1 //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the scalar evolution expander,
10 // which is used to generate the code corresponding to a given scalar evolution
11 // expression.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallSet.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/Analysis/TargetTransformInfo.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/Dominators.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/LLVMContext.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/IR/PatternMatch.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include "llvm/Transforms/Utils/LoopUtils.h"
31 
32 using namespace llvm;
33 
34 cl::opt<unsigned> llvm::SCEVCheapExpansionBudget(
35     "scev-cheap-expansion-budget", cl::Hidden, cl::init(4),
36     cl::desc("When performing SCEV expansion only if it is cheap to do, this "
37              "controls the budget that is considered cheap (default = 4)"));
38 
39 using namespace PatternMatch;
40 
41 /// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP,
42 /// reusing an existing cast if a suitable one (= dominating IP) exists, or
43 /// creating a new one.
44 Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty,
45                                        Instruction::CastOps Op,
46                                        BasicBlock::iterator IP) {
47   // This function must be called with the builder having a valid insertion
48   // point. It doesn't need to be the actual IP where the uses of the returned
49   // cast will be added, but it must dominate such IP.
50   // We use this precondition to produce a cast that will dominate all its
51   // uses. In particular, this is crucial for the case where the builder's
52   // insertion point *is* the point where we were asked to put the cast.
53   // Since we don't know the builder's insertion point is actually
54   // where the uses will be added (only that it dominates it), we are
55   // not allowed to move it.
56   BasicBlock::iterator BIP = Builder.GetInsertPoint();
57 
58   Instruction *Ret = nullptr;
59 
60   // Check to see if there is already a cast!
61   for (User *U : V->users()) {
62     if (U->getType() != Ty)
63       continue;
64     CastInst *CI = dyn_cast<CastInst>(U);
65     if (!CI || CI->getOpcode() != Op)
66       continue;
67 
68     // Found a suitable cast that is at IP or comes before IP. Use it. Note that
69     // the cast must also properly dominate the Builder's insertion point.
70     if (IP->getParent() == CI->getParent() && &*BIP != CI &&
71         (&*IP == CI || CI->comesBefore(&*IP))) {
72       Ret = CI;
73       break;
74     }
75   }
76 
77   // Create a new cast.
78   if (!Ret) {
79     Ret = CastInst::Create(Op, V, Ty, V->getName(), &*IP);
80     rememberInstruction(Ret);
81   }
82 
83   // We assert at the end of the function since IP might point to an
84   // instruction with different dominance properties than a cast
85   // (an invoke for example) and not dominate BIP (but the cast does).
86   assert(SE.DT.dominates(Ret, &*BIP));
87 
88   return Ret;
89 }
90 
91 BasicBlock::iterator
92 SCEVExpander::findInsertPointAfter(Instruction *I, Instruction *MustDominate) {
93   BasicBlock::iterator IP = ++I->getIterator();
94   if (auto *II = dyn_cast<InvokeInst>(I))
95     IP = II->getNormalDest()->begin();
96 
97   while (isa<PHINode>(IP))
98     ++IP;
99 
100   if (isa<FuncletPadInst>(IP) || isa<LandingPadInst>(IP)) {
101     ++IP;
102   } else if (isa<CatchSwitchInst>(IP)) {
103     IP = MustDominate->getParent()->getFirstInsertionPt();
104   } else {
105     assert(!IP->isEHPad() && "unexpected eh pad!");
106   }
107 
108   // Adjust insert point to be after instructions inserted by the expander, so
109   // we can re-use already inserted instructions. Avoid skipping past the
110   // original \p MustDominate, in case it is an inserted instruction.
111   while (isInsertedInstruction(&*IP) && &*IP != MustDominate)
112     ++IP;
113 
114   return IP;
115 }
116 
117 /// InsertNoopCastOfTo - Insert a cast of V to the specified type,
118 /// which must be possible with a noop cast, doing what we can to share
119 /// the casts.
120 Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) {
121   Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false);
122   assert((Op == Instruction::BitCast ||
123           Op == Instruction::PtrToInt ||
124           Op == Instruction::IntToPtr) &&
125          "InsertNoopCastOfTo cannot perform non-noop casts!");
126   assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) &&
127          "InsertNoopCastOfTo cannot change sizes!");
128 
129   // inttoptr only works for integral pointers. For non-integral pointers, we
130   // can create a GEP on i8* null  with the integral value as index. Note that
131   // it is safe to use GEP of null instead of inttoptr here, because only
132   // expressions already based on a GEP of null should be converted to pointers
133   // during expansion.
134   if (Op == Instruction::IntToPtr) {
135     auto *PtrTy = cast<PointerType>(Ty);
136     if (DL.isNonIntegralPointerType(PtrTy)) {
137       auto *Int8PtrTy = Builder.getInt8PtrTy(PtrTy->getAddressSpace());
138       assert(DL.getTypeAllocSize(Int8PtrTy->getElementType()) == 1 &&
139              "alloc size of i8 must by 1 byte for the GEP to be correct");
140       auto *GEP = Builder.CreateGEP(
141           Builder.getInt8Ty(), Constant::getNullValue(Int8PtrTy), V, "uglygep");
142       return Builder.CreateBitCast(GEP, Ty);
143     }
144   }
145   // Short-circuit unnecessary bitcasts.
146   if (Op == Instruction::BitCast) {
147     if (V->getType() == Ty)
148       return V;
149     if (CastInst *CI = dyn_cast<CastInst>(V)) {
150       if (CI->getOperand(0)->getType() == Ty)
151         return CI->getOperand(0);
152     }
153   }
154   // Short-circuit unnecessary inttoptr<->ptrtoint casts.
155   if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) &&
156       SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) {
157     if (CastInst *CI = dyn_cast<CastInst>(V))
158       if ((CI->getOpcode() == Instruction::PtrToInt ||
159            CI->getOpcode() == Instruction::IntToPtr) &&
160           SE.getTypeSizeInBits(CI->getType()) ==
161           SE.getTypeSizeInBits(CI->getOperand(0)->getType()))
162         return CI->getOperand(0);
163     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
164       if ((CE->getOpcode() == Instruction::PtrToInt ||
165            CE->getOpcode() == Instruction::IntToPtr) &&
166           SE.getTypeSizeInBits(CE->getType()) ==
167           SE.getTypeSizeInBits(CE->getOperand(0)->getType()))
168         return CE->getOperand(0);
169   }
170 
171   // Fold a cast of a constant.
172   if (Constant *C = dyn_cast<Constant>(V))
173     return ConstantExpr::getCast(Op, C, Ty);
174 
175   // Cast the argument at the beginning of the entry block, after
176   // any bitcasts of other arguments.
177   if (Argument *A = dyn_cast<Argument>(V)) {
178     BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin();
179     while ((isa<BitCastInst>(IP) &&
180             isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) &&
181             cast<BitCastInst>(IP)->getOperand(0) != A) ||
182            isa<DbgInfoIntrinsic>(IP))
183       ++IP;
184     return ReuseOrCreateCast(A, Ty, Op, IP);
185   }
186 
187   // Cast the instruction immediately after the instruction.
188   Instruction *I = cast<Instruction>(V);
189   BasicBlock::iterator IP = findInsertPointAfter(I, &*Builder.GetInsertPoint());
190   return ReuseOrCreateCast(I, Ty, Op, IP);
191 }
192 
193 /// InsertBinop - Insert the specified binary operator, doing a small amount
194 /// of work to avoid inserting an obviously redundant operation, and hoisting
195 /// to an outer loop when the opportunity is there and it is safe.
196 Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode,
197                                  Value *LHS, Value *RHS,
198                                  SCEV::NoWrapFlags Flags, bool IsSafeToHoist) {
199   // Fold a binop with constant operands.
200   if (Constant *CLHS = dyn_cast<Constant>(LHS))
201     if (Constant *CRHS = dyn_cast<Constant>(RHS))
202       return ConstantExpr::get(Opcode, CLHS, CRHS);
203 
204   // Do a quick scan to see if we have this binop nearby.  If so, reuse it.
205   unsigned ScanLimit = 6;
206   BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
207   // Scanning starts from the last instruction before the insertion point.
208   BasicBlock::iterator IP = Builder.GetInsertPoint();
209   if (IP != BlockBegin) {
210     --IP;
211     for (; ScanLimit; --IP, --ScanLimit) {
212       // Don't count dbg.value against the ScanLimit, to avoid perturbing the
213       // generated code.
214       if (isa<DbgInfoIntrinsic>(IP))
215         ScanLimit++;
216 
217       auto canGenerateIncompatiblePoison = [&Flags](Instruction *I) {
218         // Ensure that no-wrap flags match.
219         if (isa<OverflowingBinaryOperator>(I)) {
220           if (I->hasNoSignedWrap() != (Flags & SCEV::FlagNSW))
221             return true;
222           if (I->hasNoUnsignedWrap() != (Flags & SCEV::FlagNUW))
223             return true;
224         }
225         // Conservatively, do not use any instruction which has any of exact
226         // flags installed.
227         if (isa<PossiblyExactOperator>(I) && I->isExact())
228           return true;
229         return false;
230       };
231       if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS &&
232           IP->getOperand(1) == RHS && !canGenerateIncompatiblePoison(&*IP))
233         return &*IP;
234       if (IP == BlockBegin) break;
235     }
236   }
237 
238   // Save the original insertion point so we can restore it when we're done.
239   DebugLoc Loc = Builder.GetInsertPoint()->getDebugLoc();
240   SCEVInsertPointGuard Guard(Builder, this);
241 
242   if (IsSafeToHoist) {
243     // Move the insertion point out of as many loops as we can.
244     while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
245       if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break;
246       BasicBlock *Preheader = L->getLoopPreheader();
247       if (!Preheader) break;
248 
249       // Ok, move up a level.
250       Builder.SetInsertPoint(Preheader->getTerminator());
251     }
252   }
253 
254   // If we haven't found this binop, insert it.
255   Instruction *BO = cast<Instruction>(Builder.CreateBinOp(Opcode, LHS, RHS));
256   BO->setDebugLoc(Loc);
257   if (Flags & SCEV::FlagNUW)
258     BO->setHasNoUnsignedWrap();
259   if (Flags & SCEV::FlagNSW)
260     BO->setHasNoSignedWrap();
261 
262   return BO;
263 }
264 
265 /// FactorOutConstant - Test if S is divisible by Factor, using signed
266 /// division. If so, update S with Factor divided out and return true.
267 /// S need not be evenly divisible if a reasonable remainder can be
268 /// computed.
269 static bool FactorOutConstant(const SCEV *&S, const SCEV *&Remainder,
270                               const SCEV *Factor, ScalarEvolution &SE,
271                               const DataLayout &DL) {
272   // Everything is divisible by one.
273   if (Factor->isOne())
274     return true;
275 
276   // x/x == 1.
277   if (S == Factor) {
278     S = SE.getConstant(S->getType(), 1);
279     return true;
280   }
281 
282   // For a Constant, check for a multiple of the given factor.
283   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
284     // 0/x == 0.
285     if (C->isZero())
286       return true;
287     // Check for divisibility.
288     if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) {
289       ConstantInt *CI =
290           ConstantInt::get(SE.getContext(), C->getAPInt().sdiv(FC->getAPInt()));
291       // If the quotient is zero and the remainder is non-zero, reject
292       // the value at this scale. It will be considered for subsequent
293       // smaller scales.
294       if (!CI->isZero()) {
295         const SCEV *Div = SE.getConstant(CI);
296         S = Div;
297         Remainder = SE.getAddExpr(
298             Remainder, SE.getConstant(C->getAPInt().srem(FC->getAPInt())));
299         return true;
300       }
301     }
302   }
303 
304   // In a Mul, check if there is a constant operand which is a multiple
305   // of the given factor.
306   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
307     // Size is known, check if there is a constant operand which is a multiple
308     // of the given factor. If so, we can factor it.
309     if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor))
310       if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0)))
311         if (!C->getAPInt().srem(FC->getAPInt())) {
312           SmallVector<const SCEV *, 4> NewMulOps(M->operands());
313           NewMulOps[0] = SE.getConstant(C->getAPInt().sdiv(FC->getAPInt()));
314           S = SE.getMulExpr(NewMulOps);
315           return true;
316         }
317   }
318 
319   // In an AddRec, check if both start and step are divisible.
320   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
321     const SCEV *Step = A->getStepRecurrence(SE);
322     const SCEV *StepRem = SE.getConstant(Step->getType(), 0);
323     if (!FactorOutConstant(Step, StepRem, Factor, SE, DL))
324       return false;
325     if (!StepRem->isZero())
326       return false;
327     const SCEV *Start = A->getStart();
328     if (!FactorOutConstant(Start, Remainder, Factor, SE, DL))
329       return false;
330     S = SE.getAddRecExpr(Start, Step, A->getLoop(),
331                          A->getNoWrapFlags(SCEV::FlagNW));
332     return true;
333   }
334 
335   return false;
336 }
337 
338 /// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs
339 /// is the number of SCEVAddRecExprs present, which are kept at the end of
340 /// the list.
341 ///
342 static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops,
343                                 Type *Ty,
344                                 ScalarEvolution &SE) {
345   unsigned NumAddRecs = 0;
346   for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i)
347     ++NumAddRecs;
348   // Group Ops into non-addrecs and addrecs.
349   SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs);
350   SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end());
351   // Let ScalarEvolution sort and simplify the non-addrecs list.
352   const SCEV *Sum = NoAddRecs.empty() ?
353                     SE.getConstant(Ty, 0) :
354                     SE.getAddExpr(NoAddRecs);
355   // If it returned an add, use the operands. Otherwise it simplified
356   // the sum into a single value, so just use that.
357   Ops.clear();
358   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum))
359     Ops.append(Add->op_begin(), Add->op_end());
360   else if (!Sum->isZero())
361     Ops.push_back(Sum);
362   // Then append the addrecs.
363   Ops.append(AddRecs.begin(), AddRecs.end());
364 }
365 
366 /// SplitAddRecs - Flatten a list of add operands, moving addrec start values
367 /// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}.
368 /// This helps expose more opportunities for folding parts of the expressions
369 /// into GEP indices.
370 ///
371 static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops,
372                          Type *Ty,
373                          ScalarEvolution &SE) {
374   // Find the addrecs.
375   SmallVector<const SCEV *, 8> AddRecs;
376   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
377     while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) {
378       const SCEV *Start = A->getStart();
379       if (Start->isZero()) break;
380       const SCEV *Zero = SE.getConstant(Ty, 0);
381       AddRecs.push_back(SE.getAddRecExpr(Zero,
382                                          A->getStepRecurrence(SE),
383                                          A->getLoop(),
384                                          A->getNoWrapFlags(SCEV::FlagNW)));
385       if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) {
386         Ops[i] = Zero;
387         Ops.append(Add->op_begin(), Add->op_end());
388         e += Add->getNumOperands();
389       } else {
390         Ops[i] = Start;
391       }
392     }
393   if (!AddRecs.empty()) {
394     // Add the addrecs onto the end of the list.
395     Ops.append(AddRecs.begin(), AddRecs.end());
396     // Resort the operand list, moving any constants to the front.
397     SimplifyAddOperands(Ops, Ty, SE);
398   }
399 }
400 
401 /// expandAddToGEP - Expand an addition expression with a pointer type into
402 /// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps
403 /// BasicAliasAnalysis and other passes analyze the result. See the rules
404 /// for getelementptr vs. inttoptr in
405 /// http://llvm.org/docs/LangRef.html#pointeraliasing
406 /// for details.
407 ///
408 /// Design note: The correctness of using getelementptr here depends on
409 /// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as
410 /// they may introduce pointer arithmetic which may not be safely converted
411 /// into getelementptr.
412 ///
413 /// Design note: It might seem desirable for this function to be more
414 /// loop-aware. If some of the indices are loop-invariant while others
415 /// aren't, it might seem desirable to emit multiple GEPs, keeping the
416 /// loop-invariant portions of the overall computation outside the loop.
417 /// However, there are a few reasons this is not done here. Hoisting simple
418 /// arithmetic is a low-level optimization that often isn't very
419 /// important until late in the optimization process. In fact, passes
420 /// like InstructionCombining will combine GEPs, even if it means
421 /// pushing loop-invariant computation down into loops, so even if the
422 /// GEPs were split here, the work would quickly be undone. The
423 /// LoopStrengthReduction pass, which is usually run quite late (and
424 /// after the last InstructionCombining pass), takes care of hoisting
425 /// loop-invariant portions of expressions, after considering what
426 /// can be folded using target addressing modes.
427 ///
428 Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin,
429                                     const SCEV *const *op_end,
430                                     PointerType *PTy,
431                                     Type *Ty,
432                                     Value *V) {
433   Type *OriginalElTy = PTy->getElementType();
434   Type *ElTy = OriginalElTy;
435   SmallVector<Value *, 4> GepIndices;
436   SmallVector<const SCEV *, 8> Ops(op_begin, op_end);
437   bool AnyNonZeroIndices = false;
438 
439   // Split AddRecs up into parts as either of the parts may be usable
440   // without the other.
441   SplitAddRecs(Ops, Ty, SE);
442 
443   Type *IntIdxTy = DL.getIndexType(PTy);
444 
445   // Descend down the pointer's type and attempt to convert the other
446   // operands into GEP indices, at each level. The first index in a GEP
447   // indexes into the array implied by the pointer operand; the rest of
448   // the indices index into the element or field type selected by the
449   // preceding index.
450   for (;;) {
451     // If the scale size is not 0, attempt to factor out a scale for
452     // array indexing.
453     SmallVector<const SCEV *, 8> ScaledOps;
454     if (ElTy->isSized()) {
455       const SCEV *ElSize = SE.getSizeOfExpr(IntIdxTy, ElTy);
456       if (!ElSize->isZero()) {
457         SmallVector<const SCEV *, 8> NewOps;
458         for (const SCEV *Op : Ops) {
459           const SCEV *Remainder = SE.getConstant(Ty, 0);
460           if (FactorOutConstant(Op, Remainder, ElSize, SE, DL)) {
461             // Op now has ElSize factored out.
462             ScaledOps.push_back(Op);
463             if (!Remainder->isZero())
464               NewOps.push_back(Remainder);
465             AnyNonZeroIndices = true;
466           } else {
467             // The operand was not divisible, so add it to the list of operands
468             // we'll scan next iteration.
469             NewOps.push_back(Op);
470           }
471         }
472         // If we made any changes, update Ops.
473         if (!ScaledOps.empty()) {
474           Ops = NewOps;
475           SimplifyAddOperands(Ops, Ty, SE);
476         }
477       }
478     }
479 
480     // Record the scaled array index for this level of the type. If
481     // we didn't find any operands that could be factored, tentatively
482     // assume that element zero was selected (since the zero offset
483     // would obviously be folded away).
484     Value *Scaled =
485         ScaledOps.empty()
486             ? Constant::getNullValue(Ty)
487             : expandCodeForImpl(SE.getAddExpr(ScaledOps), Ty, false);
488     GepIndices.push_back(Scaled);
489 
490     // Collect struct field index operands.
491     while (StructType *STy = dyn_cast<StructType>(ElTy)) {
492       bool FoundFieldNo = false;
493       // An empty struct has no fields.
494       if (STy->getNumElements() == 0) break;
495       // Field offsets are known. See if a constant offset falls within any of
496       // the struct fields.
497       if (Ops.empty())
498         break;
499       if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0]))
500         if (SE.getTypeSizeInBits(C->getType()) <= 64) {
501           const StructLayout &SL = *DL.getStructLayout(STy);
502           uint64_t FullOffset = C->getValue()->getZExtValue();
503           if (FullOffset < SL.getSizeInBytes()) {
504             unsigned ElIdx = SL.getElementContainingOffset(FullOffset);
505             GepIndices.push_back(
506                 ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx));
507             ElTy = STy->getTypeAtIndex(ElIdx);
508             Ops[0] =
509                 SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx));
510             AnyNonZeroIndices = true;
511             FoundFieldNo = true;
512           }
513         }
514       // If no struct field offsets were found, tentatively assume that
515       // field zero was selected (since the zero offset would obviously
516       // be folded away).
517       if (!FoundFieldNo) {
518         ElTy = STy->getTypeAtIndex(0u);
519         GepIndices.push_back(
520           Constant::getNullValue(Type::getInt32Ty(Ty->getContext())));
521       }
522     }
523 
524     if (ArrayType *ATy = dyn_cast<ArrayType>(ElTy))
525       ElTy = ATy->getElementType();
526     else
527       // FIXME: Handle VectorType.
528       // E.g., If ElTy is scalable vector, then ElSize is not a compile-time
529       // constant, therefore can not be factored out. The generated IR is less
530       // ideal with base 'V' cast to i8* and do ugly getelementptr over that.
531       break;
532   }
533 
534   // If none of the operands were convertible to proper GEP indices, cast
535   // the base to i8* and do an ugly getelementptr with that. It's still
536   // better than ptrtoint+arithmetic+inttoptr at least.
537   if (!AnyNonZeroIndices) {
538     // Cast the base to i8*.
539     V = InsertNoopCastOfTo(V,
540        Type::getInt8PtrTy(Ty->getContext(), PTy->getAddressSpace()));
541 
542     assert(!isa<Instruction>(V) ||
543            SE.DT.dominates(cast<Instruction>(V), &*Builder.GetInsertPoint()));
544 
545     // Expand the operands for a plain byte offset.
546     Value *Idx = expandCodeForImpl(SE.getAddExpr(Ops), Ty, false);
547 
548     // Fold a GEP with constant operands.
549     if (Constant *CLHS = dyn_cast<Constant>(V))
550       if (Constant *CRHS = dyn_cast<Constant>(Idx))
551         return ConstantExpr::getGetElementPtr(Type::getInt8Ty(Ty->getContext()),
552                                               CLHS, CRHS);
553 
554     // Do a quick scan to see if we have this GEP nearby.  If so, reuse it.
555     unsigned ScanLimit = 6;
556     BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
557     // Scanning starts from the last instruction before the insertion point.
558     BasicBlock::iterator IP = Builder.GetInsertPoint();
559     if (IP != BlockBegin) {
560       --IP;
561       for (; ScanLimit; --IP, --ScanLimit) {
562         // Don't count dbg.value against the ScanLimit, to avoid perturbing the
563         // generated code.
564         if (isa<DbgInfoIntrinsic>(IP))
565           ScanLimit++;
566         if (IP->getOpcode() == Instruction::GetElementPtr &&
567             IP->getOperand(0) == V && IP->getOperand(1) == Idx)
568           return &*IP;
569         if (IP == BlockBegin) break;
570       }
571     }
572 
573     // Save the original insertion point so we can restore it when we're done.
574     SCEVInsertPointGuard Guard(Builder, this);
575 
576     // Move the insertion point out of as many loops as we can.
577     while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
578       if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break;
579       BasicBlock *Preheader = L->getLoopPreheader();
580       if (!Preheader) break;
581 
582       // Ok, move up a level.
583       Builder.SetInsertPoint(Preheader->getTerminator());
584     }
585 
586     // Emit a GEP.
587     return Builder.CreateGEP(Builder.getInt8Ty(), V, Idx, "uglygep");
588   }
589 
590   {
591     SCEVInsertPointGuard Guard(Builder, this);
592 
593     // Move the insertion point out of as many loops as we can.
594     while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
595       if (!L->isLoopInvariant(V)) break;
596 
597       bool AnyIndexNotLoopInvariant = any_of(
598           GepIndices, [L](Value *Op) { return !L->isLoopInvariant(Op); });
599 
600       if (AnyIndexNotLoopInvariant)
601         break;
602 
603       BasicBlock *Preheader = L->getLoopPreheader();
604       if (!Preheader) break;
605 
606       // Ok, move up a level.
607       Builder.SetInsertPoint(Preheader->getTerminator());
608     }
609 
610     // Insert a pretty getelementptr. Note that this GEP is not marked inbounds,
611     // because ScalarEvolution may have changed the address arithmetic to
612     // compute a value which is beyond the end of the allocated object.
613     Value *Casted = V;
614     if (V->getType() != PTy)
615       Casted = InsertNoopCastOfTo(Casted, PTy);
616     Value *GEP = Builder.CreateGEP(OriginalElTy, Casted, GepIndices, "scevgep");
617     Ops.push_back(SE.getUnknown(GEP));
618   }
619 
620   return expand(SE.getAddExpr(Ops));
621 }
622 
623 Value *SCEVExpander::expandAddToGEP(const SCEV *Op, PointerType *PTy, Type *Ty,
624                                     Value *V) {
625   const SCEV *const Ops[1] = {Op};
626   return expandAddToGEP(Ops, Ops + 1, PTy, Ty, V);
627 }
628 
629 /// PickMostRelevantLoop - Given two loops pick the one that's most relevant for
630 /// SCEV expansion. If they are nested, this is the most nested. If they are
631 /// neighboring, pick the later.
632 static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B,
633                                         DominatorTree &DT) {
634   if (!A) return B;
635   if (!B) return A;
636   if (A->contains(B)) return B;
637   if (B->contains(A)) return A;
638   if (DT.dominates(A->getHeader(), B->getHeader())) return B;
639   if (DT.dominates(B->getHeader(), A->getHeader())) return A;
640   return A; // Arbitrarily break the tie.
641 }
642 
643 /// getRelevantLoop - Get the most relevant loop associated with the given
644 /// expression, according to PickMostRelevantLoop.
645 const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) {
646   // Test whether we've already computed the most relevant loop for this SCEV.
647   auto Pair = RelevantLoops.insert(std::make_pair(S, nullptr));
648   if (!Pair.second)
649     return Pair.first->second;
650 
651   if (isa<SCEVConstant>(S))
652     // A constant has no relevant loops.
653     return nullptr;
654   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
655     if (const Instruction *I = dyn_cast<Instruction>(U->getValue()))
656       return Pair.first->second = SE.LI.getLoopFor(I->getParent());
657     // A non-instruction has no relevant loops.
658     return nullptr;
659   }
660   if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) {
661     const Loop *L = nullptr;
662     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
663       L = AR->getLoop();
664     for (const SCEV *Op : N->operands())
665       L = PickMostRelevantLoop(L, getRelevantLoop(Op), SE.DT);
666     return RelevantLoops[N] = L;
667   }
668   if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) {
669     const Loop *Result = getRelevantLoop(C->getOperand());
670     return RelevantLoops[C] = Result;
671   }
672   if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
673     const Loop *Result = PickMostRelevantLoop(
674         getRelevantLoop(D->getLHS()), getRelevantLoop(D->getRHS()), SE.DT);
675     return RelevantLoops[D] = Result;
676   }
677   llvm_unreachable("Unexpected SCEV type!");
678 }
679 
680 namespace {
681 
682 /// LoopCompare - Compare loops by PickMostRelevantLoop.
683 class LoopCompare {
684   DominatorTree &DT;
685 public:
686   explicit LoopCompare(DominatorTree &dt) : DT(dt) {}
687 
688   bool operator()(std::pair<const Loop *, const SCEV *> LHS,
689                   std::pair<const Loop *, const SCEV *> RHS) const {
690     // Keep pointer operands sorted at the end.
691     if (LHS.second->getType()->isPointerTy() !=
692         RHS.second->getType()->isPointerTy())
693       return LHS.second->getType()->isPointerTy();
694 
695     // Compare loops with PickMostRelevantLoop.
696     if (LHS.first != RHS.first)
697       return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first;
698 
699     // If one operand is a non-constant negative and the other is not,
700     // put the non-constant negative on the right so that a sub can
701     // be used instead of a negate and add.
702     if (LHS.second->isNonConstantNegative()) {
703       if (!RHS.second->isNonConstantNegative())
704         return false;
705     } else if (RHS.second->isNonConstantNegative())
706       return true;
707 
708     // Otherwise they are equivalent according to this comparison.
709     return false;
710   }
711 };
712 
713 }
714 
715 Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
716   Type *Ty = SE.getEffectiveSCEVType(S->getType());
717 
718   // Collect all the add operands in a loop, along with their associated loops.
719   // Iterate in reverse so that constants are emitted last, all else equal, and
720   // so that pointer operands are inserted first, which the code below relies on
721   // to form more involved GEPs.
722   SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
723   for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(S->op_end()),
724        E(S->op_begin()); I != E; ++I)
725     OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I));
726 
727   // Sort by loop. Use a stable sort so that constants follow non-constants and
728   // pointer operands precede non-pointer operands.
729   llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT));
730 
731   // Emit instructions to add all the operands. Hoist as much as possible
732   // out of loops, and form meaningful getelementptrs where possible.
733   Value *Sum = nullptr;
734   for (auto I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E;) {
735     const Loop *CurLoop = I->first;
736     const SCEV *Op = I->second;
737     if (!Sum) {
738       // This is the first operand. Just expand it.
739       Sum = expand(Op);
740       ++I;
741     } else if (PointerType *PTy = dyn_cast<PointerType>(Sum->getType())) {
742       // The running sum expression is a pointer. Try to form a getelementptr
743       // at this level with that as the base.
744       SmallVector<const SCEV *, 4> NewOps;
745       for (; I != E && I->first == CurLoop; ++I) {
746         // If the operand is SCEVUnknown and not instructions, peek through
747         // it, to enable more of it to be folded into the GEP.
748         const SCEV *X = I->second;
749         if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X))
750           if (!isa<Instruction>(U->getValue()))
751             X = SE.getSCEV(U->getValue());
752         NewOps.push_back(X);
753       }
754       Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, Sum);
755     } else if (PointerType *PTy = dyn_cast<PointerType>(Op->getType())) {
756       // The running sum is an integer, and there's a pointer at this level.
757       // Try to form a getelementptr. If the running sum is instructions,
758       // use a SCEVUnknown to avoid re-analyzing them.
759       SmallVector<const SCEV *, 4> NewOps;
760       NewOps.push_back(isa<Instruction>(Sum) ? SE.getUnknown(Sum) :
761                                                SE.getSCEV(Sum));
762       for (++I; I != E && I->first == CurLoop; ++I)
763         NewOps.push_back(I->second);
764       Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, expand(Op));
765     } else if (Op->isNonConstantNegative()) {
766       // Instead of doing a negate and add, just do a subtract.
767       Value *W = expandCodeForImpl(SE.getNegativeSCEV(Op), Ty, false);
768       Sum = InsertNoopCastOfTo(Sum, Ty);
769       Sum = InsertBinop(Instruction::Sub, Sum, W, SCEV::FlagAnyWrap,
770                         /*IsSafeToHoist*/ true);
771       ++I;
772     } else {
773       // A simple add.
774       Value *W = expandCodeForImpl(Op, Ty, false);
775       Sum = InsertNoopCastOfTo(Sum, Ty);
776       // Canonicalize a constant to the RHS.
777       if (isa<Constant>(Sum)) std::swap(Sum, W);
778       Sum = InsertBinop(Instruction::Add, Sum, W, S->getNoWrapFlags(),
779                         /*IsSafeToHoist*/ true);
780       ++I;
781     }
782   }
783 
784   return Sum;
785 }
786 
787 Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) {
788   Type *Ty = SE.getEffectiveSCEVType(S->getType());
789 
790   // Collect all the mul operands in a loop, along with their associated loops.
791   // Iterate in reverse so that constants are emitted last, all else equal.
792   SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
793   for (std::reverse_iterator<SCEVMulExpr::op_iterator> I(S->op_end()),
794        E(S->op_begin()); I != E; ++I)
795     OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I));
796 
797   // Sort by loop. Use a stable sort so that constants follow non-constants.
798   llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT));
799 
800   // Emit instructions to mul all the operands. Hoist as much as possible
801   // out of loops.
802   Value *Prod = nullptr;
803   auto I = OpsAndLoops.begin();
804 
805   // Expand the calculation of X pow N in the following manner:
806   // Let N = P1 + P2 + ... + PK, where all P are powers of 2. Then:
807   // X pow N = (X pow P1) * (X pow P2) * ... * (X pow PK).
808   const auto ExpandOpBinPowN = [this, &I, &OpsAndLoops, &Ty]() {
809     auto E = I;
810     // Calculate how many times the same operand from the same loop is included
811     // into this power.
812     uint64_t Exponent = 0;
813     const uint64_t MaxExponent = UINT64_MAX >> 1;
814     // No one sane will ever try to calculate such huge exponents, but if we
815     // need this, we stop on UINT64_MAX / 2 because we need to exit the loop
816     // below when the power of 2 exceeds our Exponent, and we want it to be
817     // 1u << 31 at most to not deal with unsigned overflow.
818     while (E != OpsAndLoops.end() && *I == *E && Exponent != MaxExponent) {
819       ++Exponent;
820       ++E;
821     }
822     assert(Exponent > 0 && "Trying to calculate a zeroth exponent of operand?");
823 
824     // Calculate powers with exponents 1, 2, 4, 8 etc. and include those of them
825     // that are needed into the result.
826     Value *P = expandCodeForImpl(I->second, Ty, false);
827     Value *Result = nullptr;
828     if (Exponent & 1)
829       Result = P;
830     for (uint64_t BinExp = 2; BinExp <= Exponent; BinExp <<= 1) {
831       P = InsertBinop(Instruction::Mul, P, P, SCEV::FlagAnyWrap,
832                       /*IsSafeToHoist*/ true);
833       if (Exponent & BinExp)
834         Result = Result ? InsertBinop(Instruction::Mul, Result, P,
835                                       SCEV::FlagAnyWrap,
836                                       /*IsSafeToHoist*/ true)
837                         : P;
838     }
839 
840     I = E;
841     assert(Result && "Nothing was expanded?");
842     return Result;
843   };
844 
845   while (I != OpsAndLoops.end()) {
846     if (!Prod) {
847       // This is the first operand. Just expand it.
848       Prod = ExpandOpBinPowN();
849     } else if (I->second->isAllOnesValue()) {
850       // Instead of doing a multiply by negative one, just do a negate.
851       Prod = InsertNoopCastOfTo(Prod, Ty);
852       Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod,
853                          SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true);
854       ++I;
855     } else {
856       // A simple mul.
857       Value *W = ExpandOpBinPowN();
858       Prod = InsertNoopCastOfTo(Prod, Ty);
859       // Canonicalize a constant to the RHS.
860       if (isa<Constant>(Prod)) std::swap(Prod, W);
861       const APInt *RHS;
862       if (match(W, m_Power2(RHS))) {
863         // Canonicalize Prod*(1<<C) to Prod<<C.
864         assert(!Ty->isVectorTy() && "vector types are not SCEVable");
865         auto NWFlags = S->getNoWrapFlags();
866         // clear nsw flag if shl will produce poison value.
867         if (RHS->logBase2() == RHS->getBitWidth() - 1)
868           NWFlags = ScalarEvolution::clearFlags(NWFlags, SCEV::FlagNSW);
869         Prod = InsertBinop(Instruction::Shl, Prod,
870                            ConstantInt::get(Ty, RHS->logBase2()), NWFlags,
871                            /*IsSafeToHoist*/ true);
872       } else {
873         Prod = InsertBinop(Instruction::Mul, Prod, W, S->getNoWrapFlags(),
874                            /*IsSafeToHoist*/ true);
875       }
876     }
877   }
878 
879   return Prod;
880 }
881 
882 Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
883   Type *Ty = SE.getEffectiveSCEVType(S->getType());
884 
885   Value *LHS = expandCodeForImpl(S->getLHS(), Ty, false);
886   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) {
887     const APInt &RHS = SC->getAPInt();
888     if (RHS.isPowerOf2())
889       return InsertBinop(Instruction::LShr, LHS,
890                          ConstantInt::get(Ty, RHS.logBase2()),
891                          SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true);
892   }
893 
894   Value *RHS = expandCodeForImpl(S->getRHS(), Ty, false);
895   return InsertBinop(Instruction::UDiv, LHS, RHS, SCEV::FlagAnyWrap,
896                      /*IsSafeToHoist*/ SE.isKnownNonZero(S->getRHS()));
897 }
898 
899 /// Move parts of Base into Rest to leave Base with the minimal
900 /// expression that provides a pointer operand suitable for a
901 /// GEP expansion.
902 static void ExposePointerBase(const SCEV *&Base, const SCEV *&Rest,
903                               ScalarEvolution &SE) {
904   while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Base)) {
905     Base = A->getStart();
906     Rest = SE.getAddExpr(Rest,
907                          SE.getAddRecExpr(SE.getConstant(A->getType(), 0),
908                                           A->getStepRecurrence(SE),
909                                           A->getLoop(),
910                                           A->getNoWrapFlags(SCEV::FlagNW)));
911   }
912   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Base)) {
913     Base = A->getOperand(A->getNumOperands()-1);
914     SmallVector<const SCEV *, 8> NewAddOps(A->operands());
915     NewAddOps.back() = Rest;
916     Rest = SE.getAddExpr(NewAddOps);
917     ExposePointerBase(Base, Rest, SE);
918   }
919 }
920 
921 /// Determine if this is a well-behaved chain of instructions leading back to
922 /// the PHI. If so, it may be reused by expanded expressions.
923 bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV,
924                                          const Loop *L) {
925   if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) ||
926       (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV)))
927     return false;
928   // If any of the operands don't dominate the insert position, bail.
929   // Addrec operands are always loop-invariant, so this can only happen
930   // if there are instructions which haven't been hoisted.
931   if (L == IVIncInsertLoop) {
932     for (User::op_iterator OI = IncV->op_begin()+1,
933            OE = IncV->op_end(); OI != OE; ++OI)
934       if (Instruction *OInst = dyn_cast<Instruction>(OI))
935         if (!SE.DT.dominates(OInst, IVIncInsertPos))
936           return false;
937   }
938   // Advance to the next instruction.
939   IncV = dyn_cast<Instruction>(IncV->getOperand(0));
940   if (!IncV)
941     return false;
942 
943   if (IncV->mayHaveSideEffects())
944     return false;
945 
946   if (IncV == PN)
947     return true;
948 
949   return isNormalAddRecExprPHI(PN, IncV, L);
950 }
951 
952 /// getIVIncOperand returns an induction variable increment's induction
953 /// variable operand.
954 ///
955 /// If allowScale is set, any type of GEP is allowed as long as the nonIV
956 /// operands dominate InsertPos.
957 ///
958 /// If allowScale is not set, ensure that a GEP increment conforms to one of the
959 /// simple patterns generated by getAddRecExprPHILiterally and
960 /// expandAddtoGEP. If the pattern isn't recognized, return NULL.
961 Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV,
962                                            Instruction *InsertPos,
963                                            bool allowScale) {
964   if (IncV == InsertPos)
965     return nullptr;
966 
967   switch (IncV->getOpcode()) {
968   default:
969     return nullptr;
970   // Check for a simple Add/Sub or GEP of a loop invariant step.
971   case Instruction::Add:
972   case Instruction::Sub: {
973     Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1));
974     if (!OInst || SE.DT.dominates(OInst, InsertPos))
975       return dyn_cast<Instruction>(IncV->getOperand(0));
976     return nullptr;
977   }
978   case Instruction::BitCast:
979     return dyn_cast<Instruction>(IncV->getOperand(0));
980   case Instruction::GetElementPtr:
981     for (auto I = IncV->op_begin() + 1, E = IncV->op_end(); I != E; ++I) {
982       if (isa<Constant>(*I))
983         continue;
984       if (Instruction *OInst = dyn_cast<Instruction>(*I)) {
985         if (!SE.DT.dominates(OInst, InsertPos))
986           return nullptr;
987       }
988       if (allowScale) {
989         // allow any kind of GEP as long as it can be hoisted.
990         continue;
991       }
992       // This must be a pointer addition of constants (pretty), which is already
993       // handled, or some number of address-size elements (ugly). Ugly geps
994       // have 2 operands. i1* is used by the expander to represent an
995       // address-size element.
996       if (IncV->getNumOperands() != 2)
997         return nullptr;
998       unsigned AS = cast<PointerType>(IncV->getType())->getAddressSpace();
999       if (IncV->getType() != Type::getInt1PtrTy(SE.getContext(), AS)
1000           && IncV->getType() != Type::getInt8PtrTy(SE.getContext(), AS))
1001         return nullptr;
1002       break;
1003     }
1004     return dyn_cast<Instruction>(IncV->getOperand(0));
1005   }
1006 }
1007 
1008 /// If the insert point of the current builder or any of the builders on the
1009 /// stack of saved builders has 'I' as its insert point, update it to point to
1010 /// the instruction after 'I'.  This is intended to be used when the instruction
1011 /// 'I' is being moved.  If this fixup is not done and 'I' is moved to a
1012 /// different block, the inconsistent insert point (with a mismatched
1013 /// Instruction and Block) can lead to an instruction being inserted in a block
1014 /// other than its parent.
1015 void SCEVExpander::fixupInsertPoints(Instruction *I) {
1016   BasicBlock::iterator It(*I);
1017   BasicBlock::iterator NewInsertPt = std::next(It);
1018   if (Builder.GetInsertPoint() == It)
1019     Builder.SetInsertPoint(&*NewInsertPt);
1020   for (auto *InsertPtGuard : InsertPointGuards)
1021     if (InsertPtGuard->GetInsertPoint() == It)
1022       InsertPtGuard->SetInsertPoint(NewInsertPt);
1023 }
1024 
1025 /// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make
1026 /// it available to other uses in this loop. Recursively hoist any operands,
1027 /// until we reach a value that dominates InsertPos.
1028 bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos) {
1029   if (SE.DT.dominates(IncV, InsertPos))
1030       return true;
1031 
1032   // InsertPos must itself dominate IncV so that IncV's new position satisfies
1033   // its existing users.
1034   if (isa<PHINode>(InsertPos) ||
1035       !SE.DT.dominates(InsertPos->getParent(), IncV->getParent()))
1036     return false;
1037 
1038   if (!SE.LI.movementPreservesLCSSAForm(IncV, InsertPos))
1039     return false;
1040 
1041   // Check that the chain of IV operands leading back to Phi can be hoisted.
1042   SmallVector<Instruction*, 4> IVIncs;
1043   for(;;) {
1044     Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true);
1045     if (!Oper)
1046       return false;
1047     // IncV is safe to hoist.
1048     IVIncs.push_back(IncV);
1049     IncV = Oper;
1050     if (SE.DT.dominates(IncV, InsertPos))
1051       break;
1052   }
1053   for (auto I = IVIncs.rbegin(), E = IVIncs.rend(); I != E; ++I) {
1054     fixupInsertPoints(*I);
1055     (*I)->moveBefore(InsertPos);
1056   }
1057   return true;
1058 }
1059 
1060 /// Determine if this cyclic phi is in a form that would have been generated by
1061 /// LSR. We don't care if the phi was actually expanded in this pass, as long
1062 /// as it is in a low-cost form, for example, no implied multiplication. This
1063 /// should match any patterns generated by getAddRecExprPHILiterally and
1064 /// expandAddtoGEP.
1065 bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV,
1066                                            const Loop *L) {
1067   for(Instruction *IVOper = IncV;
1068       (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(),
1069                                 /*allowScale=*/false));) {
1070     if (IVOper == PN)
1071       return true;
1072   }
1073   return false;
1074 }
1075 
1076 /// expandIVInc - Expand an IV increment at Builder's current InsertPos.
1077 /// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may
1078 /// need to materialize IV increments elsewhere to handle difficult situations.
1079 Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L,
1080                                  Type *ExpandTy, Type *IntTy,
1081                                  bool useSubtract) {
1082   Value *IncV;
1083   // If the PHI is a pointer, use a GEP, otherwise use an add or sub.
1084   if (ExpandTy->isPointerTy()) {
1085     PointerType *GEPPtrTy = cast<PointerType>(ExpandTy);
1086     // If the step isn't constant, don't use an implicitly scaled GEP, because
1087     // that would require a multiply inside the loop.
1088     if (!isa<ConstantInt>(StepV))
1089       GEPPtrTy = PointerType::get(Type::getInt1Ty(SE.getContext()),
1090                                   GEPPtrTy->getAddressSpace());
1091     IncV = expandAddToGEP(SE.getSCEV(StepV), GEPPtrTy, IntTy, PN);
1092     if (IncV->getType() != PN->getType())
1093       IncV = Builder.CreateBitCast(IncV, PN->getType());
1094   } else {
1095     IncV = useSubtract ?
1096       Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") :
1097       Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next");
1098   }
1099   return IncV;
1100 }
1101 
1102 /// Hoist the addrec instruction chain rooted in the loop phi above the
1103 /// position. This routine assumes that this is possible (has been checked).
1104 void SCEVExpander::hoistBeforePos(DominatorTree *DT, Instruction *InstToHoist,
1105                                   Instruction *Pos, PHINode *LoopPhi) {
1106   do {
1107     if (DT->dominates(InstToHoist, Pos))
1108       break;
1109     // Make sure the increment is where we want it. But don't move it
1110     // down past a potential existing post-inc user.
1111     fixupInsertPoints(InstToHoist);
1112     InstToHoist->moveBefore(Pos);
1113     Pos = InstToHoist;
1114     InstToHoist = cast<Instruction>(InstToHoist->getOperand(0));
1115   } while (InstToHoist != LoopPhi);
1116 }
1117 
1118 /// Check whether we can cheaply express the requested SCEV in terms of
1119 /// the available PHI SCEV by truncation and/or inversion of the step.
1120 static bool canBeCheaplyTransformed(ScalarEvolution &SE,
1121                                     const SCEVAddRecExpr *Phi,
1122                                     const SCEVAddRecExpr *Requested,
1123                                     bool &InvertStep) {
1124   Type *PhiTy = SE.getEffectiveSCEVType(Phi->getType());
1125   Type *RequestedTy = SE.getEffectiveSCEVType(Requested->getType());
1126 
1127   if (RequestedTy->getIntegerBitWidth() > PhiTy->getIntegerBitWidth())
1128     return false;
1129 
1130   // Try truncate it if necessary.
1131   Phi = dyn_cast<SCEVAddRecExpr>(SE.getTruncateOrNoop(Phi, RequestedTy));
1132   if (!Phi)
1133     return false;
1134 
1135   // Check whether truncation will help.
1136   if (Phi == Requested) {
1137     InvertStep = false;
1138     return true;
1139   }
1140 
1141   // Check whether inverting will help: {R,+,-1} == R - {0,+,1}.
1142   if (SE.getAddExpr(Requested->getStart(),
1143                     SE.getNegativeSCEV(Requested)) == Phi) {
1144     InvertStep = true;
1145     return true;
1146   }
1147 
1148   return false;
1149 }
1150 
1151 static bool IsIncrementNSW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) {
1152   if (!isa<IntegerType>(AR->getType()))
1153     return false;
1154 
1155   unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth();
1156   Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2);
1157   const SCEV *Step = AR->getStepRecurrence(SE);
1158   const SCEV *OpAfterExtend = SE.getAddExpr(SE.getSignExtendExpr(Step, WideTy),
1159                                             SE.getSignExtendExpr(AR, WideTy));
1160   const SCEV *ExtendAfterOp =
1161     SE.getSignExtendExpr(SE.getAddExpr(AR, Step), WideTy);
1162   return ExtendAfterOp == OpAfterExtend;
1163 }
1164 
1165 static bool IsIncrementNUW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) {
1166   if (!isa<IntegerType>(AR->getType()))
1167     return false;
1168 
1169   unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth();
1170   Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2);
1171   const SCEV *Step = AR->getStepRecurrence(SE);
1172   const SCEV *OpAfterExtend = SE.getAddExpr(SE.getZeroExtendExpr(Step, WideTy),
1173                                             SE.getZeroExtendExpr(AR, WideTy));
1174   const SCEV *ExtendAfterOp =
1175     SE.getZeroExtendExpr(SE.getAddExpr(AR, Step), WideTy);
1176   return ExtendAfterOp == OpAfterExtend;
1177 }
1178 
1179 /// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand
1180 /// the base addrec, which is the addrec without any non-loop-dominating
1181 /// values, and return the PHI.
1182 PHINode *
1183 SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
1184                                         const Loop *L,
1185                                         Type *ExpandTy,
1186                                         Type *IntTy,
1187                                         Type *&TruncTy,
1188                                         bool &InvertStep) {
1189   assert((!IVIncInsertLoop||IVIncInsertPos) && "Uninitialized insert position");
1190 
1191   // Reuse a previously-inserted PHI, if present.
1192   BasicBlock *LatchBlock = L->getLoopLatch();
1193   if (LatchBlock) {
1194     PHINode *AddRecPhiMatch = nullptr;
1195     Instruction *IncV = nullptr;
1196     TruncTy = nullptr;
1197     InvertStep = false;
1198 
1199     // Only try partially matching scevs that need truncation and/or
1200     // step-inversion if we know this loop is outside the current loop.
1201     bool TryNonMatchingSCEV =
1202         IVIncInsertLoop &&
1203         SE.DT.properlyDominates(LatchBlock, IVIncInsertLoop->getHeader());
1204 
1205     for (PHINode &PN : L->getHeader()->phis()) {
1206       if (!SE.isSCEVable(PN.getType()))
1207         continue;
1208 
1209       // We should not look for a incomplete PHI. Getting SCEV for a incomplete
1210       // PHI has no meaning at all.
1211       if (!PN.isComplete()) {
1212         DEBUG_WITH_TYPE(
1213             DebugType, dbgs() << "One incomplete PHI is found: " << PN << "\n");
1214         continue;
1215       }
1216 
1217       const SCEVAddRecExpr *PhiSCEV = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&PN));
1218       if (!PhiSCEV)
1219         continue;
1220 
1221       bool IsMatchingSCEV = PhiSCEV == Normalized;
1222       // We only handle truncation and inversion of phi recurrences for the
1223       // expanded expression if the expanded expression's loop dominates the
1224       // loop we insert to. Check now, so we can bail out early.
1225       if (!IsMatchingSCEV && !TryNonMatchingSCEV)
1226           continue;
1227 
1228       // TODO: this possibly can be reworked to avoid this cast at all.
1229       Instruction *TempIncV =
1230           dyn_cast<Instruction>(PN.getIncomingValueForBlock(LatchBlock));
1231       if (!TempIncV)
1232         continue;
1233 
1234       // Check whether we can reuse this PHI node.
1235       if (LSRMode) {
1236         if (!isExpandedAddRecExprPHI(&PN, TempIncV, L))
1237           continue;
1238         if (L == IVIncInsertLoop && !hoistIVInc(TempIncV, IVIncInsertPos))
1239           continue;
1240       } else {
1241         if (!isNormalAddRecExprPHI(&PN, TempIncV, L))
1242           continue;
1243       }
1244 
1245       // Stop if we have found an exact match SCEV.
1246       if (IsMatchingSCEV) {
1247         IncV = TempIncV;
1248         TruncTy = nullptr;
1249         InvertStep = false;
1250         AddRecPhiMatch = &PN;
1251         break;
1252       }
1253 
1254       // Try whether the phi can be translated into the requested form
1255       // (truncated and/or offset by a constant).
1256       if ((!TruncTy || InvertStep) &&
1257           canBeCheaplyTransformed(SE, PhiSCEV, Normalized, InvertStep)) {
1258         // Record the phi node. But don't stop we might find an exact match
1259         // later.
1260         AddRecPhiMatch = &PN;
1261         IncV = TempIncV;
1262         TruncTy = SE.getEffectiveSCEVType(Normalized->getType());
1263       }
1264     }
1265 
1266     if (AddRecPhiMatch) {
1267       // Potentially, move the increment. We have made sure in
1268       // isExpandedAddRecExprPHI or hoistIVInc that this is possible.
1269       if (L == IVIncInsertLoop)
1270         hoistBeforePos(&SE.DT, IncV, IVIncInsertPos, AddRecPhiMatch);
1271 
1272       // Ok, the add recurrence looks usable.
1273       // Remember this PHI, even in post-inc mode.
1274       InsertedValues.insert(AddRecPhiMatch);
1275       // Remember the increment.
1276       rememberInstruction(IncV);
1277       // Those values were not actually inserted but re-used.
1278       ReusedValues.insert(AddRecPhiMatch);
1279       ReusedValues.insert(IncV);
1280       return AddRecPhiMatch;
1281     }
1282   }
1283 
1284   // Save the original insertion point so we can restore it when we're done.
1285   SCEVInsertPointGuard Guard(Builder, this);
1286 
1287   // Another AddRec may need to be recursively expanded below. For example, if
1288   // this AddRec is quadratic, the StepV may itself be an AddRec in this
1289   // loop. Remove this loop from the PostIncLoops set before expanding such
1290   // AddRecs. Otherwise, we cannot find a valid position for the step
1291   // (i.e. StepV can never dominate its loop header).  Ideally, we could do
1292   // SavedIncLoops.swap(PostIncLoops), but we generally have a single element,
1293   // so it's not worth implementing SmallPtrSet::swap.
1294   PostIncLoopSet SavedPostIncLoops = PostIncLoops;
1295   PostIncLoops.clear();
1296 
1297   // Expand code for the start value into the loop preheader.
1298   assert(L->getLoopPreheader() &&
1299          "Can't expand add recurrences without a loop preheader!");
1300   Value *StartV =
1301       expandCodeForImpl(Normalized->getStart(), ExpandTy,
1302                         L->getLoopPreheader()->getTerminator(), false);
1303 
1304   // StartV must have been be inserted into L's preheader to dominate the new
1305   // phi.
1306   assert(!isa<Instruction>(StartV) ||
1307          SE.DT.properlyDominates(cast<Instruction>(StartV)->getParent(),
1308                                  L->getHeader()));
1309 
1310   // Expand code for the step value. Do this before creating the PHI so that PHI
1311   // reuse code doesn't see an incomplete PHI.
1312   const SCEV *Step = Normalized->getStepRecurrence(SE);
1313   // If the stride is negative, insert a sub instead of an add for the increment
1314   // (unless it's a constant, because subtracts of constants are canonicalized
1315   // to adds).
1316   bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
1317   if (useSubtract)
1318     Step = SE.getNegativeSCEV(Step);
1319   // Expand the step somewhere that dominates the loop header.
1320   Value *StepV = expandCodeForImpl(
1321       Step, IntTy, &*L->getHeader()->getFirstInsertionPt(), false);
1322 
1323   // The no-wrap behavior proved by IsIncrement(NUW|NSW) is only applicable if
1324   // we actually do emit an addition.  It does not apply if we emit a
1325   // subtraction.
1326   bool IncrementIsNUW = !useSubtract && IsIncrementNUW(SE, Normalized);
1327   bool IncrementIsNSW = !useSubtract && IsIncrementNSW(SE, Normalized);
1328 
1329   // Create the PHI.
1330   BasicBlock *Header = L->getHeader();
1331   Builder.SetInsertPoint(Header, Header->begin());
1332   pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
1333   PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE),
1334                                   Twine(IVName) + ".iv");
1335 
1336   // Create the step instructions and populate the PHI.
1337   for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
1338     BasicBlock *Pred = *HPI;
1339 
1340     // Add a start value.
1341     if (!L->contains(Pred)) {
1342       PN->addIncoming(StartV, Pred);
1343       continue;
1344     }
1345 
1346     // Create a step value and add it to the PHI.
1347     // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the
1348     // instructions at IVIncInsertPos.
1349     Instruction *InsertPos = L == IVIncInsertLoop ?
1350       IVIncInsertPos : Pred->getTerminator();
1351     Builder.SetInsertPoint(InsertPos);
1352     Value *IncV = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
1353 
1354     if (isa<OverflowingBinaryOperator>(IncV)) {
1355       if (IncrementIsNUW)
1356         cast<BinaryOperator>(IncV)->setHasNoUnsignedWrap();
1357       if (IncrementIsNSW)
1358         cast<BinaryOperator>(IncV)->setHasNoSignedWrap();
1359     }
1360     PN->addIncoming(IncV, Pred);
1361   }
1362 
1363   // After expanding subexpressions, restore the PostIncLoops set so the caller
1364   // can ensure that IVIncrement dominates the current uses.
1365   PostIncLoops = SavedPostIncLoops;
1366 
1367   // Remember this PHI, even in post-inc mode.
1368   InsertedValues.insert(PN);
1369 
1370   return PN;
1371 }
1372 
1373 Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) {
1374   Type *STy = S->getType();
1375   Type *IntTy = SE.getEffectiveSCEVType(STy);
1376   const Loop *L = S->getLoop();
1377 
1378   // Determine a normalized form of this expression, which is the expression
1379   // before any post-inc adjustment is made.
1380   const SCEVAddRecExpr *Normalized = S;
1381   if (PostIncLoops.count(L)) {
1382     PostIncLoopSet Loops;
1383     Loops.insert(L);
1384     Normalized = cast<SCEVAddRecExpr>(normalizeForPostIncUse(S, Loops, SE));
1385   }
1386 
1387   // Strip off any non-loop-dominating component from the addrec start.
1388   const SCEV *Start = Normalized->getStart();
1389   const SCEV *PostLoopOffset = nullptr;
1390   if (!SE.properlyDominates(Start, L->getHeader())) {
1391     PostLoopOffset = Start;
1392     Start = SE.getConstant(Normalized->getType(), 0);
1393     Normalized = cast<SCEVAddRecExpr>(
1394       SE.getAddRecExpr(Start, Normalized->getStepRecurrence(SE),
1395                        Normalized->getLoop(),
1396                        Normalized->getNoWrapFlags(SCEV::FlagNW)));
1397   }
1398 
1399   // Strip off any non-loop-dominating component from the addrec step.
1400   const SCEV *Step = Normalized->getStepRecurrence(SE);
1401   const SCEV *PostLoopScale = nullptr;
1402   if (!SE.dominates(Step, L->getHeader())) {
1403     PostLoopScale = Step;
1404     Step = SE.getConstant(Normalized->getType(), 1);
1405     if (!Start->isZero()) {
1406         // The normalization below assumes that Start is constant zero, so if
1407         // it isn't re-associate Start to PostLoopOffset.
1408         assert(!PostLoopOffset && "Start not-null but PostLoopOffset set?");
1409         PostLoopOffset = Start;
1410         Start = SE.getConstant(Normalized->getType(), 0);
1411     }
1412     Normalized =
1413       cast<SCEVAddRecExpr>(SE.getAddRecExpr(
1414                              Start, Step, Normalized->getLoop(),
1415                              Normalized->getNoWrapFlags(SCEV::FlagNW)));
1416   }
1417 
1418   // Expand the core addrec. If we need post-loop scaling, force it to
1419   // expand to an integer type to avoid the need for additional casting.
1420   Type *ExpandTy = PostLoopScale ? IntTy : STy;
1421   // We can't use a pointer type for the addrec if the pointer type is
1422   // non-integral.
1423   Type *AddRecPHIExpandTy =
1424       DL.isNonIntegralPointerType(STy) ? Normalized->getType() : ExpandTy;
1425 
1426   // In some cases, we decide to reuse an existing phi node but need to truncate
1427   // it and/or invert the step.
1428   Type *TruncTy = nullptr;
1429   bool InvertStep = false;
1430   PHINode *PN = getAddRecExprPHILiterally(Normalized, L, AddRecPHIExpandTy,
1431                                           IntTy, TruncTy, InvertStep);
1432 
1433   // Accommodate post-inc mode, if necessary.
1434   Value *Result;
1435   if (!PostIncLoops.count(L))
1436     Result = PN;
1437   else {
1438     // In PostInc mode, use the post-incremented value.
1439     BasicBlock *LatchBlock = L->getLoopLatch();
1440     assert(LatchBlock && "PostInc mode requires a unique loop latch!");
1441     Result = PN->getIncomingValueForBlock(LatchBlock);
1442 
1443     // We might be introducing a new use of the post-inc IV that is not poison
1444     // safe, in which case we should drop poison generating flags. Only keep
1445     // those flags for which SCEV has proven that they always hold.
1446     if (isa<OverflowingBinaryOperator>(Result)) {
1447       auto *I = cast<Instruction>(Result);
1448       if (!S->hasNoUnsignedWrap())
1449         I->setHasNoUnsignedWrap(false);
1450       if (!S->hasNoSignedWrap())
1451         I->setHasNoSignedWrap(false);
1452     }
1453 
1454     // For an expansion to use the postinc form, the client must call
1455     // expandCodeFor with an InsertPoint that is either outside the PostIncLoop
1456     // or dominated by IVIncInsertPos.
1457     if (isa<Instruction>(Result) &&
1458         !SE.DT.dominates(cast<Instruction>(Result),
1459                          &*Builder.GetInsertPoint())) {
1460       // The induction variable's postinc expansion does not dominate this use.
1461       // IVUsers tries to prevent this case, so it is rare. However, it can
1462       // happen when an IVUser outside the loop is not dominated by the latch
1463       // block. Adjusting IVIncInsertPos before expansion begins cannot handle
1464       // all cases. Consider a phi outside whose operand is replaced during
1465       // expansion with the value of the postinc user. Without fundamentally
1466       // changing the way postinc users are tracked, the only remedy is
1467       // inserting an extra IV increment. StepV might fold into PostLoopOffset,
1468       // but hopefully expandCodeFor handles that.
1469       bool useSubtract =
1470         !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
1471       if (useSubtract)
1472         Step = SE.getNegativeSCEV(Step);
1473       Value *StepV;
1474       {
1475         // Expand the step somewhere that dominates the loop header.
1476         SCEVInsertPointGuard Guard(Builder, this);
1477         StepV = expandCodeForImpl(
1478             Step, IntTy, &*L->getHeader()->getFirstInsertionPt(), false);
1479       }
1480       Result = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
1481     }
1482   }
1483 
1484   // We have decided to reuse an induction variable of a dominating loop. Apply
1485   // truncation and/or inversion of the step.
1486   if (TruncTy) {
1487     Type *ResTy = Result->getType();
1488     // Normalize the result type.
1489     if (ResTy != SE.getEffectiveSCEVType(ResTy))
1490       Result = InsertNoopCastOfTo(Result, SE.getEffectiveSCEVType(ResTy));
1491     // Truncate the result.
1492     if (TruncTy != Result->getType())
1493       Result = Builder.CreateTrunc(Result, TruncTy);
1494 
1495     // Invert the result.
1496     if (InvertStep)
1497       Result = Builder.CreateSub(
1498           expandCodeForImpl(Normalized->getStart(), TruncTy, false), Result);
1499   }
1500 
1501   // Re-apply any non-loop-dominating scale.
1502   if (PostLoopScale) {
1503     assert(S->isAffine() && "Can't linearly scale non-affine recurrences.");
1504     Result = InsertNoopCastOfTo(Result, IntTy);
1505     Result = Builder.CreateMul(Result,
1506                                expandCodeForImpl(PostLoopScale, IntTy, false));
1507   }
1508 
1509   // Re-apply any non-loop-dominating offset.
1510   if (PostLoopOffset) {
1511     if (PointerType *PTy = dyn_cast<PointerType>(ExpandTy)) {
1512       if (Result->getType()->isIntegerTy()) {
1513         Value *Base = expandCodeForImpl(PostLoopOffset, ExpandTy, false);
1514         Result = expandAddToGEP(SE.getUnknown(Result), PTy, IntTy, Base);
1515       } else {
1516         Result = expandAddToGEP(PostLoopOffset, PTy, IntTy, Result);
1517       }
1518     } else {
1519       Result = InsertNoopCastOfTo(Result, IntTy);
1520       Result = Builder.CreateAdd(
1521           Result, expandCodeForImpl(PostLoopOffset, IntTy, false));
1522     }
1523   }
1524 
1525   return Result;
1526 }
1527 
1528 Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
1529   // In canonical mode we compute the addrec as an expression of a canonical IV
1530   // using evaluateAtIteration and expand the resulting SCEV expression. This
1531   // way we avoid introducing new IVs to carry on the comutation of the addrec
1532   // throughout the loop.
1533   //
1534   // For nested addrecs evaluateAtIteration might need a canonical IV of a
1535   // type wider than the addrec itself. Emitting a canonical IV of the
1536   // proper type might produce non-legal types, for example expanding an i64
1537   // {0,+,2,+,1} addrec would need an i65 canonical IV. To avoid this just fall
1538   // back to non-canonical mode for nested addrecs.
1539   if (!CanonicalMode || (S->getNumOperands() > 2))
1540     return expandAddRecExprLiterally(S);
1541 
1542   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1543   const Loop *L = S->getLoop();
1544 
1545   // First check for an existing canonical IV in a suitable type.
1546   PHINode *CanonicalIV = nullptr;
1547   if (PHINode *PN = L->getCanonicalInductionVariable())
1548     if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty))
1549       CanonicalIV = PN;
1550 
1551   // Rewrite an AddRec in terms of the canonical induction variable, if
1552   // its type is more narrow.
1553   if (CanonicalIV &&
1554       SE.getTypeSizeInBits(CanonicalIV->getType()) >
1555       SE.getTypeSizeInBits(Ty)) {
1556     SmallVector<const SCEV *, 4> NewOps(S->getNumOperands());
1557     for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i)
1558       NewOps[i] = SE.getAnyExtendExpr(S->op_begin()[i], CanonicalIV->getType());
1559     Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(),
1560                                        S->getNoWrapFlags(SCEV::FlagNW)));
1561     BasicBlock::iterator NewInsertPt =
1562         findInsertPointAfter(cast<Instruction>(V), &*Builder.GetInsertPoint());
1563     V = expandCodeForImpl(SE.getTruncateExpr(SE.getUnknown(V), Ty), nullptr,
1564                           &*NewInsertPt, false);
1565     return V;
1566   }
1567 
1568   // {X,+,F} --> X + {0,+,F}
1569   if (!S->getStart()->isZero()) {
1570     SmallVector<const SCEV *, 4> NewOps(S->operands());
1571     NewOps[0] = SE.getConstant(Ty, 0);
1572     const SCEV *Rest = SE.getAddRecExpr(NewOps, L,
1573                                         S->getNoWrapFlags(SCEV::FlagNW));
1574 
1575     // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the
1576     // comments on expandAddToGEP for details.
1577     const SCEV *Base = S->getStart();
1578     // Dig into the expression to find the pointer base for a GEP.
1579     const SCEV *ExposedRest = Rest;
1580     ExposePointerBase(Base, ExposedRest, SE);
1581     // If we found a pointer, expand the AddRec with a GEP.
1582     if (PointerType *PTy = dyn_cast<PointerType>(Base->getType())) {
1583       // Make sure the Base isn't something exotic, such as a multiplied
1584       // or divided pointer value. In those cases, the result type isn't
1585       // actually a pointer type.
1586       if (!isa<SCEVMulExpr>(Base) && !isa<SCEVUDivExpr>(Base)) {
1587         Value *StartV = expand(Base);
1588         assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!");
1589         return expandAddToGEP(ExposedRest, PTy, Ty, StartV);
1590       }
1591     }
1592 
1593     // Just do a normal add. Pre-expand the operands to suppress folding.
1594     //
1595     // The LHS and RHS values are factored out of the expand call to make the
1596     // output independent of the argument evaluation order.
1597     const SCEV *AddExprLHS = SE.getUnknown(expand(S->getStart()));
1598     const SCEV *AddExprRHS = SE.getUnknown(expand(Rest));
1599     return expand(SE.getAddExpr(AddExprLHS, AddExprRHS));
1600   }
1601 
1602   // If we don't yet have a canonical IV, create one.
1603   if (!CanonicalIV) {
1604     // Create and insert the PHI node for the induction variable in the
1605     // specified loop.
1606     BasicBlock *Header = L->getHeader();
1607     pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
1608     CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar",
1609                                   &Header->front());
1610     rememberInstruction(CanonicalIV);
1611 
1612     SmallSet<BasicBlock *, 4> PredSeen;
1613     Constant *One = ConstantInt::get(Ty, 1);
1614     for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
1615       BasicBlock *HP = *HPI;
1616       if (!PredSeen.insert(HP).second) {
1617         // There must be an incoming value for each predecessor, even the
1618         // duplicates!
1619         CanonicalIV->addIncoming(CanonicalIV->getIncomingValueForBlock(HP), HP);
1620         continue;
1621       }
1622 
1623       if (L->contains(HP)) {
1624         // Insert a unit add instruction right before the terminator
1625         // corresponding to the back-edge.
1626         Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One,
1627                                                      "indvar.next",
1628                                                      HP->getTerminator());
1629         Add->setDebugLoc(HP->getTerminator()->getDebugLoc());
1630         rememberInstruction(Add);
1631         CanonicalIV->addIncoming(Add, HP);
1632       } else {
1633         CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP);
1634       }
1635     }
1636   }
1637 
1638   // {0,+,1} --> Insert a canonical induction variable into the loop!
1639   if (S->isAffine() && S->getOperand(1)->isOne()) {
1640     assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) &&
1641            "IVs with types different from the canonical IV should "
1642            "already have been handled!");
1643     return CanonicalIV;
1644   }
1645 
1646   // {0,+,F} --> {0,+,1} * F
1647 
1648   // If this is a simple linear addrec, emit it now as a special case.
1649   if (S->isAffine())    // {0,+,F} --> i*F
1650     return
1651       expand(SE.getTruncateOrNoop(
1652         SE.getMulExpr(SE.getUnknown(CanonicalIV),
1653                       SE.getNoopOrAnyExtend(S->getOperand(1),
1654                                             CanonicalIV->getType())),
1655         Ty));
1656 
1657   // If this is a chain of recurrences, turn it into a closed form, using the
1658   // folders, then expandCodeFor the closed form.  This allows the folders to
1659   // simplify the expression without having to build a bunch of special code
1660   // into this folder.
1661   const SCEV *IH = SE.getUnknown(CanonicalIV);   // Get I as a "symbolic" SCEV.
1662 
1663   // Promote S up to the canonical IV type, if the cast is foldable.
1664   const SCEV *NewS = S;
1665   const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType());
1666   if (isa<SCEVAddRecExpr>(Ext))
1667     NewS = Ext;
1668 
1669   const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE);
1670   //cerr << "Evaluated: " << *this << "\n     to: " << *V << "\n";
1671 
1672   // Truncate the result down to the original type, if needed.
1673   const SCEV *T = SE.getTruncateOrNoop(V, Ty);
1674   return expand(T);
1675 }
1676 
1677 Value *SCEVExpander::visitPtrToIntExpr(const SCEVPtrToIntExpr *S) {
1678   Value *V =
1679       expandCodeForImpl(S->getOperand(), S->getOperand()->getType(), false);
1680   return Builder.CreatePtrToInt(V, S->getType());
1681 }
1682 
1683 Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) {
1684   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1685   Value *V = expandCodeForImpl(
1686       S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()),
1687       false);
1688   return Builder.CreateTrunc(V, Ty);
1689 }
1690 
1691 Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) {
1692   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1693   Value *V = expandCodeForImpl(
1694       S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()),
1695       false);
1696   return Builder.CreateZExt(V, Ty);
1697 }
1698 
1699 Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) {
1700   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1701   Value *V = expandCodeForImpl(
1702       S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()),
1703       false);
1704   return Builder.CreateSExt(V, Ty);
1705 }
1706 
1707 Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) {
1708   Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
1709   Type *Ty = LHS->getType();
1710   for (int i = S->getNumOperands()-2; i >= 0; --i) {
1711     // In the case of mixed integer and pointer types, do the
1712     // rest of the comparisons as integer.
1713     Type *OpTy = S->getOperand(i)->getType();
1714     if (OpTy->isIntegerTy() != Ty->isIntegerTy()) {
1715       Ty = SE.getEffectiveSCEVType(Ty);
1716       LHS = InsertNoopCastOfTo(LHS, Ty);
1717     }
1718     Value *RHS = expandCodeForImpl(S->getOperand(i), Ty, false);
1719     Value *ICmp = Builder.CreateICmpSGT(LHS, RHS);
1720     Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smax");
1721     LHS = Sel;
1722   }
1723   // In the case of mixed integer and pointer types, cast the
1724   // final result back to the pointer type.
1725   if (LHS->getType() != S->getType())
1726     LHS = InsertNoopCastOfTo(LHS, S->getType());
1727   return LHS;
1728 }
1729 
1730 Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) {
1731   Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
1732   Type *Ty = LHS->getType();
1733   for (int i = S->getNumOperands()-2; i >= 0; --i) {
1734     // In the case of mixed integer and pointer types, do the
1735     // rest of the comparisons as integer.
1736     Type *OpTy = S->getOperand(i)->getType();
1737     if (OpTy->isIntegerTy() != Ty->isIntegerTy()) {
1738       Ty = SE.getEffectiveSCEVType(Ty);
1739       LHS = InsertNoopCastOfTo(LHS, Ty);
1740     }
1741     Value *RHS = expandCodeForImpl(S->getOperand(i), Ty, false);
1742     Value *ICmp = Builder.CreateICmpUGT(LHS, RHS);
1743     Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umax");
1744     LHS = Sel;
1745   }
1746   // In the case of mixed integer and pointer types, cast the
1747   // final result back to the pointer type.
1748   if (LHS->getType() != S->getType())
1749     LHS = InsertNoopCastOfTo(LHS, S->getType());
1750   return LHS;
1751 }
1752 
1753 Value *SCEVExpander::visitSMinExpr(const SCEVSMinExpr *S) {
1754   Value *LHS = expand(S->getOperand(S->getNumOperands() - 1));
1755   Type *Ty = LHS->getType();
1756   for (int i = S->getNumOperands() - 2; i >= 0; --i) {
1757     // In the case of mixed integer and pointer types, do the
1758     // rest of the comparisons as integer.
1759     Type *OpTy = S->getOperand(i)->getType();
1760     if (OpTy->isIntegerTy() != Ty->isIntegerTy()) {
1761       Ty = SE.getEffectiveSCEVType(Ty);
1762       LHS = InsertNoopCastOfTo(LHS, Ty);
1763     }
1764     Value *RHS = expandCodeForImpl(S->getOperand(i), Ty, false);
1765     Value *ICmp = Builder.CreateICmpSLT(LHS, RHS);
1766     Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smin");
1767     LHS = Sel;
1768   }
1769   // In the case of mixed integer and pointer types, cast the
1770   // final result back to the pointer type.
1771   if (LHS->getType() != S->getType())
1772     LHS = InsertNoopCastOfTo(LHS, S->getType());
1773   return LHS;
1774 }
1775 
1776 Value *SCEVExpander::visitUMinExpr(const SCEVUMinExpr *S) {
1777   Value *LHS = expand(S->getOperand(S->getNumOperands() - 1));
1778   Type *Ty = LHS->getType();
1779   for (int i = S->getNumOperands() - 2; i >= 0; --i) {
1780     // In the case of mixed integer and pointer types, do the
1781     // rest of the comparisons as integer.
1782     Type *OpTy = S->getOperand(i)->getType();
1783     if (OpTy->isIntegerTy() != Ty->isIntegerTy()) {
1784       Ty = SE.getEffectiveSCEVType(Ty);
1785       LHS = InsertNoopCastOfTo(LHS, Ty);
1786     }
1787     Value *RHS = expandCodeForImpl(S->getOperand(i), Ty, false);
1788     Value *ICmp = Builder.CreateICmpULT(LHS, RHS);
1789     Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umin");
1790     LHS = Sel;
1791   }
1792   // In the case of mixed integer and pointer types, cast the
1793   // final result back to the pointer type.
1794   if (LHS->getType() != S->getType())
1795     LHS = InsertNoopCastOfTo(LHS, S->getType());
1796   return LHS;
1797 }
1798 
1799 Value *SCEVExpander::expandCodeForImpl(const SCEV *SH, Type *Ty,
1800                                        Instruction *IP, bool Root) {
1801   setInsertPoint(IP);
1802   Value *V = expandCodeForImpl(SH, Ty, Root);
1803   return V;
1804 }
1805 
1806 Value *SCEVExpander::expandCodeForImpl(const SCEV *SH, Type *Ty, bool Root) {
1807   // Expand the code for this SCEV.
1808   Value *V = expand(SH);
1809 
1810   if (PreserveLCSSA) {
1811     if (auto *Inst = dyn_cast<Instruction>(V)) {
1812       // Create a temporary instruction to at the current insertion point, so we
1813       // can hand it off to the helper to create LCSSA PHIs if required for the
1814       // new use.
1815       // FIXME: Ideally formLCSSAForInstructions (used in fixupLCSSAFormFor)
1816       // would accept a insertion point and return an LCSSA phi for that
1817       // insertion point, so there is no need to insert & remove the temporary
1818       // instruction.
1819       Instruction *Tmp;
1820       if (Inst->getType()->isIntegerTy())
1821         Tmp =
1822             cast<Instruction>(Builder.CreateAdd(Inst, Inst, "tmp.lcssa.user"));
1823       else {
1824         assert(Inst->getType()->isPointerTy());
1825         Tmp = cast<Instruction>(
1826             Builder.CreateGEP(Inst, Builder.getInt32(1), "tmp.lcssa.user"));
1827       }
1828       V = fixupLCSSAFormFor(Tmp, 0);
1829 
1830       // Clean up temporary instruction.
1831       InsertedValues.erase(Tmp);
1832       InsertedPostIncValues.erase(Tmp);
1833       Tmp->eraseFromParent();
1834     }
1835   }
1836 
1837   InsertedExpressions[std::make_pair(SH, &*Builder.GetInsertPoint())] = V;
1838   if (Ty) {
1839     assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) &&
1840            "non-trivial casts should be done with the SCEVs directly!");
1841     V = InsertNoopCastOfTo(V, Ty);
1842   }
1843   return V;
1844 }
1845 
1846 ScalarEvolution::ValueOffsetPair
1847 SCEVExpander::FindValueInExprValueMap(const SCEV *S,
1848                                       const Instruction *InsertPt) {
1849   SetVector<ScalarEvolution::ValueOffsetPair> *Set = SE.getSCEVValues(S);
1850   // If the expansion is not in CanonicalMode, and the SCEV contains any
1851   // sub scAddRecExpr type SCEV, it is required to expand the SCEV literally.
1852   if (CanonicalMode || !SE.containsAddRecurrence(S)) {
1853     // If S is scConstant, it may be worse to reuse an existing Value.
1854     if (S->getSCEVType() != scConstant && Set) {
1855       // Choose a Value from the set which dominates the insertPt.
1856       // insertPt should be inside the Value's parent loop so as not to break
1857       // the LCSSA form.
1858       for (auto const &VOPair : *Set) {
1859         Value *V = VOPair.first;
1860         ConstantInt *Offset = VOPair.second;
1861         Instruction *EntInst = nullptr;
1862         if (V && isa<Instruction>(V) && (EntInst = cast<Instruction>(V)) &&
1863             S->getType() == V->getType() &&
1864             EntInst->getFunction() == InsertPt->getFunction() &&
1865             SE.DT.dominates(EntInst, InsertPt) &&
1866             (SE.LI.getLoopFor(EntInst->getParent()) == nullptr ||
1867              SE.LI.getLoopFor(EntInst->getParent())->contains(InsertPt)))
1868           return {V, Offset};
1869       }
1870     }
1871   }
1872   return {nullptr, nullptr};
1873 }
1874 
1875 // The expansion of SCEV will either reuse a previous Value in ExprValueMap,
1876 // or expand the SCEV literally. Specifically, if the expansion is in LSRMode,
1877 // and the SCEV contains any sub scAddRecExpr type SCEV, it will be expanded
1878 // literally, to prevent LSR's transformed SCEV from being reverted. Otherwise,
1879 // the expansion will try to reuse Value from ExprValueMap, and only when it
1880 // fails, expand the SCEV literally.
1881 Value *SCEVExpander::expand(const SCEV *S) {
1882   // Compute an insertion point for this SCEV object. Hoist the instructions
1883   // as far out in the loop nest as possible.
1884   Instruction *InsertPt = &*Builder.GetInsertPoint();
1885 
1886   // We can move insertion point only if there is no div or rem operations
1887   // otherwise we are risky to move it over the check for zero denominator.
1888   auto SafeToHoist = [](const SCEV *S) {
1889     return !SCEVExprContains(S, [](const SCEV *S) {
1890               if (const auto *D = dyn_cast<SCEVUDivExpr>(S)) {
1891                 if (const auto *SC = dyn_cast<SCEVConstant>(D->getRHS()))
1892                   // Division by non-zero constants can be hoisted.
1893                   return SC->getValue()->isZero();
1894                 // All other divisions should not be moved as they may be
1895                 // divisions by zero and should be kept within the
1896                 // conditions of the surrounding loops that guard their
1897                 // execution (see PR35406).
1898                 return true;
1899               }
1900               return false;
1901             });
1902   };
1903   if (SafeToHoist(S)) {
1904     for (Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock());;
1905          L = L->getParentLoop()) {
1906       if (SE.isLoopInvariant(S, L)) {
1907         if (!L) break;
1908         if (BasicBlock *Preheader = L->getLoopPreheader())
1909           InsertPt = Preheader->getTerminator();
1910         else
1911           // LSR sets the insertion point for AddRec start/step values to the
1912           // block start to simplify value reuse, even though it's an invalid
1913           // position. SCEVExpander must correct for this in all cases.
1914           InsertPt = &*L->getHeader()->getFirstInsertionPt();
1915       } else {
1916         // If the SCEV is computable at this level, insert it into the header
1917         // after the PHIs (and after any other instructions that we've inserted
1918         // there) so that it is guaranteed to dominate any user inside the loop.
1919         if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L))
1920           InsertPt = &*L->getHeader()->getFirstInsertionPt();
1921 
1922         while (InsertPt->getIterator() != Builder.GetInsertPoint() &&
1923                (isInsertedInstruction(InsertPt) ||
1924                 isa<DbgInfoIntrinsic>(InsertPt))) {
1925           InsertPt = &*std::next(InsertPt->getIterator());
1926         }
1927         break;
1928       }
1929     }
1930   }
1931 
1932   // Check to see if we already expanded this here.
1933   auto I = InsertedExpressions.find(std::make_pair(S, InsertPt));
1934   if (I != InsertedExpressions.end())
1935     return I->second;
1936 
1937   SCEVInsertPointGuard Guard(Builder, this);
1938   Builder.SetInsertPoint(InsertPt);
1939 
1940   // Expand the expression into instructions.
1941   ScalarEvolution::ValueOffsetPair VO = FindValueInExprValueMap(S, InsertPt);
1942   Value *V = VO.first;
1943 
1944   if (!V)
1945     V = visit(S);
1946   else if (VO.second) {
1947     if (PointerType *Vty = dyn_cast<PointerType>(V->getType())) {
1948       Type *Ety = Vty->getPointerElementType();
1949       int64_t Offset = VO.second->getSExtValue();
1950       int64_t ESize = SE.getTypeSizeInBits(Ety);
1951       if ((Offset * 8) % ESize == 0) {
1952         ConstantInt *Idx =
1953             ConstantInt::getSigned(VO.second->getType(), -(Offset * 8) / ESize);
1954         V = Builder.CreateGEP(Ety, V, Idx, "scevgep");
1955       } else {
1956         ConstantInt *Idx =
1957             ConstantInt::getSigned(VO.second->getType(), -Offset);
1958         unsigned AS = Vty->getAddressSpace();
1959         V = Builder.CreateBitCast(V, Type::getInt8PtrTy(SE.getContext(), AS));
1960         V = Builder.CreateGEP(Type::getInt8Ty(SE.getContext()), V, Idx,
1961                               "uglygep");
1962         V = Builder.CreateBitCast(V, Vty);
1963       }
1964     } else {
1965       V = Builder.CreateSub(V, VO.second);
1966     }
1967   }
1968   // Remember the expanded value for this SCEV at this location.
1969   //
1970   // This is independent of PostIncLoops. The mapped value simply materializes
1971   // the expression at this insertion point. If the mapped value happened to be
1972   // a postinc expansion, it could be reused by a non-postinc user, but only if
1973   // its insertion point was already at the head of the loop.
1974   InsertedExpressions[std::make_pair(S, InsertPt)] = V;
1975   return V;
1976 }
1977 
1978 void SCEVExpander::rememberInstruction(Value *I) {
1979   auto DoInsert = [this](Value *V) {
1980     if (!PostIncLoops.empty())
1981       InsertedPostIncValues.insert(V);
1982     else
1983       InsertedValues.insert(V);
1984   };
1985   DoInsert(I);
1986 
1987   if (!PreserveLCSSA)
1988     return;
1989 
1990   if (auto *Inst = dyn_cast<Instruction>(I)) {
1991     // A new instruction has been added, which might introduce new uses outside
1992     // a defining loop. Fix LCSSA from for each operand of the new instruction,
1993     // if required.
1994     for (unsigned OpIdx = 0, OpEnd = Inst->getNumOperands(); OpIdx != OpEnd;
1995          OpIdx++)
1996       fixupLCSSAFormFor(Inst, OpIdx);
1997   }
1998 }
1999 
2000 /// replaceCongruentIVs - Check for congruent phis in this loop header and
2001 /// replace them with their most canonical representative. Return the number of
2002 /// phis eliminated.
2003 ///
2004 /// This does not depend on any SCEVExpander state but should be used in
2005 /// the same context that SCEVExpander is used.
2006 unsigned
2007 SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT,
2008                                   SmallVectorImpl<WeakTrackingVH> &DeadInsts,
2009                                   const TargetTransformInfo *TTI) {
2010   // Find integer phis in order of increasing width.
2011   SmallVector<PHINode*, 8> Phis;
2012   for (PHINode &PN : L->getHeader()->phis())
2013     Phis.push_back(&PN);
2014 
2015   if (TTI)
2016     llvm::sort(Phis, [](Value *LHS, Value *RHS) {
2017       // Put pointers at the back and make sure pointer < pointer = false.
2018       if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
2019         return RHS->getType()->isIntegerTy() && !LHS->getType()->isIntegerTy();
2020       return RHS->getType()->getPrimitiveSizeInBits().getFixedSize() <
2021              LHS->getType()->getPrimitiveSizeInBits().getFixedSize();
2022     });
2023 
2024   unsigned NumElim = 0;
2025   DenseMap<const SCEV *, PHINode *> ExprToIVMap;
2026   // Process phis from wide to narrow. Map wide phis to their truncation
2027   // so narrow phis can reuse them.
2028   for (PHINode *Phi : Phis) {
2029     auto SimplifyPHINode = [&](PHINode *PN) -> Value * {
2030       if (Value *V = SimplifyInstruction(PN, {DL, &SE.TLI, &SE.DT, &SE.AC}))
2031         return V;
2032       if (!SE.isSCEVable(PN->getType()))
2033         return nullptr;
2034       auto *Const = dyn_cast<SCEVConstant>(SE.getSCEV(PN));
2035       if (!Const)
2036         return nullptr;
2037       return Const->getValue();
2038     };
2039 
2040     // Fold constant phis. They may be congruent to other constant phis and
2041     // would confuse the logic below that expects proper IVs.
2042     if (Value *V = SimplifyPHINode(Phi)) {
2043       if (V->getType() != Phi->getType())
2044         continue;
2045       Phi->replaceAllUsesWith(V);
2046       DeadInsts.emplace_back(Phi);
2047       ++NumElim;
2048       DEBUG_WITH_TYPE(DebugType, dbgs()
2049                       << "INDVARS: Eliminated constant iv: " << *Phi << '\n');
2050       continue;
2051     }
2052 
2053     if (!SE.isSCEVable(Phi->getType()))
2054       continue;
2055 
2056     PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)];
2057     if (!OrigPhiRef) {
2058       OrigPhiRef = Phi;
2059       if (Phi->getType()->isIntegerTy() && TTI &&
2060           TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) {
2061         // This phi can be freely truncated to the narrowest phi type. Map the
2062         // truncated expression to it so it will be reused for narrow types.
2063         const SCEV *TruncExpr =
2064           SE.getTruncateExpr(SE.getSCEV(Phi), Phis.back()->getType());
2065         ExprToIVMap[TruncExpr] = Phi;
2066       }
2067       continue;
2068     }
2069 
2070     // Replacing a pointer phi with an integer phi or vice-versa doesn't make
2071     // sense.
2072     if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy())
2073       continue;
2074 
2075     if (BasicBlock *LatchBlock = L->getLoopLatch()) {
2076       Instruction *OrigInc = dyn_cast<Instruction>(
2077           OrigPhiRef->getIncomingValueForBlock(LatchBlock));
2078       Instruction *IsomorphicInc =
2079           dyn_cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock));
2080 
2081       if (OrigInc && IsomorphicInc) {
2082         // If this phi has the same width but is more canonical, replace the
2083         // original with it. As part of the "more canonical" determination,
2084         // respect a prior decision to use an IV chain.
2085         if (OrigPhiRef->getType() == Phi->getType() &&
2086             !(ChainedPhis.count(Phi) ||
2087               isExpandedAddRecExprPHI(OrigPhiRef, OrigInc, L)) &&
2088             (ChainedPhis.count(Phi) ||
2089              isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) {
2090           std::swap(OrigPhiRef, Phi);
2091           std::swap(OrigInc, IsomorphicInc);
2092         }
2093         // Replacing the congruent phi is sufficient because acyclic
2094         // redundancy elimination, CSE/GVN, should handle the
2095         // rest. However, once SCEV proves that a phi is congruent,
2096         // it's often the head of an IV user cycle that is isomorphic
2097         // with the original phi. It's worth eagerly cleaning up the
2098         // common case of a single IV increment so that DeleteDeadPHIs
2099         // can remove cycles that had postinc uses.
2100         const SCEV *TruncExpr =
2101             SE.getTruncateOrNoop(SE.getSCEV(OrigInc), IsomorphicInc->getType());
2102         if (OrigInc != IsomorphicInc &&
2103             TruncExpr == SE.getSCEV(IsomorphicInc) &&
2104             SE.LI.replacementPreservesLCSSAForm(IsomorphicInc, OrigInc) &&
2105             hoistIVInc(OrigInc, IsomorphicInc)) {
2106           DEBUG_WITH_TYPE(DebugType,
2107                           dbgs() << "INDVARS: Eliminated congruent iv.inc: "
2108                                  << *IsomorphicInc << '\n');
2109           Value *NewInc = OrigInc;
2110           if (OrigInc->getType() != IsomorphicInc->getType()) {
2111             Instruction *IP = nullptr;
2112             if (PHINode *PN = dyn_cast<PHINode>(OrigInc))
2113               IP = &*PN->getParent()->getFirstInsertionPt();
2114             else
2115               IP = OrigInc->getNextNode();
2116 
2117             IRBuilder<> Builder(IP);
2118             Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc());
2119             NewInc = Builder.CreateTruncOrBitCast(
2120                 OrigInc, IsomorphicInc->getType(), IVName);
2121           }
2122           IsomorphicInc->replaceAllUsesWith(NewInc);
2123           DeadInsts.emplace_back(IsomorphicInc);
2124         }
2125       }
2126     }
2127     DEBUG_WITH_TYPE(DebugType, dbgs() << "INDVARS: Eliminated congruent iv: "
2128                                       << *Phi << '\n');
2129     DEBUG_WITH_TYPE(DebugType, dbgs() << "INDVARS: Original iv: "
2130                                       << *OrigPhiRef << '\n');
2131     ++NumElim;
2132     Value *NewIV = OrigPhiRef;
2133     if (OrigPhiRef->getType() != Phi->getType()) {
2134       IRBuilder<> Builder(&*L->getHeader()->getFirstInsertionPt());
2135       Builder.SetCurrentDebugLocation(Phi->getDebugLoc());
2136       NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName);
2137     }
2138     Phi->replaceAllUsesWith(NewIV);
2139     DeadInsts.emplace_back(Phi);
2140   }
2141   return NumElim;
2142 }
2143 
2144 Optional<ScalarEvolution::ValueOffsetPair>
2145 SCEVExpander::getRelatedExistingExpansion(const SCEV *S, const Instruction *At,
2146                                           Loop *L) {
2147   using namespace llvm::PatternMatch;
2148 
2149   SmallVector<BasicBlock *, 4> ExitingBlocks;
2150   L->getExitingBlocks(ExitingBlocks);
2151 
2152   // Look for suitable value in simple conditions at the loop exits.
2153   for (BasicBlock *BB : ExitingBlocks) {
2154     ICmpInst::Predicate Pred;
2155     Instruction *LHS, *RHS;
2156 
2157     if (!match(BB->getTerminator(),
2158                m_Br(m_ICmp(Pred, m_Instruction(LHS), m_Instruction(RHS)),
2159                     m_BasicBlock(), m_BasicBlock())))
2160       continue;
2161 
2162     if (SE.getSCEV(LHS) == S && SE.DT.dominates(LHS, At))
2163       return ScalarEvolution::ValueOffsetPair(LHS, nullptr);
2164 
2165     if (SE.getSCEV(RHS) == S && SE.DT.dominates(RHS, At))
2166       return ScalarEvolution::ValueOffsetPair(RHS, nullptr);
2167   }
2168 
2169   // Use expand's logic which is used for reusing a previous Value in
2170   // ExprValueMap.
2171   ScalarEvolution::ValueOffsetPair VO = FindValueInExprValueMap(S, At);
2172   if (VO.first)
2173     return VO;
2174 
2175   // There is potential to make this significantly smarter, but this simple
2176   // heuristic already gets some interesting cases.
2177 
2178   // Can not find suitable value.
2179   return None;
2180 }
2181 
2182 template<typename T> static int costAndCollectOperands(
2183   const SCEVOperand &WorkItem, const TargetTransformInfo &TTI,
2184   TargetTransformInfo::TargetCostKind CostKind,
2185   SmallVectorImpl<SCEVOperand> &Worklist) {
2186 
2187   const T *S = cast<T>(WorkItem.S);
2188   int Cost = 0;
2189   // Object to help map SCEV operands to expanded IR instructions.
2190   struct OperationIndices {
2191     OperationIndices(unsigned Opc, size_t min, size_t max) :
2192       Opcode(Opc), MinIdx(min), MaxIdx(max) { }
2193     unsigned Opcode;
2194     size_t MinIdx;
2195     size_t MaxIdx;
2196   };
2197 
2198   // Collect the operations of all the instructions that will be needed to
2199   // expand the SCEVExpr. This is so that when we come to cost the operands,
2200   // we know what the generated user(s) will be.
2201   SmallVector<OperationIndices, 2> Operations;
2202 
2203   auto CastCost = [&](unsigned Opcode) {
2204     Operations.emplace_back(Opcode, 0, 0);
2205     return TTI.getCastInstrCost(Opcode, S->getType(),
2206                                 S->getOperand(0)->getType(),
2207                                 TTI::CastContextHint::None, CostKind);
2208   };
2209 
2210   auto ArithCost = [&](unsigned Opcode, unsigned NumRequired,
2211                        unsigned MinIdx = 0, unsigned MaxIdx = 1) {
2212     Operations.emplace_back(Opcode, MinIdx, MaxIdx);
2213     return NumRequired *
2214       TTI.getArithmeticInstrCost(Opcode, S->getType(), CostKind);
2215   };
2216 
2217   auto CmpSelCost = [&](unsigned Opcode, unsigned NumRequired,
2218                         unsigned MinIdx, unsigned MaxIdx) {
2219     Operations.emplace_back(Opcode, MinIdx, MaxIdx);
2220     Type *OpType = S->getOperand(0)->getType();
2221     return NumRequired * TTI.getCmpSelInstrCost(
2222                              Opcode, OpType, CmpInst::makeCmpResultType(OpType),
2223                              CmpInst::BAD_ICMP_PREDICATE, CostKind);
2224   };
2225 
2226   switch (S->getSCEVType()) {
2227   case scCouldNotCompute:
2228     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
2229   case scUnknown:
2230   case scConstant:
2231     return 0;
2232   case scPtrToInt:
2233     Cost = CastCost(Instruction::PtrToInt);
2234     break;
2235   case scTruncate:
2236     Cost = CastCost(Instruction::Trunc);
2237     break;
2238   case scZeroExtend:
2239     Cost = CastCost(Instruction::ZExt);
2240     break;
2241   case scSignExtend:
2242     Cost = CastCost(Instruction::SExt);
2243     break;
2244   case scUDivExpr: {
2245     unsigned Opcode = Instruction::UDiv;
2246     if (auto *SC = dyn_cast<SCEVConstant>(S->getOperand(1)))
2247       if (SC->getAPInt().isPowerOf2())
2248         Opcode = Instruction::LShr;
2249     Cost = ArithCost(Opcode, 1);
2250     break;
2251   }
2252   case scAddExpr:
2253     Cost = ArithCost(Instruction::Add, S->getNumOperands() - 1);
2254     break;
2255   case scMulExpr:
2256     // TODO: this is a very pessimistic cost modelling for Mul,
2257     // because of Bin Pow algorithm actually used by the expander,
2258     // see SCEVExpander::visitMulExpr(), ExpandOpBinPowN().
2259     Cost = ArithCost(Instruction::Mul, S->getNumOperands() - 1);
2260     break;
2261   case scSMaxExpr:
2262   case scUMaxExpr:
2263   case scSMinExpr:
2264   case scUMinExpr: {
2265     Cost += CmpSelCost(Instruction::ICmp, S->getNumOperands() - 1, 0, 1);
2266     Cost += CmpSelCost(Instruction::Select, S->getNumOperands() - 1, 0, 2);
2267     break;
2268   }
2269   case scAddRecExpr: {
2270     // In this polynominal, we may have some zero operands, and we shouldn't
2271     // really charge for those. So how many non-zero coeffients are there?
2272     int NumTerms = llvm::count_if(S->operands(), [](const SCEV *Op) {
2273                                     return !Op->isZero();
2274                                   });
2275 
2276     assert(NumTerms >= 1 && "Polynominal should have at least one term.");
2277     assert(!(*std::prev(S->operands().end()))->isZero() &&
2278            "Last operand should not be zero");
2279 
2280     // Ignoring constant term (operand 0), how many of the coeffients are u> 1?
2281     int NumNonZeroDegreeNonOneTerms =
2282       llvm::count_if(S->operands(), [](const SCEV *Op) {
2283                       auto *SConst = dyn_cast<SCEVConstant>(Op);
2284                       return !SConst || SConst->getAPInt().ugt(1);
2285                     });
2286 
2287     // Much like with normal add expr, the polynominal will require
2288     // one less addition than the number of it's terms.
2289     int AddCost = ArithCost(Instruction::Add, NumTerms - 1,
2290                             /*MinIdx*/1, /*MaxIdx*/1);
2291     // Here, *each* one of those will require a multiplication.
2292     int MulCost = ArithCost(Instruction::Mul, NumNonZeroDegreeNonOneTerms);
2293     Cost = AddCost + MulCost;
2294 
2295     // What is the degree of this polynominal?
2296     int PolyDegree = S->getNumOperands() - 1;
2297     assert(PolyDegree >= 1 && "Should be at least affine.");
2298 
2299     // The final term will be:
2300     //   Op_{PolyDegree} * x ^ {PolyDegree}
2301     // Where  x ^ {PolyDegree}  will again require PolyDegree-1 mul operations.
2302     // Note that  x ^ {PolyDegree} = x * x ^ {PolyDegree-1}  so charging for
2303     // x ^ {PolyDegree}  will give us  x ^ {2} .. x ^ {PolyDegree-1}  for free.
2304     // FIXME: this is conservatively correct, but might be overly pessimistic.
2305     Cost += MulCost * (PolyDegree - 1);
2306     break;
2307   }
2308   }
2309 
2310   for (auto &CostOp : Operations) {
2311     for (auto SCEVOp : enumerate(S->operands())) {
2312       // Clamp the index to account for multiple IR operations being chained.
2313       size_t MinIdx = std::max(SCEVOp.index(), CostOp.MinIdx);
2314       size_t OpIdx = std::min(MinIdx, CostOp.MaxIdx);
2315       Worklist.emplace_back(CostOp.Opcode, OpIdx, SCEVOp.value());
2316     }
2317   }
2318   return Cost;
2319 }
2320 
2321 bool SCEVExpander::isHighCostExpansionHelper(
2322     const SCEVOperand &WorkItem, Loop *L, const Instruction &At,
2323     int &BudgetRemaining, const TargetTransformInfo &TTI,
2324     SmallPtrSetImpl<const SCEV *> &Processed,
2325     SmallVectorImpl<SCEVOperand> &Worklist) {
2326   if (BudgetRemaining < 0)
2327     return true; // Already run out of budget, give up.
2328 
2329   const SCEV *S = WorkItem.S;
2330   // Was the cost of expansion of this expression already accounted for?
2331   if (!isa<SCEVConstant>(S) && !Processed.insert(S).second)
2332     return false; // We have already accounted for this expression.
2333 
2334   // If we can find an existing value for this scev available at the point "At"
2335   // then consider the expression cheap.
2336   if (getRelatedExistingExpansion(S, &At, L))
2337     return false; // Consider the expression to be free.
2338 
2339   TargetTransformInfo::TargetCostKind CostKind =
2340       L->getHeader()->getParent()->hasMinSize()
2341           ? TargetTransformInfo::TCK_CodeSize
2342           : TargetTransformInfo::TCK_RecipThroughput;
2343 
2344   switch (S->getSCEVType()) {
2345   case scCouldNotCompute:
2346     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
2347   case scUnknown:
2348     // Assume to be zero-cost.
2349     return false;
2350   case scConstant: {
2351     // Only evalulate the costs of constants when optimizing for size.
2352     if (CostKind != TargetTransformInfo::TCK_CodeSize)
2353       return 0;
2354     const APInt &Imm = cast<SCEVConstant>(S)->getAPInt();
2355     Type *Ty = S->getType();
2356     BudgetRemaining -= TTI.getIntImmCostInst(
2357         WorkItem.ParentOpcode, WorkItem.OperandIdx, Imm, Ty, CostKind);
2358     return BudgetRemaining < 0;
2359   }
2360   case scTruncate:
2361   case scPtrToInt:
2362   case scZeroExtend:
2363   case scSignExtend: {
2364     int Cost =
2365         costAndCollectOperands<SCEVCastExpr>(WorkItem, TTI, CostKind, Worklist);
2366     BudgetRemaining -= Cost;
2367     return false; // Will answer upon next entry into this function.
2368   }
2369   case scUDivExpr: {
2370     // UDivExpr is very likely a UDiv that ScalarEvolution's HowFarToZero or
2371     // HowManyLessThans produced to compute a precise expression, rather than a
2372     // UDiv from the user's code. If we can't find a UDiv in the code with some
2373     // simple searching, we need to account for it's cost.
2374 
2375     // At the beginning of this function we already tried to find existing
2376     // value for plain 'S'. Now try to lookup 'S + 1' since it is common
2377     // pattern involving division. This is just a simple search heuristic.
2378     if (getRelatedExistingExpansion(
2379             SE.getAddExpr(S, SE.getConstant(S->getType(), 1)), &At, L))
2380       return false; // Consider it to be free.
2381 
2382     int Cost =
2383         costAndCollectOperands<SCEVUDivExpr>(WorkItem, TTI, CostKind, Worklist);
2384     // Need to count the cost of this UDiv.
2385     BudgetRemaining -= Cost;
2386     return false; // Will answer upon next entry into this function.
2387   }
2388   case scAddExpr:
2389   case scMulExpr:
2390   case scUMaxExpr:
2391   case scSMaxExpr:
2392   case scUMinExpr:
2393   case scSMinExpr: {
2394     assert(cast<SCEVNAryExpr>(S)->getNumOperands() > 1 &&
2395            "Nary expr should have more than 1 operand.");
2396     // The simple nary expr will require one less op (or pair of ops)
2397     // than the number of it's terms.
2398     int Cost =
2399         costAndCollectOperands<SCEVNAryExpr>(WorkItem, TTI, CostKind, Worklist);
2400     BudgetRemaining -= Cost;
2401     return BudgetRemaining < 0;
2402   }
2403   case scAddRecExpr: {
2404     assert(cast<SCEVAddRecExpr>(S)->getNumOperands() >= 2 &&
2405            "Polynomial should be at least linear");
2406     BudgetRemaining -= costAndCollectOperands<SCEVAddRecExpr>(
2407         WorkItem, TTI, CostKind, Worklist);
2408     return BudgetRemaining < 0;
2409   }
2410   }
2411   llvm_unreachable("Unknown SCEV kind!");
2412 }
2413 
2414 Value *SCEVExpander::expandCodeForPredicate(const SCEVPredicate *Pred,
2415                                             Instruction *IP) {
2416   assert(IP);
2417   switch (Pred->getKind()) {
2418   case SCEVPredicate::P_Union:
2419     return expandUnionPredicate(cast<SCEVUnionPredicate>(Pred), IP);
2420   case SCEVPredicate::P_Equal:
2421     return expandEqualPredicate(cast<SCEVEqualPredicate>(Pred), IP);
2422   case SCEVPredicate::P_Wrap: {
2423     auto *AddRecPred = cast<SCEVWrapPredicate>(Pred);
2424     return expandWrapPredicate(AddRecPred, IP);
2425   }
2426   }
2427   llvm_unreachable("Unknown SCEV predicate type");
2428 }
2429 
2430 Value *SCEVExpander::expandEqualPredicate(const SCEVEqualPredicate *Pred,
2431                                           Instruction *IP) {
2432   Value *Expr0 =
2433       expandCodeForImpl(Pred->getLHS(), Pred->getLHS()->getType(), IP, false);
2434   Value *Expr1 =
2435       expandCodeForImpl(Pred->getRHS(), Pred->getRHS()->getType(), IP, false);
2436 
2437   Builder.SetInsertPoint(IP);
2438   auto *I = Builder.CreateICmpNE(Expr0, Expr1, "ident.check");
2439   return I;
2440 }
2441 
2442 Value *SCEVExpander::generateOverflowCheck(const SCEVAddRecExpr *AR,
2443                                            Instruction *Loc, bool Signed) {
2444   assert(AR->isAffine() && "Cannot generate RT check for "
2445                            "non-affine expression");
2446 
2447   SCEVUnionPredicate Pred;
2448   const SCEV *ExitCount =
2449       SE.getPredicatedBackedgeTakenCount(AR->getLoop(), Pred);
2450 
2451   assert(!isa<SCEVCouldNotCompute>(ExitCount) && "Invalid loop count");
2452 
2453   const SCEV *Step = AR->getStepRecurrence(SE);
2454   const SCEV *Start = AR->getStart();
2455 
2456   Type *ARTy = AR->getType();
2457   unsigned SrcBits = SE.getTypeSizeInBits(ExitCount->getType());
2458   unsigned DstBits = SE.getTypeSizeInBits(ARTy);
2459 
2460   // The expression {Start,+,Step} has nusw/nssw if
2461   //   Step < 0, Start - |Step| * Backedge <= Start
2462   //   Step >= 0, Start + |Step| * Backedge > Start
2463   // and |Step| * Backedge doesn't unsigned overflow.
2464 
2465   IntegerType *CountTy = IntegerType::get(Loc->getContext(), SrcBits);
2466   Builder.SetInsertPoint(Loc);
2467   Value *TripCountVal = expandCodeForImpl(ExitCount, CountTy, Loc, false);
2468 
2469   IntegerType *Ty =
2470       IntegerType::get(Loc->getContext(), SE.getTypeSizeInBits(ARTy));
2471   Type *ARExpandTy = DL.isNonIntegralPointerType(ARTy) ? ARTy : Ty;
2472 
2473   Value *StepValue = expandCodeForImpl(Step, Ty, Loc, false);
2474   Value *NegStepValue =
2475       expandCodeForImpl(SE.getNegativeSCEV(Step), Ty, Loc, false);
2476   Value *StartValue = expandCodeForImpl(Start, ARExpandTy, Loc, false);
2477 
2478   ConstantInt *Zero =
2479       ConstantInt::get(Loc->getContext(), APInt::getNullValue(DstBits));
2480 
2481   Builder.SetInsertPoint(Loc);
2482   // Compute |Step|
2483   Value *StepCompare = Builder.CreateICmp(ICmpInst::ICMP_SLT, StepValue, Zero);
2484   Value *AbsStep = Builder.CreateSelect(StepCompare, NegStepValue, StepValue);
2485 
2486   // Get the backedge taken count and truncate or extended to the AR type.
2487   Value *TruncTripCount = Builder.CreateZExtOrTrunc(TripCountVal, Ty);
2488   auto *MulF = Intrinsic::getDeclaration(Loc->getModule(),
2489                                          Intrinsic::umul_with_overflow, Ty);
2490 
2491   // Compute |Step| * Backedge
2492   CallInst *Mul = Builder.CreateCall(MulF, {AbsStep, TruncTripCount}, "mul");
2493   Value *MulV = Builder.CreateExtractValue(Mul, 0, "mul.result");
2494   Value *OfMul = Builder.CreateExtractValue(Mul, 1, "mul.overflow");
2495 
2496   // Compute:
2497   //   Start + |Step| * Backedge < Start
2498   //   Start - |Step| * Backedge > Start
2499   Value *Add = nullptr, *Sub = nullptr;
2500   if (PointerType *ARPtrTy = dyn_cast<PointerType>(ARExpandTy)) {
2501     const SCEV *MulS = SE.getSCEV(MulV);
2502     const SCEV *NegMulS = SE.getNegativeSCEV(MulS);
2503     Add = Builder.CreateBitCast(expandAddToGEP(MulS, ARPtrTy, Ty, StartValue),
2504                                 ARPtrTy);
2505     Sub = Builder.CreateBitCast(
2506         expandAddToGEP(NegMulS, ARPtrTy, Ty, StartValue), ARPtrTy);
2507   } else {
2508     Add = Builder.CreateAdd(StartValue, MulV);
2509     Sub = Builder.CreateSub(StartValue, MulV);
2510   }
2511 
2512   Value *EndCompareGT = Builder.CreateICmp(
2513       Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT, Sub, StartValue);
2514 
2515   Value *EndCompareLT = Builder.CreateICmp(
2516       Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, Add, StartValue);
2517 
2518   // Select the answer based on the sign of Step.
2519   Value *EndCheck =
2520       Builder.CreateSelect(StepCompare, EndCompareGT, EndCompareLT);
2521 
2522   // If the backedge taken count type is larger than the AR type,
2523   // check that we don't drop any bits by truncating it. If we are
2524   // dropping bits, then we have overflow (unless the step is zero).
2525   if (SE.getTypeSizeInBits(CountTy) > SE.getTypeSizeInBits(Ty)) {
2526     auto MaxVal = APInt::getMaxValue(DstBits).zext(SrcBits);
2527     auto *BackedgeCheck =
2528         Builder.CreateICmp(ICmpInst::ICMP_UGT, TripCountVal,
2529                            ConstantInt::get(Loc->getContext(), MaxVal));
2530     BackedgeCheck = Builder.CreateAnd(
2531         BackedgeCheck, Builder.CreateICmp(ICmpInst::ICMP_NE, StepValue, Zero));
2532 
2533     EndCheck = Builder.CreateOr(EndCheck, BackedgeCheck);
2534   }
2535 
2536   return Builder.CreateOr(EndCheck, OfMul);
2537 }
2538 
2539 Value *SCEVExpander::expandWrapPredicate(const SCEVWrapPredicate *Pred,
2540                                          Instruction *IP) {
2541   const auto *A = cast<SCEVAddRecExpr>(Pred->getExpr());
2542   Value *NSSWCheck = nullptr, *NUSWCheck = nullptr;
2543 
2544   // Add a check for NUSW
2545   if (Pred->getFlags() & SCEVWrapPredicate::IncrementNUSW)
2546     NUSWCheck = generateOverflowCheck(A, IP, false);
2547 
2548   // Add a check for NSSW
2549   if (Pred->getFlags() & SCEVWrapPredicate::IncrementNSSW)
2550     NSSWCheck = generateOverflowCheck(A, IP, true);
2551 
2552   if (NUSWCheck && NSSWCheck)
2553     return Builder.CreateOr(NUSWCheck, NSSWCheck);
2554 
2555   if (NUSWCheck)
2556     return NUSWCheck;
2557 
2558   if (NSSWCheck)
2559     return NSSWCheck;
2560 
2561   return ConstantInt::getFalse(IP->getContext());
2562 }
2563 
2564 Value *SCEVExpander::expandUnionPredicate(const SCEVUnionPredicate *Union,
2565                                           Instruction *IP) {
2566   auto *BoolType = IntegerType::get(IP->getContext(), 1);
2567   Value *Check = ConstantInt::getNullValue(BoolType);
2568 
2569   // Loop over all checks in this set.
2570   for (auto Pred : Union->getPredicates()) {
2571     auto *NextCheck = expandCodeForPredicate(Pred, IP);
2572     Builder.SetInsertPoint(IP);
2573     Check = Builder.CreateOr(Check, NextCheck);
2574   }
2575 
2576   return Check;
2577 }
2578 
2579 Value *SCEVExpander::fixupLCSSAFormFor(Instruction *User, unsigned OpIdx) {
2580   assert(PreserveLCSSA);
2581   SmallVector<Instruction *, 1> ToUpdate;
2582 
2583   auto *OpV = User->getOperand(OpIdx);
2584   auto *OpI = dyn_cast<Instruction>(OpV);
2585   if (!OpI)
2586     return OpV;
2587 
2588   Loop *DefLoop = SE.LI.getLoopFor(OpI->getParent());
2589   Loop *UseLoop = SE.LI.getLoopFor(User->getParent());
2590   if (!DefLoop || UseLoop == DefLoop || DefLoop->contains(UseLoop))
2591     return OpV;
2592 
2593   ToUpdate.push_back(OpI);
2594   SmallVector<PHINode *, 16> PHIsToRemove;
2595   formLCSSAForInstructions(ToUpdate, SE.DT, SE.LI, &SE, Builder, &PHIsToRemove);
2596   for (PHINode *PN : PHIsToRemove) {
2597     if (!PN->use_empty())
2598       continue;
2599     InsertedValues.erase(PN);
2600     InsertedPostIncValues.erase(PN);
2601     PN->eraseFromParent();
2602   }
2603 
2604   return User->getOperand(OpIdx);
2605 }
2606 
2607 namespace {
2608 // Search for a SCEV subexpression that is not safe to expand.  Any expression
2609 // that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely
2610 // UDiv expressions. We don't know if the UDiv is derived from an IR divide
2611 // instruction, but the important thing is that we prove the denominator is
2612 // nonzero before expansion.
2613 //
2614 // IVUsers already checks that IV-derived expressions are safe. So this check is
2615 // only needed when the expression includes some subexpression that is not IV
2616 // derived.
2617 //
2618 // Currently, we only allow division by a nonzero constant here. If this is
2619 // inadequate, we could easily allow division by SCEVUnknown by using
2620 // ValueTracking to check isKnownNonZero().
2621 //
2622 // We cannot generally expand recurrences unless the step dominates the loop
2623 // header. The expander handles the special case of affine recurrences by
2624 // scaling the recurrence outside the loop, but this technique isn't generally
2625 // applicable. Expanding a nested recurrence outside a loop requires computing
2626 // binomial coefficients. This could be done, but the recurrence has to be in a
2627 // perfectly reduced form, which can't be guaranteed.
2628 struct SCEVFindUnsafe {
2629   ScalarEvolution &SE;
2630   bool IsUnsafe;
2631 
2632   SCEVFindUnsafe(ScalarEvolution &se): SE(se), IsUnsafe(false) {}
2633 
2634   bool follow(const SCEV *S) {
2635     if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
2636       const SCEVConstant *SC = dyn_cast<SCEVConstant>(D->getRHS());
2637       if (!SC || SC->getValue()->isZero()) {
2638         IsUnsafe = true;
2639         return false;
2640       }
2641     }
2642     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2643       const SCEV *Step = AR->getStepRecurrence(SE);
2644       if (!AR->isAffine() && !SE.dominates(Step, AR->getLoop()->getHeader())) {
2645         IsUnsafe = true;
2646         return false;
2647       }
2648     }
2649     return true;
2650   }
2651   bool isDone() const { return IsUnsafe; }
2652 };
2653 }
2654 
2655 namespace llvm {
2656 bool isSafeToExpand(const SCEV *S, ScalarEvolution &SE) {
2657   SCEVFindUnsafe Search(SE);
2658   visitAll(S, Search);
2659   return !Search.IsUnsafe;
2660 }
2661 
2662 bool isSafeToExpandAt(const SCEV *S, const Instruction *InsertionPoint,
2663                       ScalarEvolution &SE) {
2664   if (!isSafeToExpand(S, SE))
2665     return false;
2666   // We have to prove that the expanded site of S dominates InsertionPoint.
2667   // This is easy when not in the same block, but hard when S is an instruction
2668   // to be expanded somewhere inside the same block as our insertion point.
2669   // What we really need here is something analogous to an OrderedBasicBlock,
2670   // but for the moment, we paper over the problem by handling two common and
2671   // cheap to check cases.
2672   if (SE.properlyDominates(S, InsertionPoint->getParent()))
2673     return true;
2674   if (SE.dominates(S, InsertionPoint->getParent())) {
2675     if (InsertionPoint->getParent()->getTerminator() == InsertionPoint)
2676       return true;
2677     if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S))
2678       for (const Value *V : InsertionPoint->operand_values())
2679         if (V == U->getValue())
2680           return true;
2681   }
2682   return false;
2683 }
2684 
2685 SCEVExpanderCleaner::~SCEVExpanderCleaner() {
2686   // Result is used, nothing to remove.
2687   if (ResultUsed)
2688     return;
2689 
2690   auto InsertedInstructions = Expander.getAllInsertedInstructions();
2691 #ifndef NDEBUG
2692   SmallPtrSet<Instruction *, 8> InsertedSet(InsertedInstructions.begin(),
2693                                             InsertedInstructions.end());
2694   (void)InsertedSet;
2695 #endif
2696   // Remove sets with value handles.
2697   Expander.clear();
2698 
2699   // Sort so that earlier instructions do not dominate later instructions.
2700   stable_sort(InsertedInstructions, [this](Instruction *A, Instruction *B) {
2701     return DT.dominates(B, A);
2702   });
2703   // Remove all inserted instructions.
2704   for (Instruction *I : InsertedInstructions) {
2705 
2706 #ifndef NDEBUG
2707     assert(all_of(I->users(),
2708                   [&InsertedSet](Value *U) {
2709                     return InsertedSet.contains(cast<Instruction>(U));
2710                   }) &&
2711            "removed instruction should only be used by instructions inserted "
2712            "during expansion");
2713 #endif
2714     assert(!I->getType()->isVoidTy() &&
2715            "inserted instruction should have non-void types");
2716     I->replaceAllUsesWith(UndefValue::get(I->getType()));
2717     I->eraseFromParent();
2718   }
2719 }
2720 }
2721