1 //===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file promotes memory references to be register references.  It promotes
10 // alloca instructions which only have loads and stores as uses.  An alloca is
11 // transformed by using iterated dominator frontiers to place PHI nodes, then
12 // traversing the function in depth-first order to rewrite loads and stores as
13 // appropriate.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/Analysis/AssumptionCache.h"
25 #include "llvm/Analysis/InstructionSimplify.h"
26 #include "llvm/Analysis/IteratedDominanceFrontier.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/CFG.h"
30 #include "llvm/IR/Constant.h"
31 #include "llvm/IR/Constants.h"
32 #include "llvm/IR/DIBuilder.h"
33 #include "llvm/IR/DebugInfo.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/InstrTypes.h"
37 #include "llvm/IR/Instruction.h"
38 #include "llvm/IR/Instructions.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/IR/Intrinsics.h"
41 #include "llvm/IR/LLVMContext.h"
42 #include "llvm/IR/Module.h"
43 #include "llvm/IR/Type.h"
44 #include "llvm/IR/User.h"
45 #include "llvm/Support/Casting.h"
46 #include "llvm/Transforms/Utils/Local.h"
47 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
48 #include <algorithm>
49 #include <cassert>
50 #include <iterator>
51 #include <utility>
52 #include <vector>
53 
54 using namespace llvm;
55 
56 #define DEBUG_TYPE "mem2reg"
57 
58 STATISTIC(NumLocalPromoted, "Number of alloca's promoted within one block");
59 STATISTIC(NumSingleStore,   "Number of alloca's promoted with a single store");
60 STATISTIC(NumDeadAlloca,    "Number of dead alloca's removed");
61 STATISTIC(NumPHIInsert,     "Number of PHI nodes inserted");
62 
63 bool llvm::isAllocaPromotable(const AllocaInst *AI) {
64   // Only allow direct and non-volatile loads and stores...
65   for (const User *U : AI->users()) {
66     if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
67       // Note that atomic loads can be transformed; atomic semantics do
68       // not have any meaning for a local alloca.
69       if (LI->isVolatile() || LI->getType() != AI->getAllocatedType())
70         return false;
71     } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
72       if (SI->getValueOperand() == AI ||
73           SI->getValueOperand()->getType() != AI->getAllocatedType())
74         return false; // Don't allow a store OF the AI, only INTO the AI.
75       // Note that atomic stores can be transformed; atomic semantics do
76       // not have any meaning for a local alloca.
77       if (SI->isVolatile())
78         return false;
79     } else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
80       if (!II->isLifetimeStartOrEnd() && !II->isDroppable())
81         return false;
82     } else if (const BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
83       if (!onlyUsedByLifetimeMarkersOrDroppableInsts(BCI))
84         return false;
85     } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
86       if (!GEPI->hasAllZeroIndices())
87         return false;
88       if (!onlyUsedByLifetimeMarkersOrDroppableInsts(GEPI))
89         return false;
90     } else if (const AddrSpaceCastInst *ASCI = dyn_cast<AddrSpaceCastInst>(U)) {
91       if (!onlyUsedByLifetimeMarkers(ASCI))
92         return false;
93     } else {
94       return false;
95     }
96   }
97 
98   return true;
99 }
100 
101 namespace {
102 
103 /// Helper for updating assignment tracking debug info when promoting allocas.
104 class AssignmentTrackingInfo {
105   /// DbgAssignIntrinsics linked to the alloca with at most one per variable
106   /// fragment. (i.e. not be a comprehensive set if there are multiple
107   /// dbg.assigns for one variable fragment).
108   SmallVector<DbgVariableIntrinsic *> DbgAssigns;
109 
110 public:
111   void init(AllocaInst *AI) {
112     SmallSet<DebugVariable, 2> Vars;
113     for (DbgAssignIntrinsic *DAI : at::getAssignmentMarkers(AI)) {
114       if (Vars.insert(DebugVariable(DAI)).second)
115         DbgAssigns.push_back(DAI);
116     }
117   }
118 
119   /// Update assignment tracking debug info given for the to-be-deleted store
120   /// \p ToDelete that stores to this alloca.
121   void updateForDeletedStore(StoreInst *ToDelete, DIBuilder &DIB) const {
122     // There's nothing to do if the alloca doesn't have any variables using
123     // assignment tracking.
124     if (DbgAssigns.empty()) {
125       assert(at::getAssignmentMarkers(ToDelete).empty());
126       return;
127     }
128 
129     // Just leave dbg.assign intrinsics in place and remember that we've seen
130     // one for each variable fragment.
131     SmallSet<DebugVariable, 2> VarHasDbgAssignForStore;
132     for (DbgAssignIntrinsic *DAI : at::getAssignmentMarkers(ToDelete))
133       VarHasDbgAssignForStore.insert(DebugVariable(DAI));
134 
135     // It's possible for variables using assignment tracking to have no
136     // dbg.assign linked to this store. These are variables in DbgAssigns that
137     // are missing from VarHasDbgAssignForStore. Since there isn't a dbg.assign
138     // to mark the assignment - and the store is going to be deleted - insert a
139     // dbg.value to do that now. An untracked store may be either one that
140     // cannot be represented using assignment tracking (non-const offset or
141     // size) or one that is trackable but has had its DIAssignID attachment
142     // dropped accidentally.
143     for (auto *DAI : DbgAssigns) {
144       if (VarHasDbgAssignForStore.contains(DebugVariable(DAI)))
145         continue;
146       ConvertDebugDeclareToDebugValue(DAI, ToDelete, DIB);
147     }
148   }
149 
150   /// Update assignment tracking debug info given for the newly inserted PHI \p
151   /// NewPhi.
152   void updateForNewPhi(PHINode *NewPhi, DIBuilder &DIB) const {
153     // Regardless of the position of dbg.assigns relative to stores, the
154     // incoming values into a new PHI should be the same for the (imaginary)
155     // debug-phi.
156     for (auto *DAI : DbgAssigns)
157       ConvertDebugDeclareToDebugValue(DAI, NewPhi, DIB);
158   }
159 
160   void clear() { DbgAssigns.clear(); }
161   bool empty() { return DbgAssigns.empty(); }
162 };
163 
164 struct AllocaInfo {
165   using DbgUserVec = SmallVector<DbgVariableIntrinsic *, 1>;
166 
167   SmallVector<BasicBlock *, 32> DefiningBlocks;
168   SmallVector<BasicBlock *, 32> UsingBlocks;
169 
170   StoreInst *OnlyStore;
171   BasicBlock *OnlyBlock;
172   bool OnlyUsedInOneBlock;
173 
174   /// Debug users of the alloca - does not include dbg.assign intrinsics.
175   DbgUserVec DbgUsers;
176   /// Helper to update assignment tracking debug info.
177   AssignmentTrackingInfo AssignmentTracking;
178 
179   void clear() {
180     DefiningBlocks.clear();
181     UsingBlocks.clear();
182     OnlyStore = nullptr;
183     OnlyBlock = nullptr;
184     OnlyUsedInOneBlock = true;
185     DbgUsers.clear();
186     AssignmentTracking.clear();
187   }
188 
189   /// Scan the uses of the specified alloca, filling in the AllocaInfo used
190   /// by the rest of the pass to reason about the uses of this alloca.
191   void AnalyzeAlloca(AllocaInst *AI) {
192     clear();
193 
194     // As we scan the uses of the alloca instruction, keep track of stores,
195     // and decide whether all of the loads and stores to the alloca are within
196     // the same basic block.
197     for (User *U : AI->users()) {
198       Instruction *User = cast<Instruction>(U);
199 
200       if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
201         // Remember the basic blocks which define new values for the alloca
202         DefiningBlocks.push_back(SI->getParent());
203         OnlyStore = SI;
204       } else {
205         LoadInst *LI = cast<LoadInst>(User);
206         // Otherwise it must be a load instruction, keep track of variable
207         // reads.
208         UsingBlocks.push_back(LI->getParent());
209       }
210 
211       if (OnlyUsedInOneBlock) {
212         if (!OnlyBlock)
213           OnlyBlock = User->getParent();
214         else if (OnlyBlock != User->getParent())
215           OnlyUsedInOneBlock = false;
216       }
217     }
218     DbgUserVec AllDbgUsers;
219     findDbgUsers(AllDbgUsers, AI);
220     std::copy_if(AllDbgUsers.begin(), AllDbgUsers.end(),
221                  std::back_inserter(DbgUsers), [](DbgVariableIntrinsic *DII) {
222                    return !isa<DbgAssignIntrinsic>(DII);
223                  });
224     AssignmentTracking.init(AI);
225   }
226 };
227 
228 /// Data package used by RenamePass().
229 struct RenamePassData {
230   using ValVector = std::vector<Value *>;
231   using LocationVector = std::vector<DebugLoc>;
232 
233   RenamePassData(BasicBlock *B, BasicBlock *P, ValVector V, LocationVector L)
234       : BB(B), Pred(P), Values(std::move(V)), Locations(std::move(L)) {}
235 
236   BasicBlock *BB;
237   BasicBlock *Pred;
238   ValVector Values;
239   LocationVector Locations;
240 };
241 
242 /// This assigns and keeps a per-bb relative ordering of load/store
243 /// instructions in the block that directly load or store an alloca.
244 ///
245 /// This functionality is important because it avoids scanning large basic
246 /// blocks multiple times when promoting many allocas in the same block.
247 class LargeBlockInfo {
248   /// For each instruction that we track, keep the index of the
249   /// instruction.
250   ///
251   /// The index starts out as the number of the instruction from the start of
252   /// the block.
253   DenseMap<const Instruction *, unsigned> InstNumbers;
254 
255 public:
256 
257   /// This code only looks at accesses to allocas.
258   static bool isInterestingInstruction(const Instruction *I) {
259     return (isa<LoadInst>(I) && isa<AllocaInst>(I->getOperand(0))) ||
260            (isa<StoreInst>(I) && isa<AllocaInst>(I->getOperand(1)));
261   }
262 
263   /// Get or calculate the index of the specified instruction.
264   unsigned getInstructionIndex(const Instruction *I) {
265     assert(isInterestingInstruction(I) &&
266            "Not a load/store to/from an alloca?");
267 
268     // If we already have this instruction number, return it.
269     DenseMap<const Instruction *, unsigned>::iterator It = InstNumbers.find(I);
270     if (It != InstNumbers.end())
271       return It->second;
272 
273     // Scan the whole block to get the instruction.  This accumulates
274     // information for every interesting instruction in the block, in order to
275     // avoid gratuitus rescans.
276     const BasicBlock *BB = I->getParent();
277     unsigned InstNo = 0;
278     for (const Instruction &BBI : *BB)
279       if (isInterestingInstruction(&BBI))
280         InstNumbers[&BBI] = InstNo++;
281     It = InstNumbers.find(I);
282 
283     assert(It != InstNumbers.end() && "Didn't insert instruction?");
284     return It->second;
285   }
286 
287   void deleteValue(const Instruction *I) { InstNumbers.erase(I); }
288 
289   void clear() { InstNumbers.clear(); }
290 };
291 
292 struct PromoteMem2Reg {
293   /// The alloca instructions being promoted.
294   std::vector<AllocaInst *> Allocas;
295 
296   DominatorTree &DT;
297   DIBuilder DIB;
298 
299   /// A cache of @llvm.assume intrinsics used by SimplifyInstruction.
300   AssumptionCache *AC;
301 
302   const SimplifyQuery SQ;
303 
304   /// Reverse mapping of Allocas.
305   DenseMap<AllocaInst *, unsigned> AllocaLookup;
306 
307   /// The PhiNodes we're adding.
308   ///
309   /// That map is used to simplify some Phi nodes as we iterate over it, so
310   /// it should have deterministic iterators.  We could use a MapVector, but
311   /// since we already maintain a map from BasicBlock* to a stable numbering
312   /// (BBNumbers), the DenseMap is more efficient (also supports removal).
313   DenseMap<std::pair<unsigned, unsigned>, PHINode *> NewPhiNodes;
314 
315   /// For each PHI node, keep track of which entry in Allocas it corresponds
316   /// to.
317   DenseMap<PHINode *, unsigned> PhiToAllocaMap;
318 
319   /// For each alloca, we keep track of the dbg.declare intrinsic that
320   /// describes it, if any, so that we can convert it to a dbg.value
321   /// intrinsic if the alloca gets promoted.
322   SmallVector<AllocaInfo::DbgUserVec, 8> AllocaDbgUsers;
323 
324   /// For each alloca, keep an instance of a helper class that gives us an easy
325   /// way to update assignment tracking debug info if the alloca is promoted.
326   SmallVector<AssignmentTrackingInfo, 8> AllocaATInfo;
327 
328   /// The set of basic blocks the renamer has already visited.
329   SmallPtrSet<BasicBlock *, 16> Visited;
330 
331   /// Contains a stable numbering of basic blocks to avoid non-determinstic
332   /// behavior.
333   DenseMap<BasicBlock *, unsigned> BBNumbers;
334 
335   /// Lazily compute the number of predecessors a block has.
336   DenseMap<const BasicBlock *, unsigned> BBNumPreds;
337 
338 public:
339   PromoteMem2Reg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT,
340                  AssumptionCache *AC)
341       : Allocas(Allocas.begin(), Allocas.end()), DT(DT),
342         DIB(*DT.getRoot()->getParent()->getParent(), /*AllowUnresolved*/ false),
343         AC(AC), SQ(DT.getRoot()->getParent()->getParent()->getDataLayout(),
344                    nullptr, &DT, AC) {}
345 
346   void run();
347 
348 private:
349   void RemoveFromAllocasList(unsigned &AllocaIdx) {
350     Allocas[AllocaIdx] = Allocas.back();
351     Allocas.pop_back();
352     --AllocaIdx;
353   }
354 
355   unsigned getNumPreds(const BasicBlock *BB) {
356     unsigned &NP = BBNumPreds[BB];
357     if (NP == 0)
358       NP = pred_size(BB) + 1;
359     return NP - 1;
360   }
361 
362   void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info,
363                            const SmallPtrSetImpl<BasicBlock *> &DefBlocks,
364                            SmallPtrSetImpl<BasicBlock *> &LiveInBlocks);
365   void RenamePass(BasicBlock *BB, BasicBlock *Pred,
366                   RenamePassData::ValVector &IncVals,
367                   RenamePassData::LocationVector &IncLocs,
368                   std::vector<RenamePassData> &Worklist);
369   bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version);
370 };
371 
372 } // end anonymous namespace
373 
374 /// Given a LoadInst LI this adds assume(LI != null) after it.
375 static void addAssumeNonNull(AssumptionCache *AC, LoadInst *LI) {
376   Function *AssumeIntrinsic =
377       Intrinsic::getDeclaration(LI->getModule(), Intrinsic::assume);
378   ICmpInst *LoadNotNull = new ICmpInst(ICmpInst::ICMP_NE, LI,
379                                        Constant::getNullValue(LI->getType()));
380   LoadNotNull->insertAfter(LI);
381   CallInst *CI = CallInst::Create(AssumeIntrinsic, {LoadNotNull});
382   CI->insertAfter(LoadNotNull);
383   AC->registerAssumption(cast<AssumeInst>(CI));
384 }
385 
386 static void convertMetadataToAssumes(LoadInst *LI, Value *Val,
387                                      const DataLayout &DL, AssumptionCache *AC,
388                                      const DominatorTree *DT) {
389   // If the load was marked as nonnull we don't want to lose that information
390   // when we erase this Load. So we preserve it with an assume. As !nonnull
391   // returns poison while assume violations are immediate undefined behavior,
392   // we can only do this if the value is known non-poison.
393   if (AC && LI->getMetadata(LLVMContext::MD_nonnull) &&
394       LI->getMetadata(LLVMContext::MD_noundef) &&
395       !isKnownNonZero(Val, DL, 0, AC, LI, DT))
396     addAssumeNonNull(AC, LI);
397 }
398 
399 static void removeIntrinsicUsers(AllocaInst *AI) {
400   // Knowing that this alloca is promotable, we know that it's safe to kill all
401   // instructions except for load and store.
402 
403   for (Use &U : llvm::make_early_inc_range(AI->uses())) {
404     Instruction *I = cast<Instruction>(U.getUser());
405     if (isa<LoadInst>(I) || isa<StoreInst>(I))
406       continue;
407 
408     // Drop the use of AI in droppable instructions.
409     if (I->isDroppable()) {
410       I->dropDroppableUse(U);
411       continue;
412     }
413 
414     if (!I->getType()->isVoidTy()) {
415       // The only users of this bitcast/GEP instruction are lifetime intrinsics.
416       // Follow the use/def chain to erase them now instead of leaving it for
417       // dead code elimination later.
418       for (Use &UU : llvm::make_early_inc_range(I->uses())) {
419         Instruction *Inst = cast<Instruction>(UU.getUser());
420 
421         // Drop the use of I in droppable instructions.
422         if (Inst->isDroppable()) {
423           Inst->dropDroppableUse(UU);
424           continue;
425         }
426         Inst->eraseFromParent();
427       }
428     }
429     I->eraseFromParent();
430   }
431 }
432 
433 /// Rewrite as many loads as possible given a single store.
434 ///
435 /// When there is only a single store, we can use the domtree to trivially
436 /// replace all of the dominated loads with the stored value. Do so, and return
437 /// true if this has successfully promoted the alloca entirely. If this returns
438 /// false there were some loads which were not dominated by the single store
439 /// and thus must be phi-ed with undef. We fall back to the standard alloca
440 /// promotion algorithm in that case.
441 static bool rewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info,
442                                      LargeBlockInfo &LBI, const DataLayout &DL,
443                                      DominatorTree &DT, AssumptionCache *AC) {
444   StoreInst *OnlyStore = Info.OnlyStore;
445   bool StoringGlobalVal = !isa<Instruction>(OnlyStore->getOperand(0));
446   BasicBlock *StoreBB = OnlyStore->getParent();
447   int StoreIndex = -1;
448 
449   // Clear out UsingBlocks.  We will reconstruct it here if needed.
450   Info.UsingBlocks.clear();
451 
452   for (User *U : make_early_inc_range(AI->users())) {
453     Instruction *UserInst = cast<Instruction>(U);
454     if (UserInst == OnlyStore)
455       continue;
456     LoadInst *LI = cast<LoadInst>(UserInst);
457 
458     // Okay, if we have a load from the alloca, we want to replace it with the
459     // only value stored to the alloca.  We can do this if the value is
460     // dominated by the store.  If not, we use the rest of the mem2reg machinery
461     // to insert the phi nodes as needed.
462     if (!StoringGlobalVal) { // Non-instructions are always dominated.
463       if (LI->getParent() == StoreBB) {
464         // If we have a use that is in the same block as the store, compare the
465         // indices of the two instructions to see which one came first.  If the
466         // load came before the store, we can't handle it.
467         if (StoreIndex == -1)
468           StoreIndex = LBI.getInstructionIndex(OnlyStore);
469 
470         if (unsigned(StoreIndex) > LBI.getInstructionIndex(LI)) {
471           // Can't handle this load, bail out.
472           Info.UsingBlocks.push_back(StoreBB);
473           continue;
474         }
475       } else if (!DT.dominates(StoreBB, LI->getParent())) {
476         // If the load and store are in different blocks, use BB dominance to
477         // check their relationships.  If the store doesn't dom the use, bail
478         // out.
479         Info.UsingBlocks.push_back(LI->getParent());
480         continue;
481       }
482     }
483 
484     // Otherwise, we *can* safely rewrite this load.
485     Value *ReplVal = OnlyStore->getOperand(0);
486     // If the replacement value is the load, this must occur in unreachable
487     // code.
488     if (ReplVal == LI)
489       ReplVal = PoisonValue::get(LI->getType());
490 
491     convertMetadataToAssumes(LI, ReplVal, DL, AC, &DT);
492     LI->replaceAllUsesWith(ReplVal);
493     LI->eraseFromParent();
494     LBI.deleteValue(LI);
495   }
496 
497   // Finally, after the scan, check to see if the store is all that is left.
498   if (!Info.UsingBlocks.empty())
499     return false; // If not, we'll have to fall back for the remainder.
500 
501   DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false);
502   // Update assignment tracking info for the store we're going to delete.
503   Info.AssignmentTracking.updateForDeletedStore(Info.OnlyStore, DIB);
504 
505   // Record debuginfo for the store and remove the declaration's
506   // debuginfo.
507   for (DbgVariableIntrinsic *DII : Info.DbgUsers) {
508     if (DII->isAddressOfVariable()) {
509       ConvertDebugDeclareToDebugValue(DII, Info.OnlyStore, DIB);
510       DII->eraseFromParent();
511     } else if (DII->getExpression()->startsWithDeref()) {
512       DII->eraseFromParent();
513     }
514   }
515 
516   // Remove dbg.assigns linked to the alloca as these are now redundant.
517   at::deleteAssignmentMarkers(AI);
518 
519   // Remove the (now dead) store and alloca.
520   Info.OnlyStore->eraseFromParent();
521   LBI.deleteValue(Info.OnlyStore);
522 
523   AI->eraseFromParent();
524   return true;
525 }
526 
527 /// Many allocas are only used within a single basic block.  If this is the
528 /// case, avoid traversing the CFG and inserting a lot of potentially useless
529 /// PHI nodes by just performing a single linear pass over the basic block
530 /// using the Alloca.
531 ///
532 /// If we cannot promote this alloca (because it is read before it is written),
533 /// return false.  This is necessary in cases where, due to control flow, the
534 /// alloca is undefined only on some control flow paths.  e.g. code like
535 /// this is correct in LLVM IR:
536 ///  // A is an alloca with no stores so far
537 ///  for (...) {
538 ///    int t = *A;
539 ///    if (!first_iteration)
540 ///      use(t);
541 ///    *A = 42;
542 ///  }
543 static bool promoteSingleBlockAlloca(AllocaInst *AI, const AllocaInfo &Info,
544                                      LargeBlockInfo &LBI,
545                                      const DataLayout &DL,
546                                      DominatorTree &DT,
547                                      AssumptionCache *AC) {
548   // The trickiest case to handle is when we have large blocks. Because of this,
549   // this code is optimized assuming that large blocks happen.  This does not
550   // significantly pessimize the small block case.  This uses LargeBlockInfo to
551   // make it efficient to get the index of various operations in the block.
552 
553   // Walk the use-def list of the alloca, getting the locations of all stores.
554   using StoresByIndexTy = SmallVector<std::pair<unsigned, StoreInst *>, 64>;
555   StoresByIndexTy StoresByIndex;
556 
557   for (User *U : AI->users())
558     if (StoreInst *SI = dyn_cast<StoreInst>(U))
559       StoresByIndex.push_back(std::make_pair(LBI.getInstructionIndex(SI), SI));
560 
561   // Sort the stores by their index, making it efficient to do a lookup with a
562   // binary search.
563   llvm::sort(StoresByIndex, less_first());
564 
565   // Walk all of the loads from this alloca, replacing them with the nearest
566   // store above them, if any.
567   for (User *U : make_early_inc_range(AI->users())) {
568     LoadInst *LI = dyn_cast<LoadInst>(U);
569     if (!LI)
570       continue;
571 
572     unsigned LoadIdx = LBI.getInstructionIndex(LI);
573 
574     // Find the nearest store that has a lower index than this load.
575     StoresByIndexTy::iterator I = llvm::lower_bound(
576         StoresByIndex,
577         std::make_pair(LoadIdx, static_cast<StoreInst *>(nullptr)),
578         less_first());
579     Value *ReplVal;
580     if (I == StoresByIndex.begin()) {
581       if (StoresByIndex.empty())
582         // If there are no stores, the load takes the undef value.
583         ReplVal = UndefValue::get(LI->getType());
584       else
585         // There is no store before this load, bail out (load may be affected
586         // by the following stores - see main comment).
587         return false;
588     } else {
589       // Otherwise, there was a store before this load, the load takes its
590       // value.
591       ReplVal = std::prev(I)->second->getOperand(0);
592     }
593 
594     convertMetadataToAssumes(LI, ReplVal, DL, AC, &DT);
595 
596     // If the replacement value is the load, this must occur in unreachable
597     // code.
598     if (ReplVal == LI)
599       ReplVal = PoisonValue::get(LI->getType());
600 
601     LI->replaceAllUsesWith(ReplVal);
602     LI->eraseFromParent();
603     LBI.deleteValue(LI);
604   }
605 
606   // Remove the (now dead) stores and alloca.
607   DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false);
608   while (!AI->use_empty()) {
609     StoreInst *SI = cast<StoreInst>(AI->user_back());
610     // Update assignment tracking info for the store we're going to delete.
611     Info.AssignmentTracking.updateForDeletedStore(SI, DIB);
612     // Record debuginfo for the store before removing it.
613     for (DbgVariableIntrinsic *DII : Info.DbgUsers) {
614       if (DII->isAddressOfVariable()) {
615         ConvertDebugDeclareToDebugValue(DII, SI, DIB);
616       }
617     }
618     SI->eraseFromParent();
619     LBI.deleteValue(SI);
620   }
621 
622   // Remove dbg.assigns linked to the alloca as these are now redundant.
623   at::deleteAssignmentMarkers(AI);
624   AI->eraseFromParent();
625 
626   // The alloca's debuginfo can be removed as well.
627   for (DbgVariableIntrinsic *DII : Info.DbgUsers)
628     if (DII->isAddressOfVariable() || DII->getExpression()->startsWithDeref())
629       DII->eraseFromParent();
630 
631   ++NumLocalPromoted;
632   return true;
633 }
634 
635 void PromoteMem2Reg::run() {
636   Function &F = *DT.getRoot()->getParent();
637 
638   AllocaDbgUsers.resize(Allocas.size());
639   AllocaATInfo.resize(Allocas.size());
640 
641   AllocaInfo Info;
642   LargeBlockInfo LBI;
643   ForwardIDFCalculator IDF(DT);
644 
645   for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) {
646     AllocaInst *AI = Allocas[AllocaNum];
647 
648     assert(isAllocaPromotable(AI) && "Cannot promote non-promotable alloca!");
649     assert(AI->getParent()->getParent() == &F &&
650            "All allocas should be in the same function, which is same as DF!");
651 
652     removeIntrinsicUsers(AI);
653 
654     if (AI->use_empty()) {
655       // If there are no uses of the alloca, just delete it now.
656       AI->eraseFromParent();
657 
658       // Remove the alloca from the Allocas list, since it has been processed
659       RemoveFromAllocasList(AllocaNum);
660       ++NumDeadAlloca;
661       continue;
662     }
663 
664     // Calculate the set of read and write-locations for each alloca.  This is
665     // analogous to finding the 'uses' and 'definitions' of each variable.
666     Info.AnalyzeAlloca(AI);
667 
668     // If there is only a single store to this value, replace any loads of
669     // it that are directly dominated by the definition with the value stored.
670     if (Info.DefiningBlocks.size() == 1) {
671       if (rewriteSingleStoreAlloca(AI, Info, LBI, SQ.DL, DT, AC)) {
672         // The alloca has been processed, move on.
673         RemoveFromAllocasList(AllocaNum);
674         ++NumSingleStore;
675         continue;
676       }
677     }
678 
679     // If the alloca is only read and written in one basic block, just perform a
680     // linear sweep over the block to eliminate it.
681     if (Info.OnlyUsedInOneBlock &&
682         promoteSingleBlockAlloca(AI, Info, LBI, SQ.DL, DT, AC)) {
683       // The alloca has been processed, move on.
684       RemoveFromAllocasList(AllocaNum);
685       continue;
686     }
687 
688     // If we haven't computed a numbering for the BB's in the function, do so
689     // now.
690     if (BBNumbers.empty()) {
691       unsigned ID = 0;
692       for (auto &BB : F)
693         BBNumbers[&BB] = ID++;
694     }
695 
696     // Remember the dbg.declare intrinsic describing this alloca, if any.
697     if (!Info.DbgUsers.empty())
698       AllocaDbgUsers[AllocaNum] = Info.DbgUsers;
699     if (!Info.AssignmentTracking.empty())
700       AllocaATInfo[AllocaNum] = Info.AssignmentTracking;
701 
702     // Keep the reverse mapping of the 'Allocas' array for the rename pass.
703     AllocaLookup[Allocas[AllocaNum]] = AllocaNum;
704 
705     // Unique the set of defining blocks for efficient lookup.
706     SmallPtrSet<BasicBlock *, 32> DefBlocks(Info.DefiningBlocks.begin(),
707                                             Info.DefiningBlocks.end());
708 
709     // Determine which blocks the value is live in.  These are blocks which lead
710     // to uses.
711     SmallPtrSet<BasicBlock *, 32> LiveInBlocks;
712     ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks);
713 
714     // At this point, we're committed to promoting the alloca using IDF's, and
715     // the standard SSA construction algorithm.  Determine which blocks need phi
716     // nodes and see if we can optimize out some work by avoiding insertion of
717     // dead phi nodes.
718     IDF.setLiveInBlocks(LiveInBlocks);
719     IDF.setDefiningBlocks(DefBlocks);
720     SmallVector<BasicBlock *, 32> PHIBlocks;
721     IDF.calculate(PHIBlocks);
722     llvm::sort(PHIBlocks, [this](BasicBlock *A, BasicBlock *B) {
723       return BBNumbers.find(A)->second < BBNumbers.find(B)->second;
724     });
725 
726     unsigned CurrentVersion = 0;
727     for (BasicBlock *BB : PHIBlocks)
728       QueuePhiNode(BB, AllocaNum, CurrentVersion);
729   }
730 
731   if (Allocas.empty())
732     return; // All of the allocas must have been trivial!
733 
734   LBI.clear();
735 
736   // Set the incoming values for the basic block to be null values for all of
737   // the alloca's.  We do this in case there is a load of a value that has not
738   // been stored yet.  In this case, it will get this null value.
739   RenamePassData::ValVector Values(Allocas.size());
740   for (unsigned i = 0, e = Allocas.size(); i != e; ++i)
741     Values[i] = UndefValue::get(Allocas[i]->getAllocatedType());
742 
743   // When handling debug info, treat all incoming values as if they have unknown
744   // locations until proven otherwise.
745   RenamePassData::LocationVector Locations(Allocas.size());
746 
747   // Walks all basic blocks in the function performing the SSA rename algorithm
748   // and inserting the phi nodes we marked as necessary
749   std::vector<RenamePassData> RenamePassWorkList;
750   RenamePassWorkList.emplace_back(&F.front(), nullptr, std::move(Values),
751                                   std::move(Locations));
752   do {
753     RenamePassData RPD = std::move(RenamePassWorkList.back());
754     RenamePassWorkList.pop_back();
755     // RenamePass may add new worklist entries.
756     RenamePass(RPD.BB, RPD.Pred, RPD.Values, RPD.Locations, RenamePassWorkList);
757   } while (!RenamePassWorkList.empty());
758 
759   // The renamer uses the Visited set to avoid infinite loops.  Clear it now.
760   Visited.clear();
761 
762   // Remove the allocas themselves from the function.
763   for (Instruction *A : Allocas) {
764     // Remove dbg.assigns linked to the alloca as these are now redundant.
765     at::deleteAssignmentMarkers(A);
766     // If there are any uses of the alloca instructions left, they must be in
767     // unreachable basic blocks that were not processed by walking the dominator
768     // tree. Just delete the users now.
769     if (!A->use_empty())
770       A->replaceAllUsesWith(PoisonValue::get(A->getType()));
771     A->eraseFromParent();
772   }
773 
774   // Remove alloca's dbg.declare intrinsics from the function.
775   for (auto &DbgUsers : AllocaDbgUsers) {
776     for (auto *DII : DbgUsers)
777       if (DII->isAddressOfVariable() || DII->getExpression()->startsWithDeref())
778         DII->eraseFromParent();
779   }
780 
781   // Loop over all of the PHI nodes and see if there are any that we can get
782   // rid of because they merge all of the same incoming values.  This can
783   // happen due to undef values coming into the PHI nodes.  This process is
784   // iterative, because eliminating one PHI node can cause others to be removed.
785   bool EliminatedAPHI = true;
786   while (EliminatedAPHI) {
787     EliminatedAPHI = false;
788 
789     // Iterating over NewPhiNodes is deterministic, so it is safe to try to
790     // simplify and RAUW them as we go.  If it was not, we could add uses to
791     // the values we replace with in a non-deterministic order, thus creating
792     // non-deterministic def->use chains.
793     for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator
794              I = NewPhiNodes.begin(),
795              E = NewPhiNodes.end();
796          I != E;) {
797       PHINode *PN = I->second;
798 
799       // If this PHI node merges one value and/or undefs, get the value.
800       if (Value *V = simplifyInstruction(PN, SQ)) {
801         PN->replaceAllUsesWith(V);
802         PN->eraseFromParent();
803         NewPhiNodes.erase(I++);
804         EliminatedAPHI = true;
805         continue;
806       }
807       ++I;
808     }
809   }
810 
811   // At this point, the renamer has added entries to PHI nodes for all reachable
812   // code.  Unfortunately, there may be unreachable blocks which the renamer
813   // hasn't traversed.  If this is the case, the PHI nodes may not
814   // have incoming values for all predecessors.  Loop over all PHI nodes we have
815   // created, inserting undef values if they are missing any incoming values.
816   for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator
817            I = NewPhiNodes.begin(),
818            E = NewPhiNodes.end();
819        I != E; ++I) {
820     // We want to do this once per basic block.  As such, only process a block
821     // when we find the PHI that is the first entry in the block.
822     PHINode *SomePHI = I->second;
823     BasicBlock *BB = SomePHI->getParent();
824     if (&BB->front() != SomePHI)
825       continue;
826 
827     // Only do work here if there the PHI nodes are missing incoming values.  We
828     // know that all PHI nodes that were inserted in a block will have the same
829     // number of incoming values, so we can just check any of them.
830     if (SomePHI->getNumIncomingValues() == getNumPreds(BB))
831       continue;
832 
833     // Get the preds for BB.
834     SmallVector<BasicBlock *, 16> Preds(predecessors(BB));
835 
836     // Ok, now we know that all of the PHI nodes are missing entries for some
837     // basic blocks.  Start by sorting the incoming predecessors for efficient
838     // access.
839     auto CompareBBNumbers = [this](BasicBlock *A, BasicBlock *B) {
840       return BBNumbers.find(A)->second < BBNumbers.find(B)->second;
841     };
842     llvm::sort(Preds, CompareBBNumbers);
843 
844     // Now we loop through all BB's which have entries in SomePHI and remove
845     // them from the Preds list.
846     for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) {
847       // Do a log(n) search of the Preds list for the entry we want.
848       SmallVectorImpl<BasicBlock *>::iterator EntIt = llvm::lower_bound(
849           Preds, SomePHI->getIncomingBlock(i), CompareBBNumbers);
850       assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i) &&
851              "PHI node has entry for a block which is not a predecessor!");
852 
853       // Remove the entry
854       Preds.erase(EntIt);
855     }
856 
857     // At this point, the blocks left in the preds list must have dummy
858     // entries inserted into every PHI nodes for the block.  Update all the phi
859     // nodes in this block that we are inserting (there could be phis before
860     // mem2reg runs).
861     unsigned NumBadPreds = SomePHI->getNumIncomingValues();
862     BasicBlock::iterator BBI = BB->begin();
863     while ((SomePHI = dyn_cast<PHINode>(BBI++)) &&
864            SomePHI->getNumIncomingValues() == NumBadPreds) {
865       Value *UndefVal = UndefValue::get(SomePHI->getType());
866       for (BasicBlock *Pred : Preds)
867         SomePHI->addIncoming(UndefVal, Pred);
868     }
869   }
870 
871   NewPhiNodes.clear();
872 }
873 
874 /// Determine which blocks the value is live in.
875 ///
876 /// These are blocks which lead to uses.  Knowing this allows us to avoid
877 /// inserting PHI nodes into blocks which don't lead to uses (thus, the
878 /// inserted phi nodes would be dead).
879 void PromoteMem2Reg::ComputeLiveInBlocks(
880     AllocaInst *AI, AllocaInfo &Info,
881     const SmallPtrSetImpl<BasicBlock *> &DefBlocks,
882     SmallPtrSetImpl<BasicBlock *> &LiveInBlocks) {
883   // To determine liveness, we must iterate through the predecessors of blocks
884   // where the def is live.  Blocks are added to the worklist if we need to
885   // check their predecessors.  Start with all the using blocks.
886   SmallVector<BasicBlock *, 64> LiveInBlockWorklist(Info.UsingBlocks.begin(),
887                                                     Info.UsingBlocks.end());
888 
889   // If any of the using blocks is also a definition block, check to see if the
890   // definition occurs before or after the use.  If it happens before the use,
891   // the value isn't really live-in.
892   for (unsigned i = 0, e = LiveInBlockWorklist.size(); i != e; ++i) {
893     BasicBlock *BB = LiveInBlockWorklist[i];
894     if (!DefBlocks.count(BB))
895       continue;
896 
897     // Okay, this is a block that both uses and defines the value.  If the first
898     // reference to the alloca is a def (store), then we know it isn't live-in.
899     for (BasicBlock::iterator I = BB->begin();; ++I) {
900       if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
901         if (SI->getOperand(1) != AI)
902           continue;
903 
904         // We found a store to the alloca before a load.  The alloca is not
905         // actually live-in here.
906         LiveInBlockWorklist[i] = LiveInBlockWorklist.back();
907         LiveInBlockWorklist.pop_back();
908         --i;
909         --e;
910         break;
911       }
912 
913       if (LoadInst *LI = dyn_cast<LoadInst>(I))
914         // Okay, we found a load before a store to the alloca.  It is actually
915         // live into this block.
916         if (LI->getOperand(0) == AI)
917           break;
918     }
919   }
920 
921   // Now that we have a set of blocks where the phi is live-in, recursively add
922   // their predecessors until we find the full region the value is live.
923   while (!LiveInBlockWorklist.empty()) {
924     BasicBlock *BB = LiveInBlockWorklist.pop_back_val();
925 
926     // The block really is live in here, insert it into the set.  If already in
927     // the set, then it has already been processed.
928     if (!LiveInBlocks.insert(BB).second)
929       continue;
930 
931     // Since the value is live into BB, it is either defined in a predecessor or
932     // live into it to.  Add the preds to the worklist unless they are a
933     // defining block.
934     for (BasicBlock *P : predecessors(BB)) {
935       // The value is not live into a predecessor if it defines the value.
936       if (DefBlocks.count(P))
937         continue;
938 
939       // Otherwise it is, add to the worklist.
940       LiveInBlockWorklist.push_back(P);
941     }
942   }
943 }
944 
945 /// Queue a phi-node to be added to a basic-block for a specific Alloca.
946 ///
947 /// Returns true if there wasn't already a phi-node for that variable
948 bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo,
949                                   unsigned &Version) {
950   // Look up the basic-block in question.
951   PHINode *&PN = NewPhiNodes[std::make_pair(BBNumbers[BB], AllocaNo)];
952 
953   // If the BB already has a phi node added for the i'th alloca then we're done!
954   if (PN)
955     return false;
956 
957   // Create a PhiNode using the dereferenced type... and add the phi-node to the
958   // BasicBlock.
959   PN = PHINode::Create(Allocas[AllocaNo]->getAllocatedType(), getNumPreds(BB),
960                        Allocas[AllocaNo]->getName() + "." + Twine(Version++),
961                        &BB->front());
962   ++NumPHIInsert;
963   PhiToAllocaMap[PN] = AllocaNo;
964   return true;
965 }
966 
967 /// Update the debug location of a phi. \p ApplyMergedLoc indicates whether to
968 /// create a merged location incorporating \p DL, or to set \p DL directly.
969 static void updateForIncomingValueLocation(PHINode *PN, DebugLoc DL,
970                                            bool ApplyMergedLoc) {
971   if (ApplyMergedLoc)
972     PN->applyMergedLocation(PN->getDebugLoc(), DL);
973   else
974     PN->setDebugLoc(DL);
975 }
976 
977 /// Recursively traverse the CFG of the function, renaming loads and
978 /// stores to the allocas which we are promoting.
979 ///
980 /// IncomingVals indicates what value each Alloca contains on exit from the
981 /// predecessor block Pred.
982 void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred,
983                                 RenamePassData::ValVector &IncomingVals,
984                                 RenamePassData::LocationVector &IncomingLocs,
985                                 std::vector<RenamePassData> &Worklist) {
986 NextIteration:
987   // If we are inserting any phi nodes into this BB, they will already be in the
988   // block.
989   if (PHINode *APN = dyn_cast<PHINode>(BB->begin())) {
990     // If we have PHI nodes to update, compute the number of edges from Pred to
991     // BB.
992     if (PhiToAllocaMap.count(APN)) {
993       // We want to be able to distinguish between PHI nodes being inserted by
994       // this invocation of mem2reg from those phi nodes that already existed in
995       // the IR before mem2reg was run.  We determine that APN is being inserted
996       // because it is missing incoming edges.  All other PHI nodes being
997       // inserted by this pass of mem2reg will have the same number of incoming
998       // operands so far.  Remember this count.
999       unsigned NewPHINumOperands = APN->getNumOperands();
1000 
1001       unsigned NumEdges = llvm::count(successors(Pred), BB);
1002       assert(NumEdges && "Must be at least one edge from Pred to BB!");
1003 
1004       // Add entries for all the phis.
1005       BasicBlock::iterator PNI = BB->begin();
1006       do {
1007         unsigned AllocaNo = PhiToAllocaMap[APN];
1008 
1009         // Update the location of the phi node.
1010         updateForIncomingValueLocation(APN, IncomingLocs[AllocaNo],
1011                                        APN->getNumIncomingValues() > 0);
1012 
1013         // Add N incoming values to the PHI node.
1014         for (unsigned i = 0; i != NumEdges; ++i)
1015           APN->addIncoming(IncomingVals[AllocaNo], Pred);
1016 
1017         // The currently active variable for this block is now the PHI.
1018         IncomingVals[AllocaNo] = APN;
1019         AllocaATInfo[AllocaNo].updateForNewPhi(APN, DIB);
1020         for (DbgVariableIntrinsic *DII : AllocaDbgUsers[AllocaNo])
1021           if (DII->isAddressOfVariable())
1022             ConvertDebugDeclareToDebugValue(DII, APN, DIB);
1023 
1024         // Get the next phi node.
1025         ++PNI;
1026         APN = dyn_cast<PHINode>(PNI);
1027         if (!APN)
1028           break;
1029 
1030         // Verify that it is missing entries.  If not, it is not being inserted
1031         // by this mem2reg invocation so we want to ignore it.
1032       } while (APN->getNumOperands() == NewPHINumOperands);
1033     }
1034   }
1035 
1036   // Don't revisit blocks.
1037   if (!Visited.insert(BB).second)
1038     return;
1039 
1040   for (BasicBlock::iterator II = BB->begin(); !II->isTerminator();) {
1041     Instruction *I = &*II++; // get the instruction, increment iterator
1042 
1043     if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1044       AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand());
1045       if (!Src)
1046         continue;
1047 
1048       DenseMap<AllocaInst *, unsigned>::iterator AI = AllocaLookup.find(Src);
1049       if (AI == AllocaLookup.end())
1050         continue;
1051 
1052       Value *V = IncomingVals[AI->second];
1053       convertMetadataToAssumes(LI, V, SQ.DL, AC, &DT);
1054 
1055       // Anything using the load now uses the current value.
1056       LI->replaceAllUsesWith(V);
1057       LI->eraseFromParent();
1058     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
1059       // Delete this instruction and mark the name as the current holder of the
1060       // value
1061       AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand());
1062       if (!Dest)
1063         continue;
1064 
1065       DenseMap<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest);
1066       if (ai == AllocaLookup.end())
1067         continue;
1068 
1069       // what value were we writing?
1070       unsigned AllocaNo = ai->second;
1071       IncomingVals[AllocaNo] = SI->getOperand(0);
1072 
1073       // Record debuginfo for the store before removing it.
1074       IncomingLocs[AllocaNo] = SI->getDebugLoc();
1075       AllocaATInfo[AllocaNo].updateForDeletedStore(SI, DIB);
1076       for (DbgVariableIntrinsic *DII : AllocaDbgUsers[ai->second])
1077         if (DII->isAddressOfVariable())
1078           ConvertDebugDeclareToDebugValue(DII, SI, DIB);
1079       SI->eraseFromParent();
1080     }
1081   }
1082 
1083   // 'Recurse' to our successors.
1084   succ_iterator I = succ_begin(BB), E = succ_end(BB);
1085   if (I == E)
1086     return;
1087 
1088   // Keep track of the successors so we don't visit the same successor twice
1089   SmallPtrSet<BasicBlock *, 8> VisitedSuccs;
1090 
1091   // Handle the first successor without using the worklist.
1092   VisitedSuccs.insert(*I);
1093   Pred = BB;
1094   BB = *I;
1095   ++I;
1096 
1097   for (; I != E; ++I)
1098     if (VisitedSuccs.insert(*I).second)
1099       Worklist.emplace_back(*I, Pred, IncomingVals, IncomingLocs);
1100 
1101   goto NextIteration;
1102 }
1103 
1104 void llvm::PromoteMemToReg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT,
1105                            AssumptionCache *AC) {
1106   // If there is nothing to do, bail out...
1107   if (Allocas.empty())
1108     return;
1109 
1110   PromoteMem2Reg(Allocas, DT, AC).run();
1111 }
1112