumPHIInsert,     "Number of PHI nodes inserted");
63 
64 bool llvm::isAllocaPromotable(const AllocaInst *AI) {
65   // FIXME: If the memory unit is of pointer or integer type, we can permit
66   // assignments to subsections of the memory unit.
67   unsigned AS = AI->getType()->getAddressSpace();
68 
69   // Only allow direct and non-volatile loads and stores...
70   for (const User *U : AI->users()) {
71     if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
72       // Note that atomic loads can be transformed; atomic semantics do
73       // not have any meaning for a local alloca.
74       if (LI->isVolatile())
75         return false;
76     } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
77       if (SI->getOperand(0) == AI)
78         return false; // Don't allow a store OF the AI, only INTO the AI.
79       // Note that atomic stores can be transformed; atomic semantics do
80       // not have any meaning for a local alloca.
81       if (SI->isVolatile())
82         return false;
83     } else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
84       if (!II->isLifetimeStartOrEnd())
85         return false;
86     } else if (const BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
87       if (BCI->getType() != Type::getInt8PtrTy(U->getContext(), AS))
88         return false;
89       if (!onlyUsedByLifetimeMarkers(BCI))
90         return false;
91     } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
92       if (GEPI->getType() != Type::getInt8PtrTy(U->getContext(), AS))
93         return false;
94       if (!GEPI->hasAllZeroIndices())
95         return false;
96       if (!onlyUsedByLifetimeMarkers(GEPI))
97         return false;
98     } else {
99       return false;
100     }
101   }
102 
103   return true;
104 }
105 
106 namespace {
107 
108 struct AllocaInfo {
109   SmallVector<BasicBlock *, 32> DefiningBlocks;
110   SmallVector<BasicBlock *, 32> UsingBlocks;
111 
112   StoreInst *OnlyStore;
113   BasicBlock *OnlyBlock;
114   bool OnlyUsedInOneBlock;
115 
116   TinyPtrVector<DbgVariableIntrinsic *> DbgDeclares;
117 
118   void clear() {
119     DefiningBlocks.clear();
120     UsingBlocks.clear();
121     OnlyStore = nullptr;
122     OnlyBlock = nullptr;
123     OnlyUsedInOneBlock = true;
124     DbgDeclares.clear();
125   }
126 
127   /// Scan the uses of the specified alloca, filling in the AllocaInfo used
128   /// by the rest of the pass to reason about the uses of this alloca.
129   void AnalyzeAlloca(AllocaInst *AI) {
130     clear();
131 
132     // As we scan the uses of the alloca instruction, keep track of stores,
133     // and decide whether all of the loads and stores to the alloca are within
134     // the same basic block.
135     for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) {
136       Instruction *User = cast<Instruction>(*UI++);
137 
138       if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
139         // Remember the basic blocks which define new values for the alloca
140         DefiningBlocks.push_back(SI->getParent());
141         OnlyStore = SI;
142       } else {
143         LoadInst *LI = cast<LoadInst>(User);
144         // Otherwise it must be a load instruction, keep track of variable
145         // reads.
146         UsingBlocks.push_back(LI->getParent());
147       }
148 
149       if (OnlyUsedInOneBlock) {
150         if (!OnlyBlock)
151           OnlyBlock = User->getParent();
152         else if (OnlyBlock != User->getParent())
153           OnlyUsedInOneBlock = false;
154       }
155     }
156 
157     DbgDeclares = FindDbgAddrUses(AI);
158   }
159 };
160 
161 /// Data package used by RenamePass().
162 struct RenamePassData {
163   using ValVector = std::vector<Value *>;
164   using LocationVector = std::vector<DebugLoc>;
165 
166   RenamePassData(BasicBlock *B, BasicBlock *P, ValVector V, LocationVector L)
167       : BB(B), Pred(P), Values(std::move(V)), Locations(std::move(L)) {}
168 
169   BasicBlock *BB;
170   BasicBlock *Pred;
171   ValVector Values;
172   LocationVector Locations;
173 };
174 
175 /// This assigns and keeps a per-bb relative ordering of load/store
176 /// instructions in the block that directly load or store an alloca.
177 ///
178 /// This functionality is important because it avoids scanning large basic
179 /// blocks multiple times when promoting many allocas in the same block.
180 class LargeBlockInfo {
181   /// For each instruction that we track, keep the index of the
182   /// instruction.
183   ///
184   /// The index starts out as the number of the instruction from the start of
185   /// the block.
186   DenseMap<const Instruction *, unsigned> InstNumbers;
187 
188 public:
189 
190   /// This code only looks at accesses to allocas.
191   static bool isInterestingInstruction(const Instruction *I) {
192     return (isa<LoadInst>(I) && isa<AllocaInst>(I->getOperand(0))) ||
193            (isa<StoreInst>(I) && isa<AllocaInst>(I->getOperand(1)));
194   }
195 
196   /// Get or calculate the index of the specified instruction.
197   unsigned getInstructionIndex(const Instruction *I) {
198     assert(isInterestingInstruction(I) &&
199            "Not a load/store to/from an alloca?");
200 
201     // If we already have this instruction number, return it.
202     DenseMap<const Instruction *, unsigned>::iterator It = InstNumbers.find(I);
203     if (It != InstNumbers.end())
204       return It->second;
205 
206     // Scan the whole block to get the instruction.  This accumulates
207     // information for every interesting instruction in the block, in order to
208     // avoid gratuitus rescans.
209     const BasicBlock *BB = I->getParent();
210     unsigned InstNo = 0;
211     for (const Instruction &BBI : *BB)
212       if (isInterestingInstruction(&BBI))
213         InstNumbers[&BBI] = InstNo++;
214     It = InstNumbers.find(I);
215 
216     assert(It != InstNumbers.end() && "Didn't insert instruction?");
217     return It->second;
218   }
219 
220   void deleteValue(const Instruction *I) { InstNumbers.erase(I); }
221 
222   void clear() { InstNumbers.clear(); }
223 };
224 
225 struct PromoteMem2Reg {
226   /// The alloca instructions being promoted.
227   std::vector<AllocaInst *> Allocas;
228 
229   DominatorTree &DT;
230   DIBuilder DIB;
231 
232   /// A cache of @llvm.assume intrinsics used by SimplifyInstruction.
233   AssumptionCache *AC;
234 
235   const SimplifyQuery SQ;
236 
237   /// Reverse mapping of Allocas.
238   DenseMap<AllocaInst *, unsigned> AllocaLookup;
239 
240   /// The PhiNodes we're adding.
241   ///
242   /// That map is used to simplify some Phi nodes as we iterate over it, so
243   /// it should have deterministic iterators.  We could use a MapVector, but
244   /// since we already maintain a map from BasicBlock* to a stable numbering
245   /// (BBNumbers), the DenseMap is more efficient (also supports removal).
246   DenseMap<std::pair<unsigned, unsigned>, PHINode *> NewPhiNodes;
247 
248   /// For each PHI node, keep track of which entry in Allocas it corresponds
249   /// to.
250   DenseMap<PHINode *, unsigned> PhiToAllocaMap;
251 
252   /// For each alloca, we keep track of the dbg.declare intrinsic that
253   /// describes it, if any, so that we can convert it to a dbg.value
254   /// intrinsic if the alloca gets promoted.
255   SmallVector<TinyPtrVector<DbgVariableIntrinsic *>, 8> AllocaDbgDeclares;
256 
257   /// The set of basic blocks the renamer has already visited.
258   SmallPtrSet<BasicBlock *, 16> Visited;
259 
260   /// Contains a stable numbering of basic blocks to avoid non-determinstic
261   /// behavior.
262   DenseMap<BasicBlock *, unsigned> BBNumbers;
263 
264   /// Lazily compute the number of predecessors a block has.
265   DenseMap<const BasicBlock *, unsigned> BBNumPreds;
266 
267 public:
268   PromoteMem2Reg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT,
269                  AssumptionCache *AC)
270       : Allocas(Allocas.begin(), Allocas.end()), DT(DT),
271         DIB(*DT.getRoot()->getParent()->getParent(), /*AllowUnresolved*/ false),
272         AC(AC), SQ(DT.getRoot()->getParent()->getParent()->getDataLayout(),
273                    nullptr, &DT, AC) {}
274 
275   void run();
276 
277 private:
278   void RemoveFromAllocasList(unsigned &AllocaIdx) {
279     Allocas[AllocaIdx] = Allocas.back();
280     Allocas.pop_back();
281     --AllocaIdx;
282   }
283 
284   unsigned getNumPreds(const BasicBlock *BB) {
285     unsigned &NP = BBNumPreds[BB];
286     if (NP == 0)
287       NP = pred_size(BB) + 1;
288     return NP - 1;
289   }
290 
291   void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info,
292                            const SmallPtrSetImpl<BasicBlock *> &DefBlocks,
293                            SmallPtrSetImpl<BasicBlock *> &LiveInBlocks);
294   void RenamePass(BasicBlock *BB, BasicBlock *Pred,
295                   RenamePassData::ValVector &IncVals,
296                   RenamePassData::LocationVector &IncLocs,
297                   std::vector<RenamePassData> &Worklist);
298   bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version);
299 };
300 
301 } // end anonymous namespace
302 
303 /// Given a LoadInst LI this adds assume(LI != null) after it.
304 static void addAssumeNonNull(AssumptionCache *AC, LoadInst *LI) {
305   Function *AssumeIntrinsic =
306       Intrinsic::getDeclaration(LI->getModule(), Intrinsic::assume);
307   ICmpInst *LoadNotNull = new ICmpInst(ICmpInst::ICMP_NE, LI,
308                                        Constant::getNullValue(LI->getType()));
309   LoadNotNull->insertAfter(LI);
310   CallInst *CI = CallInst::Create(AssumeIntrinsic, {LoadNotNull});
311   CI->insertAfter(LoadNotNull);
312   AC->registerAssumption(CI);
313 }
314 
315 static void removeLifetimeIntrinsicUsers(AllocaInst *AI) {
316   // Knowing that this alloca is promotable, we know that it's safe to kill all
317   // instructions except for load and store.
318 
319   for (auto UI = AI->user_begin(), UE = AI->user_end(); UI != UE;) {
320     Instruction *I = cast<Instruction>(*UI);
321     ++UI;
322     if (isa<LoadInst>(I) || isa<StoreInst>(I))
323       continue;
324 
325     if (!I->getType()->isVoidTy()) {
326       // The only users of this bitcast/GEP instruction are lifetime intrinsics.
327       // Follow the use/def chain to erase them now instead of leaving it for
328       // dead code elimination later.
329       for (auto UUI = I->user_begin(), UUE = I->user_end(); UUI != UUE;) {
330         Instruction *Inst = cast<Instruction>(*UUI);
331         ++UUI;
332         Inst->eraseFromParent();
333       }
334     }
335     I->eraseFromParent();
336   }
337 }
338 
339 /// Rewrite as many loads as possible given a single store.
340 ///
341 /// When there is only a single store, we can use the domtree to trivially
342 /// replace all of the dominated loads with the stored value. Do so, and return
343 /// true if this has successfully promoted the alloca entirely. If this returns
344 /// false there were some loads which were not dominated by the single store
345 /// and thus must be phi-ed with undef. We fall back to the standard alloca
346 /// promotion algorithm in that case.
347 static bool rewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info,
348                                      LargeBlockInfo &LBI, const DataLayout &DL,
349                                      DominatorTree &DT, AssumptionCache *AC) {
350   StoreInst *OnlyStore = Info.OnlyStore;
351   bool StoringGlobalVal = !isa<Instruction>(OnlyStore->getOperand(0));
352   BasicBlock *StoreBB = OnlyStore->getParent();
353   int StoreIndex = -1;
354 
355   // Clear out UsingBlocks.  We will reconstruct it here if needed.
356   Info.UsingBlocks.clear();
357 
358   for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) {
359     Instruction *UserInst = cast<Instruction>(*UI++);
360     if (UserInst == OnlyStore)
361       continue;
362     LoadInst *LI = cast<LoadInst>(UserInst);
363 
364     // Okay, if we have a load from the alloca, we want to replace it with the
365     // only value stored to the alloca.  We can do this if the value is
366     // dominated by the store.  If not, we use the rest of the mem2reg machinery
367     // to insert the phi nodes as needed.
368     if (!StoringGlobalVal) { // Non-instructions are always dominated.
369       if (LI->getParent() == StoreBB) {
370         // If we have a use that is in the same block as the store, compare the
371         // indices of the two instructions to see which one came first.  If the
372         // load came before the store, we can't handle it.
373         if (StoreIndex == -1)
374           StoreIndex = LBI.getInstructionIndex(OnlyStore);
375 
376         if (unsigned(StoreIndex) > LBI.getInstructionIndex(LI)) {
377           // Can't handle this load, bail out.
378           Info.UsingBlocks.push_back(StoreBB);
379           continue;
380         }
381       } else if (!DT.dominates(StoreBB, LI->getParent())) {
382         // If the load and store are in different blocks, use BB dominance to
383         // check their relationships.  If the store doesn't dom the use, bail
384         // out.
385         Info.UsingBlocks.push_back(LI->getParent());
386         continue;
387       }
388     }
389 
390     // Otherwise, we *can* safely rewrite this load.
391     Value *ReplVal = OnlyStore->getOperand(0);
392     // If the replacement value is the load, this must occur in unreachable
393     // code.
394     if (ReplVal == LI)
395       ReplVal = UndefValue::get(LI->getType());
396 
397     // If the load was marked as nonnull we don't want to lose
398     // that information when we erase this Load. So we preserve
399     // it with an assume.
400     if (AC && LI->getMetadata(LLVMContext::MD_nonnull) &&
401         !isKnownNonZero(ReplVal, DL, 0, AC, LI, &DT))
402       addAssumeNonNull(AC, LI);
403 
404     LI->replaceAllUsesWith(ReplVal);
405     LI->eraseFromParent();
406     LBI.deleteValue(LI);
407   }
408 
409   // Finally, after the scan, check to see if the store is all that is left.
410   if (!Info.UsingBlocks.empty())
411     return false; // If not, we'll have to fall back for the remainder.
412 
413   // Record debuginfo for the store and remove the declaration's
414   // debuginfo.
415   for (DbgVariableIntrinsic *DII : Info.DbgDeclares) {
416     DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false);
417     ConvertDebugDeclareToDebugValue(DII, Info.OnlyStore, DIB);
418     DII->eraseFromParent();
419   }
420   // Remove the (now dead) store and alloca.
421   Info.OnlyStore->eraseFromParent();
422   LBI.deleteValue(Info.OnlyStore);
423 
424   AI->eraseFromParent();
425   return true;
426 }
427 
428 /// Many allocas are only used within a single basic block.  If this is the
429 /// case, avoid traversing the CFG and inserting a lot of potentially useless
430 /// PHI nodes by just performing a single linear pass over the basic block
431 /// using the Alloca.
432 ///
433 /// If we cannot promote this alloca (because it is read before it is written),
434 /// return false.  This is necessary in cases where, due to control flow, the
435 /// alloca is undefined only on some control flow paths.  e.g. code like
436 /// this is correct in LLVM IR:
437 ///  // A is an alloca with no stores so far
438 ///  for (...) {
439 ///    int t = *A;
440 ///    if (!first_iteration)
441 ///      use(t);
442 ///    *A = 42;
443 ///  }
444 static bool promoteSingleBlockAlloca(AllocaInst *AI, const AllocaInfo &Info,
445                                      LargeBlockInfo &LBI,
446                                      const DataLayout &DL,
447                                      DominatorTree &DT,
448                                      AssumptionCache *AC) {
449   // The trickiest case to handle is when we have large blocks. Because of this,
450   // this code is optimized assuming that large blocks happen.  This does not
451   // significantly pessimize the small block case.  This uses LargeBlockInfo to
452   // make it efficient to get the index of various operations in the block.
453 
454   // Walk the use-def list of the alloca, getting the locations of all stores.
455   using StoresByIndexTy = SmallVector<std::pair<unsigned, StoreInst *>, 64>;
456   StoresByIndexTy StoresByIndex;
457 
458   for (User *U : AI->users())
459     if (StoreInst *SI = dyn_cast<StoreInst>(U))
460       StoresByIndex.push_back(std::make_pair(LBI.getInstructionIndex(SI), SI));
461 
462   // Sort the stores by their index, making it efficient to do a lookup with a
463   // binary search.
464   llvm::sort(StoresByIndex, less_first());
465 
466   // Walk all of the loads from this alloca, replacing them with the nearest
467   // store above them, if any.
468   for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) {
469     LoadInst *LI = dyn_cast<LoadInst>(*UI++);
470     if (!LI)
471       continue;
472 
473     unsigned LoadIdx = LBI.getInstructionIndex(LI);
474 
475     // Find the nearest store that has a lower index than this load.
476     StoresByIndexTy::iterator I = llvm::lower_bound(
477         StoresByIndex,
478         std::make_pair(LoadIdx, static_cast<StoreInst *>(nullptr)),
479         less_first());
480     if (I == StoresByIndex.begin()) {
481       if (StoresByIndex.empty())
482         // If there are no stores, the load takes the undef value.
483         LI->replaceAllUsesWith(UndefValue::get(LI->getType()));
484       else
485         // There is no store before this load, bail out (load may be affected
486         // by the following stores - see main comment).
487         return false;
488     } else {
489       // Otherwise, there was a store before this load, the load takes its value.
490       // Note, if the load was marked as nonnull we don't want to lose that
491       // information when we erase it. So we preserve it with an assume.
492       Value *ReplVal = std::prev(I)->second->getOperand(0);
493       if (AC && LI->getMetadata(LLVMContext::MD_nonnull) &&
494           !isKnownNonZero(ReplVal, DL, 0, AC, LI, &DT))
495         addAssumeNonNull(AC, LI);
496 
497       // If the replacement value is the load, this must occur in unreachable
498       // code.
499       if (ReplVal == LI)
500         ReplVal = UndefValue::get(LI->getType());
501 
502       LI->replaceAllUsesWith(ReplVal);
503     }
504 
505     LI->eraseFromParent();
506     LBI.deleteValue(LI);
507   }
508 
509   // Remove the (now dead) stores and alloca.
510   while (!AI->use_empty()) {
511     StoreInst *SI = cast<StoreInst>(AI->user_back());
512     // Record debuginfo for the store before removing it.
513     for (DbgVariableIntrinsic *DII : Info.DbgDeclares) {
514       DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false);
515       ConvertDebugDeclareToDebugValue(DII, SI, DIB);
516     }
517     SI->eraseFromParent();
518     LBI.deleteValue(SI);
519   }
520 
521   AI->eraseFromParent();
522 
523   // The alloca's debuginfo can be removed as well.
524   for (DbgVariableIntrinsic *DII : Info.DbgDeclares)
525     DII->eraseFromParent();
526 
527   ++NumLocalPromoted;
528   return true;
529 }
530 
531 void PromoteMem2Reg::run() {
532   Function &F = *DT.getRoot()->getParent();
533 
534   AllocaDbgDeclares.resize(Allocas.size());
535 
536   AllocaInfo Info;
537   LargeBlockInfo LBI;
538   ForwardIDFCalculator IDF(DT);
539 
540   for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) {
541     AllocaInst *AI = Allocas[AllocaNum];
542 
543     assert(isAllocaPromotable(AI) && "Cannot promote non-promotable alloca!");
544     assert(AI->getParent()->getParent() == &F &&
545            "All allocas should be in the same function, which is same as DF!");
546 
547     removeLifetimeIntrinsicUsers(AI);
548 
549     if (AI->use_empty()) {
550       // If there are no uses of the alloca, just delete it now.
551       AI->eraseFromParent();
552 
553       // Remove the alloca from the Allocas list, since it has been processed
554       RemoveFromAllocasList(AllocaNum);
555       ++NumDeadAlloca;
556       continue;
557     }
558 
559     // Calculate the set of read and write-locations for each alloca.  This is
560     // analogous to finding the 'uses' and 'definitions' of each variable.
561     Info.AnalyzeAlloca(AI);
562 
563     // If there is only a single store to this value, replace any loads of
564     // it that are directly dominated by the definition with the value stored.
565     if (Info.DefiningBlocks.size() == 1) {
566       if (rewriteSingleStoreAlloca(AI, Info, LBI, SQ.DL, DT, AC)) {
567         // The alloca has been processed, move on.
568         RemoveFromAllocasList(AllocaNum);
569         ++NumSingleStore;
570         continue;
571       }
572     }
573 
574     // If the alloca is only read and written in one basic block, just perform a
575     // linear sweep over the block to eliminate it.
576     if (Info.OnlyUsedInOneBlock &&
577         promoteSingleBlockAlloca(AI, Info, LBI, SQ.DL, DT, AC)) {
578       // The alloca has been processed, move on.
579       RemoveFromAllocasList(AllocaNum);
580       continue;
581     }
582 
583     // If we haven't computed a numbering for the BB's in the function, do so
584     // now.
585     if (BBNumbers.empty()) {
586       unsigned ID = 0;
587       for (auto &BB : F)
588         BBNumbers[&BB] = ID++;
589     }
590 
591     // Remember the dbg.declare intrinsic describing this alloca, if any.
592     if (!Info.DbgDeclares.empty())
593       AllocaDbgDeclares[AllocaNum] = Info.DbgDeclares;
594 
595     // Keep the reverse mapping of the 'Allocas' array for the rename pass.
596     AllocaLookup[Allocas[AllocaNum]] = AllocaNum;
597 
598     // At this point, we're committed to promoting the alloca using IDF's, and
599     // the standard SSA construction algorithm.  Determine which blocks need PHI
600     // nodes and see if we can optimize out some work by avoiding insertion of
601     // dead phi nodes.
602 
603     // Unique the set of defining blocks for efficient lookup.
604     SmallPtrSet<BasicBlock *, 32> DefBlocks(Info.DefiningBlocks.begin(),
605                                             Info.DefiningBlocks.end());
606 
607     // Determine which blocks the value is live in.  These are blocks which lead
608     // to uses.
609     SmallPtrSet<BasicBlock *, 32> LiveInBlocks;
610     ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks);
611 
612     // At this point, we're committed to promoting the alloca using IDF's, and
613     // the standard SSA construction algorithm.  Determine which blocks need phi
614     // nodes and see if we can optimize out some work by avoiding insertion of
615     // dead phi nodes.
616     IDF.setLiveInBlocks(LiveInBlocks);
617     IDF.setDefiningBlocks(DefBlocks);
618     SmallVector<BasicBlock *, 32> PHIBlocks;
619     IDF.calculate(PHIBlocks);
620     llvm::sort(PHIBlocks, [this](BasicBlock *A, BasicBlock *B) {
621       return BBNumbers.find(A)->second < BBNumbers.find(B)->second;
622     });
623 
624     unsigned CurrentVersion = 0;
625     for (BasicBlock *BB : PHIBlocks)
626       QueuePhiNode(BB, AllocaNum, CurrentVersion);
627   }
628 
629   if (Allocas.empty())
630     return; // All of the allocas must have been trivial!
631 
632   LBI.clear();
633 
634   // Set the incoming values for the basic block to be null values for all of
635   // the alloca's.  We do this in case there is a load of a value that has not
636   // been stored yet.  In this case, it will get this null value.
637   RenamePassData::ValVector Values(Allocas.size());
638   for (unsigned i = 0, e = Allocas.size(); i != e; ++i)
639     Values[i] = UndefValue::get(Allocas[i]->getAllocatedType());
640 
641   // When handling debug info, treat all incoming values as if they have unknown
642   // locations until proven otherwise.
643   RenamePassData::LocationVector Locations(Allocas.size());
644 
645   // Walks all basic blocks in the function performing the SSA rename algorithm
646   // and inserting the phi nodes we marked as necessary
647   std::vector<RenamePassData> RenamePassWorkList;
648   RenamePassWorkList.emplace_back(&F.front(), nullptr, std::move(Values),
649                                   std::move(Locations));
650   do {
651     RenamePassData RPD = std::move(RenamePassWorkList.back());
652     RenamePassWorkList.pop_back();
653     // RenamePass may add new worklist entries.
654     RenamePass(RPD.BB, RPD.Pred, RPD.Values, RPD.Locations, RenamePassWorkList);
655   } while (!RenamePassWorkList.empty());
656 
657   // The renamer uses the Visited set to avoid infinite loops.  Clear it now.
658   Visited.clear();
659 
660   // Remove the allocas themselves from the function.
661   for (Instruction *A : Allocas) {
662     // If there are any uses of the alloca instructions left, they must be in
663     // unreachable basic blocks that were not processed by walking the dominator
664     // tree. Just delete the users now.
665     if (!A->use_empty())
666       A->replaceAllUsesWith(UndefValue::get(A->getType()));
667     A->eraseFromParent();
668   }
669 
670   // Remove alloca's dbg.declare instrinsics from the function.
671   for (auto &Declares : AllocaDbgDeclares)
672     for (auto *DII : Declares)
673       DII->eraseFromParent();
674 
675   // Loop over all of the PHI nodes and see if there are any that we can get
676   // rid of because they merge all of the same incoming values.  This can
677   // happen due to undef values coming into the PHI nodes.  This process is
678   // iterative, because eliminating one PHI node can cause others to be removed.
679   bool EliminatedAPHI = true;
680   while (EliminatedAPHI) {
681     EliminatedAPHI = false;
682 
683     // Iterating over NewPhiNodes is deterministic, so it is safe to try to
684     // simplify and RAUW them as we go.  If it was not, we could add uses to
685     // the values we replace with in a non-deterministic order, thus creating
686     // non-deterministic def->use chains.
687     for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator
688              I = NewPhiNodes.begin(),
689              E = NewPhiNodes.end();
690          I != E;) {
691       PHINode *PN = I->second;
692 
693       // If this PHI node merges one value and/or undefs, get the value.
694       if (Value *V = SimplifyInstruction(PN, SQ)) {
695         PN->replaceAllUsesWith(V);
696         PN->eraseFromParent();
697         NewPhiNodes.erase(I++);
698         EliminatedAPHI = true;
699         continue;
700       }
701       ++I;
702     }
703   }
704 
705   // At this point, the renamer has added entries to PHI nodes for all reachable
706   // code.  Unfortunately, there may be unreachable blocks which the renamer
707   // hasn't traversed.  If this is the case, the PHI nodes may not
708   // have incoming values for all predecessors.  Loop over all PHI nodes we have
709   // created, inserting undef values if they are missing any incoming values.
710   for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator
711            I = NewPhiNodes.begin(),
712            E = NewPhiNodes.end();
713        I != E; ++I) {
714     // We want to do this once per basic block.  As such, only process a block
715     // when we find the PHI that is the first entry in the block.
716     PHINode *SomePHI = I->second;
717     BasicBlock *BB = SomePHI->getParent();
718     if (&BB->front() != SomePHI)
719       continue;
720 
721     // Only do work here if there the PHI nodes are missing incoming values.  We
722     // know that all PHI nodes that were inserted in a block will have the same
723     // number of incoming values, so we can just check any of them.
724     if (SomePHI->getNumIncomingValues() == getNumPreds(BB))
725       continue;
726 
727     // Get the preds for BB.
728     SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
729 
730     // Ok, now we know that all of the PHI nodes are missing entries for some
731     // basic blocks.  Start by sorting the incoming predecessors for efficient
732     // access.
733     auto CompareBBNumbers = [this](BasicBlock *A, BasicBlock *B) {
734       return BBNumbers.find(A)->second < BBNumbers.find(B)->second;
735     };
736     llvm::sort(Preds, CompareBBNumbers);
737 
738     // Now we loop through all BB's which have entries in SomePHI and remove
739     // them from the Preds list.
740     for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) {
741       // Do a log(n) search of the Preds list for the entry we want.
742       SmallVectorImpl<BasicBlock *>::iterator EntIt = llvm::lower_bound(
743           Preds, SomePHI->getIncomingBlock(i), CompareBBNumbers);
744       assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i) &&
745              "PHI node has entry for a block which is not a predecessor!");
746 
747       // Remove the entry
748       Preds.erase(EntIt);
749     }
750 
751     // At this point, the blocks left in the preds list must have dummy
752     // entries inserted into every PHI nodes for the block.  Update all the phi
753     // nodes in this block that we are inserting (there could be phis before
754     // mem2reg runs).
755     unsigned NumBadPreds = SomePHI->getNumIncomingValues();
756     BasicBlock::iterator BBI = BB->begin();
757     while ((SomePHI = dyn_cast<PHINode>(BBI++)) &&
758            SomePHI->getNumIncomingValues() == NumBadPreds) {
759       Value *UndefVal = UndefValue::get(SomePHI->getType());
760       for (BasicBlock *Pred : Preds)
761         SomePHI->addIncoming(UndefVal, Pred);
762     }
763   }
764 
765   NewPhiNodes.clear();
766 }
767 
768 /// Determine which blocks the value is live in.
769 ///
770 /// These are blocks which lead to uses.  Knowing this allows us to avoid
771 /// inserting PHI nodes into blocks which don't lead to uses (thus, the
772 /// inserted phi nodes would be dead).
773 void PromoteMem2Reg::ComputeLiveInBlocks(
774     AllocaInst *AI, AllocaInfo &Info,
775     const SmallPtrSetImpl<BasicBlock *> &DefBlocks,
776     SmallPtrSetImpl<BasicBlock *> &LiveInBlocks) {
777   // To determine liveness, we must iterate through the predecessors of blocks
778   // where the def is live.  Blocks are added to the worklist if we need to
779   // check their predecessors.  Start with all the using blocks.
780   SmallVector<BasicBlock *, 64> LiveInBlockWorklist(Info.UsingBlocks.begin(),
781                                                     Info.UsingBlocks.end());
782 
783   // If any of the using blocks is also a definition block, check to see if the
784   // definition occurs before or after the use.  If it happens before the use,
785   // the value isn't really live-in.
786   for (unsigned i = 0, e = LiveInBlockWorklist.size(); i != e; ++i) {
787     BasicBlock *BB = LiveInBlockWorklist[i];
788     if (!DefBlocks.count(BB))
789       continue;
790 
791     // Okay, this is a block that both uses and defines the value.  If the first
792     // reference to the alloca is a def (store), then we know it isn't live-in.
793     for (BasicBlock::iterator I = BB->begin();; ++I) {
794       if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
795         if (SI->getOperand(1) != AI)
796           continue;
797 
798         // We found a store to the alloca before a load.  The alloca is not
799         // actually live-in here.
800         LiveInBlockWorklist[i] = LiveInBlockWorklist.back();
801         LiveInBlockWorklist.pop_back();
802         --i;
803         --e;
804         break;
805       }
806 
807       if (LoadInst *LI = dyn_cast<LoadInst>(I))
808         // Okay, we found a load before a store to the alloca.  It is actually
809         // live into this block.
810         if (LI->getOperand(0) == AI)
811           break;
812     }
813   }
814 
815   // Now that we have a set of blocks where the phi is live-in, recursively add
816   // their predecessors until we find the full region the value is live.
817   while (!LiveInBlockWorklist.empty()) {
818     BasicBlock *BB = LiveInBlockWorklist.pop_back_val();
819 
820     // The block really is live in here, insert it into the set.  If already in
821     // the set, then it has already been processed.
822     if (!LiveInBlocks.insert(BB).second)
823       continue;
824 
825     // Since the value is live into BB, it is either defined in a predecessor or
826     // live into it to.  Add the preds to the worklist unless they are a
827     // defining block.
828     for (BasicBlock *P : predecessors(BB)) {
829       // The value is not live into a predecessor if it defines the value.
830       if (DefBlocks.count(P))
831         continue;
832 
833       // Otherwise it is, add to the worklist.
834       LiveInBlockWorklist.push_back(P);
835     }
836   }
837 }
838 
839 /// Queue a phi-node to be added to a basic-block for a specific Alloca.
840 ///
841 /// Returns true if there wasn't already a phi-node for that variable
842 bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo,
843                                   unsigned &Version) {
844   // Look up the basic-block in question.
845   PHINode *&PN = NewPhiNodes[std::make_pair(BBNumbers[BB], AllocaNo)];
846 
847   // If the BB already has a phi node added for the i'th alloca then we're done!
848   if (PN)
849     return false;
850 
851   // Create a PhiNode using the dereferenced type... and add the phi-node to the
852   // BasicBlock.
853   PN = PHINode::Create(Allocas[AllocaNo]->getAllocatedType(), getNumPreds(BB),
854                        Allocas[AllocaNo]->getName() + "." + Twine(Version++),
855                        &BB->front());
856   ++NumPHIInsert;
857   PhiToAllocaMap[PN] = AllocaNo;
858   return true;
859 }
860 
861 /// Update the debug location of a phi. \p ApplyMergedLoc indicates whether to
862 /// create a merged location incorporating \p DL, or to set \p DL directly.
863 static void updateForIncomingValueLocation(PHINode *PN, DebugLoc DL,
864                                            bool ApplyMergedLoc) {
865   if (ApplyMergedLoc)
866     PN->applyMergedLocation(PN->getDebugLoc(), DL);
867   else
868     PN->setDebugLoc(DL);
869 }
870 
871 /// Recursively traverse the CFG of the function, renaming loads and
872 /// stores to the allocas which we are promoting.
873 ///
874 /// IncomingVals indicates what value each Alloca contains on exit from the
875 /// predecessor block Pred.
876 void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred,
877                                 RenamePassData::ValVector &IncomingVals,
878                                 RenamePassData::LocationVector &IncomingLocs,
879                                 std::vector<RenamePassData> &Worklist) {
880 NextIteration:
881   // If we are inserting any phi nodes into this BB, they will already be in the
882   // block.
883   if (PHINode *APN = dyn_cast<PHINode>(BB->begin())) {
884     // If we have PHI nodes to update, compute the number of edges from Pred to
885     // BB.
886     if (PhiToAllocaMap.count(APN)) {
887       // We want to be able to distinguish between PHI nodes being inserted by
888       // this invocation of mem2reg from those phi nodes that already existed in
889       // the IR before mem2reg was run.  We determine that APN is being inserted
890       // because it is missing incoming edges.  All other PHI nodes being
891       // inserted by this pass of mem2reg will have the same number of incoming
892       // operands so far.  Remember this count.
893       unsigned NewPHINumOperands = APN->getNumOperands();
894 
895       unsigned NumEdges = std::count(succ_begin(Pred), succ_end(Pred), BB);
896       assert(NumEdges && "Must be at least one edge from Pred to BB!");
897 
898       // Add entries for all the phis.
899       BasicBlock::iterator PNI = BB->begin();
900       do {
901         unsigned AllocaNo = PhiToAllocaMap[APN];
902 
903         // Update the location of the phi node.
904         updateForIncomingValueLocation(APN, IncomingLocs[AllocaNo],
905                                        APN->getNumIncomingValues() > 0);
906 
907         // Add N incoming values to the PHI node.
908         for (unsigned i = 0; i != NumEdges; ++i)
909           APN->addIncoming(IncomingVals[AllocaNo], Pred);
910 
911         // The currently active variable for this block is now the PHI.
912         IncomingVals[AllocaNo] = APN;
913         for (DbgVariableIntrinsic *DII : AllocaDbgDeclares[AllocaNo])
914           ConvertDebugDeclareToDebugValue(DII, APN, DIB);
915 
916         // Get the next phi node.
917         ++PNI;
918         APN = dyn_cast<PHINode>(PNI);
919         if (!APN)
920           break;
921 
922         // Verify that it is missing entries.  If not, it is not being inserted
923         // by this mem2reg invocation so we want to ignore it.
924       } while (APN->getNumOperands() == NewPHINumOperands);
925     }
926   }
927 
928   // Don't revisit blocks.
929   if (!Visited.insert(BB).second)
930     return;
931 
932   for (BasicBlock::iterator II = BB->begin(); !II->isTerminator();) {
933     Instruction *I = &*II++; // get the instruction, increment iterator
934 
935     if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
936       AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand());
937       if (!Src)
938         continue;
939 
940       DenseMap<AllocaInst *, unsigned>::iterator AI = AllocaLookup.find(Src);
941       if (AI == AllocaLookup.end())
942         continue;
943 
944       Value *V = IncomingVals[AI->second];
945 
946       // If the load was marked as nonnull we don't want to lose
947       // that information when we erase this Load. So we preserve
948       // it with an assume.
949       if (AC && LI->getMetadata(LLVMContext::MD_nonnull) &&
950           !isKnownNonZero(V, SQ.DL, 0, AC, LI, &DT))
951         addAssumeNonNull(AC, LI);
952 
953       // Anything using the load now uses the current value.
954       LI->replaceAllUsesWith(V);
955       BB->getInstList().erase(LI);
956     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
957       // Delete this instruction and mark the name as the current holder of the
958       // value
959       AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand());
960       if (!Dest)
961         continue;
962 
963       DenseMap<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest);
964       if (ai == AllocaLookup.end())
965         continue;
966 
967       // what value were we writing?
968       unsigned AllocaNo = ai->second;
969       IncomingVals[AllocaNo] = SI->getOperand(0);
970 
971       // Record debuginfo for the store before removing it.
972       IncomingLocs[AllocaNo] = SI->getDebugLoc();
973       for (DbgVariableIntrinsic *DII : AllocaDbgDeclares[ai->second])
974         ConvertDebugDeclareToDebugValue(DII, SI, DIB);
975       BB->getInstList().erase(SI);
976     }
977   }
978 
979   // 'Recurse' to our successors.
980   succ_iterator I = succ_begin(BB), E = succ_end(BB);
981   if (I == E)
982     return;
983 
984   // Keep track of the successors so we don't visit the same successor twice
985   SmallPtrSet<BasicBlock *, 8> VisitedSuccs;
986 
987   // Handle the first successor without using the worklist.
988   VisitedSuccs.insert(*I);
989   Pred = BB;
990   BB = *I;
991   ++I;
992 
993   for (; I != E; ++I)
994     if (VisitedSuccs.insert(*I).second)
995       Worklist.emplace_back(*I, Pred, IncomingVals, IncomingLocs);
996 
997   goto NextIteration;
998 }
999 
1000 void llvm::PromoteMemToReg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT,
1001                            AssumptionCache *AC) {
1002   // If there is nothing to do, bail out...
1003   if (Allocas.empty())
1004     return;
1005 
1006   PromoteMem2Reg(Allocas, DT, AC).run();
1007 }
1008