1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Peephole optimize the CFG.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/ScopeExit.h"
20 #include "llvm/ADT/Sequence.h"
21 #include "llvm/ADT/SetOperations.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/Analysis/AssumptionCache.h"
28 #include "llvm/Analysis/CaptureTracking.h"
29 #include "llvm/Analysis/ConstantFolding.h"
30 #include "llvm/Analysis/DomTreeUpdater.h"
31 #include "llvm/Analysis/GuardUtils.h"
32 #include "llvm/Analysis/InstructionSimplify.h"
33 #include "llvm/Analysis/MemorySSA.h"
34 #include "llvm/Analysis/MemorySSAUpdater.h"
35 #include "llvm/Analysis/TargetTransformInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/IR/Attributes.h"
38 #include "llvm/IR/BasicBlock.h"
39 #include "llvm/IR/CFG.h"
40 #include "llvm/IR/Constant.h"
41 #include "llvm/IR/ConstantRange.h"
42 #include "llvm/IR/Constants.h"
43 #include "llvm/IR/DataLayout.h"
44 #include "llvm/IR/DerivedTypes.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/IRBuilder.h"
49 #include "llvm/IR/InstrTypes.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/IntrinsicInst.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/MDBuilder.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/NoFolder.h"
58 #include "llvm/IR/Operator.h"
59 #include "llvm/IR/PatternMatch.h"
60 #include "llvm/IR/Type.h"
61 #include "llvm/IR/Use.h"
62 #include "llvm/IR/User.h"
63 #include "llvm/IR/Value.h"
64 #include "llvm/IR/ValueHandle.h"
65 #include "llvm/Support/BranchProbability.h"
66 #include "llvm/Support/Casting.h"
67 #include "llvm/Support/CommandLine.h"
68 #include "llvm/Support/Debug.h"
69 #include "llvm/Support/ErrorHandling.h"
70 #include "llvm/Support/KnownBits.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
74 #include "llvm/Transforms/Utils/Local.h"
75 #include "llvm/Transforms/Utils/ValueMapper.h"
76 #include <algorithm>
77 #include <cassert>
78 #include <climits>
79 #include <cstddef>
80 #include <cstdint>
81 #include <iterator>
82 #include <map>
83 #include <set>
84 #include <tuple>
85 #include <utility>
86 #include <vector>
87 
88 using namespace llvm;
89 using namespace PatternMatch;
90 
91 #define DEBUG_TYPE "simplifycfg"
92 
93 cl::opt<bool> llvm::RequireAndPreserveDomTree(
94     "simplifycfg-require-and-preserve-domtree", cl::Hidden,
95 
96     cl::desc("Temorary development switch used to gradually uplift SimplifyCFG "
97              "into preserving DomTree,"));
98 
99 // Chosen as 2 so as to be cheap, but still to have enough power to fold
100 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
101 // To catch this, we need to fold a compare and a select, hence '2' being the
102 // minimum reasonable default.
103 static cl::opt<unsigned> PHINodeFoldingThreshold(
104     "phi-node-folding-threshold", cl::Hidden, cl::init(2),
105     cl::desc(
106         "Control the amount of phi node folding to perform (default = 2)"));
107 
108 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold(
109     "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4),
110     cl::desc("Control the maximal total instruction cost that we are willing "
111              "to speculatively execute to fold a 2-entry PHI node into a "
112              "select (default = 4)"));
113 
114 static cl::opt<bool>
115     HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true),
116                 cl::desc("Hoist common instructions up to the parent block"));
117 
118 static cl::opt<bool>
119     SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
120                cl::desc("Sink common instructions down to the end block"));
121 
122 static cl::opt<bool> HoistCondStores(
123     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
124     cl::desc("Hoist conditional stores if an unconditional store precedes"));
125 
126 static cl::opt<bool> MergeCondStores(
127     "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
128     cl::desc("Hoist conditional stores even if an unconditional store does not "
129              "precede - hoist multiple conditional stores into a single "
130              "predicated store"));
131 
132 static cl::opt<bool> MergeCondStoresAggressively(
133     "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
134     cl::desc("When merging conditional stores, do so even if the resultant "
135              "basic blocks are unlikely to be if-converted as a result"));
136 
137 static cl::opt<bool> SpeculateOneExpensiveInst(
138     "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
139     cl::desc("Allow exactly one expensive instruction to be speculatively "
140              "executed"));
141 
142 static cl::opt<unsigned> MaxSpeculationDepth(
143     "max-speculation-depth", cl::Hidden, cl::init(10),
144     cl::desc("Limit maximum recursion depth when calculating costs of "
145              "speculatively executed instructions"));
146 
147 static cl::opt<int>
148     MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden,
149                       cl::init(10),
150                       cl::desc("Max size of a block which is still considered "
151                                "small enough to thread through"));
152 
153 // Two is chosen to allow one negation and a logical combine.
154 static cl::opt<unsigned>
155     BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden,
156                         cl::init(2),
157                         cl::desc("Maximum cost of combining conditions when "
158                                  "folding branches"));
159 
160 static cl::opt<unsigned> BranchFoldToCommonDestVectorMultiplier(
161     "simplifycfg-branch-fold-common-dest-vector-multiplier", cl::Hidden,
162     cl::init(2),
163     cl::desc("Multiplier to apply to threshold when determining whether or not "
164              "to fold branch to common destination when vector operations are "
165              "present"));
166 
167 static cl::opt<bool> EnableMergeCompatibleInvokes(
168     "simplifycfg-merge-compatible-invokes", cl::Hidden, cl::init(true),
169     cl::desc("Allow SimplifyCFG to merge invokes together when appropriate"));
170 
171 static cl::opt<unsigned> MaxSwitchCasesPerResult(
172     "max-switch-cases-per-result", cl::Hidden, cl::init(16),
173     cl::desc("Limit cases to analyze when converting a switch to select"));
174 
175 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
176 STATISTIC(NumLinearMaps,
177           "Number of switch instructions turned into linear mapping");
178 STATISTIC(NumLookupTables,
179           "Number of switch instructions turned into lookup tables");
180 STATISTIC(
181     NumLookupTablesHoles,
182     "Number of switch instructions turned into lookup tables (holes checked)");
183 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
184 STATISTIC(NumFoldValueComparisonIntoPredecessors,
185           "Number of value comparisons folded into predecessor basic blocks");
186 STATISTIC(NumFoldBranchToCommonDest,
187           "Number of branches folded into predecessor basic block");
188 STATISTIC(
189     NumHoistCommonCode,
190     "Number of common instruction 'blocks' hoisted up to the begin block");
191 STATISTIC(NumHoistCommonInstrs,
192           "Number of common instructions hoisted up to the begin block");
193 STATISTIC(NumSinkCommonCode,
194           "Number of common instruction 'blocks' sunk down to the end block");
195 STATISTIC(NumSinkCommonInstrs,
196           "Number of common instructions sunk down to the end block");
197 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
198 STATISTIC(NumInvokes,
199           "Number of invokes with empty resume blocks simplified into calls");
200 STATISTIC(NumInvokesMerged, "Number of invokes that were merged together");
201 STATISTIC(NumInvokeSetsFormed, "Number of invoke sets that were formed");
202 
203 namespace {
204 
205 // The first field contains the value that the switch produces when a certain
206 // case group is selected, and the second field is a vector containing the
207 // cases composing the case group.
208 using SwitchCaseResultVectorTy =
209     SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>;
210 
211 // The first field contains the phi node that generates a result of the switch
212 // and the second field contains the value generated for a certain case in the
213 // switch for that PHI.
214 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
215 
216 /// ValueEqualityComparisonCase - Represents a case of a switch.
217 struct ValueEqualityComparisonCase {
218   ConstantInt *Value;
219   BasicBlock *Dest;
220 
221   ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
222       : Value(Value), Dest(Dest) {}
223 
224   bool operator<(ValueEqualityComparisonCase RHS) const {
225     // Comparing pointers is ok as we only rely on the order for uniquing.
226     return Value < RHS.Value;
227   }
228 
229   bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
230 };
231 
232 class SimplifyCFGOpt {
233   const TargetTransformInfo &TTI;
234   DomTreeUpdater *DTU;
235   const DataLayout &DL;
236   ArrayRef<WeakVH> LoopHeaders;
237   const SimplifyCFGOptions &Options;
238   bool Resimplify;
239 
240   Value *isValueEqualityComparison(Instruction *TI);
241   BasicBlock *GetValueEqualityComparisonCases(
242       Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases);
243   bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI,
244                                                      BasicBlock *Pred,
245                                                      IRBuilder<> &Builder);
246   bool PerformValueComparisonIntoPredecessorFolding(Instruction *TI, Value *&CV,
247                                                     Instruction *PTI,
248                                                     IRBuilder<> &Builder);
249   bool FoldValueComparisonIntoPredecessors(Instruction *TI,
250                                            IRBuilder<> &Builder);
251 
252   bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
253   bool simplifySingleResume(ResumeInst *RI);
254   bool simplifyCommonResume(ResumeInst *RI);
255   bool simplifyCleanupReturn(CleanupReturnInst *RI);
256   bool simplifyUnreachable(UnreachableInst *UI);
257   bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
258   bool simplifyIndirectBr(IndirectBrInst *IBI);
259   bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder);
260   bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
261   bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
262 
263   bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
264                                              IRBuilder<> &Builder);
265 
266   bool HoistThenElseCodeToIf(BranchInst *BI, const TargetTransformInfo &TTI,
267                              bool EqTermsOnly);
268   bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
269                               const TargetTransformInfo &TTI);
270   bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond,
271                                   BasicBlock *TrueBB, BasicBlock *FalseBB,
272                                   uint32_t TrueWeight, uint32_t FalseWeight);
273   bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
274                                  const DataLayout &DL);
275   bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select);
276   bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI);
277   bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder);
278 
279 public:
280   SimplifyCFGOpt(const TargetTransformInfo &TTI, DomTreeUpdater *DTU,
281                  const DataLayout &DL, ArrayRef<WeakVH> LoopHeaders,
282                  const SimplifyCFGOptions &Opts)
283       : TTI(TTI), DTU(DTU), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {
284     assert((!DTU || !DTU->hasPostDomTree()) &&
285            "SimplifyCFG is not yet capable of maintaining validity of a "
286            "PostDomTree, so don't ask for it.");
287   }
288 
289   bool simplifyOnce(BasicBlock *BB);
290   bool run(BasicBlock *BB);
291 
292   // Helper to set Resimplify and return change indication.
293   bool requestResimplify() {
294     Resimplify = true;
295     return true;
296   }
297 };
298 
299 } // end anonymous namespace
300 
301 /// Return true if all the PHI nodes in the basic block \p BB
302 /// receive compatible (identical) incoming values when coming from
303 /// all of the predecessor blocks that are specified in \p IncomingBlocks.
304 ///
305 /// Note that if the values aren't exactly identical, but \p EquivalenceSet
306 /// is provided, and *both* of the values are present in the set,
307 /// then they are considered equal.
308 static bool IncomingValuesAreCompatible(
309     BasicBlock *BB, ArrayRef<BasicBlock *> IncomingBlocks,
310     SmallPtrSetImpl<Value *> *EquivalenceSet = nullptr) {
311   assert(IncomingBlocks.size() == 2 &&
312          "Only for a pair of incoming blocks at the time!");
313 
314   // FIXME: it is okay if one of the incoming values is an `undef` value,
315   //        iff the other incoming value is guaranteed to be a non-poison value.
316   // FIXME: it is okay if one of the incoming values is a `poison` value.
317   return all_of(BB->phis(), [IncomingBlocks, EquivalenceSet](PHINode &PN) {
318     Value *IV0 = PN.getIncomingValueForBlock(IncomingBlocks[0]);
319     Value *IV1 = PN.getIncomingValueForBlock(IncomingBlocks[1]);
320     if (IV0 == IV1)
321       return true;
322     if (EquivalenceSet && EquivalenceSet->contains(IV0) &&
323         EquivalenceSet->contains(IV1))
324       return true;
325     return false;
326   });
327 }
328 
329 /// Return true if it is safe to merge these two
330 /// terminator instructions together.
331 static bool
332 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2,
333                        SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
334   if (SI1 == SI2)
335     return false; // Can't merge with self!
336 
337   // It is not safe to merge these two switch instructions if they have a common
338   // successor, and if that successor has a PHI node, and if *that* PHI node has
339   // conflicting incoming values from the two switch blocks.
340   BasicBlock *SI1BB = SI1->getParent();
341   BasicBlock *SI2BB = SI2->getParent();
342 
343   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
344   bool Fail = false;
345   for (BasicBlock *Succ : successors(SI2BB)) {
346     if (!SI1Succs.count(Succ))
347       continue;
348     if (IncomingValuesAreCompatible(Succ, {SI1BB, SI2BB}))
349       continue;
350     Fail = true;
351     if (FailBlocks)
352       FailBlocks->insert(Succ);
353     else
354       break;
355   }
356 
357   return !Fail;
358 }
359 
360 /// Update PHI nodes in Succ to indicate that there will now be entries in it
361 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
362 /// will be the same as those coming in from ExistPred, an existing predecessor
363 /// of Succ.
364 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
365                                   BasicBlock *ExistPred,
366                                   MemorySSAUpdater *MSSAU = nullptr) {
367   for (PHINode &PN : Succ->phis())
368     PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred);
369   if (MSSAU)
370     if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ))
371       MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred);
372 }
373 
374 /// Compute an abstract "cost" of speculating the given instruction,
375 /// which is assumed to be safe to speculate. TCC_Free means cheap,
376 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
377 /// expensive.
378 static InstructionCost computeSpeculationCost(const User *I,
379                                               const TargetTransformInfo &TTI) {
380   assert((!isa<Instruction>(I) ||
381           isSafeToSpeculativelyExecute(cast<Instruction>(I))) &&
382          "Instruction is not safe to speculatively execute!");
383   return TTI.getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency);
384 }
385 
386 /// If we have a merge point of an "if condition" as accepted above,
387 /// return true if the specified value dominates the block.  We
388 /// don't handle the true generality of domination here, just a special case
389 /// which works well enough for us.
390 ///
391 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
392 /// see if V (which must be an instruction) and its recursive operands
393 /// that do not dominate BB have a combined cost lower than Budget and
394 /// are non-trapping.  If both are true, the instruction is inserted into the
395 /// set and true is returned.
396 ///
397 /// The cost for most non-trapping instructions is defined as 1 except for
398 /// Select whose cost is 2.
399 ///
400 /// After this function returns, Cost is increased by the cost of
401 /// V plus its non-dominating operands.  If that cost is greater than
402 /// Budget, false is returned and Cost is undefined.
403 static bool dominatesMergePoint(Value *V, BasicBlock *BB,
404                                 SmallPtrSetImpl<Instruction *> &AggressiveInsts,
405                                 InstructionCost &Cost,
406                                 InstructionCost Budget,
407                                 const TargetTransformInfo &TTI,
408                                 unsigned Depth = 0) {
409   // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
410   // so limit the recursion depth.
411   // TODO: While this recursion limit does prevent pathological behavior, it
412   // would be better to track visited instructions to avoid cycles.
413   if (Depth == MaxSpeculationDepth)
414     return false;
415 
416   Instruction *I = dyn_cast<Instruction>(V);
417   if (!I) {
418     // Non-instructions dominate all instructions and can be executed
419     // unconditionally.
420     return true;
421   }
422   BasicBlock *PBB = I->getParent();
423 
424   // We don't want to allow weird loops that might have the "if condition" in
425   // the bottom of this block.
426   if (PBB == BB)
427     return false;
428 
429   // If this instruction is defined in a block that contains an unconditional
430   // branch to BB, then it must be in the 'conditional' part of the "if
431   // statement".  If not, it definitely dominates the region.
432   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
433   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
434     return true;
435 
436   // If we have seen this instruction before, don't count it again.
437   if (AggressiveInsts.count(I))
438     return true;
439 
440   // Okay, it looks like the instruction IS in the "condition".  Check to
441   // see if it's a cheap instruction to unconditionally compute, and if it
442   // only uses stuff defined outside of the condition.  If so, hoist it out.
443   if (!isSafeToSpeculativelyExecute(I))
444     return false;
445 
446   Cost += computeSpeculationCost(I, TTI);
447 
448   // Allow exactly one instruction to be speculated regardless of its cost
449   // (as long as it is safe to do so).
450   // This is intended to flatten the CFG even if the instruction is a division
451   // or other expensive operation. The speculation of an expensive instruction
452   // is expected to be undone in CodeGenPrepare if the speculation has not
453   // enabled further IR optimizations.
454   if (Cost > Budget &&
455       (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0 ||
456        !Cost.isValid()))
457     return false;
458 
459   // Okay, we can only really hoist these out if their operands do
460   // not take us over the cost threshold.
461   for (Use &Op : I->operands())
462     if (!dominatesMergePoint(Op, BB, AggressiveInsts, Cost, Budget, TTI,
463                              Depth + 1))
464       return false;
465   // Okay, it's safe to do this!  Remember this instruction.
466   AggressiveInsts.insert(I);
467   return true;
468 }
469 
470 /// Extract ConstantInt from value, looking through IntToPtr
471 /// and PointerNullValue. Return NULL if value is not a constant int.
472 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
473   // Normal constant int.
474   ConstantInt *CI = dyn_cast<ConstantInt>(V);
475   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
476     return CI;
477 
478   // This is some kind of pointer constant. Turn it into a pointer-sized
479   // ConstantInt if possible.
480   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
481 
482   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
483   if (isa<ConstantPointerNull>(V))
484     return ConstantInt::get(PtrTy, 0);
485 
486   // IntToPtr const int.
487   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
488     if (CE->getOpcode() == Instruction::IntToPtr)
489       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
490         // The constant is very likely to have the right type already.
491         if (CI->getType() == PtrTy)
492           return CI;
493         else
494           return cast<ConstantInt>(
495               ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
496       }
497   return nullptr;
498 }
499 
500 namespace {
501 
502 /// Given a chain of or (||) or and (&&) comparison of a value against a
503 /// constant, this will try to recover the information required for a switch
504 /// structure.
505 /// It will depth-first traverse the chain of comparison, seeking for patterns
506 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
507 /// representing the different cases for the switch.
508 /// Note that if the chain is composed of '||' it will build the set of elements
509 /// that matches the comparisons (i.e. any of this value validate the chain)
510 /// while for a chain of '&&' it will build the set elements that make the test
511 /// fail.
512 struct ConstantComparesGatherer {
513   const DataLayout &DL;
514 
515   /// Value found for the switch comparison
516   Value *CompValue = nullptr;
517 
518   /// Extra clause to be checked before the switch
519   Value *Extra = nullptr;
520 
521   /// Set of integers to match in switch
522   SmallVector<ConstantInt *, 8> Vals;
523 
524   /// Number of comparisons matched in the and/or chain
525   unsigned UsedICmps = 0;
526 
527   /// Construct and compute the result for the comparison instruction Cond
528   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) {
529     gather(Cond);
530   }
531 
532   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
533   ConstantComparesGatherer &
534   operator=(const ConstantComparesGatherer &) = delete;
535 
536 private:
537   /// Try to set the current value used for the comparison, it succeeds only if
538   /// it wasn't set before or if the new value is the same as the old one
539   bool setValueOnce(Value *NewVal) {
540     if (CompValue && CompValue != NewVal)
541       return false;
542     CompValue = NewVal;
543     return (CompValue != nullptr);
544   }
545 
546   /// Try to match Instruction "I" as a comparison against a constant and
547   /// populates the array Vals with the set of values that match (or do not
548   /// match depending on isEQ).
549   /// Return false on failure. On success, the Value the comparison matched
550   /// against is placed in CompValue.
551   /// If CompValue is already set, the function is expected to fail if a match
552   /// is found but the value compared to is different.
553   bool matchInstruction(Instruction *I, bool isEQ) {
554     // If this is an icmp against a constant, handle this as one of the cases.
555     ICmpInst *ICI;
556     ConstantInt *C;
557     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
558           (C = GetConstantInt(I->getOperand(1), DL)))) {
559       return false;
560     }
561 
562     Value *RHSVal;
563     const APInt *RHSC;
564 
565     // Pattern match a special case
566     // (x & ~2^z) == y --> x == y || x == y|2^z
567     // This undoes a transformation done by instcombine to fuse 2 compares.
568     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
569       // It's a little bit hard to see why the following transformations are
570       // correct. Here is a CVC3 program to verify them for 64-bit values:
571 
572       /*
573          ONE  : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
574          x    : BITVECTOR(64);
575          y    : BITVECTOR(64);
576          z    : BITVECTOR(64);
577          mask : BITVECTOR(64) = BVSHL(ONE, z);
578          QUERY( (y & ~mask = y) =>
579                 ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
580          );
581          QUERY( (y |  mask = y) =>
582                 ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
583          );
584       */
585 
586       // Please note that each pattern must be a dual implication (<--> or
587       // iff). One directional implication can create spurious matches. If the
588       // implication is only one-way, an unsatisfiable condition on the left
589       // side can imply a satisfiable condition on the right side. Dual
590       // implication ensures that satisfiable conditions are transformed to
591       // other satisfiable conditions and unsatisfiable conditions are
592       // transformed to other unsatisfiable conditions.
593 
594       // Here is a concrete example of a unsatisfiable condition on the left
595       // implying a satisfiable condition on the right:
596       //
597       // mask = (1 << z)
598       // (x & ~mask) == y  --> (x == y || x == (y | mask))
599       //
600       // Substituting y = 3, z = 0 yields:
601       // (x & -2) == 3 --> (x == 3 || x == 2)
602 
603       // Pattern match a special case:
604       /*
605         QUERY( (y & ~mask = y) =>
606                ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
607         );
608       */
609       if (match(ICI->getOperand(0),
610                 m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
611         APInt Mask = ~*RHSC;
612         if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
613           // If we already have a value for the switch, it has to match!
614           if (!setValueOnce(RHSVal))
615             return false;
616 
617           Vals.push_back(C);
618           Vals.push_back(
619               ConstantInt::get(C->getContext(),
620                                C->getValue() | Mask));
621           UsedICmps++;
622           return true;
623         }
624       }
625 
626       // Pattern match a special case:
627       /*
628         QUERY( (y |  mask = y) =>
629                ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
630         );
631       */
632       if (match(ICI->getOperand(0),
633                 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
634         APInt Mask = *RHSC;
635         if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
636           // If we already have a value for the switch, it has to match!
637           if (!setValueOnce(RHSVal))
638             return false;
639 
640           Vals.push_back(C);
641           Vals.push_back(ConstantInt::get(C->getContext(),
642                                           C->getValue() & ~Mask));
643           UsedICmps++;
644           return true;
645         }
646       }
647 
648       // If we already have a value for the switch, it has to match!
649       if (!setValueOnce(ICI->getOperand(0)))
650         return false;
651 
652       UsedICmps++;
653       Vals.push_back(C);
654       return ICI->getOperand(0);
655     }
656 
657     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
658     ConstantRange Span =
659         ConstantRange::makeExactICmpRegion(ICI->getPredicate(), C->getValue());
660 
661     // Shift the range if the compare is fed by an add. This is the range
662     // compare idiom as emitted by instcombine.
663     Value *CandidateVal = I->getOperand(0);
664     if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
665       Span = Span.subtract(*RHSC);
666       CandidateVal = RHSVal;
667     }
668 
669     // If this is an and/!= check, then we are looking to build the set of
670     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
671     // x != 0 && x != 1.
672     if (!isEQ)
673       Span = Span.inverse();
674 
675     // If there are a ton of values, we don't want to make a ginormous switch.
676     if (Span.isSizeLargerThan(8) || Span.isEmptySet()) {
677       return false;
678     }
679 
680     // If we already have a value for the switch, it has to match!
681     if (!setValueOnce(CandidateVal))
682       return false;
683 
684     // Add all values from the range to the set
685     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
686       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
687 
688     UsedICmps++;
689     return true;
690   }
691 
692   /// Given a potentially 'or'd or 'and'd together collection of icmp
693   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
694   /// the value being compared, and stick the list constants into the Vals
695   /// vector.
696   /// One "Extra" case is allowed to differ from the other.
697   void gather(Value *V) {
698     bool isEQ = match(V, m_LogicalOr(m_Value(), m_Value()));
699 
700     // Keep a stack (SmallVector for efficiency) for depth-first traversal
701     SmallVector<Value *, 8> DFT;
702     SmallPtrSet<Value *, 8> Visited;
703 
704     // Initialize
705     Visited.insert(V);
706     DFT.push_back(V);
707 
708     while (!DFT.empty()) {
709       V = DFT.pop_back_val();
710 
711       if (Instruction *I = dyn_cast<Instruction>(V)) {
712         // If it is a || (or && depending on isEQ), process the operands.
713         Value *Op0, *Op1;
714         if (isEQ ? match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1)))
715                  : match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
716           if (Visited.insert(Op1).second)
717             DFT.push_back(Op1);
718           if (Visited.insert(Op0).second)
719             DFT.push_back(Op0);
720 
721           continue;
722         }
723 
724         // Try to match the current instruction
725         if (matchInstruction(I, isEQ))
726           // Match succeed, continue the loop
727           continue;
728       }
729 
730       // One element of the sequence of || (or &&) could not be match as a
731       // comparison against the same value as the others.
732       // We allow only one "Extra" case to be checked before the switch
733       if (!Extra) {
734         Extra = V;
735         continue;
736       }
737       // Failed to parse a proper sequence, abort now
738       CompValue = nullptr;
739       break;
740     }
741   }
742 };
743 
744 } // end anonymous namespace
745 
746 static void EraseTerminatorAndDCECond(Instruction *TI,
747                                       MemorySSAUpdater *MSSAU = nullptr) {
748   Instruction *Cond = nullptr;
749   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
750     Cond = dyn_cast<Instruction>(SI->getCondition());
751   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
752     if (BI->isConditional())
753       Cond = dyn_cast<Instruction>(BI->getCondition());
754   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
755     Cond = dyn_cast<Instruction>(IBI->getAddress());
756   }
757 
758   TI->eraseFromParent();
759   if (Cond)
760     RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU);
761 }
762 
763 /// Return true if the specified terminator checks
764 /// to see if a value is equal to constant integer value.
765 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) {
766   Value *CV = nullptr;
767   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
768     // Do not permit merging of large switch instructions into their
769     // predecessors unless there is only one predecessor.
770     if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors()))
771       CV = SI->getCondition();
772   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
773     if (BI->isConditional() && BI->getCondition()->hasOneUse())
774       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
775         if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
776           CV = ICI->getOperand(0);
777       }
778 
779   // Unwrap any lossless ptrtoint cast.
780   if (CV) {
781     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
782       Value *Ptr = PTII->getPointerOperand();
783       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
784         CV = Ptr;
785     }
786   }
787   return CV;
788 }
789 
790 /// Given a value comparison instruction,
791 /// decode all of the 'cases' that it represents and return the 'default' block.
792 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
793     Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
794   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
795     Cases.reserve(SI->getNumCases());
796     for (auto Case : SI->cases())
797       Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(),
798                                                   Case.getCaseSuccessor()));
799     return SI->getDefaultDest();
800   }
801 
802   BranchInst *BI = cast<BranchInst>(TI);
803   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
804   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
805   Cases.push_back(ValueEqualityComparisonCase(
806       GetConstantInt(ICI->getOperand(1), DL), Succ));
807   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
808 }
809 
810 /// Given a vector of bb/value pairs, remove any entries
811 /// in the list that match the specified block.
812 static void
813 EliminateBlockCases(BasicBlock *BB,
814                     std::vector<ValueEqualityComparisonCase> &Cases) {
815   llvm::erase_value(Cases, BB);
816 }
817 
818 /// Return true if there are any keys in C1 that exist in C2 as well.
819 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
820                           std::vector<ValueEqualityComparisonCase> &C2) {
821   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
822 
823   // Make V1 be smaller than V2.
824   if (V1->size() > V2->size())
825     std::swap(V1, V2);
826 
827   if (V1->empty())
828     return false;
829   if (V1->size() == 1) {
830     // Just scan V2.
831     ConstantInt *TheVal = (*V1)[0].Value;
832     for (unsigned i = 0, e = V2->size(); i != e; ++i)
833       if (TheVal == (*V2)[i].Value)
834         return true;
835   }
836 
837   // Otherwise, just sort both lists and compare element by element.
838   array_pod_sort(V1->begin(), V1->end());
839   array_pod_sort(V2->begin(), V2->end());
840   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
841   while (i1 != e1 && i2 != e2) {
842     if ((*V1)[i1].Value == (*V2)[i2].Value)
843       return true;
844     if ((*V1)[i1].Value < (*V2)[i2].Value)
845       ++i1;
846     else
847       ++i2;
848   }
849   return false;
850 }
851 
852 // Set branch weights on SwitchInst. This sets the metadata if there is at
853 // least one non-zero weight.
854 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) {
855   // Check that there is at least one non-zero weight. Otherwise, pass
856   // nullptr to setMetadata which will erase the existing metadata.
857   MDNode *N = nullptr;
858   if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; }))
859     N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights);
860   SI->setMetadata(LLVMContext::MD_prof, N);
861 }
862 
863 // Similar to the above, but for branch and select instructions that take
864 // exactly 2 weights.
865 static void setBranchWeights(Instruction *I, uint32_t TrueWeight,
866                              uint32_t FalseWeight) {
867   assert(isa<BranchInst>(I) || isa<SelectInst>(I));
868   // Check that there is at least one non-zero weight. Otherwise, pass
869   // nullptr to setMetadata which will erase the existing metadata.
870   MDNode *N = nullptr;
871   if (TrueWeight || FalseWeight)
872     N = MDBuilder(I->getParent()->getContext())
873             .createBranchWeights(TrueWeight, FalseWeight);
874   I->setMetadata(LLVMContext::MD_prof, N);
875 }
876 
877 /// If TI is known to be a terminator instruction and its block is known to
878 /// only have a single predecessor block, check to see if that predecessor is
879 /// also a value comparison with the same value, and if that comparison
880 /// determines the outcome of this comparison. If so, simplify TI. This does a
881 /// very limited form of jump threading.
882 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
883     Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
884   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
885   if (!PredVal)
886     return false; // Not a value comparison in predecessor.
887 
888   Value *ThisVal = isValueEqualityComparison(TI);
889   assert(ThisVal && "This isn't a value comparison!!");
890   if (ThisVal != PredVal)
891     return false; // Different predicates.
892 
893   // TODO: Preserve branch weight metadata, similarly to how
894   // FoldValueComparisonIntoPredecessors preserves it.
895 
896   // Find out information about when control will move from Pred to TI's block.
897   std::vector<ValueEqualityComparisonCase> PredCases;
898   BasicBlock *PredDef =
899       GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
900   EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
901 
902   // Find information about how control leaves this block.
903   std::vector<ValueEqualityComparisonCase> ThisCases;
904   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
905   EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
906 
907   // If TI's block is the default block from Pred's comparison, potentially
908   // simplify TI based on this knowledge.
909   if (PredDef == TI->getParent()) {
910     // If we are here, we know that the value is none of those cases listed in
911     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
912     // can simplify TI.
913     if (!ValuesOverlap(PredCases, ThisCases))
914       return false;
915 
916     if (isa<BranchInst>(TI)) {
917       // Okay, one of the successors of this condbr is dead.  Convert it to a
918       // uncond br.
919       assert(ThisCases.size() == 1 && "Branch can only have one case!");
920       // Insert the new branch.
921       Instruction *NI = Builder.CreateBr(ThisDef);
922       (void)NI;
923 
924       // Remove PHI node entries for the dead edge.
925       ThisCases[0].Dest->removePredecessor(PredDef);
926 
927       LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
928                         << "Through successor TI: " << *TI << "Leaving: " << *NI
929                         << "\n");
930 
931       EraseTerminatorAndDCECond(TI);
932 
933       if (DTU)
934         DTU->applyUpdates(
935             {{DominatorTree::Delete, PredDef, ThisCases[0].Dest}});
936 
937       return true;
938     }
939 
940     SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI);
941     // Okay, TI has cases that are statically dead, prune them away.
942     SmallPtrSet<Constant *, 16> DeadCases;
943     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
944       DeadCases.insert(PredCases[i].Value);
945 
946     LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
947                       << "Through successor TI: " << *TI);
948 
949     SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases;
950     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
951       --i;
952       auto *Successor = i->getCaseSuccessor();
953       if (DTU)
954         ++NumPerSuccessorCases[Successor];
955       if (DeadCases.count(i->getCaseValue())) {
956         Successor->removePredecessor(PredDef);
957         SI.removeCase(i);
958         if (DTU)
959           --NumPerSuccessorCases[Successor];
960       }
961     }
962 
963     if (DTU) {
964       std::vector<DominatorTree::UpdateType> Updates;
965       for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases)
966         if (I.second == 0)
967           Updates.push_back({DominatorTree::Delete, PredDef, I.first});
968       DTU->applyUpdates(Updates);
969     }
970 
971     LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n");
972     return true;
973   }
974 
975   // Otherwise, TI's block must correspond to some matched value.  Find out
976   // which value (or set of values) this is.
977   ConstantInt *TIV = nullptr;
978   BasicBlock *TIBB = TI->getParent();
979   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
980     if (PredCases[i].Dest == TIBB) {
981       if (TIV)
982         return false; // Cannot handle multiple values coming to this block.
983       TIV = PredCases[i].Value;
984     }
985   assert(TIV && "No edge from pred to succ?");
986 
987   // Okay, we found the one constant that our value can be if we get into TI's
988   // BB.  Find out which successor will unconditionally be branched to.
989   BasicBlock *TheRealDest = nullptr;
990   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
991     if (ThisCases[i].Value == TIV) {
992       TheRealDest = ThisCases[i].Dest;
993       break;
994     }
995 
996   // If not handled by any explicit cases, it is handled by the default case.
997   if (!TheRealDest)
998     TheRealDest = ThisDef;
999 
1000   SmallPtrSet<BasicBlock *, 2> RemovedSuccs;
1001 
1002   // Remove PHI node entries for dead edges.
1003   BasicBlock *CheckEdge = TheRealDest;
1004   for (BasicBlock *Succ : successors(TIBB))
1005     if (Succ != CheckEdge) {
1006       if (Succ != TheRealDest)
1007         RemovedSuccs.insert(Succ);
1008       Succ->removePredecessor(TIBB);
1009     } else
1010       CheckEdge = nullptr;
1011 
1012   // Insert the new branch.
1013   Instruction *NI = Builder.CreateBr(TheRealDest);
1014   (void)NI;
1015 
1016   LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
1017                     << "Through successor TI: " << *TI << "Leaving: " << *NI
1018                     << "\n");
1019 
1020   EraseTerminatorAndDCECond(TI);
1021   if (DTU) {
1022     SmallVector<DominatorTree::UpdateType, 2> Updates;
1023     Updates.reserve(RemovedSuccs.size());
1024     for (auto *RemovedSucc : RemovedSuccs)
1025       Updates.push_back({DominatorTree::Delete, TIBB, RemovedSucc});
1026     DTU->applyUpdates(Updates);
1027   }
1028   return true;
1029 }
1030 
1031 namespace {
1032 
1033 /// This class implements a stable ordering of constant
1034 /// integers that does not depend on their address.  This is important for
1035 /// applications that sort ConstantInt's to ensure uniqueness.
1036 struct ConstantIntOrdering {
1037   bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
1038     return LHS->getValue().ult(RHS->getValue());
1039   }
1040 };
1041 
1042 } // end anonymous namespace
1043 
1044 static int ConstantIntSortPredicate(ConstantInt *const *P1,
1045                                     ConstantInt *const *P2) {
1046   const ConstantInt *LHS = *P1;
1047   const ConstantInt *RHS = *P2;
1048   if (LHS == RHS)
1049     return 0;
1050   return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
1051 }
1052 
1053 static inline bool HasBranchWeights(const Instruction *I) {
1054   MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
1055   if (ProfMD && ProfMD->getOperand(0))
1056     if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
1057       return MDS->getString().equals("branch_weights");
1058 
1059   return false;
1060 }
1061 
1062 /// Get Weights of a given terminator, the default weight is at the front
1063 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
1064 /// metadata.
1065 static void GetBranchWeights(Instruction *TI,
1066                              SmallVectorImpl<uint64_t> &Weights) {
1067   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
1068   assert(MD);
1069   for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
1070     ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
1071     Weights.push_back(CI->getValue().getZExtValue());
1072   }
1073 
1074   // If TI is a conditional eq, the default case is the false case,
1075   // and the corresponding branch-weight data is at index 2. We swap the
1076   // default weight to be the first entry.
1077   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1078     assert(Weights.size() == 2);
1079     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
1080     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
1081       std::swap(Weights.front(), Weights.back());
1082   }
1083 }
1084 
1085 /// Keep halving the weights until all can fit in uint32_t.
1086 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
1087   uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
1088   if (Max > UINT_MAX) {
1089     unsigned Offset = 32 - countLeadingZeros(Max);
1090     for (uint64_t &I : Weights)
1091       I >>= Offset;
1092   }
1093 }
1094 
1095 static void CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(
1096     BasicBlock *BB, BasicBlock *PredBlock, ValueToValueMapTy &VMap) {
1097   Instruction *PTI = PredBlock->getTerminator();
1098 
1099   // If we have bonus instructions, clone them into the predecessor block.
1100   // Note that there may be multiple predecessor blocks, so we cannot move
1101   // bonus instructions to a predecessor block.
1102   for (Instruction &BonusInst : *BB) {
1103     if (isa<DbgInfoIntrinsic>(BonusInst) || BonusInst.isTerminator())
1104       continue;
1105 
1106     Instruction *NewBonusInst = BonusInst.clone();
1107 
1108     if (PTI->getDebugLoc() != NewBonusInst->getDebugLoc()) {
1109       // Unless the instruction has the same !dbg location as the original
1110       // branch, drop it. When we fold the bonus instructions we want to make
1111       // sure we reset their debug locations in order to avoid stepping on
1112       // dead code caused by folding dead branches.
1113       NewBonusInst->setDebugLoc(DebugLoc());
1114     }
1115 
1116     RemapInstruction(NewBonusInst, VMap,
1117                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1118     VMap[&BonusInst] = NewBonusInst;
1119 
1120     // If we moved a load, we cannot any longer claim any knowledge about
1121     // its potential value. The previous information might have been valid
1122     // only given the branch precondition.
1123     // For an analogous reason, we must also drop all the metadata whose
1124     // semantics we don't understand. We *can* preserve !annotation, because
1125     // it is tied to the instruction itself, not the value or position.
1126     // Similarly strip attributes on call parameters that may cause UB in
1127     // location the call is moved to.
1128     NewBonusInst->dropUndefImplyingAttrsAndUnknownMetadata(
1129         LLVMContext::MD_annotation);
1130 
1131     PredBlock->getInstList().insert(PTI->getIterator(), NewBonusInst);
1132     NewBonusInst->takeName(&BonusInst);
1133     BonusInst.setName(NewBonusInst->getName() + ".old");
1134 
1135     // Update (liveout) uses of bonus instructions,
1136     // now that the bonus instruction has been cloned into predecessor.
1137     // Note that we expect to be in a block-closed SSA form for this to work!
1138     for (Use &U : make_early_inc_range(BonusInst.uses())) {
1139       auto *UI = cast<Instruction>(U.getUser());
1140       auto *PN = dyn_cast<PHINode>(UI);
1141       if (!PN) {
1142         assert(UI->getParent() == BB && BonusInst.comesBefore(UI) &&
1143                "If the user is not a PHI node, then it should be in the same "
1144                "block as, and come after, the original bonus instruction.");
1145         continue; // Keep using the original bonus instruction.
1146       }
1147       // Is this the block-closed SSA form PHI node?
1148       if (PN->getIncomingBlock(U) == BB)
1149         continue; // Great, keep using the original bonus instruction.
1150       // The only other alternative is an "use" when coming from
1151       // the predecessor block - here we should refer to the cloned bonus instr.
1152       assert(PN->getIncomingBlock(U) == PredBlock &&
1153              "Not in block-closed SSA form?");
1154       U.set(NewBonusInst);
1155     }
1156   }
1157 }
1158 
1159 bool SimplifyCFGOpt::PerformValueComparisonIntoPredecessorFolding(
1160     Instruction *TI, Value *&CV, Instruction *PTI, IRBuilder<> &Builder) {
1161   BasicBlock *BB = TI->getParent();
1162   BasicBlock *Pred = PTI->getParent();
1163 
1164   SmallVector<DominatorTree::UpdateType, 32> Updates;
1165 
1166   // Figure out which 'cases' to copy from SI to PSI.
1167   std::vector<ValueEqualityComparisonCase> BBCases;
1168   BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
1169 
1170   std::vector<ValueEqualityComparisonCase> PredCases;
1171   BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
1172 
1173   // Based on whether the default edge from PTI goes to BB or not, fill in
1174   // PredCases and PredDefault with the new switch cases we would like to
1175   // build.
1176   SmallMapVector<BasicBlock *, int, 8> NewSuccessors;
1177 
1178   // Update the branch weight metadata along the way
1179   SmallVector<uint64_t, 8> Weights;
1180   bool PredHasWeights = HasBranchWeights(PTI);
1181   bool SuccHasWeights = HasBranchWeights(TI);
1182 
1183   if (PredHasWeights) {
1184     GetBranchWeights(PTI, Weights);
1185     // branch-weight metadata is inconsistent here.
1186     if (Weights.size() != 1 + PredCases.size())
1187       PredHasWeights = SuccHasWeights = false;
1188   } else if (SuccHasWeights)
1189     // If there are no predecessor weights but there are successor weights,
1190     // populate Weights with 1, which will later be scaled to the sum of
1191     // successor's weights
1192     Weights.assign(1 + PredCases.size(), 1);
1193 
1194   SmallVector<uint64_t, 8> SuccWeights;
1195   if (SuccHasWeights) {
1196     GetBranchWeights(TI, SuccWeights);
1197     // branch-weight metadata is inconsistent here.
1198     if (SuccWeights.size() != 1 + BBCases.size())
1199       PredHasWeights = SuccHasWeights = false;
1200   } else if (PredHasWeights)
1201     SuccWeights.assign(1 + BBCases.size(), 1);
1202 
1203   if (PredDefault == BB) {
1204     // If this is the default destination from PTI, only the edges in TI
1205     // that don't occur in PTI, or that branch to BB will be activated.
1206     std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1207     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1208       if (PredCases[i].Dest != BB)
1209         PTIHandled.insert(PredCases[i].Value);
1210       else {
1211         // The default destination is BB, we don't need explicit targets.
1212         std::swap(PredCases[i], PredCases.back());
1213 
1214         if (PredHasWeights || SuccHasWeights) {
1215           // Increase weight for the default case.
1216           Weights[0] += Weights[i + 1];
1217           std::swap(Weights[i + 1], Weights.back());
1218           Weights.pop_back();
1219         }
1220 
1221         PredCases.pop_back();
1222         --i;
1223         --e;
1224       }
1225 
1226     // Reconstruct the new switch statement we will be building.
1227     if (PredDefault != BBDefault) {
1228       PredDefault->removePredecessor(Pred);
1229       if (DTU && PredDefault != BB)
1230         Updates.push_back({DominatorTree::Delete, Pred, PredDefault});
1231       PredDefault = BBDefault;
1232       ++NewSuccessors[BBDefault];
1233     }
1234 
1235     unsigned CasesFromPred = Weights.size();
1236     uint64_t ValidTotalSuccWeight = 0;
1237     for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1238       if (!PTIHandled.count(BBCases[i].Value) && BBCases[i].Dest != BBDefault) {
1239         PredCases.push_back(BBCases[i]);
1240         ++NewSuccessors[BBCases[i].Dest];
1241         if (SuccHasWeights || PredHasWeights) {
1242           // The default weight is at index 0, so weight for the ith case
1243           // should be at index i+1. Scale the cases from successor by
1244           // PredDefaultWeight (Weights[0]).
1245           Weights.push_back(Weights[0] * SuccWeights[i + 1]);
1246           ValidTotalSuccWeight += SuccWeights[i + 1];
1247         }
1248       }
1249 
1250     if (SuccHasWeights || PredHasWeights) {
1251       ValidTotalSuccWeight += SuccWeights[0];
1252       // Scale the cases from predecessor by ValidTotalSuccWeight.
1253       for (unsigned i = 1; i < CasesFromPred; ++i)
1254         Weights[i] *= ValidTotalSuccWeight;
1255       // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1256       Weights[0] *= SuccWeights[0];
1257     }
1258   } else {
1259     // If this is not the default destination from PSI, only the edges
1260     // in SI that occur in PSI with a destination of BB will be
1261     // activated.
1262     std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1263     std::map<ConstantInt *, uint64_t> WeightsForHandled;
1264     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1265       if (PredCases[i].Dest == BB) {
1266         PTIHandled.insert(PredCases[i].Value);
1267 
1268         if (PredHasWeights || SuccHasWeights) {
1269           WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
1270           std::swap(Weights[i + 1], Weights.back());
1271           Weights.pop_back();
1272         }
1273 
1274         std::swap(PredCases[i], PredCases.back());
1275         PredCases.pop_back();
1276         --i;
1277         --e;
1278       }
1279 
1280     // Okay, now we know which constants were sent to BB from the
1281     // predecessor.  Figure out where they will all go now.
1282     for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1283       if (PTIHandled.count(BBCases[i].Value)) {
1284         // If this is one we are capable of getting...
1285         if (PredHasWeights || SuccHasWeights)
1286           Weights.push_back(WeightsForHandled[BBCases[i].Value]);
1287         PredCases.push_back(BBCases[i]);
1288         ++NewSuccessors[BBCases[i].Dest];
1289         PTIHandled.erase(BBCases[i].Value); // This constant is taken care of
1290       }
1291 
1292     // If there are any constants vectored to BB that TI doesn't handle,
1293     // they must go to the default destination of TI.
1294     for (ConstantInt *I : PTIHandled) {
1295       if (PredHasWeights || SuccHasWeights)
1296         Weights.push_back(WeightsForHandled[I]);
1297       PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
1298       ++NewSuccessors[BBDefault];
1299     }
1300   }
1301 
1302   // Okay, at this point, we know which new successor Pred will get.  Make
1303   // sure we update the number of entries in the PHI nodes for these
1304   // successors.
1305   SmallPtrSet<BasicBlock *, 2> SuccsOfPred;
1306   if (DTU) {
1307     SuccsOfPred = {succ_begin(Pred), succ_end(Pred)};
1308     Updates.reserve(Updates.size() + NewSuccessors.size());
1309   }
1310   for (const std::pair<BasicBlock *, int /*Num*/> &NewSuccessor :
1311        NewSuccessors) {
1312     for (auto I : seq(0, NewSuccessor.second)) {
1313       (void)I;
1314       AddPredecessorToBlock(NewSuccessor.first, Pred, BB);
1315     }
1316     if (DTU && !SuccsOfPred.contains(NewSuccessor.first))
1317       Updates.push_back({DominatorTree::Insert, Pred, NewSuccessor.first});
1318   }
1319 
1320   Builder.SetInsertPoint(PTI);
1321   // Convert pointer to int before we switch.
1322   if (CV->getType()->isPointerTy()) {
1323     CV =
1324         Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), "magicptr");
1325   }
1326 
1327   // Now that the successors are updated, create the new Switch instruction.
1328   SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, PredCases.size());
1329   NewSI->setDebugLoc(PTI->getDebugLoc());
1330   for (ValueEqualityComparisonCase &V : PredCases)
1331     NewSI->addCase(V.Value, V.Dest);
1332 
1333   if (PredHasWeights || SuccHasWeights) {
1334     // Halve the weights if any of them cannot fit in an uint32_t
1335     FitWeights(Weights);
1336 
1337     SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1338 
1339     setBranchWeights(NewSI, MDWeights);
1340   }
1341 
1342   EraseTerminatorAndDCECond(PTI);
1343 
1344   // Okay, last check.  If BB is still a successor of PSI, then we must
1345   // have an infinite loop case.  If so, add an infinitely looping block
1346   // to handle the case to preserve the behavior of the code.
1347   BasicBlock *InfLoopBlock = nullptr;
1348   for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1349     if (NewSI->getSuccessor(i) == BB) {
1350       if (!InfLoopBlock) {
1351         // Insert it at the end of the function, because it's either code,
1352         // or it won't matter if it's hot. :)
1353         InfLoopBlock =
1354             BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
1355         BranchInst::Create(InfLoopBlock, InfLoopBlock);
1356         if (DTU)
1357           Updates.push_back(
1358               {DominatorTree::Insert, InfLoopBlock, InfLoopBlock});
1359       }
1360       NewSI->setSuccessor(i, InfLoopBlock);
1361     }
1362 
1363   if (DTU) {
1364     if (InfLoopBlock)
1365       Updates.push_back({DominatorTree::Insert, Pred, InfLoopBlock});
1366 
1367     Updates.push_back({DominatorTree::Delete, Pred, BB});
1368 
1369     DTU->applyUpdates(Updates);
1370   }
1371 
1372   ++NumFoldValueComparisonIntoPredecessors;
1373   return true;
1374 }
1375 
1376 /// The specified terminator is a value equality comparison instruction
1377 /// (either a switch or a branch on "X == c").
1378 /// See if any of the predecessors of the terminator block are value comparisons
1379 /// on the same value.  If so, and if safe to do so, fold them together.
1380 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI,
1381                                                          IRBuilder<> &Builder) {
1382   BasicBlock *BB = TI->getParent();
1383   Value *CV = isValueEqualityComparison(TI); // CondVal
1384   assert(CV && "Not a comparison?");
1385 
1386   bool Changed = false;
1387 
1388   SmallSetVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
1389   while (!Preds.empty()) {
1390     BasicBlock *Pred = Preds.pop_back_val();
1391     Instruction *PTI = Pred->getTerminator();
1392 
1393     // Don't try to fold into itself.
1394     if (Pred == BB)
1395       continue;
1396 
1397     // See if the predecessor is a comparison with the same value.
1398     Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
1399     if (PCV != CV)
1400       continue;
1401 
1402     SmallSetVector<BasicBlock *, 4> FailBlocks;
1403     if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) {
1404       for (auto *Succ : FailBlocks) {
1405         if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split", DTU))
1406           return false;
1407       }
1408     }
1409 
1410     PerformValueComparisonIntoPredecessorFolding(TI, CV, PTI, Builder);
1411     Changed = true;
1412   }
1413   return Changed;
1414 }
1415 
1416 // If we would need to insert a select that uses the value of this invoke
1417 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1418 // can't hoist the invoke, as there is nowhere to put the select in this case.
1419 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1420                                 Instruction *I1, Instruction *I2) {
1421   for (BasicBlock *Succ : successors(BB1)) {
1422     for (const PHINode &PN : Succ->phis()) {
1423       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1424       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1425       if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
1426         return false;
1427       }
1428     }
1429   }
1430   return true;
1431 }
1432 
1433 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified = false);
1434 
1435 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1436 /// in the two blocks up into the branch block. The caller of this function
1437 /// guarantees that BI's block dominates BB1 and BB2. If EqTermsOnly is given,
1438 /// only perform hoisting in case both blocks only contain a terminator. In that
1439 /// case, only the original BI will be replaced and selects for PHIs are added.
1440 bool SimplifyCFGOpt::HoistThenElseCodeToIf(BranchInst *BI,
1441                                            const TargetTransformInfo &TTI,
1442                                            bool EqTermsOnly) {
1443   // This does very trivial matching, with limited scanning, to find identical
1444   // instructions in the two blocks.  In particular, we don't want to get into
1445   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1446   // such, we currently just scan for obviously identical instructions in an
1447   // identical order.
1448   BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
1449   BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
1450 
1451   // If either of the blocks has it's address taken, then we can't do this fold,
1452   // because the code we'd hoist would no longer run when we jump into the block
1453   // by it's address.
1454   if (BB1->hasAddressTaken() || BB2->hasAddressTaken())
1455     return false;
1456 
1457   BasicBlock::iterator BB1_Itr = BB1->begin();
1458   BasicBlock::iterator BB2_Itr = BB2->begin();
1459 
1460   Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
1461   // Skip debug info if it is not identical.
1462   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1463   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1464   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1465     while (isa<DbgInfoIntrinsic>(I1))
1466       I1 = &*BB1_Itr++;
1467     while (isa<DbgInfoIntrinsic>(I2))
1468       I2 = &*BB2_Itr++;
1469   }
1470   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2))
1471     return false;
1472 
1473   BasicBlock *BIParent = BI->getParent();
1474 
1475   bool Changed = false;
1476 
1477   auto _ = make_scope_exit([&]() {
1478     if (Changed)
1479       ++NumHoistCommonCode;
1480   });
1481 
1482   // Check if only hoisting terminators is allowed. This does not add new
1483   // instructions to the hoist location.
1484   if (EqTermsOnly) {
1485     // Skip any debug intrinsics, as they are free to hoist.
1486     auto *I1NonDbg = &*skipDebugIntrinsics(I1->getIterator());
1487     auto *I2NonDbg = &*skipDebugIntrinsics(I2->getIterator());
1488     if (!I1NonDbg->isIdenticalToWhenDefined(I2NonDbg))
1489       return false;
1490     if (!I1NonDbg->isTerminator())
1491       return false;
1492     // Now we know that we only need to hoist debug intrinsics and the
1493     // terminator. Let the loop below handle those 2 cases.
1494   }
1495 
1496   do {
1497     // If we are hoisting the terminator instruction, don't move one (making a
1498     // broken BB), instead clone it, and remove BI.
1499     if (I1->isTerminator())
1500       goto HoistTerminator;
1501 
1502     // If we're going to hoist a call, make sure that the two instructions we're
1503     // commoning/hoisting are both marked with musttail, or neither of them is
1504     // marked as such. Otherwise, we might end up in a situation where we hoist
1505     // from a block where the terminator is a `ret` to a block where the terminator
1506     // is a `br`, and `musttail` calls expect to be followed by a return.
1507     auto *C1 = dyn_cast<CallInst>(I1);
1508     auto *C2 = dyn_cast<CallInst>(I2);
1509     if (C1 && C2)
1510       if (C1->isMustTailCall() != C2->isMustTailCall())
1511         return Changed;
1512 
1513     if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1514       return Changed;
1515 
1516     // If any of the two call sites has nomerge attribute, stop hoisting.
1517     if (const auto *CB1 = dyn_cast<CallBase>(I1))
1518       if (CB1->cannotMerge())
1519         return Changed;
1520     if (const auto *CB2 = dyn_cast<CallBase>(I2))
1521       if (CB2->cannotMerge())
1522         return Changed;
1523 
1524     if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) {
1525       assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2));
1526       // The debug location is an integral part of a debug info intrinsic
1527       // and can't be separated from it or replaced.  Instead of attempting
1528       // to merge locations, simply hoist both copies of the intrinsic.
1529       BIParent->getInstList().splice(BI->getIterator(),
1530                                      BB1->getInstList(), I1);
1531       BIParent->getInstList().splice(BI->getIterator(),
1532                                      BB2->getInstList(), I2);
1533       Changed = true;
1534     } else {
1535       // For a normal instruction, we just move one to right before the branch,
1536       // then replace all uses of the other with the first.  Finally, we remove
1537       // the now redundant second instruction.
1538       BIParent->getInstList().splice(BI->getIterator(),
1539                                      BB1->getInstList(), I1);
1540       if (!I2->use_empty())
1541         I2->replaceAllUsesWith(I1);
1542       I1->andIRFlags(I2);
1543       unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
1544                              LLVMContext::MD_range,
1545                              LLVMContext::MD_fpmath,
1546                              LLVMContext::MD_invariant_load,
1547                              LLVMContext::MD_nonnull,
1548                              LLVMContext::MD_invariant_group,
1549                              LLVMContext::MD_align,
1550                              LLVMContext::MD_dereferenceable,
1551                              LLVMContext::MD_dereferenceable_or_null,
1552                              LLVMContext::MD_mem_parallel_loop_access,
1553                              LLVMContext::MD_access_group,
1554                              LLVMContext::MD_preserve_access_index};
1555       combineMetadata(I1, I2, KnownIDs, true);
1556 
1557       // I1 and I2 are being combined into a single instruction.  Its debug
1558       // location is the merged locations of the original instructions.
1559       I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1560 
1561       I2->eraseFromParent();
1562       Changed = true;
1563     }
1564     ++NumHoistCommonInstrs;
1565 
1566     I1 = &*BB1_Itr++;
1567     I2 = &*BB2_Itr++;
1568     // Skip debug info if it is not identical.
1569     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1570     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1571     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1572       while (isa<DbgInfoIntrinsic>(I1))
1573         I1 = &*BB1_Itr++;
1574       while (isa<DbgInfoIntrinsic>(I2))
1575         I2 = &*BB2_Itr++;
1576     }
1577   } while (I1->isIdenticalToWhenDefined(I2));
1578 
1579   return true;
1580 
1581 HoistTerminator:
1582   // It may not be possible to hoist an invoke.
1583   // FIXME: Can we define a safety predicate for CallBr?
1584   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1585     return Changed;
1586 
1587   // TODO: callbr hoisting currently disabled pending further study.
1588   if (isa<CallBrInst>(I1))
1589     return Changed;
1590 
1591   for (BasicBlock *Succ : successors(BB1)) {
1592     for (PHINode &PN : Succ->phis()) {
1593       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1594       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1595       if (BB1V == BB2V)
1596         continue;
1597 
1598       // Check for passingValueIsAlwaysUndefined here because we would rather
1599       // eliminate undefined control flow then converting it to a select.
1600       if (passingValueIsAlwaysUndefined(BB1V, &PN) ||
1601           passingValueIsAlwaysUndefined(BB2V, &PN))
1602         return Changed;
1603     }
1604   }
1605 
1606   // Okay, it is safe to hoist the terminator.
1607   Instruction *NT = I1->clone();
1608   BIParent->getInstList().insert(BI->getIterator(), NT);
1609   if (!NT->getType()->isVoidTy()) {
1610     I1->replaceAllUsesWith(NT);
1611     I2->replaceAllUsesWith(NT);
1612     NT->takeName(I1);
1613   }
1614   Changed = true;
1615   ++NumHoistCommonInstrs;
1616 
1617   // Ensure terminator gets a debug location, even an unknown one, in case
1618   // it involves inlinable calls.
1619   NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1620 
1621   // PHIs created below will adopt NT's merged DebugLoc.
1622   IRBuilder<NoFolder> Builder(NT);
1623 
1624   // Hoisting one of the terminators from our successor is a great thing.
1625   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1626   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1627   // nodes, so we insert select instruction to compute the final result.
1628   std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
1629   for (BasicBlock *Succ : successors(BB1)) {
1630     for (PHINode &PN : Succ->phis()) {
1631       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1632       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1633       if (BB1V == BB2V)
1634         continue;
1635 
1636       // These values do not agree.  Insert a select instruction before NT
1637       // that determines the right value.
1638       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1639       if (!SI) {
1640         // Propagate fast-math-flags from phi node to its replacement select.
1641         IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
1642         if (isa<FPMathOperator>(PN))
1643           Builder.setFastMathFlags(PN.getFastMathFlags());
1644 
1645         SI = cast<SelectInst>(
1646             Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1647                                  BB1V->getName() + "." + BB2V->getName(), BI));
1648       }
1649 
1650       // Make the PHI node use the select for all incoming values for BB1/BB2
1651       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1652         if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2)
1653           PN.setIncomingValue(i, SI);
1654     }
1655   }
1656 
1657   SmallVector<DominatorTree::UpdateType, 4> Updates;
1658 
1659   // Update any PHI nodes in our new successors.
1660   for (BasicBlock *Succ : successors(BB1)) {
1661     AddPredecessorToBlock(Succ, BIParent, BB1);
1662     if (DTU)
1663       Updates.push_back({DominatorTree::Insert, BIParent, Succ});
1664   }
1665 
1666   if (DTU)
1667     for (BasicBlock *Succ : successors(BI))
1668       Updates.push_back({DominatorTree::Delete, BIParent, Succ});
1669 
1670   EraseTerminatorAndDCECond(BI);
1671   if (DTU)
1672     DTU->applyUpdates(Updates);
1673   return Changed;
1674 }
1675 
1676 // Check lifetime markers.
1677 static bool isLifeTimeMarker(const Instruction *I) {
1678   if (auto II = dyn_cast<IntrinsicInst>(I)) {
1679     switch (II->getIntrinsicID()) {
1680     default:
1681       break;
1682     case Intrinsic::lifetime_start:
1683     case Intrinsic::lifetime_end:
1684       return true;
1685     }
1686   }
1687   return false;
1688 }
1689 
1690 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes
1691 // into variables.
1692 static bool replacingOperandWithVariableIsCheap(const Instruction *I,
1693                                                 int OpIdx) {
1694   return !isa<IntrinsicInst>(I);
1695 }
1696 
1697 // All instructions in Insts belong to different blocks that all unconditionally
1698 // branch to a common successor. Analyze each instruction and return true if it
1699 // would be possible to sink them into their successor, creating one common
1700 // instruction instead. For every value that would be required to be provided by
1701 // PHI node (because an operand varies in each input block), add to PHIOperands.
1702 static bool canSinkInstructions(
1703     ArrayRef<Instruction *> Insts,
1704     DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) {
1705   // Prune out obviously bad instructions to move. Each instruction must have
1706   // exactly zero or one use, and we check later that use is by a single, common
1707   // PHI instruction in the successor.
1708   bool HasUse = !Insts.front()->user_empty();
1709   for (auto *I : Insts) {
1710     // These instructions may change or break semantics if moved.
1711     if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
1712         I->getType()->isTokenTy())
1713       return false;
1714 
1715     // Do not try to sink an instruction in an infinite loop - it can cause
1716     // this algorithm to infinite loop.
1717     if (I->getParent()->getSingleSuccessor() == I->getParent())
1718       return false;
1719 
1720     // Conservatively return false if I is an inline-asm instruction. Sinking
1721     // and merging inline-asm instructions can potentially create arguments
1722     // that cannot satisfy the inline-asm constraints.
1723     // If the instruction has nomerge attribute, return false.
1724     if (const auto *C = dyn_cast<CallBase>(I))
1725       if (C->isInlineAsm() || C->cannotMerge())
1726         return false;
1727 
1728     // Each instruction must have zero or one use.
1729     if (HasUse && !I->hasOneUse())
1730       return false;
1731     if (!HasUse && !I->user_empty())
1732       return false;
1733   }
1734 
1735   const Instruction *I0 = Insts.front();
1736   for (auto *I : Insts)
1737     if (!I->isSameOperationAs(I0))
1738       return false;
1739 
1740   // All instructions in Insts are known to be the same opcode. If they have a
1741   // use, check that the only user is a PHI or in the same block as the
1742   // instruction, because if a user is in the same block as an instruction we're
1743   // contemplating sinking, it must already be determined to be sinkable.
1744   if (HasUse) {
1745     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1746     auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0);
1747     if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool {
1748           auto *U = cast<Instruction>(*I->user_begin());
1749           return (PNUse &&
1750                   PNUse->getParent() == Succ &&
1751                   PNUse->getIncomingValueForBlock(I->getParent()) == I) ||
1752                  U->getParent() == I->getParent();
1753         }))
1754       return false;
1755   }
1756 
1757   // Because SROA can't handle speculating stores of selects, try not to sink
1758   // loads, stores or lifetime markers of allocas when we'd have to create a
1759   // PHI for the address operand. Also, because it is likely that loads or
1760   // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink
1761   // them.
1762   // This can cause code churn which can have unintended consequences down
1763   // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
1764   // FIXME: This is a workaround for a deficiency in SROA - see
1765   // https://llvm.org/bugs/show_bug.cgi?id=30188
1766   if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) {
1767         return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1768       }))
1769     return false;
1770   if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) {
1771         return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts());
1772       }))
1773     return false;
1774   if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) {
1775         return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1776       }))
1777     return false;
1778 
1779   // For calls to be sinkable, they must all be indirect, or have same callee.
1780   // I.e. if we have two direct calls to different callees, we don't want to
1781   // turn that into an indirect call. Likewise, if we have an indirect call,
1782   // and a direct call, we don't actually want to have a single indirect call.
1783   if (isa<CallBase>(I0)) {
1784     auto IsIndirectCall = [](const Instruction *I) {
1785       return cast<CallBase>(I)->isIndirectCall();
1786     };
1787     bool HaveIndirectCalls = any_of(Insts, IsIndirectCall);
1788     bool AllCallsAreIndirect = all_of(Insts, IsIndirectCall);
1789     if (HaveIndirectCalls) {
1790       if (!AllCallsAreIndirect)
1791         return false;
1792     } else {
1793       // All callees must be identical.
1794       Value *Callee = nullptr;
1795       for (const Instruction *I : Insts) {
1796         Value *CurrCallee = cast<CallBase>(I)->getCalledOperand();
1797         if (!Callee)
1798           Callee = CurrCallee;
1799         else if (Callee != CurrCallee)
1800           return false;
1801       }
1802     }
1803   }
1804 
1805   for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
1806     Value *Op = I0->getOperand(OI);
1807     if (Op->getType()->isTokenTy())
1808       // Don't touch any operand of token type.
1809       return false;
1810 
1811     auto SameAsI0 = [&I0, OI](const Instruction *I) {
1812       assert(I->getNumOperands() == I0->getNumOperands());
1813       return I->getOperand(OI) == I0->getOperand(OI);
1814     };
1815     if (!all_of(Insts, SameAsI0)) {
1816       if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) ||
1817           !canReplaceOperandWithVariable(I0, OI))
1818         // We can't create a PHI from this GEP.
1819         return false;
1820       for (auto *I : Insts)
1821         PHIOperands[I].push_back(I->getOperand(OI));
1822     }
1823   }
1824   return true;
1825 }
1826 
1827 // Assuming canSinkInstructions(Blocks) has returned true, sink the last
1828 // instruction of every block in Blocks to their common successor, commoning
1829 // into one instruction.
1830 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
1831   auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
1832 
1833   // canSinkInstructions returning true guarantees that every block has at
1834   // least one non-terminator instruction.
1835   SmallVector<Instruction*,4> Insts;
1836   for (auto *BB : Blocks) {
1837     Instruction *I = BB->getTerminator();
1838     do {
1839       I = I->getPrevNode();
1840     } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front());
1841     if (!isa<DbgInfoIntrinsic>(I))
1842       Insts.push_back(I);
1843   }
1844 
1845   // The only checking we need to do now is that all users of all instructions
1846   // are the same PHI node. canSinkInstructions should have checked this but
1847   // it is slightly over-aggressive - it gets confused by commutative
1848   // instructions so double-check it here.
1849   Instruction *I0 = Insts.front();
1850   if (!I0->user_empty()) {
1851     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1852     if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool {
1853           auto *U = cast<Instruction>(*I->user_begin());
1854           return U == PNUse;
1855         }))
1856       return false;
1857   }
1858 
1859   // We don't need to do any more checking here; canSinkInstructions should
1860   // have done it all for us.
1861   SmallVector<Value*, 4> NewOperands;
1862   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
1863     // This check is different to that in canSinkInstructions. There, we
1864     // cared about the global view once simplifycfg (and instcombine) have
1865     // completed - it takes into account PHIs that become trivially
1866     // simplifiable.  However here we need a more local view; if an operand
1867     // differs we create a PHI and rely on instcombine to clean up the very
1868     // small mess we may make.
1869     bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
1870       return I->getOperand(O) != I0->getOperand(O);
1871     });
1872     if (!NeedPHI) {
1873       NewOperands.push_back(I0->getOperand(O));
1874       continue;
1875     }
1876 
1877     // Create a new PHI in the successor block and populate it.
1878     auto *Op = I0->getOperand(O);
1879     assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
1880     auto *PN = PHINode::Create(Op->getType(), Insts.size(),
1881                                Op->getName() + ".sink", &BBEnd->front());
1882     for (auto *I : Insts)
1883       PN->addIncoming(I->getOperand(O), I->getParent());
1884     NewOperands.push_back(PN);
1885   }
1886 
1887   // Arbitrarily use I0 as the new "common" instruction; remap its operands
1888   // and move it to the start of the successor block.
1889   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
1890     I0->getOperandUse(O).set(NewOperands[O]);
1891   I0->moveBefore(&*BBEnd->getFirstInsertionPt());
1892 
1893   // Update metadata and IR flags, and merge debug locations.
1894   for (auto *I : Insts)
1895     if (I != I0) {
1896       // The debug location for the "common" instruction is the merged locations
1897       // of all the commoned instructions.  We start with the original location
1898       // of the "common" instruction and iteratively merge each location in the
1899       // loop below.
1900       // This is an N-way merge, which will be inefficient if I0 is a CallInst.
1901       // However, as N-way merge for CallInst is rare, so we use simplified API
1902       // instead of using complex API for N-way merge.
1903       I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc());
1904       combineMetadataForCSE(I0, I, true);
1905       I0->andIRFlags(I);
1906     }
1907 
1908   if (!I0->user_empty()) {
1909     // canSinkLastInstruction checked that all instructions were used by
1910     // one and only one PHI node. Find that now, RAUW it to our common
1911     // instruction and nuke it.
1912     auto *PN = cast<PHINode>(*I0->user_begin());
1913     PN->replaceAllUsesWith(I0);
1914     PN->eraseFromParent();
1915   }
1916 
1917   // Finally nuke all instructions apart from the common instruction.
1918   for (auto *I : Insts)
1919     if (I != I0)
1920       I->eraseFromParent();
1921 
1922   return true;
1923 }
1924 
1925 namespace {
1926 
1927   // LockstepReverseIterator - Iterates through instructions
1928   // in a set of blocks in reverse order from the first non-terminator.
1929   // For example (assume all blocks have size n):
1930   //   LockstepReverseIterator I([B1, B2, B3]);
1931   //   *I-- = [B1[n], B2[n], B3[n]];
1932   //   *I-- = [B1[n-1], B2[n-1], B3[n-1]];
1933   //   *I-- = [B1[n-2], B2[n-2], B3[n-2]];
1934   //   ...
1935   class LockstepReverseIterator {
1936     ArrayRef<BasicBlock*> Blocks;
1937     SmallVector<Instruction*,4> Insts;
1938     bool Fail;
1939 
1940   public:
1941     LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) {
1942       reset();
1943     }
1944 
1945     void reset() {
1946       Fail = false;
1947       Insts.clear();
1948       for (auto *BB : Blocks) {
1949         Instruction *Inst = BB->getTerminator();
1950         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1951           Inst = Inst->getPrevNode();
1952         if (!Inst) {
1953           // Block wasn't big enough.
1954           Fail = true;
1955           return;
1956         }
1957         Insts.push_back(Inst);
1958       }
1959     }
1960 
1961     bool isValid() const {
1962       return !Fail;
1963     }
1964 
1965     void operator--() {
1966       if (Fail)
1967         return;
1968       for (auto *&Inst : Insts) {
1969         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1970           Inst = Inst->getPrevNode();
1971         // Already at beginning of block.
1972         if (!Inst) {
1973           Fail = true;
1974           return;
1975         }
1976       }
1977     }
1978 
1979     void operator++() {
1980       if (Fail)
1981         return;
1982       for (auto *&Inst : Insts) {
1983         for (Inst = Inst->getNextNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1984           Inst = Inst->getNextNode();
1985         // Already at end of block.
1986         if (!Inst) {
1987           Fail = true;
1988           return;
1989         }
1990       }
1991     }
1992 
1993     ArrayRef<Instruction*> operator * () const {
1994       return Insts;
1995     }
1996   };
1997 
1998 } // end anonymous namespace
1999 
2000 /// Check whether BB's predecessors end with unconditional branches. If it is
2001 /// true, sink any common code from the predecessors to BB.
2002 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB,
2003                                            DomTreeUpdater *DTU) {
2004   // We support two situations:
2005   //   (1) all incoming arcs are unconditional
2006   //   (2) there are non-unconditional incoming arcs
2007   //
2008   // (2) is very common in switch defaults and
2009   // else-if patterns;
2010   //
2011   //   if (a) f(1);
2012   //   else if (b) f(2);
2013   //
2014   // produces:
2015   //
2016   //       [if]
2017   //      /    \
2018   //    [f(1)] [if]
2019   //      |     | \
2020   //      |     |  |
2021   //      |  [f(2)]|
2022   //       \    | /
2023   //        [ end ]
2024   //
2025   // [end] has two unconditional predecessor arcs and one conditional. The
2026   // conditional refers to the implicit empty 'else' arc. This conditional
2027   // arc can also be caused by an empty default block in a switch.
2028   //
2029   // In this case, we attempt to sink code from all *unconditional* arcs.
2030   // If we can sink instructions from these arcs (determined during the scan
2031   // phase below) we insert a common successor for all unconditional arcs and
2032   // connect that to [end], to enable sinking:
2033   //
2034   //       [if]
2035   //      /    \
2036   //    [x(1)] [if]
2037   //      |     | \
2038   //      |     |  \
2039   //      |  [x(2)] |
2040   //       \   /    |
2041   //   [sink.split] |
2042   //         \     /
2043   //         [ end ]
2044   //
2045   SmallVector<BasicBlock*,4> UnconditionalPreds;
2046   bool HaveNonUnconditionalPredecessors = false;
2047   for (auto *PredBB : predecessors(BB)) {
2048     auto *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
2049     if (PredBr && PredBr->isUnconditional())
2050       UnconditionalPreds.push_back(PredBB);
2051     else
2052       HaveNonUnconditionalPredecessors = true;
2053   }
2054   if (UnconditionalPreds.size() < 2)
2055     return false;
2056 
2057   // We take a two-step approach to tail sinking. First we scan from the end of
2058   // each block upwards in lockstep. If the n'th instruction from the end of each
2059   // block can be sunk, those instructions are added to ValuesToSink and we
2060   // carry on. If we can sink an instruction but need to PHI-merge some operands
2061   // (because they're not identical in each instruction) we add these to
2062   // PHIOperands.
2063   int ScanIdx = 0;
2064   SmallPtrSet<Value*,4> InstructionsToSink;
2065   DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands;
2066   LockstepReverseIterator LRI(UnconditionalPreds);
2067   while (LRI.isValid() &&
2068          canSinkInstructions(*LRI, PHIOperands)) {
2069     LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0]
2070                       << "\n");
2071     InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
2072     ++ScanIdx;
2073     --LRI;
2074   }
2075 
2076   // If no instructions can be sunk, early-return.
2077   if (ScanIdx == 0)
2078     return false;
2079 
2080   bool followedByDeoptOrUnreachable = IsBlockFollowedByDeoptOrUnreachable(BB);
2081 
2082   if (!followedByDeoptOrUnreachable) {
2083     // Okay, we *could* sink last ScanIdx instructions. But how many can we
2084     // actually sink before encountering instruction that is unprofitable to
2085     // sink?
2086     auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
2087       unsigned NumPHIdValues = 0;
2088       for (auto *I : *LRI)
2089         for (auto *V : PHIOperands[I]) {
2090           if (!InstructionsToSink.contains(V))
2091             ++NumPHIdValues;
2092           // FIXME: this check is overly optimistic. We may end up not sinking
2093           // said instruction, due to the very same profitability check.
2094           // See @creating_too_many_phis in sink-common-code.ll.
2095         }
2096       LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n");
2097       unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size();
2098       if ((NumPHIdValues % UnconditionalPreds.size()) != 0)
2099         NumPHIInsts++;
2100 
2101       return NumPHIInsts <= 1;
2102     };
2103 
2104     // We've determined that we are going to sink last ScanIdx instructions,
2105     // and recorded them in InstructionsToSink. Now, some instructions may be
2106     // unprofitable to sink. But that determination depends on the instructions
2107     // that we are going to sink.
2108 
2109     // First, forward scan: find the first instruction unprofitable to sink,
2110     // recording all the ones that are profitable to sink.
2111     // FIXME: would it be better, after we detect that not all are profitable.
2112     // to either record the profitable ones, or erase the unprofitable ones?
2113     // Maybe we need to choose (at runtime) the one that will touch least
2114     // instrs?
2115     LRI.reset();
2116     int Idx = 0;
2117     SmallPtrSet<Value *, 4> InstructionsProfitableToSink;
2118     while (Idx < ScanIdx) {
2119       if (!ProfitableToSinkInstruction(LRI)) {
2120         // Too many PHIs would be created.
2121         LLVM_DEBUG(
2122             dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
2123         break;
2124       }
2125       InstructionsProfitableToSink.insert((*LRI).begin(), (*LRI).end());
2126       --LRI;
2127       ++Idx;
2128     }
2129 
2130     // If no instructions can be sunk, early-return.
2131     if (Idx == 0)
2132       return false;
2133 
2134     // Did we determine that (only) some instructions are unprofitable to sink?
2135     if (Idx < ScanIdx) {
2136       // Okay, some instructions are unprofitable.
2137       ScanIdx = Idx;
2138       InstructionsToSink = InstructionsProfitableToSink;
2139 
2140       // But, that may make other instructions unprofitable, too.
2141       // So, do a backward scan, do any earlier instructions become
2142       // unprofitable?
2143       assert(
2144           !ProfitableToSinkInstruction(LRI) &&
2145           "We already know that the last instruction is unprofitable to sink");
2146       ++LRI;
2147       --Idx;
2148       while (Idx >= 0) {
2149         // If we detect that an instruction becomes unprofitable to sink,
2150         // all earlier instructions won't be sunk either,
2151         // so preemptively keep InstructionsProfitableToSink in sync.
2152         // FIXME: is this the most performant approach?
2153         for (auto *I : *LRI)
2154           InstructionsProfitableToSink.erase(I);
2155         if (!ProfitableToSinkInstruction(LRI)) {
2156           // Everything starting with this instruction won't be sunk.
2157           ScanIdx = Idx;
2158           InstructionsToSink = InstructionsProfitableToSink;
2159         }
2160         ++LRI;
2161         --Idx;
2162       }
2163     }
2164 
2165     // If no instructions can be sunk, early-return.
2166     if (ScanIdx == 0)
2167       return false;
2168   }
2169 
2170   bool Changed = false;
2171 
2172   if (HaveNonUnconditionalPredecessors) {
2173     if (!followedByDeoptOrUnreachable) {
2174       // It is always legal to sink common instructions from unconditional
2175       // predecessors. However, if not all predecessors are unconditional,
2176       // this transformation might be pessimizing. So as a rule of thumb,
2177       // don't do it unless we'd sink at least one non-speculatable instruction.
2178       // See https://bugs.llvm.org/show_bug.cgi?id=30244
2179       LRI.reset();
2180       int Idx = 0;
2181       bool Profitable = false;
2182       while (Idx < ScanIdx) {
2183         if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
2184           Profitable = true;
2185           break;
2186         }
2187         --LRI;
2188         ++Idx;
2189       }
2190       if (!Profitable)
2191         return false;
2192     }
2193 
2194     LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n");
2195     // We have a conditional edge and we're going to sink some instructions.
2196     // Insert a new block postdominating all blocks we're going to sink from.
2197     if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split", DTU))
2198       // Edges couldn't be split.
2199       return false;
2200     Changed = true;
2201   }
2202 
2203   // Now that we've analyzed all potential sinking candidates, perform the
2204   // actual sink. We iteratively sink the last non-terminator of the source
2205   // blocks into their common successor unless doing so would require too
2206   // many PHI instructions to be generated (currently only one PHI is allowed
2207   // per sunk instruction).
2208   //
2209   // We can use InstructionsToSink to discount values needing PHI-merging that will
2210   // actually be sunk in a later iteration. This allows us to be more
2211   // aggressive in what we sink. This does allow a false positive where we
2212   // sink presuming a later value will also be sunk, but stop half way through
2213   // and never actually sink it which means we produce more PHIs than intended.
2214   // This is unlikely in practice though.
2215   int SinkIdx = 0;
2216   for (; SinkIdx != ScanIdx; ++SinkIdx) {
2217     LLVM_DEBUG(dbgs() << "SINK: Sink: "
2218                       << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
2219                       << "\n");
2220 
2221     // Because we've sunk every instruction in turn, the current instruction to
2222     // sink is always at index 0.
2223     LRI.reset();
2224 
2225     if (!sinkLastInstruction(UnconditionalPreds)) {
2226       LLVM_DEBUG(
2227           dbgs()
2228           << "SINK: stopping here, failed to actually sink instruction!\n");
2229       break;
2230     }
2231 
2232     NumSinkCommonInstrs++;
2233     Changed = true;
2234   }
2235   if (SinkIdx != 0)
2236     ++NumSinkCommonCode;
2237   return Changed;
2238 }
2239 
2240 namespace {
2241 
2242 struct CompatibleSets {
2243   using SetTy = SmallVector<InvokeInst *, 2>;
2244 
2245   SmallVector<SetTy, 1> Sets;
2246 
2247   static bool shouldBelongToSameSet(ArrayRef<InvokeInst *> Invokes);
2248 
2249   SetTy &getCompatibleSet(InvokeInst *II);
2250 
2251   void insert(InvokeInst *II);
2252 };
2253 
2254 CompatibleSets::SetTy &CompatibleSets::getCompatibleSet(InvokeInst *II) {
2255   // Perform a linear scan over all the existing sets, see if the new `invoke`
2256   // is compatible with any particular set. Since we know that all the `invokes`
2257   // within a set are compatible, only check the first `invoke` in each set.
2258   // WARNING: at worst, this has quadratic complexity.
2259   for (CompatibleSets::SetTy &Set : Sets) {
2260     if (CompatibleSets::shouldBelongToSameSet({Set.front(), II}))
2261       return Set;
2262   }
2263 
2264   // Otherwise, we either had no sets yet, or this invoke forms a new set.
2265   return Sets.emplace_back();
2266 }
2267 
2268 void CompatibleSets::insert(InvokeInst *II) {
2269   getCompatibleSet(II).emplace_back(II);
2270 }
2271 
2272 bool CompatibleSets::shouldBelongToSameSet(ArrayRef<InvokeInst *> Invokes) {
2273   assert(Invokes.size() == 2 && "Always called with exactly two candidates.");
2274 
2275   // Can we theoretically merge these `invoke`s?
2276   auto IsIllegalToMerge = [](InvokeInst *II) {
2277     return II->cannotMerge() || II->isInlineAsm();
2278   };
2279   if (any_of(Invokes, IsIllegalToMerge))
2280     return false;
2281 
2282   // Either both `invoke`s must be   direct,
2283   // or     both `invoke`s must be indirect.
2284   auto IsIndirectCall = [](InvokeInst *II) { return II->isIndirectCall(); };
2285   bool HaveIndirectCalls = any_of(Invokes, IsIndirectCall);
2286   bool AllCallsAreIndirect = all_of(Invokes, IsIndirectCall);
2287   if (HaveIndirectCalls) {
2288     if (!AllCallsAreIndirect)
2289       return false;
2290   } else {
2291     // All callees must be identical.
2292     Value *Callee = nullptr;
2293     for (InvokeInst *II : Invokes) {
2294       Value *CurrCallee = II->getCalledOperand();
2295       assert(CurrCallee && "There is always a called operand.");
2296       if (!Callee)
2297         Callee = CurrCallee;
2298       else if (Callee != CurrCallee)
2299         return false;
2300     }
2301   }
2302 
2303   // Either both `invoke`s must not have a normal destination,
2304   // or     both `invoke`s must     have a normal destination,
2305   auto HasNormalDest = [](InvokeInst *II) {
2306     return !isa<UnreachableInst>(II->getNormalDest()->getFirstNonPHIOrDbg());
2307   };
2308   if (any_of(Invokes, HasNormalDest)) {
2309     // Do not merge `invoke` that does not have a normal destination with one
2310     // that does have a normal destination, even though doing so would be legal.
2311     if (!all_of(Invokes, HasNormalDest))
2312       return false;
2313 
2314     // All normal destinations must be identical.
2315     BasicBlock *NormalBB = nullptr;
2316     for (InvokeInst *II : Invokes) {
2317       BasicBlock *CurrNormalBB = II->getNormalDest();
2318       assert(CurrNormalBB && "There is always a 'continue to' basic block.");
2319       if (!NormalBB)
2320         NormalBB = CurrNormalBB;
2321       else if (NormalBB != CurrNormalBB)
2322         return false;
2323     }
2324 
2325     // In the normal destination, the incoming values for these two `invoke`s
2326     // must be compatible.
2327     SmallPtrSet<Value *, 16> EquivalenceSet(Invokes.begin(), Invokes.end());
2328     if (!IncomingValuesAreCompatible(
2329             NormalBB, {Invokes[0]->getParent(), Invokes[1]->getParent()},
2330             &EquivalenceSet))
2331       return false;
2332   }
2333 
2334 #ifndef NDEBUG
2335   // All unwind destinations must be identical.
2336   // We know that because we have started from said unwind destination.
2337   BasicBlock *UnwindBB = nullptr;
2338   for (InvokeInst *II : Invokes) {
2339     BasicBlock *CurrUnwindBB = II->getUnwindDest();
2340     assert(CurrUnwindBB && "There is always an 'unwind to' basic block.");
2341     if (!UnwindBB)
2342       UnwindBB = CurrUnwindBB;
2343     else
2344       assert(UnwindBB == CurrUnwindBB && "Unexpected unwind destination.");
2345   }
2346 #endif
2347 
2348   // In the unwind destination, the incoming values for these two `invoke`s
2349   // must be compatible.
2350   if (!IncomingValuesAreCompatible(
2351           Invokes.front()->getUnwindDest(),
2352           {Invokes[0]->getParent(), Invokes[1]->getParent()}))
2353     return false;
2354 
2355   // Ignoring arguments, these `invoke`s must be identical,
2356   // including operand bundles.
2357   const InvokeInst *II0 = Invokes.front();
2358   for (auto *II : Invokes.drop_front())
2359     if (!II->isSameOperationAs(II0))
2360       return false;
2361 
2362   // Can we theoretically form the data operands for the merged `invoke`?
2363   auto IsIllegalToMergeArguments = [](auto Ops) {
2364     Type *Ty = std::get<0>(Ops)->getType();
2365     assert(Ty == std::get<1>(Ops)->getType() && "Incompatible types?");
2366     return Ty->isTokenTy() && std::get<0>(Ops) != std::get<1>(Ops);
2367   };
2368   assert(Invokes.size() == 2 && "Always called with exactly two candidates.");
2369   if (any_of(zip(Invokes[0]->data_ops(), Invokes[1]->data_ops()),
2370              IsIllegalToMergeArguments))
2371     return false;
2372 
2373   return true;
2374 }
2375 
2376 } // namespace
2377 
2378 // Merge all invokes in the provided set, all of which are compatible
2379 // as per the `CompatibleSets::shouldBelongToSameSet()`.
2380 static void MergeCompatibleInvokesImpl(ArrayRef<InvokeInst *> Invokes,
2381                                        DomTreeUpdater *DTU) {
2382   assert(Invokes.size() >= 2 && "Must have at least two invokes to merge.");
2383 
2384   SmallVector<DominatorTree::UpdateType, 8> Updates;
2385   if (DTU)
2386     Updates.reserve(2 + 3 * Invokes.size());
2387 
2388   bool HasNormalDest =
2389       !isa<UnreachableInst>(Invokes[0]->getNormalDest()->getFirstNonPHIOrDbg());
2390 
2391   // Clone one of the invokes into a new basic block.
2392   // Since they are all compatible, it doesn't matter which invoke is cloned.
2393   InvokeInst *MergedInvoke = [&Invokes, HasNormalDest]() {
2394     InvokeInst *II0 = Invokes.front();
2395     BasicBlock *II0BB = II0->getParent();
2396     BasicBlock *InsertBeforeBlock =
2397         II0->getParent()->getIterator()->getNextNode();
2398     Function *Func = II0BB->getParent();
2399     LLVMContext &Ctx = II0->getContext();
2400 
2401     BasicBlock *MergedInvokeBB = BasicBlock::Create(
2402         Ctx, II0BB->getName() + ".invoke", Func, InsertBeforeBlock);
2403 
2404     auto *MergedInvoke = cast<InvokeInst>(II0->clone());
2405     // NOTE: all invokes have the same attributes, so no handling needed.
2406     MergedInvokeBB->getInstList().push_back(MergedInvoke);
2407 
2408     if (!HasNormalDest) {
2409       // This set does not have a normal destination,
2410       // so just form a new block with unreachable terminator.
2411       BasicBlock *MergedNormalDest = BasicBlock::Create(
2412           Ctx, II0BB->getName() + ".cont", Func, InsertBeforeBlock);
2413       new UnreachableInst(Ctx, MergedNormalDest);
2414       MergedInvoke->setNormalDest(MergedNormalDest);
2415     }
2416 
2417     // The unwind destination, however, remainds identical for all invokes here.
2418 
2419     return MergedInvoke;
2420   }();
2421 
2422   if (DTU) {
2423     // Predecessor blocks that contained these invokes will now branch to
2424     // the new block that contains the merged invoke, ...
2425     for (InvokeInst *II : Invokes)
2426       Updates.push_back(
2427           {DominatorTree::Insert, II->getParent(), MergedInvoke->getParent()});
2428 
2429     // ... which has the new `unreachable` block as normal destination,
2430     // or unwinds to the (same for all `invoke`s in this set) `landingpad`,
2431     for (BasicBlock *SuccBBOfMergedInvoke : successors(MergedInvoke))
2432       Updates.push_back({DominatorTree::Insert, MergedInvoke->getParent(),
2433                          SuccBBOfMergedInvoke});
2434 
2435     // Since predecessor blocks now unconditionally branch to a new block,
2436     // they no longer branch to their original successors.
2437     for (InvokeInst *II : Invokes)
2438       for (BasicBlock *SuccOfPredBB : successors(II->getParent()))
2439         Updates.push_back(
2440             {DominatorTree::Delete, II->getParent(), SuccOfPredBB});
2441   }
2442 
2443   bool IsIndirectCall = Invokes[0]->isIndirectCall();
2444 
2445   // Form the merged operands for the merged invoke.
2446   for (Use &U : MergedInvoke->operands()) {
2447     // Only PHI together the indirect callees and data operands.
2448     if (MergedInvoke->isCallee(&U)) {
2449       if (!IsIndirectCall)
2450         continue;
2451     } else if (!MergedInvoke->isDataOperand(&U))
2452       continue;
2453 
2454     // Don't create trivial PHI's with all-identical incoming values.
2455     bool NeedPHI = any_of(Invokes, [&U](InvokeInst *II) {
2456       return II->getOperand(U.getOperandNo()) != U.get();
2457     });
2458     if (!NeedPHI)
2459       continue;
2460 
2461     // Form a PHI out of all the data ops under this index.
2462     PHINode *PN = PHINode::Create(
2463         U->getType(), /*NumReservedValues=*/Invokes.size(), "", MergedInvoke);
2464     for (InvokeInst *II : Invokes)
2465       PN->addIncoming(II->getOperand(U.getOperandNo()), II->getParent());
2466 
2467     U.set(PN);
2468   }
2469 
2470   // We've ensured that each PHI node has compatible (identical) incoming values
2471   // when coming from each of the `invoke`s in the current merge set,
2472   // so update the PHI nodes accordingly.
2473   for (BasicBlock *Succ : successors(MergedInvoke))
2474     AddPredecessorToBlock(Succ, /*NewPred=*/MergedInvoke->getParent(),
2475                           /*ExistPred=*/Invokes.front()->getParent());
2476 
2477   // And finally, replace the original `invoke`s with an unconditional branch
2478   // to the block with the merged `invoke`. Also, give that merged `invoke`
2479   // the merged debugloc of all the original `invoke`s.
2480   const DILocation *MergedDebugLoc = nullptr;
2481   for (InvokeInst *II : Invokes) {
2482     // Compute the debug location common to all the original `invoke`s.
2483     if (!MergedDebugLoc)
2484       MergedDebugLoc = II->getDebugLoc();
2485     else
2486       MergedDebugLoc =
2487           DILocation::getMergedLocation(MergedDebugLoc, II->getDebugLoc());
2488 
2489     // And replace the old `invoke` with an unconditionally branch
2490     // to the block with the merged `invoke`.
2491     for (BasicBlock *OrigSuccBB : successors(II->getParent()))
2492       OrigSuccBB->removePredecessor(II->getParent());
2493     BranchInst::Create(MergedInvoke->getParent(), II->getParent());
2494     II->replaceAllUsesWith(MergedInvoke);
2495     II->eraseFromParent();
2496     ++NumInvokesMerged;
2497   }
2498   MergedInvoke->setDebugLoc(MergedDebugLoc);
2499   ++NumInvokeSetsFormed;
2500 
2501   if (DTU)
2502     DTU->applyUpdates(Updates);
2503 }
2504 
2505 /// If this block is a `landingpad` exception handling block, categorize all
2506 /// the predecessor `invoke`s into sets, with all `invoke`s in each set
2507 /// being "mergeable" together, and then merge invokes in each set together.
2508 ///
2509 /// This is a weird mix of hoisting and sinking. Visually, it goes from:
2510 ///          [...]        [...]
2511 ///            |            |
2512 ///        [invoke0]    [invoke1]
2513 ///           / \          / \
2514 ///     [cont0] [landingpad] [cont1]
2515 /// to:
2516 ///      [...] [...]
2517 ///          \ /
2518 ///       [invoke]
2519 ///          / \
2520 ///     [cont] [landingpad]
2521 ///
2522 /// But of course we can only do that if the invokes share the `landingpad`,
2523 /// edges invoke0->cont0 and invoke1->cont1 are "compatible",
2524 /// and the invoked functions are "compatible".
2525 static bool MergeCompatibleInvokes(BasicBlock *BB, DomTreeUpdater *DTU) {
2526   if (!EnableMergeCompatibleInvokes)
2527     return false;
2528 
2529   bool Changed = false;
2530 
2531   // FIXME: generalize to all exception handling blocks?
2532   if (!BB->isLandingPad())
2533     return Changed;
2534 
2535   CompatibleSets Grouper;
2536 
2537   // Record all the predecessors of this `landingpad`. As per verifier,
2538   // the only allowed predecessor is the unwind edge of an `invoke`.
2539   // We want to group "compatible" `invokes` into the same set to be merged.
2540   for (BasicBlock *PredBB : predecessors(BB))
2541     Grouper.insert(cast<InvokeInst>(PredBB->getTerminator()));
2542 
2543   // And now, merge `invoke`s that were grouped togeter.
2544   for (ArrayRef<InvokeInst *> Invokes : Grouper.Sets) {
2545     if (Invokes.size() < 2)
2546       continue;
2547     Changed = true;
2548     MergeCompatibleInvokesImpl(Invokes, DTU);
2549   }
2550 
2551   return Changed;
2552 }
2553 
2554 /// Determine if we can hoist sink a sole store instruction out of a
2555 /// conditional block.
2556 ///
2557 /// We are looking for code like the following:
2558 ///   BrBB:
2559 ///     store i32 %add, i32* %arrayidx2
2560 ///     ... // No other stores or function calls (we could be calling a memory
2561 ///     ... // function).
2562 ///     %cmp = icmp ult %x, %y
2563 ///     br i1 %cmp, label %EndBB, label %ThenBB
2564 ///   ThenBB:
2565 ///     store i32 %add5, i32* %arrayidx2
2566 ///     br label EndBB
2567 ///   EndBB:
2568 ///     ...
2569 ///   We are going to transform this into:
2570 ///   BrBB:
2571 ///     store i32 %add, i32* %arrayidx2
2572 ///     ... //
2573 ///     %cmp = icmp ult %x, %y
2574 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
2575 ///     store i32 %add.add5, i32* %arrayidx2
2576 ///     ...
2577 ///
2578 /// \return The pointer to the value of the previous store if the store can be
2579 ///         hoisted into the predecessor block. 0 otherwise.
2580 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
2581                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
2582   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
2583   if (!StoreToHoist)
2584     return nullptr;
2585 
2586   // Volatile or atomic.
2587   if (!StoreToHoist->isSimple())
2588     return nullptr;
2589 
2590   Value *StorePtr = StoreToHoist->getPointerOperand();
2591   Type *StoreTy = StoreToHoist->getValueOperand()->getType();
2592 
2593   // Look for a store to the same pointer in BrBB.
2594   unsigned MaxNumInstToLookAt = 9;
2595   // Skip pseudo probe intrinsic calls which are not really killing any memory
2596   // accesses.
2597   for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug(true))) {
2598     if (!MaxNumInstToLookAt)
2599       break;
2600     --MaxNumInstToLookAt;
2601 
2602     // Could be calling an instruction that affects memory like free().
2603     if (CurI.mayWriteToMemory() && !isa<StoreInst>(CurI))
2604       return nullptr;
2605 
2606     if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
2607       // Found the previous store to same location and type. Make sure it is
2608       // simple, to avoid introducing a spurious non-atomic write after an
2609       // atomic write.
2610       if (SI->getPointerOperand() == StorePtr &&
2611           SI->getValueOperand()->getType() == StoreTy && SI->isSimple())
2612         // Found the previous store, return its value operand.
2613         return SI->getValueOperand();
2614       return nullptr; // Unknown store.
2615     }
2616 
2617     if (auto *LI = dyn_cast<LoadInst>(&CurI)) {
2618       if (LI->getPointerOperand() == StorePtr && LI->getType() == StoreTy &&
2619           LI->isSimple()) {
2620         // Local objects (created by an `alloca` instruction) are always
2621         // writable, so once we are past a read from a location it is valid to
2622         // also write to that same location.
2623         // If the address of the local object never escapes the function, that
2624         // means it's never concurrently read or written, hence moving the store
2625         // from under the condition will not introduce a data race.
2626         auto *AI = dyn_cast<AllocaInst>(getUnderlyingObject(StorePtr));
2627         if (AI && !PointerMayBeCaptured(AI, false, true))
2628           // Found a previous load, return it.
2629           return LI;
2630       }
2631       // The load didn't work out, but we may still find a store.
2632     }
2633   }
2634 
2635   return nullptr;
2636 }
2637 
2638 /// Estimate the cost of the insertion(s) and check that the PHI nodes can be
2639 /// converted to selects.
2640 static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB,
2641                                            BasicBlock *EndBB,
2642                                            unsigned &SpeculatedInstructions,
2643                                            InstructionCost &Cost,
2644                                            const TargetTransformInfo &TTI) {
2645   TargetTransformInfo::TargetCostKind CostKind =
2646     BB->getParent()->hasMinSize()
2647     ? TargetTransformInfo::TCK_CodeSize
2648     : TargetTransformInfo::TCK_SizeAndLatency;
2649 
2650   bool HaveRewritablePHIs = false;
2651   for (PHINode &PN : EndBB->phis()) {
2652     Value *OrigV = PN.getIncomingValueForBlock(BB);
2653     Value *ThenV = PN.getIncomingValueForBlock(ThenBB);
2654 
2655     // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
2656     // Skip PHIs which are trivial.
2657     if (ThenV == OrigV)
2658       continue;
2659 
2660     Cost += TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr,
2661                                    CmpInst::BAD_ICMP_PREDICATE, CostKind);
2662 
2663     // Don't convert to selects if we could remove undefined behavior instead.
2664     if (passingValueIsAlwaysUndefined(OrigV, &PN) ||
2665         passingValueIsAlwaysUndefined(ThenV, &PN))
2666       return false;
2667 
2668     HaveRewritablePHIs = true;
2669     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
2670     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
2671     if (!OrigCE && !ThenCE)
2672       continue; // Known cheap (FIXME: Maybe not true for aggregates).
2673 
2674     InstructionCost OrigCost = OrigCE ? computeSpeculationCost(OrigCE, TTI) : 0;
2675     InstructionCost ThenCost = ThenCE ? computeSpeculationCost(ThenCE, TTI) : 0;
2676     InstructionCost MaxCost =
2677         2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2678     if (OrigCost + ThenCost > MaxCost)
2679       return false;
2680 
2681     // Account for the cost of an unfolded ConstantExpr which could end up
2682     // getting expanded into Instructions.
2683     // FIXME: This doesn't account for how many operations are combined in the
2684     // constant expression.
2685     ++SpeculatedInstructions;
2686     if (SpeculatedInstructions > 1)
2687       return false;
2688   }
2689 
2690   return HaveRewritablePHIs;
2691 }
2692 
2693 /// Speculate a conditional basic block flattening the CFG.
2694 ///
2695 /// Note that this is a very risky transform currently. Speculating
2696 /// instructions like this is most often not desirable. Instead, there is an MI
2697 /// pass which can do it with full awareness of the resource constraints.
2698 /// However, some cases are "obvious" and we should do directly. An example of
2699 /// this is speculating a single, reasonably cheap instruction.
2700 ///
2701 /// There is only one distinct advantage to flattening the CFG at the IR level:
2702 /// it makes very common but simplistic optimizations such as are common in
2703 /// instcombine and the DAG combiner more powerful by removing CFG edges and
2704 /// modeling their effects with easier to reason about SSA value graphs.
2705 ///
2706 ///
2707 /// An illustration of this transform is turning this IR:
2708 /// \code
2709 ///   BB:
2710 ///     %cmp = icmp ult %x, %y
2711 ///     br i1 %cmp, label %EndBB, label %ThenBB
2712 ///   ThenBB:
2713 ///     %sub = sub %x, %y
2714 ///     br label BB2
2715 ///   EndBB:
2716 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
2717 ///     ...
2718 /// \endcode
2719 ///
2720 /// Into this IR:
2721 /// \code
2722 ///   BB:
2723 ///     %cmp = icmp ult %x, %y
2724 ///     %sub = sub %x, %y
2725 ///     %cond = select i1 %cmp, 0, %sub
2726 ///     ...
2727 /// \endcode
2728 ///
2729 /// \returns true if the conditional block is removed.
2730 bool SimplifyCFGOpt::SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
2731                                             const TargetTransformInfo &TTI) {
2732   // Be conservative for now. FP select instruction can often be expensive.
2733   Value *BrCond = BI->getCondition();
2734   if (isa<FCmpInst>(BrCond))
2735     return false;
2736 
2737   BasicBlock *BB = BI->getParent();
2738   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
2739   InstructionCost Budget =
2740       PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2741 
2742   // If ThenBB is actually on the false edge of the conditional branch, remember
2743   // to swap the select operands later.
2744   bool Invert = false;
2745   if (ThenBB != BI->getSuccessor(0)) {
2746     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
2747     Invert = true;
2748   }
2749   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
2750 
2751   // If the branch is non-unpredictable, and is predicted to *not* branch to
2752   // the `then` block, then avoid speculating it.
2753   if (!BI->getMetadata(LLVMContext::MD_unpredictable)) {
2754     uint64_t TWeight, FWeight;
2755     if (BI->extractProfMetadata(TWeight, FWeight) && (TWeight + FWeight) != 0) {
2756       uint64_t EndWeight = Invert ? TWeight : FWeight;
2757       BranchProbability BIEndProb =
2758           BranchProbability::getBranchProbability(EndWeight, TWeight + FWeight);
2759       BranchProbability Likely = TTI.getPredictableBranchThreshold();
2760       if (BIEndProb >= Likely)
2761         return false;
2762     }
2763   }
2764 
2765   // Keep a count of how many times instructions are used within ThenBB when
2766   // they are candidates for sinking into ThenBB. Specifically:
2767   // - They are defined in BB, and
2768   // - They have no side effects, and
2769   // - All of their uses are in ThenBB.
2770   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
2771 
2772   SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics;
2773 
2774   unsigned SpeculatedInstructions = 0;
2775   Value *SpeculatedStoreValue = nullptr;
2776   StoreInst *SpeculatedStore = nullptr;
2777   for (BasicBlock::iterator BBI = ThenBB->begin(),
2778                             BBE = std::prev(ThenBB->end());
2779        BBI != BBE; ++BBI) {
2780     Instruction *I = &*BBI;
2781     // Skip debug info.
2782     if (isa<DbgInfoIntrinsic>(I)) {
2783       SpeculatedDbgIntrinsics.push_back(I);
2784       continue;
2785     }
2786 
2787     // Skip pseudo probes. The consequence is we lose track of the branch
2788     // probability for ThenBB, which is fine since the optimization here takes
2789     // place regardless of the branch probability.
2790     if (isa<PseudoProbeInst>(I)) {
2791       // The probe should be deleted so that it will not be over-counted when
2792       // the samples collected on the non-conditional path are counted towards
2793       // the conditional path. We leave it for the counts inference algorithm to
2794       // figure out a proper count for an unknown probe.
2795       SpeculatedDbgIntrinsics.push_back(I);
2796       continue;
2797     }
2798 
2799     // Only speculatively execute a single instruction (not counting the
2800     // terminator) for now.
2801     ++SpeculatedInstructions;
2802     if (SpeculatedInstructions > 1)
2803       return false;
2804 
2805     // Don't hoist the instruction if it's unsafe or expensive.
2806     if (!isSafeToSpeculativelyExecute(I) &&
2807         !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
2808                                   I, BB, ThenBB, EndBB))))
2809       return false;
2810     if (!SpeculatedStoreValue &&
2811         computeSpeculationCost(I, TTI) >
2812             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
2813       return false;
2814 
2815     // Store the store speculation candidate.
2816     if (SpeculatedStoreValue)
2817       SpeculatedStore = cast<StoreInst>(I);
2818 
2819     // Do not hoist the instruction if any of its operands are defined but not
2820     // used in BB. The transformation will prevent the operand from
2821     // being sunk into the use block.
2822     for (Use &Op : I->operands()) {
2823       Instruction *OpI = dyn_cast<Instruction>(Op);
2824       if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
2825         continue; // Not a candidate for sinking.
2826 
2827       ++SinkCandidateUseCounts[OpI];
2828     }
2829   }
2830 
2831   // Consider any sink candidates which are only used in ThenBB as costs for
2832   // speculation. Note, while we iterate over a DenseMap here, we are summing
2833   // and so iteration order isn't significant.
2834   for (SmallDenseMap<Instruction *, unsigned, 4>::iterator
2835            I = SinkCandidateUseCounts.begin(),
2836            E = SinkCandidateUseCounts.end();
2837        I != E; ++I)
2838     if (I->first->hasNUses(I->second)) {
2839       ++SpeculatedInstructions;
2840       if (SpeculatedInstructions > 1)
2841         return false;
2842     }
2843 
2844   // Check that we can insert the selects and that it's not too expensive to do
2845   // so.
2846   bool Convert = SpeculatedStore != nullptr;
2847   InstructionCost Cost = 0;
2848   Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB,
2849                                             SpeculatedInstructions,
2850                                             Cost, TTI);
2851   if (!Convert || Cost > Budget)
2852     return false;
2853 
2854   // If we get here, we can hoist the instruction and if-convert.
2855   LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
2856 
2857   // Insert a select of the value of the speculated store.
2858   if (SpeculatedStoreValue) {
2859     IRBuilder<NoFolder> Builder(BI);
2860     Value *TrueV = SpeculatedStore->getValueOperand();
2861     Value *FalseV = SpeculatedStoreValue;
2862     if (Invert)
2863       std::swap(TrueV, FalseV);
2864     Value *S = Builder.CreateSelect(
2865         BrCond, TrueV, FalseV, "spec.store.select", BI);
2866     SpeculatedStore->setOperand(0, S);
2867     SpeculatedStore->applyMergedLocation(BI->getDebugLoc(),
2868                                          SpeculatedStore->getDebugLoc());
2869   }
2870 
2871   // Metadata can be dependent on the condition we are hoisting above.
2872   // Conservatively strip all metadata on the instruction. Drop the debug loc
2873   // to avoid making it appear as if the condition is a constant, which would
2874   // be misleading while debugging.
2875   // Similarly strip attributes that maybe dependent on condition we are
2876   // hoisting above.
2877   for (auto &I : *ThenBB) {
2878     if (!SpeculatedStoreValue || &I != SpeculatedStore)
2879       I.setDebugLoc(DebugLoc());
2880     I.dropUndefImplyingAttrsAndUnknownMetadata();
2881   }
2882 
2883   // Hoist the instructions.
2884   BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
2885                            ThenBB->begin(), std::prev(ThenBB->end()));
2886 
2887   // Insert selects and rewrite the PHI operands.
2888   IRBuilder<NoFolder> Builder(BI);
2889   for (PHINode &PN : EndBB->phis()) {
2890     unsigned OrigI = PN.getBasicBlockIndex(BB);
2891     unsigned ThenI = PN.getBasicBlockIndex(ThenBB);
2892     Value *OrigV = PN.getIncomingValue(OrigI);
2893     Value *ThenV = PN.getIncomingValue(ThenI);
2894 
2895     // Skip PHIs which are trivial.
2896     if (OrigV == ThenV)
2897       continue;
2898 
2899     // Create a select whose true value is the speculatively executed value and
2900     // false value is the pre-existing value. Swap them if the branch
2901     // destinations were inverted.
2902     Value *TrueV = ThenV, *FalseV = OrigV;
2903     if (Invert)
2904       std::swap(TrueV, FalseV);
2905     Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI);
2906     PN.setIncomingValue(OrigI, V);
2907     PN.setIncomingValue(ThenI, V);
2908   }
2909 
2910   // Remove speculated dbg intrinsics.
2911   // FIXME: Is it possible to do this in a more elegant way? Moving/merging the
2912   // dbg value for the different flows and inserting it after the select.
2913   for (Instruction *I : SpeculatedDbgIntrinsics)
2914     I->eraseFromParent();
2915 
2916   ++NumSpeculations;
2917   return true;
2918 }
2919 
2920 /// Return true if we can thread a branch across this block.
2921 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
2922   int Size = 0;
2923 
2924   SmallPtrSet<const Value *, 32> EphValues;
2925   auto IsEphemeral = [&](const Instruction *I) {
2926     if (isa<AssumeInst>(I))
2927       return true;
2928     return !I->mayHaveSideEffects() && !I->isTerminator() &&
2929            all_of(I->users(),
2930                   [&](const User *U) { return EphValues.count(U); });
2931   };
2932 
2933   // Walk the loop in reverse so that we can identify ephemeral values properly
2934   // (values only feeding assumes).
2935   for (Instruction &I : reverse(BB->instructionsWithoutDebug(false))) {
2936     // Can't fold blocks that contain noduplicate or convergent calls.
2937     if (CallInst *CI = dyn_cast<CallInst>(&I))
2938       if (CI->cannotDuplicate() || CI->isConvergent())
2939         return false;
2940 
2941     // Ignore ephemeral values which are deleted during codegen.
2942     if (IsEphemeral(&I))
2943       EphValues.insert(&I);
2944     // We will delete Phis while threading, so Phis should not be accounted in
2945     // block's size.
2946     else if (!isa<PHINode>(I)) {
2947       if (Size++ > MaxSmallBlockSize)
2948         return false; // Don't clone large BB's.
2949     }
2950 
2951     // We can only support instructions that do not define values that are
2952     // live outside of the current basic block.
2953     for (User *U : I.users()) {
2954       Instruction *UI = cast<Instruction>(U);
2955       if (UI->getParent() != BB || isa<PHINode>(UI))
2956         return false;
2957     }
2958 
2959     // Looks ok, continue checking.
2960   }
2961 
2962   return true;
2963 }
2964 
2965 static ConstantInt *getKnownValueOnEdge(Value *V, BasicBlock *From,
2966                                         BasicBlock *To) {
2967   // Don't look past the block defining the value, we might get the value from
2968   // a previous loop iteration.
2969   auto *I = dyn_cast<Instruction>(V);
2970   if (I && I->getParent() == To)
2971     return nullptr;
2972 
2973   // We know the value if the From block branches on it.
2974   auto *BI = dyn_cast<BranchInst>(From->getTerminator());
2975   if (BI && BI->isConditional() && BI->getCondition() == V &&
2976       BI->getSuccessor(0) != BI->getSuccessor(1))
2977     return BI->getSuccessor(0) == To ? ConstantInt::getTrue(BI->getContext())
2978                                      : ConstantInt::getFalse(BI->getContext());
2979 
2980   return nullptr;
2981 }
2982 
2983 /// If we have a conditional branch on something for which we know the constant
2984 /// value in predecessors (e.g. a phi node in the current block), thread edges
2985 /// from the predecessor to their ultimate destination.
2986 static Optional<bool>
2987 FoldCondBranchOnValueKnownInPredecessorImpl(BranchInst *BI, DomTreeUpdater *DTU,
2988                                             const DataLayout &DL,
2989                                             AssumptionCache *AC) {
2990   SmallMapVector<ConstantInt *, SmallSetVector<BasicBlock *, 2>, 2> KnownValues;
2991   BasicBlock *BB = BI->getParent();
2992   Value *Cond = BI->getCondition();
2993   PHINode *PN = dyn_cast<PHINode>(Cond);
2994   if (PN && PN->getParent() == BB) {
2995     // Degenerate case of a single entry PHI.
2996     if (PN->getNumIncomingValues() == 1) {
2997       FoldSingleEntryPHINodes(PN->getParent());
2998       return true;
2999     }
3000 
3001     for (Use &U : PN->incoming_values())
3002       if (auto *CB = dyn_cast<ConstantInt>(U))
3003         KnownValues[CB].insert(PN->getIncomingBlock(U));
3004   } else {
3005     for (BasicBlock *Pred : predecessors(BB)) {
3006       if (ConstantInt *CB = getKnownValueOnEdge(Cond, Pred, BB))
3007         KnownValues[CB].insert(Pred);
3008     }
3009   }
3010 
3011   if (KnownValues.empty())
3012     return false;
3013 
3014   // Now we know that this block has multiple preds and two succs.
3015   // Check that the block is small enough and values defined in the block are
3016   // not used outside of it.
3017   if (!BlockIsSimpleEnoughToThreadThrough(BB))
3018     return false;
3019 
3020   for (const auto &Pair : KnownValues) {
3021     // Okay, we now know that all edges from PredBB should be revectored to
3022     // branch to RealDest.
3023     ConstantInt *CB = Pair.first;
3024     ArrayRef<BasicBlock *> PredBBs = Pair.second.getArrayRef();
3025     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
3026 
3027     if (RealDest == BB)
3028       continue; // Skip self loops.
3029 
3030     // Skip if the predecessor's terminator is an indirect branch.
3031     if (any_of(PredBBs, [](BasicBlock *PredBB) {
3032           return isa<IndirectBrInst>(PredBB->getTerminator());
3033         }))
3034       continue;
3035 
3036     LLVM_DEBUG({
3037       dbgs() << "Condition " << *Cond << " in " << BB->getName()
3038              << " has value " << *Pair.first << " in predecessors:\n";
3039       for (const BasicBlock *PredBB : Pair.second)
3040         dbgs() << "  " << PredBB->getName() << "\n";
3041       dbgs() << "Threading to destination " << RealDest->getName() << ".\n";
3042     });
3043 
3044     // Split the predecessors we are threading into a new edge block. We'll
3045     // clone the instructions into this block, and then redirect it to RealDest.
3046     BasicBlock *EdgeBB = SplitBlockPredecessors(BB, PredBBs, ".critedge", DTU);
3047 
3048     // TODO: These just exist to reduce test diff, we can drop them if we like.
3049     EdgeBB->setName(RealDest->getName() + ".critedge");
3050     EdgeBB->moveBefore(RealDest);
3051 
3052     // Update PHI nodes.
3053     AddPredecessorToBlock(RealDest, EdgeBB, BB);
3054 
3055     // BB may have instructions that are being threaded over.  Clone these
3056     // instructions into EdgeBB.  We know that there will be no uses of the
3057     // cloned instructions outside of EdgeBB.
3058     BasicBlock::iterator InsertPt = EdgeBB->getFirstInsertionPt();
3059     DenseMap<Value *, Value *> TranslateMap; // Track translated values.
3060     TranslateMap[Cond] = CB;
3061     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
3062       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
3063         TranslateMap[PN] = PN->getIncomingValueForBlock(EdgeBB);
3064         continue;
3065       }
3066       // Clone the instruction.
3067       Instruction *N = BBI->clone();
3068       if (BBI->hasName())
3069         N->setName(BBI->getName() + ".c");
3070 
3071       // Update operands due to translation.
3072       for (Use &Op : N->operands()) {
3073         DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(Op);
3074         if (PI != TranslateMap.end())
3075           Op = PI->second;
3076       }
3077 
3078       // Check for trivial simplification.
3079       if (Value *V = simplifyInstruction(N, {DL, nullptr, nullptr, AC})) {
3080         if (!BBI->use_empty())
3081           TranslateMap[&*BBI] = V;
3082         if (!N->mayHaveSideEffects()) {
3083           N->deleteValue(); // Instruction folded away, don't need actual inst
3084           N = nullptr;
3085         }
3086       } else {
3087         if (!BBI->use_empty())
3088           TranslateMap[&*BBI] = N;
3089       }
3090       if (N) {
3091         // Insert the new instruction into its new home.
3092         EdgeBB->getInstList().insert(InsertPt, N);
3093 
3094         // Register the new instruction with the assumption cache if necessary.
3095         if (auto *Assume = dyn_cast<AssumeInst>(N))
3096           if (AC)
3097             AC->registerAssumption(Assume);
3098       }
3099     }
3100 
3101     BB->removePredecessor(EdgeBB);
3102     BranchInst *EdgeBI = cast<BranchInst>(EdgeBB->getTerminator());
3103     EdgeBI->setSuccessor(0, RealDest);
3104     EdgeBI->setDebugLoc(BI->getDebugLoc());
3105 
3106     if (DTU) {
3107       SmallVector<DominatorTree::UpdateType, 2> Updates;
3108       Updates.push_back({DominatorTree::Delete, EdgeBB, BB});
3109       Updates.push_back({DominatorTree::Insert, EdgeBB, RealDest});
3110       DTU->applyUpdates(Updates);
3111     }
3112 
3113     // For simplicity, we created a separate basic block for the edge. Merge
3114     // it back into the predecessor if possible. This not only avoids
3115     // unnecessary SimplifyCFG iterations, but also makes sure that we don't
3116     // bypass the check for trivial cycles above.
3117     MergeBlockIntoPredecessor(EdgeBB, DTU);
3118 
3119     // Signal repeat, simplifying any other constants.
3120     return None;
3121   }
3122 
3123   return false;
3124 }
3125 
3126 static bool FoldCondBranchOnValueKnownInPredecessor(BranchInst *BI,
3127                                                     DomTreeUpdater *DTU,
3128                                                     const DataLayout &DL,
3129                                                     AssumptionCache *AC) {
3130   Optional<bool> Result;
3131   bool EverChanged = false;
3132   do {
3133     // Note that None means "we changed things, but recurse further."
3134     Result = FoldCondBranchOnValueKnownInPredecessorImpl(BI, DTU, DL, AC);
3135     EverChanged |= Result == None || *Result;
3136   } while (Result == None);
3137   return EverChanged;
3138 }
3139 
3140 /// Given a BB that starts with the specified two-entry PHI node,
3141 /// see if we can eliminate it.
3142 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
3143                                 DomTreeUpdater *DTU, const DataLayout &DL) {
3144   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
3145   // statement", which has a very simple dominance structure.  Basically, we
3146   // are trying to find the condition that is being branched on, which
3147   // subsequently causes this merge to happen.  We really want control
3148   // dependence information for this check, but simplifycfg can't keep it up
3149   // to date, and this catches most of the cases we care about anyway.
3150   BasicBlock *BB = PN->getParent();
3151 
3152   BasicBlock *IfTrue, *IfFalse;
3153   BranchInst *DomBI = GetIfCondition(BB, IfTrue, IfFalse);
3154   if (!DomBI)
3155     return false;
3156   Value *IfCond = DomBI->getCondition();
3157   // Don't bother if the branch will be constant folded trivially.
3158   if (isa<ConstantInt>(IfCond))
3159     return false;
3160 
3161   BasicBlock *DomBlock = DomBI->getParent();
3162   SmallVector<BasicBlock *, 2> IfBlocks;
3163   llvm::copy_if(
3164       PN->blocks(), std::back_inserter(IfBlocks), [](BasicBlock *IfBlock) {
3165         return cast<BranchInst>(IfBlock->getTerminator())->isUnconditional();
3166       });
3167   assert((IfBlocks.size() == 1 || IfBlocks.size() == 2) &&
3168          "Will have either one or two blocks to speculate.");
3169 
3170   // If the branch is non-unpredictable, see if we either predictably jump to
3171   // the merge bb (if we have only a single 'then' block), or if we predictably
3172   // jump to one specific 'then' block (if we have two of them).
3173   // It isn't beneficial to speculatively execute the code
3174   // from the block that we know is predictably not entered.
3175   if (!DomBI->getMetadata(LLVMContext::MD_unpredictable)) {
3176     uint64_t TWeight, FWeight;
3177     if (DomBI->extractProfMetadata(TWeight, FWeight) &&
3178         (TWeight + FWeight) != 0) {
3179       BranchProbability BITrueProb =
3180           BranchProbability::getBranchProbability(TWeight, TWeight + FWeight);
3181       BranchProbability Likely = TTI.getPredictableBranchThreshold();
3182       BranchProbability BIFalseProb = BITrueProb.getCompl();
3183       if (IfBlocks.size() == 1) {
3184         BranchProbability BIBBProb =
3185             DomBI->getSuccessor(0) == BB ? BITrueProb : BIFalseProb;
3186         if (BIBBProb >= Likely)
3187           return false;
3188       } else {
3189         if (BITrueProb >= Likely || BIFalseProb >= Likely)
3190           return false;
3191       }
3192     }
3193   }
3194 
3195   // Don't try to fold an unreachable block. For example, the phi node itself
3196   // can't be the candidate if-condition for a select that we want to form.
3197   if (auto *IfCondPhiInst = dyn_cast<PHINode>(IfCond))
3198     if (IfCondPhiInst->getParent() == BB)
3199       return false;
3200 
3201   // Okay, we found that we can merge this two-entry phi node into a select.
3202   // Doing so would require us to fold *all* two entry phi nodes in this block.
3203   // At some point this becomes non-profitable (particularly if the target
3204   // doesn't support cmov's).  Only do this transformation if there are two or
3205   // fewer PHI nodes in this block.
3206   unsigned NumPhis = 0;
3207   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
3208     if (NumPhis > 2)
3209       return false;
3210 
3211   // Loop over the PHI's seeing if we can promote them all to select
3212   // instructions.  While we are at it, keep track of the instructions
3213   // that need to be moved to the dominating block.
3214   SmallPtrSet<Instruction *, 4> AggressiveInsts;
3215   InstructionCost Cost = 0;
3216   InstructionCost Budget =
3217       TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
3218 
3219   bool Changed = false;
3220   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
3221     PHINode *PN = cast<PHINode>(II++);
3222     if (Value *V = simplifyInstruction(PN, {DL, PN})) {
3223       PN->replaceAllUsesWith(V);
3224       PN->eraseFromParent();
3225       Changed = true;
3226       continue;
3227     }
3228 
3229     if (!dominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts,
3230                              Cost, Budget, TTI) ||
3231         !dominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts,
3232                              Cost, Budget, TTI))
3233       return Changed;
3234   }
3235 
3236   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
3237   // we ran out of PHIs then we simplified them all.
3238   PN = dyn_cast<PHINode>(BB->begin());
3239   if (!PN)
3240     return true;
3241 
3242   // Return true if at least one of these is a 'not', and another is either
3243   // a 'not' too, or a constant.
3244   auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) {
3245     if (!match(V0, m_Not(m_Value())))
3246       std::swap(V0, V1);
3247     auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant());
3248     return match(V0, m_Not(m_Value())) && match(V1, Invertible);
3249   };
3250 
3251   // Don't fold i1 branches on PHIs which contain binary operators or
3252   // (possibly inverted) select form of or/ands,  unless one of
3253   // the incoming values is an 'not' and another one is freely invertible.
3254   // These can often be turned into switches and other things.
3255   auto IsBinOpOrAnd = [](Value *V) {
3256     return match(
3257         V, m_CombineOr(
3258                m_BinOp(),
3259                m_CombineOr(m_Select(m_Value(), m_ImmConstant(), m_Value()),
3260                            m_Select(m_Value(), m_Value(), m_ImmConstant()))));
3261   };
3262   if (PN->getType()->isIntegerTy(1) &&
3263       (IsBinOpOrAnd(PN->getIncomingValue(0)) ||
3264        IsBinOpOrAnd(PN->getIncomingValue(1)) || IsBinOpOrAnd(IfCond)) &&
3265       !CanHoistNotFromBothValues(PN->getIncomingValue(0),
3266                                  PN->getIncomingValue(1)))
3267     return Changed;
3268 
3269   // If all PHI nodes are promotable, check to make sure that all instructions
3270   // in the predecessor blocks can be promoted as well. If not, we won't be able
3271   // to get rid of the control flow, so it's not worth promoting to select
3272   // instructions.
3273   for (BasicBlock *IfBlock : IfBlocks)
3274     for (BasicBlock::iterator I = IfBlock->begin(); !I->isTerminator(); ++I)
3275       if (!AggressiveInsts.count(&*I) && !I->isDebugOrPseudoInst()) {
3276         // This is not an aggressive instruction that we can promote.
3277         // Because of this, we won't be able to get rid of the control flow, so
3278         // the xform is not worth it.
3279         return Changed;
3280       }
3281 
3282   // If either of the blocks has it's address taken, we can't do this fold.
3283   if (any_of(IfBlocks,
3284              [](BasicBlock *IfBlock) { return IfBlock->hasAddressTaken(); }))
3285     return Changed;
3286 
3287   LLVM_DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond
3288                     << "  T: " << IfTrue->getName()
3289                     << "  F: " << IfFalse->getName() << "\n");
3290 
3291   // If we can still promote the PHI nodes after this gauntlet of tests,
3292   // do all of the PHI's now.
3293 
3294   // Move all 'aggressive' instructions, which are defined in the
3295   // conditional parts of the if's up to the dominating block.
3296   for (BasicBlock *IfBlock : IfBlocks)
3297       hoistAllInstructionsInto(DomBlock, DomBI, IfBlock);
3298 
3299   IRBuilder<NoFolder> Builder(DomBI);
3300   // Propagate fast-math-flags from phi nodes to replacement selects.
3301   IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
3302   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
3303     if (isa<FPMathOperator>(PN))
3304       Builder.setFastMathFlags(PN->getFastMathFlags());
3305 
3306     // Change the PHI node into a select instruction.
3307     Value *TrueVal = PN->getIncomingValueForBlock(IfTrue);
3308     Value *FalseVal = PN->getIncomingValueForBlock(IfFalse);
3309 
3310     Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", DomBI);
3311     PN->replaceAllUsesWith(Sel);
3312     Sel->takeName(PN);
3313     PN->eraseFromParent();
3314   }
3315 
3316   // At this point, all IfBlocks are empty, so our if statement
3317   // has been flattened.  Change DomBlock to jump directly to our new block to
3318   // avoid other simplifycfg's kicking in on the diamond.
3319   Builder.CreateBr(BB);
3320 
3321   SmallVector<DominatorTree::UpdateType, 3> Updates;
3322   if (DTU) {
3323     Updates.push_back({DominatorTree::Insert, DomBlock, BB});
3324     for (auto *Successor : successors(DomBlock))
3325       Updates.push_back({DominatorTree::Delete, DomBlock, Successor});
3326   }
3327 
3328   DomBI->eraseFromParent();
3329   if (DTU)
3330     DTU->applyUpdates(Updates);
3331 
3332   return true;
3333 }
3334 
3335 static Value *createLogicalOp(IRBuilderBase &Builder,
3336                               Instruction::BinaryOps Opc, Value *LHS,
3337                               Value *RHS, const Twine &Name = "") {
3338   // Try to relax logical op to binary op.
3339   if (impliesPoison(RHS, LHS))
3340     return Builder.CreateBinOp(Opc, LHS, RHS, Name);
3341   if (Opc == Instruction::And)
3342     return Builder.CreateLogicalAnd(LHS, RHS, Name);
3343   if (Opc == Instruction::Or)
3344     return Builder.CreateLogicalOr(LHS, RHS, Name);
3345   llvm_unreachable("Invalid logical opcode");
3346 }
3347 
3348 /// Return true if either PBI or BI has branch weight available, and store
3349 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
3350 /// not have branch weight, use 1:1 as its weight.
3351 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
3352                                    uint64_t &PredTrueWeight,
3353                                    uint64_t &PredFalseWeight,
3354                                    uint64_t &SuccTrueWeight,
3355                                    uint64_t &SuccFalseWeight) {
3356   bool PredHasWeights =
3357       PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight);
3358   bool SuccHasWeights =
3359       BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight);
3360   if (PredHasWeights || SuccHasWeights) {
3361     if (!PredHasWeights)
3362       PredTrueWeight = PredFalseWeight = 1;
3363     if (!SuccHasWeights)
3364       SuccTrueWeight = SuccFalseWeight = 1;
3365     return true;
3366   } else {
3367     return false;
3368   }
3369 }
3370 
3371 /// Determine if the two branches share a common destination and deduce a glue
3372 /// that joins the branches' conditions to arrive at the common destination if
3373 /// that would be profitable.
3374 static Optional<std::pair<Instruction::BinaryOps, bool>>
3375 shouldFoldCondBranchesToCommonDestination(BranchInst *BI, BranchInst *PBI,
3376                                           const TargetTransformInfo *TTI) {
3377   assert(BI && PBI && BI->isConditional() && PBI->isConditional() &&
3378          "Both blocks must end with a conditional branches.");
3379   assert(is_contained(predecessors(BI->getParent()), PBI->getParent()) &&
3380          "PredBB must be a predecessor of BB.");
3381 
3382   // We have the potential to fold the conditions together, but if the
3383   // predecessor branch is predictable, we may not want to merge them.
3384   uint64_t PTWeight, PFWeight;
3385   BranchProbability PBITrueProb, Likely;
3386   if (TTI && !PBI->getMetadata(LLVMContext::MD_unpredictable) &&
3387       PBI->extractProfMetadata(PTWeight, PFWeight) &&
3388       (PTWeight + PFWeight) != 0) {
3389     PBITrueProb =
3390         BranchProbability::getBranchProbability(PTWeight, PTWeight + PFWeight);
3391     Likely = TTI->getPredictableBranchThreshold();
3392   }
3393 
3394   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3395     // Speculate the 2nd condition unless the 1st is probably true.
3396     if (PBITrueProb.isUnknown() || PBITrueProb < Likely)
3397       return {{Instruction::Or, false}};
3398   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3399     // Speculate the 2nd condition unless the 1st is probably false.
3400     if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely)
3401       return {{Instruction::And, false}};
3402   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3403     // Speculate the 2nd condition unless the 1st is probably true.
3404     if (PBITrueProb.isUnknown() || PBITrueProb < Likely)
3405       return {{Instruction::And, true}};
3406   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3407     // Speculate the 2nd condition unless the 1st is probably false.
3408     if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely)
3409       return {{Instruction::Or, true}};
3410   }
3411   return None;
3412 }
3413 
3414 static bool performBranchToCommonDestFolding(BranchInst *BI, BranchInst *PBI,
3415                                              DomTreeUpdater *DTU,
3416                                              MemorySSAUpdater *MSSAU,
3417                                              const TargetTransformInfo *TTI) {
3418   BasicBlock *BB = BI->getParent();
3419   BasicBlock *PredBlock = PBI->getParent();
3420 
3421   // Determine if the two branches share a common destination.
3422   Instruction::BinaryOps Opc;
3423   bool InvertPredCond;
3424   std::tie(Opc, InvertPredCond) =
3425       *shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI);
3426 
3427   LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
3428 
3429   IRBuilder<> Builder(PBI);
3430   // The builder is used to create instructions to eliminate the branch in BB.
3431   // If BB's terminator has !annotation metadata, add it to the new
3432   // instructions.
3433   Builder.CollectMetadataToCopy(BB->getTerminator(),
3434                                 {LLVMContext::MD_annotation});
3435 
3436   // If we need to invert the condition in the pred block to match, do so now.
3437   if (InvertPredCond) {
3438     Value *NewCond = PBI->getCondition();
3439     if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
3440       CmpInst *CI = cast<CmpInst>(NewCond);
3441       CI->setPredicate(CI->getInversePredicate());
3442     } else {
3443       NewCond =
3444           Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not");
3445     }
3446 
3447     PBI->setCondition(NewCond);
3448     PBI->swapSuccessors();
3449   }
3450 
3451   BasicBlock *UniqueSucc =
3452       PBI->getSuccessor(0) == BB ? BI->getSuccessor(0) : BI->getSuccessor(1);
3453 
3454   // Before cloning instructions, notify the successor basic block that it
3455   // is about to have a new predecessor. This will update PHI nodes,
3456   // which will allow us to update live-out uses of bonus instructions.
3457   AddPredecessorToBlock(UniqueSucc, PredBlock, BB, MSSAU);
3458 
3459   // Try to update branch weights.
3460   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3461   if (extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3462                              SuccTrueWeight, SuccFalseWeight)) {
3463     SmallVector<uint64_t, 8> NewWeights;
3464 
3465     if (PBI->getSuccessor(0) == BB) {
3466       // PBI: br i1 %x, BB, FalseDest
3467       // BI:  br i1 %y, UniqueSucc, FalseDest
3468       // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
3469       NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
3470       // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
3471       //               TrueWeight for PBI * FalseWeight for BI.
3472       // We assume that total weights of a BranchInst can fit into 32 bits.
3473       // Therefore, we will not have overflow using 64-bit arithmetic.
3474       NewWeights.push_back(PredFalseWeight *
3475                                (SuccFalseWeight + SuccTrueWeight) +
3476                            PredTrueWeight * SuccFalseWeight);
3477     } else {
3478       // PBI: br i1 %x, TrueDest, BB
3479       // BI:  br i1 %y, TrueDest, UniqueSucc
3480       // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
3481       //              FalseWeight for PBI * TrueWeight for BI.
3482       NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + SuccTrueWeight) +
3483                            PredFalseWeight * SuccTrueWeight);
3484       // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
3485       NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
3486     }
3487 
3488     // Halve the weights if any of them cannot fit in an uint32_t
3489     FitWeights(NewWeights);
3490 
3491     SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), NewWeights.end());
3492     setBranchWeights(PBI, MDWeights[0], MDWeights[1]);
3493 
3494     // TODO: If BB is reachable from all paths through PredBlock, then we
3495     // could replace PBI's branch probabilities with BI's.
3496   } else
3497     PBI->setMetadata(LLVMContext::MD_prof, nullptr);
3498 
3499   // Now, update the CFG.
3500   PBI->setSuccessor(PBI->getSuccessor(0) != BB, UniqueSucc);
3501 
3502   if (DTU)
3503     DTU->applyUpdates({{DominatorTree::Insert, PredBlock, UniqueSucc},
3504                        {DominatorTree::Delete, PredBlock, BB}});
3505 
3506   // If BI was a loop latch, it may have had associated loop metadata.
3507   // We need to copy it to the new latch, that is, PBI.
3508   if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop))
3509     PBI->setMetadata(LLVMContext::MD_loop, LoopMD);
3510 
3511   ValueToValueMapTy VMap; // maps original values to cloned values
3512   CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(BB, PredBlock, VMap);
3513 
3514   // Now that the Cond was cloned into the predecessor basic block,
3515   // or/and the two conditions together.
3516   Value *BICond = VMap[BI->getCondition()];
3517   PBI->setCondition(
3518       createLogicalOp(Builder, Opc, PBI->getCondition(), BICond, "or.cond"));
3519 
3520   // Copy any debug value intrinsics into the end of PredBlock.
3521   for (Instruction &I : *BB) {
3522     if (isa<DbgInfoIntrinsic>(I)) {
3523       Instruction *NewI = I.clone();
3524       RemapInstruction(NewI, VMap,
3525                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
3526       NewI->insertBefore(PBI);
3527     }
3528   }
3529 
3530   ++NumFoldBranchToCommonDest;
3531   return true;
3532 }
3533 
3534 /// Return if an instruction's type or any of its operands' types are a vector
3535 /// type.
3536 static bool isVectorOp(Instruction &I) {
3537   return I.getType()->isVectorTy() || any_of(I.operands(), [](Use &U) {
3538            return U->getType()->isVectorTy();
3539          });
3540 }
3541 
3542 /// If this basic block is simple enough, and if a predecessor branches to us
3543 /// and one of our successors, fold the block into the predecessor and use
3544 /// logical operations to pick the right destination.
3545 bool llvm::FoldBranchToCommonDest(BranchInst *BI, DomTreeUpdater *DTU,
3546                                   MemorySSAUpdater *MSSAU,
3547                                   const TargetTransformInfo *TTI,
3548                                   unsigned BonusInstThreshold) {
3549   // If this block ends with an unconditional branch,
3550   // let SpeculativelyExecuteBB() deal with it.
3551   if (!BI->isConditional())
3552     return false;
3553 
3554   BasicBlock *BB = BI->getParent();
3555   TargetTransformInfo::TargetCostKind CostKind =
3556     BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize
3557                                   : TargetTransformInfo::TCK_SizeAndLatency;
3558 
3559   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
3560 
3561   if (!Cond ||
3562       (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond) &&
3563        !isa<SelectInst>(Cond)) ||
3564       Cond->getParent() != BB || !Cond->hasOneUse())
3565     return false;
3566 
3567   // Finally, don't infinitely unroll conditional loops.
3568   if (is_contained(successors(BB), BB))
3569     return false;
3570 
3571   // With which predecessors will we want to deal with?
3572   SmallVector<BasicBlock *, 8> Preds;
3573   for (BasicBlock *PredBlock : predecessors(BB)) {
3574     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
3575 
3576     // Check that we have two conditional branches.  If there is a PHI node in
3577     // the common successor, verify that the same value flows in from both
3578     // blocks.
3579     if (!PBI || PBI->isUnconditional() || !SafeToMergeTerminators(BI, PBI))
3580       continue;
3581 
3582     // Determine if the two branches share a common destination.
3583     Instruction::BinaryOps Opc;
3584     bool InvertPredCond;
3585     if (auto Recipe = shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI))
3586       std::tie(Opc, InvertPredCond) = *Recipe;
3587     else
3588       continue;
3589 
3590     // Check the cost of inserting the necessary logic before performing the
3591     // transformation.
3592     if (TTI) {
3593       Type *Ty = BI->getCondition()->getType();
3594       InstructionCost Cost = TTI->getArithmeticInstrCost(Opc, Ty, CostKind);
3595       if (InvertPredCond && (!PBI->getCondition()->hasOneUse() ||
3596           !isa<CmpInst>(PBI->getCondition())))
3597         Cost += TTI->getArithmeticInstrCost(Instruction::Xor, Ty, CostKind);
3598 
3599       if (Cost > BranchFoldThreshold)
3600         continue;
3601     }
3602 
3603     // Ok, we do want to deal with this predecessor. Record it.
3604     Preds.emplace_back(PredBlock);
3605   }
3606 
3607   // If there aren't any predecessors into which we can fold,
3608   // don't bother checking the cost.
3609   if (Preds.empty())
3610     return false;
3611 
3612   // Only allow this transformation if computing the condition doesn't involve
3613   // too many instructions and these involved instructions can be executed
3614   // unconditionally. We denote all involved instructions except the condition
3615   // as "bonus instructions", and only allow this transformation when the
3616   // number of the bonus instructions we'll need to create when cloning into
3617   // each predecessor does not exceed a certain threshold.
3618   unsigned NumBonusInsts = 0;
3619   bool SawVectorOp = false;
3620   const unsigned PredCount = Preds.size();
3621   for (Instruction &I : *BB) {
3622     // Don't check the branch condition comparison itself.
3623     if (&I == Cond)
3624       continue;
3625     // Ignore dbg intrinsics, and the terminator.
3626     if (isa<DbgInfoIntrinsic>(I) || isa<BranchInst>(I))
3627       continue;
3628     // I must be safe to execute unconditionally.
3629     if (!isSafeToSpeculativelyExecute(&I))
3630       return false;
3631     SawVectorOp |= isVectorOp(I);
3632 
3633     // Account for the cost of duplicating this instruction into each
3634     // predecessor. Ignore free instructions.
3635     if (!TTI ||
3636         TTI->getUserCost(&I, CostKind) != TargetTransformInfo::TCC_Free) {
3637       NumBonusInsts += PredCount;
3638 
3639       // Early exits once we reach the limit.
3640       if (NumBonusInsts >
3641           BonusInstThreshold * BranchFoldToCommonDestVectorMultiplier)
3642         return false;
3643     }
3644 
3645     auto IsBCSSAUse = [BB, &I](Use &U) {
3646       auto *UI = cast<Instruction>(U.getUser());
3647       if (auto *PN = dyn_cast<PHINode>(UI))
3648         return PN->getIncomingBlock(U) == BB;
3649       return UI->getParent() == BB && I.comesBefore(UI);
3650     };
3651 
3652     // Does this instruction require rewriting of uses?
3653     if (!all_of(I.uses(), IsBCSSAUse))
3654       return false;
3655   }
3656   if (NumBonusInsts >
3657       BonusInstThreshold *
3658           (SawVectorOp ? BranchFoldToCommonDestVectorMultiplier : 1))
3659     return false;
3660 
3661   // Ok, we have the budget. Perform the transformation.
3662   for (BasicBlock *PredBlock : Preds) {
3663     auto *PBI = cast<BranchInst>(PredBlock->getTerminator());
3664     return performBranchToCommonDestFolding(BI, PBI, DTU, MSSAU, TTI);
3665   }
3666   return false;
3667 }
3668 
3669 // If there is only one store in BB1 and BB2, return it, otherwise return
3670 // nullptr.
3671 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
3672   StoreInst *S = nullptr;
3673   for (auto *BB : {BB1, BB2}) {
3674     if (!BB)
3675       continue;
3676     for (auto &I : *BB)
3677       if (auto *SI = dyn_cast<StoreInst>(&I)) {
3678         if (S)
3679           // Multiple stores seen.
3680           return nullptr;
3681         else
3682           S = SI;
3683       }
3684   }
3685   return S;
3686 }
3687 
3688 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
3689                                               Value *AlternativeV = nullptr) {
3690   // PHI is going to be a PHI node that allows the value V that is defined in
3691   // BB to be referenced in BB's only successor.
3692   //
3693   // If AlternativeV is nullptr, the only value we care about in PHI is V. It
3694   // doesn't matter to us what the other operand is (it'll never get used). We
3695   // could just create a new PHI with an undef incoming value, but that could
3696   // increase register pressure if EarlyCSE/InstCombine can't fold it with some
3697   // other PHI. So here we directly look for some PHI in BB's successor with V
3698   // as an incoming operand. If we find one, we use it, else we create a new
3699   // one.
3700   //
3701   // If AlternativeV is not nullptr, we care about both incoming values in PHI.
3702   // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
3703   // where OtherBB is the single other predecessor of BB's only successor.
3704   PHINode *PHI = nullptr;
3705   BasicBlock *Succ = BB->getSingleSuccessor();
3706 
3707   for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
3708     if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
3709       PHI = cast<PHINode>(I);
3710       if (!AlternativeV)
3711         break;
3712 
3713       assert(Succ->hasNPredecessors(2));
3714       auto PredI = pred_begin(Succ);
3715       BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
3716       if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
3717         break;
3718       PHI = nullptr;
3719     }
3720   if (PHI)
3721     return PHI;
3722 
3723   // If V is not an instruction defined in BB, just return it.
3724   if (!AlternativeV &&
3725       (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
3726     return V;
3727 
3728   PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
3729   PHI->addIncoming(V, BB);
3730   for (BasicBlock *PredBB : predecessors(Succ))
3731     if (PredBB != BB)
3732       PHI->addIncoming(
3733           AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB);
3734   return PHI;
3735 }
3736 
3737 static bool mergeConditionalStoreToAddress(
3738     BasicBlock *PTB, BasicBlock *PFB, BasicBlock *QTB, BasicBlock *QFB,
3739     BasicBlock *PostBB, Value *Address, bool InvertPCond, bool InvertQCond,
3740     DomTreeUpdater *DTU, const DataLayout &DL, const TargetTransformInfo &TTI) {
3741   // For every pointer, there must be exactly two stores, one coming from
3742   // PTB or PFB, and the other from QTB or QFB. We don't support more than one
3743   // store (to any address) in PTB,PFB or QTB,QFB.
3744   // FIXME: We could relax this restriction with a bit more work and performance
3745   // testing.
3746   StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
3747   StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
3748   if (!PStore || !QStore)
3749     return false;
3750 
3751   // Now check the stores are compatible.
3752   if (!QStore->isUnordered() || !PStore->isUnordered() ||
3753       PStore->getValueOperand()->getType() !=
3754           QStore->getValueOperand()->getType())
3755     return false;
3756 
3757   // Check that sinking the store won't cause program behavior changes. Sinking
3758   // the store out of the Q blocks won't change any behavior as we're sinking
3759   // from a block to its unconditional successor. But we're moving a store from
3760   // the P blocks down through the middle block (QBI) and past both QFB and QTB.
3761   // So we need to check that there are no aliasing loads or stores in
3762   // QBI, QTB and QFB. We also need to check there are no conflicting memory
3763   // operations between PStore and the end of its parent block.
3764   //
3765   // The ideal way to do this is to query AliasAnalysis, but we don't
3766   // preserve AA currently so that is dangerous. Be super safe and just
3767   // check there are no other memory operations at all.
3768   for (auto &I : *QFB->getSinglePredecessor())
3769     if (I.mayReadOrWriteMemory())
3770       return false;
3771   for (auto &I : *QFB)
3772     if (&I != QStore && I.mayReadOrWriteMemory())
3773       return false;
3774   if (QTB)
3775     for (auto &I : *QTB)
3776       if (&I != QStore && I.mayReadOrWriteMemory())
3777         return false;
3778   for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
3779        I != E; ++I)
3780     if (&*I != PStore && I->mayReadOrWriteMemory())
3781       return false;
3782 
3783   // If we're not in aggressive mode, we only optimize if we have some
3784   // confidence that by optimizing we'll allow P and/or Q to be if-converted.
3785   auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) {
3786     if (!BB)
3787       return true;
3788     // Heuristic: if the block can be if-converted/phi-folded and the
3789     // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
3790     // thread this store.
3791     InstructionCost Cost = 0;
3792     InstructionCost Budget =
3793         PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
3794     for (auto &I : BB->instructionsWithoutDebug(false)) {
3795       // Consider terminator instruction to be free.
3796       if (I.isTerminator())
3797         continue;
3798       // If this is one the stores that we want to speculate out of this BB,
3799       // then don't count it's cost, consider it to be free.
3800       if (auto *S = dyn_cast<StoreInst>(&I))
3801         if (llvm::find(FreeStores, S))
3802           continue;
3803       // Else, we have a white-list of instructions that we are ak speculating.
3804       if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I))
3805         return false; // Not in white-list - not worthwhile folding.
3806       // And finally, if this is a non-free instruction that we are okay
3807       // speculating, ensure that we consider the speculation budget.
3808       Cost += TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
3809       if (Cost > Budget)
3810         return false; // Eagerly refuse to fold as soon as we're out of budget.
3811     }
3812     assert(Cost <= Budget &&
3813            "When we run out of budget we will eagerly return from within the "
3814            "per-instruction loop.");
3815     return true;
3816   };
3817 
3818   const std::array<StoreInst *, 2> FreeStores = {PStore, QStore};
3819   if (!MergeCondStoresAggressively &&
3820       (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) ||
3821        !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores)))
3822     return false;
3823 
3824   // If PostBB has more than two predecessors, we need to split it so we can
3825   // sink the store.
3826   if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) {
3827     // We know that QFB's only successor is PostBB. And QFB has a single
3828     // predecessor. If QTB exists, then its only successor is also PostBB.
3829     // If QTB does not exist, then QFB's only predecessor has a conditional
3830     // branch to QFB and PostBB.
3831     BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor();
3832     BasicBlock *NewBB =
3833         SplitBlockPredecessors(PostBB, {QFB, TruePred}, "condstore.split", DTU);
3834     if (!NewBB)
3835       return false;
3836     PostBB = NewBB;
3837   }
3838 
3839   // OK, we're going to sink the stores to PostBB. The store has to be
3840   // conditional though, so first create the predicate.
3841   Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
3842                      ->getCondition();
3843   Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
3844                      ->getCondition();
3845 
3846   Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
3847                                                 PStore->getParent());
3848   Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
3849                                                 QStore->getParent(), PPHI);
3850 
3851   IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
3852 
3853   Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
3854   Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
3855 
3856   if (InvertPCond)
3857     PPred = QB.CreateNot(PPred);
3858   if (InvertQCond)
3859     QPred = QB.CreateNot(QPred);
3860   Value *CombinedPred = QB.CreateOr(PPred, QPred);
3861 
3862   auto *T = SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(),
3863                                       /*Unreachable=*/false,
3864                                       /*BranchWeights=*/nullptr, DTU);
3865   QB.SetInsertPoint(T);
3866   StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
3867   SI->setAAMetadata(PStore->getAAMetadata().merge(QStore->getAAMetadata()));
3868   // Choose the minimum alignment. If we could prove both stores execute, we
3869   // could use biggest one.  In this case, though, we only know that one of the
3870   // stores executes.  And we don't know it's safe to take the alignment from a
3871   // store that doesn't execute.
3872   SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign()));
3873 
3874   QStore->eraseFromParent();
3875   PStore->eraseFromParent();
3876 
3877   return true;
3878 }
3879 
3880 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI,
3881                                    DomTreeUpdater *DTU, const DataLayout &DL,
3882                                    const TargetTransformInfo &TTI) {
3883   // The intention here is to find diamonds or triangles (see below) where each
3884   // conditional block contains a store to the same address. Both of these
3885   // stores are conditional, so they can't be unconditionally sunk. But it may
3886   // be profitable to speculatively sink the stores into one merged store at the
3887   // end, and predicate the merged store on the union of the two conditions of
3888   // PBI and QBI.
3889   //
3890   // This can reduce the number of stores executed if both of the conditions are
3891   // true, and can allow the blocks to become small enough to be if-converted.
3892   // This optimization will also chain, so that ladders of test-and-set
3893   // sequences can be if-converted away.
3894   //
3895   // We only deal with simple diamonds or triangles:
3896   //
3897   //     PBI       or      PBI        or a combination of the two
3898   //    /   \               | \
3899   //   PTB  PFB             |  PFB
3900   //    \   /               | /
3901   //     QBI                QBI
3902   //    /  \                | \
3903   //   QTB  QFB             |  QFB
3904   //    \  /                | /
3905   //    PostBB            PostBB
3906   //
3907   // We model triangles as a type of diamond with a nullptr "true" block.
3908   // Triangles are canonicalized so that the fallthrough edge is represented by
3909   // a true condition, as in the diagram above.
3910   BasicBlock *PTB = PBI->getSuccessor(0);
3911   BasicBlock *PFB = PBI->getSuccessor(1);
3912   BasicBlock *QTB = QBI->getSuccessor(0);
3913   BasicBlock *QFB = QBI->getSuccessor(1);
3914   BasicBlock *PostBB = QFB->getSingleSuccessor();
3915 
3916   // Make sure we have a good guess for PostBB. If QTB's only successor is
3917   // QFB, then QFB is a better PostBB.
3918   if (QTB->getSingleSuccessor() == QFB)
3919     PostBB = QFB;
3920 
3921   // If we couldn't find a good PostBB, stop.
3922   if (!PostBB)
3923     return false;
3924 
3925   bool InvertPCond = false, InvertQCond = false;
3926   // Canonicalize fallthroughs to the true branches.
3927   if (PFB == QBI->getParent()) {
3928     std::swap(PFB, PTB);
3929     InvertPCond = true;
3930   }
3931   if (QFB == PostBB) {
3932     std::swap(QFB, QTB);
3933     InvertQCond = true;
3934   }
3935 
3936   // From this point on we can assume PTB or QTB may be fallthroughs but PFB
3937   // and QFB may not. Model fallthroughs as a nullptr block.
3938   if (PTB == QBI->getParent())
3939     PTB = nullptr;
3940   if (QTB == PostBB)
3941     QTB = nullptr;
3942 
3943   // Legality bailouts. We must have at least the non-fallthrough blocks and
3944   // the post-dominating block, and the non-fallthroughs must only have one
3945   // predecessor.
3946   auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
3947     return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
3948   };
3949   if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
3950       !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
3951     return false;
3952   if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
3953       (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
3954     return false;
3955   if (!QBI->getParent()->hasNUses(2))
3956     return false;
3957 
3958   // OK, this is a sequence of two diamonds or triangles.
3959   // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
3960   SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
3961   for (auto *BB : {PTB, PFB}) {
3962     if (!BB)
3963       continue;
3964     for (auto &I : *BB)
3965       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3966         PStoreAddresses.insert(SI->getPointerOperand());
3967   }
3968   for (auto *BB : {QTB, QFB}) {
3969     if (!BB)
3970       continue;
3971     for (auto &I : *BB)
3972       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3973         QStoreAddresses.insert(SI->getPointerOperand());
3974   }
3975 
3976   set_intersect(PStoreAddresses, QStoreAddresses);
3977   // set_intersect mutates PStoreAddresses in place. Rename it here to make it
3978   // clear what it contains.
3979   auto &CommonAddresses = PStoreAddresses;
3980 
3981   bool Changed = false;
3982   for (auto *Address : CommonAddresses)
3983     Changed |=
3984         mergeConditionalStoreToAddress(PTB, PFB, QTB, QFB, PostBB, Address,
3985                                        InvertPCond, InvertQCond, DTU, DL, TTI);
3986   return Changed;
3987 }
3988 
3989 /// If the previous block ended with a widenable branch, determine if reusing
3990 /// the target block is profitable and legal.  This will have the effect of
3991 /// "widening" PBI, but doesn't require us to reason about hosting safety.
3992 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3993                                            DomTreeUpdater *DTU) {
3994   // TODO: This can be generalized in two important ways:
3995   // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input
3996   //    values from the PBI edge.
3997   // 2) We can sink side effecting instructions into BI's fallthrough
3998   //    successor provided they doesn't contribute to computation of
3999   //    BI's condition.
4000   Value *CondWB, *WC;
4001   BasicBlock *IfTrueBB, *IfFalseBB;
4002   if (!parseWidenableBranch(PBI, CondWB, WC, IfTrueBB, IfFalseBB) ||
4003       IfTrueBB != BI->getParent() || !BI->getParent()->getSinglePredecessor())
4004     return false;
4005   if (!IfFalseBB->phis().empty())
4006     return false; // TODO
4007   // Use lambda to lazily compute expensive condition after cheap ones.
4008   auto NoSideEffects = [](BasicBlock &BB) {
4009     return llvm::none_of(BB, [](const Instruction &I) {
4010         return I.mayWriteToMemory() || I.mayHaveSideEffects();
4011       });
4012   };
4013   if (BI->getSuccessor(1) != IfFalseBB && // no inf looping
4014       BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability
4015       NoSideEffects(*BI->getParent())) {
4016     auto *OldSuccessor = BI->getSuccessor(1);
4017     OldSuccessor->removePredecessor(BI->getParent());
4018     BI->setSuccessor(1, IfFalseBB);
4019     if (DTU)
4020       DTU->applyUpdates(
4021           {{DominatorTree::Insert, BI->getParent(), IfFalseBB},
4022            {DominatorTree::Delete, BI->getParent(), OldSuccessor}});
4023     return true;
4024   }
4025   if (BI->getSuccessor(0) != IfFalseBB && // no inf looping
4026       BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability
4027       NoSideEffects(*BI->getParent())) {
4028     auto *OldSuccessor = BI->getSuccessor(0);
4029     OldSuccessor->removePredecessor(BI->getParent());
4030     BI->setSuccessor(0, IfFalseBB);
4031     if (DTU)
4032       DTU->applyUpdates(
4033           {{DominatorTree::Insert, BI->getParent(), IfFalseBB},
4034            {DominatorTree::Delete, BI->getParent(), OldSuccessor}});
4035     return true;
4036   }
4037   return false;
4038 }
4039 
4040 /// If we have a conditional branch as a predecessor of another block,
4041 /// this function tries to simplify it.  We know
4042 /// that PBI and BI are both conditional branches, and BI is in one of the
4043 /// successor blocks of PBI - PBI branches to BI.
4044 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
4045                                            DomTreeUpdater *DTU,
4046                                            const DataLayout &DL,
4047                                            const TargetTransformInfo &TTI) {
4048   assert(PBI->isConditional() && BI->isConditional());
4049   BasicBlock *BB = BI->getParent();
4050 
4051   // If this block ends with a branch instruction, and if there is a
4052   // predecessor that ends on a branch of the same condition, make
4053   // this conditional branch redundant.
4054   if (PBI->getCondition() == BI->getCondition() &&
4055       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
4056     // Okay, the outcome of this conditional branch is statically
4057     // knowable.  If this block had a single pred, handle specially, otherwise
4058     // FoldCondBranchOnValueKnownInPredecessor() will handle it.
4059     if (BB->getSinglePredecessor()) {
4060       // Turn this into a branch on constant.
4061       bool CondIsTrue = PBI->getSuccessor(0) == BB;
4062       BI->setCondition(
4063           ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
4064       return true; // Nuke the branch on constant.
4065     }
4066   }
4067 
4068   // If the previous block ended with a widenable branch, determine if reusing
4069   // the target block is profitable and legal.  This will have the effect of
4070   // "widening" PBI, but doesn't require us to reason about hosting safety.
4071   if (tryWidenCondBranchToCondBranch(PBI, BI, DTU))
4072     return true;
4073 
4074   // If both branches are conditional and both contain stores to the same
4075   // address, remove the stores from the conditionals and create a conditional
4076   // merged store at the end.
4077   if (MergeCondStores && mergeConditionalStores(PBI, BI, DTU, DL, TTI))
4078     return true;
4079 
4080   // If this is a conditional branch in an empty block, and if any
4081   // predecessors are a conditional branch to one of our destinations,
4082   // fold the conditions into logical ops and one cond br.
4083 
4084   // Ignore dbg intrinsics.
4085   if (&*BB->instructionsWithoutDebug(false).begin() != BI)
4086     return false;
4087 
4088   int PBIOp, BIOp;
4089   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
4090     PBIOp = 0;
4091     BIOp = 0;
4092   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
4093     PBIOp = 0;
4094     BIOp = 1;
4095   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
4096     PBIOp = 1;
4097     BIOp = 0;
4098   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
4099     PBIOp = 1;
4100     BIOp = 1;
4101   } else {
4102     return false;
4103   }
4104 
4105   // Check to make sure that the other destination of this branch
4106   // isn't BB itself.  If so, this is an infinite loop that will
4107   // keep getting unwound.
4108   if (PBI->getSuccessor(PBIOp) == BB)
4109     return false;
4110 
4111   // Do not perform this transformation if it would require
4112   // insertion of a large number of select instructions. For targets
4113   // without predication/cmovs, this is a big pessimization.
4114 
4115   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
4116   BasicBlock *RemovedDest = PBI->getSuccessor(PBIOp ^ 1);
4117   unsigned NumPhis = 0;
4118   for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
4119        ++II, ++NumPhis) {
4120     if (NumPhis > 2) // Disable this xform.
4121       return false;
4122   }
4123 
4124   // Finally, if everything is ok, fold the branches to logical ops.
4125   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
4126 
4127   LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
4128                     << "AND: " << *BI->getParent());
4129 
4130   SmallVector<DominatorTree::UpdateType, 5> Updates;
4131 
4132   // If OtherDest *is* BB, then BB is a basic block with a single conditional
4133   // branch in it, where one edge (OtherDest) goes back to itself but the other
4134   // exits.  We don't *know* that the program avoids the infinite loop
4135   // (even though that seems likely).  If we do this xform naively, we'll end up
4136   // recursively unpeeling the loop.  Since we know that (after the xform is
4137   // done) that the block *is* infinite if reached, we just make it an obviously
4138   // infinite loop with no cond branch.
4139   if (OtherDest == BB) {
4140     // Insert it at the end of the function, because it's either code,
4141     // or it won't matter if it's hot. :)
4142     BasicBlock *InfLoopBlock =
4143         BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
4144     BranchInst::Create(InfLoopBlock, InfLoopBlock);
4145     if (DTU)
4146       Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock});
4147     OtherDest = InfLoopBlock;
4148   }
4149 
4150   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
4151 
4152   // BI may have other predecessors.  Because of this, we leave
4153   // it alone, but modify PBI.
4154 
4155   // Make sure we get to CommonDest on True&True directions.
4156   Value *PBICond = PBI->getCondition();
4157   IRBuilder<NoFolder> Builder(PBI);
4158   if (PBIOp)
4159     PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
4160 
4161   Value *BICond = BI->getCondition();
4162   if (BIOp)
4163     BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
4164 
4165   // Merge the conditions.
4166   Value *Cond =
4167       createLogicalOp(Builder, Instruction::Or, PBICond, BICond, "brmerge");
4168 
4169   // Modify PBI to branch on the new condition to the new dests.
4170   PBI->setCondition(Cond);
4171   PBI->setSuccessor(0, CommonDest);
4172   PBI->setSuccessor(1, OtherDest);
4173 
4174   if (DTU) {
4175     Updates.push_back({DominatorTree::Insert, PBI->getParent(), OtherDest});
4176     Updates.push_back({DominatorTree::Delete, PBI->getParent(), RemovedDest});
4177 
4178     DTU->applyUpdates(Updates);
4179   }
4180 
4181   // Update branch weight for PBI.
4182   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
4183   uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
4184   bool HasWeights =
4185       extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
4186                              SuccTrueWeight, SuccFalseWeight);
4187   if (HasWeights) {
4188     PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
4189     PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
4190     SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
4191     SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
4192     // The weight to CommonDest should be PredCommon * SuccTotal +
4193     //                                    PredOther * SuccCommon.
4194     // The weight to OtherDest should be PredOther * SuccOther.
4195     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
4196                                   PredOther * SuccCommon,
4197                               PredOther * SuccOther};
4198     // Halve the weights if any of them cannot fit in an uint32_t
4199     FitWeights(NewWeights);
4200 
4201     setBranchWeights(PBI, NewWeights[0], NewWeights[1]);
4202   }
4203 
4204   // OtherDest may have phi nodes.  If so, add an entry from PBI's
4205   // block that are identical to the entries for BI's block.
4206   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
4207 
4208   // We know that the CommonDest already had an edge from PBI to
4209   // it.  If it has PHIs though, the PHIs may have different
4210   // entries for BB and PBI's BB.  If so, insert a select to make
4211   // them agree.
4212   for (PHINode &PN : CommonDest->phis()) {
4213     Value *BIV = PN.getIncomingValueForBlock(BB);
4214     unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent());
4215     Value *PBIV = PN.getIncomingValue(PBBIdx);
4216     if (BIV != PBIV) {
4217       // Insert a select in PBI to pick the right value.
4218       SelectInst *NV = cast<SelectInst>(
4219           Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
4220       PN.setIncomingValue(PBBIdx, NV);
4221       // Although the select has the same condition as PBI, the original branch
4222       // weights for PBI do not apply to the new select because the select's
4223       // 'logical' edges are incoming edges of the phi that is eliminated, not
4224       // the outgoing edges of PBI.
4225       if (HasWeights) {
4226         uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
4227         uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
4228         uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
4229         uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
4230         // The weight to PredCommonDest should be PredCommon * SuccTotal.
4231         // The weight to PredOtherDest should be PredOther * SuccCommon.
4232         uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
4233                                   PredOther * SuccCommon};
4234 
4235         FitWeights(NewWeights);
4236 
4237         setBranchWeights(NV, NewWeights[0], NewWeights[1]);
4238       }
4239     }
4240   }
4241 
4242   LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent());
4243   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
4244 
4245   // This basic block is probably dead.  We know it has at least
4246   // one fewer predecessor.
4247   return true;
4248 }
4249 
4250 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
4251 // true or to FalseBB if Cond is false.
4252 // Takes care of updating the successors and removing the old terminator.
4253 // Also makes sure not to introduce new successors by assuming that edges to
4254 // non-successor TrueBBs and FalseBBs aren't reachable.
4255 bool SimplifyCFGOpt::SimplifyTerminatorOnSelect(Instruction *OldTerm,
4256                                                 Value *Cond, BasicBlock *TrueBB,
4257                                                 BasicBlock *FalseBB,
4258                                                 uint32_t TrueWeight,
4259                                                 uint32_t FalseWeight) {
4260   auto *BB = OldTerm->getParent();
4261   // Remove any superfluous successor edges from the CFG.
4262   // First, figure out which successors to preserve.
4263   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
4264   // successor.
4265   BasicBlock *KeepEdge1 = TrueBB;
4266   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
4267 
4268   SmallSetVector<BasicBlock *, 2> RemovedSuccessors;
4269 
4270   // Then remove the rest.
4271   for (BasicBlock *Succ : successors(OldTerm)) {
4272     // Make sure only to keep exactly one copy of each edge.
4273     if (Succ == KeepEdge1)
4274       KeepEdge1 = nullptr;
4275     else if (Succ == KeepEdge2)
4276       KeepEdge2 = nullptr;
4277     else {
4278       Succ->removePredecessor(BB,
4279                               /*KeepOneInputPHIs=*/true);
4280 
4281       if (Succ != TrueBB && Succ != FalseBB)
4282         RemovedSuccessors.insert(Succ);
4283     }
4284   }
4285 
4286   IRBuilder<> Builder(OldTerm);
4287   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
4288 
4289   // Insert an appropriate new terminator.
4290   if (!KeepEdge1 && !KeepEdge2) {
4291     if (TrueBB == FalseBB) {
4292       // We were only looking for one successor, and it was present.
4293       // Create an unconditional branch to it.
4294       Builder.CreateBr(TrueBB);
4295     } else {
4296       // We found both of the successors we were looking for.
4297       // Create a conditional branch sharing the condition of the select.
4298       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
4299       if (TrueWeight != FalseWeight)
4300         setBranchWeights(NewBI, TrueWeight, FalseWeight);
4301     }
4302   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
4303     // Neither of the selected blocks were successors, so this
4304     // terminator must be unreachable.
4305     new UnreachableInst(OldTerm->getContext(), OldTerm);
4306   } else {
4307     // One of the selected values was a successor, but the other wasn't.
4308     // Insert an unconditional branch to the one that was found;
4309     // the edge to the one that wasn't must be unreachable.
4310     if (!KeepEdge1) {
4311       // Only TrueBB was found.
4312       Builder.CreateBr(TrueBB);
4313     } else {
4314       // Only FalseBB was found.
4315       Builder.CreateBr(FalseBB);
4316     }
4317   }
4318 
4319   EraseTerminatorAndDCECond(OldTerm);
4320 
4321   if (DTU) {
4322     SmallVector<DominatorTree::UpdateType, 2> Updates;
4323     Updates.reserve(RemovedSuccessors.size());
4324     for (auto *RemovedSuccessor : RemovedSuccessors)
4325       Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
4326     DTU->applyUpdates(Updates);
4327   }
4328 
4329   return true;
4330 }
4331 
4332 // Replaces
4333 //   (switch (select cond, X, Y)) on constant X, Y
4334 // with a branch - conditional if X and Y lead to distinct BBs,
4335 // unconditional otherwise.
4336 bool SimplifyCFGOpt::SimplifySwitchOnSelect(SwitchInst *SI,
4337                                             SelectInst *Select) {
4338   // Check for constant integer values in the select.
4339   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
4340   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
4341   if (!TrueVal || !FalseVal)
4342     return false;
4343 
4344   // Find the relevant condition and destinations.
4345   Value *Condition = Select->getCondition();
4346   BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor();
4347   BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor();
4348 
4349   // Get weight for TrueBB and FalseBB.
4350   uint32_t TrueWeight = 0, FalseWeight = 0;
4351   SmallVector<uint64_t, 8> Weights;
4352   bool HasWeights = HasBranchWeights(SI);
4353   if (HasWeights) {
4354     GetBranchWeights(SI, Weights);
4355     if (Weights.size() == 1 + SI->getNumCases()) {
4356       TrueWeight =
4357           (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()];
4358       FalseWeight =
4359           (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()];
4360     }
4361   }
4362 
4363   // Perform the actual simplification.
4364   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
4365                                     FalseWeight);
4366 }
4367 
4368 // Replaces
4369 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
4370 //                             blockaddress(@fn, BlockB)))
4371 // with
4372 //   (br cond, BlockA, BlockB).
4373 bool SimplifyCFGOpt::SimplifyIndirectBrOnSelect(IndirectBrInst *IBI,
4374                                                 SelectInst *SI) {
4375   // Check that both operands of the select are block addresses.
4376   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
4377   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
4378   if (!TBA || !FBA)
4379     return false;
4380 
4381   // Extract the actual blocks.
4382   BasicBlock *TrueBB = TBA->getBasicBlock();
4383   BasicBlock *FalseBB = FBA->getBasicBlock();
4384 
4385   // Perform the actual simplification.
4386   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
4387                                     0);
4388 }
4389 
4390 /// This is called when we find an icmp instruction
4391 /// (a seteq/setne with a constant) as the only instruction in a
4392 /// block that ends with an uncond branch.  We are looking for a very specific
4393 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
4394 /// this case, we merge the first two "or's of icmp" into a switch, but then the
4395 /// default value goes to an uncond block with a seteq in it, we get something
4396 /// like:
4397 ///
4398 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
4399 /// DEFAULT:
4400 ///   %tmp = icmp eq i8 %A, 92
4401 ///   br label %end
4402 /// end:
4403 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
4404 ///
4405 /// We prefer to split the edge to 'end' so that there is a true/false entry to
4406 /// the PHI, merging the third icmp into the switch.
4407 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt(
4408     ICmpInst *ICI, IRBuilder<> &Builder) {
4409   BasicBlock *BB = ICI->getParent();
4410 
4411   // If the block has any PHIs in it or the icmp has multiple uses, it is too
4412   // complex.
4413   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
4414     return false;
4415 
4416   Value *V = ICI->getOperand(0);
4417   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
4418 
4419   // The pattern we're looking for is where our only predecessor is a switch on
4420   // 'V' and this block is the default case for the switch.  In this case we can
4421   // fold the compared value into the switch to simplify things.
4422   BasicBlock *Pred = BB->getSinglePredecessor();
4423   if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
4424     return false;
4425 
4426   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
4427   if (SI->getCondition() != V)
4428     return false;
4429 
4430   // If BB is reachable on a non-default case, then we simply know the value of
4431   // V in this block.  Substitute it and constant fold the icmp instruction
4432   // away.
4433   if (SI->getDefaultDest() != BB) {
4434     ConstantInt *VVal = SI->findCaseDest(BB);
4435     assert(VVal && "Should have a unique destination value");
4436     ICI->setOperand(0, VVal);
4437 
4438     if (Value *V = simplifyInstruction(ICI, {DL, ICI})) {
4439       ICI->replaceAllUsesWith(V);
4440       ICI->eraseFromParent();
4441     }
4442     // BB is now empty, so it is likely to simplify away.
4443     return requestResimplify();
4444   }
4445 
4446   // Ok, the block is reachable from the default dest.  If the constant we're
4447   // comparing exists in one of the other edges, then we can constant fold ICI
4448   // and zap it.
4449   if (SI->findCaseValue(Cst) != SI->case_default()) {
4450     Value *V;
4451     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
4452       V = ConstantInt::getFalse(BB->getContext());
4453     else
4454       V = ConstantInt::getTrue(BB->getContext());
4455 
4456     ICI->replaceAllUsesWith(V);
4457     ICI->eraseFromParent();
4458     // BB is now empty, so it is likely to simplify away.
4459     return requestResimplify();
4460   }
4461 
4462   // The use of the icmp has to be in the 'end' block, by the only PHI node in
4463   // the block.
4464   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
4465   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
4466   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
4467       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
4468     return false;
4469 
4470   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
4471   // true in the PHI.
4472   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
4473   Constant *NewCst = ConstantInt::getFalse(BB->getContext());
4474 
4475   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
4476     std::swap(DefaultCst, NewCst);
4477 
4478   // Replace ICI (which is used by the PHI for the default value) with true or
4479   // false depending on if it is EQ or NE.
4480   ICI->replaceAllUsesWith(DefaultCst);
4481   ICI->eraseFromParent();
4482 
4483   SmallVector<DominatorTree::UpdateType, 2> Updates;
4484 
4485   // Okay, the switch goes to this block on a default value.  Add an edge from
4486   // the switch to the merge point on the compared value.
4487   BasicBlock *NewBB =
4488       BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
4489   {
4490     SwitchInstProfUpdateWrapper SIW(*SI);
4491     auto W0 = SIW.getSuccessorWeight(0);
4492     SwitchInstProfUpdateWrapper::CaseWeightOpt NewW;
4493     if (W0) {
4494       NewW = ((uint64_t(*W0) + 1) >> 1);
4495       SIW.setSuccessorWeight(0, *NewW);
4496     }
4497     SIW.addCase(Cst, NewBB, NewW);
4498     if (DTU)
4499       Updates.push_back({DominatorTree::Insert, Pred, NewBB});
4500   }
4501 
4502   // NewBB branches to the phi block, add the uncond branch and the phi entry.
4503   Builder.SetInsertPoint(NewBB);
4504   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
4505   Builder.CreateBr(SuccBlock);
4506   PHIUse->addIncoming(NewCst, NewBB);
4507   if (DTU) {
4508     Updates.push_back({DominatorTree::Insert, NewBB, SuccBlock});
4509     DTU->applyUpdates(Updates);
4510   }
4511   return true;
4512 }
4513 
4514 /// The specified branch is a conditional branch.
4515 /// Check to see if it is branching on an or/and chain of icmp instructions, and
4516 /// fold it into a switch instruction if so.
4517 bool SimplifyCFGOpt::SimplifyBranchOnICmpChain(BranchInst *BI,
4518                                                IRBuilder<> &Builder,
4519                                                const DataLayout &DL) {
4520   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
4521   if (!Cond)
4522     return false;
4523 
4524   // Change br (X == 0 | X == 1), T, F into a switch instruction.
4525   // If this is a bunch of seteq's or'd together, or if it's a bunch of
4526   // 'setne's and'ed together, collect them.
4527 
4528   // Try to gather values from a chain of and/or to be turned into a switch
4529   ConstantComparesGatherer ConstantCompare(Cond, DL);
4530   // Unpack the result
4531   SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
4532   Value *CompVal = ConstantCompare.CompValue;
4533   unsigned UsedICmps = ConstantCompare.UsedICmps;
4534   Value *ExtraCase = ConstantCompare.Extra;
4535 
4536   // If we didn't have a multiply compared value, fail.
4537   if (!CompVal)
4538     return false;
4539 
4540   // Avoid turning single icmps into a switch.
4541   if (UsedICmps <= 1)
4542     return false;
4543 
4544   bool TrueWhenEqual = match(Cond, m_LogicalOr(m_Value(), m_Value()));
4545 
4546   // There might be duplicate constants in the list, which the switch
4547   // instruction can't handle, remove them now.
4548   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
4549   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
4550 
4551   // If Extra was used, we require at least two switch values to do the
4552   // transformation.  A switch with one value is just a conditional branch.
4553   if (ExtraCase && Values.size() < 2)
4554     return false;
4555 
4556   // TODO: Preserve branch weight metadata, similarly to how
4557   // FoldValueComparisonIntoPredecessors preserves it.
4558 
4559   // Figure out which block is which destination.
4560   BasicBlock *DefaultBB = BI->getSuccessor(1);
4561   BasicBlock *EdgeBB = BI->getSuccessor(0);
4562   if (!TrueWhenEqual)
4563     std::swap(DefaultBB, EdgeBB);
4564 
4565   BasicBlock *BB = BI->getParent();
4566 
4567   LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
4568                     << " cases into SWITCH.  BB is:\n"
4569                     << *BB);
4570 
4571   SmallVector<DominatorTree::UpdateType, 2> Updates;
4572 
4573   // If there are any extra values that couldn't be folded into the switch
4574   // then we evaluate them with an explicit branch first. Split the block
4575   // right before the condbr to handle it.
4576   if (ExtraCase) {
4577     BasicBlock *NewBB = SplitBlock(BB, BI, DTU, /*LI=*/nullptr,
4578                                    /*MSSAU=*/nullptr, "switch.early.test");
4579 
4580     // Remove the uncond branch added to the old block.
4581     Instruction *OldTI = BB->getTerminator();
4582     Builder.SetInsertPoint(OldTI);
4583 
4584     // There can be an unintended UB if extra values are Poison. Before the
4585     // transformation, extra values may not be evaluated according to the
4586     // condition, and it will not raise UB. But after transformation, we are
4587     // evaluating extra values before checking the condition, and it will raise
4588     // UB. It can be solved by adding freeze instruction to extra values.
4589     AssumptionCache *AC = Options.AC;
4590 
4591     if (!isGuaranteedNotToBeUndefOrPoison(ExtraCase, AC, BI, nullptr))
4592       ExtraCase = Builder.CreateFreeze(ExtraCase);
4593 
4594     if (TrueWhenEqual)
4595       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
4596     else
4597       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
4598 
4599     OldTI->eraseFromParent();
4600 
4601     if (DTU)
4602       Updates.push_back({DominatorTree::Insert, BB, EdgeBB});
4603 
4604     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
4605     // for the edge we just added.
4606     AddPredecessorToBlock(EdgeBB, BB, NewBB);
4607 
4608     LLVM_DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
4609                       << "\nEXTRABB = " << *BB);
4610     BB = NewBB;
4611   }
4612 
4613   Builder.SetInsertPoint(BI);
4614   // Convert pointer to int before we switch.
4615   if (CompVal->getType()->isPointerTy()) {
4616     CompVal = Builder.CreatePtrToInt(
4617         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
4618   }
4619 
4620   // Create the new switch instruction now.
4621   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
4622 
4623   // Add all of the 'cases' to the switch instruction.
4624   for (unsigned i = 0, e = Values.size(); i != e; ++i)
4625     New->addCase(Values[i], EdgeBB);
4626 
4627   // We added edges from PI to the EdgeBB.  As such, if there were any
4628   // PHI nodes in EdgeBB, they need entries to be added corresponding to
4629   // the number of edges added.
4630   for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
4631     PHINode *PN = cast<PHINode>(BBI);
4632     Value *InVal = PN->getIncomingValueForBlock(BB);
4633     for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
4634       PN->addIncoming(InVal, BB);
4635   }
4636 
4637   // Erase the old branch instruction.
4638   EraseTerminatorAndDCECond(BI);
4639   if (DTU)
4640     DTU->applyUpdates(Updates);
4641 
4642   LLVM_DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
4643   return true;
4644 }
4645 
4646 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
4647   if (isa<PHINode>(RI->getValue()))
4648     return simplifyCommonResume(RI);
4649   else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
4650            RI->getValue() == RI->getParent()->getFirstNonPHI())
4651     // The resume must unwind the exception that caused control to branch here.
4652     return simplifySingleResume(RI);
4653 
4654   return false;
4655 }
4656 
4657 // Check if cleanup block is empty
4658 static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) {
4659   for (Instruction &I : R) {
4660     auto *II = dyn_cast<IntrinsicInst>(&I);
4661     if (!II)
4662       return false;
4663 
4664     Intrinsic::ID IntrinsicID = II->getIntrinsicID();
4665     switch (IntrinsicID) {
4666     case Intrinsic::dbg_declare:
4667     case Intrinsic::dbg_value:
4668     case Intrinsic::dbg_label:
4669     case Intrinsic::lifetime_end:
4670       break;
4671     default:
4672       return false;
4673     }
4674   }
4675   return true;
4676 }
4677 
4678 // Simplify resume that is shared by several landing pads (phi of landing pad).
4679 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) {
4680   BasicBlock *BB = RI->getParent();
4681 
4682   // Check that there are no other instructions except for debug and lifetime
4683   // intrinsics between the phi's and resume instruction.
4684   if (!isCleanupBlockEmpty(
4685           make_range(RI->getParent()->getFirstNonPHI(), BB->getTerminator())))
4686     return false;
4687 
4688   SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks;
4689   auto *PhiLPInst = cast<PHINode>(RI->getValue());
4690 
4691   // Check incoming blocks to see if any of them are trivial.
4692   for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
4693        Idx++) {
4694     auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
4695     auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
4696 
4697     // If the block has other successors, we can not delete it because
4698     // it has other dependents.
4699     if (IncomingBB->getUniqueSuccessor() != BB)
4700       continue;
4701 
4702     auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
4703     // Not the landing pad that caused the control to branch here.
4704     if (IncomingValue != LandingPad)
4705       continue;
4706 
4707     if (isCleanupBlockEmpty(
4708             make_range(LandingPad->getNextNode(), IncomingBB->getTerminator())))
4709       TrivialUnwindBlocks.insert(IncomingBB);
4710   }
4711 
4712   // If no trivial unwind blocks, don't do any simplifications.
4713   if (TrivialUnwindBlocks.empty())
4714     return false;
4715 
4716   // Turn all invokes that unwind here into calls.
4717   for (auto *TrivialBB : TrivialUnwindBlocks) {
4718     // Blocks that will be simplified should be removed from the phi node.
4719     // Note there could be multiple edges to the resume block, and we need
4720     // to remove them all.
4721     while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
4722       BB->removePredecessor(TrivialBB, true);
4723 
4724     for (BasicBlock *Pred :
4725          llvm::make_early_inc_range(predecessors(TrivialBB))) {
4726       removeUnwindEdge(Pred, DTU);
4727       ++NumInvokes;
4728     }
4729 
4730     // In each SimplifyCFG run, only the current processed block can be erased.
4731     // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
4732     // of erasing TrivialBB, we only remove the branch to the common resume
4733     // block so that we can later erase the resume block since it has no
4734     // predecessors.
4735     TrivialBB->getTerminator()->eraseFromParent();
4736     new UnreachableInst(RI->getContext(), TrivialBB);
4737     if (DTU)
4738       DTU->applyUpdates({{DominatorTree::Delete, TrivialBB, BB}});
4739   }
4740 
4741   // Delete the resume block if all its predecessors have been removed.
4742   if (pred_empty(BB))
4743     DeleteDeadBlock(BB, DTU);
4744 
4745   return !TrivialUnwindBlocks.empty();
4746 }
4747 
4748 // Simplify resume that is only used by a single (non-phi) landing pad.
4749 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) {
4750   BasicBlock *BB = RI->getParent();
4751   auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI());
4752   assert(RI->getValue() == LPInst &&
4753          "Resume must unwind the exception that caused control to here");
4754 
4755   // Check that there are no other instructions except for debug intrinsics.
4756   if (!isCleanupBlockEmpty(
4757           make_range<Instruction *>(LPInst->getNextNode(), RI)))
4758     return false;
4759 
4760   // Turn all invokes that unwind here into calls and delete the basic block.
4761   for (BasicBlock *Pred : llvm::make_early_inc_range(predecessors(BB))) {
4762     removeUnwindEdge(Pred, DTU);
4763     ++NumInvokes;
4764   }
4765 
4766   // The landingpad is now unreachable.  Zap it.
4767   DeleteDeadBlock(BB, DTU);
4768   return true;
4769 }
4770 
4771 static bool removeEmptyCleanup(CleanupReturnInst *RI, DomTreeUpdater *DTU) {
4772   // If this is a trivial cleanup pad that executes no instructions, it can be
4773   // eliminated.  If the cleanup pad continues to the caller, any predecessor
4774   // that is an EH pad will be updated to continue to the caller and any
4775   // predecessor that terminates with an invoke instruction will have its invoke
4776   // instruction converted to a call instruction.  If the cleanup pad being
4777   // simplified does not continue to the caller, each predecessor will be
4778   // updated to continue to the unwind destination of the cleanup pad being
4779   // simplified.
4780   BasicBlock *BB = RI->getParent();
4781   CleanupPadInst *CPInst = RI->getCleanupPad();
4782   if (CPInst->getParent() != BB)
4783     // This isn't an empty cleanup.
4784     return false;
4785 
4786   // We cannot kill the pad if it has multiple uses.  This typically arises
4787   // from unreachable basic blocks.
4788   if (!CPInst->hasOneUse())
4789     return false;
4790 
4791   // Check that there are no other instructions except for benign intrinsics.
4792   if (!isCleanupBlockEmpty(
4793           make_range<Instruction *>(CPInst->getNextNode(), RI)))
4794     return false;
4795 
4796   // If the cleanup return we are simplifying unwinds to the caller, this will
4797   // set UnwindDest to nullptr.
4798   BasicBlock *UnwindDest = RI->getUnwindDest();
4799   Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
4800 
4801   // We're about to remove BB from the control flow.  Before we do, sink any
4802   // PHINodes into the unwind destination.  Doing this before changing the
4803   // control flow avoids some potentially slow checks, since we can currently
4804   // be certain that UnwindDest and BB have no common predecessors (since they
4805   // are both EH pads).
4806   if (UnwindDest) {
4807     // First, go through the PHI nodes in UnwindDest and update any nodes that
4808     // reference the block we are removing
4809     for (PHINode &DestPN : UnwindDest->phis()) {
4810       int Idx = DestPN.getBasicBlockIndex(BB);
4811       // Since BB unwinds to UnwindDest, it has to be in the PHI node.
4812       assert(Idx != -1);
4813       // This PHI node has an incoming value that corresponds to a control
4814       // path through the cleanup pad we are removing.  If the incoming
4815       // value is in the cleanup pad, it must be a PHINode (because we
4816       // verified above that the block is otherwise empty).  Otherwise, the
4817       // value is either a constant or a value that dominates the cleanup
4818       // pad being removed.
4819       //
4820       // Because BB and UnwindDest are both EH pads, all of their
4821       // predecessors must unwind to these blocks, and since no instruction
4822       // can have multiple unwind destinations, there will be no overlap in
4823       // incoming blocks between SrcPN and DestPN.
4824       Value *SrcVal = DestPN.getIncomingValue(Idx);
4825       PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
4826 
4827       bool NeedPHITranslation = SrcPN && SrcPN->getParent() == BB;
4828       for (auto *Pred : predecessors(BB)) {
4829         Value *Incoming =
4830             NeedPHITranslation ? SrcPN->getIncomingValueForBlock(Pred) : SrcVal;
4831         DestPN.addIncoming(Incoming, Pred);
4832       }
4833     }
4834 
4835     // Sink any remaining PHI nodes directly into UnwindDest.
4836     Instruction *InsertPt = DestEHPad;
4837     for (PHINode &PN : make_early_inc_range(BB->phis())) {
4838       if (PN.use_empty() || !PN.isUsedOutsideOfBlock(BB))
4839         // If the PHI node has no uses or all of its uses are in this basic
4840         // block (meaning they are debug or lifetime intrinsics), just leave
4841         // it.  It will be erased when we erase BB below.
4842         continue;
4843 
4844       // Otherwise, sink this PHI node into UnwindDest.
4845       // Any predecessors to UnwindDest which are not already represented
4846       // must be back edges which inherit the value from the path through
4847       // BB.  In this case, the PHI value must reference itself.
4848       for (auto *pred : predecessors(UnwindDest))
4849         if (pred != BB)
4850           PN.addIncoming(&PN, pred);
4851       PN.moveBefore(InsertPt);
4852       // Also, add a dummy incoming value for the original BB itself,
4853       // so that the PHI is well-formed until we drop said predecessor.
4854       PN.addIncoming(PoisonValue::get(PN.getType()), BB);
4855     }
4856   }
4857 
4858   std::vector<DominatorTree::UpdateType> Updates;
4859 
4860   // We use make_early_inc_range here because we will remove all predecessors.
4861   for (BasicBlock *PredBB : llvm::make_early_inc_range(predecessors(BB))) {
4862     if (UnwindDest == nullptr) {
4863       if (DTU) {
4864         DTU->applyUpdates(Updates);
4865         Updates.clear();
4866       }
4867       removeUnwindEdge(PredBB, DTU);
4868       ++NumInvokes;
4869     } else {
4870       BB->removePredecessor(PredBB);
4871       Instruction *TI = PredBB->getTerminator();
4872       TI->replaceUsesOfWith(BB, UnwindDest);
4873       if (DTU) {
4874         Updates.push_back({DominatorTree::Insert, PredBB, UnwindDest});
4875         Updates.push_back({DominatorTree::Delete, PredBB, BB});
4876       }
4877     }
4878   }
4879 
4880   if (DTU)
4881     DTU->applyUpdates(Updates);
4882 
4883   DeleteDeadBlock(BB, DTU);
4884 
4885   return true;
4886 }
4887 
4888 // Try to merge two cleanuppads together.
4889 static bool mergeCleanupPad(CleanupReturnInst *RI) {
4890   // Skip any cleanuprets which unwind to caller, there is nothing to merge
4891   // with.
4892   BasicBlock *UnwindDest = RI->getUnwindDest();
4893   if (!UnwindDest)
4894     return false;
4895 
4896   // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
4897   // be safe to merge without code duplication.
4898   if (UnwindDest->getSinglePredecessor() != RI->getParent())
4899     return false;
4900 
4901   // Verify that our cleanuppad's unwind destination is another cleanuppad.
4902   auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
4903   if (!SuccessorCleanupPad)
4904     return false;
4905 
4906   CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
4907   // Replace any uses of the successor cleanupad with the predecessor pad
4908   // The only cleanuppad uses should be this cleanupret, it's cleanupret and
4909   // funclet bundle operands.
4910   SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
4911   // Remove the old cleanuppad.
4912   SuccessorCleanupPad->eraseFromParent();
4913   // Now, we simply replace the cleanupret with a branch to the unwind
4914   // destination.
4915   BranchInst::Create(UnwindDest, RI->getParent());
4916   RI->eraseFromParent();
4917 
4918   return true;
4919 }
4920 
4921 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) {
4922   // It is possible to transiantly have an undef cleanuppad operand because we
4923   // have deleted some, but not all, dead blocks.
4924   // Eventually, this block will be deleted.
4925   if (isa<UndefValue>(RI->getOperand(0)))
4926     return false;
4927 
4928   if (mergeCleanupPad(RI))
4929     return true;
4930 
4931   if (removeEmptyCleanup(RI, DTU))
4932     return true;
4933 
4934   return false;
4935 }
4936 
4937 // WARNING: keep in sync with InstCombinerImpl::visitUnreachableInst()!
4938 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) {
4939   BasicBlock *BB = UI->getParent();
4940 
4941   bool Changed = false;
4942 
4943   // If there are any instructions immediately before the unreachable that can
4944   // be removed, do so.
4945   while (UI->getIterator() != BB->begin()) {
4946     BasicBlock::iterator BBI = UI->getIterator();
4947     --BBI;
4948 
4949     if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI))
4950       break; // Can not drop any more instructions. We're done here.
4951     // Otherwise, this instruction can be freely erased,
4952     // even if it is not side-effect free.
4953 
4954     // Note that deleting EH's here is in fact okay, although it involves a bit
4955     // of subtle reasoning. If this inst is an EH, all the predecessors of this
4956     // block will be the unwind edges of Invoke/CatchSwitch/CleanupReturn,
4957     // and we can therefore guarantee this block will be erased.
4958 
4959     // Delete this instruction (any uses are guaranteed to be dead)
4960     BBI->replaceAllUsesWith(PoisonValue::get(BBI->getType()));
4961     BBI->eraseFromParent();
4962     Changed = true;
4963   }
4964 
4965   // If the unreachable instruction is the first in the block, take a gander
4966   // at all of the predecessors of this instruction, and simplify them.
4967   if (&BB->front() != UI)
4968     return Changed;
4969 
4970   std::vector<DominatorTree::UpdateType> Updates;
4971 
4972   SmallSetVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
4973   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
4974     auto *Predecessor = Preds[i];
4975     Instruction *TI = Predecessor->getTerminator();
4976     IRBuilder<> Builder(TI);
4977     if (auto *BI = dyn_cast<BranchInst>(TI)) {
4978       // We could either have a proper unconditional branch,
4979       // or a degenerate conditional branch with matching destinations.
4980       if (all_of(BI->successors(),
4981                  [BB](auto *Successor) { return Successor == BB; })) {
4982         new UnreachableInst(TI->getContext(), TI);
4983         TI->eraseFromParent();
4984         Changed = true;
4985       } else {
4986         assert(BI->isConditional() && "Can't get here with an uncond branch.");
4987         Value* Cond = BI->getCondition();
4988         assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
4989                "The destinations are guaranteed to be different here.");
4990         if (BI->getSuccessor(0) == BB) {
4991           Builder.CreateAssumption(Builder.CreateNot(Cond));
4992           Builder.CreateBr(BI->getSuccessor(1));
4993         } else {
4994           assert(BI->getSuccessor(1) == BB && "Incorrect CFG");
4995           Builder.CreateAssumption(Cond);
4996           Builder.CreateBr(BI->getSuccessor(0));
4997         }
4998         EraseTerminatorAndDCECond(BI);
4999         Changed = true;
5000       }
5001       if (DTU)
5002         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
5003     } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
5004       SwitchInstProfUpdateWrapper SU(*SI);
5005       for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) {
5006         if (i->getCaseSuccessor() != BB) {
5007           ++i;
5008           continue;
5009         }
5010         BB->removePredecessor(SU->getParent());
5011         i = SU.removeCase(i);
5012         e = SU->case_end();
5013         Changed = true;
5014       }
5015       // Note that the default destination can't be removed!
5016       if (DTU && SI->getDefaultDest() != BB)
5017         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
5018     } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
5019       if (II->getUnwindDest() == BB) {
5020         if (DTU) {
5021           DTU->applyUpdates(Updates);
5022           Updates.clear();
5023         }
5024         removeUnwindEdge(TI->getParent(), DTU);
5025         Changed = true;
5026       }
5027     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
5028       if (CSI->getUnwindDest() == BB) {
5029         if (DTU) {
5030           DTU->applyUpdates(Updates);
5031           Updates.clear();
5032         }
5033         removeUnwindEdge(TI->getParent(), DTU);
5034         Changed = true;
5035         continue;
5036       }
5037 
5038       for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
5039                                              E = CSI->handler_end();
5040            I != E; ++I) {
5041         if (*I == BB) {
5042           CSI->removeHandler(I);
5043           --I;
5044           --E;
5045           Changed = true;
5046         }
5047       }
5048       if (DTU)
5049         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
5050       if (CSI->getNumHandlers() == 0) {
5051         if (CSI->hasUnwindDest()) {
5052           // Redirect all predecessors of the block containing CatchSwitchInst
5053           // to instead branch to the CatchSwitchInst's unwind destination.
5054           if (DTU) {
5055             for (auto *PredecessorOfPredecessor : predecessors(Predecessor)) {
5056               Updates.push_back({DominatorTree::Insert,
5057                                  PredecessorOfPredecessor,
5058                                  CSI->getUnwindDest()});
5059               Updates.push_back({DominatorTree::Delete,
5060                                  PredecessorOfPredecessor, Predecessor});
5061             }
5062           }
5063           Predecessor->replaceAllUsesWith(CSI->getUnwindDest());
5064         } else {
5065           // Rewrite all preds to unwind to caller (or from invoke to call).
5066           if (DTU) {
5067             DTU->applyUpdates(Updates);
5068             Updates.clear();
5069           }
5070           SmallVector<BasicBlock *, 8> EHPreds(predecessors(Predecessor));
5071           for (BasicBlock *EHPred : EHPreds)
5072             removeUnwindEdge(EHPred, DTU);
5073         }
5074         // The catchswitch is no longer reachable.
5075         new UnreachableInst(CSI->getContext(), CSI);
5076         CSI->eraseFromParent();
5077         Changed = true;
5078       }
5079     } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
5080       (void)CRI;
5081       assert(CRI->hasUnwindDest() && CRI->getUnwindDest() == BB &&
5082              "Expected to always have an unwind to BB.");
5083       if (DTU)
5084         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
5085       new UnreachableInst(TI->getContext(), TI);
5086       TI->eraseFromParent();
5087       Changed = true;
5088     }
5089   }
5090 
5091   if (DTU)
5092     DTU->applyUpdates(Updates);
5093 
5094   // If this block is now dead, remove it.
5095   if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
5096     DeleteDeadBlock(BB, DTU);
5097     return true;
5098   }
5099 
5100   return Changed;
5101 }
5102 
5103 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
5104   assert(Cases.size() >= 1);
5105 
5106   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
5107   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
5108     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
5109       return false;
5110   }
5111   return true;
5112 }
5113 
5114 static void createUnreachableSwitchDefault(SwitchInst *Switch,
5115                                            DomTreeUpdater *DTU) {
5116   LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
5117   auto *BB = Switch->getParent();
5118   auto *OrigDefaultBlock = Switch->getDefaultDest();
5119   OrigDefaultBlock->removePredecessor(BB);
5120   BasicBlock *NewDefaultBlock = BasicBlock::Create(
5121       BB->getContext(), BB->getName() + ".unreachabledefault", BB->getParent(),
5122       OrigDefaultBlock);
5123   new UnreachableInst(Switch->getContext(), NewDefaultBlock);
5124   Switch->setDefaultDest(&*NewDefaultBlock);
5125   if (DTU) {
5126     SmallVector<DominatorTree::UpdateType, 2> Updates;
5127     Updates.push_back({DominatorTree::Insert, BB, &*NewDefaultBlock});
5128     if (!is_contained(successors(BB), OrigDefaultBlock))
5129       Updates.push_back({DominatorTree::Delete, BB, &*OrigDefaultBlock});
5130     DTU->applyUpdates(Updates);
5131   }
5132 }
5133 
5134 /// Turn a switch into an integer range comparison and branch.
5135 /// Switches with more than 2 destinations are ignored.
5136 /// Switches with 1 destination are also ignored.
5137 bool SimplifyCFGOpt::TurnSwitchRangeIntoICmp(SwitchInst *SI,
5138                                              IRBuilder<> &Builder) {
5139   assert(SI->getNumCases() > 1 && "Degenerate switch?");
5140 
5141   bool HasDefault =
5142       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5143 
5144   auto *BB = SI->getParent();
5145 
5146   // Partition the cases into two sets with different destinations.
5147   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
5148   BasicBlock *DestB = nullptr;
5149   SmallVector<ConstantInt *, 16> CasesA;
5150   SmallVector<ConstantInt *, 16> CasesB;
5151 
5152   for (auto Case : SI->cases()) {
5153     BasicBlock *Dest = Case.getCaseSuccessor();
5154     if (!DestA)
5155       DestA = Dest;
5156     if (Dest == DestA) {
5157       CasesA.push_back(Case.getCaseValue());
5158       continue;
5159     }
5160     if (!DestB)
5161       DestB = Dest;
5162     if (Dest == DestB) {
5163       CasesB.push_back(Case.getCaseValue());
5164       continue;
5165     }
5166     return false; // More than two destinations.
5167   }
5168   if (!DestB)
5169     return false; // All destinations are the same and the default is unreachable
5170 
5171   assert(DestA && DestB &&
5172          "Single-destination switch should have been folded.");
5173   assert(DestA != DestB);
5174   assert(DestB != SI->getDefaultDest());
5175   assert(!CasesB.empty() && "There must be non-default cases.");
5176   assert(!CasesA.empty() || HasDefault);
5177 
5178   // Figure out if one of the sets of cases form a contiguous range.
5179   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
5180   BasicBlock *ContiguousDest = nullptr;
5181   BasicBlock *OtherDest = nullptr;
5182   if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
5183     ContiguousCases = &CasesA;
5184     ContiguousDest = DestA;
5185     OtherDest = DestB;
5186   } else if (CasesAreContiguous(CasesB)) {
5187     ContiguousCases = &CasesB;
5188     ContiguousDest = DestB;
5189     OtherDest = DestA;
5190   } else
5191     return false;
5192 
5193   // Start building the compare and branch.
5194 
5195   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
5196   Constant *NumCases =
5197       ConstantInt::get(Offset->getType(), ContiguousCases->size());
5198 
5199   Value *Sub = SI->getCondition();
5200   if (!Offset->isNullValue())
5201     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
5202 
5203   Value *Cmp;
5204   // If NumCases overflowed, then all possible values jump to the successor.
5205   if (NumCases->isNullValue() && !ContiguousCases->empty())
5206     Cmp = ConstantInt::getTrue(SI->getContext());
5207   else
5208     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
5209   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
5210 
5211   // Update weight for the newly-created conditional branch.
5212   if (HasBranchWeights(SI)) {
5213     SmallVector<uint64_t, 8> Weights;
5214     GetBranchWeights(SI, Weights);
5215     if (Weights.size() == 1 + SI->getNumCases()) {
5216       uint64_t TrueWeight = 0;
5217       uint64_t FalseWeight = 0;
5218       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
5219         if (SI->getSuccessor(I) == ContiguousDest)
5220           TrueWeight += Weights[I];
5221         else
5222           FalseWeight += Weights[I];
5223       }
5224       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
5225         TrueWeight /= 2;
5226         FalseWeight /= 2;
5227       }
5228       setBranchWeights(NewBI, TrueWeight, FalseWeight);
5229     }
5230   }
5231 
5232   // Prune obsolete incoming values off the successors' PHI nodes.
5233   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
5234     unsigned PreviousEdges = ContiguousCases->size();
5235     if (ContiguousDest == SI->getDefaultDest())
5236       ++PreviousEdges;
5237     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
5238       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
5239   }
5240   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
5241     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
5242     if (OtherDest == SI->getDefaultDest())
5243       ++PreviousEdges;
5244     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
5245       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
5246   }
5247 
5248   // Clean up the default block - it may have phis or other instructions before
5249   // the unreachable terminator.
5250   if (!HasDefault)
5251     createUnreachableSwitchDefault(SI, DTU);
5252 
5253   auto *UnreachableDefault = SI->getDefaultDest();
5254 
5255   // Drop the switch.
5256   SI->eraseFromParent();
5257 
5258   if (!HasDefault && DTU)
5259     DTU->applyUpdates({{DominatorTree::Delete, BB, UnreachableDefault}});
5260 
5261   return true;
5262 }
5263 
5264 /// Compute masked bits for the condition of a switch
5265 /// and use it to remove dead cases.
5266 static bool eliminateDeadSwitchCases(SwitchInst *SI, DomTreeUpdater *DTU,
5267                                      AssumptionCache *AC,
5268                                      const DataLayout &DL) {
5269   Value *Cond = SI->getCondition();
5270   KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI);
5271 
5272   // We can also eliminate cases by determining that their values are outside of
5273   // the limited range of the condition based on how many significant (non-sign)
5274   // bits are in the condition value.
5275   unsigned MaxSignificantBitsInCond =
5276       ComputeMaxSignificantBits(Cond, DL, 0, AC, SI);
5277 
5278   // Gather dead cases.
5279   SmallVector<ConstantInt *, 8> DeadCases;
5280   SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases;
5281   SmallVector<BasicBlock *, 8> UniqueSuccessors;
5282   for (auto &Case : SI->cases()) {
5283     auto *Successor = Case.getCaseSuccessor();
5284     if (DTU) {
5285       if (!NumPerSuccessorCases.count(Successor))
5286         UniqueSuccessors.push_back(Successor);
5287       ++NumPerSuccessorCases[Successor];
5288     }
5289     const APInt &CaseVal = Case.getCaseValue()->getValue();
5290     if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) ||
5291         (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
5292       DeadCases.push_back(Case.getCaseValue());
5293       if (DTU)
5294         --NumPerSuccessorCases[Successor];
5295       LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal
5296                         << " is dead.\n");
5297     }
5298   }
5299 
5300   // If we can prove that the cases must cover all possible values, the
5301   // default destination becomes dead and we can remove it.  If we know some
5302   // of the bits in the value, we can use that to more precisely compute the
5303   // number of possible unique case values.
5304   bool HasDefault =
5305       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5306   const unsigned NumUnknownBits =
5307       Known.getBitWidth() - (Known.Zero | Known.One).countPopulation();
5308   assert(NumUnknownBits <= Known.getBitWidth());
5309   if (HasDefault && DeadCases.empty() &&
5310       NumUnknownBits < 64 /* avoid overflow */ &&
5311       SI->getNumCases() == (1ULL << NumUnknownBits)) {
5312     createUnreachableSwitchDefault(SI, DTU);
5313     return true;
5314   }
5315 
5316   if (DeadCases.empty())
5317     return false;
5318 
5319   SwitchInstProfUpdateWrapper SIW(*SI);
5320   for (ConstantInt *DeadCase : DeadCases) {
5321     SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase);
5322     assert(CaseI != SI->case_default() &&
5323            "Case was not found. Probably mistake in DeadCases forming.");
5324     // Prune unused values from PHI nodes.
5325     CaseI->getCaseSuccessor()->removePredecessor(SI->getParent());
5326     SIW.removeCase(CaseI);
5327   }
5328 
5329   if (DTU) {
5330     std::vector<DominatorTree::UpdateType> Updates;
5331     for (auto *Successor : UniqueSuccessors)
5332       if (NumPerSuccessorCases[Successor] == 0)
5333         Updates.push_back({DominatorTree::Delete, SI->getParent(), Successor});
5334     DTU->applyUpdates(Updates);
5335   }
5336 
5337   return true;
5338 }
5339 
5340 /// If BB would be eligible for simplification by
5341 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
5342 /// by an unconditional branch), look at the phi node for BB in the successor
5343 /// block and see if the incoming value is equal to CaseValue. If so, return
5344 /// the phi node, and set PhiIndex to BB's index in the phi node.
5345 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
5346                                               BasicBlock *BB, int *PhiIndex) {
5347   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
5348     return nullptr; // BB must be empty to be a candidate for simplification.
5349   if (!BB->getSinglePredecessor())
5350     return nullptr; // BB must be dominated by the switch.
5351 
5352   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
5353   if (!Branch || !Branch->isUnconditional())
5354     return nullptr; // Terminator must be unconditional branch.
5355 
5356   BasicBlock *Succ = Branch->getSuccessor(0);
5357 
5358   for (PHINode &PHI : Succ->phis()) {
5359     int Idx = PHI.getBasicBlockIndex(BB);
5360     assert(Idx >= 0 && "PHI has no entry for predecessor?");
5361 
5362     Value *InValue = PHI.getIncomingValue(Idx);
5363     if (InValue != CaseValue)
5364       continue;
5365 
5366     *PhiIndex = Idx;
5367     return &PHI;
5368   }
5369 
5370   return nullptr;
5371 }
5372 
5373 /// Try to forward the condition of a switch instruction to a phi node
5374 /// dominated by the switch, if that would mean that some of the destination
5375 /// blocks of the switch can be folded away. Return true if a change is made.
5376 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
5377   using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>;
5378 
5379   ForwardingNodesMap ForwardingNodes;
5380   BasicBlock *SwitchBlock = SI->getParent();
5381   bool Changed = false;
5382   for (auto &Case : SI->cases()) {
5383     ConstantInt *CaseValue = Case.getCaseValue();
5384     BasicBlock *CaseDest = Case.getCaseSuccessor();
5385 
5386     // Replace phi operands in successor blocks that are using the constant case
5387     // value rather than the switch condition variable:
5388     //   switchbb:
5389     //   switch i32 %x, label %default [
5390     //     i32 17, label %succ
5391     //   ...
5392     //   succ:
5393     //     %r = phi i32 ... [ 17, %switchbb ] ...
5394     // -->
5395     //     %r = phi i32 ... [ %x, %switchbb ] ...
5396 
5397     for (PHINode &Phi : CaseDest->phis()) {
5398       // This only works if there is exactly 1 incoming edge from the switch to
5399       // a phi. If there is >1, that means multiple cases of the switch map to 1
5400       // value in the phi, and that phi value is not the switch condition. Thus,
5401       // this transform would not make sense (the phi would be invalid because
5402       // a phi can't have different incoming values from the same block).
5403       int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock);
5404       if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue &&
5405           count(Phi.blocks(), SwitchBlock) == 1) {
5406         Phi.setIncomingValue(SwitchBBIdx, SI->getCondition());
5407         Changed = true;
5408       }
5409     }
5410 
5411     // Collect phi nodes that are indirectly using this switch's case constants.
5412     int PhiIdx;
5413     if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx))
5414       ForwardingNodes[Phi].push_back(PhiIdx);
5415   }
5416 
5417   for (auto &ForwardingNode : ForwardingNodes) {
5418     PHINode *Phi = ForwardingNode.first;
5419     SmallVectorImpl<int> &Indexes = ForwardingNode.second;
5420     if (Indexes.size() < 2)
5421       continue;
5422 
5423     for (int Index : Indexes)
5424       Phi->setIncomingValue(Index, SI->getCondition());
5425     Changed = true;
5426   }
5427 
5428   return Changed;
5429 }
5430 
5431 /// Return true if the backend will be able to handle
5432 /// initializing an array of constants like C.
5433 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
5434   if (C->isThreadDependent())
5435     return false;
5436   if (C->isDLLImportDependent())
5437     return false;
5438 
5439   if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) &&
5440       !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) &&
5441       !isa<UndefValue>(C) && !isa<ConstantExpr>(C))
5442     return false;
5443 
5444   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
5445     // Pointer casts and in-bounds GEPs will not prohibit the backend from
5446     // materializing the array of constants.
5447     Constant *StrippedC = cast<Constant>(CE->stripInBoundsConstantOffsets());
5448     if (StrippedC == C || !ValidLookupTableConstant(StrippedC, TTI))
5449       return false;
5450   }
5451 
5452   if (!TTI.shouldBuildLookupTablesForConstant(C))
5453     return false;
5454 
5455   return true;
5456 }
5457 
5458 /// If V is a Constant, return it. Otherwise, try to look up
5459 /// its constant value in ConstantPool, returning 0 if it's not there.
5460 static Constant *
5461 LookupConstant(Value *V,
5462                const SmallDenseMap<Value *, Constant *> &ConstantPool) {
5463   if (Constant *C = dyn_cast<Constant>(V))
5464     return C;
5465   return ConstantPool.lookup(V);
5466 }
5467 
5468 /// Try to fold instruction I into a constant. This works for
5469 /// simple instructions such as binary operations where both operands are
5470 /// constant or can be replaced by constants from the ConstantPool. Returns the
5471 /// resulting constant on success, 0 otherwise.
5472 static Constant *
5473 ConstantFold(Instruction *I, const DataLayout &DL,
5474              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
5475   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
5476     Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
5477     if (!A)
5478       return nullptr;
5479     if (A->isAllOnesValue())
5480       return LookupConstant(Select->getTrueValue(), ConstantPool);
5481     if (A->isNullValue())
5482       return LookupConstant(Select->getFalseValue(), ConstantPool);
5483     return nullptr;
5484   }
5485 
5486   SmallVector<Constant *, 4> COps;
5487   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
5488     if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
5489       COps.push_back(A);
5490     else
5491       return nullptr;
5492   }
5493 
5494   return ConstantFoldInstOperands(I, COps, DL);
5495 }
5496 
5497 /// Try to determine the resulting constant values in phi nodes
5498 /// at the common destination basic block, *CommonDest, for one of the case
5499 /// destionations CaseDest corresponding to value CaseVal (0 for the default
5500 /// case), of a switch instruction SI.
5501 static bool
5502 getCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
5503                BasicBlock **CommonDest,
5504                SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
5505                const DataLayout &DL, const TargetTransformInfo &TTI) {
5506   // The block from which we enter the common destination.
5507   BasicBlock *Pred = SI->getParent();
5508 
5509   // If CaseDest is empty except for some side-effect free instructions through
5510   // which we can constant-propagate the CaseVal, continue to its successor.
5511   SmallDenseMap<Value *, Constant *> ConstantPool;
5512   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
5513   for (Instruction &I : CaseDest->instructionsWithoutDebug(false)) {
5514     if (I.isTerminator()) {
5515       // If the terminator is a simple branch, continue to the next block.
5516       if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator())
5517         return false;
5518       Pred = CaseDest;
5519       CaseDest = I.getSuccessor(0);
5520     } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) {
5521       // Instruction is side-effect free and constant.
5522 
5523       // If the instruction has uses outside this block or a phi node slot for
5524       // the block, it is not safe to bypass the instruction since it would then
5525       // no longer dominate all its uses.
5526       for (auto &Use : I.uses()) {
5527         User *User = Use.getUser();
5528         if (Instruction *I = dyn_cast<Instruction>(User))
5529           if (I->getParent() == CaseDest)
5530             continue;
5531         if (PHINode *Phi = dyn_cast<PHINode>(User))
5532           if (Phi->getIncomingBlock(Use) == CaseDest)
5533             continue;
5534         return false;
5535       }
5536 
5537       ConstantPool.insert(std::make_pair(&I, C));
5538     } else {
5539       break;
5540     }
5541   }
5542 
5543   // If we did not have a CommonDest before, use the current one.
5544   if (!*CommonDest)
5545     *CommonDest = CaseDest;
5546   // If the destination isn't the common one, abort.
5547   if (CaseDest != *CommonDest)
5548     return false;
5549 
5550   // Get the values for this case from phi nodes in the destination block.
5551   for (PHINode &PHI : (*CommonDest)->phis()) {
5552     int Idx = PHI.getBasicBlockIndex(Pred);
5553     if (Idx == -1)
5554       continue;
5555 
5556     Constant *ConstVal =
5557         LookupConstant(PHI.getIncomingValue(Idx), ConstantPool);
5558     if (!ConstVal)
5559       return false;
5560 
5561     // Be conservative about which kinds of constants we support.
5562     if (!ValidLookupTableConstant(ConstVal, TTI))
5563       return false;
5564 
5565     Res.push_back(std::make_pair(&PHI, ConstVal));
5566   }
5567 
5568   return Res.size() > 0;
5569 }
5570 
5571 // Helper function used to add CaseVal to the list of cases that generate
5572 // Result. Returns the updated number of cases that generate this result.
5573 static size_t mapCaseToResult(ConstantInt *CaseVal,
5574                               SwitchCaseResultVectorTy &UniqueResults,
5575                               Constant *Result) {
5576   for (auto &I : UniqueResults) {
5577     if (I.first == Result) {
5578       I.second.push_back(CaseVal);
5579       return I.second.size();
5580     }
5581   }
5582   UniqueResults.push_back(
5583       std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
5584   return 1;
5585 }
5586 
5587 // Helper function that initializes a map containing
5588 // results for the PHI node of the common destination block for a switch
5589 // instruction. Returns false if multiple PHI nodes have been found or if
5590 // there is not a common destination block for the switch.
5591 static bool initializeUniqueCases(SwitchInst *SI, PHINode *&PHI,
5592                                   BasicBlock *&CommonDest,
5593                                   SwitchCaseResultVectorTy &UniqueResults,
5594                                   Constant *&DefaultResult,
5595                                   const DataLayout &DL,
5596                                   const TargetTransformInfo &TTI,
5597                                   uintptr_t MaxUniqueResults) {
5598   for (auto &I : SI->cases()) {
5599     ConstantInt *CaseVal = I.getCaseValue();
5600 
5601     // Resulting value at phi nodes for this case value.
5602     SwitchCaseResultsTy Results;
5603     if (!getCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
5604                         DL, TTI))
5605       return false;
5606 
5607     // Only one value per case is permitted.
5608     if (Results.size() > 1)
5609       return false;
5610 
5611     // Add the case->result mapping to UniqueResults.
5612     const size_t NumCasesForResult =
5613         mapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
5614 
5615     // Early out if there are too many cases for this result.
5616     if (NumCasesForResult > MaxSwitchCasesPerResult)
5617       return false;
5618 
5619     // Early out if there are too many unique results.
5620     if (UniqueResults.size() > MaxUniqueResults)
5621       return false;
5622 
5623     // Check the PHI consistency.
5624     if (!PHI)
5625       PHI = Results[0].first;
5626     else if (PHI != Results[0].first)
5627       return false;
5628   }
5629   // Find the default result value.
5630   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
5631   BasicBlock *DefaultDest = SI->getDefaultDest();
5632   getCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
5633                  DL, TTI);
5634   // If the default value is not found abort unless the default destination
5635   // is unreachable.
5636   DefaultResult =
5637       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
5638   if ((!DefaultResult &&
5639        !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
5640     return false;
5641 
5642   return true;
5643 }
5644 
5645 // Helper function that checks if it is possible to transform a switch with only
5646 // two cases (or two cases + default) that produces a result into a select.
5647 // TODO: Handle switches with more than 2 cases that map to the same result.
5648 static Value *foldSwitchToSelect(const SwitchCaseResultVectorTy &ResultVector,
5649                                  Constant *DefaultResult, Value *Condition,
5650                                  IRBuilder<> &Builder) {
5651   // If we are selecting between only two cases transform into a simple
5652   // select or a two-way select if default is possible.
5653   // Example:
5654   // switch (a) {                  %0 = icmp eq i32 %a, 10
5655   //   case 10: return 42;         %1 = select i1 %0, i32 42, i32 4
5656   //   case 20: return 2;   ---->  %2 = icmp eq i32 %a, 20
5657   //   default: return 4;          %3 = select i1 %2, i32 2, i32 %1
5658   // }
5659   if (ResultVector.size() == 2 && ResultVector[0].second.size() == 1 &&
5660       ResultVector[1].second.size() == 1) {
5661     ConstantInt *FirstCase = ResultVector[0].second[0];
5662     ConstantInt *SecondCase = ResultVector[1].second[0];
5663     Value *SelectValue = ResultVector[1].first;
5664     if (DefaultResult) {
5665       Value *ValueCompare =
5666           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
5667       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
5668                                          DefaultResult, "switch.select");
5669     }
5670     Value *ValueCompare =
5671         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
5672     return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
5673                                 SelectValue, "switch.select");
5674   }
5675 
5676   // Handle the degenerate case where two cases have the same result value.
5677   if (ResultVector.size() == 1 && DefaultResult) {
5678     ArrayRef<ConstantInt *> CaseValues = ResultVector[0].second;
5679     unsigned CaseCount = CaseValues.size();
5680     // n bits group cases map to the same result:
5681     // case 0,4      -> Cond & 0b1..1011 == 0 ? result : default
5682     // case 0,2,4,6  -> Cond & 0b1..1001 == 0 ? result : default
5683     // case 0,2,8,10 -> Cond & 0b1..0101 == 0 ? result : default
5684     if (isPowerOf2_32(CaseCount)) {
5685       ConstantInt *MinCaseVal = CaseValues[0];
5686       // Find mininal value.
5687       for (auto Case : CaseValues)
5688         if (Case->getValue().slt(MinCaseVal->getValue()))
5689           MinCaseVal = Case;
5690 
5691       // Mark the bits case number touched.
5692       APInt BitMask = APInt::getZero(MinCaseVal->getBitWidth());
5693       for (auto Case : CaseValues)
5694         BitMask |= (Case->getValue() - MinCaseVal->getValue());
5695 
5696       // Check if cases with the same result can cover all number
5697       // in touched bits.
5698       if (BitMask.countPopulation() == Log2_32(CaseCount)) {
5699         if (!MinCaseVal->isNullValue())
5700           Condition = Builder.CreateSub(Condition, MinCaseVal);
5701         Value *And = Builder.CreateAnd(Condition, ~BitMask, "switch.and");
5702         Value *Cmp = Builder.CreateICmpEQ(
5703             And, Constant::getNullValue(And->getType()), "switch.selectcmp");
5704         return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult);
5705       }
5706     }
5707 
5708     // Handle the degenerate case where two cases have the same value.
5709     if (CaseValues.size() == 2) {
5710       Value *Cmp1 = Builder.CreateICmpEQ(Condition, CaseValues[0],
5711                                          "switch.selectcmp.case1");
5712       Value *Cmp2 = Builder.CreateICmpEQ(Condition, CaseValues[1],
5713                                          "switch.selectcmp.case2");
5714       Value *Cmp = Builder.CreateOr(Cmp1, Cmp2, "switch.selectcmp");
5715       return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult);
5716     }
5717   }
5718 
5719   return nullptr;
5720 }
5721 
5722 // Helper function to cleanup a switch instruction that has been converted into
5723 // a select, fixing up PHI nodes and basic blocks.
5724 static void removeSwitchAfterSelectFold(SwitchInst *SI, PHINode *PHI,
5725                                         Value *SelectValue,
5726                                         IRBuilder<> &Builder,
5727                                         DomTreeUpdater *DTU) {
5728   std::vector<DominatorTree::UpdateType> Updates;
5729 
5730   BasicBlock *SelectBB = SI->getParent();
5731   BasicBlock *DestBB = PHI->getParent();
5732 
5733   if (DTU && !is_contained(predecessors(DestBB), SelectBB))
5734     Updates.push_back({DominatorTree::Insert, SelectBB, DestBB});
5735   Builder.CreateBr(DestBB);
5736 
5737   // Remove the switch.
5738 
5739   while (PHI->getBasicBlockIndex(SelectBB) >= 0)
5740     PHI->removeIncomingValue(SelectBB);
5741   PHI->addIncoming(SelectValue, SelectBB);
5742 
5743   SmallPtrSet<BasicBlock *, 4> RemovedSuccessors;
5744   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5745     BasicBlock *Succ = SI->getSuccessor(i);
5746 
5747     if (Succ == DestBB)
5748       continue;
5749     Succ->removePredecessor(SelectBB);
5750     if (DTU && RemovedSuccessors.insert(Succ).second)
5751       Updates.push_back({DominatorTree::Delete, SelectBB, Succ});
5752   }
5753   SI->eraseFromParent();
5754   if (DTU)
5755     DTU->applyUpdates(Updates);
5756 }
5757 
5758 /// If a switch is only used to initialize one or more phi nodes in a common
5759 /// successor block with only two different constant values, try to replace the
5760 /// switch with a select. Returns true if the fold was made.
5761 static bool trySwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
5762                               DomTreeUpdater *DTU, const DataLayout &DL,
5763                               const TargetTransformInfo &TTI) {
5764   Value *const Cond = SI->getCondition();
5765   PHINode *PHI = nullptr;
5766   BasicBlock *CommonDest = nullptr;
5767   Constant *DefaultResult;
5768   SwitchCaseResultVectorTy UniqueResults;
5769   // Collect all the cases that will deliver the same value from the switch.
5770   if (!initializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
5771                              DL, TTI, /*MaxUniqueResults*/ 2))
5772     return false;
5773 
5774   assert(PHI != nullptr && "PHI for value select not found");
5775   Builder.SetInsertPoint(SI);
5776   Value *SelectValue =
5777       foldSwitchToSelect(UniqueResults, DefaultResult, Cond, Builder);
5778   if (!SelectValue)
5779     return false;
5780 
5781   removeSwitchAfterSelectFold(SI, PHI, SelectValue, Builder, DTU);
5782   return true;
5783 }
5784 
5785 namespace {
5786 
5787 /// This class represents a lookup table that can be used to replace a switch.
5788 class SwitchLookupTable {
5789 public:
5790   /// Create a lookup table to use as a switch replacement with the contents
5791   /// of Values, using DefaultValue to fill any holes in the table.
5792   SwitchLookupTable(
5793       Module &M, uint64_t TableSize, ConstantInt *Offset,
5794       const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
5795       Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName);
5796 
5797   /// Build instructions with Builder to retrieve the value at
5798   /// the position given by Index in the lookup table.
5799   Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
5800 
5801   /// Return true if a table with TableSize elements of
5802   /// type ElementType would fit in a target-legal register.
5803   static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
5804                                  Type *ElementType);
5805 
5806 private:
5807   // Depending on the contents of the table, it can be represented in
5808   // different ways.
5809   enum {
5810     // For tables where each element contains the same value, we just have to
5811     // store that single value and return it for each lookup.
5812     SingleValueKind,
5813 
5814     // For tables where there is a linear relationship between table index
5815     // and values. We calculate the result with a simple multiplication
5816     // and addition instead of a table lookup.
5817     LinearMapKind,
5818 
5819     // For small tables with integer elements, we can pack them into a bitmap
5820     // that fits into a target-legal register. Values are retrieved by
5821     // shift and mask operations.
5822     BitMapKind,
5823 
5824     // The table is stored as an array of values. Values are retrieved by load
5825     // instructions from the table.
5826     ArrayKind
5827   } Kind;
5828 
5829   // For SingleValueKind, this is the single value.
5830   Constant *SingleValue = nullptr;
5831 
5832   // For BitMapKind, this is the bitmap.
5833   ConstantInt *BitMap = nullptr;
5834   IntegerType *BitMapElementTy = nullptr;
5835 
5836   // For LinearMapKind, these are the constants used to derive the value.
5837   ConstantInt *LinearOffset = nullptr;
5838   ConstantInt *LinearMultiplier = nullptr;
5839 
5840   // For ArrayKind, this is the array.
5841   GlobalVariable *Array = nullptr;
5842 };
5843 
5844 } // end anonymous namespace
5845 
5846 SwitchLookupTable::SwitchLookupTable(
5847     Module &M, uint64_t TableSize, ConstantInt *Offset,
5848     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
5849     Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) {
5850   assert(Values.size() && "Can't build lookup table without values!");
5851   assert(TableSize >= Values.size() && "Can't fit values in table!");
5852 
5853   // If all values in the table are equal, this is that value.
5854   SingleValue = Values.begin()->second;
5855 
5856   Type *ValueType = Values.begin()->second->getType();
5857 
5858   // Build up the table contents.
5859   SmallVector<Constant *, 64> TableContents(TableSize);
5860   for (size_t I = 0, E = Values.size(); I != E; ++I) {
5861     ConstantInt *CaseVal = Values[I].first;
5862     Constant *CaseRes = Values[I].second;
5863     assert(CaseRes->getType() == ValueType);
5864 
5865     uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
5866     TableContents[Idx] = CaseRes;
5867 
5868     if (CaseRes != SingleValue)
5869       SingleValue = nullptr;
5870   }
5871 
5872   // Fill in any holes in the table with the default result.
5873   if (Values.size() < TableSize) {
5874     assert(DefaultValue &&
5875            "Need a default value to fill the lookup table holes.");
5876     assert(DefaultValue->getType() == ValueType);
5877     for (uint64_t I = 0; I < TableSize; ++I) {
5878       if (!TableContents[I])
5879         TableContents[I] = DefaultValue;
5880     }
5881 
5882     if (DefaultValue != SingleValue)
5883       SingleValue = nullptr;
5884   }
5885 
5886   // If each element in the table contains the same value, we only need to store
5887   // that single value.
5888   if (SingleValue) {
5889     Kind = SingleValueKind;
5890     return;
5891   }
5892 
5893   // Check if we can derive the value with a linear transformation from the
5894   // table index.
5895   if (isa<IntegerType>(ValueType)) {
5896     bool LinearMappingPossible = true;
5897     APInt PrevVal;
5898     APInt DistToPrev;
5899     assert(TableSize >= 2 && "Should be a SingleValue table.");
5900     // Check if there is the same distance between two consecutive values.
5901     for (uint64_t I = 0; I < TableSize; ++I) {
5902       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
5903       if (!ConstVal) {
5904         // This is an undef. We could deal with it, but undefs in lookup tables
5905         // are very seldom. It's probably not worth the additional complexity.
5906         LinearMappingPossible = false;
5907         break;
5908       }
5909       const APInt &Val = ConstVal->getValue();
5910       if (I != 0) {
5911         APInt Dist = Val - PrevVal;
5912         if (I == 1) {
5913           DistToPrev = Dist;
5914         } else if (Dist != DistToPrev) {
5915           LinearMappingPossible = false;
5916           break;
5917         }
5918       }
5919       PrevVal = Val;
5920     }
5921     if (LinearMappingPossible) {
5922       LinearOffset = cast<ConstantInt>(TableContents[0]);
5923       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
5924       Kind = LinearMapKind;
5925       ++NumLinearMaps;
5926       return;
5927     }
5928   }
5929 
5930   // If the type is integer and the table fits in a register, build a bitmap.
5931   if (WouldFitInRegister(DL, TableSize, ValueType)) {
5932     IntegerType *IT = cast<IntegerType>(ValueType);
5933     APInt TableInt(TableSize * IT->getBitWidth(), 0);
5934     for (uint64_t I = TableSize; I > 0; --I) {
5935       TableInt <<= IT->getBitWidth();
5936       // Insert values into the bitmap. Undef values are set to zero.
5937       if (!isa<UndefValue>(TableContents[I - 1])) {
5938         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
5939         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
5940       }
5941     }
5942     BitMap = ConstantInt::get(M.getContext(), TableInt);
5943     BitMapElementTy = IT;
5944     Kind = BitMapKind;
5945     ++NumBitMaps;
5946     return;
5947   }
5948 
5949   // Store the table in an array.
5950   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
5951   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
5952 
5953   Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true,
5954                              GlobalVariable::PrivateLinkage, Initializer,
5955                              "switch.table." + FuncName);
5956   Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
5957   // Set the alignment to that of an array items. We will be only loading one
5958   // value out of it.
5959   Array->setAlignment(Align(DL.getPrefTypeAlignment(ValueType)));
5960   Kind = ArrayKind;
5961 }
5962 
5963 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
5964   switch (Kind) {
5965   case SingleValueKind:
5966     return SingleValue;
5967   case LinearMapKind: {
5968     // Derive the result value from the input value.
5969     Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
5970                                           false, "switch.idx.cast");
5971     if (!LinearMultiplier->isOne())
5972       Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
5973     if (!LinearOffset->isZero())
5974       Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
5975     return Result;
5976   }
5977   case BitMapKind: {
5978     // Type of the bitmap (e.g. i59).
5979     IntegerType *MapTy = BitMap->getType();
5980 
5981     // Cast Index to the same type as the bitmap.
5982     // Note: The Index is <= the number of elements in the table, so
5983     // truncating it to the width of the bitmask is safe.
5984     Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
5985 
5986     // Multiply the shift amount by the element width.
5987     ShiftAmt = Builder.CreateMul(
5988         ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
5989         "switch.shiftamt");
5990 
5991     // Shift down.
5992     Value *DownShifted =
5993         Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
5994     // Mask off.
5995     return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
5996   }
5997   case ArrayKind: {
5998     // Make sure the table index will not overflow when treated as signed.
5999     IntegerType *IT = cast<IntegerType>(Index->getType());
6000     uint64_t TableSize =
6001         Array->getInitializer()->getType()->getArrayNumElements();
6002     if (TableSize > (1ULL << std::min(IT->getBitWidth() - 1, 63u)))
6003       Index = Builder.CreateZExt(
6004           Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
6005           "switch.tableidx.zext");
6006 
6007     Value *GEPIndices[] = {Builder.getInt32(0), Index};
6008     Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
6009                                            GEPIndices, "switch.gep");
6010     return Builder.CreateLoad(
6011         cast<ArrayType>(Array->getValueType())->getElementType(), GEP,
6012         "switch.load");
6013   }
6014   }
6015   llvm_unreachable("Unknown lookup table kind!");
6016 }
6017 
6018 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
6019                                            uint64_t TableSize,
6020                                            Type *ElementType) {
6021   auto *IT = dyn_cast<IntegerType>(ElementType);
6022   if (!IT)
6023     return false;
6024   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
6025   // are <= 15, we could try to narrow the type.
6026 
6027   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
6028   if (TableSize >= UINT_MAX / IT->getBitWidth())
6029     return false;
6030   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
6031 }
6032 
6033 static bool isTypeLegalForLookupTable(Type *Ty, const TargetTransformInfo &TTI,
6034                                       const DataLayout &DL) {
6035   // Allow any legal type.
6036   if (TTI.isTypeLegal(Ty))
6037     return true;
6038 
6039   auto *IT = dyn_cast<IntegerType>(Ty);
6040   if (!IT)
6041     return false;
6042 
6043   // Also allow power of 2 integer types that have at least 8 bits and fit in
6044   // a register. These types are common in frontend languages and targets
6045   // usually support loads of these types.
6046   // TODO: We could relax this to any integer that fits in a register and rely
6047   // on ABI alignment and padding in the table to allow the load to be widened.
6048   // Or we could widen the constants and truncate the load.
6049   unsigned BitWidth = IT->getBitWidth();
6050   return BitWidth >= 8 && isPowerOf2_32(BitWidth) &&
6051          DL.fitsInLegalInteger(IT->getBitWidth());
6052 }
6053 
6054 static bool isSwitchDense(uint64_t NumCases, uint64_t CaseRange) {
6055   // 40% is the default density for building a jump table in optsize/minsize
6056   // mode. See also TargetLoweringBase::isSuitableForJumpTable(), which this
6057   // function was based on.
6058   const uint64_t MinDensity = 40;
6059 
6060   if (CaseRange >= UINT64_MAX / 100)
6061     return false; // Avoid multiplication overflows below.
6062 
6063   return NumCases * 100 >= CaseRange * MinDensity;
6064 }
6065 
6066 static bool isSwitchDense(ArrayRef<int64_t> Values) {
6067   uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
6068   uint64_t Range = Diff + 1;
6069   if (Range < Diff)
6070     return false; // Overflow.
6071 
6072   return isSwitchDense(Values.size(), Range);
6073 }
6074 
6075 /// Determine whether a lookup table should be built for this switch, based on
6076 /// the number of cases, size of the table, and the types of the results.
6077 // TODO: We could support larger than legal types by limiting based on the
6078 // number of loads required and/or table size. If the constants are small we
6079 // could use smaller table entries and extend after the load.
6080 static bool
6081 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
6082                        const TargetTransformInfo &TTI, const DataLayout &DL,
6083                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
6084   if (SI->getNumCases() > TableSize)
6085     return false; // TableSize overflowed.
6086 
6087   bool AllTablesFitInRegister = true;
6088   bool HasIllegalType = false;
6089   for (const auto &I : ResultTypes) {
6090     Type *Ty = I.second;
6091 
6092     // Saturate this flag to true.
6093     HasIllegalType = HasIllegalType || !isTypeLegalForLookupTable(Ty, TTI, DL);
6094 
6095     // Saturate this flag to false.
6096     AllTablesFitInRegister =
6097         AllTablesFitInRegister &&
6098         SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
6099 
6100     // If both flags saturate, we're done. NOTE: This *only* works with
6101     // saturating flags, and all flags have to saturate first due to the
6102     // non-deterministic behavior of iterating over a dense map.
6103     if (HasIllegalType && !AllTablesFitInRegister)
6104       break;
6105   }
6106 
6107   // If each table would fit in a register, we should build it anyway.
6108   if (AllTablesFitInRegister)
6109     return true;
6110 
6111   // Don't build a table that doesn't fit in-register if it has illegal types.
6112   if (HasIllegalType)
6113     return false;
6114 
6115   return isSwitchDense(SI->getNumCases(), TableSize);
6116 }
6117 
6118 static bool ShouldUseSwitchConditionAsTableIndex(
6119     ConstantInt &MinCaseVal, const ConstantInt &MaxCaseVal,
6120     bool HasDefaultResults, const SmallDenseMap<PHINode *, Type *> &ResultTypes,
6121     const DataLayout &DL, const TargetTransformInfo &TTI) {
6122   if (MinCaseVal.isNullValue())
6123     return true;
6124   if (MinCaseVal.isNegative() ||
6125       MaxCaseVal.getLimitedValue() == std::numeric_limits<uint64_t>::max() ||
6126       !HasDefaultResults)
6127     return false;
6128   return all_of(ResultTypes, [&](const auto &KV) {
6129     return SwitchLookupTable::WouldFitInRegister(
6130         DL, MaxCaseVal.getLimitedValue() + 1 /* TableSize */,
6131         KV.second /* ResultType */);
6132   });
6133 }
6134 
6135 /// Try to reuse the switch table index compare. Following pattern:
6136 /// \code
6137 ///     if (idx < tablesize)
6138 ///        r = table[idx]; // table does not contain default_value
6139 ///     else
6140 ///        r = default_value;
6141 ///     if (r != default_value)
6142 ///        ...
6143 /// \endcode
6144 /// Is optimized to:
6145 /// \code
6146 ///     cond = idx < tablesize;
6147 ///     if (cond)
6148 ///        r = table[idx];
6149 ///     else
6150 ///        r = default_value;
6151 ///     if (cond)
6152 ///        ...
6153 /// \endcode
6154 /// Jump threading will then eliminate the second if(cond).
6155 static void reuseTableCompare(
6156     User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
6157     Constant *DefaultValue,
6158     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
6159   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
6160   if (!CmpInst)
6161     return;
6162 
6163   // We require that the compare is in the same block as the phi so that jump
6164   // threading can do its work afterwards.
6165   if (CmpInst->getParent() != PhiBlock)
6166     return;
6167 
6168   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
6169   if (!CmpOp1)
6170     return;
6171 
6172   Value *RangeCmp = RangeCheckBranch->getCondition();
6173   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
6174   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
6175 
6176   // Check if the compare with the default value is constant true or false.
6177   Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
6178                                                  DefaultValue, CmpOp1, true);
6179   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
6180     return;
6181 
6182   // Check if the compare with the case values is distinct from the default
6183   // compare result.
6184   for (auto ValuePair : Values) {
6185     Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
6186                                                 ValuePair.second, CmpOp1, true);
6187     if (!CaseConst || CaseConst == DefaultConst ||
6188         (CaseConst != TrueConst && CaseConst != FalseConst))
6189       return;
6190   }
6191 
6192   // Check if the branch instruction dominates the phi node. It's a simple
6193   // dominance check, but sufficient for our needs.
6194   // Although this check is invariant in the calling loops, it's better to do it
6195   // at this late stage. Practically we do it at most once for a switch.
6196   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
6197   for (BasicBlock *Pred : predecessors(PhiBlock)) {
6198     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
6199       return;
6200   }
6201 
6202   if (DefaultConst == FalseConst) {
6203     // The compare yields the same result. We can replace it.
6204     CmpInst->replaceAllUsesWith(RangeCmp);
6205     ++NumTableCmpReuses;
6206   } else {
6207     // The compare yields the same result, just inverted. We can replace it.
6208     Value *InvertedTableCmp = BinaryOperator::CreateXor(
6209         RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
6210         RangeCheckBranch);
6211     CmpInst->replaceAllUsesWith(InvertedTableCmp);
6212     ++NumTableCmpReuses;
6213   }
6214 }
6215 
6216 /// If the switch is only used to initialize one or more phi nodes in a common
6217 /// successor block with different constant values, replace the switch with
6218 /// lookup tables.
6219 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
6220                                 DomTreeUpdater *DTU, const DataLayout &DL,
6221                                 const TargetTransformInfo &TTI) {
6222   assert(SI->getNumCases() > 1 && "Degenerate switch?");
6223 
6224   BasicBlock *BB = SI->getParent();
6225   Function *Fn = BB->getParent();
6226   // Only build lookup table when we have a target that supports it or the
6227   // attribute is not set.
6228   if (!TTI.shouldBuildLookupTables() ||
6229       (Fn->getFnAttribute("no-jump-tables").getValueAsBool()))
6230     return false;
6231 
6232   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
6233   // split off a dense part and build a lookup table for that.
6234 
6235   // FIXME: This creates arrays of GEPs to constant strings, which means each
6236   // GEP needs a runtime relocation in PIC code. We should just build one big
6237   // string and lookup indices into that.
6238 
6239   // Ignore switches with less than three cases. Lookup tables will not make
6240   // them faster, so we don't analyze them.
6241   if (SI->getNumCases() < 3)
6242     return false;
6243 
6244   // Figure out the corresponding result for each case value and phi node in the
6245   // common destination, as well as the min and max case values.
6246   assert(!SI->cases().empty());
6247   SwitchInst::CaseIt CI = SI->case_begin();
6248   ConstantInt *MinCaseVal = CI->getCaseValue();
6249   ConstantInt *MaxCaseVal = CI->getCaseValue();
6250 
6251   BasicBlock *CommonDest = nullptr;
6252 
6253   using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>;
6254   SmallDenseMap<PHINode *, ResultListTy> ResultLists;
6255 
6256   SmallDenseMap<PHINode *, Constant *> DefaultResults;
6257   SmallDenseMap<PHINode *, Type *> ResultTypes;
6258   SmallVector<PHINode *, 4> PHIs;
6259 
6260   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
6261     ConstantInt *CaseVal = CI->getCaseValue();
6262     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
6263       MinCaseVal = CaseVal;
6264     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
6265       MaxCaseVal = CaseVal;
6266 
6267     // Resulting value at phi nodes for this case value.
6268     using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
6269     ResultsTy Results;
6270     if (!getCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest,
6271                         Results, DL, TTI))
6272       return false;
6273 
6274     // Append the result from this case to the list for each phi.
6275     for (const auto &I : Results) {
6276       PHINode *PHI = I.first;
6277       Constant *Value = I.second;
6278       if (!ResultLists.count(PHI))
6279         PHIs.push_back(PHI);
6280       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
6281     }
6282   }
6283 
6284   // Keep track of the result types.
6285   for (PHINode *PHI : PHIs) {
6286     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
6287   }
6288 
6289   uint64_t NumResults = ResultLists[PHIs[0]].size();
6290 
6291   // If the table has holes, we need a constant result for the default case
6292   // or a bitmask that fits in a register.
6293   SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
6294   bool HasDefaultResults =
6295       getCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest,
6296                      DefaultResultsList, DL, TTI);
6297 
6298   for (const auto &I : DefaultResultsList) {
6299     PHINode *PHI = I.first;
6300     Constant *Result = I.second;
6301     DefaultResults[PHI] = Result;
6302   }
6303 
6304   bool UseSwitchConditionAsTableIndex = ShouldUseSwitchConditionAsTableIndex(
6305       *MinCaseVal, *MaxCaseVal, HasDefaultResults, ResultTypes, DL, TTI);
6306   uint64_t TableSize;
6307   if (UseSwitchConditionAsTableIndex)
6308     TableSize = MaxCaseVal->getLimitedValue() + 1;
6309   else
6310     TableSize =
6311         (MaxCaseVal->getValue() - MinCaseVal->getValue()).getLimitedValue() + 1;
6312 
6313   bool TableHasHoles = (NumResults < TableSize);
6314   bool NeedMask = (TableHasHoles && !HasDefaultResults);
6315   if (NeedMask) {
6316     // As an extra penalty for the validity test we require more cases.
6317     if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
6318       return false;
6319     if (!DL.fitsInLegalInteger(TableSize))
6320       return false;
6321   }
6322 
6323   if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
6324     return false;
6325 
6326   std::vector<DominatorTree::UpdateType> Updates;
6327 
6328   // Create the BB that does the lookups.
6329   Module &Mod = *CommonDest->getParent()->getParent();
6330   BasicBlock *LookupBB = BasicBlock::Create(
6331       Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
6332 
6333   // Compute the table index value.
6334   Builder.SetInsertPoint(SI);
6335   Value *TableIndex;
6336   ConstantInt *TableIndexOffset;
6337   if (UseSwitchConditionAsTableIndex) {
6338     TableIndexOffset = ConstantInt::get(MaxCaseVal->getType(), 0);
6339     TableIndex = SI->getCondition();
6340   } else {
6341     TableIndexOffset = MinCaseVal;
6342     TableIndex =
6343         Builder.CreateSub(SI->getCondition(), TableIndexOffset, "switch.tableidx");
6344   }
6345 
6346   // Compute the maximum table size representable by the integer type we are
6347   // switching upon.
6348   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
6349   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
6350   assert(MaxTableSize >= TableSize &&
6351          "It is impossible for a switch to have more entries than the max "
6352          "representable value of its input integer type's size.");
6353 
6354   // If the default destination is unreachable, or if the lookup table covers
6355   // all values of the conditional variable, branch directly to the lookup table
6356   // BB. Otherwise, check that the condition is within the case range.
6357   const bool DefaultIsReachable =
6358       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
6359   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
6360   BranchInst *RangeCheckBranch = nullptr;
6361 
6362   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
6363     Builder.CreateBr(LookupBB);
6364     if (DTU)
6365       Updates.push_back({DominatorTree::Insert, BB, LookupBB});
6366     // Note: We call removeProdecessor later since we need to be able to get the
6367     // PHI value for the default case in case we're using a bit mask.
6368   } else {
6369     Value *Cmp = Builder.CreateICmpULT(
6370         TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
6371     RangeCheckBranch =
6372         Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
6373     if (DTU)
6374       Updates.push_back({DominatorTree::Insert, BB, LookupBB});
6375   }
6376 
6377   // Populate the BB that does the lookups.
6378   Builder.SetInsertPoint(LookupBB);
6379 
6380   if (NeedMask) {
6381     // Before doing the lookup, we do the hole check. The LookupBB is therefore
6382     // re-purposed to do the hole check, and we create a new LookupBB.
6383     BasicBlock *MaskBB = LookupBB;
6384     MaskBB->setName("switch.hole_check");
6385     LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
6386                                   CommonDest->getParent(), CommonDest);
6387 
6388     // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid
6389     // unnecessary illegal types.
6390     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
6391     APInt MaskInt(TableSizePowOf2, 0);
6392     APInt One(TableSizePowOf2, 1);
6393     // Build bitmask; fill in a 1 bit for every case.
6394     const ResultListTy &ResultList = ResultLists[PHIs[0]];
6395     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
6396       uint64_t Idx = (ResultList[I].first->getValue() - TableIndexOffset->getValue())
6397                          .getLimitedValue();
6398       MaskInt |= One << Idx;
6399     }
6400     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
6401 
6402     // Get the TableIndex'th bit of the bitmask.
6403     // If this bit is 0 (meaning hole) jump to the default destination,
6404     // else continue with table lookup.
6405     IntegerType *MapTy = TableMask->getType();
6406     Value *MaskIndex =
6407         Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
6408     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
6409     Value *LoBit = Builder.CreateTrunc(
6410         Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
6411     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
6412     if (DTU) {
6413       Updates.push_back({DominatorTree::Insert, MaskBB, LookupBB});
6414       Updates.push_back({DominatorTree::Insert, MaskBB, SI->getDefaultDest()});
6415     }
6416     Builder.SetInsertPoint(LookupBB);
6417     AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, BB);
6418   }
6419 
6420   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
6421     // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later,
6422     // do not delete PHINodes here.
6423     SI->getDefaultDest()->removePredecessor(BB,
6424                                             /*KeepOneInputPHIs=*/true);
6425     if (DTU)
6426       Updates.push_back({DominatorTree::Delete, BB, SI->getDefaultDest()});
6427   }
6428 
6429   for (PHINode *PHI : PHIs) {
6430     const ResultListTy &ResultList = ResultLists[PHI];
6431 
6432     // If using a bitmask, use any value to fill the lookup table holes.
6433     Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
6434     StringRef FuncName = Fn->getName();
6435     SwitchLookupTable Table(Mod, TableSize, TableIndexOffset, ResultList, DV,
6436                             DL, FuncName);
6437 
6438     Value *Result = Table.BuildLookup(TableIndex, Builder);
6439 
6440     // Do a small peephole optimization: re-use the switch table compare if
6441     // possible.
6442     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
6443       BasicBlock *PhiBlock = PHI->getParent();
6444       // Search for compare instructions which use the phi.
6445       for (auto *User : PHI->users()) {
6446         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
6447       }
6448     }
6449 
6450     PHI->addIncoming(Result, LookupBB);
6451   }
6452 
6453   Builder.CreateBr(CommonDest);
6454   if (DTU)
6455     Updates.push_back({DominatorTree::Insert, LookupBB, CommonDest});
6456 
6457   // Remove the switch.
6458   SmallPtrSet<BasicBlock *, 8> RemovedSuccessors;
6459   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
6460     BasicBlock *Succ = SI->getSuccessor(i);
6461 
6462     if (Succ == SI->getDefaultDest())
6463       continue;
6464     Succ->removePredecessor(BB);
6465     if (DTU && RemovedSuccessors.insert(Succ).second)
6466       Updates.push_back({DominatorTree::Delete, BB, Succ});
6467   }
6468   SI->eraseFromParent();
6469 
6470   if (DTU)
6471     DTU->applyUpdates(Updates);
6472 
6473   ++NumLookupTables;
6474   if (NeedMask)
6475     ++NumLookupTablesHoles;
6476   return true;
6477 }
6478 
6479 /// Try to transform a switch that has "holes" in it to a contiguous sequence
6480 /// of cases.
6481 ///
6482 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
6483 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
6484 ///
6485 /// This converts a sparse switch into a dense switch which allows better
6486 /// lowering and could also allow transforming into a lookup table.
6487 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
6488                               const DataLayout &DL,
6489                               const TargetTransformInfo &TTI) {
6490   auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
6491   if (CondTy->getIntegerBitWidth() > 64 ||
6492       !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
6493     return false;
6494   // Only bother with this optimization if there are more than 3 switch cases;
6495   // SDAG will only bother creating jump tables for 4 or more cases.
6496   if (SI->getNumCases() < 4)
6497     return false;
6498 
6499   // This transform is agnostic to the signedness of the input or case values. We
6500   // can treat the case values as signed or unsigned. We can optimize more common
6501   // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
6502   // as signed.
6503   SmallVector<int64_t,4> Values;
6504   for (auto &C : SI->cases())
6505     Values.push_back(C.getCaseValue()->getValue().getSExtValue());
6506   llvm::sort(Values);
6507 
6508   // If the switch is already dense, there's nothing useful to do here.
6509   if (isSwitchDense(Values))
6510     return false;
6511 
6512   // First, transform the values such that they start at zero and ascend.
6513   int64_t Base = Values[0];
6514   for (auto &V : Values)
6515     V -= (uint64_t)(Base);
6516 
6517   // Now we have signed numbers that have been shifted so that, given enough
6518   // precision, there are no negative values. Since the rest of the transform
6519   // is bitwise only, we switch now to an unsigned representation.
6520 
6521   // This transform can be done speculatively because it is so cheap - it
6522   // results in a single rotate operation being inserted.
6523   // FIXME: It's possible that optimizing a switch on powers of two might also
6524   // be beneficial - flag values are often powers of two and we could use a CLZ
6525   // as the key function.
6526 
6527   // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than
6528   // one element and LLVM disallows duplicate cases, Shift is guaranteed to be
6529   // less than 64.
6530   unsigned Shift = 64;
6531   for (auto &V : Values)
6532     Shift = std::min(Shift, countTrailingZeros((uint64_t)V));
6533   assert(Shift < 64);
6534   if (Shift > 0)
6535     for (auto &V : Values)
6536       V = (int64_t)((uint64_t)V >> Shift);
6537 
6538   if (!isSwitchDense(Values))
6539     // Transform didn't create a dense switch.
6540     return false;
6541 
6542   // The obvious transform is to shift the switch condition right and emit a
6543   // check that the condition actually cleanly divided by GCD, i.e.
6544   //   C & (1 << Shift - 1) == 0
6545   // inserting a new CFG edge to handle the case where it didn't divide cleanly.
6546   //
6547   // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
6548   // shift and puts the shifted-off bits in the uppermost bits. If any of these
6549   // are nonzero then the switch condition will be very large and will hit the
6550   // default case.
6551 
6552   auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
6553   Builder.SetInsertPoint(SI);
6554   auto *ShiftC = ConstantInt::get(Ty, Shift);
6555   auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
6556   auto *LShr = Builder.CreateLShr(Sub, ShiftC);
6557   auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift);
6558   auto *Rot = Builder.CreateOr(LShr, Shl);
6559   SI->replaceUsesOfWith(SI->getCondition(), Rot);
6560 
6561   for (auto Case : SI->cases()) {
6562     auto *Orig = Case.getCaseValue();
6563     auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base);
6564     Case.setValue(
6565         cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue()))));
6566   }
6567   return true;
6568 }
6569 
6570 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
6571   BasicBlock *BB = SI->getParent();
6572 
6573   if (isValueEqualityComparison(SI)) {
6574     // If we only have one predecessor, and if it is a branch on this value,
6575     // see if that predecessor totally determines the outcome of this switch.
6576     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
6577       if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
6578         return requestResimplify();
6579 
6580     Value *Cond = SI->getCondition();
6581     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
6582       if (SimplifySwitchOnSelect(SI, Select))
6583         return requestResimplify();
6584 
6585     // If the block only contains the switch, see if we can fold the block
6586     // away into any preds.
6587     if (SI == &*BB->instructionsWithoutDebug(false).begin())
6588       if (FoldValueComparisonIntoPredecessors(SI, Builder))
6589         return requestResimplify();
6590   }
6591 
6592   // Try to transform the switch into an icmp and a branch.
6593   // The conversion from switch to comparison may lose information on
6594   // impossible switch values, so disable it early in the pipeline.
6595   if (Options.ConvertSwitchRangeToICmp && TurnSwitchRangeIntoICmp(SI, Builder))
6596     return requestResimplify();
6597 
6598   // Remove unreachable cases.
6599   if (eliminateDeadSwitchCases(SI, DTU, Options.AC, DL))
6600     return requestResimplify();
6601 
6602   if (trySwitchToSelect(SI, Builder, DTU, DL, TTI))
6603     return requestResimplify();
6604 
6605   if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI))
6606     return requestResimplify();
6607 
6608   // The conversion from switch to lookup tables results in difficult-to-analyze
6609   // code and makes pruning branches much harder. This is a problem if the
6610   // switch expression itself can still be restricted as a result of inlining or
6611   // CVP. Therefore, only apply this transformation during late stages of the
6612   // optimisation pipeline.
6613   if (Options.ConvertSwitchToLookupTable &&
6614       SwitchToLookupTable(SI, Builder, DTU, DL, TTI))
6615     return requestResimplify();
6616 
6617   if (ReduceSwitchRange(SI, Builder, DL, TTI))
6618     return requestResimplify();
6619 
6620   return false;
6621 }
6622 
6623 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) {
6624   BasicBlock *BB = IBI->getParent();
6625   bool Changed = false;
6626 
6627   // Eliminate redundant destinations.
6628   SmallPtrSet<Value *, 8> Succs;
6629   SmallSetVector<BasicBlock *, 8> RemovedSuccs;
6630   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
6631     BasicBlock *Dest = IBI->getDestination(i);
6632     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
6633       if (!Dest->hasAddressTaken())
6634         RemovedSuccs.insert(Dest);
6635       Dest->removePredecessor(BB);
6636       IBI->removeDestination(i);
6637       --i;
6638       --e;
6639       Changed = true;
6640     }
6641   }
6642 
6643   if (DTU) {
6644     std::vector<DominatorTree::UpdateType> Updates;
6645     Updates.reserve(RemovedSuccs.size());
6646     for (auto *RemovedSucc : RemovedSuccs)
6647       Updates.push_back({DominatorTree::Delete, BB, RemovedSucc});
6648     DTU->applyUpdates(Updates);
6649   }
6650 
6651   if (IBI->getNumDestinations() == 0) {
6652     // If the indirectbr has no successors, change it to unreachable.
6653     new UnreachableInst(IBI->getContext(), IBI);
6654     EraseTerminatorAndDCECond(IBI);
6655     return true;
6656   }
6657 
6658   if (IBI->getNumDestinations() == 1) {
6659     // If the indirectbr has one successor, change it to a direct branch.
6660     BranchInst::Create(IBI->getDestination(0), IBI);
6661     EraseTerminatorAndDCECond(IBI);
6662     return true;
6663   }
6664 
6665   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
6666     if (SimplifyIndirectBrOnSelect(IBI, SI))
6667       return requestResimplify();
6668   }
6669   return Changed;
6670 }
6671 
6672 /// Given an block with only a single landing pad and a unconditional branch
6673 /// try to find another basic block which this one can be merged with.  This
6674 /// handles cases where we have multiple invokes with unique landing pads, but
6675 /// a shared handler.
6676 ///
6677 /// We specifically choose to not worry about merging non-empty blocks
6678 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
6679 /// practice, the optimizer produces empty landing pad blocks quite frequently
6680 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
6681 /// sinking in this file)
6682 ///
6683 /// This is primarily a code size optimization.  We need to avoid performing
6684 /// any transform which might inhibit optimization (such as our ability to
6685 /// specialize a particular handler via tail commoning).  We do this by not
6686 /// merging any blocks which require us to introduce a phi.  Since the same
6687 /// values are flowing through both blocks, we don't lose any ability to
6688 /// specialize.  If anything, we make such specialization more likely.
6689 ///
6690 /// TODO - This transformation could remove entries from a phi in the target
6691 /// block when the inputs in the phi are the same for the two blocks being
6692 /// merged.  In some cases, this could result in removal of the PHI entirely.
6693 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
6694                                  BasicBlock *BB, DomTreeUpdater *DTU) {
6695   auto Succ = BB->getUniqueSuccessor();
6696   assert(Succ);
6697   // If there's a phi in the successor block, we'd likely have to introduce
6698   // a phi into the merged landing pad block.
6699   if (isa<PHINode>(*Succ->begin()))
6700     return false;
6701 
6702   for (BasicBlock *OtherPred : predecessors(Succ)) {
6703     if (BB == OtherPred)
6704       continue;
6705     BasicBlock::iterator I = OtherPred->begin();
6706     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
6707     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
6708       continue;
6709     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6710       ;
6711     BranchInst *BI2 = dyn_cast<BranchInst>(I);
6712     if (!BI2 || !BI2->isIdenticalTo(BI))
6713       continue;
6714 
6715     std::vector<DominatorTree::UpdateType> Updates;
6716 
6717     // We've found an identical block.  Update our predecessors to take that
6718     // path instead and make ourselves dead.
6719     SmallSetVector<BasicBlock *, 16> UniquePreds(pred_begin(BB), pred_end(BB));
6720     for (BasicBlock *Pred : UniquePreds) {
6721       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
6722       assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
6723              "unexpected successor");
6724       II->setUnwindDest(OtherPred);
6725       if (DTU) {
6726         Updates.push_back({DominatorTree::Insert, Pred, OtherPred});
6727         Updates.push_back({DominatorTree::Delete, Pred, BB});
6728       }
6729     }
6730 
6731     // The debug info in OtherPred doesn't cover the merged control flow that
6732     // used to go through BB.  We need to delete it or update it.
6733     for (Instruction &Inst : llvm::make_early_inc_range(*OtherPred))
6734       if (isa<DbgInfoIntrinsic>(Inst))
6735         Inst.eraseFromParent();
6736 
6737     SmallSetVector<BasicBlock *, 16> UniqueSuccs(succ_begin(BB), succ_end(BB));
6738     for (BasicBlock *Succ : UniqueSuccs) {
6739       Succ->removePredecessor(BB);
6740       if (DTU)
6741         Updates.push_back({DominatorTree::Delete, BB, Succ});
6742     }
6743 
6744     IRBuilder<> Builder(BI);
6745     Builder.CreateUnreachable();
6746     BI->eraseFromParent();
6747     if (DTU)
6748       DTU->applyUpdates(Updates);
6749     return true;
6750   }
6751   return false;
6752 }
6753 
6754 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) {
6755   return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder)
6756                                    : simplifyCondBranch(Branch, Builder);
6757 }
6758 
6759 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI,
6760                                           IRBuilder<> &Builder) {
6761   BasicBlock *BB = BI->getParent();
6762   BasicBlock *Succ = BI->getSuccessor(0);
6763 
6764   // If the Terminator is the only non-phi instruction, simplify the block.
6765   // If LoopHeader is provided, check if the block or its successor is a loop
6766   // header. (This is for early invocations before loop simplify and
6767   // vectorization to keep canonical loop forms for nested loops. These blocks
6768   // can be eliminated when the pass is invoked later in the back-end.)
6769   // Note that if BB has only one predecessor then we do not introduce new
6770   // backedge, so we can eliminate BB.
6771   bool NeedCanonicalLoop =
6772       Options.NeedCanonicalLoop &&
6773       (!LoopHeaders.empty() && BB->hasNPredecessorsOrMore(2) &&
6774        (is_contained(LoopHeaders, BB) || is_contained(LoopHeaders, Succ)));
6775   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg(true)->getIterator();
6776   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
6777       !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB, DTU))
6778     return true;
6779 
6780   // If the only instruction in the block is a seteq/setne comparison against a
6781   // constant, try to simplify the block.
6782   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
6783     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
6784       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6785         ;
6786       if (I->isTerminator() &&
6787           tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder))
6788         return true;
6789     }
6790 
6791   // See if we can merge an empty landing pad block with another which is
6792   // equivalent.
6793   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
6794     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6795       ;
6796     if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB, DTU))
6797       return true;
6798   }
6799 
6800   // If this basic block is ONLY a compare and a branch, and if a predecessor
6801   // branches to us and our successor, fold the comparison into the
6802   // predecessor and use logical operations to update the incoming value
6803   // for PHI nodes in common successor.
6804   if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI,
6805                              Options.BonusInstThreshold))
6806     return requestResimplify();
6807   return false;
6808 }
6809 
6810 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
6811   BasicBlock *PredPred = nullptr;
6812   for (auto *P : predecessors(BB)) {
6813     BasicBlock *PPred = P->getSinglePredecessor();
6814     if (!PPred || (PredPred && PredPred != PPred))
6815       return nullptr;
6816     PredPred = PPred;
6817   }
6818   return PredPred;
6819 }
6820 
6821 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
6822   assert(
6823       !isa<ConstantInt>(BI->getCondition()) &&
6824       BI->getSuccessor(0) != BI->getSuccessor(1) &&
6825       "Tautological conditional branch should have been eliminated already.");
6826 
6827   BasicBlock *BB = BI->getParent();
6828   if (!Options.SimplifyCondBranch)
6829     return false;
6830 
6831   // Conditional branch
6832   if (isValueEqualityComparison(BI)) {
6833     // If we only have one predecessor, and if it is a branch on this value,
6834     // see if that predecessor totally determines the outcome of this
6835     // switch.
6836     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
6837       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
6838         return requestResimplify();
6839 
6840     // This block must be empty, except for the setcond inst, if it exists.
6841     // Ignore dbg and pseudo intrinsics.
6842     auto I = BB->instructionsWithoutDebug(true).begin();
6843     if (&*I == BI) {
6844       if (FoldValueComparisonIntoPredecessors(BI, Builder))
6845         return requestResimplify();
6846     } else if (&*I == cast<Instruction>(BI->getCondition())) {
6847       ++I;
6848       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
6849         return requestResimplify();
6850     }
6851   }
6852 
6853   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
6854   if (SimplifyBranchOnICmpChain(BI, Builder, DL))
6855     return true;
6856 
6857   // If this basic block has dominating predecessor blocks and the dominating
6858   // blocks' conditions imply BI's condition, we know the direction of BI.
6859   Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL);
6860   if (Imp) {
6861     // Turn this into a branch on constant.
6862     auto *OldCond = BI->getCondition();
6863     ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext())
6864                              : ConstantInt::getFalse(BB->getContext());
6865     BI->setCondition(TorF);
6866     RecursivelyDeleteTriviallyDeadInstructions(OldCond);
6867     return requestResimplify();
6868   }
6869 
6870   // If this basic block is ONLY a compare and a branch, and if a predecessor
6871   // branches to us and one of our successors, fold the comparison into the
6872   // predecessor and use logical operations to pick the right destination.
6873   if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI,
6874                              Options.BonusInstThreshold))
6875     return requestResimplify();
6876 
6877   // We have a conditional branch to two blocks that are only reachable
6878   // from BI.  We know that the condbr dominates the two blocks, so see if
6879   // there is any identical code in the "then" and "else" blocks.  If so, we
6880   // can hoist it up to the branching block.
6881   if (BI->getSuccessor(0)->getSinglePredecessor()) {
6882     if (BI->getSuccessor(1)->getSinglePredecessor()) {
6883       if (HoistCommon &&
6884           HoistThenElseCodeToIf(BI, TTI, !Options.HoistCommonInsts))
6885         return requestResimplify();
6886     } else {
6887       // If Successor #1 has multiple preds, we may be able to conditionally
6888       // execute Successor #0 if it branches to Successor #1.
6889       Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator();
6890       if (Succ0TI->getNumSuccessors() == 1 &&
6891           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
6892         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
6893           return requestResimplify();
6894     }
6895   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
6896     // If Successor #0 has multiple preds, we may be able to conditionally
6897     // execute Successor #1 if it branches to Successor #0.
6898     Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator();
6899     if (Succ1TI->getNumSuccessors() == 1 &&
6900         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
6901       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
6902         return requestResimplify();
6903   }
6904 
6905   // If this is a branch on something for which we know the constant value in
6906   // predecessors (e.g. a phi node in the current block), thread control
6907   // through this block.
6908   if (FoldCondBranchOnValueKnownInPredecessor(BI, DTU, DL, Options.AC))
6909     return requestResimplify();
6910 
6911   // Scan predecessor blocks for conditional branches.
6912   for (BasicBlock *Pred : predecessors(BB))
6913     if (BranchInst *PBI = dyn_cast<BranchInst>(Pred->getTerminator()))
6914       if (PBI != BI && PBI->isConditional())
6915         if (SimplifyCondBranchToCondBranch(PBI, BI, DTU, DL, TTI))
6916           return requestResimplify();
6917 
6918   // Look for diamond patterns.
6919   if (MergeCondStores)
6920     if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
6921       if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
6922         if (PBI != BI && PBI->isConditional())
6923           if (mergeConditionalStores(PBI, BI, DTU, DL, TTI))
6924             return requestResimplify();
6925 
6926   return false;
6927 }
6928 
6929 /// Check if passing a value to an instruction will cause undefined behavior.
6930 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified) {
6931   Constant *C = dyn_cast<Constant>(V);
6932   if (!C)
6933     return false;
6934 
6935   if (I->use_empty())
6936     return false;
6937 
6938   if (C->isNullValue() || isa<UndefValue>(C)) {
6939     // Only look at the first use, avoid hurting compile time with long uselists
6940     auto *Use = cast<Instruction>(*I->user_begin());
6941     // Bail out if Use is not in the same BB as I or Use == I or Use comes
6942     // before I in the block. The latter two can be the case if Use is a PHI
6943     // node.
6944     if (Use->getParent() != I->getParent() || Use == I || Use->comesBefore(I))
6945       return false;
6946 
6947     // Now make sure that there are no instructions in between that can alter
6948     // control flow (eg. calls)
6949     auto InstrRange =
6950         make_range(std::next(I->getIterator()), Use->getIterator());
6951     if (any_of(InstrRange, [](Instruction &I) {
6952           return !isGuaranteedToTransferExecutionToSuccessor(&I);
6953         }))
6954       return false;
6955 
6956     // Look through GEPs. A load from a GEP derived from NULL is still undefined
6957     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
6958       if (GEP->getPointerOperand() == I) {
6959         if (!GEP->isInBounds() || !GEP->hasAllZeroIndices())
6960           PtrValueMayBeModified = true;
6961         return passingValueIsAlwaysUndefined(V, GEP, PtrValueMayBeModified);
6962       }
6963 
6964     // Look through bitcasts.
6965     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
6966       return passingValueIsAlwaysUndefined(V, BC, PtrValueMayBeModified);
6967 
6968     // Load from null is undefined.
6969     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
6970       if (!LI->isVolatile())
6971         return !NullPointerIsDefined(LI->getFunction(),
6972                                      LI->getPointerAddressSpace());
6973 
6974     // Store to null is undefined.
6975     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
6976       if (!SI->isVolatile())
6977         return (!NullPointerIsDefined(SI->getFunction(),
6978                                       SI->getPointerAddressSpace())) &&
6979                SI->getPointerOperand() == I;
6980 
6981     if (auto *CB = dyn_cast<CallBase>(Use)) {
6982       if (C->isNullValue() && NullPointerIsDefined(CB->getFunction()))
6983         return false;
6984       // A call to null is undefined.
6985       if (CB->getCalledOperand() == I)
6986         return true;
6987 
6988       if (C->isNullValue()) {
6989         for (const llvm::Use &Arg : CB->args())
6990           if (Arg == I) {
6991             unsigned ArgIdx = CB->getArgOperandNo(&Arg);
6992             if (CB->isPassingUndefUB(ArgIdx) &&
6993                 CB->paramHasAttr(ArgIdx, Attribute::NonNull)) {
6994               // Passing null to a nonnnull+noundef argument is undefined.
6995               return !PtrValueMayBeModified;
6996             }
6997           }
6998       } else if (isa<UndefValue>(C)) {
6999         // Passing undef to a noundef argument is undefined.
7000         for (const llvm::Use &Arg : CB->args())
7001           if (Arg == I) {
7002             unsigned ArgIdx = CB->getArgOperandNo(&Arg);
7003             if (CB->isPassingUndefUB(ArgIdx)) {
7004               // Passing undef to a noundef argument is undefined.
7005               return true;
7006             }
7007           }
7008       }
7009     }
7010   }
7011   return false;
7012 }
7013 
7014 /// If BB has an incoming value that will always trigger undefined behavior
7015 /// (eg. null pointer dereference), remove the branch leading here.
7016 static bool removeUndefIntroducingPredecessor(BasicBlock *BB,
7017                                               DomTreeUpdater *DTU) {
7018   for (PHINode &PHI : BB->phis())
7019     for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i)
7020       if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) {
7021         BasicBlock *Predecessor = PHI.getIncomingBlock(i);
7022         Instruction *T = Predecessor->getTerminator();
7023         IRBuilder<> Builder(T);
7024         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
7025           BB->removePredecessor(Predecessor);
7026           // Turn uncoditional branches into unreachables and remove the dead
7027           // destination from conditional branches.
7028           if (BI->isUnconditional())
7029             Builder.CreateUnreachable();
7030           else {
7031             // Preserve guarding condition in assume, because it might not be
7032             // inferrable from any dominating condition.
7033             Value *Cond = BI->getCondition();
7034             if (BI->getSuccessor(0) == BB)
7035               Builder.CreateAssumption(Builder.CreateNot(Cond));
7036             else
7037               Builder.CreateAssumption(Cond);
7038             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
7039                                                        : BI->getSuccessor(0));
7040           }
7041           BI->eraseFromParent();
7042           if (DTU)
7043             DTU->applyUpdates({{DominatorTree::Delete, Predecessor, BB}});
7044           return true;
7045         } else if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
7046           // Redirect all branches leading to UB into
7047           // a newly created unreachable block.
7048           BasicBlock *Unreachable = BasicBlock::Create(
7049               Predecessor->getContext(), "unreachable", BB->getParent(), BB);
7050           Builder.SetInsertPoint(Unreachable);
7051           // The new block contains only one instruction: Unreachable
7052           Builder.CreateUnreachable();
7053           for (auto &Case : SI->cases())
7054             if (Case.getCaseSuccessor() == BB) {
7055               BB->removePredecessor(Predecessor);
7056               Case.setSuccessor(Unreachable);
7057             }
7058           if (SI->getDefaultDest() == BB) {
7059             BB->removePredecessor(Predecessor);
7060             SI->setDefaultDest(Unreachable);
7061           }
7062 
7063           if (DTU)
7064             DTU->applyUpdates(
7065                 { { DominatorTree::Insert, Predecessor, Unreachable },
7066                   { DominatorTree::Delete, Predecessor, BB } });
7067           return true;
7068         }
7069       }
7070 
7071   return false;
7072 }
7073 
7074 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) {
7075   bool Changed = false;
7076 
7077   assert(BB && BB->getParent() && "Block not embedded in function!");
7078   assert(BB->getTerminator() && "Degenerate basic block encountered!");
7079 
7080   // Remove basic blocks that have no predecessors (except the entry block)...
7081   // or that just have themself as a predecessor.  These are unreachable.
7082   if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
7083       BB->getSinglePredecessor() == BB) {
7084     LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB);
7085     DeleteDeadBlock(BB, DTU);
7086     return true;
7087   }
7088 
7089   // Check to see if we can constant propagate this terminator instruction
7090   // away...
7091   Changed |= ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true,
7092                                     /*TLI=*/nullptr, DTU);
7093 
7094   // Check for and eliminate duplicate PHI nodes in this block.
7095   Changed |= EliminateDuplicatePHINodes(BB);
7096 
7097   // Check for and remove branches that will always cause undefined behavior.
7098   if (removeUndefIntroducingPredecessor(BB, DTU))
7099     return requestResimplify();
7100 
7101   // Merge basic blocks into their predecessor if there is only one distinct
7102   // pred, and if there is only one distinct successor of the predecessor, and
7103   // if there are no PHI nodes.
7104   if (MergeBlockIntoPredecessor(BB, DTU))
7105     return true;
7106 
7107   if (SinkCommon && Options.SinkCommonInsts)
7108     if (SinkCommonCodeFromPredecessors(BB, DTU) ||
7109         MergeCompatibleInvokes(BB, DTU)) {
7110       // SinkCommonCodeFromPredecessors() does not automatically CSE PHI's,
7111       // so we may now how duplicate PHI's.
7112       // Let's rerun EliminateDuplicatePHINodes() first,
7113       // before FoldTwoEntryPHINode() potentially converts them into select's,
7114       // after which we'd need a whole EarlyCSE pass run to cleanup them.
7115       return true;
7116     }
7117 
7118   IRBuilder<> Builder(BB);
7119 
7120   if (Options.FoldTwoEntryPHINode) {
7121     // If there is a trivial two-entry PHI node in this basic block, and we can
7122     // eliminate it, do so now.
7123     if (auto *PN = dyn_cast<PHINode>(BB->begin()))
7124       if (PN->getNumIncomingValues() == 2)
7125         if (FoldTwoEntryPHINode(PN, TTI, DTU, DL))
7126           return true;
7127   }
7128 
7129   Instruction *Terminator = BB->getTerminator();
7130   Builder.SetInsertPoint(Terminator);
7131   switch (Terminator->getOpcode()) {
7132   case Instruction::Br:
7133     Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder);
7134     break;
7135   case Instruction::Resume:
7136     Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder);
7137     break;
7138   case Instruction::CleanupRet:
7139     Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator));
7140     break;
7141   case Instruction::Switch:
7142     Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder);
7143     break;
7144   case Instruction::Unreachable:
7145     Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator));
7146     break;
7147   case Instruction::IndirectBr:
7148     Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator));
7149     break;
7150   }
7151 
7152   return Changed;
7153 }
7154 
7155 bool SimplifyCFGOpt::run(BasicBlock *BB) {
7156   bool Changed = false;
7157 
7158   // Repeated simplify BB as long as resimplification is requested.
7159   do {
7160     Resimplify = false;
7161 
7162     // Perform one round of simplifcation. Resimplify flag will be set if
7163     // another iteration is requested.
7164     Changed |= simplifyOnce(BB);
7165   } while (Resimplify);
7166 
7167   return Changed;
7168 }
7169 
7170 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
7171                        DomTreeUpdater *DTU, const SimplifyCFGOptions &Options,
7172                        ArrayRef<WeakVH> LoopHeaders) {
7173   return SimplifyCFGOpt(TTI, DTU, BB->getModule()->getDataLayout(), LoopHeaders,
7174                         Options)
7175       .run(BB);
7176 }
7177