1 //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the scalar evolution expander,
10 // which is used to generate the code corresponding to a given scalar evolution
11 // expression.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallSet.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/Analysis/TargetTransformInfo.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/Dominators.h"
24 #include "llvm/IR/IntrinsicInst.h"
25 #include "llvm/IR/PatternMatch.h"
26 #include "llvm/Support/CommandLine.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include "llvm/Transforms/Utils/LoopUtils.h"
29 
30 #ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS
31 #define SCEV_DEBUG_WITH_TYPE(TYPE, X) DEBUG_WITH_TYPE(TYPE, X)
32 #else
33 #define SCEV_DEBUG_WITH_TYPE(TYPE, X)
34 #endif
35 
36 using namespace llvm;
37 
38 cl::opt<unsigned> llvm::SCEVCheapExpansionBudget(
39     "scev-cheap-expansion-budget", cl::Hidden, cl::init(4),
40     cl::desc("When performing SCEV expansion only if it is cheap to do, this "
41              "controls the budget that is considered cheap (default = 4)"));
42 
43 using namespace PatternMatch;
44 
45 /// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP,
46 /// reusing an existing cast if a suitable one (= dominating IP) exists, or
47 /// creating a new one.
48 Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty,
49                                        Instruction::CastOps Op,
50                                        BasicBlock::iterator IP) {
51   // This function must be called with the builder having a valid insertion
52   // point. It doesn't need to be the actual IP where the uses of the returned
53   // cast will be added, but it must dominate such IP.
54   // We use this precondition to produce a cast that will dominate all its
55   // uses. In particular, this is crucial for the case where the builder's
56   // insertion point *is* the point where we were asked to put the cast.
57   // Since we don't know the builder's insertion point is actually
58   // where the uses will be added (only that it dominates it), we are
59   // not allowed to move it.
60   BasicBlock::iterator BIP = Builder.GetInsertPoint();
61 
62   Value *Ret = nullptr;
63 
64   // Check to see if there is already a cast!
65   for (User *U : V->users()) {
66     if (U->getType() != Ty)
67       continue;
68     CastInst *CI = dyn_cast<CastInst>(U);
69     if (!CI || CI->getOpcode() != Op)
70       continue;
71 
72     // Found a suitable cast that is at IP or comes before IP. Use it. Note that
73     // the cast must also properly dominate the Builder's insertion point.
74     if (IP->getParent() == CI->getParent() && &*BIP != CI &&
75         (&*IP == CI || CI->comesBefore(&*IP))) {
76       Ret = CI;
77       break;
78     }
79   }
80 
81   // Create a new cast.
82   if (!Ret) {
83     SCEVInsertPointGuard Guard(Builder, this);
84     Builder.SetInsertPoint(&*IP);
85     Ret = Builder.CreateCast(Op, V, Ty, V->getName());
86   }
87 
88   // We assert at the end of the function since IP might point to an
89   // instruction with different dominance properties than a cast
90   // (an invoke for example) and not dominate BIP (but the cast does).
91   assert(!isa<Instruction>(Ret) ||
92          SE.DT.dominates(cast<Instruction>(Ret), &*BIP));
93 
94   return Ret;
95 }
96 
97 BasicBlock::iterator
98 SCEVExpander::findInsertPointAfter(Instruction *I,
99                                    Instruction *MustDominate) const {
100   BasicBlock::iterator IP = ++I->getIterator();
101   if (auto *II = dyn_cast<InvokeInst>(I))
102     IP = II->getNormalDest()->begin();
103 
104   while (isa<PHINode>(IP))
105     ++IP;
106 
107   if (isa<FuncletPadInst>(IP) || isa<LandingPadInst>(IP)) {
108     ++IP;
109   } else if (isa<CatchSwitchInst>(IP)) {
110     IP = MustDominate->getParent()->getFirstInsertionPt();
111   } else {
112     assert(!IP->isEHPad() && "unexpected eh pad!");
113   }
114 
115   // Adjust insert point to be after instructions inserted by the expander, so
116   // we can re-use already inserted instructions. Avoid skipping past the
117   // original \p MustDominate, in case it is an inserted instruction.
118   while (isInsertedInstruction(&*IP) && &*IP != MustDominate)
119     ++IP;
120 
121   return IP;
122 }
123 
124 BasicBlock::iterator
125 SCEVExpander::GetOptimalInsertionPointForCastOf(Value *V) const {
126   // Cast the argument at the beginning of the entry block, after
127   // any bitcasts of other arguments.
128   if (Argument *A = dyn_cast<Argument>(V)) {
129     BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin();
130     while ((isa<BitCastInst>(IP) &&
131             isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) &&
132             cast<BitCastInst>(IP)->getOperand(0) != A) ||
133            isa<DbgInfoIntrinsic>(IP))
134       ++IP;
135     return IP;
136   }
137 
138   // Cast the instruction immediately after the instruction.
139   if (Instruction *I = dyn_cast<Instruction>(V))
140     return findInsertPointAfter(I, &*Builder.GetInsertPoint());
141 
142   // Otherwise, this must be some kind of a constant,
143   // so let's plop this cast into the function's entry block.
144   assert(isa<Constant>(V) &&
145          "Expected the cast argument to be a global/constant");
146   return Builder.GetInsertBlock()
147       ->getParent()
148       ->getEntryBlock()
149       .getFirstInsertionPt();
150 }
151 
152 /// InsertNoopCastOfTo - Insert a cast of V to the specified type,
153 /// which must be possible with a noop cast, doing what we can to share
154 /// the casts.
155 Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) {
156   Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false);
157   assert((Op == Instruction::BitCast ||
158           Op == Instruction::PtrToInt ||
159           Op == Instruction::IntToPtr) &&
160          "InsertNoopCastOfTo cannot perform non-noop casts!");
161   assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) &&
162          "InsertNoopCastOfTo cannot change sizes!");
163 
164   // inttoptr only works for integral pointers. For non-integral pointers, we
165   // can create a GEP on i8* null  with the integral value as index. Note that
166   // it is safe to use GEP of null instead of inttoptr here, because only
167   // expressions already based on a GEP of null should be converted to pointers
168   // during expansion.
169   if (Op == Instruction::IntToPtr) {
170     auto *PtrTy = cast<PointerType>(Ty);
171     if (DL.isNonIntegralPointerType(PtrTy)) {
172       auto *Int8PtrTy = Builder.getInt8PtrTy(PtrTy->getAddressSpace());
173       assert(DL.getTypeAllocSize(Builder.getInt8Ty()) == 1 &&
174              "alloc size of i8 must by 1 byte for the GEP to be correct");
175       auto *GEP = Builder.CreateGEP(
176           Builder.getInt8Ty(), Constant::getNullValue(Int8PtrTy), V, "uglygep");
177       return Builder.CreateBitCast(GEP, Ty);
178     }
179   }
180   // Short-circuit unnecessary bitcasts.
181   if (Op == Instruction::BitCast) {
182     if (V->getType() == Ty)
183       return V;
184     if (CastInst *CI = dyn_cast<CastInst>(V)) {
185       if (CI->getOperand(0)->getType() == Ty)
186         return CI->getOperand(0);
187     }
188   }
189   // Short-circuit unnecessary inttoptr<->ptrtoint casts.
190   if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) &&
191       SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) {
192     if (CastInst *CI = dyn_cast<CastInst>(V))
193       if ((CI->getOpcode() == Instruction::PtrToInt ||
194            CI->getOpcode() == Instruction::IntToPtr) &&
195           SE.getTypeSizeInBits(CI->getType()) ==
196           SE.getTypeSizeInBits(CI->getOperand(0)->getType()))
197         return CI->getOperand(0);
198     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
199       if ((CE->getOpcode() == Instruction::PtrToInt ||
200            CE->getOpcode() == Instruction::IntToPtr) &&
201           SE.getTypeSizeInBits(CE->getType()) ==
202           SE.getTypeSizeInBits(CE->getOperand(0)->getType()))
203         return CE->getOperand(0);
204   }
205 
206   // Fold a cast of a constant.
207   if (Constant *C = dyn_cast<Constant>(V))
208     return ConstantExpr::getCast(Op, C, Ty);
209 
210   // Try to reuse existing cast, or insert one.
211   return ReuseOrCreateCast(V, Ty, Op, GetOptimalInsertionPointForCastOf(V));
212 }
213 
214 /// InsertBinop - Insert the specified binary operator, doing a small amount
215 /// of work to avoid inserting an obviously redundant operation, and hoisting
216 /// to an outer loop when the opportunity is there and it is safe.
217 Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode,
218                                  Value *LHS, Value *RHS,
219                                  SCEV::NoWrapFlags Flags, bool IsSafeToHoist) {
220   // Fold a binop with constant operands.
221   if (Constant *CLHS = dyn_cast<Constant>(LHS))
222     if (Constant *CRHS = dyn_cast<Constant>(RHS))
223       if (Constant *Res = ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, DL))
224         return Res;
225 
226   // Do a quick scan to see if we have this binop nearby.  If so, reuse it.
227   unsigned ScanLimit = 6;
228   BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
229   // Scanning starts from the last instruction before the insertion point.
230   BasicBlock::iterator IP = Builder.GetInsertPoint();
231   if (IP != BlockBegin) {
232     --IP;
233     for (; ScanLimit; --IP, --ScanLimit) {
234       // Don't count dbg.value against the ScanLimit, to avoid perturbing the
235       // generated code.
236       if (isa<DbgInfoIntrinsic>(IP))
237         ScanLimit++;
238 
239       auto canGenerateIncompatiblePoison = [&Flags](Instruction *I) {
240         // Ensure that no-wrap flags match.
241         if (isa<OverflowingBinaryOperator>(I)) {
242           if (I->hasNoSignedWrap() != (Flags & SCEV::FlagNSW))
243             return true;
244           if (I->hasNoUnsignedWrap() != (Flags & SCEV::FlagNUW))
245             return true;
246         }
247         // Conservatively, do not use any instruction which has any of exact
248         // flags installed.
249         if (isa<PossiblyExactOperator>(I) && I->isExact())
250           return true;
251         return false;
252       };
253       if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS &&
254           IP->getOperand(1) == RHS && !canGenerateIncompatiblePoison(&*IP))
255         return &*IP;
256       if (IP == BlockBegin) break;
257     }
258   }
259 
260   // Save the original insertion point so we can restore it when we're done.
261   DebugLoc Loc = Builder.GetInsertPoint()->getDebugLoc();
262   SCEVInsertPointGuard Guard(Builder, this);
263 
264   if (IsSafeToHoist) {
265     // Move the insertion point out of as many loops as we can.
266     while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
267       if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break;
268       BasicBlock *Preheader = L->getLoopPreheader();
269       if (!Preheader) break;
270 
271       // Ok, move up a level.
272       Builder.SetInsertPoint(Preheader->getTerminator());
273     }
274   }
275 
276   // If we haven't found this binop, insert it.
277   // TODO: Use the Builder, which will make CreateBinOp below fold with
278   // InstSimplifyFolder.
279   Instruction *BO = Builder.Insert(BinaryOperator::Create(Opcode, LHS, RHS));
280   BO->setDebugLoc(Loc);
281   if (Flags & SCEV::FlagNUW)
282     BO->setHasNoUnsignedWrap();
283   if (Flags & SCEV::FlagNSW)
284     BO->setHasNoSignedWrap();
285 
286   return BO;
287 }
288 
289 /// FactorOutConstant - Test if S is divisible by Factor, using signed
290 /// division. If so, update S with Factor divided out and return true.
291 /// S need not be evenly divisible if a reasonable remainder can be
292 /// computed.
293 static bool FactorOutConstant(const SCEV *&S, const SCEV *&Remainder,
294                               const SCEV *Factor, ScalarEvolution &SE,
295                               const DataLayout &DL) {
296   // Everything is divisible by one.
297   if (Factor->isOne())
298     return true;
299 
300   // x/x == 1.
301   if (S == Factor) {
302     S = SE.getConstant(S->getType(), 1);
303     return true;
304   }
305 
306   // For a Constant, check for a multiple of the given factor.
307   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
308     // 0/x == 0.
309     if (C->isZero())
310       return true;
311     // Check for divisibility.
312     if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) {
313       ConstantInt *CI =
314           ConstantInt::get(SE.getContext(), C->getAPInt().sdiv(FC->getAPInt()));
315       // If the quotient is zero and the remainder is non-zero, reject
316       // the value at this scale. It will be considered for subsequent
317       // smaller scales.
318       if (!CI->isZero()) {
319         const SCEV *Div = SE.getConstant(CI);
320         S = Div;
321         Remainder = SE.getAddExpr(
322             Remainder, SE.getConstant(C->getAPInt().srem(FC->getAPInt())));
323         return true;
324       }
325     }
326   }
327 
328   // In a Mul, check if there is a constant operand which is a multiple
329   // of the given factor.
330   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
331     // Size is known, check if there is a constant operand which is a multiple
332     // of the given factor. If so, we can factor it.
333     if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor))
334       if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0)))
335         if (!C->getAPInt().srem(FC->getAPInt())) {
336           SmallVector<const SCEV *, 4> NewMulOps(M->operands());
337           NewMulOps[0] = SE.getConstant(C->getAPInt().sdiv(FC->getAPInt()));
338           S = SE.getMulExpr(NewMulOps);
339           return true;
340         }
341   }
342 
343   // In an AddRec, check if both start and step are divisible.
344   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
345     const SCEV *Step = A->getStepRecurrence(SE);
346     const SCEV *StepRem = SE.getConstant(Step->getType(), 0);
347     if (!FactorOutConstant(Step, StepRem, Factor, SE, DL))
348       return false;
349     if (!StepRem->isZero())
350       return false;
351     const SCEV *Start = A->getStart();
352     if (!FactorOutConstant(Start, Remainder, Factor, SE, DL))
353       return false;
354     S = SE.getAddRecExpr(Start, Step, A->getLoop(),
355                          A->getNoWrapFlags(SCEV::FlagNW));
356     return true;
357   }
358 
359   return false;
360 }
361 
362 /// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs
363 /// is the number of SCEVAddRecExprs present, which are kept at the end of
364 /// the list.
365 ///
366 static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops,
367                                 Type *Ty,
368                                 ScalarEvolution &SE) {
369   unsigned NumAddRecs = 0;
370   for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i)
371     ++NumAddRecs;
372   // Group Ops into non-addrecs and addrecs.
373   SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs);
374   SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end());
375   // Let ScalarEvolution sort and simplify the non-addrecs list.
376   const SCEV *Sum = NoAddRecs.empty() ?
377                     SE.getConstant(Ty, 0) :
378                     SE.getAddExpr(NoAddRecs);
379   // If it returned an add, use the operands. Otherwise it simplified
380   // the sum into a single value, so just use that.
381   Ops.clear();
382   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum))
383     Ops.append(Add->op_begin(), Add->op_end());
384   else if (!Sum->isZero())
385     Ops.push_back(Sum);
386   // Then append the addrecs.
387   Ops.append(AddRecs.begin(), AddRecs.end());
388 }
389 
390 /// SplitAddRecs - Flatten a list of add operands, moving addrec start values
391 /// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}.
392 /// This helps expose more opportunities for folding parts of the expressions
393 /// into GEP indices.
394 ///
395 static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops,
396                          Type *Ty,
397                          ScalarEvolution &SE) {
398   // Find the addrecs.
399   SmallVector<const SCEV *, 8> AddRecs;
400   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
401     while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) {
402       const SCEV *Start = A->getStart();
403       if (Start->isZero()) break;
404       const SCEV *Zero = SE.getConstant(Ty, 0);
405       AddRecs.push_back(SE.getAddRecExpr(Zero,
406                                          A->getStepRecurrence(SE),
407                                          A->getLoop(),
408                                          A->getNoWrapFlags(SCEV::FlagNW)));
409       if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) {
410         Ops[i] = Zero;
411         Ops.append(Add->op_begin(), Add->op_end());
412         e += Add->getNumOperands();
413       } else {
414         Ops[i] = Start;
415       }
416     }
417   if (!AddRecs.empty()) {
418     // Add the addrecs onto the end of the list.
419     Ops.append(AddRecs.begin(), AddRecs.end());
420     // Resort the operand list, moving any constants to the front.
421     SimplifyAddOperands(Ops, Ty, SE);
422   }
423 }
424 
425 /// expandAddToGEP - Expand an addition expression with a pointer type into
426 /// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps
427 /// BasicAliasAnalysis and other passes analyze the result. See the rules
428 /// for getelementptr vs. inttoptr in
429 /// http://llvm.org/docs/LangRef.html#pointeraliasing
430 /// for details.
431 ///
432 /// Design note: The correctness of using getelementptr here depends on
433 /// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as
434 /// they may introduce pointer arithmetic which may not be safely converted
435 /// into getelementptr.
436 ///
437 /// Design note: It might seem desirable for this function to be more
438 /// loop-aware. If some of the indices are loop-invariant while others
439 /// aren't, it might seem desirable to emit multiple GEPs, keeping the
440 /// loop-invariant portions of the overall computation outside the loop.
441 /// However, there are a few reasons this is not done here. Hoisting simple
442 /// arithmetic is a low-level optimization that often isn't very
443 /// important until late in the optimization process. In fact, passes
444 /// like InstructionCombining will combine GEPs, even if it means
445 /// pushing loop-invariant computation down into loops, so even if the
446 /// GEPs were split here, the work would quickly be undone. The
447 /// LoopStrengthReduction pass, which is usually run quite late (and
448 /// after the last InstructionCombining pass), takes care of hoisting
449 /// loop-invariant portions of expressions, after considering what
450 /// can be folded using target addressing modes.
451 ///
452 Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin,
453                                     const SCEV *const *op_end,
454                                     PointerType *PTy,
455                                     Type *Ty,
456                                     Value *V) {
457   SmallVector<Value *, 4> GepIndices;
458   SmallVector<const SCEV *, 8> Ops(op_begin, op_end);
459   bool AnyNonZeroIndices = false;
460 
461   // Split AddRecs up into parts as either of the parts may be usable
462   // without the other.
463   SplitAddRecs(Ops, Ty, SE);
464 
465   Type *IntIdxTy = DL.getIndexType(PTy);
466 
467   // For opaque pointers, always generate i8 GEP.
468   if (!PTy->isOpaque()) {
469     // Descend down the pointer's type and attempt to convert the other
470     // operands into GEP indices, at each level. The first index in a GEP
471     // indexes into the array implied by the pointer operand; the rest of
472     // the indices index into the element or field type selected by the
473     // preceding index.
474     Type *ElTy = PTy->getNonOpaquePointerElementType();
475     for (;;) {
476       // If the scale size is not 0, attempt to factor out a scale for
477       // array indexing.
478       SmallVector<const SCEV *, 8> ScaledOps;
479       if (ElTy->isSized()) {
480         const SCEV *ElSize = SE.getSizeOfExpr(IntIdxTy, ElTy);
481         if (!ElSize->isZero()) {
482           SmallVector<const SCEV *, 8> NewOps;
483           for (const SCEV *Op : Ops) {
484             const SCEV *Remainder = SE.getConstant(Ty, 0);
485             if (FactorOutConstant(Op, Remainder, ElSize, SE, DL)) {
486               // Op now has ElSize factored out.
487               ScaledOps.push_back(Op);
488               if (!Remainder->isZero())
489                 NewOps.push_back(Remainder);
490               AnyNonZeroIndices = true;
491             } else {
492               // The operand was not divisible, so add it to the list of
493               // operands we'll scan next iteration.
494               NewOps.push_back(Op);
495             }
496           }
497           // If we made any changes, update Ops.
498           if (!ScaledOps.empty()) {
499             Ops = NewOps;
500             SimplifyAddOperands(Ops, Ty, SE);
501           }
502         }
503       }
504 
505       // Record the scaled array index for this level of the type. If
506       // we didn't find any operands that could be factored, tentatively
507       // assume that element zero was selected (since the zero offset
508       // would obviously be folded away).
509       Value *Scaled =
510           ScaledOps.empty()
511               ? Constant::getNullValue(Ty)
512               : expandCodeForImpl(SE.getAddExpr(ScaledOps), Ty, false);
513       GepIndices.push_back(Scaled);
514 
515       // Collect struct field index operands.
516       while (StructType *STy = dyn_cast<StructType>(ElTy)) {
517         bool FoundFieldNo = false;
518         // An empty struct has no fields.
519         if (STy->getNumElements() == 0) break;
520         // Field offsets are known. See if a constant offset falls within any of
521         // the struct fields.
522         if (Ops.empty())
523           break;
524         if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0]))
525           if (SE.getTypeSizeInBits(C->getType()) <= 64) {
526             const StructLayout &SL = *DL.getStructLayout(STy);
527             uint64_t FullOffset = C->getValue()->getZExtValue();
528             if (FullOffset < SL.getSizeInBytes()) {
529               unsigned ElIdx = SL.getElementContainingOffset(FullOffset);
530               GepIndices.push_back(
531                   ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx));
532               ElTy = STy->getTypeAtIndex(ElIdx);
533               Ops[0] =
534                   SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx));
535               AnyNonZeroIndices = true;
536               FoundFieldNo = true;
537             }
538           }
539         // If no struct field offsets were found, tentatively assume that
540         // field zero was selected (since the zero offset would obviously
541         // be folded away).
542         if (!FoundFieldNo) {
543           ElTy = STy->getTypeAtIndex(0u);
544           GepIndices.push_back(
545             Constant::getNullValue(Type::getInt32Ty(Ty->getContext())));
546         }
547       }
548 
549       if (ArrayType *ATy = dyn_cast<ArrayType>(ElTy))
550         ElTy = ATy->getElementType();
551       else
552         // FIXME: Handle VectorType.
553         // E.g., If ElTy is scalable vector, then ElSize is not a compile-time
554         // constant, therefore can not be factored out. The generated IR is less
555         // ideal with base 'V' cast to i8* and do ugly getelementptr over that.
556         break;
557     }
558   }
559 
560   // If none of the operands were convertible to proper GEP indices, cast
561   // the base to i8* and do an ugly getelementptr with that. It's still
562   // better than ptrtoint+arithmetic+inttoptr at least.
563   if (!AnyNonZeroIndices) {
564     // Cast the base to i8*.
565     if (!PTy->isOpaque())
566       V = InsertNoopCastOfTo(V,
567          Type::getInt8PtrTy(Ty->getContext(), PTy->getAddressSpace()));
568 
569     assert(!isa<Instruction>(V) ||
570            SE.DT.dominates(cast<Instruction>(V), &*Builder.GetInsertPoint()));
571 
572     // Expand the operands for a plain byte offset.
573     Value *Idx = expandCodeForImpl(SE.getAddExpr(Ops), Ty, false);
574 
575     // Fold a GEP with constant operands.
576     if (Constant *CLHS = dyn_cast<Constant>(V))
577       if (Constant *CRHS = dyn_cast<Constant>(Idx))
578         return ConstantExpr::getGetElementPtr(Type::getInt8Ty(Ty->getContext()),
579                                               CLHS, CRHS);
580 
581     // Do a quick scan to see if we have this GEP nearby.  If so, reuse it.
582     unsigned ScanLimit = 6;
583     BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
584     // Scanning starts from the last instruction before the insertion point.
585     BasicBlock::iterator IP = Builder.GetInsertPoint();
586     if (IP != BlockBegin) {
587       --IP;
588       for (; ScanLimit; --IP, --ScanLimit) {
589         // Don't count dbg.value against the ScanLimit, to avoid perturbing the
590         // generated code.
591         if (isa<DbgInfoIntrinsic>(IP))
592           ScanLimit++;
593         if (IP->getOpcode() == Instruction::GetElementPtr &&
594             IP->getOperand(0) == V && IP->getOperand(1) == Idx &&
595             cast<GEPOperator>(&*IP)->getSourceElementType() ==
596                 Type::getInt8Ty(Ty->getContext()))
597           return &*IP;
598         if (IP == BlockBegin) break;
599       }
600     }
601 
602     // Save the original insertion point so we can restore it when we're done.
603     SCEVInsertPointGuard Guard(Builder, this);
604 
605     // Move the insertion point out of as many loops as we can.
606     while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
607       if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break;
608       BasicBlock *Preheader = L->getLoopPreheader();
609       if (!Preheader) break;
610 
611       // Ok, move up a level.
612       Builder.SetInsertPoint(Preheader->getTerminator());
613     }
614 
615     // Emit a GEP.
616     return Builder.CreateGEP(Builder.getInt8Ty(), V, Idx, "uglygep");
617   }
618 
619   {
620     SCEVInsertPointGuard Guard(Builder, this);
621 
622     // Move the insertion point out of as many loops as we can.
623     while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
624       if (!L->isLoopInvariant(V)) break;
625 
626       bool AnyIndexNotLoopInvariant = any_of(
627           GepIndices, [L](Value *Op) { return !L->isLoopInvariant(Op); });
628 
629       if (AnyIndexNotLoopInvariant)
630         break;
631 
632       BasicBlock *Preheader = L->getLoopPreheader();
633       if (!Preheader) break;
634 
635       // Ok, move up a level.
636       Builder.SetInsertPoint(Preheader->getTerminator());
637     }
638 
639     // Insert a pretty getelementptr. Note that this GEP is not marked inbounds,
640     // because ScalarEvolution may have changed the address arithmetic to
641     // compute a value which is beyond the end of the allocated object.
642     Value *Casted = V;
643     if (V->getType() != PTy)
644       Casted = InsertNoopCastOfTo(Casted, PTy);
645     Value *GEP = Builder.CreateGEP(PTy->getNonOpaquePointerElementType(),
646                                    Casted, GepIndices, "scevgep");
647     Ops.push_back(SE.getUnknown(GEP));
648   }
649 
650   return expand(SE.getAddExpr(Ops));
651 }
652 
653 Value *SCEVExpander::expandAddToGEP(const SCEV *Op, PointerType *PTy, Type *Ty,
654                                     Value *V) {
655   const SCEV *const Ops[1] = {Op};
656   return expandAddToGEP(Ops, Ops + 1, PTy, Ty, V);
657 }
658 
659 /// PickMostRelevantLoop - Given two loops pick the one that's most relevant for
660 /// SCEV expansion. If they are nested, this is the most nested. If they are
661 /// neighboring, pick the later.
662 static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B,
663                                         DominatorTree &DT) {
664   if (!A) return B;
665   if (!B) return A;
666   if (A->contains(B)) return B;
667   if (B->contains(A)) return A;
668   if (DT.dominates(A->getHeader(), B->getHeader())) return B;
669   if (DT.dominates(B->getHeader(), A->getHeader())) return A;
670   return A; // Arbitrarily break the tie.
671 }
672 
673 /// getRelevantLoop - Get the most relevant loop associated with the given
674 /// expression, according to PickMostRelevantLoop.
675 const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) {
676   // Test whether we've already computed the most relevant loop for this SCEV.
677   auto Pair = RelevantLoops.insert(std::make_pair(S, nullptr));
678   if (!Pair.second)
679     return Pair.first->second;
680 
681   if (isa<SCEVConstant>(S))
682     // A constant has no relevant loops.
683     return nullptr;
684   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
685     if (const Instruction *I = dyn_cast<Instruction>(U->getValue()))
686       return Pair.first->second = SE.LI.getLoopFor(I->getParent());
687     // A non-instruction has no relevant loops.
688     return nullptr;
689   }
690   if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) {
691     const Loop *L = nullptr;
692     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
693       L = AR->getLoop();
694     for (const SCEV *Op : N->operands())
695       L = PickMostRelevantLoop(L, getRelevantLoop(Op), SE.DT);
696     return RelevantLoops[N] = L;
697   }
698   if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) {
699     const Loop *Result = getRelevantLoop(C->getOperand());
700     return RelevantLoops[C] = Result;
701   }
702   if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
703     const Loop *Result = PickMostRelevantLoop(
704         getRelevantLoop(D->getLHS()), getRelevantLoop(D->getRHS()), SE.DT);
705     return RelevantLoops[D] = Result;
706   }
707   llvm_unreachable("Unexpected SCEV type!");
708 }
709 
710 namespace {
711 
712 /// LoopCompare - Compare loops by PickMostRelevantLoop.
713 class LoopCompare {
714   DominatorTree &DT;
715 public:
716   explicit LoopCompare(DominatorTree &dt) : DT(dt) {}
717 
718   bool operator()(std::pair<const Loop *, const SCEV *> LHS,
719                   std::pair<const Loop *, const SCEV *> RHS) const {
720     // Keep pointer operands sorted at the end.
721     if (LHS.second->getType()->isPointerTy() !=
722         RHS.second->getType()->isPointerTy())
723       return LHS.second->getType()->isPointerTy();
724 
725     // Compare loops with PickMostRelevantLoop.
726     if (LHS.first != RHS.first)
727       return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first;
728 
729     // If one operand is a non-constant negative and the other is not,
730     // put the non-constant negative on the right so that a sub can
731     // be used instead of a negate and add.
732     if (LHS.second->isNonConstantNegative()) {
733       if (!RHS.second->isNonConstantNegative())
734         return false;
735     } else if (RHS.second->isNonConstantNegative())
736       return true;
737 
738     // Otherwise they are equivalent according to this comparison.
739     return false;
740   }
741 };
742 
743 }
744 
745 Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
746   Type *Ty = SE.getEffectiveSCEVType(S->getType());
747 
748   // Collect all the add operands in a loop, along with their associated loops.
749   // Iterate in reverse so that constants are emitted last, all else equal, and
750   // so that pointer operands are inserted first, which the code below relies on
751   // to form more involved GEPs.
752   SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
753   for (const SCEV *Op : reverse(S->operands()))
754     OpsAndLoops.push_back(std::make_pair(getRelevantLoop(Op), Op));
755 
756   // Sort by loop. Use a stable sort so that constants follow non-constants and
757   // pointer operands precede non-pointer operands.
758   llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT));
759 
760   // Emit instructions to add all the operands. Hoist as much as possible
761   // out of loops, and form meaningful getelementptrs where possible.
762   Value *Sum = nullptr;
763   for (auto I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E;) {
764     const Loop *CurLoop = I->first;
765     const SCEV *Op = I->second;
766     if (!Sum) {
767       // This is the first operand. Just expand it.
768       Sum = expand(Op);
769       ++I;
770       continue;
771     }
772 
773     assert(!Op->getType()->isPointerTy() && "Only first op can be pointer");
774     if (PointerType *PTy = dyn_cast<PointerType>(Sum->getType())) {
775       // The running sum expression is a pointer. Try to form a getelementptr
776       // at this level with that as the base.
777       SmallVector<const SCEV *, 4> NewOps;
778       for (; I != E && I->first == CurLoop; ++I) {
779         // If the operand is SCEVUnknown and not instructions, peek through
780         // it, to enable more of it to be folded into the GEP.
781         const SCEV *X = I->second;
782         if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X))
783           if (!isa<Instruction>(U->getValue()))
784             X = SE.getSCEV(U->getValue());
785         NewOps.push_back(X);
786       }
787       Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, Sum);
788     } else if (Op->isNonConstantNegative()) {
789       // Instead of doing a negate and add, just do a subtract.
790       Value *W = expandCodeForImpl(SE.getNegativeSCEV(Op), Ty, false);
791       Sum = InsertNoopCastOfTo(Sum, Ty);
792       Sum = InsertBinop(Instruction::Sub, Sum, W, SCEV::FlagAnyWrap,
793                         /*IsSafeToHoist*/ true);
794       ++I;
795     } else {
796       // A simple add.
797       Value *W = expandCodeForImpl(Op, Ty, false);
798       Sum = InsertNoopCastOfTo(Sum, Ty);
799       // Canonicalize a constant to the RHS.
800       if (isa<Constant>(Sum)) std::swap(Sum, W);
801       Sum = InsertBinop(Instruction::Add, Sum, W, S->getNoWrapFlags(),
802                         /*IsSafeToHoist*/ true);
803       ++I;
804     }
805   }
806 
807   return Sum;
808 }
809 
810 Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) {
811   Type *Ty = SE.getEffectiveSCEVType(S->getType());
812 
813   // Collect all the mul operands in a loop, along with their associated loops.
814   // Iterate in reverse so that constants are emitted last, all else equal.
815   SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
816   for (const SCEV *Op : reverse(S->operands()))
817     OpsAndLoops.push_back(std::make_pair(getRelevantLoop(Op), Op));
818 
819   // Sort by loop. Use a stable sort so that constants follow non-constants.
820   llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT));
821 
822   // Emit instructions to mul all the operands. Hoist as much as possible
823   // out of loops.
824   Value *Prod = nullptr;
825   auto I = OpsAndLoops.begin();
826 
827   // Expand the calculation of X pow N in the following manner:
828   // Let N = P1 + P2 + ... + PK, where all P are powers of 2. Then:
829   // X pow N = (X pow P1) * (X pow P2) * ... * (X pow PK).
830   const auto ExpandOpBinPowN = [this, &I, &OpsAndLoops, &Ty]() {
831     auto E = I;
832     // Calculate how many times the same operand from the same loop is included
833     // into this power.
834     uint64_t Exponent = 0;
835     const uint64_t MaxExponent = UINT64_MAX >> 1;
836     // No one sane will ever try to calculate such huge exponents, but if we
837     // need this, we stop on UINT64_MAX / 2 because we need to exit the loop
838     // below when the power of 2 exceeds our Exponent, and we want it to be
839     // 1u << 31 at most to not deal with unsigned overflow.
840     while (E != OpsAndLoops.end() && *I == *E && Exponent != MaxExponent) {
841       ++Exponent;
842       ++E;
843     }
844     assert(Exponent > 0 && "Trying to calculate a zeroth exponent of operand?");
845 
846     // Calculate powers with exponents 1, 2, 4, 8 etc. and include those of them
847     // that are needed into the result.
848     Value *P = expandCodeForImpl(I->second, Ty, false);
849     Value *Result = nullptr;
850     if (Exponent & 1)
851       Result = P;
852     for (uint64_t BinExp = 2; BinExp <= Exponent; BinExp <<= 1) {
853       P = InsertBinop(Instruction::Mul, P, P, SCEV::FlagAnyWrap,
854                       /*IsSafeToHoist*/ true);
855       if (Exponent & BinExp)
856         Result = Result ? InsertBinop(Instruction::Mul, Result, P,
857                                       SCEV::FlagAnyWrap,
858                                       /*IsSafeToHoist*/ true)
859                         : P;
860     }
861 
862     I = E;
863     assert(Result && "Nothing was expanded?");
864     return Result;
865   };
866 
867   while (I != OpsAndLoops.end()) {
868     if (!Prod) {
869       // This is the first operand. Just expand it.
870       Prod = ExpandOpBinPowN();
871     } else if (I->second->isAllOnesValue()) {
872       // Instead of doing a multiply by negative one, just do a negate.
873       Prod = InsertNoopCastOfTo(Prod, Ty);
874       Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod,
875                          SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true);
876       ++I;
877     } else {
878       // A simple mul.
879       Value *W = ExpandOpBinPowN();
880       Prod = InsertNoopCastOfTo(Prod, Ty);
881       // Canonicalize a constant to the RHS.
882       if (isa<Constant>(Prod)) std::swap(Prod, W);
883       const APInt *RHS;
884       if (match(W, m_Power2(RHS))) {
885         // Canonicalize Prod*(1<<C) to Prod<<C.
886         assert(!Ty->isVectorTy() && "vector types are not SCEVable");
887         auto NWFlags = S->getNoWrapFlags();
888         // clear nsw flag if shl will produce poison value.
889         if (RHS->logBase2() == RHS->getBitWidth() - 1)
890           NWFlags = ScalarEvolution::clearFlags(NWFlags, SCEV::FlagNSW);
891         Prod = InsertBinop(Instruction::Shl, Prod,
892                            ConstantInt::get(Ty, RHS->logBase2()), NWFlags,
893                            /*IsSafeToHoist*/ true);
894       } else {
895         Prod = InsertBinop(Instruction::Mul, Prod, W, S->getNoWrapFlags(),
896                            /*IsSafeToHoist*/ true);
897       }
898     }
899   }
900 
901   return Prod;
902 }
903 
904 Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
905   Type *Ty = SE.getEffectiveSCEVType(S->getType());
906 
907   Value *LHS = expandCodeForImpl(S->getLHS(), Ty, false);
908   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) {
909     const APInt &RHS = SC->getAPInt();
910     if (RHS.isPowerOf2())
911       return InsertBinop(Instruction::LShr, LHS,
912                          ConstantInt::get(Ty, RHS.logBase2()),
913                          SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true);
914   }
915 
916   Value *RHS = expandCodeForImpl(S->getRHS(), Ty, false);
917   return InsertBinop(Instruction::UDiv, LHS, RHS, SCEV::FlagAnyWrap,
918                      /*IsSafeToHoist*/ SE.isKnownNonZero(S->getRHS()));
919 }
920 
921 /// Determine if this is a well-behaved chain of instructions leading back to
922 /// the PHI. If so, it may be reused by expanded expressions.
923 bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV,
924                                          const Loop *L) {
925   if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) ||
926       (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV)))
927     return false;
928   // If any of the operands don't dominate the insert position, bail.
929   // Addrec operands are always loop-invariant, so this can only happen
930   // if there are instructions which haven't been hoisted.
931   if (L == IVIncInsertLoop) {
932     for (Use &Op : llvm::drop_begin(IncV->operands()))
933       if (Instruction *OInst = dyn_cast<Instruction>(Op))
934         if (!SE.DT.dominates(OInst, IVIncInsertPos))
935           return false;
936   }
937   // Advance to the next instruction.
938   IncV = dyn_cast<Instruction>(IncV->getOperand(0));
939   if (!IncV)
940     return false;
941 
942   if (IncV->mayHaveSideEffects())
943     return false;
944 
945   if (IncV == PN)
946     return true;
947 
948   return isNormalAddRecExprPHI(PN, IncV, L);
949 }
950 
951 /// getIVIncOperand returns an induction variable increment's induction
952 /// variable operand.
953 ///
954 /// If allowScale is set, any type of GEP is allowed as long as the nonIV
955 /// operands dominate InsertPos.
956 ///
957 /// If allowScale is not set, ensure that a GEP increment conforms to one of the
958 /// simple patterns generated by getAddRecExprPHILiterally and
959 /// expandAddtoGEP. If the pattern isn't recognized, return NULL.
960 Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV,
961                                            Instruction *InsertPos,
962                                            bool allowScale) {
963   if (IncV == InsertPos)
964     return nullptr;
965 
966   switch (IncV->getOpcode()) {
967   default:
968     return nullptr;
969   // Check for a simple Add/Sub or GEP of a loop invariant step.
970   case Instruction::Add:
971   case Instruction::Sub: {
972     Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1));
973     if (!OInst || SE.DT.dominates(OInst, InsertPos))
974       return dyn_cast<Instruction>(IncV->getOperand(0));
975     return nullptr;
976   }
977   case Instruction::BitCast:
978     return dyn_cast<Instruction>(IncV->getOperand(0));
979   case Instruction::GetElementPtr:
980     for (Use &U : llvm::drop_begin(IncV->operands())) {
981       if (isa<Constant>(U))
982         continue;
983       if (Instruction *OInst = dyn_cast<Instruction>(U)) {
984         if (!SE.DT.dominates(OInst, InsertPos))
985           return nullptr;
986       }
987       if (allowScale) {
988         // allow any kind of GEP as long as it can be hoisted.
989         continue;
990       }
991       // This must be a pointer addition of constants (pretty), which is already
992       // handled, or some number of address-size elements (ugly). Ugly geps
993       // have 2 operands. i1* is used by the expander to represent an
994       // address-size element.
995       if (IncV->getNumOperands() != 2)
996         return nullptr;
997       unsigned AS = cast<PointerType>(IncV->getType())->getAddressSpace();
998       if (IncV->getType() != Type::getInt1PtrTy(SE.getContext(), AS)
999           && IncV->getType() != Type::getInt8PtrTy(SE.getContext(), AS))
1000         return nullptr;
1001       break;
1002     }
1003     return dyn_cast<Instruction>(IncV->getOperand(0));
1004   }
1005 }
1006 
1007 /// If the insert point of the current builder or any of the builders on the
1008 /// stack of saved builders has 'I' as its insert point, update it to point to
1009 /// the instruction after 'I'.  This is intended to be used when the instruction
1010 /// 'I' is being moved.  If this fixup is not done and 'I' is moved to a
1011 /// different block, the inconsistent insert point (with a mismatched
1012 /// Instruction and Block) can lead to an instruction being inserted in a block
1013 /// other than its parent.
1014 void SCEVExpander::fixupInsertPoints(Instruction *I) {
1015   BasicBlock::iterator It(*I);
1016   BasicBlock::iterator NewInsertPt = std::next(It);
1017   if (Builder.GetInsertPoint() == It)
1018     Builder.SetInsertPoint(&*NewInsertPt);
1019   for (auto *InsertPtGuard : InsertPointGuards)
1020     if (InsertPtGuard->GetInsertPoint() == It)
1021       InsertPtGuard->SetInsertPoint(NewInsertPt);
1022 }
1023 
1024 /// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make
1025 /// it available to other uses in this loop. Recursively hoist any operands,
1026 /// until we reach a value that dominates InsertPos.
1027 bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos) {
1028   if (SE.DT.dominates(IncV, InsertPos))
1029       return true;
1030 
1031   // InsertPos must itself dominate IncV so that IncV's new position satisfies
1032   // its existing users.
1033   if (isa<PHINode>(InsertPos) ||
1034       !SE.DT.dominates(InsertPos->getParent(), IncV->getParent()))
1035     return false;
1036 
1037   if (!SE.LI.movementPreservesLCSSAForm(IncV, InsertPos))
1038     return false;
1039 
1040   // Check that the chain of IV operands leading back to Phi can be hoisted.
1041   SmallVector<Instruction*, 4> IVIncs;
1042   for(;;) {
1043     Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true);
1044     if (!Oper)
1045       return false;
1046     // IncV is safe to hoist.
1047     IVIncs.push_back(IncV);
1048     IncV = Oper;
1049     if (SE.DT.dominates(IncV, InsertPos))
1050       break;
1051   }
1052   for (Instruction *I : llvm::reverse(IVIncs)) {
1053     fixupInsertPoints(I);
1054     I->moveBefore(InsertPos);
1055   }
1056   return true;
1057 }
1058 
1059 /// Determine if this cyclic phi is in a form that would have been generated by
1060 /// LSR. We don't care if the phi was actually expanded in this pass, as long
1061 /// as it is in a low-cost form, for example, no implied multiplication. This
1062 /// should match any patterns generated by getAddRecExprPHILiterally and
1063 /// expandAddtoGEP.
1064 bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV,
1065                                            const Loop *L) {
1066   for(Instruction *IVOper = IncV;
1067       (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(),
1068                                 /*allowScale=*/false));) {
1069     if (IVOper == PN)
1070       return true;
1071   }
1072   return false;
1073 }
1074 
1075 /// expandIVInc - Expand an IV increment at Builder's current InsertPos.
1076 /// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may
1077 /// need to materialize IV increments elsewhere to handle difficult situations.
1078 Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L,
1079                                  Type *ExpandTy, Type *IntTy,
1080                                  bool useSubtract) {
1081   Value *IncV;
1082   // If the PHI is a pointer, use a GEP, otherwise use an add or sub.
1083   if (ExpandTy->isPointerTy()) {
1084     PointerType *GEPPtrTy = cast<PointerType>(ExpandTy);
1085     // If the step isn't constant, don't use an implicitly scaled GEP, because
1086     // that would require a multiply inside the loop.
1087     if (!isa<ConstantInt>(StepV))
1088       GEPPtrTy = PointerType::get(Type::getInt1Ty(SE.getContext()),
1089                                   GEPPtrTy->getAddressSpace());
1090     IncV = expandAddToGEP(SE.getSCEV(StepV), GEPPtrTy, IntTy, PN);
1091     if (IncV->getType() != PN->getType())
1092       IncV = Builder.CreateBitCast(IncV, PN->getType());
1093   } else {
1094     IncV = useSubtract ?
1095       Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") :
1096       Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next");
1097   }
1098   return IncV;
1099 }
1100 
1101 /// Check whether we can cheaply express the requested SCEV in terms of
1102 /// the available PHI SCEV by truncation and/or inversion of the step.
1103 static bool canBeCheaplyTransformed(ScalarEvolution &SE,
1104                                     const SCEVAddRecExpr *Phi,
1105                                     const SCEVAddRecExpr *Requested,
1106                                     bool &InvertStep) {
1107   // We can't transform to match a pointer PHI.
1108   if (Phi->getType()->isPointerTy())
1109     return false;
1110 
1111   Type *PhiTy = SE.getEffectiveSCEVType(Phi->getType());
1112   Type *RequestedTy = SE.getEffectiveSCEVType(Requested->getType());
1113 
1114   if (RequestedTy->getIntegerBitWidth() > PhiTy->getIntegerBitWidth())
1115     return false;
1116 
1117   // Try truncate it if necessary.
1118   Phi = dyn_cast<SCEVAddRecExpr>(SE.getTruncateOrNoop(Phi, RequestedTy));
1119   if (!Phi)
1120     return false;
1121 
1122   // Check whether truncation will help.
1123   if (Phi == Requested) {
1124     InvertStep = false;
1125     return true;
1126   }
1127 
1128   // Check whether inverting will help: {R,+,-1} == R - {0,+,1}.
1129   if (SE.getMinusSCEV(Requested->getStart(), Requested) == Phi) {
1130     InvertStep = true;
1131     return true;
1132   }
1133 
1134   return false;
1135 }
1136 
1137 static bool IsIncrementNSW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) {
1138   if (!isa<IntegerType>(AR->getType()))
1139     return false;
1140 
1141   unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth();
1142   Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2);
1143   const SCEV *Step = AR->getStepRecurrence(SE);
1144   const SCEV *OpAfterExtend = SE.getAddExpr(SE.getSignExtendExpr(Step, WideTy),
1145                                             SE.getSignExtendExpr(AR, WideTy));
1146   const SCEV *ExtendAfterOp =
1147     SE.getSignExtendExpr(SE.getAddExpr(AR, Step), WideTy);
1148   return ExtendAfterOp == OpAfterExtend;
1149 }
1150 
1151 static bool IsIncrementNUW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) {
1152   if (!isa<IntegerType>(AR->getType()))
1153     return false;
1154 
1155   unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth();
1156   Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2);
1157   const SCEV *Step = AR->getStepRecurrence(SE);
1158   const SCEV *OpAfterExtend = SE.getAddExpr(SE.getZeroExtendExpr(Step, WideTy),
1159                                             SE.getZeroExtendExpr(AR, WideTy));
1160   const SCEV *ExtendAfterOp =
1161     SE.getZeroExtendExpr(SE.getAddExpr(AR, Step), WideTy);
1162   return ExtendAfterOp == OpAfterExtend;
1163 }
1164 
1165 /// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand
1166 /// the base addrec, which is the addrec without any non-loop-dominating
1167 /// values, and return the PHI.
1168 PHINode *
1169 SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
1170                                         const Loop *L,
1171                                         Type *ExpandTy,
1172                                         Type *IntTy,
1173                                         Type *&TruncTy,
1174                                         bool &InvertStep) {
1175   assert((!IVIncInsertLoop||IVIncInsertPos) && "Uninitialized insert position");
1176 
1177   // Reuse a previously-inserted PHI, if present.
1178   BasicBlock *LatchBlock = L->getLoopLatch();
1179   if (LatchBlock) {
1180     PHINode *AddRecPhiMatch = nullptr;
1181     Instruction *IncV = nullptr;
1182     TruncTy = nullptr;
1183     InvertStep = false;
1184 
1185     // Only try partially matching scevs that need truncation and/or
1186     // step-inversion if we know this loop is outside the current loop.
1187     bool TryNonMatchingSCEV =
1188         IVIncInsertLoop &&
1189         SE.DT.properlyDominates(LatchBlock, IVIncInsertLoop->getHeader());
1190 
1191     for (PHINode &PN : L->getHeader()->phis()) {
1192       if (!SE.isSCEVable(PN.getType()))
1193         continue;
1194 
1195       // We should not look for a incomplete PHI. Getting SCEV for a incomplete
1196       // PHI has no meaning at all.
1197       if (!PN.isComplete()) {
1198         SCEV_DEBUG_WITH_TYPE(
1199             DebugType, dbgs() << "One incomplete PHI is found: " << PN << "\n");
1200         continue;
1201       }
1202 
1203       const SCEVAddRecExpr *PhiSCEV = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&PN));
1204       if (!PhiSCEV)
1205         continue;
1206 
1207       bool IsMatchingSCEV = PhiSCEV == Normalized;
1208       // We only handle truncation and inversion of phi recurrences for the
1209       // expanded expression if the expanded expression's loop dominates the
1210       // loop we insert to. Check now, so we can bail out early.
1211       if (!IsMatchingSCEV && !TryNonMatchingSCEV)
1212           continue;
1213 
1214       // TODO: this possibly can be reworked to avoid this cast at all.
1215       Instruction *TempIncV =
1216           dyn_cast<Instruction>(PN.getIncomingValueForBlock(LatchBlock));
1217       if (!TempIncV)
1218         continue;
1219 
1220       // Check whether we can reuse this PHI node.
1221       if (LSRMode) {
1222         if (!isExpandedAddRecExprPHI(&PN, TempIncV, L))
1223           continue;
1224       } else {
1225         if (!isNormalAddRecExprPHI(&PN, TempIncV, L))
1226           continue;
1227       }
1228 
1229       // Stop if we have found an exact match SCEV.
1230       if (IsMatchingSCEV) {
1231         IncV = TempIncV;
1232         TruncTy = nullptr;
1233         InvertStep = false;
1234         AddRecPhiMatch = &PN;
1235         break;
1236       }
1237 
1238       // Try whether the phi can be translated into the requested form
1239       // (truncated and/or offset by a constant).
1240       if ((!TruncTy || InvertStep) &&
1241           canBeCheaplyTransformed(SE, PhiSCEV, Normalized, InvertStep)) {
1242         // Record the phi node. But don't stop we might find an exact match
1243         // later.
1244         AddRecPhiMatch = &PN;
1245         IncV = TempIncV;
1246         TruncTy = SE.getEffectiveSCEVType(Normalized->getType());
1247       }
1248     }
1249 
1250     if (AddRecPhiMatch) {
1251       // Ok, the add recurrence looks usable.
1252       // Remember this PHI, even in post-inc mode.
1253       InsertedValues.insert(AddRecPhiMatch);
1254       // Remember the increment.
1255       rememberInstruction(IncV);
1256       // Those values were not actually inserted but re-used.
1257       ReusedValues.insert(AddRecPhiMatch);
1258       ReusedValues.insert(IncV);
1259       return AddRecPhiMatch;
1260     }
1261   }
1262 
1263   // Save the original insertion point so we can restore it when we're done.
1264   SCEVInsertPointGuard Guard(Builder, this);
1265 
1266   // Another AddRec may need to be recursively expanded below. For example, if
1267   // this AddRec is quadratic, the StepV may itself be an AddRec in this
1268   // loop. Remove this loop from the PostIncLoops set before expanding such
1269   // AddRecs. Otherwise, we cannot find a valid position for the step
1270   // (i.e. StepV can never dominate its loop header).  Ideally, we could do
1271   // SavedIncLoops.swap(PostIncLoops), but we generally have a single element,
1272   // so it's not worth implementing SmallPtrSet::swap.
1273   PostIncLoopSet SavedPostIncLoops = PostIncLoops;
1274   PostIncLoops.clear();
1275 
1276   // Expand code for the start value into the loop preheader.
1277   assert(L->getLoopPreheader() &&
1278          "Can't expand add recurrences without a loop preheader!");
1279   Value *StartV =
1280       expandCodeForImpl(Normalized->getStart(), ExpandTy,
1281                         L->getLoopPreheader()->getTerminator(), false);
1282 
1283   // StartV must have been be inserted into L's preheader to dominate the new
1284   // phi.
1285   assert(!isa<Instruction>(StartV) ||
1286          SE.DT.properlyDominates(cast<Instruction>(StartV)->getParent(),
1287                                  L->getHeader()));
1288 
1289   // Expand code for the step value. Do this before creating the PHI so that PHI
1290   // reuse code doesn't see an incomplete PHI.
1291   const SCEV *Step = Normalized->getStepRecurrence(SE);
1292   // If the stride is negative, insert a sub instead of an add for the increment
1293   // (unless it's a constant, because subtracts of constants are canonicalized
1294   // to adds).
1295   bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
1296   if (useSubtract)
1297     Step = SE.getNegativeSCEV(Step);
1298   // Expand the step somewhere that dominates the loop header.
1299   Value *StepV = expandCodeForImpl(
1300       Step, IntTy, &*L->getHeader()->getFirstInsertionPt(), false);
1301 
1302   // The no-wrap behavior proved by IsIncrement(NUW|NSW) is only applicable if
1303   // we actually do emit an addition.  It does not apply if we emit a
1304   // subtraction.
1305   bool IncrementIsNUW = !useSubtract && IsIncrementNUW(SE, Normalized);
1306   bool IncrementIsNSW = !useSubtract && IsIncrementNSW(SE, Normalized);
1307 
1308   // Create the PHI.
1309   BasicBlock *Header = L->getHeader();
1310   Builder.SetInsertPoint(Header, Header->begin());
1311   pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
1312   PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE),
1313                                   Twine(IVName) + ".iv");
1314 
1315   // Create the step instructions and populate the PHI.
1316   for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
1317     BasicBlock *Pred = *HPI;
1318 
1319     // Add a start value.
1320     if (!L->contains(Pred)) {
1321       PN->addIncoming(StartV, Pred);
1322       continue;
1323     }
1324 
1325     // Create a step value and add it to the PHI.
1326     // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the
1327     // instructions at IVIncInsertPos.
1328     Instruction *InsertPos = L == IVIncInsertLoop ?
1329       IVIncInsertPos : Pred->getTerminator();
1330     Builder.SetInsertPoint(InsertPos);
1331     Value *IncV = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
1332 
1333     if (isa<OverflowingBinaryOperator>(IncV)) {
1334       if (IncrementIsNUW)
1335         cast<BinaryOperator>(IncV)->setHasNoUnsignedWrap();
1336       if (IncrementIsNSW)
1337         cast<BinaryOperator>(IncV)->setHasNoSignedWrap();
1338     }
1339     PN->addIncoming(IncV, Pred);
1340   }
1341 
1342   // After expanding subexpressions, restore the PostIncLoops set so the caller
1343   // can ensure that IVIncrement dominates the current uses.
1344   PostIncLoops = SavedPostIncLoops;
1345 
1346   // Remember this PHI, even in post-inc mode. LSR SCEV-based salvaging is most
1347   // effective when we are able to use an IV inserted here, so record it.
1348   InsertedValues.insert(PN);
1349   InsertedIVs.push_back(PN);
1350   return PN;
1351 }
1352 
1353 Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) {
1354   Type *STy = S->getType();
1355   Type *IntTy = SE.getEffectiveSCEVType(STy);
1356   const Loop *L = S->getLoop();
1357 
1358   // Determine a normalized form of this expression, which is the expression
1359   // before any post-inc adjustment is made.
1360   const SCEVAddRecExpr *Normalized = S;
1361   if (PostIncLoops.count(L)) {
1362     PostIncLoopSet Loops;
1363     Loops.insert(L);
1364     Normalized = cast<SCEVAddRecExpr>(normalizeForPostIncUse(S, Loops, SE));
1365   }
1366 
1367   // Strip off any non-loop-dominating component from the addrec start.
1368   const SCEV *Start = Normalized->getStart();
1369   const SCEV *PostLoopOffset = nullptr;
1370   if (!SE.properlyDominates(Start, L->getHeader())) {
1371     PostLoopOffset = Start;
1372     Start = SE.getConstant(Normalized->getType(), 0);
1373     Normalized = cast<SCEVAddRecExpr>(
1374       SE.getAddRecExpr(Start, Normalized->getStepRecurrence(SE),
1375                        Normalized->getLoop(),
1376                        Normalized->getNoWrapFlags(SCEV::FlagNW)));
1377   }
1378 
1379   // Strip off any non-loop-dominating component from the addrec step.
1380   const SCEV *Step = Normalized->getStepRecurrence(SE);
1381   const SCEV *PostLoopScale = nullptr;
1382   if (!SE.dominates(Step, L->getHeader())) {
1383     PostLoopScale = Step;
1384     Step = SE.getConstant(Normalized->getType(), 1);
1385     if (!Start->isZero()) {
1386         // The normalization below assumes that Start is constant zero, so if
1387         // it isn't re-associate Start to PostLoopOffset.
1388         assert(!PostLoopOffset && "Start not-null but PostLoopOffset set?");
1389         PostLoopOffset = Start;
1390         Start = SE.getConstant(Normalized->getType(), 0);
1391     }
1392     Normalized =
1393       cast<SCEVAddRecExpr>(SE.getAddRecExpr(
1394                              Start, Step, Normalized->getLoop(),
1395                              Normalized->getNoWrapFlags(SCEV::FlagNW)));
1396   }
1397 
1398   // Expand the core addrec. If we need post-loop scaling, force it to
1399   // expand to an integer type to avoid the need for additional casting.
1400   Type *ExpandTy = PostLoopScale ? IntTy : STy;
1401   // We can't use a pointer type for the addrec if the pointer type is
1402   // non-integral.
1403   Type *AddRecPHIExpandTy =
1404       DL.isNonIntegralPointerType(STy) ? Normalized->getType() : ExpandTy;
1405 
1406   // In some cases, we decide to reuse an existing phi node but need to truncate
1407   // it and/or invert the step.
1408   Type *TruncTy = nullptr;
1409   bool InvertStep = false;
1410   PHINode *PN = getAddRecExprPHILiterally(Normalized, L, AddRecPHIExpandTy,
1411                                           IntTy, TruncTy, InvertStep);
1412 
1413   // Accommodate post-inc mode, if necessary.
1414   Value *Result;
1415   if (!PostIncLoops.count(L))
1416     Result = PN;
1417   else {
1418     // In PostInc mode, use the post-incremented value.
1419     BasicBlock *LatchBlock = L->getLoopLatch();
1420     assert(LatchBlock && "PostInc mode requires a unique loop latch!");
1421     Result = PN->getIncomingValueForBlock(LatchBlock);
1422 
1423     // We might be introducing a new use of the post-inc IV that is not poison
1424     // safe, in which case we should drop poison generating flags. Only keep
1425     // those flags for which SCEV has proven that they always hold.
1426     if (isa<OverflowingBinaryOperator>(Result)) {
1427       auto *I = cast<Instruction>(Result);
1428       if (!S->hasNoUnsignedWrap())
1429         I->setHasNoUnsignedWrap(false);
1430       if (!S->hasNoSignedWrap())
1431         I->setHasNoSignedWrap(false);
1432     }
1433 
1434     // For an expansion to use the postinc form, the client must call
1435     // expandCodeFor with an InsertPoint that is either outside the PostIncLoop
1436     // or dominated by IVIncInsertPos.
1437     if (isa<Instruction>(Result) &&
1438         !SE.DT.dominates(cast<Instruction>(Result),
1439                          &*Builder.GetInsertPoint())) {
1440       // The induction variable's postinc expansion does not dominate this use.
1441       // IVUsers tries to prevent this case, so it is rare. However, it can
1442       // happen when an IVUser outside the loop is not dominated by the latch
1443       // block. Adjusting IVIncInsertPos before expansion begins cannot handle
1444       // all cases. Consider a phi outside whose operand is replaced during
1445       // expansion with the value of the postinc user. Without fundamentally
1446       // changing the way postinc users are tracked, the only remedy is
1447       // inserting an extra IV increment. StepV might fold into PostLoopOffset,
1448       // but hopefully expandCodeFor handles that.
1449       bool useSubtract =
1450         !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
1451       if (useSubtract)
1452         Step = SE.getNegativeSCEV(Step);
1453       Value *StepV;
1454       {
1455         // Expand the step somewhere that dominates the loop header.
1456         SCEVInsertPointGuard Guard(Builder, this);
1457         StepV = expandCodeForImpl(
1458             Step, IntTy, &*L->getHeader()->getFirstInsertionPt(), false);
1459       }
1460       Result = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
1461     }
1462   }
1463 
1464   // We have decided to reuse an induction variable of a dominating loop. Apply
1465   // truncation and/or inversion of the step.
1466   if (TruncTy) {
1467     Type *ResTy = Result->getType();
1468     // Normalize the result type.
1469     if (ResTy != SE.getEffectiveSCEVType(ResTy))
1470       Result = InsertNoopCastOfTo(Result, SE.getEffectiveSCEVType(ResTy));
1471     // Truncate the result.
1472     if (TruncTy != Result->getType())
1473       Result = Builder.CreateTrunc(Result, TruncTy);
1474 
1475     // Invert the result.
1476     if (InvertStep)
1477       Result = Builder.CreateSub(
1478           expandCodeForImpl(Normalized->getStart(), TruncTy, false), Result);
1479   }
1480 
1481   // Re-apply any non-loop-dominating scale.
1482   if (PostLoopScale) {
1483     assert(S->isAffine() && "Can't linearly scale non-affine recurrences.");
1484     Result = InsertNoopCastOfTo(Result, IntTy);
1485     Result = Builder.CreateMul(Result,
1486                                expandCodeForImpl(PostLoopScale, IntTy, false));
1487   }
1488 
1489   // Re-apply any non-loop-dominating offset.
1490   if (PostLoopOffset) {
1491     if (PointerType *PTy = dyn_cast<PointerType>(ExpandTy)) {
1492       if (Result->getType()->isIntegerTy()) {
1493         Value *Base = expandCodeForImpl(PostLoopOffset, ExpandTy, false);
1494         Result = expandAddToGEP(SE.getUnknown(Result), PTy, IntTy, Base);
1495       } else {
1496         Result = expandAddToGEP(PostLoopOffset, PTy, IntTy, Result);
1497       }
1498     } else {
1499       Result = InsertNoopCastOfTo(Result, IntTy);
1500       Result = Builder.CreateAdd(
1501           Result, expandCodeForImpl(PostLoopOffset, IntTy, false));
1502     }
1503   }
1504 
1505   return Result;
1506 }
1507 
1508 Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
1509   // In canonical mode we compute the addrec as an expression of a canonical IV
1510   // using evaluateAtIteration and expand the resulting SCEV expression. This
1511   // way we avoid introducing new IVs to carry on the comutation of the addrec
1512   // throughout the loop.
1513   //
1514   // For nested addrecs evaluateAtIteration might need a canonical IV of a
1515   // type wider than the addrec itself. Emitting a canonical IV of the
1516   // proper type might produce non-legal types, for example expanding an i64
1517   // {0,+,2,+,1} addrec would need an i65 canonical IV. To avoid this just fall
1518   // back to non-canonical mode for nested addrecs.
1519   if (!CanonicalMode || (S->getNumOperands() > 2))
1520     return expandAddRecExprLiterally(S);
1521 
1522   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1523   const Loop *L = S->getLoop();
1524 
1525   // First check for an existing canonical IV in a suitable type.
1526   PHINode *CanonicalIV = nullptr;
1527   if (PHINode *PN = L->getCanonicalInductionVariable())
1528     if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty))
1529       CanonicalIV = PN;
1530 
1531   // Rewrite an AddRec in terms of the canonical induction variable, if
1532   // its type is more narrow.
1533   if (CanonicalIV &&
1534       SE.getTypeSizeInBits(CanonicalIV->getType()) > SE.getTypeSizeInBits(Ty) &&
1535       !S->getType()->isPointerTy()) {
1536     SmallVector<const SCEV *, 4> NewOps(S->getNumOperands());
1537     for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i)
1538       NewOps[i] = SE.getAnyExtendExpr(S->op_begin()[i], CanonicalIV->getType());
1539     Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(),
1540                                        S->getNoWrapFlags(SCEV::FlagNW)));
1541     BasicBlock::iterator NewInsertPt =
1542         findInsertPointAfter(cast<Instruction>(V), &*Builder.GetInsertPoint());
1543     V = expandCodeForImpl(SE.getTruncateExpr(SE.getUnknown(V), Ty), nullptr,
1544                           &*NewInsertPt, false);
1545     return V;
1546   }
1547 
1548   // {X,+,F} --> X + {0,+,F}
1549   if (!S->getStart()->isZero()) {
1550     if (PointerType *PTy = dyn_cast<PointerType>(S->getType())) {
1551       Value *StartV = expand(SE.getPointerBase(S));
1552       assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!");
1553       return expandAddToGEP(SE.removePointerBase(S), PTy, Ty, StartV);
1554     }
1555 
1556     SmallVector<const SCEV *, 4> NewOps(S->operands());
1557     NewOps[0] = SE.getConstant(Ty, 0);
1558     const SCEV *Rest = SE.getAddRecExpr(NewOps, L,
1559                                         S->getNoWrapFlags(SCEV::FlagNW));
1560 
1561     // Just do a normal add. Pre-expand the operands to suppress folding.
1562     //
1563     // The LHS and RHS values are factored out of the expand call to make the
1564     // output independent of the argument evaluation order.
1565     const SCEV *AddExprLHS = SE.getUnknown(expand(S->getStart()));
1566     const SCEV *AddExprRHS = SE.getUnknown(expand(Rest));
1567     return expand(SE.getAddExpr(AddExprLHS, AddExprRHS));
1568   }
1569 
1570   // If we don't yet have a canonical IV, create one.
1571   if (!CanonicalIV) {
1572     // Create and insert the PHI node for the induction variable in the
1573     // specified loop.
1574     BasicBlock *Header = L->getHeader();
1575     pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
1576     CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar",
1577                                   &Header->front());
1578     rememberInstruction(CanonicalIV);
1579 
1580     SmallSet<BasicBlock *, 4> PredSeen;
1581     Constant *One = ConstantInt::get(Ty, 1);
1582     for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
1583       BasicBlock *HP = *HPI;
1584       if (!PredSeen.insert(HP).second) {
1585         // There must be an incoming value for each predecessor, even the
1586         // duplicates!
1587         CanonicalIV->addIncoming(CanonicalIV->getIncomingValueForBlock(HP), HP);
1588         continue;
1589       }
1590 
1591       if (L->contains(HP)) {
1592         // Insert a unit add instruction right before the terminator
1593         // corresponding to the back-edge.
1594         Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One,
1595                                                      "indvar.next",
1596                                                      HP->getTerminator());
1597         Add->setDebugLoc(HP->getTerminator()->getDebugLoc());
1598         rememberInstruction(Add);
1599         CanonicalIV->addIncoming(Add, HP);
1600       } else {
1601         CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP);
1602       }
1603     }
1604   }
1605 
1606   // {0,+,1} --> Insert a canonical induction variable into the loop!
1607   if (S->isAffine() && S->getOperand(1)->isOne()) {
1608     assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) &&
1609            "IVs with types different from the canonical IV should "
1610            "already have been handled!");
1611     return CanonicalIV;
1612   }
1613 
1614   // {0,+,F} --> {0,+,1} * F
1615 
1616   // If this is a simple linear addrec, emit it now as a special case.
1617   if (S->isAffine())    // {0,+,F} --> i*F
1618     return
1619       expand(SE.getTruncateOrNoop(
1620         SE.getMulExpr(SE.getUnknown(CanonicalIV),
1621                       SE.getNoopOrAnyExtend(S->getOperand(1),
1622                                             CanonicalIV->getType())),
1623         Ty));
1624 
1625   // If this is a chain of recurrences, turn it into a closed form, using the
1626   // folders, then expandCodeFor the closed form.  This allows the folders to
1627   // simplify the expression without having to build a bunch of special code
1628   // into this folder.
1629   const SCEV *IH = SE.getUnknown(CanonicalIV);   // Get I as a "symbolic" SCEV.
1630 
1631   // Promote S up to the canonical IV type, if the cast is foldable.
1632   const SCEV *NewS = S;
1633   const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType());
1634   if (isa<SCEVAddRecExpr>(Ext))
1635     NewS = Ext;
1636 
1637   const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE);
1638 
1639   // Truncate the result down to the original type, if needed.
1640   const SCEV *T = SE.getTruncateOrNoop(V, Ty);
1641   return expand(T);
1642 }
1643 
1644 Value *SCEVExpander::visitPtrToIntExpr(const SCEVPtrToIntExpr *S) {
1645   Value *V =
1646       expandCodeForImpl(S->getOperand(), S->getOperand()->getType(), false);
1647   return ReuseOrCreateCast(V, S->getType(), CastInst::PtrToInt,
1648                            GetOptimalInsertionPointForCastOf(V));
1649 }
1650 
1651 Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) {
1652   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1653   Value *V = expandCodeForImpl(
1654       S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()),
1655       false);
1656   return Builder.CreateTrunc(V, Ty);
1657 }
1658 
1659 Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) {
1660   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1661   Value *V = expandCodeForImpl(
1662       S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()),
1663       false);
1664   return Builder.CreateZExt(V, Ty);
1665 }
1666 
1667 Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) {
1668   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1669   Value *V = expandCodeForImpl(
1670       S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()),
1671       false);
1672   return Builder.CreateSExt(V, Ty);
1673 }
1674 
1675 Value *SCEVExpander::expandMinMaxExpr(const SCEVNAryExpr *S,
1676                                       Intrinsic::ID IntrinID, Twine Name,
1677                                       bool IsSequential) {
1678   Value *LHS = expand(S->getOperand(S->getNumOperands() - 1));
1679   Type *Ty = LHS->getType();
1680   if (IsSequential)
1681     LHS = Builder.CreateFreeze(LHS);
1682   for (int i = S->getNumOperands() - 2; i >= 0; --i) {
1683     Value *RHS = expandCodeForImpl(S->getOperand(i), Ty, false);
1684     if (IsSequential && i != 0)
1685       RHS = Builder.CreateFreeze(RHS);
1686     Value *Sel;
1687     if (Ty->isIntegerTy())
1688       Sel = Builder.CreateIntrinsic(IntrinID, {Ty}, {LHS, RHS},
1689                                     /*FMFSource=*/nullptr, Name);
1690     else {
1691       Value *ICmp =
1692           Builder.CreateICmp(MinMaxIntrinsic::getPredicate(IntrinID), LHS, RHS);
1693       Sel = Builder.CreateSelect(ICmp, LHS, RHS, Name);
1694     }
1695     LHS = Sel;
1696   }
1697   return LHS;
1698 }
1699 
1700 Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) {
1701   return expandMinMaxExpr(S, Intrinsic::smax, "smax");
1702 }
1703 
1704 Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) {
1705   return expandMinMaxExpr(S, Intrinsic::umax, "umax");
1706 }
1707 
1708 Value *SCEVExpander::visitSMinExpr(const SCEVSMinExpr *S) {
1709   return expandMinMaxExpr(S, Intrinsic::smin, "smin");
1710 }
1711 
1712 Value *SCEVExpander::visitUMinExpr(const SCEVUMinExpr *S) {
1713   return expandMinMaxExpr(S, Intrinsic::umin, "umin");
1714 }
1715 
1716 Value *SCEVExpander::visitSequentialUMinExpr(const SCEVSequentialUMinExpr *S) {
1717   return expandMinMaxExpr(S, Intrinsic::umin, "umin", /*IsSequential*/true);
1718 }
1719 
1720 Value *SCEVExpander::expandCodeForImpl(const SCEV *SH, Type *Ty,
1721                                        Instruction *IP, bool Root) {
1722   setInsertPoint(IP);
1723   Value *V = expandCodeForImpl(SH, Ty, Root);
1724   return V;
1725 }
1726 
1727 Value *SCEVExpander::expandCodeForImpl(const SCEV *SH, Type *Ty, bool Root) {
1728   // Expand the code for this SCEV.
1729   Value *V = expand(SH);
1730 
1731   if (PreserveLCSSA) {
1732     if (auto *Inst = dyn_cast<Instruction>(V)) {
1733       // Create a temporary instruction to at the current insertion point, so we
1734       // can hand it off to the helper to create LCSSA PHIs if required for the
1735       // new use.
1736       // FIXME: Ideally formLCSSAForInstructions (used in fixupLCSSAFormFor)
1737       // would accept a insertion point and return an LCSSA phi for that
1738       // insertion point, so there is no need to insert & remove the temporary
1739       // instruction.
1740       Instruction *Tmp;
1741       if (Inst->getType()->isIntegerTy())
1742         Tmp = cast<Instruction>(Builder.CreateIntToPtr(
1743             Inst, Inst->getType()->getPointerTo(), "tmp.lcssa.user"));
1744       else {
1745         assert(Inst->getType()->isPointerTy());
1746         Tmp = cast<Instruction>(Builder.CreatePtrToInt(
1747             Inst, Type::getInt32Ty(Inst->getContext()), "tmp.lcssa.user"));
1748       }
1749       V = fixupLCSSAFormFor(Tmp, 0);
1750 
1751       // Clean up temporary instruction.
1752       InsertedValues.erase(Tmp);
1753       InsertedPostIncValues.erase(Tmp);
1754       Tmp->eraseFromParent();
1755     }
1756   }
1757 
1758   InsertedExpressions[std::make_pair(SH, &*Builder.GetInsertPoint())] = V;
1759   if (Ty) {
1760     assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) &&
1761            "non-trivial casts should be done with the SCEVs directly!");
1762     V = InsertNoopCastOfTo(V, Ty);
1763   }
1764   return V;
1765 }
1766 
1767 Value *SCEVExpander::FindValueInExprValueMap(const SCEV *S,
1768                                              const Instruction *InsertPt) {
1769   // If the expansion is not in CanonicalMode, and the SCEV contains any
1770   // sub scAddRecExpr type SCEV, it is required to expand the SCEV literally.
1771   if (!CanonicalMode && SE.containsAddRecurrence(S))
1772     return nullptr;
1773 
1774   // If S is a constant, it may be worse to reuse an existing Value.
1775   if (isa<SCEVConstant>(S))
1776     return nullptr;
1777 
1778   // Choose a Value from the set which dominates the InsertPt.
1779   // InsertPt should be inside the Value's parent loop so as not to break
1780   // the LCSSA form.
1781   for (Value *V : SE.getSCEVValues(S)) {
1782     Instruction *EntInst = dyn_cast<Instruction>(V);
1783     if (!EntInst)
1784       continue;
1785 
1786     assert(EntInst->getFunction() == InsertPt->getFunction());
1787     if (S->getType() == V->getType() &&
1788         SE.DT.dominates(EntInst, InsertPt) &&
1789         (SE.LI.getLoopFor(EntInst->getParent()) == nullptr ||
1790          SE.LI.getLoopFor(EntInst->getParent())->contains(InsertPt)))
1791       return V;
1792   }
1793   return nullptr;
1794 }
1795 
1796 // The expansion of SCEV will either reuse a previous Value in ExprValueMap,
1797 // or expand the SCEV literally. Specifically, if the expansion is in LSRMode,
1798 // and the SCEV contains any sub scAddRecExpr type SCEV, it will be expanded
1799 // literally, to prevent LSR's transformed SCEV from being reverted. Otherwise,
1800 // the expansion will try to reuse Value from ExprValueMap, and only when it
1801 // fails, expand the SCEV literally.
1802 Value *SCEVExpander::expand(const SCEV *S) {
1803   // Compute an insertion point for this SCEV object. Hoist the instructions
1804   // as far out in the loop nest as possible.
1805   Instruction *InsertPt = &*Builder.GetInsertPoint();
1806 
1807   // We can move insertion point only if there is no div or rem operations
1808   // otherwise we are risky to move it over the check for zero denominator.
1809   auto SafeToHoist = [](const SCEV *S) {
1810     return !SCEVExprContains(S, [](const SCEV *S) {
1811               if (const auto *D = dyn_cast<SCEVUDivExpr>(S)) {
1812                 if (const auto *SC = dyn_cast<SCEVConstant>(D->getRHS()))
1813                   // Division by non-zero constants can be hoisted.
1814                   return SC->getValue()->isZero();
1815                 // All other divisions should not be moved as they may be
1816                 // divisions by zero and should be kept within the
1817                 // conditions of the surrounding loops that guard their
1818                 // execution (see PR35406).
1819                 return true;
1820               }
1821               return false;
1822             });
1823   };
1824   if (SafeToHoist(S)) {
1825     for (Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock());;
1826          L = L->getParentLoop()) {
1827       if (SE.isLoopInvariant(S, L)) {
1828         if (!L) break;
1829         if (BasicBlock *Preheader = L->getLoopPreheader())
1830           InsertPt = Preheader->getTerminator();
1831         else
1832           // LSR sets the insertion point for AddRec start/step values to the
1833           // block start to simplify value reuse, even though it's an invalid
1834           // position. SCEVExpander must correct for this in all cases.
1835           InsertPt = &*L->getHeader()->getFirstInsertionPt();
1836       } else {
1837         // If the SCEV is computable at this level, insert it into the header
1838         // after the PHIs (and after any other instructions that we've inserted
1839         // there) so that it is guaranteed to dominate any user inside the loop.
1840         if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L))
1841           InsertPt = &*L->getHeader()->getFirstInsertionPt();
1842 
1843         while (InsertPt->getIterator() != Builder.GetInsertPoint() &&
1844                (isInsertedInstruction(InsertPt) ||
1845                 isa<DbgInfoIntrinsic>(InsertPt))) {
1846           InsertPt = &*std::next(InsertPt->getIterator());
1847         }
1848         break;
1849       }
1850     }
1851   }
1852 
1853   // Check to see if we already expanded this here.
1854   auto I = InsertedExpressions.find(std::make_pair(S, InsertPt));
1855   if (I != InsertedExpressions.end())
1856     return I->second;
1857 
1858   SCEVInsertPointGuard Guard(Builder, this);
1859   Builder.SetInsertPoint(InsertPt);
1860 
1861   // Expand the expression into instructions.
1862   Value *V = FindValueInExprValueMap(S, InsertPt);
1863   if (!V)
1864     V = visit(S);
1865   else {
1866     // If we're reusing an existing instruction, we are effectively CSEing two
1867     // copies of the instruction (with potentially different flags).  As such,
1868     // we need to drop any poison generating flags unless we can prove that
1869     // said flags must be valid for all new users.
1870     if (auto *I = dyn_cast<Instruction>(V))
1871       if (I->hasPoisonGeneratingFlags() && !programUndefinedIfPoison(I))
1872         I->dropPoisonGeneratingFlags();
1873   }
1874   // Remember the expanded value for this SCEV at this location.
1875   //
1876   // This is independent of PostIncLoops. The mapped value simply materializes
1877   // the expression at this insertion point. If the mapped value happened to be
1878   // a postinc expansion, it could be reused by a non-postinc user, but only if
1879   // its insertion point was already at the head of the loop.
1880   InsertedExpressions[std::make_pair(S, InsertPt)] = V;
1881   return V;
1882 }
1883 
1884 void SCEVExpander::rememberInstruction(Value *I) {
1885   auto DoInsert = [this](Value *V) {
1886     if (!PostIncLoops.empty())
1887       InsertedPostIncValues.insert(V);
1888     else
1889       InsertedValues.insert(V);
1890   };
1891   DoInsert(I);
1892 
1893   if (!PreserveLCSSA)
1894     return;
1895 
1896   if (auto *Inst = dyn_cast<Instruction>(I)) {
1897     // A new instruction has been added, which might introduce new uses outside
1898     // a defining loop. Fix LCSSA from for each operand of the new instruction,
1899     // if required.
1900     for (unsigned OpIdx = 0, OpEnd = Inst->getNumOperands(); OpIdx != OpEnd;
1901          OpIdx++)
1902       fixupLCSSAFormFor(Inst, OpIdx);
1903   }
1904 }
1905 
1906 /// replaceCongruentIVs - Check for congruent phis in this loop header and
1907 /// replace them with their most canonical representative. Return the number of
1908 /// phis eliminated.
1909 ///
1910 /// This does not depend on any SCEVExpander state but should be used in
1911 /// the same context that SCEVExpander is used.
1912 unsigned
1913 SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT,
1914                                   SmallVectorImpl<WeakTrackingVH> &DeadInsts,
1915                                   const TargetTransformInfo *TTI) {
1916   // Find integer phis in order of increasing width.
1917   SmallVector<PHINode*, 8> Phis;
1918   for (PHINode &PN : L->getHeader()->phis())
1919     Phis.push_back(&PN);
1920 
1921   if (TTI)
1922     // Use stable_sort to preserve order of equivalent PHIs, so the order
1923     // of the sorted Phis is the same from run to run on the same loop.
1924     llvm::stable_sort(Phis, [](Value *LHS, Value *RHS) {
1925       // Put pointers at the back and make sure pointer < pointer = false.
1926       if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
1927         return RHS->getType()->isIntegerTy() && !LHS->getType()->isIntegerTy();
1928       return RHS->getType()->getPrimitiveSizeInBits().getFixedSize() <
1929              LHS->getType()->getPrimitiveSizeInBits().getFixedSize();
1930     });
1931 
1932   unsigned NumElim = 0;
1933   DenseMap<const SCEV *, PHINode *> ExprToIVMap;
1934   // Process phis from wide to narrow. Map wide phis to their truncation
1935   // so narrow phis can reuse them.
1936   for (PHINode *Phi : Phis) {
1937     auto SimplifyPHINode = [&](PHINode *PN) -> Value * {
1938       if (Value *V = simplifyInstruction(PN, {DL, &SE.TLI, &SE.DT, &SE.AC}))
1939         return V;
1940       if (!SE.isSCEVable(PN->getType()))
1941         return nullptr;
1942       auto *Const = dyn_cast<SCEVConstant>(SE.getSCEV(PN));
1943       if (!Const)
1944         return nullptr;
1945       return Const->getValue();
1946     };
1947 
1948     // Fold constant phis. They may be congruent to other constant phis and
1949     // would confuse the logic below that expects proper IVs.
1950     if (Value *V = SimplifyPHINode(Phi)) {
1951       if (V->getType() != Phi->getType())
1952         continue;
1953       Phi->replaceAllUsesWith(V);
1954       DeadInsts.emplace_back(Phi);
1955       ++NumElim;
1956       SCEV_DEBUG_WITH_TYPE(DebugType,
1957                            dbgs() << "INDVARS: Eliminated constant iv: " << *Phi
1958                                   << '\n');
1959       continue;
1960     }
1961 
1962     if (!SE.isSCEVable(Phi->getType()))
1963       continue;
1964 
1965     PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)];
1966     if (!OrigPhiRef) {
1967       OrigPhiRef = Phi;
1968       if (Phi->getType()->isIntegerTy() && TTI &&
1969           TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) {
1970         // This phi can be freely truncated to the narrowest phi type. Map the
1971         // truncated expression to it so it will be reused for narrow types.
1972         const SCEV *TruncExpr =
1973           SE.getTruncateExpr(SE.getSCEV(Phi), Phis.back()->getType());
1974         ExprToIVMap[TruncExpr] = Phi;
1975       }
1976       continue;
1977     }
1978 
1979     // Replacing a pointer phi with an integer phi or vice-versa doesn't make
1980     // sense.
1981     if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy())
1982       continue;
1983 
1984     if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1985       Instruction *OrigInc = dyn_cast<Instruction>(
1986           OrigPhiRef->getIncomingValueForBlock(LatchBlock));
1987       Instruction *IsomorphicInc =
1988           dyn_cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock));
1989 
1990       if (OrigInc && IsomorphicInc) {
1991         // If this phi has the same width but is more canonical, replace the
1992         // original with it. As part of the "more canonical" determination,
1993         // respect a prior decision to use an IV chain.
1994         if (OrigPhiRef->getType() == Phi->getType() &&
1995             !(ChainedPhis.count(Phi) ||
1996               isExpandedAddRecExprPHI(OrigPhiRef, OrigInc, L)) &&
1997             (ChainedPhis.count(Phi) ||
1998              isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) {
1999           std::swap(OrigPhiRef, Phi);
2000           std::swap(OrigInc, IsomorphicInc);
2001         }
2002         // Replacing the congruent phi is sufficient because acyclic
2003         // redundancy elimination, CSE/GVN, should handle the
2004         // rest. However, once SCEV proves that a phi is congruent,
2005         // it's often the head of an IV user cycle that is isomorphic
2006         // with the original phi. It's worth eagerly cleaning up the
2007         // common case of a single IV increment so that DeleteDeadPHIs
2008         // can remove cycles that had postinc uses.
2009         const SCEV *TruncExpr =
2010             SE.getTruncateOrNoop(SE.getSCEV(OrigInc), IsomorphicInc->getType());
2011         if (OrigInc != IsomorphicInc &&
2012             TruncExpr == SE.getSCEV(IsomorphicInc) &&
2013             SE.LI.replacementPreservesLCSSAForm(IsomorphicInc, OrigInc) &&
2014             hoistIVInc(OrigInc, IsomorphicInc)) {
2015           SCEV_DEBUG_WITH_TYPE(
2016               DebugType, dbgs() << "INDVARS: Eliminated congruent iv.inc: "
2017                                 << *IsomorphicInc << '\n');
2018           Value *NewInc = OrigInc;
2019           if (OrigInc->getType() != IsomorphicInc->getType()) {
2020             Instruction *IP = nullptr;
2021             if (PHINode *PN = dyn_cast<PHINode>(OrigInc))
2022               IP = &*PN->getParent()->getFirstInsertionPt();
2023             else
2024               IP = OrigInc->getNextNode();
2025 
2026             IRBuilder<> Builder(IP);
2027             Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc());
2028             NewInc = Builder.CreateTruncOrBitCast(
2029                 OrigInc, IsomorphicInc->getType(), IVName);
2030           }
2031           IsomorphicInc->replaceAllUsesWith(NewInc);
2032           DeadInsts.emplace_back(IsomorphicInc);
2033         }
2034       }
2035     }
2036     SCEV_DEBUG_WITH_TYPE(DebugType,
2037                          dbgs() << "INDVARS: Eliminated congruent iv: " << *Phi
2038                                 << '\n');
2039     SCEV_DEBUG_WITH_TYPE(
2040         DebugType, dbgs() << "INDVARS: Original iv: " << *OrigPhiRef << '\n');
2041     ++NumElim;
2042     Value *NewIV = OrigPhiRef;
2043     if (OrigPhiRef->getType() != Phi->getType()) {
2044       IRBuilder<> Builder(&*L->getHeader()->getFirstInsertionPt());
2045       Builder.SetCurrentDebugLocation(Phi->getDebugLoc());
2046       NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName);
2047     }
2048     Phi->replaceAllUsesWith(NewIV);
2049     DeadInsts.emplace_back(Phi);
2050   }
2051   return NumElim;
2052 }
2053 
2054 Value *SCEVExpander::getRelatedExistingExpansion(const SCEV *S,
2055                                                  const Instruction *At,
2056                                                  Loop *L) {
2057   using namespace llvm::PatternMatch;
2058 
2059   SmallVector<BasicBlock *, 4> ExitingBlocks;
2060   L->getExitingBlocks(ExitingBlocks);
2061 
2062   // Look for suitable value in simple conditions at the loop exits.
2063   for (BasicBlock *BB : ExitingBlocks) {
2064     ICmpInst::Predicate Pred;
2065     Instruction *LHS, *RHS;
2066 
2067     if (!match(BB->getTerminator(),
2068                m_Br(m_ICmp(Pred, m_Instruction(LHS), m_Instruction(RHS)),
2069                     m_BasicBlock(), m_BasicBlock())))
2070       continue;
2071 
2072     if (SE.getSCEV(LHS) == S && SE.DT.dominates(LHS, At))
2073       return LHS;
2074 
2075     if (SE.getSCEV(RHS) == S && SE.DT.dominates(RHS, At))
2076       return RHS;
2077   }
2078 
2079   // Use expand's logic which is used for reusing a previous Value in
2080   // ExprValueMap.  Note that we don't currently model the cost of
2081   // needing to drop poison generating flags on the instruction if we
2082   // want to reuse it.  We effectively assume that has zero cost.
2083   return FindValueInExprValueMap(S, At);
2084 }
2085 
2086 template<typename T> static InstructionCost costAndCollectOperands(
2087   const SCEVOperand &WorkItem, const TargetTransformInfo &TTI,
2088   TargetTransformInfo::TargetCostKind CostKind,
2089   SmallVectorImpl<SCEVOperand> &Worklist) {
2090 
2091   const T *S = cast<T>(WorkItem.S);
2092   InstructionCost Cost = 0;
2093   // Object to help map SCEV operands to expanded IR instructions.
2094   struct OperationIndices {
2095     OperationIndices(unsigned Opc, size_t min, size_t max) :
2096       Opcode(Opc), MinIdx(min), MaxIdx(max) { }
2097     unsigned Opcode;
2098     size_t MinIdx;
2099     size_t MaxIdx;
2100   };
2101 
2102   // Collect the operations of all the instructions that will be needed to
2103   // expand the SCEVExpr. This is so that when we come to cost the operands,
2104   // we know what the generated user(s) will be.
2105   SmallVector<OperationIndices, 2> Operations;
2106 
2107   auto CastCost = [&](unsigned Opcode) -> InstructionCost {
2108     Operations.emplace_back(Opcode, 0, 0);
2109     return TTI.getCastInstrCost(Opcode, S->getType(),
2110                                 S->getOperand(0)->getType(),
2111                                 TTI::CastContextHint::None, CostKind);
2112   };
2113 
2114   auto ArithCost = [&](unsigned Opcode, unsigned NumRequired,
2115                        unsigned MinIdx = 0,
2116                        unsigned MaxIdx = 1) -> InstructionCost {
2117     Operations.emplace_back(Opcode, MinIdx, MaxIdx);
2118     return NumRequired *
2119       TTI.getArithmeticInstrCost(Opcode, S->getType(), CostKind);
2120   };
2121 
2122   auto CmpSelCost = [&](unsigned Opcode, unsigned NumRequired, unsigned MinIdx,
2123                         unsigned MaxIdx) -> InstructionCost {
2124     Operations.emplace_back(Opcode, MinIdx, MaxIdx);
2125     Type *OpType = S->getOperand(0)->getType();
2126     return NumRequired * TTI.getCmpSelInstrCost(
2127                              Opcode, OpType, CmpInst::makeCmpResultType(OpType),
2128                              CmpInst::BAD_ICMP_PREDICATE, CostKind);
2129   };
2130 
2131   switch (S->getSCEVType()) {
2132   case scCouldNotCompute:
2133     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
2134   case scUnknown:
2135   case scConstant:
2136     return 0;
2137   case scPtrToInt:
2138     Cost = CastCost(Instruction::PtrToInt);
2139     break;
2140   case scTruncate:
2141     Cost = CastCost(Instruction::Trunc);
2142     break;
2143   case scZeroExtend:
2144     Cost = CastCost(Instruction::ZExt);
2145     break;
2146   case scSignExtend:
2147     Cost = CastCost(Instruction::SExt);
2148     break;
2149   case scUDivExpr: {
2150     unsigned Opcode = Instruction::UDiv;
2151     if (auto *SC = dyn_cast<SCEVConstant>(S->getOperand(1)))
2152       if (SC->getAPInt().isPowerOf2())
2153         Opcode = Instruction::LShr;
2154     Cost = ArithCost(Opcode, 1);
2155     break;
2156   }
2157   case scAddExpr:
2158     Cost = ArithCost(Instruction::Add, S->getNumOperands() - 1);
2159     break;
2160   case scMulExpr:
2161     // TODO: this is a very pessimistic cost modelling for Mul,
2162     // because of Bin Pow algorithm actually used by the expander,
2163     // see SCEVExpander::visitMulExpr(), ExpandOpBinPowN().
2164     Cost = ArithCost(Instruction::Mul, S->getNumOperands() - 1);
2165     break;
2166   case scSMaxExpr:
2167   case scUMaxExpr:
2168   case scSMinExpr:
2169   case scUMinExpr:
2170   case scSequentialUMinExpr: {
2171     // FIXME: should this ask the cost for Intrinsic's?
2172     // The reduction tree.
2173     Cost += CmpSelCost(Instruction::ICmp, S->getNumOperands() - 1, 0, 1);
2174     Cost += CmpSelCost(Instruction::Select, S->getNumOperands() - 1, 0, 2);
2175     switch (S->getSCEVType()) {
2176     case scSequentialUMinExpr: {
2177       // The safety net against poison.
2178       // FIXME: this is broken.
2179       Cost += CmpSelCost(Instruction::ICmp, S->getNumOperands() - 1, 0, 0);
2180       Cost += ArithCost(Instruction::Or,
2181                         S->getNumOperands() > 2 ? S->getNumOperands() - 2 : 0);
2182       Cost += CmpSelCost(Instruction::Select, 1, 0, 1);
2183       break;
2184     }
2185     default:
2186       assert(!isa<SCEVSequentialMinMaxExpr>(S) &&
2187              "Unhandled SCEV expression type?");
2188       break;
2189     }
2190     break;
2191   }
2192   case scAddRecExpr: {
2193     // In this polynominal, we may have some zero operands, and we shouldn't
2194     // really charge for those. So how many non-zero coeffients are there?
2195     int NumTerms = llvm::count_if(S->operands(), [](const SCEV *Op) {
2196                                     return !Op->isZero();
2197                                   });
2198 
2199     assert(NumTerms >= 1 && "Polynominal should have at least one term.");
2200     assert(!(*std::prev(S->operands().end()))->isZero() &&
2201            "Last operand should not be zero");
2202 
2203     // Ignoring constant term (operand 0), how many of the coeffients are u> 1?
2204     int NumNonZeroDegreeNonOneTerms =
2205       llvm::count_if(S->operands(), [](const SCEV *Op) {
2206                       auto *SConst = dyn_cast<SCEVConstant>(Op);
2207                       return !SConst || SConst->getAPInt().ugt(1);
2208                     });
2209 
2210     // Much like with normal add expr, the polynominal will require
2211     // one less addition than the number of it's terms.
2212     InstructionCost AddCost = ArithCost(Instruction::Add, NumTerms - 1,
2213                                         /*MinIdx*/ 1, /*MaxIdx*/ 1);
2214     // Here, *each* one of those will require a multiplication.
2215     InstructionCost MulCost =
2216         ArithCost(Instruction::Mul, NumNonZeroDegreeNonOneTerms);
2217     Cost = AddCost + MulCost;
2218 
2219     // What is the degree of this polynominal?
2220     int PolyDegree = S->getNumOperands() - 1;
2221     assert(PolyDegree >= 1 && "Should be at least affine.");
2222 
2223     // The final term will be:
2224     //   Op_{PolyDegree} * x ^ {PolyDegree}
2225     // Where  x ^ {PolyDegree}  will again require PolyDegree-1 mul operations.
2226     // Note that  x ^ {PolyDegree} = x * x ^ {PolyDegree-1}  so charging for
2227     // x ^ {PolyDegree}  will give us  x ^ {2} .. x ^ {PolyDegree-1}  for free.
2228     // FIXME: this is conservatively correct, but might be overly pessimistic.
2229     Cost += MulCost * (PolyDegree - 1);
2230     break;
2231   }
2232   }
2233 
2234   for (auto &CostOp : Operations) {
2235     for (auto SCEVOp : enumerate(S->operands())) {
2236       // Clamp the index to account for multiple IR operations being chained.
2237       size_t MinIdx = std::max(SCEVOp.index(), CostOp.MinIdx);
2238       size_t OpIdx = std::min(MinIdx, CostOp.MaxIdx);
2239       Worklist.emplace_back(CostOp.Opcode, OpIdx, SCEVOp.value());
2240     }
2241   }
2242   return Cost;
2243 }
2244 
2245 bool SCEVExpander::isHighCostExpansionHelper(
2246     const SCEVOperand &WorkItem, Loop *L, const Instruction &At,
2247     InstructionCost &Cost, unsigned Budget, const TargetTransformInfo &TTI,
2248     SmallPtrSetImpl<const SCEV *> &Processed,
2249     SmallVectorImpl<SCEVOperand> &Worklist) {
2250   if (Cost > Budget)
2251     return true; // Already run out of budget, give up.
2252 
2253   const SCEV *S = WorkItem.S;
2254   // Was the cost of expansion of this expression already accounted for?
2255   if (!isa<SCEVConstant>(S) && !Processed.insert(S).second)
2256     return false; // We have already accounted for this expression.
2257 
2258   // If we can find an existing value for this scev available at the point "At"
2259   // then consider the expression cheap.
2260   if (getRelatedExistingExpansion(S, &At, L))
2261     return false; // Consider the expression to be free.
2262 
2263   TargetTransformInfo::TargetCostKind CostKind =
2264       L->getHeader()->getParent()->hasMinSize()
2265           ? TargetTransformInfo::TCK_CodeSize
2266           : TargetTransformInfo::TCK_RecipThroughput;
2267 
2268   switch (S->getSCEVType()) {
2269   case scCouldNotCompute:
2270     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
2271   case scUnknown:
2272     // Assume to be zero-cost.
2273     return false;
2274   case scConstant: {
2275     // Only evalulate the costs of constants when optimizing for size.
2276     if (CostKind != TargetTransformInfo::TCK_CodeSize)
2277       return false;
2278     const APInt &Imm = cast<SCEVConstant>(S)->getAPInt();
2279     Type *Ty = S->getType();
2280     Cost += TTI.getIntImmCostInst(
2281         WorkItem.ParentOpcode, WorkItem.OperandIdx, Imm, Ty, CostKind);
2282     return Cost > Budget;
2283   }
2284   case scTruncate:
2285   case scPtrToInt:
2286   case scZeroExtend:
2287   case scSignExtend: {
2288     Cost +=
2289         costAndCollectOperands<SCEVCastExpr>(WorkItem, TTI, CostKind, Worklist);
2290     return false; // Will answer upon next entry into this function.
2291   }
2292   case scUDivExpr: {
2293     // UDivExpr is very likely a UDiv that ScalarEvolution's HowFarToZero or
2294     // HowManyLessThans produced to compute a precise expression, rather than a
2295     // UDiv from the user's code. If we can't find a UDiv in the code with some
2296     // simple searching, we need to account for it's cost.
2297 
2298     // At the beginning of this function we already tried to find existing
2299     // value for plain 'S'. Now try to lookup 'S + 1' since it is common
2300     // pattern involving division. This is just a simple search heuristic.
2301     if (getRelatedExistingExpansion(
2302             SE.getAddExpr(S, SE.getConstant(S->getType(), 1)), &At, L))
2303       return false; // Consider it to be free.
2304 
2305     Cost +=
2306         costAndCollectOperands<SCEVUDivExpr>(WorkItem, TTI, CostKind, Worklist);
2307     return false; // Will answer upon next entry into this function.
2308   }
2309   case scAddExpr:
2310   case scMulExpr:
2311   case scUMaxExpr:
2312   case scSMaxExpr:
2313   case scUMinExpr:
2314   case scSMinExpr:
2315   case scSequentialUMinExpr: {
2316     assert(cast<SCEVNAryExpr>(S)->getNumOperands() > 1 &&
2317            "Nary expr should have more than 1 operand.");
2318     // The simple nary expr will require one less op (or pair of ops)
2319     // than the number of it's terms.
2320     Cost +=
2321         costAndCollectOperands<SCEVNAryExpr>(WorkItem, TTI, CostKind, Worklist);
2322     return Cost > Budget;
2323   }
2324   case scAddRecExpr: {
2325     assert(cast<SCEVAddRecExpr>(S)->getNumOperands() >= 2 &&
2326            "Polynomial should be at least linear");
2327     Cost += costAndCollectOperands<SCEVAddRecExpr>(
2328         WorkItem, TTI, CostKind, Worklist);
2329     return Cost > Budget;
2330   }
2331   }
2332   llvm_unreachable("Unknown SCEV kind!");
2333 }
2334 
2335 Value *SCEVExpander::expandCodeForPredicate(const SCEVPredicate *Pred,
2336                                             Instruction *IP) {
2337   assert(IP);
2338   switch (Pred->getKind()) {
2339   case SCEVPredicate::P_Union:
2340     return expandUnionPredicate(cast<SCEVUnionPredicate>(Pred), IP);
2341   case SCEVPredicate::P_Compare:
2342     return expandComparePredicate(cast<SCEVComparePredicate>(Pred), IP);
2343   case SCEVPredicate::P_Wrap: {
2344     auto *AddRecPred = cast<SCEVWrapPredicate>(Pred);
2345     return expandWrapPredicate(AddRecPred, IP);
2346   }
2347   }
2348   llvm_unreachable("Unknown SCEV predicate type");
2349 }
2350 
2351 Value *SCEVExpander::expandComparePredicate(const SCEVComparePredicate *Pred,
2352                                             Instruction *IP) {
2353   Value *Expr0 =
2354       expandCodeForImpl(Pred->getLHS(), Pred->getLHS()->getType(), IP, false);
2355   Value *Expr1 =
2356       expandCodeForImpl(Pred->getRHS(), Pred->getRHS()->getType(), IP, false);
2357 
2358   Builder.SetInsertPoint(IP);
2359   auto InvPred = ICmpInst::getInversePredicate(Pred->getPredicate());
2360   auto *I = Builder.CreateICmp(InvPred, Expr0, Expr1, "ident.check");
2361   return I;
2362 }
2363 
2364 Value *SCEVExpander::generateOverflowCheck(const SCEVAddRecExpr *AR,
2365                                            Instruction *Loc, bool Signed) {
2366   assert(AR->isAffine() && "Cannot generate RT check for "
2367                            "non-affine expression");
2368 
2369   // FIXME: It is highly suspicious that we're ignoring the predicates here.
2370   SmallVector<const SCEVPredicate *, 4> Pred;
2371   const SCEV *ExitCount =
2372       SE.getPredicatedBackedgeTakenCount(AR->getLoop(), Pred);
2373 
2374   assert(!isa<SCEVCouldNotCompute>(ExitCount) && "Invalid loop count");
2375 
2376   const SCEV *Step = AR->getStepRecurrence(SE);
2377   const SCEV *Start = AR->getStart();
2378 
2379   Type *ARTy = AR->getType();
2380   unsigned SrcBits = SE.getTypeSizeInBits(ExitCount->getType());
2381   unsigned DstBits = SE.getTypeSizeInBits(ARTy);
2382 
2383   // The expression {Start,+,Step} has nusw/nssw if
2384   //   Step < 0, Start - |Step| * Backedge <= Start
2385   //   Step >= 0, Start + |Step| * Backedge > Start
2386   // and |Step| * Backedge doesn't unsigned overflow.
2387 
2388   IntegerType *CountTy = IntegerType::get(Loc->getContext(), SrcBits);
2389   Builder.SetInsertPoint(Loc);
2390   Value *TripCountVal = expandCodeForImpl(ExitCount, CountTy, Loc, false);
2391 
2392   IntegerType *Ty =
2393       IntegerType::get(Loc->getContext(), SE.getTypeSizeInBits(ARTy));
2394 
2395   Value *StepValue = expandCodeForImpl(Step, Ty, Loc, false);
2396   Value *NegStepValue =
2397       expandCodeForImpl(SE.getNegativeSCEV(Step), Ty, Loc, false);
2398   Value *StartValue = expandCodeForImpl(Start, ARTy, Loc, false);
2399 
2400   ConstantInt *Zero =
2401       ConstantInt::get(Loc->getContext(), APInt::getZero(DstBits));
2402 
2403   Builder.SetInsertPoint(Loc);
2404   // Compute |Step|
2405   Value *StepCompare = Builder.CreateICmp(ICmpInst::ICMP_SLT, StepValue, Zero);
2406   Value *AbsStep = Builder.CreateSelect(StepCompare, NegStepValue, StepValue);
2407 
2408   // Compute |Step| * Backedge
2409   // Compute:
2410   //   1. Start + |Step| * Backedge < Start
2411   //   2. Start - |Step| * Backedge > Start
2412   //
2413   // And select either 1. or 2. depending on whether step is positive or
2414   // negative. If Step is known to be positive or negative, only create
2415   // either 1. or 2.
2416   auto ComputeEndCheck = [&]() -> Value * {
2417     // Checking <u 0 is always false.
2418     if (!Signed && Start->isZero() && SE.isKnownPositive(Step))
2419       return ConstantInt::getFalse(Loc->getContext());
2420 
2421     // Get the backedge taken count and truncate or extended to the AR type.
2422     Value *TruncTripCount = Builder.CreateZExtOrTrunc(TripCountVal, Ty);
2423 
2424     Value *MulV, *OfMul;
2425     if (Step->isOne()) {
2426       // Special-case Step of one. Potentially-costly `umul_with_overflow` isn't
2427       // needed, there is never an overflow, so to avoid artificially inflating
2428       // the cost of the check, directly emit the optimized IR.
2429       MulV = TruncTripCount;
2430       OfMul = ConstantInt::getFalse(MulV->getContext());
2431     } else {
2432       auto *MulF = Intrinsic::getDeclaration(Loc->getModule(),
2433                                              Intrinsic::umul_with_overflow, Ty);
2434       CallInst *Mul =
2435           Builder.CreateCall(MulF, {AbsStep, TruncTripCount}, "mul");
2436       MulV = Builder.CreateExtractValue(Mul, 0, "mul.result");
2437       OfMul = Builder.CreateExtractValue(Mul, 1, "mul.overflow");
2438     }
2439 
2440     Value *Add = nullptr, *Sub = nullptr;
2441     bool NeedPosCheck = !SE.isKnownNegative(Step);
2442     bool NeedNegCheck = !SE.isKnownPositive(Step);
2443 
2444     if (PointerType *ARPtrTy = dyn_cast<PointerType>(ARTy)) {
2445       StartValue = InsertNoopCastOfTo(
2446           StartValue, Builder.getInt8PtrTy(ARPtrTy->getAddressSpace()));
2447       Value *NegMulV = Builder.CreateNeg(MulV);
2448       if (NeedPosCheck)
2449         Add = Builder.CreateGEP(Builder.getInt8Ty(), StartValue, MulV);
2450       if (NeedNegCheck)
2451         Sub = Builder.CreateGEP(Builder.getInt8Ty(), StartValue, NegMulV);
2452     } else {
2453       if (NeedPosCheck)
2454         Add = Builder.CreateAdd(StartValue, MulV);
2455       if (NeedNegCheck)
2456         Sub = Builder.CreateSub(StartValue, MulV);
2457     }
2458 
2459     Value *EndCompareLT = nullptr;
2460     Value *EndCompareGT = nullptr;
2461     Value *EndCheck = nullptr;
2462     if (NeedPosCheck)
2463       EndCheck = EndCompareLT = Builder.CreateICmp(
2464           Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, Add, StartValue);
2465     if (NeedNegCheck)
2466       EndCheck = EndCompareGT = Builder.CreateICmp(
2467           Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT, Sub, StartValue);
2468     if (NeedPosCheck && NeedNegCheck) {
2469       // Select the answer based on the sign of Step.
2470       EndCheck = Builder.CreateSelect(StepCompare, EndCompareGT, EndCompareLT);
2471     }
2472     return Builder.CreateOr(EndCheck, OfMul);
2473   };
2474   Value *EndCheck = ComputeEndCheck();
2475 
2476   // If the backedge taken count type is larger than the AR type,
2477   // check that we don't drop any bits by truncating it. If we are
2478   // dropping bits, then we have overflow (unless the step is zero).
2479   if (SE.getTypeSizeInBits(CountTy) > SE.getTypeSizeInBits(Ty)) {
2480     auto MaxVal = APInt::getMaxValue(DstBits).zext(SrcBits);
2481     auto *BackedgeCheck =
2482         Builder.CreateICmp(ICmpInst::ICMP_UGT, TripCountVal,
2483                            ConstantInt::get(Loc->getContext(), MaxVal));
2484     BackedgeCheck = Builder.CreateAnd(
2485         BackedgeCheck, Builder.CreateICmp(ICmpInst::ICMP_NE, StepValue, Zero));
2486 
2487     EndCheck = Builder.CreateOr(EndCheck, BackedgeCheck);
2488   }
2489 
2490   return EndCheck;
2491 }
2492 
2493 Value *SCEVExpander::expandWrapPredicate(const SCEVWrapPredicate *Pred,
2494                                          Instruction *IP) {
2495   const auto *A = cast<SCEVAddRecExpr>(Pred->getExpr());
2496   Value *NSSWCheck = nullptr, *NUSWCheck = nullptr;
2497 
2498   // Add a check for NUSW
2499   if (Pred->getFlags() & SCEVWrapPredicate::IncrementNUSW)
2500     NUSWCheck = generateOverflowCheck(A, IP, false);
2501 
2502   // Add a check for NSSW
2503   if (Pred->getFlags() & SCEVWrapPredicate::IncrementNSSW)
2504     NSSWCheck = generateOverflowCheck(A, IP, true);
2505 
2506   if (NUSWCheck && NSSWCheck)
2507     return Builder.CreateOr(NUSWCheck, NSSWCheck);
2508 
2509   if (NUSWCheck)
2510     return NUSWCheck;
2511 
2512   if (NSSWCheck)
2513     return NSSWCheck;
2514 
2515   return ConstantInt::getFalse(IP->getContext());
2516 }
2517 
2518 Value *SCEVExpander::expandUnionPredicate(const SCEVUnionPredicate *Union,
2519                                           Instruction *IP) {
2520   // Loop over all checks in this set.
2521   SmallVector<Value *> Checks;
2522   for (auto Pred : Union->getPredicates()) {
2523     Checks.push_back(expandCodeForPredicate(Pred, IP));
2524     Builder.SetInsertPoint(IP);
2525   }
2526 
2527   if (Checks.empty())
2528     return ConstantInt::getFalse(IP->getContext());
2529   return Builder.CreateOr(Checks);
2530 }
2531 
2532 Value *SCEVExpander::fixupLCSSAFormFor(Instruction *User, unsigned OpIdx) {
2533   assert(PreserveLCSSA);
2534   SmallVector<Instruction *, 1> ToUpdate;
2535 
2536   auto *OpV = User->getOperand(OpIdx);
2537   auto *OpI = dyn_cast<Instruction>(OpV);
2538   if (!OpI)
2539     return OpV;
2540 
2541   Loop *DefLoop = SE.LI.getLoopFor(OpI->getParent());
2542   Loop *UseLoop = SE.LI.getLoopFor(User->getParent());
2543   if (!DefLoop || UseLoop == DefLoop || DefLoop->contains(UseLoop))
2544     return OpV;
2545 
2546   ToUpdate.push_back(OpI);
2547   SmallVector<PHINode *, 16> PHIsToRemove;
2548   formLCSSAForInstructions(ToUpdate, SE.DT, SE.LI, &SE, Builder, &PHIsToRemove);
2549   for (PHINode *PN : PHIsToRemove) {
2550     if (!PN->use_empty())
2551       continue;
2552     InsertedValues.erase(PN);
2553     InsertedPostIncValues.erase(PN);
2554     PN->eraseFromParent();
2555   }
2556 
2557   return User->getOperand(OpIdx);
2558 }
2559 
2560 namespace {
2561 // Search for a SCEV subexpression that is not safe to expand.  Any expression
2562 // that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely
2563 // UDiv expressions. We don't know if the UDiv is derived from an IR divide
2564 // instruction, but the important thing is that we prove the denominator is
2565 // nonzero before expansion.
2566 //
2567 // IVUsers already checks that IV-derived expressions are safe. So this check is
2568 // only needed when the expression includes some subexpression that is not IV
2569 // derived.
2570 //
2571 // Currently, we only allow division by a nonzero constant here. If this is
2572 // inadequate, we could easily allow division by SCEVUnknown by using
2573 // ValueTracking to check isKnownNonZero().
2574 //
2575 // We cannot generally expand recurrences unless the step dominates the loop
2576 // header. The expander handles the special case of affine recurrences by
2577 // scaling the recurrence outside the loop, but this technique isn't generally
2578 // applicable. Expanding a nested recurrence outside a loop requires computing
2579 // binomial coefficients. This could be done, but the recurrence has to be in a
2580 // perfectly reduced form, which can't be guaranteed.
2581 struct SCEVFindUnsafe {
2582   ScalarEvolution &SE;
2583   bool CanonicalMode;
2584   bool IsUnsafe = false;
2585 
2586   SCEVFindUnsafe(ScalarEvolution &SE, bool CanonicalMode)
2587       : SE(SE), CanonicalMode(CanonicalMode) {}
2588 
2589   bool follow(const SCEV *S) {
2590     if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
2591       const SCEVConstant *SC = dyn_cast<SCEVConstant>(D->getRHS());
2592       if (!SC || SC->getValue()->isZero()) {
2593         IsUnsafe = true;
2594         return false;
2595       }
2596     }
2597     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2598       const SCEV *Step = AR->getStepRecurrence(SE);
2599       if (!AR->isAffine() && !SE.dominates(Step, AR->getLoop()->getHeader())) {
2600         IsUnsafe = true;
2601         return false;
2602       }
2603 
2604       // For non-affine addrecs or in non-canonical mode we need a preheader
2605       // to insert into.
2606       if (!AR->getLoop()->getLoopPreheader() &&
2607           (!CanonicalMode || !AR->isAffine())) {
2608         IsUnsafe = true;
2609         return false;
2610       }
2611     }
2612     return true;
2613   }
2614   bool isDone() const { return IsUnsafe; }
2615 };
2616 }
2617 
2618 namespace llvm {
2619 bool isSafeToExpand(const SCEV *S, ScalarEvolution &SE, bool CanonicalMode) {
2620   SCEVFindUnsafe Search(SE, CanonicalMode);
2621   visitAll(S, Search);
2622   return !Search.IsUnsafe;
2623 }
2624 
2625 bool isSafeToExpandAt(const SCEV *S, const Instruction *InsertionPoint,
2626                       ScalarEvolution &SE) {
2627   if (!isSafeToExpand(S, SE))
2628     return false;
2629   // We have to prove that the expanded site of S dominates InsertionPoint.
2630   // This is easy when not in the same block, but hard when S is an instruction
2631   // to be expanded somewhere inside the same block as our insertion point.
2632   // What we really need here is something analogous to an OrderedBasicBlock,
2633   // but for the moment, we paper over the problem by handling two common and
2634   // cheap to check cases.
2635   if (SE.properlyDominates(S, InsertionPoint->getParent()))
2636     return true;
2637   if (SE.dominates(S, InsertionPoint->getParent())) {
2638     if (InsertionPoint->getParent()->getTerminator() == InsertionPoint)
2639       return true;
2640     if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S))
2641       if (llvm::is_contained(InsertionPoint->operand_values(), U->getValue()))
2642         return true;
2643   }
2644   return false;
2645 }
2646 
2647 void SCEVExpanderCleaner::cleanup() {
2648   // Result is used, nothing to remove.
2649   if (ResultUsed)
2650     return;
2651 
2652   auto InsertedInstructions = Expander.getAllInsertedInstructions();
2653 #ifndef NDEBUG
2654   SmallPtrSet<Instruction *, 8> InsertedSet(InsertedInstructions.begin(),
2655                                             InsertedInstructions.end());
2656   (void)InsertedSet;
2657 #endif
2658   // Remove sets with value handles.
2659   Expander.clear();
2660 
2661   // Remove all inserted instructions.
2662   for (Instruction *I : reverse(InsertedInstructions)) {
2663 #ifndef NDEBUG
2664     assert(all_of(I->users(),
2665                   [&InsertedSet](Value *U) {
2666                     return InsertedSet.contains(cast<Instruction>(U));
2667                   }) &&
2668            "removed instruction should only be used by instructions inserted "
2669            "during expansion");
2670 #endif
2671     assert(!I->getType()->isVoidTy() &&
2672            "inserted instruction should have non-void types");
2673     I->replaceAllUsesWith(UndefValue::get(I->getType()));
2674     I->eraseFromParent();
2675   }
2676 }
2677 }
2678