1 //===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file promotes memory references to be register references.  It promotes
10 // alloca instructions which only have loads and stores as uses.  An alloca is
11 // transformed by using iterated dominator frontiers to place PHI nodes, then
12 // traversing the function in depth-first order to rewrite loads and stores as
13 // appropriate.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/Analysis/AssumptionCache.h"
25 #include "llvm/Analysis/InstructionSimplify.h"
26 #include "llvm/Analysis/IteratedDominanceFrontier.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/CFG.h"
30 #include "llvm/IR/Constant.h"
31 #include "llvm/IR/Constants.h"
32 #include "llvm/IR/DIBuilder.h"
33 #include "llvm/IR/DebugInfo.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/InstrTypes.h"
37 #include "llvm/IR/Instruction.h"
38 #include "llvm/IR/Instructions.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/IR/Intrinsics.h"
41 #include "llvm/IR/LLVMContext.h"
42 #include "llvm/IR/Module.h"
43 #include "llvm/IR/Type.h"
44 #include "llvm/IR/User.h"
45 #include "llvm/Support/Casting.h"
46 #include "llvm/Transforms/Utils/Local.h"
47 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
48 #include <algorithm>
49 #include <cassert>
50 #include <iterator>
51 #include <utility>
52 #include <vector>
53 
54 using namespace llvm;
55 
56 #define DEBUG_TYPE "mem2reg"
57 
58 STATISTIC(NumLocalPromoted, "Number of alloca's promoted within one block");
59 STATISTIC(NumSingleStore,   "Number of alloca's promoted with a single store");
60 STATISTIC(NumDeadAlloca,    "Number of dead alloca's removed");
61 STATISTIC(NumPHIInsert,     "Number of PHI nodes inserted");
62 
63 bool llvm::isAllocaPromotable(const AllocaInst *AI) {
64   // Only allow direct and non-volatile loads and stores...
65   for (const User *U : AI->users()) {
66     if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
67       // Note that atomic loads can be transformed; atomic semantics do
68       // not have any meaning for a local alloca.
69       if (LI->isVolatile() || LI->getType() != AI->getAllocatedType())
70         return false;
71     } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
72       if (SI->getValueOperand() == AI ||
73           SI->getValueOperand()->getType() != AI->getAllocatedType())
74         return false; // Don't allow a store OF the AI, only INTO the AI.
75       // Note that atomic stores can be transformed; atomic semantics do
76       // not have any meaning for a local alloca.
77       if (SI->isVolatile())
78         return false;
79     } else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
80       if (!II->isLifetimeStartOrEnd() && !II->isDroppable())
81         return false;
82     } else if (const BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
83       if (!onlyUsedByLifetimeMarkersOrDroppableInsts(BCI))
84         return false;
85     } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
86       if (!GEPI->hasAllZeroIndices())
87         return false;
88       if (!onlyUsedByLifetimeMarkersOrDroppableInsts(GEPI))
89         return false;
90     } else if (const AddrSpaceCastInst *ASCI = dyn_cast<AddrSpaceCastInst>(U)) {
91       if (!onlyUsedByLifetimeMarkers(ASCI))
92         return false;
93     } else {
94       return false;
95     }
96   }
97 
98   return true;
99 }
100 
101 namespace {
102 
103 struct AllocaInfo {
104   using DbgUserVec = SmallVector<DbgVariableIntrinsic *, 1>;
105 
106   SmallVector<BasicBlock *, 32> DefiningBlocks;
107   SmallVector<BasicBlock *, 32> UsingBlocks;
108 
109   StoreInst *OnlyStore;
110   BasicBlock *OnlyBlock;
111   bool OnlyUsedInOneBlock;
112 
113   DbgUserVec DbgUsers;
114 
115   void clear() {
116     DefiningBlocks.clear();
117     UsingBlocks.clear();
118     OnlyStore = nullptr;
119     OnlyBlock = nullptr;
120     OnlyUsedInOneBlock = true;
121     DbgUsers.clear();
122   }
123 
124   /// Scan the uses of the specified alloca, filling in the AllocaInfo used
125   /// by the rest of the pass to reason about the uses of this alloca.
126   void AnalyzeAlloca(AllocaInst *AI) {
127     clear();
128 
129     // As we scan the uses of the alloca instruction, keep track of stores,
130     // and decide whether all of the loads and stores to the alloca are within
131     // the same basic block.
132     for (User *U : AI->users()) {
133       Instruction *User = cast<Instruction>(U);
134 
135       if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
136         // Remember the basic blocks which define new values for the alloca
137         DefiningBlocks.push_back(SI->getParent());
138         OnlyStore = SI;
139       } else {
140         LoadInst *LI = cast<LoadInst>(User);
141         // Otherwise it must be a load instruction, keep track of variable
142         // reads.
143         UsingBlocks.push_back(LI->getParent());
144       }
145 
146       if (OnlyUsedInOneBlock) {
147         if (!OnlyBlock)
148           OnlyBlock = User->getParent();
149         else if (OnlyBlock != User->getParent())
150           OnlyUsedInOneBlock = false;
151       }
152     }
153 
154     findDbgUsers(DbgUsers, AI);
155   }
156 };
157 
158 /// Data package used by RenamePass().
159 struct RenamePassData {
160   using ValVector = std::vector<Value *>;
161   using LocationVector = std::vector<DebugLoc>;
162 
163   RenamePassData(BasicBlock *B, BasicBlock *P, ValVector V, LocationVector L)
164       : BB(B), Pred(P), Values(std::move(V)), Locations(std::move(L)) {}
165 
166   BasicBlock *BB;
167   BasicBlock *Pred;
168   ValVector Values;
169   LocationVector Locations;
170 };
171 
172 /// This assigns and keeps a per-bb relative ordering of load/store
173 /// instructions in the block that directly load or store an alloca.
174 ///
175 /// This functionality is important because it avoids scanning large basic
176 /// blocks multiple times when promoting many allocas in the same block.
177 class LargeBlockInfo {
178   /// For each instruction that we track, keep the index of the
179   /// instruction.
180   ///
181   /// The index starts out as the number of the instruction from the start of
182   /// the block.
183   DenseMap<const Instruction *, unsigned> InstNumbers;
184 
185 public:
186 
187   /// This code only looks at accesses to allocas.
188   static bool isInterestingInstruction(const Instruction *I) {
189     return (isa<LoadInst>(I) && isa<AllocaInst>(I->getOperand(0))) ||
190            (isa<StoreInst>(I) && isa<AllocaInst>(I->getOperand(1)));
191   }
192 
193   /// Get or calculate the index of the specified instruction.
194   unsigned getInstructionIndex(const Instruction *I) {
195     assert(isInterestingInstruction(I) &&
196            "Not a load/store to/from an alloca?");
197 
198     // If we already have this instruction number, return it.
199     DenseMap<const Instruction *, unsigned>::iterator It = InstNumbers.find(I);
200     if (It != InstNumbers.end())
201       return It->second;
202 
203     // Scan the whole block to get the instruction.  This accumulates
204     // information for every interesting instruction in the block, in order to
205     // avoid gratuitus rescans.
206     const BasicBlock *BB = I->getParent();
207     unsigned InstNo = 0;
208     for (const Instruction &BBI : *BB)
209       if (isInterestingInstruction(&BBI))
210         InstNumbers[&BBI] = InstNo++;
211     It = InstNumbers.find(I);
212 
213     assert(It != InstNumbers.end() && "Didn't insert instruction?");
214     return It->second;
215   }
216 
217   void deleteValue(const Instruction *I) { InstNumbers.erase(I); }
218 
219   void clear() { InstNumbers.clear(); }
220 };
221 
222 struct PromoteMem2Reg {
223   /// The alloca instructions being promoted.
224   std::vector<AllocaInst *> Allocas;
225 
226   DominatorTree &DT;
227   DIBuilder DIB;
228 
229   /// A cache of @llvm.assume intrinsics used by SimplifyInstruction.
230   AssumptionCache *AC;
231 
232   const SimplifyQuery SQ;
233 
234   /// Reverse mapping of Allocas.
235   DenseMap<AllocaInst *, unsigned> AllocaLookup;
236 
237   /// The PhiNodes we're adding.
238   ///
239   /// That map is used to simplify some Phi nodes as we iterate over it, so
240   /// it should have deterministic iterators.  We could use a MapVector, but
241   /// since we already maintain a map from BasicBlock* to a stable numbering
242   /// (BBNumbers), the DenseMap is more efficient (also supports removal).
243   DenseMap<std::pair<unsigned, unsigned>, PHINode *> NewPhiNodes;
244 
245   /// For each PHI node, keep track of which entry in Allocas it corresponds
246   /// to.
247   DenseMap<PHINode *, unsigned> PhiToAllocaMap;
248 
249   /// For each alloca, we keep track of the dbg.declare intrinsic that
250   /// describes it, if any, so that we can convert it to a dbg.value
251   /// intrinsic if the alloca gets promoted.
252   SmallVector<AllocaInfo::DbgUserVec, 8> AllocaDbgUsers;
253 
254   /// The set of basic blocks the renamer has already visited.
255   SmallPtrSet<BasicBlock *, 16> Visited;
256 
257   /// Contains a stable numbering of basic blocks to avoid non-determinstic
258   /// behavior.
259   DenseMap<BasicBlock *, unsigned> BBNumbers;
260 
261   /// Lazily compute the number of predecessors a block has.
262   DenseMap<const BasicBlock *, unsigned> BBNumPreds;
263 
264 public:
265   PromoteMem2Reg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT,
266                  AssumptionCache *AC)
267       : Allocas(Allocas.begin(), Allocas.end()), DT(DT),
268         DIB(*DT.getRoot()->getParent()->getParent(), /*AllowUnresolved*/ false),
269         AC(AC), SQ(DT.getRoot()->getParent()->getParent()->getDataLayout(),
270                    nullptr, &DT, AC) {}
271 
272   void run();
273 
274 private:
275   void RemoveFromAllocasList(unsigned &AllocaIdx) {
276     Allocas[AllocaIdx] = Allocas.back();
277     Allocas.pop_back();
278     --AllocaIdx;
279   }
280 
281   unsigned getNumPreds(const BasicBlock *BB) {
282     unsigned &NP = BBNumPreds[BB];
283     if (NP == 0)
284       NP = pred_size(BB) + 1;
285     return NP - 1;
286   }
287 
288   void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info,
289                            const SmallPtrSetImpl<BasicBlock *> &DefBlocks,
290                            SmallPtrSetImpl<BasicBlock *> &LiveInBlocks);
291   void RenamePass(BasicBlock *BB, BasicBlock *Pred,
292                   RenamePassData::ValVector &IncVals,
293                   RenamePassData::LocationVector &IncLocs,
294                   std::vector<RenamePassData> &Worklist);
295   bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version);
296 };
297 
298 } // end anonymous namespace
299 
300 /// Given a LoadInst LI this adds assume(LI != null) after it.
301 static void addAssumeNonNull(AssumptionCache *AC, LoadInst *LI) {
302   Function *AssumeIntrinsic =
303       Intrinsic::getDeclaration(LI->getModule(), Intrinsic::assume);
304   ICmpInst *LoadNotNull = new ICmpInst(ICmpInst::ICMP_NE, LI,
305                                        Constant::getNullValue(LI->getType()));
306   LoadNotNull->insertAfter(LI);
307   CallInst *CI = CallInst::Create(AssumeIntrinsic, {LoadNotNull});
308   CI->insertAfter(LoadNotNull);
309   AC->registerAssumption(cast<AssumeInst>(CI));
310 }
311 
312 static void removeIntrinsicUsers(AllocaInst *AI) {
313   // Knowing that this alloca is promotable, we know that it's safe to kill all
314   // instructions except for load and store.
315 
316   for (Use &U : llvm::make_early_inc_range(AI->uses())) {
317     Instruction *I = cast<Instruction>(U.getUser());
318     if (isa<LoadInst>(I) || isa<StoreInst>(I))
319       continue;
320 
321     // Drop the use of AI in droppable instructions.
322     if (I->isDroppable()) {
323       I->dropDroppableUse(U);
324       continue;
325     }
326 
327     if (!I->getType()->isVoidTy()) {
328       // The only users of this bitcast/GEP instruction are lifetime intrinsics.
329       // Follow the use/def chain to erase them now instead of leaving it for
330       // dead code elimination later.
331       for (Use &UU : llvm::make_early_inc_range(I->uses())) {
332         Instruction *Inst = cast<Instruction>(UU.getUser());
333 
334         // Drop the use of I in droppable instructions.
335         if (Inst->isDroppable()) {
336           Inst->dropDroppableUse(UU);
337           continue;
338         }
339         Inst->eraseFromParent();
340       }
341     }
342     I->eraseFromParent();
343   }
344 }
345 
346 /// Rewrite as many loads as possible given a single store.
347 ///
348 /// When there is only a single store, we can use the domtree to trivially
349 /// replace all of the dominated loads with the stored value. Do so, and return
350 /// true if this has successfully promoted the alloca entirely. If this returns
351 /// false there were some loads which were not dominated by the single store
352 /// and thus must be phi-ed with undef. We fall back to the standard alloca
353 /// promotion algorithm in that case.
354 static bool rewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info,
355                                      LargeBlockInfo &LBI, const DataLayout &DL,
356                                      DominatorTree &DT, AssumptionCache *AC) {
357   StoreInst *OnlyStore = Info.OnlyStore;
358   bool StoringGlobalVal = !isa<Instruction>(OnlyStore->getOperand(0));
359   BasicBlock *StoreBB = OnlyStore->getParent();
360   int StoreIndex = -1;
361 
362   // Clear out UsingBlocks.  We will reconstruct it here if needed.
363   Info.UsingBlocks.clear();
364 
365   for (User *U : make_early_inc_range(AI->users())) {
366     Instruction *UserInst = cast<Instruction>(U);
367     if (UserInst == OnlyStore)
368       continue;
369     LoadInst *LI = cast<LoadInst>(UserInst);
370 
371     // Okay, if we have a load from the alloca, we want to replace it with the
372     // only value stored to the alloca.  We can do this if the value is
373     // dominated by the store.  If not, we use the rest of the mem2reg machinery
374     // to insert the phi nodes as needed.
375     if (!StoringGlobalVal) { // Non-instructions are always dominated.
376       if (LI->getParent() == StoreBB) {
377         // If we have a use that is in the same block as the store, compare the
378         // indices of the two instructions to see which one came first.  If the
379         // load came before the store, we can't handle it.
380         if (StoreIndex == -1)
381           StoreIndex = LBI.getInstructionIndex(OnlyStore);
382 
383         if (unsigned(StoreIndex) > LBI.getInstructionIndex(LI)) {
384           // Can't handle this load, bail out.
385           Info.UsingBlocks.push_back(StoreBB);
386           continue;
387         }
388       } else if (!DT.dominates(StoreBB, LI->getParent())) {
389         // If the load and store are in different blocks, use BB dominance to
390         // check their relationships.  If the store doesn't dom the use, bail
391         // out.
392         Info.UsingBlocks.push_back(LI->getParent());
393         continue;
394       }
395     }
396 
397     // Otherwise, we *can* safely rewrite this load.
398     Value *ReplVal = OnlyStore->getOperand(0);
399     // If the replacement value is the load, this must occur in unreachable
400     // code.
401     if (ReplVal == LI)
402       ReplVal = PoisonValue::get(LI->getType());
403 
404     // If the load was marked as nonnull we don't want to lose
405     // that information when we erase this Load. So we preserve
406     // it with an assume.
407     if (AC && LI->getMetadata(LLVMContext::MD_nonnull) &&
408         !isKnownNonZero(ReplVal, DL, 0, AC, LI, &DT))
409       addAssumeNonNull(AC, LI);
410 
411     LI->replaceAllUsesWith(ReplVal);
412     LI->eraseFromParent();
413     LBI.deleteValue(LI);
414   }
415 
416   // Finally, after the scan, check to see if the store is all that is left.
417   if (!Info.UsingBlocks.empty())
418     return false; // If not, we'll have to fall back for the remainder.
419 
420   // Record debuginfo for the store and remove the declaration's
421   // debuginfo.
422   for (DbgVariableIntrinsic *DII : Info.DbgUsers) {
423     if (DII->isAddressOfVariable()) {
424       DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false);
425       ConvertDebugDeclareToDebugValue(DII, Info.OnlyStore, DIB);
426       DII->eraseFromParent();
427     } else if (DII->getExpression()->startsWithDeref()) {
428       DII->eraseFromParent();
429     }
430   }
431   // Remove the (now dead) store and alloca.
432   Info.OnlyStore->eraseFromParent();
433   LBI.deleteValue(Info.OnlyStore);
434 
435   AI->eraseFromParent();
436   return true;
437 }
438 
439 /// Many allocas are only used within a single basic block.  If this is the
440 /// case, avoid traversing the CFG and inserting a lot of potentially useless
441 /// PHI nodes by just performing a single linear pass over the basic block
442 /// using the Alloca.
443 ///
444 /// If we cannot promote this alloca (because it is read before it is written),
445 /// return false.  This is necessary in cases where, due to control flow, the
446 /// alloca is undefined only on some control flow paths.  e.g. code like
447 /// this is correct in LLVM IR:
448 ///  // A is an alloca with no stores so far
449 ///  for (...) {
450 ///    int t = *A;
451 ///    if (!first_iteration)
452 ///      use(t);
453 ///    *A = 42;
454 ///  }
455 static bool promoteSingleBlockAlloca(AllocaInst *AI, const AllocaInfo &Info,
456                                      LargeBlockInfo &LBI,
457                                      const DataLayout &DL,
458                                      DominatorTree &DT,
459                                      AssumptionCache *AC) {
460   // The trickiest case to handle is when we have large blocks. Because of this,
461   // this code is optimized assuming that large blocks happen.  This does not
462   // significantly pessimize the small block case.  This uses LargeBlockInfo to
463   // make it efficient to get the index of various operations in the block.
464 
465   // Walk the use-def list of the alloca, getting the locations of all stores.
466   using StoresByIndexTy = SmallVector<std::pair<unsigned, StoreInst *>, 64>;
467   StoresByIndexTy StoresByIndex;
468 
469   for (User *U : AI->users())
470     if (StoreInst *SI = dyn_cast<StoreInst>(U))
471       StoresByIndex.push_back(std::make_pair(LBI.getInstructionIndex(SI), SI));
472 
473   // Sort the stores by their index, making it efficient to do a lookup with a
474   // binary search.
475   llvm::sort(StoresByIndex, less_first());
476 
477   // Walk all of the loads from this alloca, replacing them with the nearest
478   // store above them, if any.
479   for (User *U : make_early_inc_range(AI->users())) {
480     LoadInst *LI = dyn_cast<LoadInst>(U);
481     if (!LI)
482       continue;
483 
484     unsigned LoadIdx = LBI.getInstructionIndex(LI);
485 
486     // Find the nearest store that has a lower index than this load.
487     StoresByIndexTy::iterator I = llvm::lower_bound(
488         StoresByIndex,
489         std::make_pair(LoadIdx, static_cast<StoreInst *>(nullptr)),
490         less_first());
491     Value *ReplVal;
492     if (I == StoresByIndex.begin()) {
493       if (StoresByIndex.empty())
494         // If there are no stores, the load takes the undef value.
495         ReplVal = UndefValue::get(LI->getType());
496       else
497         // There is no store before this load, bail out (load may be affected
498         // by the following stores - see main comment).
499         return false;
500     } else {
501       // Otherwise, there was a store before this load, the load takes its
502       // value.
503       ReplVal = std::prev(I)->second->getOperand(0);
504     }
505 
506     // Note, if the load was marked as nonnull we don't want to lose that
507     // information when we erase it. So we preserve it with an assume.
508     if (AC && LI->getMetadata(LLVMContext::MD_nonnull) &&
509         !isKnownNonZero(ReplVal, DL, 0, AC, LI, &DT))
510       addAssumeNonNull(AC, LI);
511 
512     // If the replacement value is the load, this must occur in unreachable
513     // code.
514     if (ReplVal == LI)
515       ReplVal = PoisonValue::get(LI->getType());
516 
517     LI->replaceAllUsesWith(ReplVal);
518     LI->eraseFromParent();
519     LBI.deleteValue(LI);
520   }
521 
522   // Remove the (now dead) stores and alloca.
523   while (!AI->use_empty()) {
524     StoreInst *SI = cast<StoreInst>(AI->user_back());
525     // Record debuginfo for the store before removing it.
526     for (DbgVariableIntrinsic *DII : Info.DbgUsers) {
527       if (DII->isAddressOfVariable()) {
528         DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false);
529         ConvertDebugDeclareToDebugValue(DII, SI, DIB);
530       }
531     }
532     SI->eraseFromParent();
533     LBI.deleteValue(SI);
534   }
535 
536   AI->eraseFromParent();
537 
538   // The alloca's debuginfo can be removed as well.
539   for (DbgVariableIntrinsic *DII : Info.DbgUsers)
540     if (DII->isAddressOfVariable() || DII->getExpression()->startsWithDeref())
541       DII->eraseFromParent();
542 
543   ++NumLocalPromoted;
544   return true;
545 }
546 
547 void PromoteMem2Reg::run() {
548   Function &F = *DT.getRoot()->getParent();
549 
550   AllocaDbgUsers.resize(Allocas.size());
551 
552   AllocaInfo Info;
553   LargeBlockInfo LBI;
554   ForwardIDFCalculator IDF(DT);
555 
556   for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) {
557     AllocaInst *AI = Allocas[AllocaNum];
558 
559     assert(isAllocaPromotable(AI) && "Cannot promote non-promotable alloca!");
560     assert(AI->getParent()->getParent() == &F &&
561            "All allocas should be in the same function, which is same as DF!");
562 
563     removeIntrinsicUsers(AI);
564 
565     if (AI->use_empty()) {
566       // If there are no uses of the alloca, just delete it now.
567       AI->eraseFromParent();
568 
569       // Remove the alloca from the Allocas list, since it has been processed
570       RemoveFromAllocasList(AllocaNum);
571       ++NumDeadAlloca;
572       continue;
573     }
574 
575     // Calculate the set of read and write-locations for each alloca.  This is
576     // analogous to finding the 'uses' and 'definitions' of each variable.
577     Info.AnalyzeAlloca(AI);
578 
579     // If there is only a single store to this value, replace any loads of
580     // it that are directly dominated by the definition with the value stored.
581     if (Info.DefiningBlocks.size() == 1) {
582       if (rewriteSingleStoreAlloca(AI, Info, LBI, SQ.DL, DT, AC)) {
583         // The alloca has been processed, move on.
584         RemoveFromAllocasList(AllocaNum);
585         ++NumSingleStore;
586         continue;
587       }
588     }
589 
590     // If the alloca is only read and written in one basic block, just perform a
591     // linear sweep over the block to eliminate it.
592     if (Info.OnlyUsedInOneBlock &&
593         promoteSingleBlockAlloca(AI, Info, LBI, SQ.DL, DT, AC)) {
594       // The alloca has been processed, move on.
595       RemoveFromAllocasList(AllocaNum);
596       continue;
597     }
598 
599     // If we haven't computed a numbering for the BB's in the function, do so
600     // now.
601     if (BBNumbers.empty()) {
602       unsigned ID = 0;
603       for (auto &BB : F)
604         BBNumbers[&BB] = ID++;
605     }
606 
607     // Remember the dbg.declare intrinsic describing this alloca, if any.
608     if (!Info.DbgUsers.empty())
609       AllocaDbgUsers[AllocaNum] = Info.DbgUsers;
610 
611     // Keep the reverse mapping of the 'Allocas' array for the rename pass.
612     AllocaLookup[Allocas[AllocaNum]] = AllocaNum;
613 
614     // Unique the set of defining blocks for efficient lookup.
615     SmallPtrSet<BasicBlock *, 32> DefBlocks(Info.DefiningBlocks.begin(),
616                                             Info.DefiningBlocks.end());
617 
618     // Determine which blocks the value is live in.  These are blocks which lead
619     // to uses.
620     SmallPtrSet<BasicBlock *, 32> LiveInBlocks;
621     ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks);
622 
623     // At this point, we're committed to promoting the alloca using IDF's, and
624     // the standard SSA construction algorithm.  Determine which blocks need phi
625     // nodes and see if we can optimize out some work by avoiding insertion of
626     // dead phi nodes.
627     IDF.setLiveInBlocks(LiveInBlocks);
628     IDF.setDefiningBlocks(DefBlocks);
629     SmallVector<BasicBlock *, 32> PHIBlocks;
630     IDF.calculate(PHIBlocks);
631     llvm::sort(PHIBlocks, [this](BasicBlock *A, BasicBlock *B) {
632       return BBNumbers.find(A)->second < BBNumbers.find(B)->second;
633     });
634 
635     unsigned CurrentVersion = 0;
636     for (BasicBlock *BB : PHIBlocks)
637       QueuePhiNode(BB, AllocaNum, CurrentVersion);
638   }
639 
640   if (Allocas.empty())
641     return; // All of the allocas must have been trivial!
642 
643   LBI.clear();
644 
645   // Set the incoming values for the basic block to be null values for all of
646   // the alloca's.  We do this in case there is a load of a value that has not
647   // been stored yet.  In this case, it will get this null value.
648   RenamePassData::ValVector Values(Allocas.size());
649   for (unsigned i = 0, e = Allocas.size(); i != e; ++i)
650     Values[i] = UndefValue::get(Allocas[i]->getAllocatedType());
651 
652   // When handling debug info, treat all incoming values as if they have unknown
653   // locations until proven otherwise.
654   RenamePassData::LocationVector Locations(Allocas.size());
655 
656   // Walks all basic blocks in the function performing the SSA rename algorithm
657   // and inserting the phi nodes we marked as necessary
658   std::vector<RenamePassData> RenamePassWorkList;
659   RenamePassWorkList.emplace_back(&F.front(), nullptr, std::move(Values),
660                                   std::move(Locations));
661   do {
662     RenamePassData RPD = std::move(RenamePassWorkList.back());
663     RenamePassWorkList.pop_back();
664     // RenamePass may add new worklist entries.
665     RenamePass(RPD.BB, RPD.Pred, RPD.Values, RPD.Locations, RenamePassWorkList);
666   } while (!RenamePassWorkList.empty());
667 
668   // The renamer uses the Visited set to avoid infinite loops.  Clear it now.
669   Visited.clear();
670 
671   // Remove the allocas themselves from the function.
672   for (Instruction *A : Allocas) {
673     // If there are any uses of the alloca instructions left, they must be in
674     // unreachable basic blocks that were not processed by walking the dominator
675     // tree. Just delete the users now.
676     if (!A->use_empty())
677       A->replaceAllUsesWith(PoisonValue::get(A->getType()));
678     A->eraseFromParent();
679   }
680 
681   // Remove alloca's dbg.declare intrinsics from the function.
682   for (auto &DbgUsers : AllocaDbgUsers) {
683     for (auto *DII : DbgUsers)
684       if (DII->isAddressOfVariable() || DII->getExpression()->startsWithDeref())
685         DII->eraseFromParent();
686   }
687 
688   // Loop over all of the PHI nodes and see if there are any that we can get
689   // rid of because they merge all of the same incoming values.  This can
690   // happen due to undef values coming into the PHI nodes.  This process is
691   // iterative, because eliminating one PHI node can cause others to be removed.
692   bool EliminatedAPHI = true;
693   while (EliminatedAPHI) {
694     EliminatedAPHI = false;
695 
696     // Iterating over NewPhiNodes is deterministic, so it is safe to try to
697     // simplify and RAUW them as we go.  If it was not, we could add uses to
698     // the values we replace with in a non-deterministic order, thus creating
699     // non-deterministic def->use chains.
700     for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator
701              I = NewPhiNodes.begin(),
702              E = NewPhiNodes.end();
703          I != E;) {
704       PHINode *PN = I->second;
705 
706       // If this PHI node merges one value and/or undefs, get the value.
707       if (Value *V = simplifyInstruction(PN, SQ)) {
708         PN->replaceAllUsesWith(V);
709         PN->eraseFromParent();
710         NewPhiNodes.erase(I++);
711         EliminatedAPHI = true;
712         continue;
713       }
714       ++I;
715     }
716   }
717 
718   // At this point, the renamer has added entries to PHI nodes for all reachable
719   // code.  Unfortunately, there may be unreachable blocks which the renamer
720   // hasn't traversed.  If this is the case, the PHI nodes may not
721   // have incoming values for all predecessors.  Loop over all PHI nodes we have
722   // created, inserting undef values if they are missing any incoming values.
723   for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator
724            I = NewPhiNodes.begin(),
725            E = NewPhiNodes.end();
726        I != E; ++I) {
727     // We want to do this once per basic block.  As such, only process a block
728     // when we find the PHI that is the first entry in the block.
729     PHINode *SomePHI = I->second;
730     BasicBlock *BB = SomePHI->getParent();
731     if (&BB->front() != SomePHI)
732       continue;
733 
734     // Only do work here if there the PHI nodes are missing incoming values.  We
735     // know that all PHI nodes that were inserted in a block will have the same
736     // number of incoming values, so we can just check any of them.
737     if (SomePHI->getNumIncomingValues() == getNumPreds(BB))
738       continue;
739 
740     // Get the preds for BB.
741     SmallVector<BasicBlock *, 16> Preds(predecessors(BB));
742 
743     // Ok, now we know that all of the PHI nodes are missing entries for some
744     // basic blocks.  Start by sorting the incoming predecessors for efficient
745     // access.
746     auto CompareBBNumbers = [this](BasicBlock *A, BasicBlock *B) {
747       return BBNumbers.find(A)->second < BBNumbers.find(B)->second;
748     };
749     llvm::sort(Preds, CompareBBNumbers);
750 
751     // Now we loop through all BB's which have entries in SomePHI and remove
752     // them from the Preds list.
753     for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) {
754       // Do a log(n) search of the Preds list for the entry we want.
755       SmallVectorImpl<BasicBlock *>::iterator EntIt = llvm::lower_bound(
756           Preds, SomePHI->getIncomingBlock(i), CompareBBNumbers);
757       assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i) &&
758              "PHI node has entry for a block which is not a predecessor!");
759 
760       // Remove the entry
761       Preds.erase(EntIt);
762     }
763 
764     // At this point, the blocks left in the preds list must have dummy
765     // entries inserted into every PHI nodes for the block.  Update all the phi
766     // nodes in this block that we are inserting (there could be phis before
767     // mem2reg runs).
768     unsigned NumBadPreds = SomePHI->getNumIncomingValues();
769     BasicBlock::iterator BBI = BB->begin();
770     while ((SomePHI = dyn_cast<PHINode>(BBI++)) &&
771            SomePHI->getNumIncomingValues() == NumBadPreds) {
772       Value *UndefVal = UndefValue::get(SomePHI->getType());
773       for (BasicBlock *Pred : Preds)
774         SomePHI->addIncoming(UndefVal, Pred);
775     }
776   }
777 
778   NewPhiNodes.clear();
779 }
780 
781 /// Determine which blocks the value is live in.
782 ///
783 /// These are blocks which lead to uses.  Knowing this allows us to avoid
784 /// inserting PHI nodes into blocks which don't lead to uses (thus, the
785 /// inserted phi nodes would be dead).
786 void PromoteMem2Reg::ComputeLiveInBlocks(
787     AllocaInst *AI, AllocaInfo &Info,
788     const SmallPtrSetImpl<BasicBlock *> &DefBlocks,
789     SmallPtrSetImpl<BasicBlock *> &LiveInBlocks) {
790   // To determine liveness, we must iterate through the predecessors of blocks
791   // where the def is live.  Blocks are added to the worklist if we need to
792   // check their predecessors.  Start with all the using blocks.
793   SmallVector<BasicBlock *, 64> LiveInBlockWorklist(Info.UsingBlocks.begin(),
794                                                     Info.UsingBlocks.end());
795 
796   // If any of the using blocks is also a definition block, check to see if the
797   // definition occurs before or after the use.  If it happens before the use,
798   // the value isn't really live-in.
799   for (unsigned i = 0, e = LiveInBlockWorklist.size(); i != e; ++i) {
800     BasicBlock *BB = LiveInBlockWorklist[i];
801     if (!DefBlocks.count(BB))
802       continue;
803 
804     // Okay, this is a block that both uses and defines the value.  If the first
805     // reference to the alloca is a def (store), then we know it isn't live-in.
806     for (BasicBlock::iterator I = BB->begin();; ++I) {
807       if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
808         if (SI->getOperand(1) != AI)
809           continue;
810 
811         // We found a store to the alloca before a load.  The alloca is not
812         // actually live-in here.
813         LiveInBlockWorklist[i] = LiveInBlockWorklist.back();
814         LiveInBlockWorklist.pop_back();
815         --i;
816         --e;
817         break;
818       }
819 
820       if (LoadInst *LI = dyn_cast<LoadInst>(I))
821         // Okay, we found a load before a store to the alloca.  It is actually
822         // live into this block.
823         if (LI->getOperand(0) == AI)
824           break;
825     }
826   }
827 
828   // Now that we have a set of blocks where the phi is live-in, recursively add
829   // their predecessors until we find the full region the value is live.
830   while (!LiveInBlockWorklist.empty()) {
831     BasicBlock *BB = LiveInBlockWorklist.pop_back_val();
832 
833     // The block really is live in here, insert it into the set.  If already in
834     // the set, then it has already been processed.
835     if (!LiveInBlocks.insert(BB).second)
836       continue;
837 
838     // Since the value is live into BB, it is either defined in a predecessor or
839     // live into it to.  Add the preds to the worklist unless they are a
840     // defining block.
841     for (BasicBlock *P : predecessors(BB)) {
842       // The value is not live into a predecessor if it defines the value.
843       if (DefBlocks.count(P))
844         continue;
845 
846       // Otherwise it is, add to the worklist.
847       LiveInBlockWorklist.push_back(P);
848     }
849   }
850 }
851 
852 /// Queue a phi-node to be added to a basic-block for a specific Alloca.
853 ///
854 /// Returns true if there wasn't already a phi-node for that variable
855 bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo,
856                                   unsigned &Version) {
857   // Look up the basic-block in question.
858   PHINode *&PN = NewPhiNodes[std::make_pair(BBNumbers[BB], AllocaNo)];
859 
860   // If the BB already has a phi node added for the i'th alloca then we're done!
861   if (PN)
862     return false;
863 
864   // Create a PhiNode using the dereferenced type... and add the phi-node to the
865   // BasicBlock.
866   PN = PHINode::Create(Allocas[AllocaNo]->getAllocatedType(), getNumPreds(BB),
867                        Allocas[AllocaNo]->getName() + "." + Twine(Version++),
868                        &BB->front());
869   ++NumPHIInsert;
870   PhiToAllocaMap[PN] = AllocaNo;
871   return true;
872 }
873 
874 /// Update the debug location of a phi. \p ApplyMergedLoc indicates whether to
875 /// create a merged location incorporating \p DL, or to set \p DL directly.
876 static void updateForIncomingValueLocation(PHINode *PN, DebugLoc DL,
877                                            bool ApplyMergedLoc) {
878   if (ApplyMergedLoc)
879     PN->applyMergedLocation(PN->getDebugLoc(), DL);
880   else
881     PN->setDebugLoc(DL);
882 }
883 
884 /// Recursively traverse the CFG of the function, renaming loads and
885 /// stores to the allocas which we are promoting.
886 ///
887 /// IncomingVals indicates what value each Alloca contains on exit from the
888 /// predecessor block Pred.
889 void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred,
890                                 RenamePassData::ValVector &IncomingVals,
891                                 RenamePassData::LocationVector &IncomingLocs,
892                                 std::vector<RenamePassData> &Worklist) {
893 NextIteration:
894   // If we are inserting any phi nodes into this BB, they will already be in the
895   // block.
896   if (PHINode *APN = dyn_cast<PHINode>(BB->begin())) {
897     // If we have PHI nodes to update, compute the number of edges from Pred to
898     // BB.
899     if (PhiToAllocaMap.count(APN)) {
900       // We want to be able to distinguish between PHI nodes being inserted by
901       // this invocation of mem2reg from those phi nodes that already existed in
902       // the IR before mem2reg was run.  We determine that APN is being inserted
903       // because it is missing incoming edges.  All other PHI nodes being
904       // inserted by this pass of mem2reg will have the same number of incoming
905       // operands so far.  Remember this count.
906       unsigned NewPHINumOperands = APN->getNumOperands();
907 
908       unsigned NumEdges = llvm::count(successors(Pred), BB);
909       assert(NumEdges && "Must be at least one edge from Pred to BB!");
910 
911       // Add entries for all the phis.
912       BasicBlock::iterator PNI = BB->begin();
913       do {
914         unsigned AllocaNo = PhiToAllocaMap[APN];
915 
916         // Update the location of the phi node.
917         updateForIncomingValueLocation(APN, IncomingLocs[AllocaNo],
918                                        APN->getNumIncomingValues() > 0);
919 
920         // Add N incoming values to the PHI node.
921         for (unsigned i = 0; i != NumEdges; ++i)
922           APN->addIncoming(IncomingVals[AllocaNo], Pred);
923 
924         // The currently active variable for this block is now the PHI.
925         IncomingVals[AllocaNo] = APN;
926         for (DbgVariableIntrinsic *DII : AllocaDbgUsers[AllocaNo])
927           if (DII->isAddressOfVariable())
928             ConvertDebugDeclareToDebugValue(DII, APN, DIB);
929 
930         // Get the next phi node.
931         ++PNI;
932         APN = dyn_cast<PHINode>(PNI);
933         if (!APN)
934           break;
935 
936         // Verify that it is missing entries.  If not, it is not being inserted
937         // by this mem2reg invocation so we want to ignore it.
938       } while (APN->getNumOperands() == NewPHINumOperands);
939     }
940   }
941 
942   // Don't revisit blocks.
943   if (!Visited.insert(BB).second)
944     return;
945 
946   for (BasicBlock::iterator II = BB->begin(); !II->isTerminator();) {
947     Instruction *I = &*II++; // get the instruction, increment iterator
948 
949     if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
950       AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand());
951       if (!Src)
952         continue;
953 
954       DenseMap<AllocaInst *, unsigned>::iterator AI = AllocaLookup.find(Src);
955       if (AI == AllocaLookup.end())
956         continue;
957 
958       Value *V = IncomingVals[AI->second];
959 
960       // If the load was marked as nonnull we don't want to lose
961       // that information when we erase this Load. So we preserve
962       // it with an assume.
963       if (AC && LI->getMetadata(LLVMContext::MD_nonnull) &&
964           !isKnownNonZero(V, SQ.DL, 0, AC, LI, &DT))
965         addAssumeNonNull(AC, LI);
966 
967       // Anything using the load now uses the current value.
968       LI->replaceAllUsesWith(V);
969       BB->getInstList().erase(LI);
970     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
971       // Delete this instruction and mark the name as the current holder of the
972       // value
973       AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand());
974       if (!Dest)
975         continue;
976 
977       DenseMap<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest);
978       if (ai == AllocaLookup.end())
979         continue;
980 
981       // what value were we writing?
982       unsigned AllocaNo = ai->second;
983       IncomingVals[AllocaNo] = SI->getOperand(0);
984 
985       // Record debuginfo for the store before removing it.
986       IncomingLocs[AllocaNo] = SI->getDebugLoc();
987       for (DbgVariableIntrinsic *DII : AllocaDbgUsers[ai->second])
988         if (DII->isAddressOfVariable())
989           ConvertDebugDeclareToDebugValue(DII, SI, DIB);
990       BB->getInstList().erase(SI);
991     }
992   }
993 
994   // 'Recurse' to our successors.
995   succ_iterator I = succ_begin(BB), E = succ_end(BB);
996   if (I == E)
997     return;
998 
999   // Keep track of the successors so we don't visit the same successor twice
1000   SmallPtrSet<BasicBlock *, 8> VisitedSuccs;
1001 
1002   // Handle the first successor without using the worklist.
1003   VisitedSuccs.insert(*I);
1004   Pred = BB;
1005   BB = *I;
1006   ++I;
1007 
1008   for (; I != E; ++I)
1009     if (VisitedSuccs.insert(*I).second)
1010       Worklist.emplace_back(*I, Pred, IncomingVals, IncomingLocs);
1011 
1012   goto NextIteration;
1013 }
1014 
1015 void llvm::PromoteMemToReg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT,
1016                            AssumptionCache *AC) {
1017   // If there is nothing to do, bail out...
1018   if (Allocas.empty())
1019     return;
1020 
1021   PromoteMem2Reg(Allocas, DT, AC).run();
1022 }
1023