1 //===- SSAUpdater.cpp - Unstructured SSA Update Tool ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SSAUpdater class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Transforms/Utils/SSAUpdater.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/TinyPtrVector.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/IR/BasicBlock.h"
20 #include "llvm/IR/CFG.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/DebugLoc.h"
23 #include "llvm/IR/Instruction.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/IR/Use.h"
27 #include "llvm/IR/Value.h"
28 #include "llvm/Support/Casting.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/Transforms/Utils/SSAUpdaterImpl.h"
32 #include <cassert>
33 #include <utility>
34 
35 using namespace llvm;
36 
37 #define DEBUG_TYPE "ssaupdater"
38 
39 using AvailableValsTy = DenseMap<BasicBlock *, Value *>;
40 
41 static AvailableValsTy &getAvailableVals(void *AV) {
42   return *static_cast<AvailableValsTy*>(AV);
43 }
44 
45 SSAUpdater::SSAUpdater(SmallVectorImpl<PHINode *> *NewPHI)
46   : InsertedPHIs(NewPHI) {}
47 
48 SSAUpdater::~SSAUpdater() {
49   delete static_cast<AvailableValsTy*>(AV);
50 }
51 
52 void SSAUpdater::Initialize(Type *Ty, StringRef Name) {
53   if (!AV)
54     AV = new AvailableValsTy();
55   else
56     getAvailableVals(AV).clear();
57   ProtoType = Ty;
58   ProtoName = std::string(Name);
59 }
60 
61 bool SSAUpdater::HasValueForBlock(BasicBlock *BB) const {
62   return getAvailableVals(AV).count(BB);
63 }
64 
65 Value *SSAUpdater::FindValueForBlock(BasicBlock *BB) const {
66   return getAvailableVals(AV).lookup(BB);
67 }
68 
69 void SSAUpdater::AddAvailableValue(BasicBlock *BB, Value *V) {
70   assert(ProtoType && "Need to initialize SSAUpdater");
71   assert(ProtoType == V->getType() &&
72          "All rewritten values must have the same type");
73   getAvailableVals(AV)[BB] = V;
74 }
75 
76 static bool IsEquivalentPHI(PHINode *PHI,
77                         SmallDenseMap<BasicBlock *, Value *, 8> &ValueMapping) {
78   unsigned PHINumValues = PHI->getNumIncomingValues();
79   if (PHINumValues != ValueMapping.size())
80     return false;
81 
82   // Scan the phi to see if it matches.
83   for (unsigned i = 0, e = PHINumValues; i != e; ++i)
84     if (ValueMapping[PHI->getIncomingBlock(i)] !=
85         PHI->getIncomingValue(i)) {
86       return false;
87     }
88 
89   return true;
90 }
91 
92 Value *SSAUpdater::GetValueAtEndOfBlock(BasicBlock *BB) {
93   Value *Res = GetValueAtEndOfBlockInternal(BB);
94   return Res;
95 }
96 
97 Value *SSAUpdater::GetValueInMiddleOfBlock(BasicBlock *BB) {
98   // If there is no definition of the renamed variable in this block, just use
99   // GetValueAtEndOfBlock to do our work.
100   if (!HasValueForBlock(BB))
101     return GetValueAtEndOfBlock(BB);
102 
103   // Otherwise, we have the hard case.  Get the live-in values for each
104   // predecessor.
105   SmallVector<std::pair<BasicBlock *, Value *>, 8> PredValues;
106   Value *SingularValue = nullptr;
107 
108   // We can get our predecessor info by walking the pred_iterator list, but it
109   // is relatively slow.  If we already have PHI nodes in this block, walk one
110   // of them to get the predecessor list instead.
111   if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) {
112     for (unsigned i = 0, e = SomePhi->getNumIncomingValues(); i != e; ++i) {
113       BasicBlock *PredBB = SomePhi->getIncomingBlock(i);
114       Value *PredVal = GetValueAtEndOfBlock(PredBB);
115       PredValues.push_back(std::make_pair(PredBB, PredVal));
116 
117       // Compute SingularValue.
118       if (i == 0)
119         SingularValue = PredVal;
120       else if (PredVal != SingularValue)
121         SingularValue = nullptr;
122     }
123   } else {
124     bool isFirstPred = true;
125     for (BasicBlock *PredBB : predecessors(BB)) {
126       Value *PredVal = GetValueAtEndOfBlock(PredBB);
127       PredValues.push_back(std::make_pair(PredBB, PredVal));
128 
129       // Compute SingularValue.
130       if (isFirstPred) {
131         SingularValue = PredVal;
132         isFirstPred = false;
133       } else if (PredVal != SingularValue)
134         SingularValue = nullptr;
135     }
136   }
137 
138   // If there are no predecessors, just return undef.
139   if (PredValues.empty())
140     return UndefValue::get(ProtoType);
141 
142   // Otherwise, if all the merged values are the same, just use it.
143   if (SingularValue)
144     return SingularValue;
145 
146   // Otherwise, we do need a PHI: check to see if we already have one available
147   // in this block that produces the right value.
148   if (isa<PHINode>(BB->begin())) {
149     SmallDenseMap<BasicBlock *, Value *, 8> ValueMapping(PredValues.begin(),
150                                                          PredValues.end());
151     for (PHINode &SomePHI : BB->phis()) {
152       if (IsEquivalentPHI(&SomePHI, ValueMapping))
153         return &SomePHI;
154     }
155   }
156 
157   // Ok, we have no way out, insert a new one now.
158   PHINode *InsertedPHI = PHINode::Create(ProtoType, PredValues.size(),
159                                          ProtoName, &BB->front());
160 
161   // Fill in all the predecessors of the PHI.
162   for (const auto &PredValue : PredValues)
163     InsertedPHI->addIncoming(PredValue.second, PredValue.first);
164 
165   // See if the PHI node can be merged to a single value.  This can happen in
166   // loop cases when we get a PHI of itself and one other value.
167   if (Value *V =
168           simplifyInstruction(InsertedPHI, BB->getModule()->getDataLayout())) {
169     InsertedPHI->eraseFromParent();
170     return V;
171   }
172 
173   // Set the DebugLoc of the inserted PHI, if available.
174   DebugLoc DL;
175   if (const Instruction *I = BB->getFirstNonPHI())
176       DL = I->getDebugLoc();
177   InsertedPHI->setDebugLoc(DL);
178 
179   // If the client wants to know about all new instructions, tell it.
180   if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI);
181 
182   LLVM_DEBUG(dbgs() << "  Inserted PHI: " << *InsertedPHI << "\n");
183   return InsertedPHI;
184 }
185 
186 void SSAUpdater::RewriteUse(Use &U) {
187   Instruction *User = cast<Instruction>(U.getUser());
188 
189   Value *V;
190   if (PHINode *UserPN = dyn_cast<PHINode>(User))
191     V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U));
192   else
193     V = GetValueInMiddleOfBlock(User->getParent());
194 
195   U.set(V);
196 }
197 
198 void SSAUpdater::RewriteUseAfterInsertions(Use &U) {
199   Instruction *User = cast<Instruction>(U.getUser());
200 
201   Value *V;
202   if (PHINode *UserPN = dyn_cast<PHINode>(User))
203     V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U));
204   else
205     V = GetValueAtEndOfBlock(User->getParent());
206 
207   U.set(V);
208 }
209 
210 namespace llvm {
211 
212 template<>
213 class SSAUpdaterTraits<SSAUpdater> {
214 public:
215   using BlkT = BasicBlock;
216   using ValT = Value *;
217   using PhiT = PHINode;
218   using BlkSucc_iterator = succ_iterator;
219 
220   static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return succ_begin(BB); }
221   static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return succ_end(BB); }
222 
223   class PHI_iterator {
224   private:
225     PHINode *PHI;
226     unsigned idx;
227 
228   public:
229     explicit PHI_iterator(PHINode *P) // begin iterator
230       : PHI(P), idx(0) {}
231     PHI_iterator(PHINode *P, bool) // end iterator
232       : PHI(P), idx(PHI->getNumIncomingValues()) {}
233 
234     PHI_iterator &operator++() { ++idx; return *this; }
235     bool operator==(const PHI_iterator& x) const { return idx == x.idx; }
236     bool operator!=(const PHI_iterator& x) const { return !operator==(x); }
237 
238     Value *getIncomingValue() { return PHI->getIncomingValue(idx); }
239     BasicBlock *getIncomingBlock() { return PHI->getIncomingBlock(idx); }
240   };
241 
242   static PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); }
243   static PHI_iterator PHI_end(PhiT *PHI) {
244     return PHI_iterator(PHI, true);
245   }
246 
247   /// FindPredecessorBlocks - Put the predecessors of Info->BB into the Preds
248   /// vector, set Info->NumPreds, and allocate space in Info->Preds.
249   static void FindPredecessorBlocks(BasicBlock *BB,
250                                     SmallVectorImpl<BasicBlock *> *Preds) {
251     // We can get our predecessor info by walking the pred_iterator list,
252     // but it is relatively slow.  If we already have PHI nodes in this
253     // block, walk one of them to get the predecessor list instead.
254     if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin()))
255       append_range(*Preds, SomePhi->blocks());
256     else
257       append_range(*Preds, predecessors(BB));
258   }
259 
260   /// GetUndefVal - Get an undefined value of the same type as the value
261   /// being handled.
262   static Value *GetUndefVal(BasicBlock *BB, SSAUpdater *Updater) {
263     return UndefValue::get(Updater->ProtoType);
264   }
265 
266   /// CreateEmptyPHI - Create a new PHI instruction in the specified block.
267   /// Reserve space for the operands but do not fill them in yet.
268   static Value *CreateEmptyPHI(BasicBlock *BB, unsigned NumPreds,
269                                SSAUpdater *Updater) {
270     PHINode *PHI = PHINode::Create(Updater->ProtoType, NumPreds,
271                                    Updater->ProtoName, &BB->front());
272     return PHI;
273   }
274 
275   /// AddPHIOperand - Add the specified value as an operand of the PHI for
276   /// the specified predecessor block.
277   static void AddPHIOperand(PHINode *PHI, Value *Val, BasicBlock *Pred) {
278     PHI->addIncoming(Val, Pred);
279   }
280 
281   /// ValueIsPHI - Check if a value is a PHI.
282   static PHINode *ValueIsPHI(Value *Val, SSAUpdater *Updater) {
283     return dyn_cast<PHINode>(Val);
284   }
285 
286   /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source
287   /// operands, i.e., it was just added.
288   static PHINode *ValueIsNewPHI(Value *Val, SSAUpdater *Updater) {
289     PHINode *PHI = ValueIsPHI(Val, Updater);
290     if (PHI && PHI->getNumIncomingValues() == 0)
291       return PHI;
292     return nullptr;
293   }
294 
295   /// GetPHIValue - For the specified PHI instruction, return the value
296   /// that it defines.
297   static Value *GetPHIValue(PHINode *PHI) {
298     return PHI;
299   }
300 };
301 
302 } // end namespace llvm
303 
304 /// Check to see if AvailableVals has an entry for the specified BB and if so,
305 /// return it.  If not, construct SSA form by first calculating the required
306 /// placement of PHIs and then inserting new PHIs where needed.
307 Value *SSAUpdater::GetValueAtEndOfBlockInternal(BasicBlock *BB) {
308   AvailableValsTy &AvailableVals = getAvailableVals(AV);
309   if (Value *V = AvailableVals[BB])
310     return V;
311 
312   SSAUpdaterImpl<SSAUpdater> Impl(this, &AvailableVals, InsertedPHIs);
313   return Impl.GetValue(BB);
314 }
315 
316 //===----------------------------------------------------------------------===//
317 // LoadAndStorePromoter Implementation
318 //===----------------------------------------------------------------------===//
319 
320 LoadAndStorePromoter::
321 LoadAndStorePromoter(ArrayRef<const Instruction *> Insts,
322                      SSAUpdater &S, StringRef BaseName) : SSA(S) {
323   if (Insts.empty()) return;
324 
325   const Value *SomeVal;
326   if (const LoadInst *LI = dyn_cast<LoadInst>(Insts[0]))
327     SomeVal = LI;
328   else
329     SomeVal = cast<StoreInst>(Insts[0])->getOperand(0);
330 
331   if (BaseName.empty())
332     BaseName = SomeVal->getName();
333   SSA.Initialize(SomeVal->getType(), BaseName);
334 }
335 
336 void LoadAndStorePromoter::run(const SmallVectorImpl<Instruction *> &Insts) {
337   // First step: bucket up uses of the alloca by the block they occur in.
338   // This is important because we have to handle multiple defs/uses in a block
339   // ourselves: SSAUpdater is purely for cross-block references.
340   DenseMap<BasicBlock *, TinyPtrVector<Instruction *>> UsesByBlock;
341 
342   for (Instruction *User : Insts)
343     UsesByBlock[User->getParent()].push_back(User);
344 
345   // Okay, now we can iterate over all the blocks in the function with uses,
346   // processing them.  Keep track of which loads are loading a live-in value.
347   // Walk the uses in the use-list order to be determinstic.
348   SmallVector<LoadInst *, 32> LiveInLoads;
349   DenseMap<Value *, Value *> ReplacedLoads;
350 
351   for (Instruction *User : Insts) {
352     BasicBlock *BB = User->getParent();
353     TinyPtrVector<Instruction *> &BlockUses = UsesByBlock[BB];
354 
355     // If this block has already been processed, ignore this repeat use.
356     if (BlockUses.empty()) continue;
357 
358     // Okay, this is the first use in the block.  If this block just has a
359     // single user in it, we can rewrite it trivially.
360     if (BlockUses.size() == 1) {
361       // If it is a store, it is a trivial def of the value in the block.
362       if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
363         updateDebugInfo(SI);
364         SSA.AddAvailableValue(BB, SI->getOperand(0));
365       } else
366         // Otherwise it is a load, queue it to rewrite as a live-in load.
367         LiveInLoads.push_back(cast<LoadInst>(User));
368       BlockUses.clear();
369       continue;
370     }
371 
372     // Otherwise, check to see if this block is all loads.
373     bool HasStore = false;
374     for (Instruction *I : BlockUses) {
375       if (isa<StoreInst>(I)) {
376         HasStore = true;
377         break;
378       }
379     }
380 
381     // If so, we can queue them all as live in loads.  We don't have an
382     // efficient way to tell which on is first in the block and don't want to
383     // scan large blocks, so just add all loads as live ins.
384     if (!HasStore) {
385       for (Instruction *I : BlockUses)
386         LiveInLoads.push_back(cast<LoadInst>(I));
387       BlockUses.clear();
388       continue;
389     }
390 
391     // Otherwise, we have mixed loads and stores (or just a bunch of stores).
392     // Since SSAUpdater is purely for cross-block values, we need to determine
393     // the order of these instructions in the block.  If the first use in the
394     // block is a load, then it uses the live in value.  The last store defines
395     // the live out value.  We handle this by doing a linear scan of the block.
396     Value *StoredValue = nullptr;
397     for (Instruction &I : *BB) {
398       if (LoadInst *L = dyn_cast<LoadInst>(&I)) {
399         // If this is a load from an unrelated pointer, ignore it.
400         if (!isInstInList(L, Insts)) continue;
401 
402         // If we haven't seen a store yet, this is a live in use, otherwise
403         // use the stored value.
404         if (StoredValue) {
405           replaceLoadWithValue(L, StoredValue);
406           L->replaceAllUsesWith(StoredValue);
407           ReplacedLoads[L] = StoredValue;
408         } else {
409           LiveInLoads.push_back(L);
410         }
411         continue;
412       }
413 
414       if (StoreInst *SI = dyn_cast<StoreInst>(&I)) {
415         // If this is a store to an unrelated pointer, ignore it.
416         if (!isInstInList(SI, Insts)) continue;
417         updateDebugInfo(SI);
418 
419         // Remember that this is the active value in the block.
420         StoredValue = SI->getOperand(0);
421       }
422     }
423 
424     // The last stored value that happened is the live-out for the block.
425     assert(StoredValue && "Already checked that there is a store in block");
426     SSA.AddAvailableValue(BB, StoredValue);
427     BlockUses.clear();
428   }
429 
430   // Okay, now we rewrite all loads that use live-in values in the loop,
431   // inserting PHI nodes as necessary.
432   for (LoadInst *ALoad : LiveInLoads) {
433     Value *NewVal = SSA.GetValueInMiddleOfBlock(ALoad->getParent());
434     replaceLoadWithValue(ALoad, NewVal);
435 
436     // Avoid assertions in unreachable code.
437     if (NewVal == ALoad) NewVal = PoisonValue::get(NewVal->getType());
438     ALoad->replaceAllUsesWith(NewVal);
439     ReplacedLoads[ALoad] = NewVal;
440   }
441 
442   // Allow the client to do stuff before we start nuking things.
443   doExtraRewritesBeforeFinalDeletion();
444 
445   // Now that everything is rewritten, delete the old instructions from the
446   // function.  They should all be dead now.
447   for (Instruction *User : Insts) {
448     if (!shouldDelete(User))
449       continue;
450 
451     // If this is a load that still has uses, then the load must have been added
452     // as a live value in the SSAUpdate data structure for a block (e.g. because
453     // the loaded value was stored later).  In this case, we need to recursively
454     // propagate the updates until we get to the real value.
455     if (!User->use_empty()) {
456       Value *NewVal = ReplacedLoads[User];
457       assert(NewVal && "not a replaced load?");
458 
459       // Propagate down to the ultimate replacee.  The intermediately loads
460       // could theoretically already have been deleted, so we don't want to
461       // dereference the Value*'s.
462       DenseMap<Value*, Value*>::iterator RLI = ReplacedLoads.find(NewVal);
463       while (RLI != ReplacedLoads.end()) {
464         NewVal = RLI->second;
465         RLI = ReplacedLoads.find(NewVal);
466       }
467 
468       replaceLoadWithValue(cast<LoadInst>(User), NewVal);
469       User->replaceAllUsesWith(NewVal);
470     }
471 
472     instructionDeleted(User);
473     User->eraseFromParent();
474   }
475 }
476 
477 bool
478 LoadAndStorePromoter::isInstInList(Instruction *I,
479                                    const SmallVectorImpl<Instruction *> &Insts)
480                                    const {
481   return is_contained(Insts, I);
482 }
483