1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Peephole optimize the CFG.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/ScopeExit.h"
20 #include "llvm/ADT/Sequence.h"
21 #include "llvm/ADT/SetOperations.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/Analysis/AssumptionCache.h"
28 #include "llvm/Analysis/ConstantFolding.h"
29 #include "llvm/Analysis/EHPersonalities.h"
30 #include "llvm/Analysis/GuardUtils.h"
31 #include "llvm/Analysis/InstructionSimplify.h"
32 #include "llvm/Analysis/MemorySSA.h"
33 #include "llvm/Analysis/MemorySSAUpdater.h"
34 #include "llvm/Analysis/TargetTransformInfo.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/IR/Attributes.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/CFG.h"
39 #include "llvm/IR/Constant.h"
40 #include "llvm/IR/ConstantRange.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/DerivedTypes.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/GlobalValue.h"
46 #include "llvm/IR/GlobalVariable.h"
47 #include "llvm/IR/IRBuilder.h"
48 #include "llvm/IR/InstrTypes.h"
49 #include "llvm/IR/Instruction.h"
50 #include "llvm/IR/Instructions.h"
51 #include "llvm/IR/IntrinsicInst.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/MDBuilder.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/NoFolder.h"
58 #include "llvm/IR/Operator.h"
59 #include "llvm/IR/PatternMatch.h"
60 #include "llvm/IR/Type.h"
61 #include "llvm/IR/Use.h"
62 #include "llvm/IR/User.h"
63 #include "llvm/IR/Value.h"
64 #include "llvm/IR/ValueHandle.h"
65 #include "llvm/Support/Casting.h"
66 #include "llvm/Support/CommandLine.h"
67 #include "llvm/Support/Debug.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/KnownBits.h"
70 #include "llvm/Support/MathExtras.h"
71 #include "llvm/Support/raw_ostream.h"
72 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
73 #include "llvm/Transforms/Utils/Local.h"
74 #include "llvm/Transforms/Utils/SSAUpdater.h"
75 #include "llvm/Transforms/Utils/ValueMapper.h"
76 #include <algorithm>
77 #include <cassert>
78 #include <climits>
79 #include <cstddef>
80 #include <cstdint>
81 #include <iterator>
82 #include <map>
83 #include <set>
84 #include <tuple>
85 #include <utility>
86 #include <vector>
87 
88 using namespace llvm;
89 using namespace PatternMatch;
90 
91 #define DEBUG_TYPE "simplifycfg"
92 
93 cl::opt<bool> llvm::RequireAndPreserveDomTree(
94     "simplifycfg-require-and-preserve-domtree", cl::Hidden, cl::ZeroOrMore,
95     cl::init(false),
96     cl::desc("Temorary development switch used to gradually uplift SimplifyCFG "
97              "into preserving DomTree,"));
98 
99 // Chosen as 2 so as to be cheap, but still to have enough power to fold
100 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
101 // To catch this, we need to fold a compare and a select, hence '2' being the
102 // minimum reasonable default.
103 static cl::opt<unsigned> PHINodeFoldingThreshold(
104     "phi-node-folding-threshold", cl::Hidden, cl::init(2),
105     cl::desc(
106         "Control the amount of phi node folding to perform (default = 2)"));
107 
108 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold(
109     "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4),
110     cl::desc("Control the maximal total instruction cost that we are willing "
111              "to speculatively execute to fold a 2-entry PHI node into a "
112              "select (default = 4)"));
113 
114 static cl::opt<bool> DupRet(
115     "simplifycfg-dup-ret", cl::Hidden, cl::init(false),
116     cl::desc("Duplicate return instructions into unconditional branches"));
117 
118 static cl::opt<bool>
119     HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true),
120                 cl::desc("Hoist common instructions up to the parent block"));
121 
122 static cl::opt<bool>
123     SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
124                cl::desc("Sink common instructions down to the end block"));
125 
126 static cl::opt<bool> HoistCondStores(
127     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
128     cl::desc("Hoist conditional stores if an unconditional store precedes"));
129 
130 static cl::opt<bool> MergeCondStores(
131     "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
132     cl::desc("Hoist conditional stores even if an unconditional store does not "
133              "precede - hoist multiple conditional stores into a single "
134              "predicated store"));
135 
136 static cl::opt<bool> MergeCondStoresAggressively(
137     "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
138     cl::desc("When merging conditional stores, do so even if the resultant "
139              "basic blocks are unlikely to be if-converted as a result"));
140 
141 static cl::opt<bool> SpeculateOneExpensiveInst(
142     "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
143     cl::desc("Allow exactly one expensive instruction to be speculatively "
144              "executed"));
145 
146 static cl::opt<unsigned> MaxSpeculationDepth(
147     "max-speculation-depth", cl::Hidden, cl::init(10),
148     cl::desc("Limit maximum recursion depth when calculating costs of "
149              "speculatively executed instructions"));
150 
151 static cl::opt<int>
152 MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden, cl::init(10),
153                   cl::desc("Max size of a block which is still considered "
154                            "small enough to thread through"));
155 
156 // Two is chosen to allow one negation and a logical combine.
157 static cl::opt<unsigned>
158     BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden,
159                         cl::init(2),
160                         cl::desc("Maximum cost of combining conditions when "
161                                  "folding branches"));
162 
163 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
164 STATISTIC(NumLinearMaps,
165           "Number of switch instructions turned into linear mapping");
166 STATISTIC(NumLookupTables,
167           "Number of switch instructions turned into lookup tables");
168 STATISTIC(
169     NumLookupTablesHoles,
170     "Number of switch instructions turned into lookup tables (holes checked)");
171 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
172 STATISTIC(NumFoldValueComparisonIntoPredecessors,
173           "Number of value comparisons folded into predecessor basic blocks");
174 STATISTIC(NumFoldBranchToCommonDest,
175           "Number of branches folded into predecessor basic block");
176 STATISTIC(
177     NumHoistCommonCode,
178     "Number of common instruction 'blocks' hoisted up to the begin block");
179 STATISTIC(NumHoistCommonInstrs,
180           "Number of common instructions hoisted up to the begin block");
181 STATISTIC(NumSinkCommonCode,
182           "Number of common instruction 'blocks' sunk down to the end block");
183 STATISTIC(NumSinkCommonInstrs,
184           "Number of common instructions sunk down to the end block");
185 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
186 STATISTIC(NumInvokes,
187           "Number of invokes with empty resume blocks simplified into calls");
188 
189 namespace {
190 
191 // The first field contains the value that the switch produces when a certain
192 // case group is selected, and the second field is a vector containing the
193 // cases composing the case group.
194 using SwitchCaseResultVectorTy =
195     SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>;
196 
197 // The first field contains the phi node that generates a result of the switch
198 // and the second field contains the value generated for a certain case in the
199 // switch for that PHI.
200 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
201 
202 /// ValueEqualityComparisonCase - Represents a case of a switch.
203 struct ValueEqualityComparisonCase {
204   ConstantInt *Value;
205   BasicBlock *Dest;
206 
207   ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
208       : Value(Value), Dest(Dest) {}
209 
210   bool operator<(ValueEqualityComparisonCase RHS) const {
211     // Comparing pointers is ok as we only rely on the order for uniquing.
212     return Value < RHS.Value;
213   }
214 
215   bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
216 };
217 
218 class SimplifyCFGOpt {
219   const TargetTransformInfo &TTI;
220   DomTreeUpdater *DTU;
221   const DataLayout &DL;
222   ArrayRef<WeakVH> LoopHeaders;
223   const SimplifyCFGOptions &Options;
224   bool Resimplify;
225 
226   Value *isValueEqualityComparison(Instruction *TI);
227   BasicBlock *GetValueEqualityComparisonCases(
228       Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases);
229   bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI,
230                                                      BasicBlock *Pred,
231                                                      IRBuilder<> &Builder);
232   bool PerformValueComparisonIntoPredecessorFolding(Instruction *TI, Value *&CV,
233                                                     Instruction *PTI,
234                                                     IRBuilder<> &Builder);
235   bool FoldValueComparisonIntoPredecessors(Instruction *TI,
236                                            IRBuilder<> &Builder);
237 
238   bool simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
239   bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
240   bool simplifySingleResume(ResumeInst *RI);
241   bool simplifyCommonResume(ResumeInst *RI);
242   bool simplifyCleanupReturn(CleanupReturnInst *RI);
243   bool simplifyUnreachable(UnreachableInst *UI);
244   bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
245   bool simplifyIndirectBr(IndirectBrInst *IBI);
246   bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder);
247   bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
248   bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
249   bool SimplifyCondBranchToTwoReturns(BranchInst *BI, IRBuilder<> &Builder);
250 
251   bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
252                                              IRBuilder<> &Builder);
253 
254   bool HoistThenElseCodeToIf(BranchInst *BI, const TargetTransformInfo &TTI);
255   bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
256                               const TargetTransformInfo &TTI);
257   bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond,
258                                   BasicBlock *TrueBB, BasicBlock *FalseBB,
259                                   uint32_t TrueWeight, uint32_t FalseWeight);
260   bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
261                                  const DataLayout &DL);
262   bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select);
263   bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI);
264   bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder);
265 
266 public:
267   SimplifyCFGOpt(const TargetTransformInfo &TTI, DomTreeUpdater *DTU,
268                  const DataLayout &DL, ArrayRef<WeakVH> LoopHeaders,
269                  const SimplifyCFGOptions &Opts)
270       : TTI(TTI), DTU(DTU), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {
271     assert((!DTU || !DTU->hasPostDomTree()) &&
272            "SimplifyCFG is not yet capable of maintaining validity of a "
273            "PostDomTree, so don't ask for it.");
274   }
275 
276   bool simplifyOnce(BasicBlock *BB);
277   bool simplifyOnceImpl(BasicBlock *BB);
278   bool run(BasicBlock *BB);
279 
280   // Helper to set Resimplify and return change indication.
281   bool requestResimplify() {
282     Resimplify = true;
283     return true;
284   }
285 };
286 
287 } // end anonymous namespace
288 
289 /// Return true if it is safe to merge these two
290 /// terminator instructions together.
291 static bool
292 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2,
293                        SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
294   if (SI1 == SI2)
295     return false; // Can't merge with self!
296 
297   // It is not safe to merge these two switch instructions if they have a common
298   // successor, and if that successor has a PHI node, and if *that* PHI node has
299   // conflicting incoming values from the two switch blocks.
300   BasicBlock *SI1BB = SI1->getParent();
301   BasicBlock *SI2BB = SI2->getParent();
302 
303   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
304   bool Fail = false;
305   for (BasicBlock *Succ : successors(SI2BB))
306     if (SI1Succs.count(Succ))
307       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
308         PHINode *PN = cast<PHINode>(BBI);
309         if (PN->getIncomingValueForBlock(SI1BB) !=
310             PN->getIncomingValueForBlock(SI2BB)) {
311           if (FailBlocks)
312             FailBlocks->insert(Succ);
313           Fail = true;
314         }
315       }
316 
317   return !Fail;
318 }
319 
320 /// Update PHI nodes in Succ to indicate that there will now be entries in it
321 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
322 /// will be the same as those coming in from ExistPred, an existing predecessor
323 /// of Succ.
324 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
325                                   BasicBlock *ExistPred,
326                                   MemorySSAUpdater *MSSAU = nullptr) {
327   for (PHINode &PN : Succ->phis())
328     PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred);
329   if (MSSAU)
330     if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ))
331       MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred);
332 }
333 
334 /// Compute an abstract "cost" of speculating the given instruction,
335 /// which is assumed to be safe to speculate. TCC_Free means cheap,
336 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
337 /// expensive.
338 static unsigned ComputeSpeculationCost(const User *I,
339                                        const TargetTransformInfo &TTI) {
340   assert(isSafeToSpeculativelyExecute(I) &&
341          "Instruction is not safe to speculatively execute!");
342   return TTI.getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency);
343 }
344 
345 /// If we have a merge point of an "if condition" as accepted above,
346 /// return true if the specified value dominates the block.  We
347 /// don't handle the true generality of domination here, just a special case
348 /// which works well enough for us.
349 ///
350 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
351 /// see if V (which must be an instruction) and its recursive operands
352 /// that do not dominate BB have a combined cost lower than CostRemaining and
353 /// are non-trapping.  If both are true, the instruction is inserted into the
354 /// set and true is returned.
355 ///
356 /// The cost for most non-trapping instructions is defined as 1 except for
357 /// Select whose cost is 2.
358 ///
359 /// After this function returns, CostRemaining is decreased by the cost of
360 /// V plus its non-dominating operands.  If that cost is greater than
361 /// CostRemaining, false is returned and CostRemaining is undefined.
362 static bool DominatesMergePoint(Value *V, BasicBlock *BB,
363                                 SmallPtrSetImpl<Instruction *> &AggressiveInsts,
364                                 int &BudgetRemaining,
365                                 const TargetTransformInfo &TTI,
366                                 unsigned Depth = 0) {
367   // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
368   // so limit the recursion depth.
369   // TODO: While this recursion limit does prevent pathological behavior, it
370   // would be better to track visited instructions to avoid cycles.
371   if (Depth == MaxSpeculationDepth)
372     return false;
373 
374   Instruction *I = dyn_cast<Instruction>(V);
375   if (!I) {
376     // Non-instructions all dominate instructions, but not all constantexprs
377     // can be executed unconditionally.
378     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
379       if (C->canTrap())
380         return false;
381     return true;
382   }
383   BasicBlock *PBB = I->getParent();
384 
385   // We don't want to allow weird loops that might have the "if condition" in
386   // the bottom of this block.
387   if (PBB == BB)
388     return false;
389 
390   // If this instruction is defined in a block that contains an unconditional
391   // branch to BB, then it must be in the 'conditional' part of the "if
392   // statement".  If not, it definitely dominates the region.
393   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
394   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
395     return true;
396 
397   // If we have seen this instruction before, don't count it again.
398   if (AggressiveInsts.count(I))
399     return true;
400 
401   // Okay, it looks like the instruction IS in the "condition".  Check to
402   // see if it's a cheap instruction to unconditionally compute, and if it
403   // only uses stuff defined outside of the condition.  If so, hoist it out.
404   if (!isSafeToSpeculativelyExecute(I))
405     return false;
406 
407   BudgetRemaining -= ComputeSpeculationCost(I, TTI);
408 
409   // Allow exactly one instruction to be speculated regardless of its cost
410   // (as long as it is safe to do so).
411   // This is intended to flatten the CFG even if the instruction is a division
412   // or other expensive operation. The speculation of an expensive instruction
413   // is expected to be undone in CodeGenPrepare if the speculation has not
414   // enabled further IR optimizations.
415   if (BudgetRemaining < 0 &&
416       (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0))
417     return false;
418 
419   // Okay, we can only really hoist these out if their operands do
420   // not take us over the cost threshold.
421   for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
422     if (!DominatesMergePoint(*i, BB, AggressiveInsts, BudgetRemaining, TTI,
423                              Depth + 1))
424       return false;
425   // Okay, it's safe to do this!  Remember this instruction.
426   AggressiveInsts.insert(I);
427   return true;
428 }
429 
430 /// Extract ConstantInt from value, looking through IntToPtr
431 /// and PointerNullValue. Return NULL if value is not a constant int.
432 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
433   // Normal constant int.
434   ConstantInt *CI = dyn_cast<ConstantInt>(V);
435   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
436     return CI;
437 
438   // This is some kind of pointer constant. Turn it into a pointer-sized
439   // ConstantInt if possible.
440   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
441 
442   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
443   if (isa<ConstantPointerNull>(V))
444     return ConstantInt::get(PtrTy, 0);
445 
446   // IntToPtr const int.
447   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
448     if (CE->getOpcode() == Instruction::IntToPtr)
449       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
450         // The constant is very likely to have the right type already.
451         if (CI->getType() == PtrTy)
452           return CI;
453         else
454           return cast<ConstantInt>(
455               ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
456       }
457   return nullptr;
458 }
459 
460 namespace {
461 
462 /// Given a chain of or (||) or and (&&) comparison of a value against a
463 /// constant, this will try to recover the information required for a switch
464 /// structure.
465 /// It will depth-first traverse the chain of comparison, seeking for patterns
466 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
467 /// representing the different cases for the switch.
468 /// Note that if the chain is composed of '||' it will build the set of elements
469 /// that matches the comparisons (i.e. any of this value validate the chain)
470 /// while for a chain of '&&' it will build the set elements that make the test
471 /// fail.
472 struct ConstantComparesGatherer {
473   const DataLayout &DL;
474 
475   /// Value found for the switch comparison
476   Value *CompValue = nullptr;
477 
478   /// Extra clause to be checked before the switch
479   Value *Extra = nullptr;
480 
481   /// Set of integers to match in switch
482   SmallVector<ConstantInt *, 8> Vals;
483 
484   /// Number of comparisons matched in the and/or chain
485   unsigned UsedICmps = 0;
486 
487   /// Construct and compute the result for the comparison instruction Cond
488   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) {
489     gather(Cond);
490   }
491 
492   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
493   ConstantComparesGatherer &
494   operator=(const ConstantComparesGatherer &) = delete;
495 
496 private:
497   /// Try to set the current value used for the comparison, it succeeds only if
498   /// it wasn't set before or if the new value is the same as the old one
499   bool setValueOnce(Value *NewVal) {
500     if (CompValue && CompValue != NewVal)
501       return false;
502     CompValue = NewVal;
503     return (CompValue != nullptr);
504   }
505 
506   /// Try to match Instruction "I" as a comparison against a constant and
507   /// populates the array Vals with the set of values that match (or do not
508   /// match depending on isEQ).
509   /// Return false on failure. On success, the Value the comparison matched
510   /// against is placed in CompValue.
511   /// If CompValue is already set, the function is expected to fail if a match
512   /// is found but the value compared to is different.
513   bool matchInstruction(Instruction *I, bool isEQ) {
514     // If this is an icmp against a constant, handle this as one of the cases.
515     ICmpInst *ICI;
516     ConstantInt *C;
517     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
518           (C = GetConstantInt(I->getOperand(1), DL)))) {
519       return false;
520     }
521 
522     Value *RHSVal;
523     const APInt *RHSC;
524 
525     // Pattern match a special case
526     // (x & ~2^z) == y --> x == y || x == y|2^z
527     // This undoes a transformation done by instcombine to fuse 2 compares.
528     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
529       // It's a little bit hard to see why the following transformations are
530       // correct. Here is a CVC3 program to verify them for 64-bit values:
531 
532       /*
533          ONE  : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
534          x    : BITVECTOR(64);
535          y    : BITVECTOR(64);
536          z    : BITVECTOR(64);
537          mask : BITVECTOR(64) = BVSHL(ONE, z);
538          QUERY( (y & ~mask = y) =>
539                 ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
540          );
541          QUERY( (y |  mask = y) =>
542                 ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
543          );
544       */
545 
546       // Please note that each pattern must be a dual implication (<--> or
547       // iff). One directional implication can create spurious matches. If the
548       // implication is only one-way, an unsatisfiable condition on the left
549       // side can imply a satisfiable condition on the right side. Dual
550       // implication ensures that satisfiable conditions are transformed to
551       // other satisfiable conditions and unsatisfiable conditions are
552       // transformed to other unsatisfiable conditions.
553 
554       // Here is a concrete example of a unsatisfiable condition on the left
555       // implying a satisfiable condition on the right:
556       //
557       // mask = (1 << z)
558       // (x & ~mask) == y  --> (x == y || x == (y | mask))
559       //
560       // Substituting y = 3, z = 0 yields:
561       // (x & -2) == 3 --> (x == 3 || x == 2)
562 
563       // Pattern match a special case:
564       /*
565         QUERY( (y & ~mask = y) =>
566                ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
567         );
568       */
569       if (match(ICI->getOperand(0),
570                 m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
571         APInt Mask = ~*RHSC;
572         if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
573           // If we already have a value for the switch, it has to match!
574           if (!setValueOnce(RHSVal))
575             return false;
576 
577           Vals.push_back(C);
578           Vals.push_back(
579               ConstantInt::get(C->getContext(),
580                                C->getValue() | Mask));
581           UsedICmps++;
582           return true;
583         }
584       }
585 
586       // Pattern match a special case:
587       /*
588         QUERY( (y |  mask = y) =>
589                ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
590         );
591       */
592       if (match(ICI->getOperand(0),
593                 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
594         APInt Mask = *RHSC;
595         if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
596           // If we already have a value for the switch, it has to match!
597           if (!setValueOnce(RHSVal))
598             return false;
599 
600           Vals.push_back(C);
601           Vals.push_back(ConstantInt::get(C->getContext(),
602                                           C->getValue() & ~Mask));
603           UsedICmps++;
604           return true;
605         }
606       }
607 
608       // If we already have a value for the switch, it has to match!
609       if (!setValueOnce(ICI->getOperand(0)))
610         return false;
611 
612       UsedICmps++;
613       Vals.push_back(C);
614       return ICI->getOperand(0);
615     }
616 
617     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
618     ConstantRange Span = ConstantRange::makeAllowedICmpRegion(
619         ICI->getPredicate(), C->getValue());
620 
621     // Shift the range if the compare is fed by an add. This is the range
622     // compare idiom as emitted by instcombine.
623     Value *CandidateVal = I->getOperand(0);
624     if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
625       Span = Span.subtract(*RHSC);
626       CandidateVal = RHSVal;
627     }
628 
629     // If this is an and/!= check, then we are looking to build the set of
630     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
631     // x != 0 && x != 1.
632     if (!isEQ)
633       Span = Span.inverse();
634 
635     // If there are a ton of values, we don't want to make a ginormous switch.
636     if (Span.isSizeLargerThan(8) || Span.isEmptySet()) {
637       return false;
638     }
639 
640     // If we already have a value for the switch, it has to match!
641     if (!setValueOnce(CandidateVal))
642       return false;
643 
644     // Add all values from the range to the set
645     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
646       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
647 
648     UsedICmps++;
649     return true;
650   }
651 
652   /// Given a potentially 'or'd or 'and'd together collection of icmp
653   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
654   /// the value being compared, and stick the list constants into the Vals
655   /// vector.
656   /// One "Extra" case is allowed to differ from the other.
657   void gather(Value *V) {
658     bool isEQ = match(V, m_LogicalOr(m_Value(), m_Value()));
659 
660     // Keep a stack (SmallVector for efficiency) for depth-first traversal
661     SmallVector<Value *, 8> DFT;
662     SmallPtrSet<Value *, 8> Visited;
663 
664     // Initialize
665     Visited.insert(V);
666     DFT.push_back(V);
667 
668     while (!DFT.empty()) {
669       V = DFT.pop_back_val();
670 
671       if (Instruction *I = dyn_cast<Instruction>(V)) {
672         // If it is a || (or && depending on isEQ), process the operands.
673         Value *Op0, *Op1;
674         if (isEQ ? match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1)))
675                  : match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
676           if (Visited.insert(Op1).second)
677             DFT.push_back(Op1);
678           if (Visited.insert(Op0).second)
679             DFT.push_back(Op0);
680 
681           continue;
682         }
683 
684         // Try to match the current instruction
685         if (matchInstruction(I, isEQ))
686           // Match succeed, continue the loop
687           continue;
688       }
689 
690       // One element of the sequence of || (or &&) could not be match as a
691       // comparison against the same value as the others.
692       // We allow only one "Extra" case to be checked before the switch
693       if (!Extra) {
694         Extra = V;
695         continue;
696       }
697       // Failed to parse a proper sequence, abort now
698       CompValue = nullptr;
699       break;
700     }
701   }
702 };
703 
704 } // end anonymous namespace
705 
706 static void EraseTerminatorAndDCECond(Instruction *TI,
707                                       MemorySSAUpdater *MSSAU = nullptr) {
708   Instruction *Cond = nullptr;
709   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
710     Cond = dyn_cast<Instruction>(SI->getCondition());
711   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
712     if (BI->isConditional())
713       Cond = dyn_cast<Instruction>(BI->getCondition());
714   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
715     Cond = dyn_cast<Instruction>(IBI->getAddress());
716   }
717 
718   TI->eraseFromParent();
719   if (Cond)
720     RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU);
721 }
722 
723 /// Return true if the specified terminator checks
724 /// to see if a value is equal to constant integer value.
725 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) {
726   Value *CV = nullptr;
727   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
728     // Do not permit merging of large switch instructions into their
729     // predecessors unless there is only one predecessor.
730     if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors()))
731       CV = SI->getCondition();
732   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
733     if (BI->isConditional() && BI->getCondition()->hasOneUse())
734       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
735         if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
736           CV = ICI->getOperand(0);
737       }
738 
739   // Unwrap any lossless ptrtoint cast.
740   if (CV) {
741     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
742       Value *Ptr = PTII->getPointerOperand();
743       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
744         CV = Ptr;
745     }
746   }
747   return CV;
748 }
749 
750 /// Given a value comparison instruction,
751 /// decode all of the 'cases' that it represents and return the 'default' block.
752 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
753     Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
754   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
755     Cases.reserve(SI->getNumCases());
756     for (auto Case : SI->cases())
757       Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(),
758                                                   Case.getCaseSuccessor()));
759     return SI->getDefaultDest();
760   }
761 
762   BranchInst *BI = cast<BranchInst>(TI);
763   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
764   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
765   Cases.push_back(ValueEqualityComparisonCase(
766       GetConstantInt(ICI->getOperand(1), DL), Succ));
767   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
768 }
769 
770 /// Given a vector of bb/value pairs, remove any entries
771 /// in the list that match the specified block.
772 static void
773 EliminateBlockCases(BasicBlock *BB,
774                     std::vector<ValueEqualityComparisonCase> &Cases) {
775   llvm::erase_value(Cases, BB);
776 }
777 
778 /// Return true if there are any keys in C1 that exist in C2 as well.
779 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
780                           std::vector<ValueEqualityComparisonCase> &C2) {
781   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
782 
783   // Make V1 be smaller than V2.
784   if (V1->size() > V2->size())
785     std::swap(V1, V2);
786 
787   if (V1->empty())
788     return false;
789   if (V1->size() == 1) {
790     // Just scan V2.
791     ConstantInt *TheVal = (*V1)[0].Value;
792     for (unsigned i = 0, e = V2->size(); i != e; ++i)
793       if (TheVal == (*V2)[i].Value)
794         return true;
795   }
796 
797   // Otherwise, just sort both lists and compare element by element.
798   array_pod_sort(V1->begin(), V1->end());
799   array_pod_sort(V2->begin(), V2->end());
800   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
801   while (i1 != e1 && i2 != e2) {
802     if ((*V1)[i1].Value == (*V2)[i2].Value)
803       return true;
804     if ((*V1)[i1].Value < (*V2)[i2].Value)
805       ++i1;
806     else
807       ++i2;
808   }
809   return false;
810 }
811 
812 // Set branch weights on SwitchInst. This sets the metadata if there is at
813 // least one non-zero weight.
814 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) {
815   // Check that there is at least one non-zero weight. Otherwise, pass
816   // nullptr to setMetadata which will erase the existing metadata.
817   MDNode *N = nullptr;
818   if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; }))
819     N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights);
820   SI->setMetadata(LLVMContext::MD_prof, N);
821 }
822 
823 // Similar to the above, but for branch and select instructions that take
824 // exactly 2 weights.
825 static void setBranchWeights(Instruction *I, uint32_t TrueWeight,
826                              uint32_t FalseWeight) {
827   assert(isa<BranchInst>(I) || isa<SelectInst>(I));
828   // Check that there is at least one non-zero weight. Otherwise, pass
829   // nullptr to setMetadata which will erase the existing metadata.
830   MDNode *N = nullptr;
831   if (TrueWeight || FalseWeight)
832     N = MDBuilder(I->getParent()->getContext())
833             .createBranchWeights(TrueWeight, FalseWeight);
834   I->setMetadata(LLVMContext::MD_prof, N);
835 }
836 
837 /// If TI is known to be a terminator instruction and its block is known to
838 /// only have a single predecessor block, check to see if that predecessor is
839 /// also a value comparison with the same value, and if that comparison
840 /// determines the outcome of this comparison. If so, simplify TI. This does a
841 /// very limited form of jump threading.
842 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
843     Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
844   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
845   if (!PredVal)
846     return false; // Not a value comparison in predecessor.
847 
848   Value *ThisVal = isValueEqualityComparison(TI);
849   assert(ThisVal && "This isn't a value comparison!!");
850   if (ThisVal != PredVal)
851     return false; // Different predicates.
852 
853   // TODO: Preserve branch weight metadata, similarly to how
854   // FoldValueComparisonIntoPredecessors preserves it.
855 
856   // Find out information about when control will move from Pred to TI's block.
857   std::vector<ValueEqualityComparisonCase> PredCases;
858   BasicBlock *PredDef =
859       GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
860   EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
861 
862   // Find information about how control leaves this block.
863   std::vector<ValueEqualityComparisonCase> ThisCases;
864   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
865   EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
866 
867   // If TI's block is the default block from Pred's comparison, potentially
868   // simplify TI based on this knowledge.
869   if (PredDef == TI->getParent()) {
870     // If we are here, we know that the value is none of those cases listed in
871     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
872     // can simplify TI.
873     if (!ValuesOverlap(PredCases, ThisCases))
874       return false;
875 
876     if (isa<BranchInst>(TI)) {
877       // Okay, one of the successors of this condbr is dead.  Convert it to a
878       // uncond br.
879       assert(ThisCases.size() == 1 && "Branch can only have one case!");
880       // Insert the new branch.
881       Instruction *NI = Builder.CreateBr(ThisDef);
882       (void)NI;
883 
884       // Remove PHI node entries for the dead edge.
885       ThisCases[0].Dest->removePredecessor(PredDef);
886 
887       LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
888                         << "Through successor TI: " << *TI << "Leaving: " << *NI
889                         << "\n");
890 
891       EraseTerminatorAndDCECond(TI);
892 
893       if (DTU)
894         DTU->applyUpdates(
895             {{DominatorTree::Delete, PredDef, ThisCases[0].Dest}});
896 
897       return true;
898     }
899 
900     SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI);
901     // Okay, TI has cases that are statically dead, prune them away.
902     SmallPtrSet<Constant *, 16> DeadCases;
903     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
904       DeadCases.insert(PredCases[i].Value);
905 
906     LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
907                       << "Through successor TI: " << *TI);
908 
909     SmallMapVector<BasicBlock *, int, 8> NumPerSuccessorCases;
910     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
911       --i;
912       auto *Successor = i->getCaseSuccessor();
913       ++NumPerSuccessorCases[Successor];
914       if (DeadCases.count(i->getCaseValue())) {
915         Successor->removePredecessor(PredDef);
916         SI.removeCase(i);
917         --NumPerSuccessorCases[Successor];
918       }
919     }
920 
921     std::vector<DominatorTree::UpdateType> Updates;
922     for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases)
923       if (I.second == 0)
924         Updates.push_back({DominatorTree::Delete, PredDef, I.first});
925     if (DTU)
926       DTU->applyUpdates(Updates);
927 
928     LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n");
929     return true;
930   }
931 
932   // Otherwise, TI's block must correspond to some matched value.  Find out
933   // which value (or set of values) this is.
934   ConstantInt *TIV = nullptr;
935   BasicBlock *TIBB = TI->getParent();
936   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
937     if (PredCases[i].Dest == TIBB) {
938       if (TIV)
939         return false; // Cannot handle multiple values coming to this block.
940       TIV = PredCases[i].Value;
941     }
942   assert(TIV && "No edge from pred to succ?");
943 
944   // Okay, we found the one constant that our value can be if we get into TI's
945   // BB.  Find out which successor will unconditionally be branched to.
946   BasicBlock *TheRealDest = nullptr;
947   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
948     if (ThisCases[i].Value == TIV) {
949       TheRealDest = ThisCases[i].Dest;
950       break;
951     }
952 
953   // If not handled by any explicit cases, it is handled by the default case.
954   if (!TheRealDest)
955     TheRealDest = ThisDef;
956 
957   SmallSetVector<BasicBlock *, 2> RemovedSuccs;
958 
959   // Remove PHI node entries for dead edges.
960   BasicBlock *CheckEdge = TheRealDest;
961   for (BasicBlock *Succ : successors(TIBB))
962     if (Succ != CheckEdge) {
963       if (Succ != TheRealDest)
964         RemovedSuccs.insert(Succ);
965       Succ->removePredecessor(TIBB);
966     } else
967       CheckEdge = nullptr;
968 
969   // Insert the new branch.
970   Instruction *NI = Builder.CreateBr(TheRealDest);
971   (void)NI;
972 
973   LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
974                     << "Through successor TI: " << *TI << "Leaving: " << *NI
975                     << "\n");
976 
977   EraseTerminatorAndDCECond(TI);
978   if (DTU) {
979     SmallVector<DominatorTree::UpdateType, 2> Updates;
980     Updates.reserve(RemovedSuccs.size());
981     for (auto *RemovedSucc : RemovedSuccs)
982       Updates.push_back({DominatorTree::Delete, TIBB, RemovedSucc});
983     DTU->applyUpdates(Updates);
984   }
985   return true;
986 }
987 
988 namespace {
989 
990 /// This class implements a stable ordering of constant
991 /// integers that does not depend on their address.  This is important for
992 /// applications that sort ConstantInt's to ensure uniqueness.
993 struct ConstantIntOrdering {
994   bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
995     return LHS->getValue().ult(RHS->getValue());
996   }
997 };
998 
999 } // end anonymous namespace
1000 
1001 static int ConstantIntSortPredicate(ConstantInt *const *P1,
1002                                     ConstantInt *const *P2) {
1003   const ConstantInt *LHS = *P1;
1004   const ConstantInt *RHS = *P2;
1005   if (LHS == RHS)
1006     return 0;
1007   return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
1008 }
1009 
1010 static inline bool HasBranchWeights(const Instruction *I) {
1011   MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
1012   if (ProfMD && ProfMD->getOperand(0))
1013     if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
1014       return MDS->getString().equals("branch_weights");
1015 
1016   return false;
1017 }
1018 
1019 /// Get Weights of a given terminator, the default weight is at the front
1020 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
1021 /// metadata.
1022 static void GetBranchWeights(Instruction *TI,
1023                              SmallVectorImpl<uint64_t> &Weights) {
1024   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
1025   assert(MD);
1026   for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
1027     ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
1028     Weights.push_back(CI->getValue().getZExtValue());
1029   }
1030 
1031   // If TI is a conditional eq, the default case is the false case,
1032   // and the corresponding branch-weight data is at index 2. We swap the
1033   // default weight to be the first entry.
1034   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1035     assert(Weights.size() == 2);
1036     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
1037     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
1038       std::swap(Weights.front(), Weights.back());
1039   }
1040 }
1041 
1042 /// Keep halving the weights until all can fit in uint32_t.
1043 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
1044   uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
1045   if (Max > UINT_MAX) {
1046     unsigned Offset = 32 - countLeadingZeros(Max);
1047     for (uint64_t &I : Weights)
1048       I >>= Offset;
1049   }
1050 }
1051 
1052 static void CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(
1053     BasicBlock *BB, BasicBlock *PredBlock, ValueToValueMapTy &VMap) {
1054   Instruction *PTI = PredBlock->getTerminator();
1055 
1056   // If we have bonus instructions, clone them into the predecessor block.
1057   // Note that there may be multiple predecessor blocks, so we cannot move
1058   // bonus instructions to a predecessor block.
1059   for (Instruction &BonusInst : *BB) {
1060     if (isa<DbgInfoIntrinsic>(BonusInst) || BonusInst.isTerminator())
1061       continue;
1062 
1063     Instruction *NewBonusInst = BonusInst.clone();
1064 
1065     if (PTI->getDebugLoc() != NewBonusInst->getDebugLoc()) {
1066       // Unless the instruction has the same !dbg location as the original
1067       // branch, drop it. When we fold the bonus instructions we want to make
1068       // sure we reset their debug locations in order to avoid stepping on
1069       // dead code caused by folding dead branches.
1070       NewBonusInst->setDebugLoc(DebugLoc());
1071     }
1072 
1073     RemapInstruction(NewBonusInst, VMap,
1074                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1075     VMap[&BonusInst] = NewBonusInst;
1076 
1077     // If we moved a load, we cannot any longer claim any knowledge about
1078     // its potential value. The previous information might have been valid
1079     // only given the branch precondition.
1080     // For an analogous reason, we must also drop all the metadata whose
1081     // semantics we don't understand. We *can* preserve !annotation, because
1082     // it is tied to the instruction itself, not the value or position.
1083     NewBonusInst->dropUnknownNonDebugMetadata(LLVMContext::MD_annotation);
1084 
1085     PredBlock->getInstList().insert(PTI->getIterator(), NewBonusInst);
1086     NewBonusInst->takeName(&BonusInst);
1087     BonusInst.setName(NewBonusInst->getName() + ".old");
1088 
1089     // Update (liveout) uses of bonus instructions,
1090     // now that the bonus instruction has been cloned into predecessor.
1091     SSAUpdater SSAUpdate;
1092     SSAUpdate.Initialize(BonusInst.getType(),
1093                          (NewBonusInst->getName() + ".merge").str());
1094     SSAUpdate.AddAvailableValue(BB, &BonusInst);
1095     SSAUpdate.AddAvailableValue(PredBlock, NewBonusInst);
1096     for (Use &U : make_early_inc_range(BonusInst.uses()))
1097       SSAUpdate.RewriteUseAfterInsertions(U);
1098   }
1099 }
1100 
1101 bool SimplifyCFGOpt::PerformValueComparisonIntoPredecessorFolding(
1102     Instruction *TI, Value *&CV, Instruction *PTI, IRBuilder<> &Builder) {
1103   BasicBlock *BB = TI->getParent();
1104   BasicBlock *Pred = PTI->getParent();
1105 
1106   std::vector<DominatorTree::UpdateType> Updates;
1107 
1108   // Figure out which 'cases' to copy from SI to PSI.
1109   std::vector<ValueEqualityComparisonCase> BBCases;
1110   BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
1111 
1112   std::vector<ValueEqualityComparisonCase> PredCases;
1113   BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
1114 
1115   // Based on whether the default edge from PTI goes to BB or not, fill in
1116   // PredCases and PredDefault with the new switch cases we would like to
1117   // build.
1118   SmallMapVector<BasicBlock *, int, 8> NewSuccessors;
1119 
1120   // Update the branch weight metadata along the way
1121   SmallVector<uint64_t, 8> Weights;
1122   bool PredHasWeights = HasBranchWeights(PTI);
1123   bool SuccHasWeights = HasBranchWeights(TI);
1124 
1125   if (PredHasWeights) {
1126     GetBranchWeights(PTI, Weights);
1127     // branch-weight metadata is inconsistent here.
1128     if (Weights.size() != 1 + PredCases.size())
1129       PredHasWeights = SuccHasWeights = false;
1130   } else if (SuccHasWeights)
1131     // If there are no predecessor weights but there are successor weights,
1132     // populate Weights with 1, which will later be scaled to the sum of
1133     // successor's weights
1134     Weights.assign(1 + PredCases.size(), 1);
1135 
1136   SmallVector<uint64_t, 8> SuccWeights;
1137   if (SuccHasWeights) {
1138     GetBranchWeights(TI, SuccWeights);
1139     // branch-weight metadata is inconsistent here.
1140     if (SuccWeights.size() != 1 + BBCases.size())
1141       PredHasWeights = SuccHasWeights = false;
1142   } else if (PredHasWeights)
1143     SuccWeights.assign(1 + BBCases.size(), 1);
1144 
1145   if (PredDefault == BB) {
1146     // If this is the default destination from PTI, only the edges in TI
1147     // that don't occur in PTI, or that branch to BB will be activated.
1148     std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1149     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1150       if (PredCases[i].Dest != BB)
1151         PTIHandled.insert(PredCases[i].Value);
1152       else {
1153         // The default destination is BB, we don't need explicit targets.
1154         std::swap(PredCases[i], PredCases.back());
1155 
1156         if (PredHasWeights || SuccHasWeights) {
1157           // Increase weight for the default case.
1158           Weights[0] += Weights[i + 1];
1159           std::swap(Weights[i + 1], Weights.back());
1160           Weights.pop_back();
1161         }
1162 
1163         PredCases.pop_back();
1164         --i;
1165         --e;
1166       }
1167 
1168     // Reconstruct the new switch statement we will be building.
1169     if (PredDefault != BBDefault) {
1170       PredDefault->removePredecessor(Pred);
1171       if (PredDefault != BB)
1172         Updates.push_back({DominatorTree::Delete, Pred, PredDefault});
1173       PredDefault = BBDefault;
1174       ++NewSuccessors[BBDefault];
1175     }
1176 
1177     unsigned CasesFromPred = Weights.size();
1178     uint64_t ValidTotalSuccWeight = 0;
1179     for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1180       if (!PTIHandled.count(BBCases[i].Value) && BBCases[i].Dest != BBDefault) {
1181         PredCases.push_back(BBCases[i]);
1182         ++NewSuccessors[BBCases[i].Dest];
1183         if (SuccHasWeights || PredHasWeights) {
1184           // The default weight is at index 0, so weight for the ith case
1185           // should be at index i+1. Scale the cases from successor by
1186           // PredDefaultWeight (Weights[0]).
1187           Weights.push_back(Weights[0] * SuccWeights[i + 1]);
1188           ValidTotalSuccWeight += SuccWeights[i + 1];
1189         }
1190       }
1191 
1192     if (SuccHasWeights || PredHasWeights) {
1193       ValidTotalSuccWeight += SuccWeights[0];
1194       // Scale the cases from predecessor by ValidTotalSuccWeight.
1195       for (unsigned i = 1; i < CasesFromPred; ++i)
1196         Weights[i] *= ValidTotalSuccWeight;
1197       // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1198       Weights[0] *= SuccWeights[0];
1199     }
1200   } else {
1201     // If this is not the default destination from PSI, only the edges
1202     // in SI that occur in PSI with a destination of BB will be
1203     // activated.
1204     std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1205     std::map<ConstantInt *, uint64_t> WeightsForHandled;
1206     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1207       if (PredCases[i].Dest == BB) {
1208         PTIHandled.insert(PredCases[i].Value);
1209 
1210         if (PredHasWeights || SuccHasWeights) {
1211           WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
1212           std::swap(Weights[i + 1], Weights.back());
1213           Weights.pop_back();
1214         }
1215 
1216         std::swap(PredCases[i], PredCases.back());
1217         PredCases.pop_back();
1218         --i;
1219         --e;
1220       }
1221 
1222     // Okay, now we know which constants were sent to BB from the
1223     // predecessor.  Figure out where they will all go now.
1224     for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1225       if (PTIHandled.count(BBCases[i].Value)) {
1226         // If this is one we are capable of getting...
1227         if (PredHasWeights || SuccHasWeights)
1228           Weights.push_back(WeightsForHandled[BBCases[i].Value]);
1229         PredCases.push_back(BBCases[i]);
1230         ++NewSuccessors[BBCases[i].Dest];
1231         PTIHandled.erase(BBCases[i].Value); // This constant is taken care of
1232       }
1233 
1234     // If there are any constants vectored to BB that TI doesn't handle,
1235     // they must go to the default destination of TI.
1236     for (ConstantInt *I : PTIHandled) {
1237       if (PredHasWeights || SuccHasWeights)
1238         Weights.push_back(WeightsForHandled[I]);
1239       PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
1240       ++NewSuccessors[BBDefault];
1241     }
1242   }
1243 
1244   // Okay, at this point, we know which new successor Pred will get.  Make
1245   // sure we update the number of entries in the PHI nodes for these
1246   // successors.
1247   for (const std::pair<BasicBlock *, int /*Num*/> &NewSuccessor :
1248        NewSuccessors) {
1249     for (auto I : seq(0, NewSuccessor.second)) {
1250       (void)I;
1251       AddPredecessorToBlock(NewSuccessor.first, Pred, BB);
1252     }
1253     if (!is_contained(successors(Pred), NewSuccessor.first))
1254       Updates.push_back({DominatorTree::Insert, Pred, NewSuccessor.first});
1255   }
1256 
1257   Builder.SetInsertPoint(PTI);
1258   // Convert pointer to int before we switch.
1259   if (CV->getType()->isPointerTy()) {
1260     CV =
1261         Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), "magicptr");
1262   }
1263 
1264   // Now that the successors are updated, create the new Switch instruction.
1265   SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, PredCases.size());
1266   NewSI->setDebugLoc(PTI->getDebugLoc());
1267   for (ValueEqualityComparisonCase &V : PredCases)
1268     NewSI->addCase(V.Value, V.Dest);
1269 
1270   if (PredHasWeights || SuccHasWeights) {
1271     // Halve the weights if any of them cannot fit in an uint32_t
1272     FitWeights(Weights);
1273 
1274     SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1275 
1276     setBranchWeights(NewSI, MDWeights);
1277   }
1278 
1279   EraseTerminatorAndDCECond(PTI);
1280 
1281   // Okay, last check.  If BB is still a successor of PSI, then we must
1282   // have an infinite loop case.  If so, add an infinitely looping block
1283   // to handle the case to preserve the behavior of the code.
1284   BasicBlock *InfLoopBlock = nullptr;
1285   for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1286     if (NewSI->getSuccessor(i) == BB) {
1287       if (!InfLoopBlock) {
1288         // Insert it at the end of the function, because it's either code,
1289         // or it won't matter if it's hot. :)
1290         InfLoopBlock =
1291             BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
1292         BranchInst::Create(InfLoopBlock, InfLoopBlock);
1293         Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock});
1294       }
1295       NewSI->setSuccessor(i, InfLoopBlock);
1296     }
1297 
1298   if (InfLoopBlock)
1299     Updates.push_back({DominatorTree::Insert, Pred, InfLoopBlock});
1300 
1301   Updates.push_back({DominatorTree::Delete, Pred, BB});
1302 
1303   if (DTU)
1304     DTU->applyUpdates(Updates);
1305 
1306   ++NumFoldValueComparisonIntoPredecessors;
1307   return true;
1308 }
1309 
1310 /// The specified terminator is a value equality comparison instruction
1311 /// (either a switch or a branch on "X == c").
1312 /// See if any of the predecessors of the terminator block are value comparisons
1313 /// on the same value.  If so, and if safe to do so, fold them together.
1314 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI,
1315                                                          IRBuilder<> &Builder) {
1316   BasicBlock *BB = TI->getParent();
1317   Value *CV = isValueEqualityComparison(TI); // CondVal
1318   assert(CV && "Not a comparison?");
1319 
1320   bool Changed = false;
1321 
1322   SmallSetVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
1323   while (!Preds.empty()) {
1324     BasicBlock *Pred = Preds.pop_back_val();
1325     Instruction *PTI = Pred->getTerminator();
1326 
1327     // Don't try to fold into itself.
1328     if (Pred == BB)
1329       continue;
1330 
1331     // See if the predecessor is a comparison with the same value.
1332     Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
1333     if (PCV != CV)
1334       continue;
1335 
1336     SmallSetVector<BasicBlock *, 4> FailBlocks;
1337     if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) {
1338       for (auto *Succ : FailBlocks) {
1339         if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split", DTU))
1340           return false;
1341       }
1342     }
1343 
1344     PerformValueComparisonIntoPredecessorFolding(TI, CV, PTI, Builder);
1345     Changed = true;
1346   }
1347   return Changed;
1348 }
1349 
1350 // If we would need to insert a select that uses the value of this invoke
1351 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1352 // can't hoist the invoke, as there is nowhere to put the select in this case.
1353 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1354                                 Instruction *I1, Instruction *I2) {
1355   for (BasicBlock *Succ : successors(BB1)) {
1356     for (const PHINode &PN : Succ->phis()) {
1357       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1358       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1359       if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
1360         return false;
1361       }
1362     }
1363   }
1364   return true;
1365 }
1366 
1367 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified = false);
1368 
1369 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1370 /// in the two blocks up into the branch block. The caller of this function
1371 /// guarantees that BI's block dominates BB1 and BB2.
1372 bool SimplifyCFGOpt::HoistThenElseCodeToIf(BranchInst *BI,
1373                                            const TargetTransformInfo &TTI) {
1374   // This does very trivial matching, with limited scanning, to find identical
1375   // instructions in the two blocks.  In particular, we don't want to get into
1376   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1377   // such, we currently just scan for obviously identical instructions in an
1378   // identical order.
1379   BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
1380   BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
1381 
1382   BasicBlock::iterator BB1_Itr = BB1->begin();
1383   BasicBlock::iterator BB2_Itr = BB2->begin();
1384 
1385   Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
1386   // Skip debug info if it is not identical.
1387   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1388   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1389   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1390     while (isa<DbgInfoIntrinsic>(I1))
1391       I1 = &*BB1_Itr++;
1392     while (isa<DbgInfoIntrinsic>(I2))
1393       I2 = &*BB2_Itr++;
1394   }
1395   // FIXME: Can we define a safety predicate for CallBr?
1396   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1397       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) ||
1398       isa<CallBrInst>(I1))
1399     return false;
1400 
1401   BasicBlock *BIParent = BI->getParent();
1402 
1403   bool Changed = false;
1404 
1405   auto _ = make_scope_exit([&]() {
1406     if (Changed)
1407       ++NumHoistCommonCode;
1408   });
1409 
1410   do {
1411     // If we are hoisting the terminator instruction, don't move one (making a
1412     // broken BB), instead clone it, and remove BI.
1413     if (I1->isTerminator())
1414       goto HoistTerminator;
1415 
1416     // If we're going to hoist a call, make sure that the two instructions we're
1417     // commoning/hoisting are both marked with musttail, or neither of them is
1418     // marked as such. Otherwise, we might end up in a situation where we hoist
1419     // from a block where the terminator is a `ret` to a block where the terminator
1420     // is a `br`, and `musttail` calls expect to be followed by a return.
1421     auto *C1 = dyn_cast<CallInst>(I1);
1422     auto *C2 = dyn_cast<CallInst>(I2);
1423     if (C1 && C2)
1424       if (C1->isMustTailCall() != C2->isMustTailCall())
1425         return Changed;
1426 
1427     if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1428       return Changed;
1429 
1430     // If any of the two call sites has nomerge attribute, stop hoisting.
1431     if (const auto *CB1 = dyn_cast<CallBase>(I1))
1432       if (CB1->cannotMerge())
1433         return Changed;
1434     if (const auto *CB2 = dyn_cast<CallBase>(I2))
1435       if (CB2->cannotMerge())
1436         return Changed;
1437 
1438     if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) {
1439       assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2));
1440       // The debug location is an integral part of a debug info intrinsic
1441       // and can't be separated from it or replaced.  Instead of attempting
1442       // to merge locations, simply hoist both copies of the intrinsic.
1443       BIParent->getInstList().splice(BI->getIterator(),
1444                                      BB1->getInstList(), I1);
1445       BIParent->getInstList().splice(BI->getIterator(),
1446                                      BB2->getInstList(), I2);
1447       Changed = true;
1448     } else {
1449       // For a normal instruction, we just move one to right before the branch,
1450       // then replace all uses of the other with the first.  Finally, we remove
1451       // the now redundant second instruction.
1452       BIParent->getInstList().splice(BI->getIterator(),
1453                                      BB1->getInstList(), I1);
1454       if (!I2->use_empty())
1455         I2->replaceAllUsesWith(I1);
1456       I1->andIRFlags(I2);
1457       unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
1458                              LLVMContext::MD_range,
1459                              LLVMContext::MD_fpmath,
1460                              LLVMContext::MD_invariant_load,
1461                              LLVMContext::MD_nonnull,
1462                              LLVMContext::MD_invariant_group,
1463                              LLVMContext::MD_align,
1464                              LLVMContext::MD_dereferenceable,
1465                              LLVMContext::MD_dereferenceable_or_null,
1466                              LLVMContext::MD_mem_parallel_loop_access,
1467                              LLVMContext::MD_access_group,
1468                              LLVMContext::MD_preserve_access_index};
1469       combineMetadata(I1, I2, KnownIDs, true);
1470 
1471       // I1 and I2 are being combined into a single instruction.  Its debug
1472       // location is the merged locations of the original instructions.
1473       I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1474 
1475       I2->eraseFromParent();
1476       Changed = true;
1477     }
1478     ++NumHoistCommonInstrs;
1479 
1480     I1 = &*BB1_Itr++;
1481     I2 = &*BB2_Itr++;
1482     // Skip debug info if it is not identical.
1483     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1484     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1485     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1486       while (isa<DbgInfoIntrinsic>(I1))
1487         I1 = &*BB1_Itr++;
1488       while (isa<DbgInfoIntrinsic>(I2))
1489         I2 = &*BB2_Itr++;
1490     }
1491   } while (I1->isIdenticalToWhenDefined(I2));
1492 
1493   return true;
1494 
1495 HoistTerminator:
1496   // It may not be possible to hoist an invoke.
1497   // FIXME: Can we define a safety predicate for CallBr?
1498   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1499     return Changed;
1500 
1501   // TODO: callbr hoisting currently disabled pending further study.
1502   if (isa<CallBrInst>(I1))
1503     return Changed;
1504 
1505   for (BasicBlock *Succ : successors(BB1)) {
1506     for (PHINode &PN : Succ->phis()) {
1507       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1508       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1509       if (BB1V == BB2V)
1510         continue;
1511 
1512       // Check for passingValueIsAlwaysUndefined here because we would rather
1513       // eliminate undefined control flow then converting it to a select.
1514       if (passingValueIsAlwaysUndefined(BB1V, &PN) ||
1515           passingValueIsAlwaysUndefined(BB2V, &PN))
1516         return Changed;
1517 
1518       if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
1519         return Changed;
1520       if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
1521         return Changed;
1522     }
1523   }
1524 
1525   // Okay, it is safe to hoist the terminator.
1526   Instruction *NT = I1->clone();
1527   BIParent->getInstList().insert(BI->getIterator(), NT);
1528   if (!NT->getType()->isVoidTy()) {
1529     I1->replaceAllUsesWith(NT);
1530     I2->replaceAllUsesWith(NT);
1531     NT->takeName(I1);
1532   }
1533   Changed = true;
1534   ++NumHoistCommonInstrs;
1535 
1536   // Ensure terminator gets a debug location, even an unknown one, in case
1537   // it involves inlinable calls.
1538   NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1539 
1540   // PHIs created below will adopt NT's merged DebugLoc.
1541   IRBuilder<NoFolder> Builder(NT);
1542 
1543   // Hoisting one of the terminators from our successor is a great thing.
1544   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1545   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1546   // nodes, so we insert select instruction to compute the final result.
1547   std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
1548   for (BasicBlock *Succ : successors(BB1)) {
1549     for (PHINode &PN : Succ->phis()) {
1550       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1551       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1552       if (BB1V == BB2V)
1553         continue;
1554 
1555       // These values do not agree.  Insert a select instruction before NT
1556       // that determines the right value.
1557       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1558       if (!SI) {
1559         // Propagate fast-math-flags from phi node to its replacement select.
1560         IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
1561         if (isa<FPMathOperator>(PN))
1562           Builder.setFastMathFlags(PN.getFastMathFlags());
1563 
1564         SI = cast<SelectInst>(
1565             Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1566                                  BB1V->getName() + "." + BB2V->getName(), BI));
1567       }
1568 
1569       // Make the PHI node use the select for all incoming values for BB1/BB2
1570       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1571         if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2)
1572           PN.setIncomingValue(i, SI);
1573     }
1574   }
1575 
1576   SmallVector<DominatorTree::UpdateType, 4> Updates;
1577 
1578   // Update any PHI nodes in our new successors.
1579   for (BasicBlock *Succ : successors(BB1)) {
1580     AddPredecessorToBlock(Succ, BIParent, BB1);
1581     Updates.push_back({DominatorTree::Insert, BIParent, Succ});
1582   }
1583   for (BasicBlock *Succ : successors(BI))
1584     Updates.push_back({DominatorTree::Delete, BIParent, Succ});
1585 
1586   EraseTerminatorAndDCECond(BI);
1587   if (DTU)
1588     DTU->applyUpdates(Updates);
1589   return Changed;
1590 }
1591 
1592 // Check lifetime markers.
1593 static bool isLifeTimeMarker(const Instruction *I) {
1594   if (auto II = dyn_cast<IntrinsicInst>(I)) {
1595     switch (II->getIntrinsicID()) {
1596     default:
1597       break;
1598     case Intrinsic::lifetime_start:
1599     case Intrinsic::lifetime_end:
1600       return true;
1601     }
1602   }
1603   return false;
1604 }
1605 
1606 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes
1607 // into variables.
1608 static bool replacingOperandWithVariableIsCheap(const Instruction *I,
1609                                                 int OpIdx) {
1610   return !isa<IntrinsicInst>(I);
1611 }
1612 
1613 // All instructions in Insts belong to different blocks that all unconditionally
1614 // branch to a common successor. Analyze each instruction and return true if it
1615 // would be possible to sink them into their successor, creating one common
1616 // instruction instead. For every value that would be required to be provided by
1617 // PHI node (because an operand varies in each input block), add to PHIOperands.
1618 static bool canSinkInstructions(
1619     ArrayRef<Instruction *> Insts,
1620     DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) {
1621   // Prune out obviously bad instructions to move. Each instruction must have
1622   // exactly zero or one use, and we check later that use is by a single, common
1623   // PHI instruction in the successor.
1624   bool HasUse = !Insts.front()->user_empty();
1625   for (auto *I : Insts) {
1626     // These instructions may change or break semantics if moved.
1627     if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
1628         I->getType()->isTokenTy())
1629       return false;
1630 
1631     // Do not try to sink an instruction in an infinite loop - it can cause
1632     // this algorithm to infinite loop.
1633     if (I->getParent()->getSingleSuccessor() == I->getParent())
1634       return false;
1635 
1636     // Conservatively return false if I is an inline-asm instruction. Sinking
1637     // and merging inline-asm instructions can potentially create arguments
1638     // that cannot satisfy the inline-asm constraints.
1639     // If the instruction has nomerge attribute, return false.
1640     if (const auto *C = dyn_cast<CallBase>(I))
1641       if (C->isInlineAsm() || C->cannotMerge())
1642         return false;
1643 
1644     // Each instruction must have zero or one use.
1645     if (HasUse && !I->hasOneUse())
1646       return false;
1647     if (!HasUse && !I->user_empty())
1648       return false;
1649   }
1650 
1651   const Instruction *I0 = Insts.front();
1652   for (auto *I : Insts)
1653     if (!I->isSameOperationAs(I0))
1654       return false;
1655 
1656   // All instructions in Insts are known to be the same opcode. If they have a
1657   // use, check that the only user is a PHI or in the same block as the
1658   // instruction, because if a user is in the same block as an instruction we're
1659   // contemplating sinking, it must already be determined to be sinkable.
1660   if (HasUse) {
1661     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1662     auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0);
1663     if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool {
1664           auto *U = cast<Instruction>(*I->user_begin());
1665           return (PNUse &&
1666                   PNUse->getParent() == Succ &&
1667                   PNUse->getIncomingValueForBlock(I->getParent()) == I) ||
1668                  U->getParent() == I->getParent();
1669         }))
1670       return false;
1671   }
1672 
1673   // Because SROA can't handle speculating stores of selects, try not to sink
1674   // loads, stores or lifetime markers of allocas when we'd have to create a
1675   // PHI for the address operand. Also, because it is likely that loads or
1676   // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink
1677   // them.
1678   // This can cause code churn which can have unintended consequences down
1679   // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
1680   // FIXME: This is a workaround for a deficiency in SROA - see
1681   // https://llvm.org/bugs/show_bug.cgi?id=30188
1682   if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) {
1683         return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1684       }))
1685     return false;
1686   if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) {
1687         return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts());
1688       }))
1689     return false;
1690   if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) {
1691         return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1692       }))
1693     return false;
1694 
1695   for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
1696     Value *Op = I0->getOperand(OI);
1697     if (Op->getType()->isTokenTy())
1698       // Don't touch any operand of token type.
1699       return false;
1700 
1701     auto SameAsI0 = [&I0, OI](const Instruction *I) {
1702       assert(I->getNumOperands() == I0->getNumOperands());
1703       return I->getOperand(OI) == I0->getOperand(OI);
1704     };
1705     if (!all_of(Insts, SameAsI0)) {
1706       if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) ||
1707           !canReplaceOperandWithVariable(I0, OI))
1708         // We can't create a PHI from this GEP.
1709         return false;
1710       // Don't create indirect calls! The called value is the final operand.
1711       if (isa<CallBase>(I0) && OI == OE - 1) {
1712         // FIXME: if the call was *already* indirect, we should do this.
1713         return false;
1714       }
1715       for (auto *I : Insts)
1716         PHIOperands[I].push_back(I->getOperand(OI));
1717     }
1718   }
1719   return true;
1720 }
1721 
1722 // Assuming canSinkInstructions(Blocks) has returned true, sink the last
1723 // instruction of every block in Blocks to their common successor, commoning
1724 // into one instruction.
1725 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
1726   auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
1727 
1728   // canSinkInstructions returning true guarantees that every block has at
1729   // least one non-terminator instruction.
1730   SmallVector<Instruction*,4> Insts;
1731   for (auto *BB : Blocks) {
1732     Instruction *I = BB->getTerminator();
1733     do {
1734       I = I->getPrevNode();
1735     } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front());
1736     if (!isa<DbgInfoIntrinsic>(I))
1737       Insts.push_back(I);
1738   }
1739 
1740   // The only checking we need to do now is that all users of all instructions
1741   // are the same PHI node. canSinkInstructions should have checked this but
1742   // it is slightly over-aggressive - it gets confused by commutative
1743   // instructions so double-check it here.
1744   Instruction *I0 = Insts.front();
1745   if (!I0->user_empty()) {
1746     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1747     if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool {
1748           auto *U = cast<Instruction>(*I->user_begin());
1749           return U == PNUse;
1750         }))
1751       return false;
1752   }
1753 
1754   // We don't need to do any more checking here; canSinkInstructions should
1755   // have done it all for us.
1756   SmallVector<Value*, 4> NewOperands;
1757   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
1758     // This check is different to that in canSinkInstructions. There, we
1759     // cared about the global view once simplifycfg (and instcombine) have
1760     // completed - it takes into account PHIs that become trivially
1761     // simplifiable.  However here we need a more local view; if an operand
1762     // differs we create a PHI and rely on instcombine to clean up the very
1763     // small mess we may make.
1764     bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
1765       return I->getOperand(O) != I0->getOperand(O);
1766     });
1767     if (!NeedPHI) {
1768       NewOperands.push_back(I0->getOperand(O));
1769       continue;
1770     }
1771 
1772     // Create a new PHI in the successor block and populate it.
1773     auto *Op = I0->getOperand(O);
1774     assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
1775     auto *PN = PHINode::Create(Op->getType(), Insts.size(),
1776                                Op->getName() + ".sink", &BBEnd->front());
1777     for (auto *I : Insts)
1778       PN->addIncoming(I->getOperand(O), I->getParent());
1779     NewOperands.push_back(PN);
1780   }
1781 
1782   // Arbitrarily use I0 as the new "common" instruction; remap its operands
1783   // and move it to the start of the successor block.
1784   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
1785     I0->getOperandUse(O).set(NewOperands[O]);
1786   I0->moveBefore(&*BBEnd->getFirstInsertionPt());
1787 
1788   // Update metadata and IR flags, and merge debug locations.
1789   for (auto *I : Insts)
1790     if (I != I0) {
1791       // The debug location for the "common" instruction is the merged locations
1792       // of all the commoned instructions.  We start with the original location
1793       // of the "common" instruction and iteratively merge each location in the
1794       // loop below.
1795       // This is an N-way merge, which will be inefficient if I0 is a CallInst.
1796       // However, as N-way merge for CallInst is rare, so we use simplified API
1797       // instead of using complex API for N-way merge.
1798       I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc());
1799       combineMetadataForCSE(I0, I, true);
1800       I0->andIRFlags(I);
1801     }
1802 
1803   if (!I0->user_empty()) {
1804     // canSinkLastInstruction checked that all instructions were used by
1805     // one and only one PHI node. Find that now, RAUW it to our common
1806     // instruction and nuke it.
1807     auto *PN = cast<PHINode>(*I0->user_begin());
1808     PN->replaceAllUsesWith(I0);
1809     PN->eraseFromParent();
1810   }
1811 
1812   // Finally nuke all instructions apart from the common instruction.
1813   for (auto *I : Insts)
1814     if (I != I0)
1815       I->eraseFromParent();
1816 
1817   return true;
1818 }
1819 
1820 namespace {
1821 
1822   // LockstepReverseIterator - Iterates through instructions
1823   // in a set of blocks in reverse order from the first non-terminator.
1824   // For example (assume all blocks have size n):
1825   //   LockstepReverseIterator I([B1, B2, B3]);
1826   //   *I-- = [B1[n], B2[n], B3[n]];
1827   //   *I-- = [B1[n-1], B2[n-1], B3[n-1]];
1828   //   *I-- = [B1[n-2], B2[n-2], B3[n-2]];
1829   //   ...
1830   class LockstepReverseIterator {
1831     ArrayRef<BasicBlock*> Blocks;
1832     SmallVector<Instruction*,4> Insts;
1833     bool Fail;
1834 
1835   public:
1836     LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) {
1837       reset();
1838     }
1839 
1840     void reset() {
1841       Fail = false;
1842       Insts.clear();
1843       for (auto *BB : Blocks) {
1844         Instruction *Inst = BB->getTerminator();
1845         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1846           Inst = Inst->getPrevNode();
1847         if (!Inst) {
1848           // Block wasn't big enough.
1849           Fail = true;
1850           return;
1851         }
1852         Insts.push_back(Inst);
1853       }
1854     }
1855 
1856     bool isValid() const {
1857       return !Fail;
1858     }
1859 
1860     void operator--() {
1861       if (Fail)
1862         return;
1863       for (auto *&Inst : Insts) {
1864         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1865           Inst = Inst->getPrevNode();
1866         // Already at beginning of block.
1867         if (!Inst) {
1868           Fail = true;
1869           return;
1870         }
1871       }
1872     }
1873 
1874     ArrayRef<Instruction*> operator * () const {
1875       return Insts;
1876     }
1877   };
1878 
1879 } // end anonymous namespace
1880 
1881 /// Check whether BB's predecessors end with unconditional branches. If it is
1882 /// true, sink any common code from the predecessors to BB.
1883 /// We also allow one predecessor to end with conditional branch (but no more
1884 /// than one).
1885 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB,
1886                                            DomTreeUpdater *DTU) {
1887   // We support two situations:
1888   //   (1) all incoming arcs are unconditional
1889   //   (2) one incoming arc is conditional
1890   //
1891   // (2) is very common in switch defaults and
1892   // else-if patterns;
1893   //
1894   //   if (a) f(1);
1895   //   else if (b) f(2);
1896   //
1897   // produces:
1898   //
1899   //       [if]
1900   //      /    \
1901   //    [f(1)] [if]
1902   //      |     | \
1903   //      |     |  |
1904   //      |  [f(2)]|
1905   //       \    | /
1906   //        [ end ]
1907   //
1908   // [end] has two unconditional predecessor arcs and one conditional. The
1909   // conditional refers to the implicit empty 'else' arc. This conditional
1910   // arc can also be caused by an empty default block in a switch.
1911   //
1912   // In this case, we attempt to sink code from all *unconditional* arcs.
1913   // If we can sink instructions from these arcs (determined during the scan
1914   // phase below) we insert a common successor for all unconditional arcs and
1915   // connect that to [end], to enable sinking:
1916   //
1917   //       [if]
1918   //      /    \
1919   //    [x(1)] [if]
1920   //      |     | \
1921   //      |     |  \
1922   //      |  [x(2)] |
1923   //       \   /    |
1924   //   [sink.split] |
1925   //         \     /
1926   //         [ end ]
1927   //
1928   SmallVector<BasicBlock*,4> UnconditionalPreds;
1929   Instruction *Cond = nullptr;
1930   for (auto *B : predecessors(BB)) {
1931     auto *T = B->getTerminator();
1932     if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional())
1933       UnconditionalPreds.push_back(B);
1934     else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond)
1935       Cond = T;
1936     else
1937       return false;
1938   }
1939   if (UnconditionalPreds.size() < 2)
1940     return false;
1941 
1942   // We take a two-step approach to tail sinking. First we scan from the end of
1943   // each block upwards in lockstep. If the n'th instruction from the end of each
1944   // block can be sunk, those instructions are added to ValuesToSink and we
1945   // carry on. If we can sink an instruction but need to PHI-merge some operands
1946   // (because they're not identical in each instruction) we add these to
1947   // PHIOperands.
1948   unsigned ScanIdx = 0;
1949   SmallPtrSet<Value*,4> InstructionsToSink;
1950   DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands;
1951   LockstepReverseIterator LRI(UnconditionalPreds);
1952   while (LRI.isValid() &&
1953          canSinkInstructions(*LRI, PHIOperands)) {
1954     LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0]
1955                       << "\n");
1956     InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
1957     ++ScanIdx;
1958     --LRI;
1959   }
1960 
1961   // If no instructions can be sunk, early-return.
1962   if (ScanIdx == 0)
1963     return false;
1964 
1965   bool Changed = false;
1966 
1967   auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
1968     unsigned NumPHIdValues = 0;
1969     for (auto *I : *LRI)
1970       for (auto *V : PHIOperands[I])
1971         if (InstructionsToSink.count(V) == 0)
1972           ++NumPHIdValues;
1973     LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n");
1974     unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size();
1975     if ((NumPHIdValues % UnconditionalPreds.size()) != 0)
1976         NumPHIInsts++;
1977 
1978     return NumPHIInsts <= 1;
1979   };
1980 
1981   if (Cond) {
1982     // Check if we would actually sink anything first! This mutates the CFG and
1983     // adds an extra block. The goal in doing this is to allow instructions that
1984     // couldn't be sunk before to be sunk - obviously, speculatable instructions
1985     // (such as trunc, add) can be sunk and predicated already. So we check that
1986     // we're going to sink at least one non-speculatable instruction.
1987     LRI.reset();
1988     unsigned Idx = 0;
1989     bool Profitable = false;
1990     while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) {
1991       if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
1992         Profitable = true;
1993         break;
1994       }
1995       --LRI;
1996       ++Idx;
1997     }
1998     if (!Profitable)
1999       return false;
2000 
2001     LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n");
2002     // We have a conditional edge and we're going to sink some instructions.
2003     // Insert a new block postdominating all blocks we're going to sink from.
2004     if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split", DTU))
2005       // Edges couldn't be split.
2006       return false;
2007     Changed = true;
2008   }
2009 
2010   // Now that we've analyzed all potential sinking candidates, perform the
2011   // actual sink. We iteratively sink the last non-terminator of the source
2012   // blocks into their common successor unless doing so would require too
2013   // many PHI instructions to be generated (currently only one PHI is allowed
2014   // per sunk instruction).
2015   //
2016   // We can use InstructionsToSink to discount values needing PHI-merging that will
2017   // actually be sunk in a later iteration. This allows us to be more
2018   // aggressive in what we sink. This does allow a false positive where we
2019   // sink presuming a later value will also be sunk, but stop half way through
2020   // and never actually sink it which means we produce more PHIs than intended.
2021   // This is unlikely in practice though.
2022   unsigned SinkIdx = 0;
2023   for (; SinkIdx != ScanIdx; ++SinkIdx) {
2024     LLVM_DEBUG(dbgs() << "SINK: Sink: "
2025                       << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
2026                       << "\n");
2027 
2028     // Because we've sunk every instruction in turn, the current instruction to
2029     // sink is always at index 0.
2030     LRI.reset();
2031     if (!ProfitableToSinkInstruction(LRI)) {
2032       // Too many PHIs would be created.
2033       LLVM_DEBUG(
2034           dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
2035       break;
2036     }
2037 
2038     if (!sinkLastInstruction(UnconditionalPreds)) {
2039       LLVM_DEBUG(
2040           dbgs()
2041           << "SINK: stopping here, failed to actually sink instruction!\n");
2042       break;
2043     }
2044 
2045     NumSinkCommonInstrs++;
2046     Changed = true;
2047   }
2048   if (SinkIdx != 0)
2049     ++NumSinkCommonCode;
2050   return Changed;
2051 }
2052 
2053 /// Determine if we can hoist sink a sole store instruction out of a
2054 /// conditional block.
2055 ///
2056 /// We are looking for code like the following:
2057 ///   BrBB:
2058 ///     store i32 %add, i32* %arrayidx2
2059 ///     ... // No other stores or function calls (we could be calling a memory
2060 ///     ... // function).
2061 ///     %cmp = icmp ult %x, %y
2062 ///     br i1 %cmp, label %EndBB, label %ThenBB
2063 ///   ThenBB:
2064 ///     store i32 %add5, i32* %arrayidx2
2065 ///     br label EndBB
2066 ///   EndBB:
2067 ///     ...
2068 ///   We are going to transform this into:
2069 ///   BrBB:
2070 ///     store i32 %add, i32* %arrayidx2
2071 ///     ... //
2072 ///     %cmp = icmp ult %x, %y
2073 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
2074 ///     store i32 %add.add5, i32* %arrayidx2
2075 ///     ...
2076 ///
2077 /// \return The pointer to the value of the previous store if the store can be
2078 ///         hoisted into the predecessor block. 0 otherwise.
2079 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
2080                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
2081   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
2082   if (!StoreToHoist)
2083     return nullptr;
2084 
2085   // Volatile or atomic.
2086   if (!StoreToHoist->isSimple())
2087     return nullptr;
2088 
2089   Value *StorePtr = StoreToHoist->getPointerOperand();
2090 
2091   // Look for a store to the same pointer in BrBB.
2092   unsigned MaxNumInstToLookAt = 9;
2093   // Skip pseudo probe intrinsic calls which are not really killing any memory
2094   // accesses.
2095   for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug(true))) {
2096     if (!MaxNumInstToLookAt)
2097       break;
2098     --MaxNumInstToLookAt;
2099 
2100     // Could be calling an instruction that affects memory like free().
2101     if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI))
2102       return nullptr;
2103 
2104     if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
2105       // Found the previous store make sure it stores to the same location.
2106       if (SI->getPointerOperand() == StorePtr)
2107         // Found the previous store, return its value operand.
2108         return SI->getValueOperand();
2109       return nullptr; // Unknown store.
2110     }
2111   }
2112 
2113   return nullptr;
2114 }
2115 
2116 /// Estimate the cost of the insertion(s) and check that the PHI nodes can be
2117 /// converted to selects.
2118 static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB,
2119                                            BasicBlock *EndBB,
2120                                            unsigned &SpeculatedInstructions,
2121                                            int &BudgetRemaining,
2122                                            const TargetTransformInfo &TTI) {
2123   TargetTransformInfo::TargetCostKind CostKind =
2124     BB->getParent()->hasMinSize()
2125     ? TargetTransformInfo::TCK_CodeSize
2126     : TargetTransformInfo::TCK_SizeAndLatency;
2127 
2128   bool HaveRewritablePHIs = false;
2129   for (PHINode &PN : EndBB->phis()) {
2130     Value *OrigV = PN.getIncomingValueForBlock(BB);
2131     Value *ThenV = PN.getIncomingValueForBlock(ThenBB);
2132 
2133     // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
2134     // Skip PHIs which are trivial.
2135     if (ThenV == OrigV)
2136       continue;
2137 
2138     BudgetRemaining -=
2139         TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr,
2140                                CmpInst::BAD_ICMP_PREDICATE, CostKind);
2141 
2142     // Don't convert to selects if we could remove undefined behavior instead.
2143     if (passingValueIsAlwaysUndefined(OrigV, &PN) ||
2144         passingValueIsAlwaysUndefined(ThenV, &PN))
2145       return false;
2146 
2147     HaveRewritablePHIs = true;
2148     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
2149     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
2150     if (!OrigCE && !ThenCE)
2151       continue; // Known safe and cheap.
2152 
2153     if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
2154         (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
2155       return false;
2156     unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0;
2157     unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0;
2158     unsigned MaxCost =
2159         2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2160     if (OrigCost + ThenCost > MaxCost)
2161       return false;
2162 
2163     // Account for the cost of an unfolded ConstantExpr which could end up
2164     // getting expanded into Instructions.
2165     // FIXME: This doesn't account for how many operations are combined in the
2166     // constant expression.
2167     ++SpeculatedInstructions;
2168     if (SpeculatedInstructions > 1)
2169       return false;
2170   }
2171 
2172   return HaveRewritablePHIs;
2173 }
2174 
2175 /// Speculate a conditional basic block flattening the CFG.
2176 ///
2177 /// Note that this is a very risky transform currently. Speculating
2178 /// instructions like this is most often not desirable. Instead, there is an MI
2179 /// pass which can do it with full awareness of the resource constraints.
2180 /// However, some cases are "obvious" and we should do directly. An example of
2181 /// this is speculating a single, reasonably cheap instruction.
2182 ///
2183 /// There is only one distinct advantage to flattening the CFG at the IR level:
2184 /// it makes very common but simplistic optimizations such as are common in
2185 /// instcombine and the DAG combiner more powerful by removing CFG edges and
2186 /// modeling their effects with easier to reason about SSA value graphs.
2187 ///
2188 ///
2189 /// An illustration of this transform is turning this IR:
2190 /// \code
2191 ///   BB:
2192 ///     %cmp = icmp ult %x, %y
2193 ///     br i1 %cmp, label %EndBB, label %ThenBB
2194 ///   ThenBB:
2195 ///     %sub = sub %x, %y
2196 ///     br label BB2
2197 ///   EndBB:
2198 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
2199 ///     ...
2200 /// \endcode
2201 ///
2202 /// Into this IR:
2203 /// \code
2204 ///   BB:
2205 ///     %cmp = icmp ult %x, %y
2206 ///     %sub = sub %x, %y
2207 ///     %cond = select i1 %cmp, 0, %sub
2208 ///     ...
2209 /// \endcode
2210 ///
2211 /// \returns true if the conditional block is removed.
2212 bool SimplifyCFGOpt::SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
2213                                             const TargetTransformInfo &TTI) {
2214   // Be conservative for now. FP select instruction can often be expensive.
2215   Value *BrCond = BI->getCondition();
2216   if (isa<FCmpInst>(BrCond))
2217     return false;
2218 
2219   BasicBlock *BB = BI->getParent();
2220   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
2221   int BudgetRemaining =
2222     PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2223 
2224   // If ThenBB is actually on the false edge of the conditional branch, remember
2225   // to swap the select operands later.
2226   bool Invert = false;
2227   if (ThenBB != BI->getSuccessor(0)) {
2228     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
2229     Invert = true;
2230   }
2231   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
2232 
2233   // Keep a count of how many times instructions are used within ThenBB when
2234   // they are candidates for sinking into ThenBB. Specifically:
2235   // - They are defined in BB, and
2236   // - They have no side effects, and
2237   // - All of their uses are in ThenBB.
2238   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
2239 
2240   SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics;
2241 
2242   unsigned SpeculatedInstructions = 0;
2243   Value *SpeculatedStoreValue = nullptr;
2244   StoreInst *SpeculatedStore = nullptr;
2245   for (BasicBlock::iterator BBI = ThenBB->begin(),
2246                             BBE = std::prev(ThenBB->end());
2247        BBI != BBE; ++BBI) {
2248     Instruction *I = &*BBI;
2249     // Skip debug info.
2250     if (isa<DbgInfoIntrinsic>(I)) {
2251       SpeculatedDbgIntrinsics.push_back(I);
2252       continue;
2253     }
2254 
2255     // Skip pseudo probes. The consequence is we lose track of the branch
2256     // probability for ThenBB, which is fine since the optimization here takes
2257     // place regardless of the branch probability.
2258     if (isa<PseudoProbeInst>(I)) {
2259       SpeculatedDbgIntrinsics.push_back(I);
2260       continue;
2261     }
2262 
2263     // Only speculatively execute a single instruction (not counting the
2264     // terminator) for now.
2265     ++SpeculatedInstructions;
2266     if (SpeculatedInstructions > 1)
2267       return false;
2268 
2269     // Don't hoist the instruction if it's unsafe or expensive.
2270     if (!isSafeToSpeculativelyExecute(I) &&
2271         !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
2272                                   I, BB, ThenBB, EndBB))))
2273       return false;
2274     if (!SpeculatedStoreValue &&
2275         ComputeSpeculationCost(I, TTI) >
2276             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
2277       return false;
2278 
2279     // Store the store speculation candidate.
2280     if (SpeculatedStoreValue)
2281       SpeculatedStore = cast<StoreInst>(I);
2282 
2283     // Do not hoist the instruction if any of its operands are defined but not
2284     // used in BB. The transformation will prevent the operand from
2285     // being sunk into the use block.
2286     for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
2287       Instruction *OpI = dyn_cast<Instruction>(*i);
2288       if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
2289         continue; // Not a candidate for sinking.
2290 
2291       ++SinkCandidateUseCounts[OpI];
2292     }
2293   }
2294 
2295   // Consider any sink candidates which are only used in ThenBB as costs for
2296   // speculation. Note, while we iterate over a DenseMap here, we are summing
2297   // and so iteration order isn't significant.
2298   for (SmallDenseMap<Instruction *, unsigned, 4>::iterator
2299            I = SinkCandidateUseCounts.begin(),
2300            E = SinkCandidateUseCounts.end();
2301        I != E; ++I)
2302     if (I->first->hasNUses(I->second)) {
2303       ++SpeculatedInstructions;
2304       if (SpeculatedInstructions > 1)
2305         return false;
2306     }
2307 
2308   // Check that we can insert the selects and that it's not too expensive to do
2309   // so.
2310   bool Convert = SpeculatedStore != nullptr;
2311   Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB,
2312                                             SpeculatedInstructions,
2313                                             BudgetRemaining, TTI);
2314   if (!Convert || BudgetRemaining < 0)
2315     return false;
2316 
2317   // If we get here, we can hoist the instruction and if-convert.
2318   LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
2319 
2320   // Insert a select of the value of the speculated store.
2321   if (SpeculatedStoreValue) {
2322     IRBuilder<NoFolder> Builder(BI);
2323     Value *TrueV = SpeculatedStore->getValueOperand();
2324     Value *FalseV = SpeculatedStoreValue;
2325     if (Invert)
2326       std::swap(TrueV, FalseV);
2327     Value *S = Builder.CreateSelect(
2328         BrCond, TrueV, FalseV, "spec.store.select", BI);
2329     SpeculatedStore->setOperand(0, S);
2330     SpeculatedStore->applyMergedLocation(BI->getDebugLoc(),
2331                                          SpeculatedStore->getDebugLoc());
2332   }
2333 
2334   // Metadata can be dependent on the condition we are hoisting above.
2335   // Conservatively strip all metadata on the instruction. Drop the debug loc
2336   // to avoid making it appear as if the condition is a constant, which would
2337   // be misleading while debugging.
2338   for (auto &I : *ThenBB) {
2339     if (!SpeculatedStoreValue || &I != SpeculatedStore)
2340       I.setDebugLoc(DebugLoc());
2341     I.dropUnknownNonDebugMetadata();
2342   }
2343 
2344   // Hoist the instructions.
2345   BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
2346                            ThenBB->begin(), std::prev(ThenBB->end()));
2347 
2348   // Insert selects and rewrite the PHI operands.
2349   IRBuilder<NoFolder> Builder(BI);
2350   for (PHINode &PN : EndBB->phis()) {
2351     unsigned OrigI = PN.getBasicBlockIndex(BB);
2352     unsigned ThenI = PN.getBasicBlockIndex(ThenBB);
2353     Value *OrigV = PN.getIncomingValue(OrigI);
2354     Value *ThenV = PN.getIncomingValue(ThenI);
2355 
2356     // Skip PHIs which are trivial.
2357     if (OrigV == ThenV)
2358       continue;
2359 
2360     // Create a select whose true value is the speculatively executed value and
2361     // false value is the pre-existing value. Swap them if the branch
2362     // destinations were inverted.
2363     Value *TrueV = ThenV, *FalseV = OrigV;
2364     if (Invert)
2365       std::swap(TrueV, FalseV);
2366     Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI);
2367     PN.setIncomingValue(OrigI, V);
2368     PN.setIncomingValue(ThenI, V);
2369   }
2370 
2371   // Remove speculated dbg intrinsics.
2372   // FIXME: Is it possible to do this in a more elegant way? Moving/merging the
2373   // dbg value for the different flows and inserting it after the select.
2374   for (Instruction *I : SpeculatedDbgIntrinsics)
2375     I->eraseFromParent();
2376 
2377   ++NumSpeculations;
2378   return true;
2379 }
2380 
2381 /// Return true if we can thread a branch across this block.
2382 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
2383   int Size = 0;
2384 
2385   for (Instruction &I : BB->instructionsWithoutDebug()) {
2386     if (Size > MaxSmallBlockSize)
2387       return false; // Don't clone large BB's.
2388 
2389     // Can't fold blocks that contain noduplicate or convergent calls.
2390     if (CallInst *CI = dyn_cast<CallInst>(&I))
2391       if (CI->cannotDuplicate() || CI->isConvergent())
2392         return false;
2393 
2394     // We will delete Phis while threading, so Phis should not be accounted in
2395     // block's size
2396     if (!isa<PHINode>(I))
2397       ++Size;
2398 
2399     // We can only support instructions that do not define values that are
2400     // live outside of the current basic block.
2401     for (User *U : I.users()) {
2402       Instruction *UI = cast<Instruction>(U);
2403       if (UI->getParent() != BB || isa<PHINode>(UI))
2404         return false;
2405     }
2406 
2407     // Looks ok, continue checking.
2408   }
2409 
2410   return true;
2411 }
2412 
2413 /// If we have a conditional branch on a PHI node value that is defined in the
2414 /// same block as the branch and if any PHI entries are constants, thread edges
2415 /// corresponding to that entry to be branches to their ultimate destination.
2416 static bool FoldCondBranchOnPHI(BranchInst *BI, DomTreeUpdater *DTU,
2417                                 const DataLayout &DL, AssumptionCache *AC) {
2418   BasicBlock *BB = BI->getParent();
2419   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
2420   // NOTE: we currently cannot transform this case if the PHI node is used
2421   // outside of the block.
2422   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
2423     return false;
2424 
2425   // Degenerate case of a single entry PHI.
2426   if (PN->getNumIncomingValues() == 1) {
2427     FoldSingleEntryPHINodes(PN->getParent());
2428     return true;
2429   }
2430 
2431   // Now we know that this block has multiple preds and two succs.
2432   if (!BlockIsSimpleEnoughToThreadThrough(BB))
2433     return false;
2434 
2435   // Okay, this is a simple enough basic block.  See if any phi values are
2436   // constants.
2437   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2438     ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
2439     if (!CB || !CB->getType()->isIntegerTy(1))
2440       continue;
2441 
2442     // Okay, we now know that all edges from PredBB should be revectored to
2443     // branch to RealDest.
2444     BasicBlock *PredBB = PN->getIncomingBlock(i);
2445     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
2446 
2447     if (RealDest == BB)
2448       continue; // Skip self loops.
2449     // Skip if the predecessor's terminator is an indirect branch.
2450     if (isa<IndirectBrInst>(PredBB->getTerminator()))
2451       continue;
2452 
2453     SmallVector<DominatorTree::UpdateType, 3> Updates;
2454 
2455     // The dest block might have PHI nodes, other predecessors and other
2456     // difficult cases.  Instead of being smart about this, just insert a new
2457     // block that jumps to the destination block, effectively splitting
2458     // the edge we are about to create.
2459     BasicBlock *EdgeBB =
2460         BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge",
2461                            RealDest->getParent(), RealDest);
2462     BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB);
2463     Updates.push_back({DominatorTree::Insert, EdgeBB, RealDest});
2464     CritEdgeBranch->setDebugLoc(BI->getDebugLoc());
2465 
2466     // Update PHI nodes.
2467     AddPredecessorToBlock(RealDest, EdgeBB, BB);
2468 
2469     // BB may have instructions that are being threaded over.  Clone these
2470     // instructions into EdgeBB.  We know that there will be no uses of the
2471     // cloned instructions outside of EdgeBB.
2472     BasicBlock::iterator InsertPt = EdgeBB->begin();
2473     DenseMap<Value *, Value *> TranslateMap; // Track translated values.
2474     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
2475       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
2476         TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
2477         continue;
2478       }
2479       // Clone the instruction.
2480       Instruction *N = BBI->clone();
2481       if (BBI->hasName())
2482         N->setName(BBI->getName() + ".c");
2483 
2484       // Update operands due to translation.
2485       for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) {
2486         DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i);
2487         if (PI != TranslateMap.end())
2488           *i = PI->second;
2489       }
2490 
2491       // Check for trivial simplification.
2492       if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) {
2493         if (!BBI->use_empty())
2494           TranslateMap[&*BBI] = V;
2495         if (!N->mayHaveSideEffects()) {
2496           N->deleteValue(); // Instruction folded away, don't need actual inst
2497           N = nullptr;
2498         }
2499       } else {
2500         if (!BBI->use_empty())
2501           TranslateMap[&*BBI] = N;
2502       }
2503       if (N) {
2504         // Insert the new instruction into its new home.
2505         EdgeBB->getInstList().insert(InsertPt, N);
2506 
2507         // Register the new instruction with the assumption cache if necessary.
2508         if (AC && match(N, m_Intrinsic<Intrinsic::assume>()))
2509           AC->registerAssumption(cast<IntrinsicInst>(N));
2510       }
2511     }
2512 
2513     // Loop over all of the edges from PredBB to BB, changing them to branch
2514     // to EdgeBB instead.
2515     Instruction *PredBBTI = PredBB->getTerminator();
2516     for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
2517       if (PredBBTI->getSuccessor(i) == BB) {
2518         BB->removePredecessor(PredBB);
2519         PredBBTI->setSuccessor(i, EdgeBB);
2520       }
2521 
2522     Updates.push_back({DominatorTree::Insert, PredBB, EdgeBB});
2523     Updates.push_back({DominatorTree::Delete, PredBB, BB});
2524 
2525     if (DTU)
2526       DTU->applyUpdates(Updates);
2527 
2528     // Recurse, simplifying any other constants.
2529     return FoldCondBranchOnPHI(BI, DTU, DL, AC) || true;
2530   }
2531 
2532   return false;
2533 }
2534 
2535 /// Given a BB that starts with the specified two-entry PHI node,
2536 /// see if we can eliminate it.
2537 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
2538                                 DomTreeUpdater *DTU, const DataLayout &DL) {
2539   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
2540   // statement", which has a very simple dominance structure.  Basically, we
2541   // are trying to find the condition that is being branched on, which
2542   // subsequently causes this merge to happen.  We really want control
2543   // dependence information for this check, but simplifycfg can't keep it up
2544   // to date, and this catches most of the cases we care about anyway.
2545   BasicBlock *BB = PN->getParent();
2546 
2547   BasicBlock *IfTrue, *IfFalse;
2548   Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
2549   if (!IfCond ||
2550       // Don't bother if the branch will be constant folded trivially.
2551       isa<ConstantInt>(IfCond))
2552     return false;
2553 
2554   // Okay, we found that we can merge this two-entry phi node into a select.
2555   // Doing so would require us to fold *all* two entry phi nodes in this block.
2556   // At some point this becomes non-profitable (particularly if the target
2557   // doesn't support cmov's).  Only do this transformation if there are two or
2558   // fewer PHI nodes in this block.
2559   unsigned NumPhis = 0;
2560   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
2561     if (NumPhis > 2)
2562       return false;
2563 
2564   // Loop over the PHI's seeing if we can promote them all to select
2565   // instructions.  While we are at it, keep track of the instructions
2566   // that need to be moved to the dominating block.
2567   SmallPtrSet<Instruction *, 4> AggressiveInsts;
2568   int BudgetRemaining =
2569       TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2570 
2571   bool Changed = false;
2572   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
2573     PHINode *PN = cast<PHINode>(II++);
2574     if (Value *V = SimplifyInstruction(PN, {DL, PN})) {
2575       PN->replaceAllUsesWith(V);
2576       PN->eraseFromParent();
2577       Changed = true;
2578       continue;
2579     }
2580 
2581     if (!DominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts,
2582                              BudgetRemaining, TTI) ||
2583         !DominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts,
2584                              BudgetRemaining, TTI))
2585       return Changed;
2586   }
2587 
2588   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
2589   // we ran out of PHIs then we simplified them all.
2590   PN = dyn_cast<PHINode>(BB->begin());
2591   if (!PN)
2592     return true;
2593 
2594   // Return true if at least one of these is a 'not', and another is either
2595   // a 'not' too, or a constant.
2596   auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) {
2597     if (!match(V0, m_Not(m_Value())))
2598       std::swap(V0, V1);
2599     auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant());
2600     return match(V0, m_Not(m_Value())) && match(V1, Invertible);
2601   };
2602 
2603   // Don't fold i1 branches on PHIs which contain binary operators, unless one
2604   // of the incoming values is an 'not' and another one is freely invertible.
2605   // These can often be turned into switches and other things.
2606   if (PN->getType()->isIntegerTy(1) &&
2607       (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
2608        isa<BinaryOperator>(PN->getIncomingValue(1)) ||
2609        isa<BinaryOperator>(IfCond)) &&
2610       !CanHoistNotFromBothValues(PN->getIncomingValue(0),
2611                                  PN->getIncomingValue(1)))
2612     return Changed;
2613 
2614   // If all PHI nodes are promotable, check to make sure that all instructions
2615   // in the predecessor blocks can be promoted as well. If not, we won't be able
2616   // to get rid of the control flow, so it's not worth promoting to select
2617   // instructions.
2618   BasicBlock *DomBlock = nullptr;
2619   BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
2620   BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
2621   if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
2622     IfBlock1 = nullptr;
2623   } else {
2624     DomBlock = *pred_begin(IfBlock1);
2625     for (BasicBlock::iterator I = IfBlock1->begin(); !I->isTerminator(); ++I)
2626       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) &&
2627           !isa<PseudoProbeInst>(I)) {
2628         // This is not an aggressive instruction that we can promote.
2629         // Because of this, we won't be able to get rid of the control flow, so
2630         // the xform is not worth it.
2631         return Changed;
2632       }
2633   }
2634 
2635   if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
2636     IfBlock2 = nullptr;
2637   } else {
2638     DomBlock = *pred_begin(IfBlock2);
2639     for (BasicBlock::iterator I = IfBlock2->begin(); !I->isTerminator(); ++I)
2640       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) &&
2641           !isa<PseudoProbeInst>(I)) {
2642         // This is not an aggressive instruction that we can promote.
2643         // Because of this, we won't be able to get rid of the control flow, so
2644         // the xform is not worth it.
2645         return Changed;
2646       }
2647   }
2648   assert(DomBlock && "Failed to find root DomBlock");
2649 
2650   LLVM_DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond
2651                     << "  T: " << IfTrue->getName()
2652                     << "  F: " << IfFalse->getName() << "\n");
2653 
2654   // If we can still promote the PHI nodes after this gauntlet of tests,
2655   // do all of the PHI's now.
2656   Instruction *InsertPt = DomBlock->getTerminator();
2657   IRBuilder<NoFolder> Builder(InsertPt);
2658 
2659   // Move all 'aggressive' instructions, which are defined in the
2660   // conditional parts of the if's up to the dominating block.
2661   if (IfBlock1)
2662     hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock1);
2663   if (IfBlock2)
2664     hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock2);
2665 
2666   // Propagate fast-math-flags from phi nodes to replacement selects.
2667   IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
2668   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
2669     if (isa<FPMathOperator>(PN))
2670       Builder.setFastMathFlags(PN->getFastMathFlags());
2671 
2672     // Change the PHI node into a select instruction.
2673     Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
2674     Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
2675 
2676     Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt);
2677     PN->replaceAllUsesWith(Sel);
2678     Sel->takeName(PN);
2679     PN->eraseFromParent();
2680   }
2681 
2682   // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
2683   // has been flattened.  Change DomBlock to jump directly to our new block to
2684   // avoid other simplifycfg's kicking in on the diamond.
2685   Instruction *OldTI = DomBlock->getTerminator();
2686   Builder.SetInsertPoint(OldTI);
2687   Builder.CreateBr(BB);
2688 
2689   SmallVector<DominatorTree::UpdateType, 3> Updates;
2690   if (DTU) {
2691     Updates.push_back({DominatorTree::Insert, DomBlock, BB});
2692     for (auto *Successor : successors(DomBlock))
2693       Updates.push_back({DominatorTree::Delete, DomBlock, Successor});
2694   }
2695 
2696   OldTI->eraseFromParent();
2697   if (DTU)
2698     DTU->applyUpdates(Updates);
2699 
2700   return true;
2701 }
2702 
2703 /// If we found a conditional branch that goes to two returning blocks,
2704 /// try to merge them together into one return,
2705 /// introducing a select if the return values disagree.
2706 bool SimplifyCFGOpt::SimplifyCondBranchToTwoReturns(BranchInst *BI,
2707                                                     IRBuilder<> &Builder) {
2708   auto *BB = BI->getParent();
2709   assert(BI->isConditional() && "Must be a conditional branch");
2710   BasicBlock *TrueSucc = BI->getSuccessor(0);
2711   BasicBlock *FalseSucc = BI->getSuccessor(1);
2712   // NOTE: destinations may match, this could be degenerate uncond branch.
2713   ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
2714   ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
2715 
2716   // Check to ensure both blocks are empty (just a return) or optionally empty
2717   // with PHI nodes.  If there are other instructions, merging would cause extra
2718   // computation on one path or the other.
2719   if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
2720     return false;
2721   if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
2722     return false;
2723 
2724   Builder.SetInsertPoint(BI);
2725   // Okay, we found a branch that is going to two return nodes.  If
2726   // there is no return value for this function, just change the
2727   // branch into a return.
2728   if (FalseRet->getNumOperands() == 0) {
2729     TrueSucc->removePredecessor(BB);
2730     FalseSucc->removePredecessor(BB);
2731     Builder.CreateRetVoid();
2732     EraseTerminatorAndDCECond(BI);
2733     if (DTU) {
2734       SmallVector<DominatorTree::UpdateType, 2> Updates;
2735       Updates.push_back({DominatorTree::Delete, BB, TrueSucc});
2736       if (TrueSucc != FalseSucc)
2737         Updates.push_back({DominatorTree::Delete, BB, FalseSucc});
2738       DTU->applyUpdates(Updates);
2739     }
2740     return true;
2741   }
2742 
2743   // Otherwise, figure out what the true and false return values are
2744   // so we can insert a new select instruction.
2745   Value *TrueValue = TrueRet->getReturnValue();
2746   Value *FalseValue = FalseRet->getReturnValue();
2747 
2748   // Unwrap any PHI nodes in the return blocks.
2749   if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
2750     if (TVPN->getParent() == TrueSucc)
2751       TrueValue = TVPN->getIncomingValueForBlock(BB);
2752   if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
2753     if (FVPN->getParent() == FalseSucc)
2754       FalseValue = FVPN->getIncomingValueForBlock(BB);
2755 
2756   // In order for this transformation to be safe, we must be able to
2757   // unconditionally execute both operands to the return.  This is
2758   // normally the case, but we could have a potentially-trapping
2759   // constant expression that prevents this transformation from being
2760   // safe.
2761   if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
2762     if (TCV->canTrap())
2763       return false;
2764   if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
2765     if (FCV->canTrap())
2766       return false;
2767 
2768   // Okay, we collected all the mapped values and checked them for sanity, and
2769   // defined to really do this transformation.  First, update the CFG.
2770   TrueSucc->removePredecessor(BB);
2771   FalseSucc->removePredecessor(BB);
2772 
2773   // Insert select instructions where needed.
2774   Value *BrCond = BI->getCondition();
2775   if (TrueValue) {
2776     // Insert a select if the results differ.
2777     if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
2778     } else if (isa<UndefValue>(TrueValue)) {
2779       TrueValue = FalseValue;
2780     } else {
2781       TrueValue =
2782           Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI);
2783     }
2784   }
2785 
2786   Value *RI =
2787       !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
2788 
2789   (void)RI;
2790 
2791   LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
2792                     << "\n  " << *BI << "\nNewRet = " << *RI << "\nTRUEBLOCK: "
2793                     << *TrueSucc << "\nFALSEBLOCK: " << *FalseSucc);
2794 
2795   EraseTerminatorAndDCECond(BI);
2796   if (DTU) {
2797     SmallVector<DominatorTree::UpdateType, 2> Updates;
2798     Updates.push_back({DominatorTree::Delete, BB, TrueSucc});
2799     if (TrueSucc != FalseSucc)
2800       Updates.push_back({DominatorTree::Delete, BB, FalseSucc});
2801     DTU->applyUpdates(Updates);
2802   }
2803 
2804   return true;
2805 }
2806 
2807 /// Return true if either PBI or BI has branch weight available, and store
2808 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
2809 /// not have branch weight, use 1:1 as its weight.
2810 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
2811                                    uint64_t &PredTrueWeight,
2812                                    uint64_t &PredFalseWeight,
2813                                    uint64_t &SuccTrueWeight,
2814                                    uint64_t &SuccFalseWeight) {
2815   bool PredHasWeights =
2816       PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight);
2817   bool SuccHasWeights =
2818       BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight);
2819   if (PredHasWeights || SuccHasWeights) {
2820     if (!PredHasWeights)
2821       PredTrueWeight = PredFalseWeight = 1;
2822     if (!SuccHasWeights)
2823       SuccTrueWeight = SuccFalseWeight = 1;
2824     return true;
2825   } else {
2826     return false;
2827   }
2828 }
2829 
2830 // Determine if the two branches share a common destination,
2831 // and deduce a glue that we need to use to join branch's conditions
2832 // to arrive at the common destination.
2833 static Optional<std::pair<Instruction::BinaryOps, bool>>
2834 CheckIfCondBranchesShareCommonDestination(BranchInst *BI, BranchInst *PBI) {
2835   assert(BI && PBI && BI->isConditional() && PBI->isConditional() &&
2836          "Both blocks must end with a conditional branches.");
2837   assert(is_contained(predecessors(BI->getParent()), PBI->getParent()) &&
2838          "PredBB must be a predecessor of BB.");
2839 
2840   if (PBI->getSuccessor(0) == BI->getSuccessor(0))
2841     return {{Instruction::Or, false}};
2842   else if (PBI->getSuccessor(1) == BI->getSuccessor(1))
2843     return {{Instruction::And, false}};
2844   else if (PBI->getSuccessor(0) == BI->getSuccessor(1))
2845     return {{Instruction::And, true}};
2846   else if (PBI->getSuccessor(1) == BI->getSuccessor(0))
2847     return {{Instruction::Or, true}};
2848   return None;
2849 }
2850 
2851 static bool PerformBranchToCommonDestFolding(BranchInst *BI, BranchInst *PBI,
2852                                              DomTreeUpdater *DTU,
2853                                              MemorySSAUpdater *MSSAU) {
2854   BasicBlock *BB = BI->getParent();
2855   BasicBlock *PredBlock = PBI->getParent();
2856 
2857   // Determine if the two branches share a common destination.
2858   Instruction::BinaryOps Opc;
2859   bool InvertPredCond;
2860   std::tie(Opc, InvertPredCond) =
2861       *CheckIfCondBranchesShareCommonDestination(BI, PBI);
2862 
2863   LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
2864 
2865   IRBuilder<> Builder(PBI);
2866   // The builder is used to create instructions to eliminate the branch in BB.
2867   // If BB's terminator has !annotation metadata, add it to the new
2868   // instructions.
2869   Builder.CollectMetadataToCopy(BB->getTerminator(),
2870                                 {LLVMContext::MD_annotation});
2871 
2872   // If we need to invert the condition in the pred block to match, do so now.
2873   if (InvertPredCond) {
2874     Value *NewCond = PBI->getCondition();
2875     if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
2876       CmpInst *CI = cast<CmpInst>(NewCond);
2877       CI->setPredicate(CI->getInversePredicate());
2878     } else {
2879       NewCond =
2880           Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not");
2881     }
2882 
2883     PBI->setCondition(NewCond);
2884     PBI->swapSuccessors();
2885   }
2886 
2887   BasicBlock *UniqueSucc =
2888       PBI->getSuccessor(0) == BB ? BI->getSuccessor(0) : BI->getSuccessor(1);
2889 
2890   // Before cloning instructions, notify the successor basic block that it
2891   // is about to have a new predecessor. This will update PHI nodes,
2892   // which will allow us to update live-out uses of bonus instructions.
2893   AddPredecessorToBlock(UniqueSucc, PredBlock, BB, MSSAU);
2894 
2895   // Try to update branch weights.
2896   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2897   if (extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
2898                              SuccTrueWeight, SuccFalseWeight)) {
2899     SmallVector<uint64_t, 8> NewWeights;
2900 
2901     if (PBI->getSuccessor(0) == BB) {
2902       // PBI: br i1 %x, BB, FalseDest
2903       // BI:  br i1 %y, UniqueSucc, FalseDest
2904       // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
2905       NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
2906       // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
2907       //               TrueWeight for PBI * FalseWeight for BI.
2908       // We assume that total weights of a BranchInst can fit into 32 bits.
2909       // Therefore, we will not have overflow using 64-bit arithmetic.
2910       NewWeights.push_back(PredFalseWeight *
2911                                (SuccFalseWeight + SuccTrueWeight) +
2912                            PredTrueWeight * SuccFalseWeight);
2913     } else {
2914       // PBI: br i1 %x, TrueDest, BB
2915       // BI:  br i1 %y, TrueDest, UniqueSucc
2916       // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
2917       //              FalseWeight for PBI * TrueWeight for BI.
2918       NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + SuccTrueWeight) +
2919                            PredFalseWeight * SuccTrueWeight);
2920       // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
2921       NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
2922     }
2923 
2924     // Halve the weights if any of them cannot fit in an uint32_t
2925     FitWeights(NewWeights);
2926 
2927     SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), NewWeights.end());
2928     setBranchWeights(PBI, MDWeights[0], MDWeights[1]);
2929 
2930     // TODO: If BB is reachable from all paths through PredBlock, then we
2931     // could replace PBI's branch probabilities with BI's.
2932   } else
2933     PBI->setMetadata(LLVMContext::MD_prof, nullptr);
2934 
2935   // Now, update the CFG.
2936   PBI->setSuccessor(PBI->getSuccessor(0) != BB, UniqueSucc);
2937 
2938   if (DTU)
2939     DTU->applyUpdates({{DominatorTree::Insert, PredBlock, UniqueSucc},
2940                        {DominatorTree::Delete, PredBlock, BB}});
2941 
2942   // If BI was a loop latch, it may have had associated loop metadata.
2943   // We need to copy it to the new latch, that is, PBI.
2944   if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop))
2945     PBI->setMetadata(LLVMContext::MD_loop, LoopMD);
2946 
2947   ValueToValueMapTy VMap; // maps original values to cloned values
2948   CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(BB, PredBlock, VMap);
2949 
2950   // Now that the Cond was cloned into the predecessor basic block,
2951   // or/and the two conditions together.
2952   Instruction *NewCond = cast<Instruction>(Builder.CreateBinOp(
2953       Opc, PBI->getCondition(), VMap[BI->getCondition()], "or.cond"));
2954   PBI->setCondition(NewCond);
2955 
2956   // Copy any debug value intrinsics into the end of PredBlock.
2957   for (Instruction &I : *BB) {
2958     if (isa<DbgInfoIntrinsic>(I)) {
2959       Instruction *NewI = I.clone();
2960       RemapInstruction(NewI, VMap,
2961                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2962       NewI->insertBefore(PBI);
2963     }
2964   }
2965 
2966   ++NumFoldBranchToCommonDest;
2967   return true;
2968 }
2969 
2970 /// If this basic block is simple enough, and if a predecessor branches to us
2971 /// and one of our successors, fold the block into the predecessor and use
2972 /// logical operations to pick the right destination.
2973 bool llvm::FoldBranchToCommonDest(BranchInst *BI, DomTreeUpdater *DTU,
2974                                   MemorySSAUpdater *MSSAU,
2975                                   const TargetTransformInfo *TTI,
2976                                   unsigned BonusInstThreshold) {
2977   // If this block ends with an unconditional branch,
2978   // let SpeculativelyExecuteBB() deal with it.
2979   if (!BI->isConditional())
2980     return false;
2981 
2982   BasicBlock *BB = BI->getParent();
2983 
2984   const unsigned PredCount = pred_size(BB);
2985 
2986   bool Changed = false;
2987 
2988   TargetTransformInfo::TargetCostKind CostKind =
2989     BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize
2990                                   : TargetTransformInfo::TCK_SizeAndLatency;
2991 
2992   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
2993 
2994   if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
2995       Cond->getParent() != BB || !Cond->hasOneUse())
2996     return Changed;
2997 
2998   // Only allow this transformation if computing the condition doesn't involve
2999   // too many instructions and these involved instructions can be executed
3000   // unconditionally. We denote all involved instructions except the condition
3001   // as "bonus instructions", and only allow this transformation when the
3002   // number of the bonus instructions we'll need to create when cloning into
3003   // each predecessor does not exceed a certain threshold.
3004   unsigned NumBonusInsts = 0;
3005   for (Instruction &I : *BB) {
3006     // Don't check the branch condition comparison itself.
3007     if (&I == Cond)
3008       continue;
3009     // Ignore dbg intrinsics, and the terminator.
3010     if (isa<DbgInfoIntrinsic>(I) || isa<BranchInst>(I))
3011       continue;
3012     // I must be safe to execute unconditionally.
3013     if (!isSafeToSpeculativelyExecute(&I))
3014       return Changed;
3015 
3016     // Account for the cost of duplicating this instruction into each
3017     // predecessor.
3018     NumBonusInsts += PredCount;
3019     // Early exits once we reach the limit.
3020     if (NumBonusInsts > BonusInstThreshold)
3021       return Changed;
3022   }
3023 
3024   // Cond is known to be a compare or binary operator.  Check to make sure that
3025   // neither operand is a potentially-trapping constant expression.
3026   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
3027     if (CE->canTrap())
3028       return Changed;
3029   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
3030     if (CE->canTrap())
3031       return Changed;
3032 
3033   // Finally, don't infinitely unroll conditional loops.
3034   if (is_contained(successors(BB), BB))
3035     return Changed;
3036 
3037   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
3038     BasicBlock *PredBlock = *PI;
3039     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
3040 
3041     // Check that we have two conditional branches.  If there is a PHI node in
3042     // the common successor, verify that the same value flows in from both
3043     // blocks.
3044     if (!PBI || PBI->isUnconditional() || !SafeToMergeTerminators(BI, PBI))
3045       continue;
3046 
3047     // Determine if the two branches share a common destination.
3048     Instruction::BinaryOps Opc;
3049     bool InvertPredCond;
3050     if (auto Recepie = CheckIfCondBranchesShareCommonDestination(BI, PBI))
3051       std::tie(Opc, InvertPredCond) = *Recepie;
3052     else
3053       continue;
3054 
3055     // Check the cost of inserting the necessary logic before performing the
3056     // transformation.
3057     if (TTI) {
3058       Type *Ty = BI->getCondition()->getType();
3059       unsigned Cost = TTI->getArithmeticInstrCost(Opc, Ty, CostKind);
3060       if (InvertPredCond && (!PBI->getCondition()->hasOneUse() ||
3061           !isa<CmpInst>(PBI->getCondition())))
3062         Cost += TTI->getArithmeticInstrCost(Instruction::Xor, Ty, CostKind);
3063 
3064       if (Cost > BranchFoldThreshold)
3065         continue;
3066     }
3067 
3068     return PerformBranchToCommonDestFolding(BI, PBI, DTU, MSSAU);
3069   }
3070   return Changed;
3071 }
3072 
3073 // If there is only one store in BB1 and BB2, return it, otherwise return
3074 // nullptr.
3075 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
3076   StoreInst *S = nullptr;
3077   for (auto *BB : {BB1, BB2}) {
3078     if (!BB)
3079       continue;
3080     for (auto &I : *BB)
3081       if (auto *SI = dyn_cast<StoreInst>(&I)) {
3082         if (S)
3083           // Multiple stores seen.
3084           return nullptr;
3085         else
3086           S = SI;
3087       }
3088   }
3089   return S;
3090 }
3091 
3092 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
3093                                               Value *AlternativeV = nullptr) {
3094   // PHI is going to be a PHI node that allows the value V that is defined in
3095   // BB to be referenced in BB's only successor.
3096   //
3097   // If AlternativeV is nullptr, the only value we care about in PHI is V. It
3098   // doesn't matter to us what the other operand is (it'll never get used). We
3099   // could just create a new PHI with an undef incoming value, but that could
3100   // increase register pressure if EarlyCSE/InstCombine can't fold it with some
3101   // other PHI. So here we directly look for some PHI in BB's successor with V
3102   // as an incoming operand. If we find one, we use it, else we create a new
3103   // one.
3104   //
3105   // If AlternativeV is not nullptr, we care about both incoming values in PHI.
3106   // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
3107   // where OtherBB is the single other predecessor of BB's only successor.
3108   PHINode *PHI = nullptr;
3109   BasicBlock *Succ = BB->getSingleSuccessor();
3110 
3111   for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
3112     if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
3113       PHI = cast<PHINode>(I);
3114       if (!AlternativeV)
3115         break;
3116 
3117       assert(Succ->hasNPredecessors(2));
3118       auto PredI = pred_begin(Succ);
3119       BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
3120       if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
3121         break;
3122       PHI = nullptr;
3123     }
3124   if (PHI)
3125     return PHI;
3126 
3127   // If V is not an instruction defined in BB, just return it.
3128   if (!AlternativeV &&
3129       (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
3130     return V;
3131 
3132   PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
3133   PHI->addIncoming(V, BB);
3134   for (BasicBlock *PredBB : predecessors(Succ))
3135     if (PredBB != BB)
3136       PHI->addIncoming(
3137           AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB);
3138   return PHI;
3139 }
3140 
3141 static bool mergeConditionalStoreToAddress(
3142     BasicBlock *PTB, BasicBlock *PFB, BasicBlock *QTB, BasicBlock *QFB,
3143     BasicBlock *PostBB, Value *Address, bool InvertPCond, bool InvertQCond,
3144     DomTreeUpdater *DTU, const DataLayout &DL, const TargetTransformInfo &TTI) {
3145   // For every pointer, there must be exactly two stores, one coming from
3146   // PTB or PFB, and the other from QTB or QFB. We don't support more than one
3147   // store (to any address) in PTB,PFB or QTB,QFB.
3148   // FIXME: We could relax this restriction with a bit more work and performance
3149   // testing.
3150   StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
3151   StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
3152   if (!PStore || !QStore)
3153     return false;
3154 
3155   // Now check the stores are compatible.
3156   if (!QStore->isUnordered() || !PStore->isUnordered())
3157     return false;
3158 
3159   // Check that sinking the store won't cause program behavior changes. Sinking
3160   // the store out of the Q blocks won't change any behavior as we're sinking
3161   // from a block to its unconditional successor. But we're moving a store from
3162   // the P blocks down through the middle block (QBI) and past both QFB and QTB.
3163   // So we need to check that there are no aliasing loads or stores in
3164   // QBI, QTB and QFB. We also need to check there are no conflicting memory
3165   // operations between PStore and the end of its parent block.
3166   //
3167   // The ideal way to do this is to query AliasAnalysis, but we don't
3168   // preserve AA currently so that is dangerous. Be super safe and just
3169   // check there are no other memory operations at all.
3170   for (auto &I : *QFB->getSinglePredecessor())
3171     if (I.mayReadOrWriteMemory())
3172       return false;
3173   for (auto &I : *QFB)
3174     if (&I != QStore && I.mayReadOrWriteMemory())
3175       return false;
3176   if (QTB)
3177     for (auto &I : *QTB)
3178       if (&I != QStore && I.mayReadOrWriteMemory())
3179         return false;
3180   for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
3181        I != E; ++I)
3182     if (&*I != PStore && I->mayReadOrWriteMemory())
3183       return false;
3184 
3185   // If we're not in aggressive mode, we only optimize if we have some
3186   // confidence that by optimizing we'll allow P and/or Q to be if-converted.
3187   auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) {
3188     if (!BB)
3189       return true;
3190     // Heuristic: if the block can be if-converted/phi-folded and the
3191     // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
3192     // thread this store.
3193     int BudgetRemaining =
3194         PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
3195     for (auto &I : BB->instructionsWithoutDebug()) {
3196       // Consider terminator instruction to be free.
3197       if (I.isTerminator())
3198         continue;
3199       // If this is one the stores that we want to speculate out of this BB,
3200       // then don't count it's cost, consider it to be free.
3201       if (auto *S = dyn_cast<StoreInst>(&I))
3202         if (llvm::find(FreeStores, S))
3203           continue;
3204       // Else, we have a white-list of instructions that we are ak speculating.
3205       if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I))
3206         return false; // Not in white-list - not worthwhile folding.
3207       // And finally, if this is a non-free instruction that we are okay
3208       // speculating, ensure that we consider the speculation budget.
3209       BudgetRemaining -= TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
3210       if (BudgetRemaining < 0)
3211         return false; // Eagerly refuse to fold as soon as we're out of budget.
3212     }
3213     assert(BudgetRemaining >= 0 &&
3214            "When we run out of budget we will eagerly return from within the "
3215            "per-instruction loop.");
3216     return true;
3217   };
3218 
3219   const std::array<StoreInst *, 2> FreeStores = {PStore, QStore};
3220   if (!MergeCondStoresAggressively &&
3221       (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) ||
3222        !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores)))
3223     return false;
3224 
3225   // If PostBB has more than two predecessors, we need to split it so we can
3226   // sink the store.
3227   if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) {
3228     // We know that QFB's only successor is PostBB. And QFB has a single
3229     // predecessor. If QTB exists, then its only successor is also PostBB.
3230     // If QTB does not exist, then QFB's only predecessor has a conditional
3231     // branch to QFB and PostBB.
3232     BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor();
3233     BasicBlock *NewBB =
3234         SplitBlockPredecessors(PostBB, {QFB, TruePred}, "condstore.split", DTU);
3235     if (!NewBB)
3236       return false;
3237     PostBB = NewBB;
3238   }
3239 
3240   // OK, we're going to sink the stores to PostBB. The store has to be
3241   // conditional though, so first create the predicate.
3242   Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
3243                      ->getCondition();
3244   Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
3245                      ->getCondition();
3246 
3247   Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
3248                                                 PStore->getParent());
3249   Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
3250                                                 QStore->getParent(), PPHI);
3251 
3252   IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
3253 
3254   Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
3255   Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
3256 
3257   if (InvertPCond)
3258     PPred = QB.CreateNot(PPred);
3259   if (InvertQCond)
3260     QPred = QB.CreateNot(QPred);
3261   Value *CombinedPred = QB.CreateOr(PPred, QPred);
3262 
3263   auto *T = SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(),
3264                                       /*Unreachable=*/false,
3265                                       /*BranchWeights=*/nullptr, DTU);
3266   QB.SetInsertPoint(T);
3267   StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
3268   AAMDNodes AAMD;
3269   PStore->getAAMetadata(AAMD, /*Merge=*/false);
3270   PStore->getAAMetadata(AAMD, /*Merge=*/true);
3271   SI->setAAMetadata(AAMD);
3272   // Choose the minimum alignment. If we could prove both stores execute, we
3273   // could use biggest one.  In this case, though, we only know that one of the
3274   // stores executes.  And we don't know it's safe to take the alignment from a
3275   // store that doesn't execute.
3276   SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign()));
3277 
3278   QStore->eraseFromParent();
3279   PStore->eraseFromParent();
3280 
3281   return true;
3282 }
3283 
3284 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI,
3285                                    DomTreeUpdater *DTU, const DataLayout &DL,
3286                                    const TargetTransformInfo &TTI) {
3287   // The intention here is to find diamonds or triangles (see below) where each
3288   // conditional block contains a store to the same address. Both of these
3289   // stores are conditional, so they can't be unconditionally sunk. But it may
3290   // be profitable to speculatively sink the stores into one merged store at the
3291   // end, and predicate the merged store on the union of the two conditions of
3292   // PBI and QBI.
3293   //
3294   // This can reduce the number of stores executed if both of the conditions are
3295   // true, and can allow the blocks to become small enough to be if-converted.
3296   // This optimization will also chain, so that ladders of test-and-set
3297   // sequences can be if-converted away.
3298   //
3299   // We only deal with simple diamonds or triangles:
3300   //
3301   //     PBI       or      PBI        or a combination of the two
3302   //    /   \               | \
3303   //   PTB  PFB             |  PFB
3304   //    \   /               | /
3305   //     QBI                QBI
3306   //    /  \                | \
3307   //   QTB  QFB             |  QFB
3308   //    \  /                | /
3309   //    PostBB            PostBB
3310   //
3311   // We model triangles as a type of diamond with a nullptr "true" block.
3312   // Triangles are canonicalized so that the fallthrough edge is represented by
3313   // a true condition, as in the diagram above.
3314   BasicBlock *PTB = PBI->getSuccessor(0);
3315   BasicBlock *PFB = PBI->getSuccessor(1);
3316   BasicBlock *QTB = QBI->getSuccessor(0);
3317   BasicBlock *QFB = QBI->getSuccessor(1);
3318   BasicBlock *PostBB = QFB->getSingleSuccessor();
3319 
3320   // Make sure we have a good guess for PostBB. If QTB's only successor is
3321   // QFB, then QFB is a better PostBB.
3322   if (QTB->getSingleSuccessor() == QFB)
3323     PostBB = QFB;
3324 
3325   // If we couldn't find a good PostBB, stop.
3326   if (!PostBB)
3327     return false;
3328 
3329   bool InvertPCond = false, InvertQCond = false;
3330   // Canonicalize fallthroughs to the true branches.
3331   if (PFB == QBI->getParent()) {
3332     std::swap(PFB, PTB);
3333     InvertPCond = true;
3334   }
3335   if (QFB == PostBB) {
3336     std::swap(QFB, QTB);
3337     InvertQCond = true;
3338   }
3339 
3340   // From this point on we can assume PTB or QTB may be fallthroughs but PFB
3341   // and QFB may not. Model fallthroughs as a nullptr block.
3342   if (PTB == QBI->getParent())
3343     PTB = nullptr;
3344   if (QTB == PostBB)
3345     QTB = nullptr;
3346 
3347   // Legality bailouts. We must have at least the non-fallthrough blocks and
3348   // the post-dominating block, and the non-fallthroughs must only have one
3349   // predecessor.
3350   auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
3351     return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
3352   };
3353   if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
3354       !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
3355     return false;
3356   if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
3357       (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
3358     return false;
3359   if (!QBI->getParent()->hasNUses(2))
3360     return false;
3361 
3362   // OK, this is a sequence of two diamonds or triangles.
3363   // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
3364   SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
3365   for (auto *BB : {PTB, PFB}) {
3366     if (!BB)
3367       continue;
3368     for (auto &I : *BB)
3369       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3370         PStoreAddresses.insert(SI->getPointerOperand());
3371   }
3372   for (auto *BB : {QTB, QFB}) {
3373     if (!BB)
3374       continue;
3375     for (auto &I : *BB)
3376       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3377         QStoreAddresses.insert(SI->getPointerOperand());
3378   }
3379 
3380   set_intersect(PStoreAddresses, QStoreAddresses);
3381   // set_intersect mutates PStoreAddresses in place. Rename it here to make it
3382   // clear what it contains.
3383   auto &CommonAddresses = PStoreAddresses;
3384 
3385   bool Changed = false;
3386   for (auto *Address : CommonAddresses)
3387     Changed |=
3388         mergeConditionalStoreToAddress(PTB, PFB, QTB, QFB, PostBB, Address,
3389                                        InvertPCond, InvertQCond, DTU, DL, TTI);
3390   return Changed;
3391 }
3392 
3393 /// If the previous block ended with a widenable branch, determine if reusing
3394 /// the target block is profitable and legal.  This will have the effect of
3395 /// "widening" PBI, but doesn't require us to reason about hosting safety.
3396 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3397                                            DomTreeUpdater *DTU) {
3398   // TODO: This can be generalized in two important ways:
3399   // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input
3400   //    values from the PBI edge.
3401   // 2) We can sink side effecting instructions into BI's fallthrough
3402   //    successor provided they doesn't contribute to computation of
3403   //    BI's condition.
3404   Value *CondWB, *WC;
3405   BasicBlock *IfTrueBB, *IfFalseBB;
3406   if (!parseWidenableBranch(PBI, CondWB, WC, IfTrueBB, IfFalseBB) ||
3407       IfTrueBB != BI->getParent() || !BI->getParent()->getSinglePredecessor())
3408     return false;
3409   if (!IfFalseBB->phis().empty())
3410     return false; // TODO
3411   // Use lambda to lazily compute expensive condition after cheap ones.
3412   auto NoSideEffects = [](BasicBlock &BB) {
3413     return !llvm::any_of(BB, [](const Instruction &I) {
3414         return I.mayWriteToMemory() || I.mayHaveSideEffects();
3415       });
3416   };
3417   if (BI->getSuccessor(1) != IfFalseBB && // no inf looping
3418       BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability
3419       NoSideEffects(*BI->getParent())) {
3420     auto *OldSuccessor = BI->getSuccessor(1);
3421     OldSuccessor->removePredecessor(BI->getParent());
3422     BI->setSuccessor(1, IfFalseBB);
3423     if (DTU)
3424       DTU->applyUpdates(
3425           {{DominatorTree::Insert, BI->getParent(), IfFalseBB},
3426            {DominatorTree::Delete, BI->getParent(), OldSuccessor}});
3427     return true;
3428   }
3429   if (BI->getSuccessor(0) != IfFalseBB && // no inf looping
3430       BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability
3431       NoSideEffects(*BI->getParent())) {
3432     auto *OldSuccessor = BI->getSuccessor(0);
3433     OldSuccessor->removePredecessor(BI->getParent());
3434     BI->setSuccessor(0, IfFalseBB);
3435     if (DTU)
3436       DTU->applyUpdates(
3437           {{DominatorTree::Insert, BI->getParent(), IfFalseBB},
3438            {DominatorTree::Delete, BI->getParent(), OldSuccessor}});
3439     return true;
3440   }
3441   return false;
3442 }
3443 
3444 /// If we have a conditional branch as a predecessor of another block,
3445 /// this function tries to simplify it.  We know
3446 /// that PBI and BI are both conditional branches, and BI is in one of the
3447 /// successor blocks of PBI - PBI branches to BI.
3448 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3449                                            DomTreeUpdater *DTU,
3450                                            const DataLayout &DL,
3451                                            const TargetTransformInfo &TTI) {
3452   assert(PBI->isConditional() && BI->isConditional());
3453   BasicBlock *BB = BI->getParent();
3454 
3455   // If this block ends with a branch instruction, and if there is a
3456   // predecessor that ends on a branch of the same condition, make
3457   // this conditional branch redundant.
3458   if (PBI->getCondition() == BI->getCondition() &&
3459       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3460     // Okay, the outcome of this conditional branch is statically
3461     // knowable.  If this block had a single pred, handle specially.
3462     if (BB->getSinglePredecessor()) {
3463       // Turn this into a branch on constant.
3464       bool CondIsTrue = PBI->getSuccessor(0) == BB;
3465       BI->setCondition(
3466           ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
3467       return true; // Nuke the branch on constant.
3468     }
3469 
3470     // Otherwise, if there are multiple predecessors, insert a PHI that merges
3471     // in the constant and simplify the block result.  Subsequent passes of
3472     // simplifycfg will thread the block.
3473     if (BlockIsSimpleEnoughToThreadThrough(BB)) {
3474       pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
3475       PHINode *NewPN = PHINode::Create(
3476           Type::getInt1Ty(BB->getContext()), std::distance(PB, PE),
3477           BI->getCondition()->getName() + ".pr", &BB->front());
3478       // Okay, we're going to insert the PHI node.  Since PBI is not the only
3479       // predecessor, compute the PHI'd conditional value for all of the preds.
3480       // Any predecessor where the condition is not computable we keep symbolic.
3481       for (pred_iterator PI = PB; PI != PE; ++PI) {
3482         BasicBlock *P = *PI;
3483         if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI &&
3484             PBI->isConditional() && PBI->getCondition() == BI->getCondition() &&
3485             PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3486           bool CondIsTrue = PBI->getSuccessor(0) == BB;
3487           NewPN->addIncoming(
3488               ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue),
3489               P);
3490         } else {
3491           NewPN->addIncoming(BI->getCondition(), P);
3492         }
3493       }
3494 
3495       BI->setCondition(NewPN);
3496       return true;
3497     }
3498   }
3499 
3500   // If the previous block ended with a widenable branch, determine if reusing
3501   // the target block is profitable and legal.  This will have the effect of
3502   // "widening" PBI, but doesn't require us to reason about hosting safety.
3503   if (tryWidenCondBranchToCondBranch(PBI, BI, DTU))
3504     return true;
3505 
3506   if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
3507     if (CE->canTrap())
3508       return false;
3509 
3510   // If both branches are conditional and both contain stores to the same
3511   // address, remove the stores from the conditionals and create a conditional
3512   // merged store at the end.
3513   if (MergeCondStores && mergeConditionalStores(PBI, BI, DTU, DL, TTI))
3514     return true;
3515 
3516   // If this is a conditional branch in an empty block, and if any
3517   // predecessors are a conditional branch to one of our destinations,
3518   // fold the conditions into logical ops and one cond br.
3519 
3520   // Ignore dbg intrinsics.
3521   if (&*BB->instructionsWithoutDebug().begin() != BI)
3522     return false;
3523 
3524   int PBIOp, BIOp;
3525   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3526     PBIOp = 0;
3527     BIOp = 0;
3528   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3529     PBIOp = 0;
3530     BIOp = 1;
3531   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3532     PBIOp = 1;
3533     BIOp = 0;
3534   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3535     PBIOp = 1;
3536     BIOp = 1;
3537   } else {
3538     return false;
3539   }
3540 
3541   // Check to make sure that the other destination of this branch
3542   // isn't BB itself.  If so, this is an infinite loop that will
3543   // keep getting unwound.
3544   if (PBI->getSuccessor(PBIOp) == BB)
3545     return false;
3546 
3547   // Do not perform this transformation if it would require
3548   // insertion of a large number of select instructions. For targets
3549   // without predication/cmovs, this is a big pessimization.
3550 
3551   // Also do not perform this transformation if any phi node in the common
3552   // destination block can trap when reached by BB or PBB (PR17073). In that
3553   // case, it would be unsafe to hoist the operation into a select instruction.
3554 
3555   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
3556   BasicBlock *RemovedDest = PBI->getSuccessor(PBIOp ^ 1);
3557   unsigned NumPhis = 0;
3558   for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
3559        ++II, ++NumPhis) {
3560     if (NumPhis > 2) // Disable this xform.
3561       return false;
3562 
3563     PHINode *PN = cast<PHINode>(II);
3564     Value *BIV = PN->getIncomingValueForBlock(BB);
3565     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
3566       if (CE->canTrap())
3567         return false;
3568 
3569     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
3570     Value *PBIV = PN->getIncomingValue(PBBIdx);
3571     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
3572       if (CE->canTrap())
3573         return false;
3574   }
3575 
3576   // Finally, if everything is ok, fold the branches to logical ops.
3577   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
3578 
3579   LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
3580                     << "AND: " << *BI->getParent());
3581 
3582   SmallVector<DominatorTree::UpdateType, 5> Updates;
3583 
3584   // If OtherDest *is* BB, then BB is a basic block with a single conditional
3585   // branch in it, where one edge (OtherDest) goes back to itself but the other
3586   // exits.  We don't *know* that the program avoids the infinite loop
3587   // (even though that seems likely).  If we do this xform naively, we'll end up
3588   // recursively unpeeling the loop.  Since we know that (after the xform is
3589   // done) that the block *is* infinite if reached, we just make it an obviously
3590   // infinite loop with no cond branch.
3591   if (OtherDest == BB) {
3592     // Insert it at the end of the function, because it's either code,
3593     // or it won't matter if it's hot. :)
3594     BasicBlock *InfLoopBlock =
3595         BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
3596     BranchInst::Create(InfLoopBlock, InfLoopBlock);
3597     Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock});
3598     OtherDest = InfLoopBlock;
3599   }
3600 
3601   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3602 
3603   // BI may have other predecessors.  Because of this, we leave
3604   // it alone, but modify PBI.
3605 
3606   // Make sure we get to CommonDest on True&True directions.
3607   Value *PBICond = PBI->getCondition();
3608   IRBuilder<NoFolder> Builder(PBI);
3609   if (PBIOp)
3610     PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
3611 
3612   Value *BICond = BI->getCondition();
3613   if (BIOp)
3614     BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
3615 
3616   // Merge the conditions.
3617   Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
3618 
3619   // Modify PBI to branch on the new condition to the new dests.
3620   PBI->setCondition(Cond);
3621   PBI->setSuccessor(0, CommonDest);
3622   PBI->setSuccessor(1, OtherDest);
3623 
3624   Updates.push_back({DominatorTree::Insert, PBI->getParent(), OtherDest});
3625   Updates.push_back({DominatorTree::Delete, PBI->getParent(), RemovedDest});
3626 
3627   if (DTU)
3628     DTU->applyUpdates(Updates);
3629 
3630   // Update branch weight for PBI.
3631   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3632   uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
3633   bool HasWeights =
3634       extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3635                              SuccTrueWeight, SuccFalseWeight);
3636   if (HasWeights) {
3637     PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3638     PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3639     SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3640     SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3641     // The weight to CommonDest should be PredCommon * SuccTotal +
3642     //                                    PredOther * SuccCommon.
3643     // The weight to OtherDest should be PredOther * SuccOther.
3644     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
3645                                   PredOther * SuccCommon,
3646                               PredOther * SuccOther};
3647     // Halve the weights if any of them cannot fit in an uint32_t
3648     FitWeights(NewWeights);
3649 
3650     setBranchWeights(PBI, NewWeights[0], NewWeights[1]);
3651   }
3652 
3653   // OtherDest may have phi nodes.  If so, add an entry from PBI's
3654   // block that are identical to the entries for BI's block.
3655   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
3656 
3657   // We know that the CommonDest already had an edge from PBI to
3658   // it.  If it has PHIs though, the PHIs may have different
3659   // entries for BB and PBI's BB.  If so, insert a select to make
3660   // them agree.
3661   for (PHINode &PN : CommonDest->phis()) {
3662     Value *BIV = PN.getIncomingValueForBlock(BB);
3663     unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent());
3664     Value *PBIV = PN.getIncomingValue(PBBIdx);
3665     if (BIV != PBIV) {
3666       // Insert a select in PBI to pick the right value.
3667       SelectInst *NV = cast<SelectInst>(
3668           Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
3669       PN.setIncomingValue(PBBIdx, NV);
3670       // Although the select has the same condition as PBI, the original branch
3671       // weights for PBI do not apply to the new select because the select's
3672       // 'logical' edges are incoming edges of the phi that is eliminated, not
3673       // the outgoing edges of PBI.
3674       if (HasWeights) {
3675         uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3676         uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3677         uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3678         uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3679         // The weight to PredCommonDest should be PredCommon * SuccTotal.
3680         // The weight to PredOtherDest should be PredOther * SuccCommon.
3681         uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
3682                                   PredOther * SuccCommon};
3683 
3684         FitWeights(NewWeights);
3685 
3686         setBranchWeights(NV, NewWeights[0], NewWeights[1]);
3687       }
3688     }
3689   }
3690 
3691   LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent());
3692   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3693 
3694   // This basic block is probably dead.  We know it has at least
3695   // one fewer predecessor.
3696   return true;
3697 }
3698 
3699 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
3700 // true or to FalseBB if Cond is false.
3701 // Takes care of updating the successors and removing the old terminator.
3702 // Also makes sure not to introduce new successors by assuming that edges to
3703 // non-successor TrueBBs and FalseBBs aren't reachable.
3704 bool SimplifyCFGOpt::SimplifyTerminatorOnSelect(Instruction *OldTerm,
3705                                                 Value *Cond, BasicBlock *TrueBB,
3706                                                 BasicBlock *FalseBB,
3707                                                 uint32_t TrueWeight,
3708                                                 uint32_t FalseWeight) {
3709   auto *BB = OldTerm->getParent();
3710   // Remove any superfluous successor edges from the CFG.
3711   // First, figure out which successors to preserve.
3712   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
3713   // successor.
3714   BasicBlock *KeepEdge1 = TrueBB;
3715   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
3716 
3717   SmallSetVector<BasicBlock *, 2> RemovedSuccessors;
3718 
3719   // Then remove the rest.
3720   for (BasicBlock *Succ : successors(OldTerm)) {
3721     // Make sure only to keep exactly one copy of each edge.
3722     if (Succ == KeepEdge1)
3723       KeepEdge1 = nullptr;
3724     else if (Succ == KeepEdge2)
3725       KeepEdge2 = nullptr;
3726     else {
3727       Succ->removePredecessor(BB,
3728                               /*KeepOneInputPHIs=*/true);
3729 
3730       if (Succ != TrueBB && Succ != FalseBB)
3731         RemovedSuccessors.insert(Succ);
3732     }
3733   }
3734 
3735   IRBuilder<> Builder(OldTerm);
3736   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
3737 
3738   // Insert an appropriate new terminator.
3739   if (!KeepEdge1 && !KeepEdge2) {
3740     if (TrueBB == FalseBB) {
3741       // We were only looking for one successor, and it was present.
3742       // Create an unconditional branch to it.
3743       Builder.CreateBr(TrueBB);
3744     } else {
3745       // We found both of the successors we were looking for.
3746       // Create a conditional branch sharing the condition of the select.
3747       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
3748       if (TrueWeight != FalseWeight)
3749         setBranchWeights(NewBI, TrueWeight, FalseWeight);
3750     }
3751   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
3752     // Neither of the selected blocks were successors, so this
3753     // terminator must be unreachable.
3754     new UnreachableInst(OldTerm->getContext(), OldTerm);
3755   } else {
3756     // One of the selected values was a successor, but the other wasn't.
3757     // Insert an unconditional branch to the one that was found;
3758     // the edge to the one that wasn't must be unreachable.
3759     if (!KeepEdge1) {
3760       // Only TrueBB was found.
3761       Builder.CreateBr(TrueBB);
3762     } else {
3763       // Only FalseBB was found.
3764       Builder.CreateBr(FalseBB);
3765     }
3766   }
3767 
3768   EraseTerminatorAndDCECond(OldTerm);
3769 
3770   if (DTU) {
3771     SmallVector<DominatorTree::UpdateType, 2> Updates;
3772     Updates.reserve(RemovedSuccessors.size());
3773     for (auto *RemovedSuccessor : RemovedSuccessors)
3774       Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
3775     DTU->applyUpdates(Updates);
3776   }
3777 
3778   return true;
3779 }
3780 
3781 // Replaces
3782 //   (switch (select cond, X, Y)) on constant X, Y
3783 // with a branch - conditional if X and Y lead to distinct BBs,
3784 // unconditional otherwise.
3785 bool SimplifyCFGOpt::SimplifySwitchOnSelect(SwitchInst *SI,
3786                                             SelectInst *Select) {
3787   // Check for constant integer values in the select.
3788   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
3789   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
3790   if (!TrueVal || !FalseVal)
3791     return false;
3792 
3793   // Find the relevant condition and destinations.
3794   Value *Condition = Select->getCondition();
3795   BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor();
3796   BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor();
3797 
3798   // Get weight for TrueBB and FalseBB.
3799   uint32_t TrueWeight = 0, FalseWeight = 0;
3800   SmallVector<uint64_t, 8> Weights;
3801   bool HasWeights = HasBranchWeights(SI);
3802   if (HasWeights) {
3803     GetBranchWeights(SI, Weights);
3804     if (Weights.size() == 1 + SI->getNumCases()) {
3805       TrueWeight =
3806           (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()];
3807       FalseWeight =
3808           (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()];
3809     }
3810   }
3811 
3812   // Perform the actual simplification.
3813   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
3814                                     FalseWeight);
3815 }
3816 
3817 // Replaces
3818 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
3819 //                             blockaddress(@fn, BlockB)))
3820 // with
3821 //   (br cond, BlockA, BlockB).
3822 bool SimplifyCFGOpt::SimplifyIndirectBrOnSelect(IndirectBrInst *IBI,
3823                                                 SelectInst *SI) {
3824   // Check that both operands of the select are block addresses.
3825   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
3826   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
3827   if (!TBA || !FBA)
3828     return false;
3829 
3830   // Extract the actual blocks.
3831   BasicBlock *TrueBB = TBA->getBasicBlock();
3832   BasicBlock *FalseBB = FBA->getBasicBlock();
3833 
3834   // Perform the actual simplification.
3835   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
3836                                     0);
3837 }
3838 
3839 /// This is called when we find an icmp instruction
3840 /// (a seteq/setne with a constant) as the only instruction in a
3841 /// block that ends with an uncond branch.  We are looking for a very specific
3842 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
3843 /// this case, we merge the first two "or's of icmp" into a switch, but then the
3844 /// default value goes to an uncond block with a seteq in it, we get something
3845 /// like:
3846 ///
3847 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
3848 /// DEFAULT:
3849 ///   %tmp = icmp eq i8 %A, 92
3850 ///   br label %end
3851 /// end:
3852 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
3853 ///
3854 /// We prefer to split the edge to 'end' so that there is a true/false entry to
3855 /// the PHI, merging the third icmp into the switch.
3856 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt(
3857     ICmpInst *ICI, IRBuilder<> &Builder) {
3858   BasicBlock *BB = ICI->getParent();
3859 
3860   // If the block has any PHIs in it or the icmp has multiple uses, it is too
3861   // complex.
3862   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
3863     return false;
3864 
3865   Value *V = ICI->getOperand(0);
3866   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
3867 
3868   // The pattern we're looking for is where our only predecessor is a switch on
3869   // 'V' and this block is the default case for the switch.  In this case we can
3870   // fold the compared value into the switch to simplify things.
3871   BasicBlock *Pred = BB->getSinglePredecessor();
3872   if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
3873     return false;
3874 
3875   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
3876   if (SI->getCondition() != V)
3877     return false;
3878 
3879   // If BB is reachable on a non-default case, then we simply know the value of
3880   // V in this block.  Substitute it and constant fold the icmp instruction
3881   // away.
3882   if (SI->getDefaultDest() != BB) {
3883     ConstantInt *VVal = SI->findCaseDest(BB);
3884     assert(VVal && "Should have a unique destination value");
3885     ICI->setOperand(0, VVal);
3886 
3887     if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) {
3888       ICI->replaceAllUsesWith(V);
3889       ICI->eraseFromParent();
3890     }
3891     // BB is now empty, so it is likely to simplify away.
3892     return requestResimplify();
3893   }
3894 
3895   // Ok, the block is reachable from the default dest.  If the constant we're
3896   // comparing exists in one of the other edges, then we can constant fold ICI
3897   // and zap it.
3898   if (SI->findCaseValue(Cst) != SI->case_default()) {
3899     Value *V;
3900     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3901       V = ConstantInt::getFalse(BB->getContext());
3902     else
3903       V = ConstantInt::getTrue(BB->getContext());
3904 
3905     ICI->replaceAllUsesWith(V);
3906     ICI->eraseFromParent();
3907     // BB is now empty, so it is likely to simplify away.
3908     return requestResimplify();
3909   }
3910 
3911   // The use of the icmp has to be in the 'end' block, by the only PHI node in
3912   // the block.
3913   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
3914   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
3915   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
3916       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
3917     return false;
3918 
3919   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
3920   // true in the PHI.
3921   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
3922   Constant *NewCst = ConstantInt::getFalse(BB->getContext());
3923 
3924   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3925     std::swap(DefaultCst, NewCst);
3926 
3927   // Replace ICI (which is used by the PHI for the default value) with true or
3928   // false depending on if it is EQ or NE.
3929   ICI->replaceAllUsesWith(DefaultCst);
3930   ICI->eraseFromParent();
3931 
3932   SmallVector<DominatorTree::UpdateType, 2> Updates;
3933 
3934   // Okay, the switch goes to this block on a default value.  Add an edge from
3935   // the switch to the merge point on the compared value.
3936   BasicBlock *NewBB =
3937       BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
3938   {
3939     SwitchInstProfUpdateWrapper SIW(*SI);
3940     auto W0 = SIW.getSuccessorWeight(0);
3941     SwitchInstProfUpdateWrapper::CaseWeightOpt NewW;
3942     if (W0) {
3943       NewW = ((uint64_t(*W0) + 1) >> 1);
3944       SIW.setSuccessorWeight(0, *NewW);
3945     }
3946     SIW.addCase(Cst, NewBB, NewW);
3947     Updates.push_back({DominatorTree::Insert, Pred, NewBB});
3948   }
3949 
3950   // NewBB branches to the phi block, add the uncond branch and the phi entry.
3951   Builder.SetInsertPoint(NewBB);
3952   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
3953   Builder.CreateBr(SuccBlock);
3954   Updates.push_back({DominatorTree::Insert, NewBB, SuccBlock});
3955   PHIUse->addIncoming(NewCst, NewBB);
3956   if (DTU)
3957     DTU->applyUpdates(Updates);
3958   return true;
3959 }
3960 
3961 /// The specified branch is a conditional branch.
3962 /// Check to see if it is branching on an or/and chain of icmp instructions, and
3963 /// fold it into a switch instruction if so.
3964 bool SimplifyCFGOpt::SimplifyBranchOnICmpChain(BranchInst *BI,
3965                                                IRBuilder<> &Builder,
3966                                                const DataLayout &DL) {
3967   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
3968   if (!Cond)
3969     return false;
3970 
3971   // Change br (X == 0 | X == 1), T, F into a switch instruction.
3972   // If this is a bunch of seteq's or'd together, or if it's a bunch of
3973   // 'setne's and'ed together, collect them.
3974 
3975   // Try to gather values from a chain of and/or to be turned into a switch
3976   ConstantComparesGatherer ConstantCompare(Cond, DL);
3977   // Unpack the result
3978   SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
3979   Value *CompVal = ConstantCompare.CompValue;
3980   unsigned UsedICmps = ConstantCompare.UsedICmps;
3981   Value *ExtraCase = ConstantCompare.Extra;
3982 
3983   // If we didn't have a multiply compared value, fail.
3984   if (!CompVal)
3985     return false;
3986 
3987   // Avoid turning single icmps into a switch.
3988   if (UsedICmps <= 1)
3989     return false;
3990 
3991   bool TrueWhenEqual = match(Cond, m_LogicalOr(m_Value(), m_Value()));
3992 
3993   // There might be duplicate constants in the list, which the switch
3994   // instruction can't handle, remove them now.
3995   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
3996   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
3997 
3998   // If Extra was used, we require at least two switch values to do the
3999   // transformation.  A switch with one value is just a conditional branch.
4000   if (ExtraCase && Values.size() < 2)
4001     return false;
4002 
4003   // TODO: Preserve branch weight metadata, similarly to how
4004   // FoldValueComparisonIntoPredecessors preserves it.
4005 
4006   // Figure out which block is which destination.
4007   BasicBlock *DefaultBB = BI->getSuccessor(1);
4008   BasicBlock *EdgeBB = BI->getSuccessor(0);
4009   if (!TrueWhenEqual)
4010     std::swap(DefaultBB, EdgeBB);
4011 
4012   BasicBlock *BB = BI->getParent();
4013 
4014   // MSAN does not like undefs as branch condition which can be introduced
4015   // with "explicit branch".
4016   if (ExtraCase && BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory))
4017     return false;
4018 
4019   LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
4020                     << " cases into SWITCH.  BB is:\n"
4021                     << *BB);
4022 
4023   SmallVector<DominatorTree::UpdateType, 2> Updates;
4024 
4025   // If there are any extra values that couldn't be folded into the switch
4026   // then we evaluate them with an explicit branch first. Split the block
4027   // right before the condbr to handle it.
4028   if (ExtraCase) {
4029     BasicBlock *NewBB = SplitBlock(BB, BI, DTU, /*LI=*/nullptr,
4030                                    /*MSSAU=*/nullptr, "switch.early.test");
4031 
4032     // Remove the uncond branch added to the old block.
4033     Instruction *OldTI = BB->getTerminator();
4034     Builder.SetInsertPoint(OldTI);
4035 
4036     if (TrueWhenEqual)
4037       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
4038     else
4039       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
4040 
4041     OldTI->eraseFromParent();
4042 
4043     Updates.push_back({DominatorTree::Insert, BB, EdgeBB});
4044 
4045     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
4046     // for the edge we just added.
4047     AddPredecessorToBlock(EdgeBB, BB, NewBB);
4048 
4049     LLVM_DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
4050                       << "\nEXTRABB = " << *BB);
4051     BB = NewBB;
4052   }
4053 
4054   Builder.SetInsertPoint(BI);
4055   // Convert pointer to int before we switch.
4056   if (CompVal->getType()->isPointerTy()) {
4057     CompVal = Builder.CreatePtrToInt(
4058         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
4059   }
4060 
4061   // Create the new switch instruction now.
4062   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
4063 
4064   // Add all of the 'cases' to the switch instruction.
4065   for (unsigned i = 0, e = Values.size(); i != e; ++i)
4066     New->addCase(Values[i], EdgeBB);
4067 
4068   // We added edges from PI to the EdgeBB.  As such, if there were any
4069   // PHI nodes in EdgeBB, they need entries to be added corresponding to
4070   // the number of edges added.
4071   for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
4072     PHINode *PN = cast<PHINode>(BBI);
4073     Value *InVal = PN->getIncomingValueForBlock(BB);
4074     for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
4075       PN->addIncoming(InVal, BB);
4076   }
4077 
4078   // Erase the old branch instruction.
4079   EraseTerminatorAndDCECond(BI);
4080   if (DTU)
4081     DTU->applyUpdates(Updates);
4082 
4083   LLVM_DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
4084   return true;
4085 }
4086 
4087 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
4088   if (isa<PHINode>(RI->getValue()))
4089     return simplifyCommonResume(RI);
4090   else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
4091            RI->getValue() == RI->getParent()->getFirstNonPHI())
4092     // The resume must unwind the exception that caused control to branch here.
4093     return simplifySingleResume(RI);
4094 
4095   return false;
4096 }
4097 
4098 // Check if cleanup block is empty
4099 static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) {
4100   for (Instruction &I : R) {
4101     auto *II = dyn_cast<IntrinsicInst>(&I);
4102     if (!II)
4103       return false;
4104 
4105     Intrinsic::ID IntrinsicID = II->getIntrinsicID();
4106     switch (IntrinsicID) {
4107     case Intrinsic::dbg_declare:
4108     case Intrinsic::dbg_value:
4109     case Intrinsic::dbg_label:
4110     case Intrinsic::lifetime_end:
4111       break;
4112     default:
4113       return false;
4114     }
4115   }
4116   return true;
4117 }
4118 
4119 // Simplify resume that is shared by several landing pads (phi of landing pad).
4120 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) {
4121   BasicBlock *BB = RI->getParent();
4122 
4123   // Check that there are no other instructions except for debug and lifetime
4124   // intrinsics between the phi's and resume instruction.
4125   if (!isCleanupBlockEmpty(
4126           make_range(RI->getParent()->getFirstNonPHI(), BB->getTerminator())))
4127     return false;
4128 
4129   SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks;
4130   auto *PhiLPInst = cast<PHINode>(RI->getValue());
4131 
4132   // Check incoming blocks to see if any of them are trivial.
4133   for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
4134        Idx++) {
4135     auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
4136     auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
4137 
4138     // If the block has other successors, we can not delete it because
4139     // it has other dependents.
4140     if (IncomingBB->getUniqueSuccessor() != BB)
4141       continue;
4142 
4143     auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
4144     // Not the landing pad that caused the control to branch here.
4145     if (IncomingValue != LandingPad)
4146       continue;
4147 
4148     if (isCleanupBlockEmpty(
4149             make_range(LandingPad->getNextNode(), IncomingBB->getTerminator())))
4150       TrivialUnwindBlocks.insert(IncomingBB);
4151   }
4152 
4153   // If no trivial unwind blocks, don't do any simplifications.
4154   if (TrivialUnwindBlocks.empty())
4155     return false;
4156 
4157   // Turn all invokes that unwind here into calls.
4158   for (auto *TrivialBB : TrivialUnwindBlocks) {
4159     // Blocks that will be simplified should be removed from the phi node.
4160     // Note there could be multiple edges to the resume block, and we need
4161     // to remove them all.
4162     while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
4163       BB->removePredecessor(TrivialBB, true);
4164 
4165     for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB);
4166          PI != PE;) {
4167       BasicBlock *Pred = *PI++;
4168       removeUnwindEdge(Pred, DTU);
4169       ++NumInvokes;
4170     }
4171 
4172     // In each SimplifyCFG run, only the current processed block can be erased.
4173     // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
4174     // of erasing TrivialBB, we only remove the branch to the common resume
4175     // block so that we can later erase the resume block since it has no
4176     // predecessors.
4177     TrivialBB->getTerminator()->eraseFromParent();
4178     new UnreachableInst(RI->getContext(), TrivialBB);
4179     if (DTU)
4180       DTU->applyUpdates({{DominatorTree::Delete, TrivialBB, BB}});
4181   }
4182 
4183   // Delete the resume block if all its predecessors have been removed.
4184   if (pred_empty(BB)) {
4185     if (DTU)
4186       DTU->deleteBB(BB);
4187     else
4188       BB->eraseFromParent();
4189   }
4190 
4191   return !TrivialUnwindBlocks.empty();
4192 }
4193 
4194 // Simplify resume that is only used by a single (non-phi) landing pad.
4195 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) {
4196   BasicBlock *BB = RI->getParent();
4197   auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI());
4198   assert(RI->getValue() == LPInst &&
4199          "Resume must unwind the exception that caused control to here");
4200 
4201   // Check that there are no other instructions except for debug intrinsics.
4202   if (!isCleanupBlockEmpty(
4203           make_range<Instruction *>(LPInst->getNextNode(), RI)))
4204     return false;
4205 
4206   // Turn all invokes that unwind here into calls and delete the basic block.
4207   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
4208     BasicBlock *Pred = *PI++;
4209     removeUnwindEdge(Pred, DTU);
4210     ++NumInvokes;
4211   }
4212 
4213   // The landingpad is now unreachable.  Zap it.
4214   if (DTU)
4215     DTU->deleteBB(BB);
4216   else
4217     BB->eraseFromParent();
4218   return true;
4219 }
4220 
4221 static bool removeEmptyCleanup(CleanupReturnInst *RI, DomTreeUpdater *DTU) {
4222   // If this is a trivial cleanup pad that executes no instructions, it can be
4223   // eliminated.  If the cleanup pad continues to the caller, any predecessor
4224   // that is an EH pad will be updated to continue to the caller and any
4225   // predecessor that terminates with an invoke instruction will have its invoke
4226   // instruction converted to a call instruction.  If the cleanup pad being
4227   // simplified does not continue to the caller, each predecessor will be
4228   // updated to continue to the unwind destination of the cleanup pad being
4229   // simplified.
4230   BasicBlock *BB = RI->getParent();
4231   CleanupPadInst *CPInst = RI->getCleanupPad();
4232   if (CPInst->getParent() != BB)
4233     // This isn't an empty cleanup.
4234     return false;
4235 
4236   // We cannot kill the pad if it has multiple uses.  This typically arises
4237   // from unreachable basic blocks.
4238   if (!CPInst->hasOneUse())
4239     return false;
4240 
4241   // Check that there are no other instructions except for benign intrinsics.
4242   if (!isCleanupBlockEmpty(
4243           make_range<Instruction *>(CPInst->getNextNode(), RI)))
4244     return false;
4245 
4246   // If the cleanup return we are simplifying unwinds to the caller, this will
4247   // set UnwindDest to nullptr.
4248   BasicBlock *UnwindDest = RI->getUnwindDest();
4249   Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
4250 
4251   // We're about to remove BB from the control flow.  Before we do, sink any
4252   // PHINodes into the unwind destination.  Doing this before changing the
4253   // control flow avoids some potentially slow checks, since we can currently
4254   // be certain that UnwindDest and BB have no common predecessors (since they
4255   // are both EH pads).
4256   if (UnwindDest) {
4257     // First, go through the PHI nodes in UnwindDest and update any nodes that
4258     // reference the block we are removing
4259     for (BasicBlock::iterator I = UnwindDest->begin(),
4260                               IE = DestEHPad->getIterator();
4261          I != IE; ++I) {
4262       PHINode *DestPN = cast<PHINode>(I);
4263 
4264       int Idx = DestPN->getBasicBlockIndex(BB);
4265       // Since BB unwinds to UnwindDest, it has to be in the PHI node.
4266       assert(Idx != -1);
4267       // This PHI node has an incoming value that corresponds to a control
4268       // path through the cleanup pad we are removing.  If the incoming
4269       // value is in the cleanup pad, it must be a PHINode (because we
4270       // verified above that the block is otherwise empty).  Otherwise, the
4271       // value is either a constant or a value that dominates the cleanup
4272       // pad being removed.
4273       //
4274       // Because BB and UnwindDest are both EH pads, all of their
4275       // predecessors must unwind to these blocks, and since no instruction
4276       // can have multiple unwind destinations, there will be no overlap in
4277       // incoming blocks between SrcPN and DestPN.
4278       Value *SrcVal = DestPN->getIncomingValue(Idx);
4279       PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
4280 
4281       // Remove the entry for the block we are deleting.
4282       DestPN->removeIncomingValue(Idx, false);
4283 
4284       if (SrcPN && SrcPN->getParent() == BB) {
4285         // If the incoming value was a PHI node in the cleanup pad we are
4286         // removing, we need to merge that PHI node's incoming values into
4287         // DestPN.
4288         for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues();
4289              SrcIdx != SrcE; ++SrcIdx) {
4290           DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx),
4291                               SrcPN->getIncomingBlock(SrcIdx));
4292         }
4293       } else {
4294         // Otherwise, the incoming value came from above BB and
4295         // so we can just reuse it.  We must associate all of BB's
4296         // predecessors with this value.
4297         for (auto *pred : predecessors(BB)) {
4298           DestPN->addIncoming(SrcVal, pred);
4299         }
4300       }
4301     }
4302 
4303     // Sink any remaining PHI nodes directly into UnwindDest.
4304     Instruction *InsertPt = DestEHPad;
4305     for (BasicBlock::iterator I = BB->begin(),
4306                               IE = BB->getFirstNonPHI()->getIterator();
4307          I != IE;) {
4308       // The iterator must be incremented here because the instructions are
4309       // being moved to another block.
4310       PHINode *PN = cast<PHINode>(I++);
4311       if (PN->use_empty() || !PN->isUsedOutsideOfBlock(BB))
4312         // If the PHI node has no uses or all of its uses are in this basic
4313         // block (meaning they are debug or lifetime intrinsics), just leave
4314         // it.  It will be erased when we erase BB below.
4315         continue;
4316 
4317       // Otherwise, sink this PHI node into UnwindDest.
4318       // Any predecessors to UnwindDest which are not already represented
4319       // must be back edges which inherit the value from the path through
4320       // BB.  In this case, the PHI value must reference itself.
4321       for (auto *pred : predecessors(UnwindDest))
4322         if (pred != BB)
4323           PN->addIncoming(PN, pred);
4324       PN->moveBefore(InsertPt);
4325     }
4326   }
4327 
4328   std::vector<DominatorTree::UpdateType> Updates;
4329 
4330   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
4331     // The iterator must be updated here because we are removing this pred.
4332     BasicBlock *PredBB = *PI++;
4333     if (UnwindDest == nullptr) {
4334       if (DTU)
4335         DTU->applyUpdates(Updates);
4336       Updates.clear();
4337       removeUnwindEdge(PredBB, DTU);
4338       ++NumInvokes;
4339     } else {
4340       Instruction *TI = PredBB->getTerminator();
4341       TI->replaceUsesOfWith(BB, UnwindDest);
4342       Updates.push_back({DominatorTree::Insert, PredBB, UnwindDest});
4343       Updates.push_back({DominatorTree::Delete, PredBB, BB});
4344     }
4345   }
4346 
4347   if (DTU) {
4348     DTU->applyUpdates(Updates);
4349     DTU->deleteBB(BB);
4350   } else
4351     // The cleanup pad is now unreachable.  Zap it.
4352     BB->eraseFromParent();
4353 
4354   return true;
4355 }
4356 
4357 // Try to merge two cleanuppads together.
4358 static bool mergeCleanupPad(CleanupReturnInst *RI) {
4359   // Skip any cleanuprets which unwind to caller, there is nothing to merge
4360   // with.
4361   BasicBlock *UnwindDest = RI->getUnwindDest();
4362   if (!UnwindDest)
4363     return false;
4364 
4365   // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
4366   // be safe to merge without code duplication.
4367   if (UnwindDest->getSinglePredecessor() != RI->getParent())
4368     return false;
4369 
4370   // Verify that our cleanuppad's unwind destination is another cleanuppad.
4371   auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
4372   if (!SuccessorCleanupPad)
4373     return false;
4374 
4375   CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
4376   // Replace any uses of the successor cleanupad with the predecessor pad
4377   // The only cleanuppad uses should be this cleanupret, it's cleanupret and
4378   // funclet bundle operands.
4379   SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
4380   // Remove the old cleanuppad.
4381   SuccessorCleanupPad->eraseFromParent();
4382   // Now, we simply replace the cleanupret with a branch to the unwind
4383   // destination.
4384   BranchInst::Create(UnwindDest, RI->getParent());
4385   RI->eraseFromParent();
4386 
4387   return true;
4388 }
4389 
4390 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) {
4391   // It is possible to transiantly have an undef cleanuppad operand because we
4392   // have deleted some, but not all, dead blocks.
4393   // Eventually, this block will be deleted.
4394   if (isa<UndefValue>(RI->getOperand(0)))
4395     return false;
4396 
4397   if (mergeCleanupPad(RI))
4398     return true;
4399 
4400   if (removeEmptyCleanup(RI, DTU))
4401     return true;
4402 
4403   return false;
4404 }
4405 
4406 bool SimplifyCFGOpt::simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
4407   BasicBlock *BB = RI->getParent();
4408   if (!BB->getFirstNonPHIOrDbg()->isTerminator())
4409     return false;
4410 
4411   // Find predecessors that end with branches.
4412   SmallVector<BasicBlock *, 8> UncondBranchPreds;
4413   SmallVector<BranchInst *, 8> CondBranchPreds;
4414   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
4415     BasicBlock *P = *PI;
4416     Instruction *PTI = P->getTerminator();
4417     if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
4418       if (BI->isUnconditional())
4419         UncondBranchPreds.push_back(P);
4420       else
4421         CondBranchPreds.push_back(BI);
4422     }
4423   }
4424 
4425   // If we found some, do the transformation!
4426   if (!UncondBranchPreds.empty() && DupRet) {
4427     while (!UncondBranchPreds.empty()) {
4428       BasicBlock *Pred = UncondBranchPreds.pop_back_val();
4429       LLVM_DEBUG(dbgs() << "FOLDING: " << *BB
4430                         << "INTO UNCOND BRANCH PRED: " << *Pred);
4431       (void)FoldReturnIntoUncondBranch(RI, BB, Pred, DTU);
4432     }
4433 
4434     // If we eliminated all predecessors of the block, delete the block now.
4435     if (pred_empty(BB)) {
4436       // We know there are no successors, so just nuke the block.
4437       if (DTU)
4438         DTU->deleteBB(BB);
4439       else
4440         BB->eraseFromParent();
4441     }
4442 
4443     return true;
4444   }
4445 
4446   // Check out all of the conditional branches going to this return
4447   // instruction.  If any of them just select between returns, change the
4448   // branch itself into a select/return pair.
4449   while (!CondBranchPreds.empty()) {
4450     BranchInst *BI = CondBranchPreds.pop_back_val();
4451 
4452     // Check to see if the non-BB successor is also a return block.
4453     if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
4454         isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
4455         SimplifyCondBranchToTwoReturns(BI, Builder))
4456       return true;
4457   }
4458   return false;
4459 }
4460 
4461 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) {
4462   BasicBlock *BB = UI->getParent();
4463 
4464   bool Changed = false;
4465 
4466   // If there are any instructions immediately before the unreachable that can
4467   // be removed, do so.
4468   while (UI->getIterator() != BB->begin()) {
4469     BasicBlock::iterator BBI = UI->getIterator();
4470     --BBI;
4471     // Do not delete instructions that can have side effects which might cause
4472     // the unreachable to not be reachable; specifically, calls and volatile
4473     // operations may have this effect.
4474     if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI))
4475       break;
4476 
4477     if (BBI->mayHaveSideEffects()) {
4478       if (auto *SI = dyn_cast<StoreInst>(BBI)) {
4479         if (SI->isVolatile())
4480           break;
4481       } else if (auto *LI = dyn_cast<LoadInst>(BBI)) {
4482         if (LI->isVolatile())
4483           break;
4484       } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
4485         if (RMWI->isVolatile())
4486           break;
4487       } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
4488         if (CXI->isVolatile())
4489           break;
4490       } else if (isa<CatchPadInst>(BBI)) {
4491         // A catchpad may invoke exception object constructors and such, which
4492         // in some languages can be arbitrary code, so be conservative by
4493         // default.
4494         // For CoreCLR, it just involves a type test, so can be removed.
4495         if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) !=
4496             EHPersonality::CoreCLR)
4497           break;
4498       } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
4499                  !isa<LandingPadInst>(BBI)) {
4500         break;
4501       }
4502       // Note that deleting LandingPad's here is in fact okay, although it
4503       // involves a bit of subtle reasoning. If this inst is a LandingPad,
4504       // all the predecessors of this block will be the unwind edges of Invokes,
4505       // and we can therefore guarantee this block will be erased.
4506     }
4507 
4508     // Delete this instruction (any uses are guaranteed to be dead)
4509     if (!BBI->use_empty())
4510       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
4511     BBI->eraseFromParent();
4512     Changed = true;
4513   }
4514 
4515   // If the unreachable instruction is the first in the block, take a gander
4516   // at all of the predecessors of this instruction, and simplify them.
4517   if (&BB->front() != UI)
4518     return Changed;
4519 
4520   std::vector<DominatorTree::UpdateType> Updates;
4521 
4522   SmallSetVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
4523   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
4524     auto *Predecessor = Preds[i];
4525     Instruction *TI = Predecessor->getTerminator();
4526     IRBuilder<> Builder(TI);
4527     if (auto *BI = dyn_cast<BranchInst>(TI)) {
4528       // We could either have a proper unconditional branch,
4529       // or a degenerate conditional branch with matching destinations.
4530       if (all_of(BI->successors(),
4531                  [BB](auto *Successor) { return Successor == BB; })) {
4532         new UnreachableInst(TI->getContext(), TI);
4533         TI->eraseFromParent();
4534         Changed = true;
4535       } else {
4536         assert(BI->isConditional() && "Can't get here with an uncond branch.");
4537         Value* Cond = BI->getCondition();
4538         assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
4539                "The destinations are guaranteed to be different here.");
4540         if (BI->getSuccessor(0) == BB) {
4541           Builder.CreateAssumption(Builder.CreateNot(Cond));
4542           Builder.CreateBr(BI->getSuccessor(1));
4543         } else {
4544           assert(BI->getSuccessor(1) == BB && "Incorrect CFG");
4545           Builder.CreateAssumption(Cond);
4546           Builder.CreateBr(BI->getSuccessor(0));
4547         }
4548         EraseTerminatorAndDCECond(BI);
4549         Changed = true;
4550       }
4551       Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4552     } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
4553       SwitchInstProfUpdateWrapper SU(*SI);
4554       for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) {
4555         if (i->getCaseSuccessor() != BB) {
4556           ++i;
4557           continue;
4558         }
4559         BB->removePredecessor(SU->getParent());
4560         i = SU.removeCase(i);
4561         e = SU->case_end();
4562         Changed = true;
4563       }
4564       // Note that the default destination can't be removed!
4565       if (SI->getDefaultDest() != BB)
4566         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4567     } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
4568       if (II->getUnwindDest() == BB) {
4569         if (DTU)
4570           DTU->applyUpdates(Updates);
4571         Updates.clear();
4572         removeUnwindEdge(TI->getParent(), DTU);
4573         Changed = true;
4574       }
4575     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
4576       if (CSI->getUnwindDest() == BB) {
4577         if (DTU)
4578           DTU->applyUpdates(Updates);
4579         Updates.clear();
4580         removeUnwindEdge(TI->getParent(), DTU);
4581         Changed = true;
4582         continue;
4583       }
4584 
4585       for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
4586                                              E = CSI->handler_end();
4587            I != E; ++I) {
4588         if (*I == BB) {
4589           CSI->removeHandler(I);
4590           --I;
4591           --E;
4592           Changed = true;
4593         }
4594       }
4595       Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4596       if (CSI->getNumHandlers() == 0) {
4597         if (CSI->hasUnwindDest()) {
4598           // Redirect all predecessors of the block containing CatchSwitchInst
4599           // to instead branch to the CatchSwitchInst's unwind destination.
4600           for (auto *PredecessorOfPredecessor : predecessors(Predecessor)) {
4601             Updates.push_back({DominatorTree::Insert, PredecessorOfPredecessor,
4602                                CSI->getUnwindDest()});
4603             Updates.push_back(
4604                 {DominatorTree::Delete, PredecessorOfPredecessor, Predecessor});
4605           }
4606           Predecessor->replaceAllUsesWith(CSI->getUnwindDest());
4607         } else {
4608           // Rewrite all preds to unwind to caller (or from invoke to call).
4609           if (DTU)
4610             DTU->applyUpdates(Updates);
4611           Updates.clear();
4612           SmallVector<BasicBlock *, 8> EHPreds(predecessors(Predecessor));
4613           for (BasicBlock *EHPred : EHPreds)
4614             removeUnwindEdge(EHPred, DTU);
4615         }
4616         // The catchswitch is no longer reachable.
4617         new UnreachableInst(CSI->getContext(), CSI);
4618         CSI->eraseFromParent();
4619         Changed = true;
4620       }
4621     } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
4622       (void)CRI;
4623       assert(CRI->hasUnwindDest() && CRI->getUnwindDest() == BB &&
4624              "Expected to always have an unwind to BB.");
4625       Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4626       new UnreachableInst(TI->getContext(), TI);
4627       TI->eraseFromParent();
4628       Changed = true;
4629     }
4630   }
4631 
4632   if (DTU)
4633     DTU->applyUpdates(Updates);
4634 
4635   // If this block is now dead, remove it.
4636   if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
4637     // We know there are no successors, so just nuke the block.
4638     if (DTU)
4639       DTU->deleteBB(BB);
4640     else
4641       BB->eraseFromParent();
4642     return true;
4643   }
4644 
4645   return Changed;
4646 }
4647 
4648 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
4649   assert(Cases.size() >= 1);
4650 
4651   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
4652   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
4653     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
4654       return false;
4655   }
4656   return true;
4657 }
4658 
4659 static void createUnreachableSwitchDefault(SwitchInst *Switch,
4660                                            DomTreeUpdater *DTU) {
4661   LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
4662   auto *BB = Switch->getParent();
4663   BasicBlock *NewDefaultBlock = SplitBlockPredecessors(
4664       Switch->getDefaultDest(), Switch->getParent(), "", DTU);
4665   auto *OrigDefaultBlock = Switch->getDefaultDest();
4666   Switch->setDefaultDest(&*NewDefaultBlock);
4667   if (DTU)
4668     DTU->applyUpdates({{DominatorTree::Insert, BB, &*NewDefaultBlock},
4669                        {DominatorTree::Delete, BB, OrigDefaultBlock}});
4670   SplitBlock(&*NewDefaultBlock, &NewDefaultBlock->front(), DTU);
4671   SmallVector<DominatorTree::UpdateType, 2> Updates;
4672   for (auto *Successor : successors(NewDefaultBlock))
4673     Updates.push_back({DominatorTree::Delete, NewDefaultBlock, Successor});
4674   auto *NewTerminator = NewDefaultBlock->getTerminator();
4675   new UnreachableInst(Switch->getContext(), NewTerminator);
4676   EraseTerminatorAndDCECond(NewTerminator);
4677   if (DTU)
4678     DTU->applyUpdates(Updates);
4679 }
4680 
4681 /// Turn a switch with two reachable destinations into an integer range
4682 /// comparison and branch.
4683 bool SimplifyCFGOpt::TurnSwitchRangeIntoICmp(SwitchInst *SI,
4684                                              IRBuilder<> &Builder) {
4685   assert(SI->getNumCases() > 1 && "Degenerate switch?");
4686 
4687   bool HasDefault =
4688       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4689 
4690   auto *BB = SI->getParent();
4691 
4692   // Partition the cases into two sets with different destinations.
4693   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
4694   BasicBlock *DestB = nullptr;
4695   SmallVector<ConstantInt *, 16> CasesA;
4696   SmallVector<ConstantInt *, 16> CasesB;
4697 
4698   for (auto Case : SI->cases()) {
4699     BasicBlock *Dest = Case.getCaseSuccessor();
4700     if (!DestA)
4701       DestA = Dest;
4702     if (Dest == DestA) {
4703       CasesA.push_back(Case.getCaseValue());
4704       continue;
4705     }
4706     if (!DestB)
4707       DestB = Dest;
4708     if (Dest == DestB) {
4709       CasesB.push_back(Case.getCaseValue());
4710       continue;
4711     }
4712     return false; // More than two destinations.
4713   }
4714 
4715   assert(DestA && DestB &&
4716          "Single-destination switch should have been folded.");
4717   assert(DestA != DestB);
4718   assert(DestB != SI->getDefaultDest());
4719   assert(!CasesB.empty() && "There must be non-default cases.");
4720   assert(!CasesA.empty() || HasDefault);
4721 
4722   // Figure out if one of the sets of cases form a contiguous range.
4723   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
4724   BasicBlock *ContiguousDest = nullptr;
4725   BasicBlock *OtherDest = nullptr;
4726   if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
4727     ContiguousCases = &CasesA;
4728     ContiguousDest = DestA;
4729     OtherDest = DestB;
4730   } else if (CasesAreContiguous(CasesB)) {
4731     ContiguousCases = &CasesB;
4732     ContiguousDest = DestB;
4733     OtherDest = DestA;
4734   } else
4735     return false;
4736 
4737   // Start building the compare and branch.
4738 
4739   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
4740   Constant *NumCases =
4741       ConstantInt::get(Offset->getType(), ContiguousCases->size());
4742 
4743   Value *Sub = SI->getCondition();
4744   if (!Offset->isNullValue())
4745     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
4746 
4747   Value *Cmp;
4748   // If NumCases overflowed, then all possible values jump to the successor.
4749   if (NumCases->isNullValue() && !ContiguousCases->empty())
4750     Cmp = ConstantInt::getTrue(SI->getContext());
4751   else
4752     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
4753   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
4754 
4755   // Update weight for the newly-created conditional branch.
4756   if (HasBranchWeights(SI)) {
4757     SmallVector<uint64_t, 8> Weights;
4758     GetBranchWeights(SI, Weights);
4759     if (Weights.size() == 1 + SI->getNumCases()) {
4760       uint64_t TrueWeight = 0;
4761       uint64_t FalseWeight = 0;
4762       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
4763         if (SI->getSuccessor(I) == ContiguousDest)
4764           TrueWeight += Weights[I];
4765         else
4766           FalseWeight += Weights[I];
4767       }
4768       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
4769         TrueWeight /= 2;
4770         FalseWeight /= 2;
4771       }
4772       setBranchWeights(NewBI, TrueWeight, FalseWeight);
4773     }
4774   }
4775 
4776   // Prune obsolete incoming values off the successors' PHI nodes.
4777   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
4778     unsigned PreviousEdges = ContiguousCases->size();
4779     if (ContiguousDest == SI->getDefaultDest())
4780       ++PreviousEdges;
4781     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4782       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4783   }
4784   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
4785     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
4786     if (OtherDest == SI->getDefaultDest())
4787       ++PreviousEdges;
4788     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4789       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4790   }
4791 
4792   // Clean up the default block - it may have phis or other instructions before
4793   // the unreachable terminator.
4794   if (!HasDefault)
4795     createUnreachableSwitchDefault(SI, DTU);
4796 
4797   auto *UnreachableDefault = SI->getDefaultDest();
4798 
4799   // Drop the switch.
4800   SI->eraseFromParent();
4801 
4802   if (!HasDefault && DTU)
4803     DTU->applyUpdates({{DominatorTree::Delete, BB, UnreachableDefault}});
4804 
4805   return true;
4806 }
4807 
4808 /// Compute masked bits for the condition of a switch
4809 /// and use it to remove dead cases.
4810 static bool eliminateDeadSwitchCases(SwitchInst *SI, DomTreeUpdater *DTU,
4811                                      AssumptionCache *AC,
4812                                      const DataLayout &DL) {
4813   Value *Cond = SI->getCondition();
4814   unsigned Bits = Cond->getType()->getIntegerBitWidth();
4815   KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI);
4816 
4817   // We can also eliminate cases by determining that their values are outside of
4818   // the limited range of the condition based on how many significant (non-sign)
4819   // bits are in the condition value.
4820   unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1;
4821   unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits;
4822 
4823   // Gather dead cases.
4824   SmallVector<ConstantInt *, 8> DeadCases;
4825   SmallMapVector<BasicBlock *, int, 8> NumPerSuccessorCases;
4826   for (auto &Case : SI->cases()) {
4827     auto *Successor = Case.getCaseSuccessor();
4828     ++NumPerSuccessorCases[Successor];
4829     const APInt &CaseVal = Case.getCaseValue()->getValue();
4830     if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) ||
4831         (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
4832       DeadCases.push_back(Case.getCaseValue());
4833       --NumPerSuccessorCases[Successor];
4834       LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal
4835                         << " is dead.\n");
4836     }
4837   }
4838 
4839   // If we can prove that the cases must cover all possible values, the
4840   // default destination becomes dead and we can remove it.  If we know some
4841   // of the bits in the value, we can use that to more precisely compute the
4842   // number of possible unique case values.
4843   bool HasDefault =
4844       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4845   const unsigned NumUnknownBits =
4846       Bits - (Known.Zero | Known.One).countPopulation();
4847   assert(NumUnknownBits <= Bits);
4848   if (HasDefault && DeadCases.empty() &&
4849       NumUnknownBits < 64 /* avoid overflow */ &&
4850       SI->getNumCases() == (1ULL << NumUnknownBits)) {
4851     createUnreachableSwitchDefault(SI, DTU);
4852     return true;
4853   }
4854 
4855   if (DeadCases.empty())
4856     return false;
4857 
4858   SwitchInstProfUpdateWrapper SIW(*SI);
4859   for (ConstantInt *DeadCase : DeadCases) {
4860     SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase);
4861     assert(CaseI != SI->case_default() &&
4862            "Case was not found. Probably mistake in DeadCases forming.");
4863     // Prune unused values from PHI nodes.
4864     CaseI->getCaseSuccessor()->removePredecessor(SI->getParent());
4865     SIW.removeCase(CaseI);
4866   }
4867 
4868   std::vector<DominatorTree::UpdateType> Updates;
4869   for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases)
4870     if (I.second == 0)
4871       Updates.push_back({DominatorTree::Delete, SI->getParent(), I.first});
4872   if (DTU)
4873     DTU->applyUpdates(Updates);
4874 
4875   return true;
4876 }
4877 
4878 /// If BB would be eligible for simplification by
4879 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
4880 /// by an unconditional branch), look at the phi node for BB in the successor
4881 /// block and see if the incoming value is equal to CaseValue. If so, return
4882 /// the phi node, and set PhiIndex to BB's index in the phi node.
4883 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
4884                                               BasicBlock *BB, int *PhiIndex) {
4885   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
4886     return nullptr; // BB must be empty to be a candidate for simplification.
4887   if (!BB->getSinglePredecessor())
4888     return nullptr; // BB must be dominated by the switch.
4889 
4890   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
4891   if (!Branch || !Branch->isUnconditional())
4892     return nullptr; // Terminator must be unconditional branch.
4893 
4894   BasicBlock *Succ = Branch->getSuccessor(0);
4895 
4896   for (PHINode &PHI : Succ->phis()) {
4897     int Idx = PHI.getBasicBlockIndex(BB);
4898     assert(Idx >= 0 && "PHI has no entry for predecessor?");
4899 
4900     Value *InValue = PHI.getIncomingValue(Idx);
4901     if (InValue != CaseValue)
4902       continue;
4903 
4904     *PhiIndex = Idx;
4905     return &PHI;
4906   }
4907 
4908   return nullptr;
4909 }
4910 
4911 /// Try to forward the condition of a switch instruction to a phi node
4912 /// dominated by the switch, if that would mean that some of the destination
4913 /// blocks of the switch can be folded away. Return true if a change is made.
4914 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
4915   using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>;
4916 
4917   ForwardingNodesMap ForwardingNodes;
4918   BasicBlock *SwitchBlock = SI->getParent();
4919   bool Changed = false;
4920   for (auto &Case : SI->cases()) {
4921     ConstantInt *CaseValue = Case.getCaseValue();
4922     BasicBlock *CaseDest = Case.getCaseSuccessor();
4923 
4924     // Replace phi operands in successor blocks that are using the constant case
4925     // value rather than the switch condition variable:
4926     //   switchbb:
4927     //   switch i32 %x, label %default [
4928     //     i32 17, label %succ
4929     //   ...
4930     //   succ:
4931     //     %r = phi i32 ... [ 17, %switchbb ] ...
4932     // -->
4933     //     %r = phi i32 ... [ %x, %switchbb ] ...
4934 
4935     for (PHINode &Phi : CaseDest->phis()) {
4936       // This only works if there is exactly 1 incoming edge from the switch to
4937       // a phi. If there is >1, that means multiple cases of the switch map to 1
4938       // value in the phi, and that phi value is not the switch condition. Thus,
4939       // this transform would not make sense (the phi would be invalid because
4940       // a phi can't have different incoming values from the same block).
4941       int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock);
4942       if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue &&
4943           count(Phi.blocks(), SwitchBlock) == 1) {
4944         Phi.setIncomingValue(SwitchBBIdx, SI->getCondition());
4945         Changed = true;
4946       }
4947     }
4948 
4949     // Collect phi nodes that are indirectly using this switch's case constants.
4950     int PhiIdx;
4951     if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx))
4952       ForwardingNodes[Phi].push_back(PhiIdx);
4953   }
4954 
4955   for (auto &ForwardingNode : ForwardingNodes) {
4956     PHINode *Phi = ForwardingNode.first;
4957     SmallVectorImpl<int> &Indexes = ForwardingNode.second;
4958     if (Indexes.size() < 2)
4959       continue;
4960 
4961     for (int Index : Indexes)
4962       Phi->setIncomingValue(Index, SI->getCondition());
4963     Changed = true;
4964   }
4965 
4966   return Changed;
4967 }
4968 
4969 /// Return true if the backend will be able to handle
4970 /// initializing an array of constants like C.
4971 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
4972   if (C->isThreadDependent())
4973     return false;
4974   if (C->isDLLImportDependent())
4975     return false;
4976 
4977   if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) &&
4978       !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) &&
4979       !isa<UndefValue>(C) && !isa<ConstantExpr>(C))
4980     return false;
4981 
4982   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
4983     if (!CE->isGEPWithNoNotionalOverIndexing())
4984       return false;
4985     if (!ValidLookupTableConstant(CE->getOperand(0), TTI))
4986       return false;
4987   }
4988 
4989   if (!TTI.shouldBuildLookupTablesForConstant(C))
4990     return false;
4991 
4992   return true;
4993 }
4994 
4995 /// If V is a Constant, return it. Otherwise, try to look up
4996 /// its constant value in ConstantPool, returning 0 if it's not there.
4997 static Constant *
4998 LookupConstant(Value *V,
4999                const SmallDenseMap<Value *, Constant *> &ConstantPool) {
5000   if (Constant *C = dyn_cast<Constant>(V))
5001     return C;
5002   return ConstantPool.lookup(V);
5003 }
5004 
5005 /// Try to fold instruction I into a constant. This works for
5006 /// simple instructions such as binary operations where both operands are
5007 /// constant or can be replaced by constants from the ConstantPool. Returns the
5008 /// resulting constant on success, 0 otherwise.
5009 static Constant *
5010 ConstantFold(Instruction *I, const DataLayout &DL,
5011              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
5012   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
5013     Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
5014     if (!A)
5015       return nullptr;
5016     if (A->isAllOnesValue())
5017       return LookupConstant(Select->getTrueValue(), ConstantPool);
5018     if (A->isNullValue())
5019       return LookupConstant(Select->getFalseValue(), ConstantPool);
5020     return nullptr;
5021   }
5022 
5023   SmallVector<Constant *, 4> COps;
5024   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
5025     if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
5026       COps.push_back(A);
5027     else
5028       return nullptr;
5029   }
5030 
5031   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
5032     return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
5033                                            COps[1], DL);
5034   }
5035 
5036   return ConstantFoldInstOperands(I, COps, DL);
5037 }
5038 
5039 /// Try to determine the resulting constant values in phi nodes
5040 /// at the common destination basic block, *CommonDest, for one of the case
5041 /// destionations CaseDest corresponding to value CaseVal (0 for the default
5042 /// case), of a switch instruction SI.
5043 static bool
5044 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
5045                BasicBlock **CommonDest,
5046                SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
5047                const DataLayout &DL, const TargetTransformInfo &TTI) {
5048   // The block from which we enter the common destination.
5049   BasicBlock *Pred = SI->getParent();
5050 
5051   // If CaseDest is empty except for some side-effect free instructions through
5052   // which we can constant-propagate the CaseVal, continue to its successor.
5053   SmallDenseMap<Value *, Constant *> ConstantPool;
5054   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
5055   for (Instruction &I :CaseDest->instructionsWithoutDebug()) {
5056     if (I.isTerminator()) {
5057       // If the terminator is a simple branch, continue to the next block.
5058       if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator())
5059         return false;
5060       Pred = CaseDest;
5061       CaseDest = I.getSuccessor(0);
5062     } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) {
5063       // Instruction is side-effect free and constant.
5064 
5065       // If the instruction has uses outside this block or a phi node slot for
5066       // the block, it is not safe to bypass the instruction since it would then
5067       // no longer dominate all its uses.
5068       for (auto &Use : I.uses()) {
5069         User *User = Use.getUser();
5070         if (Instruction *I = dyn_cast<Instruction>(User))
5071           if (I->getParent() == CaseDest)
5072             continue;
5073         if (PHINode *Phi = dyn_cast<PHINode>(User))
5074           if (Phi->getIncomingBlock(Use) == CaseDest)
5075             continue;
5076         return false;
5077       }
5078 
5079       ConstantPool.insert(std::make_pair(&I, C));
5080     } else {
5081       break;
5082     }
5083   }
5084 
5085   // If we did not have a CommonDest before, use the current one.
5086   if (!*CommonDest)
5087     *CommonDest = CaseDest;
5088   // If the destination isn't the common one, abort.
5089   if (CaseDest != *CommonDest)
5090     return false;
5091 
5092   // Get the values for this case from phi nodes in the destination block.
5093   for (PHINode &PHI : (*CommonDest)->phis()) {
5094     int Idx = PHI.getBasicBlockIndex(Pred);
5095     if (Idx == -1)
5096       continue;
5097 
5098     Constant *ConstVal =
5099         LookupConstant(PHI.getIncomingValue(Idx), ConstantPool);
5100     if (!ConstVal)
5101       return false;
5102 
5103     // Be conservative about which kinds of constants we support.
5104     if (!ValidLookupTableConstant(ConstVal, TTI))
5105       return false;
5106 
5107     Res.push_back(std::make_pair(&PHI, ConstVal));
5108   }
5109 
5110   return Res.size() > 0;
5111 }
5112 
5113 // Helper function used to add CaseVal to the list of cases that generate
5114 // Result. Returns the updated number of cases that generate this result.
5115 static uintptr_t MapCaseToResult(ConstantInt *CaseVal,
5116                                  SwitchCaseResultVectorTy &UniqueResults,
5117                                  Constant *Result) {
5118   for (auto &I : UniqueResults) {
5119     if (I.first == Result) {
5120       I.second.push_back(CaseVal);
5121       return I.second.size();
5122     }
5123   }
5124   UniqueResults.push_back(
5125       std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
5126   return 1;
5127 }
5128 
5129 // Helper function that initializes a map containing
5130 // results for the PHI node of the common destination block for a switch
5131 // instruction. Returns false if multiple PHI nodes have been found or if
5132 // there is not a common destination block for the switch.
5133 static bool
5134 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest,
5135                       SwitchCaseResultVectorTy &UniqueResults,
5136                       Constant *&DefaultResult, const DataLayout &DL,
5137                       const TargetTransformInfo &TTI,
5138                       uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) {
5139   for (auto &I : SI->cases()) {
5140     ConstantInt *CaseVal = I.getCaseValue();
5141 
5142     // Resulting value at phi nodes for this case value.
5143     SwitchCaseResultsTy Results;
5144     if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
5145                         DL, TTI))
5146       return false;
5147 
5148     // Only one value per case is permitted.
5149     if (Results.size() > 1)
5150       return false;
5151 
5152     // Add the case->result mapping to UniqueResults.
5153     const uintptr_t NumCasesForResult =
5154         MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
5155 
5156     // Early out if there are too many cases for this result.
5157     if (NumCasesForResult > MaxCasesPerResult)
5158       return false;
5159 
5160     // Early out if there are too many unique results.
5161     if (UniqueResults.size() > MaxUniqueResults)
5162       return false;
5163 
5164     // Check the PHI consistency.
5165     if (!PHI)
5166       PHI = Results[0].first;
5167     else if (PHI != Results[0].first)
5168       return false;
5169   }
5170   // Find the default result value.
5171   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
5172   BasicBlock *DefaultDest = SI->getDefaultDest();
5173   GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
5174                  DL, TTI);
5175   // If the default value is not found abort unless the default destination
5176   // is unreachable.
5177   DefaultResult =
5178       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
5179   if ((!DefaultResult &&
5180        !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
5181     return false;
5182 
5183   return true;
5184 }
5185 
5186 // Helper function that checks if it is possible to transform a switch with only
5187 // two cases (or two cases + default) that produces a result into a select.
5188 // Example:
5189 // switch (a) {
5190 //   case 10:                %0 = icmp eq i32 %a, 10
5191 //     return 10;            %1 = select i1 %0, i32 10, i32 4
5192 //   case 20:        ---->   %2 = icmp eq i32 %a, 20
5193 //     return 2;             %3 = select i1 %2, i32 2, i32 %1
5194 //   default:
5195 //     return 4;
5196 // }
5197 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
5198                                    Constant *DefaultResult, Value *Condition,
5199                                    IRBuilder<> &Builder) {
5200   assert(ResultVector.size() == 2 &&
5201          "We should have exactly two unique results at this point");
5202   // If we are selecting between only two cases transform into a simple
5203   // select or a two-way select if default is possible.
5204   if (ResultVector[0].second.size() == 1 &&
5205       ResultVector[1].second.size() == 1) {
5206     ConstantInt *const FirstCase = ResultVector[0].second[0];
5207     ConstantInt *const SecondCase = ResultVector[1].second[0];
5208 
5209     bool DefaultCanTrigger = DefaultResult;
5210     Value *SelectValue = ResultVector[1].first;
5211     if (DefaultCanTrigger) {
5212       Value *const ValueCompare =
5213           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
5214       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
5215                                          DefaultResult, "switch.select");
5216     }
5217     Value *const ValueCompare =
5218         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
5219     return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
5220                                 SelectValue, "switch.select");
5221   }
5222 
5223   return nullptr;
5224 }
5225 
5226 // Helper function to cleanup a switch instruction that has been converted into
5227 // a select, fixing up PHI nodes and basic blocks.
5228 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
5229                                               Value *SelectValue,
5230                                               IRBuilder<> &Builder,
5231                                               DomTreeUpdater *DTU) {
5232   std::vector<DominatorTree::UpdateType> Updates;
5233 
5234   BasicBlock *SelectBB = SI->getParent();
5235   BasicBlock *DestBB = PHI->getParent();
5236 
5237   if (!is_contained(predecessors(DestBB), SelectBB))
5238     Updates.push_back({DominatorTree::Insert, SelectBB, DestBB});
5239   Builder.CreateBr(DestBB);
5240 
5241   // Remove the switch.
5242 
5243   while (PHI->getBasicBlockIndex(SelectBB) >= 0)
5244     PHI->removeIncomingValue(SelectBB);
5245   PHI->addIncoming(SelectValue, SelectBB);
5246 
5247   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5248     BasicBlock *Succ = SI->getSuccessor(i);
5249 
5250     if (Succ == DestBB)
5251       continue;
5252     Succ->removePredecessor(SelectBB);
5253     Updates.push_back({DominatorTree::Delete, SelectBB, Succ});
5254   }
5255   SI->eraseFromParent();
5256   if (DTU)
5257     DTU->applyUpdates(Updates);
5258 }
5259 
5260 /// If the switch is only used to initialize one or more
5261 /// phi nodes in a common successor block with only two different
5262 /// constant values, replace the switch with select.
5263 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
5264                            DomTreeUpdater *DTU, const DataLayout &DL,
5265                            const TargetTransformInfo &TTI) {
5266   Value *const Cond = SI->getCondition();
5267   PHINode *PHI = nullptr;
5268   BasicBlock *CommonDest = nullptr;
5269   Constant *DefaultResult;
5270   SwitchCaseResultVectorTy UniqueResults;
5271   // Collect all the cases that will deliver the same value from the switch.
5272   if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
5273                              DL, TTI, 2, 1))
5274     return false;
5275   // Selects choose between maximum two values.
5276   if (UniqueResults.size() != 2)
5277     return false;
5278   assert(PHI != nullptr && "PHI for value select not found");
5279 
5280   Builder.SetInsertPoint(SI);
5281   Value *SelectValue =
5282       ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder);
5283   if (SelectValue) {
5284     RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder, DTU);
5285     return true;
5286   }
5287   // The switch couldn't be converted into a select.
5288   return false;
5289 }
5290 
5291 namespace {
5292 
5293 /// This class represents a lookup table that can be used to replace a switch.
5294 class SwitchLookupTable {
5295 public:
5296   /// Create a lookup table to use as a switch replacement with the contents
5297   /// of Values, using DefaultValue to fill any holes in the table.
5298   SwitchLookupTable(
5299       Module &M, uint64_t TableSize, ConstantInt *Offset,
5300       const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
5301       Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName);
5302 
5303   /// Build instructions with Builder to retrieve the value at
5304   /// the position given by Index in the lookup table.
5305   Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
5306 
5307   /// Return true if a table with TableSize elements of
5308   /// type ElementType would fit in a target-legal register.
5309   static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
5310                                  Type *ElementType);
5311 
5312 private:
5313   // Depending on the contents of the table, it can be represented in
5314   // different ways.
5315   enum {
5316     // For tables where each element contains the same value, we just have to
5317     // store that single value and return it for each lookup.
5318     SingleValueKind,
5319 
5320     // For tables where there is a linear relationship between table index
5321     // and values. We calculate the result with a simple multiplication
5322     // and addition instead of a table lookup.
5323     LinearMapKind,
5324 
5325     // For small tables with integer elements, we can pack them into a bitmap
5326     // that fits into a target-legal register. Values are retrieved by
5327     // shift and mask operations.
5328     BitMapKind,
5329 
5330     // The table is stored as an array of values. Values are retrieved by load
5331     // instructions from the table.
5332     ArrayKind
5333   } Kind;
5334 
5335   // For SingleValueKind, this is the single value.
5336   Constant *SingleValue = nullptr;
5337 
5338   // For BitMapKind, this is the bitmap.
5339   ConstantInt *BitMap = nullptr;
5340   IntegerType *BitMapElementTy = nullptr;
5341 
5342   // For LinearMapKind, these are the constants used to derive the value.
5343   ConstantInt *LinearOffset = nullptr;
5344   ConstantInt *LinearMultiplier = nullptr;
5345 
5346   // For ArrayKind, this is the array.
5347   GlobalVariable *Array = nullptr;
5348 };
5349 
5350 } // end anonymous namespace
5351 
5352 SwitchLookupTable::SwitchLookupTable(
5353     Module &M, uint64_t TableSize, ConstantInt *Offset,
5354     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
5355     Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) {
5356   assert(Values.size() && "Can't build lookup table without values!");
5357   assert(TableSize >= Values.size() && "Can't fit values in table!");
5358 
5359   // If all values in the table are equal, this is that value.
5360   SingleValue = Values.begin()->second;
5361 
5362   Type *ValueType = Values.begin()->second->getType();
5363 
5364   // Build up the table contents.
5365   SmallVector<Constant *, 64> TableContents(TableSize);
5366   for (size_t I = 0, E = Values.size(); I != E; ++I) {
5367     ConstantInt *CaseVal = Values[I].first;
5368     Constant *CaseRes = Values[I].second;
5369     assert(CaseRes->getType() == ValueType);
5370 
5371     uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
5372     TableContents[Idx] = CaseRes;
5373 
5374     if (CaseRes != SingleValue)
5375       SingleValue = nullptr;
5376   }
5377 
5378   // Fill in any holes in the table with the default result.
5379   if (Values.size() < TableSize) {
5380     assert(DefaultValue &&
5381            "Need a default value to fill the lookup table holes.");
5382     assert(DefaultValue->getType() == ValueType);
5383     for (uint64_t I = 0; I < TableSize; ++I) {
5384       if (!TableContents[I])
5385         TableContents[I] = DefaultValue;
5386     }
5387 
5388     if (DefaultValue != SingleValue)
5389       SingleValue = nullptr;
5390   }
5391 
5392   // If each element in the table contains the same value, we only need to store
5393   // that single value.
5394   if (SingleValue) {
5395     Kind = SingleValueKind;
5396     return;
5397   }
5398 
5399   // Check if we can derive the value with a linear transformation from the
5400   // table index.
5401   if (isa<IntegerType>(ValueType)) {
5402     bool LinearMappingPossible = true;
5403     APInt PrevVal;
5404     APInt DistToPrev;
5405     assert(TableSize >= 2 && "Should be a SingleValue table.");
5406     // Check if there is the same distance between two consecutive values.
5407     for (uint64_t I = 0; I < TableSize; ++I) {
5408       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
5409       if (!ConstVal) {
5410         // This is an undef. We could deal with it, but undefs in lookup tables
5411         // are very seldom. It's probably not worth the additional complexity.
5412         LinearMappingPossible = false;
5413         break;
5414       }
5415       const APInt &Val = ConstVal->getValue();
5416       if (I != 0) {
5417         APInt Dist = Val - PrevVal;
5418         if (I == 1) {
5419           DistToPrev = Dist;
5420         } else if (Dist != DistToPrev) {
5421           LinearMappingPossible = false;
5422           break;
5423         }
5424       }
5425       PrevVal = Val;
5426     }
5427     if (LinearMappingPossible) {
5428       LinearOffset = cast<ConstantInt>(TableContents[0]);
5429       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
5430       Kind = LinearMapKind;
5431       ++NumLinearMaps;
5432       return;
5433     }
5434   }
5435 
5436   // If the type is integer and the table fits in a register, build a bitmap.
5437   if (WouldFitInRegister(DL, TableSize, ValueType)) {
5438     IntegerType *IT = cast<IntegerType>(ValueType);
5439     APInt TableInt(TableSize * IT->getBitWidth(), 0);
5440     for (uint64_t I = TableSize; I > 0; --I) {
5441       TableInt <<= IT->getBitWidth();
5442       // Insert values into the bitmap. Undef values are set to zero.
5443       if (!isa<UndefValue>(TableContents[I - 1])) {
5444         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
5445         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
5446       }
5447     }
5448     BitMap = ConstantInt::get(M.getContext(), TableInt);
5449     BitMapElementTy = IT;
5450     Kind = BitMapKind;
5451     ++NumBitMaps;
5452     return;
5453   }
5454 
5455   // Store the table in an array.
5456   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
5457   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
5458 
5459   Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true,
5460                              GlobalVariable::PrivateLinkage, Initializer,
5461                              "switch.table." + FuncName);
5462   Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
5463   // Set the alignment to that of an array items. We will be only loading one
5464   // value out of it.
5465   Array->setAlignment(Align(DL.getPrefTypeAlignment(ValueType)));
5466   Kind = ArrayKind;
5467 }
5468 
5469 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
5470   switch (Kind) {
5471   case SingleValueKind:
5472     return SingleValue;
5473   case LinearMapKind: {
5474     // Derive the result value from the input value.
5475     Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
5476                                           false, "switch.idx.cast");
5477     if (!LinearMultiplier->isOne())
5478       Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
5479     if (!LinearOffset->isZero())
5480       Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
5481     return Result;
5482   }
5483   case BitMapKind: {
5484     // Type of the bitmap (e.g. i59).
5485     IntegerType *MapTy = BitMap->getType();
5486 
5487     // Cast Index to the same type as the bitmap.
5488     // Note: The Index is <= the number of elements in the table, so
5489     // truncating it to the width of the bitmask is safe.
5490     Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
5491 
5492     // Multiply the shift amount by the element width.
5493     ShiftAmt = Builder.CreateMul(
5494         ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
5495         "switch.shiftamt");
5496 
5497     // Shift down.
5498     Value *DownShifted =
5499         Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
5500     // Mask off.
5501     return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
5502   }
5503   case ArrayKind: {
5504     // Make sure the table index will not overflow when treated as signed.
5505     IntegerType *IT = cast<IntegerType>(Index->getType());
5506     uint64_t TableSize =
5507         Array->getInitializer()->getType()->getArrayNumElements();
5508     if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
5509       Index = Builder.CreateZExt(
5510           Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
5511           "switch.tableidx.zext");
5512 
5513     Value *GEPIndices[] = {Builder.getInt32(0), Index};
5514     Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
5515                                            GEPIndices, "switch.gep");
5516     return Builder.CreateLoad(
5517         cast<ArrayType>(Array->getValueType())->getElementType(), GEP,
5518         "switch.load");
5519   }
5520   }
5521   llvm_unreachable("Unknown lookup table kind!");
5522 }
5523 
5524 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
5525                                            uint64_t TableSize,
5526                                            Type *ElementType) {
5527   auto *IT = dyn_cast<IntegerType>(ElementType);
5528   if (!IT)
5529     return false;
5530   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
5531   // are <= 15, we could try to narrow the type.
5532 
5533   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
5534   if (TableSize >= UINT_MAX / IT->getBitWidth())
5535     return false;
5536   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
5537 }
5538 
5539 /// Determine whether a lookup table should be built for this switch, based on
5540 /// the number of cases, size of the table, and the types of the results.
5541 static bool
5542 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
5543                        const TargetTransformInfo &TTI, const DataLayout &DL,
5544                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
5545   if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
5546     return false; // TableSize overflowed, or mul below might overflow.
5547 
5548   bool AllTablesFitInRegister = true;
5549   bool HasIllegalType = false;
5550   for (const auto &I : ResultTypes) {
5551     Type *Ty = I.second;
5552 
5553     // Saturate this flag to true.
5554     HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
5555 
5556     // Saturate this flag to false.
5557     AllTablesFitInRegister =
5558         AllTablesFitInRegister &&
5559         SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
5560 
5561     // If both flags saturate, we're done. NOTE: This *only* works with
5562     // saturating flags, and all flags have to saturate first due to the
5563     // non-deterministic behavior of iterating over a dense map.
5564     if (HasIllegalType && !AllTablesFitInRegister)
5565       break;
5566   }
5567 
5568   // If each table would fit in a register, we should build it anyway.
5569   if (AllTablesFitInRegister)
5570     return true;
5571 
5572   // Don't build a table that doesn't fit in-register if it has illegal types.
5573   if (HasIllegalType)
5574     return false;
5575 
5576   // The table density should be at least 40%. This is the same criterion as for
5577   // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
5578   // FIXME: Find the best cut-off.
5579   return SI->getNumCases() * 10 >= TableSize * 4;
5580 }
5581 
5582 /// Try to reuse the switch table index compare. Following pattern:
5583 /// \code
5584 ///     if (idx < tablesize)
5585 ///        r = table[idx]; // table does not contain default_value
5586 ///     else
5587 ///        r = default_value;
5588 ///     if (r != default_value)
5589 ///        ...
5590 /// \endcode
5591 /// Is optimized to:
5592 /// \code
5593 ///     cond = idx < tablesize;
5594 ///     if (cond)
5595 ///        r = table[idx];
5596 ///     else
5597 ///        r = default_value;
5598 ///     if (cond)
5599 ///        ...
5600 /// \endcode
5601 /// Jump threading will then eliminate the second if(cond).
5602 static void reuseTableCompare(
5603     User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
5604     Constant *DefaultValue,
5605     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
5606   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
5607   if (!CmpInst)
5608     return;
5609 
5610   // We require that the compare is in the same block as the phi so that jump
5611   // threading can do its work afterwards.
5612   if (CmpInst->getParent() != PhiBlock)
5613     return;
5614 
5615   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
5616   if (!CmpOp1)
5617     return;
5618 
5619   Value *RangeCmp = RangeCheckBranch->getCondition();
5620   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
5621   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
5622 
5623   // Check if the compare with the default value is constant true or false.
5624   Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5625                                                  DefaultValue, CmpOp1, true);
5626   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
5627     return;
5628 
5629   // Check if the compare with the case values is distinct from the default
5630   // compare result.
5631   for (auto ValuePair : Values) {
5632     Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5633                                                 ValuePair.second, CmpOp1, true);
5634     if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst))
5635       return;
5636     assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
5637            "Expect true or false as compare result.");
5638   }
5639 
5640   // Check if the branch instruction dominates the phi node. It's a simple
5641   // dominance check, but sufficient for our needs.
5642   // Although this check is invariant in the calling loops, it's better to do it
5643   // at this late stage. Practically we do it at most once for a switch.
5644   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
5645   for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) {
5646     BasicBlock *Pred = *PI;
5647     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
5648       return;
5649   }
5650 
5651   if (DefaultConst == FalseConst) {
5652     // The compare yields the same result. We can replace it.
5653     CmpInst->replaceAllUsesWith(RangeCmp);
5654     ++NumTableCmpReuses;
5655   } else {
5656     // The compare yields the same result, just inverted. We can replace it.
5657     Value *InvertedTableCmp = BinaryOperator::CreateXor(
5658         RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
5659         RangeCheckBranch);
5660     CmpInst->replaceAllUsesWith(InvertedTableCmp);
5661     ++NumTableCmpReuses;
5662   }
5663 }
5664 
5665 /// If the switch is only used to initialize one or more phi nodes in a common
5666 /// successor block with different constant values, replace the switch with
5667 /// lookup tables.
5668 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
5669                                 DomTreeUpdater *DTU, const DataLayout &DL,
5670                                 const TargetTransformInfo &TTI) {
5671   assert(SI->getNumCases() > 1 && "Degenerate switch?");
5672 
5673   BasicBlock *BB = SI->getParent();
5674   Function *Fn = BB->getParent();
5675   // Only build lookup table when we have a target that supports it or the
5676   // attribute is not set.
5677   if (!TTI.shouldBuildLookupTables() ||
5678       (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true"))
5679     return false;
5680 
5681   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
5682   // split off a dense part and build a lookup table for that.
5683 
5684   // FIXME: This creates arrays of GEPs to constant strings, which means each
5685   // GEP needs a runtime relocation in PIC code. We should just build one big
5686   // string and lookup indices into that.
5687 
5688   // Ignore switches with less than three cases. Lookup tables will not make
5689   // them faster, so we don't analyze them.
5690   if (SI->getNumCases() < 3)
5691     return false;
5692 
5693   // Figure out the corresponding result for each case value and phi node in the
5694   // common destination, as well as the min and max case values.
5695   assert(!SI->cases().empty());
5696   SwitchInst::CaseIt CI = SI->case_begin();
5697   ConstantInt *MinCaseVal = CI->getCaseValue();
5698   ConstantInt *MaxCaseVal = CI->getCaseValue();
5699 
5700   BasicBlock *CommonDest = nullptr;
5701 
5702   using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>;
5703   SmallDenseMap<PHINode *, ResultListTy> ResultLists;
5704 
5705   SmallDenseMap<PHINode *, Constant *> DefaultResults;
5706   SmallDenseMap<PHINode *, Type *> ResultTypes;
5707   SmallVector<PHINode *, 4> PHIs;
5708 
5709   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
5710     ConstantInt *CaseVal = CI->getCaseValue();
5711     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
5712       MinCaseVal = CaseVal;
5713     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
5714       MaxCaseVal = CaseVal;
5715 
5716     // Resulting value at phi nodes for this case value.
5717     using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
5718     ResultsTy Results;
5719     if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest,
5720                         Results, DL, TTI))
5721       return false;
5722 
5723     // Append the result from this case to the list for each phi.
5724     for (const auto &I : Results) {
5725       PHINode *PHI = I.first;
5726       Constant *Value = I.second;
5727       if (!ResultLists.count(PHI))
5728         PHIs.push_back(PHI);
5729       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
5730     }
5731   }
5732 
5733   // Keep track of the result types.
5734   for (PHINode *PHI : PHIs) {
5735     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
5736   }
5737 
5738   uint64_t NumResults = ResultLists[PHIs[0]].size();
5739   APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
5740   uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
5741   bool TableHasHoles = (NumResults < TableSize);
5742 
5743   // If the table has holes, we need a constant result for the default case
5744   // or a bitmask that fits in a register.
5745   SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
5746   bool HasDefaultResults =
5747       GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest,
5748                      DefaultResultsList, DL, TTI);
5749 
5750   bool NeedMask = (TableHasHoles && !HasDefaultResults);
5751   if (NeedMask) {
5752     // As an extra penalty for the validity test we require more cases.
5753     if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
5754       return false;
5755     if (!DL.fitsInLegalInteger(TableSize))
5756       return false;
5757   }
5758 
5759   for (const auto &I : DefaultResultsList) {
5760     PHINode *PHI = I.first;
5761     Constant *Result = I.second;
5762     DefaultResults[PHI] = Result;
5763   }
5764 
5765   if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
5766     return false;
5767 
5768   std::vector<DominatorTree::UpdateType> Updates;
5769 
5770   // Create the BB that does the lookups.
5771   Module &Mod = *CommonDest->getParent()->getParent();
5772   BasicBlock *LookupBB = BasicBlock::Create(
5773       Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
5774 
5775   // Compute the table index value.
5776   Builder.SetInsertPoint(SI);
5777   Value *TableIndex;
5778   if (MinCaseVal->isNullValue())
5779     TableIndex = SI->getCondition();
5780   else
5781     TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
5782                                    "switch.tableidx");
5783 
5784   // Compute the maximum table size representable by the integer type we are
5785   // switching upon.
5786   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
5787   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
5788   assert(MaxTableSize >= TableSize &&
5789          "It is impossible for a switch to have more entries than the max "
5790          "representable value of its input integer type's size.");
5791 
5792   // If the default destination is unreachable, or if the lookup table covers
5793   // all values of the conditional variable, branch directly to the lookup table
5794   // BB. Otherwise, check that the condition is within the case range.
5795   const bool DefaultIsReachable =
5796       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5797   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
5798   BranchInst *RangeCheckBranch = nullptr;
5799 
5800   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5801     Builder.CreateBr(LookupBB);
5802     Updates.push_back({DominatorTree::Insert, BB, LookupBB});
5803     // Note: We call removeProdecessor later since we need to be able to get the
5804     // PHI value for the default case in case we're using a bit mask.
5805   } else {
5806     Value *Cmp = Builder.CreateICmpULT(
5807         TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
5808     RangeCheckBranch =
5809         Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
5810     Updates.push_back({DominatorTree::Insert, BB, LookupBB});
5811   }
5812 
5813   // Populate the BB that does the lookups.
5814   Builder.SetInsertPoint(LookupBB);
5815 
5816   if (NeedMask) {
5817     // Before doing the lookup, we do the hole check. The LookupBB is therefore
5818     // re-purposed to do the hole check, and we create a new LookupBB.
5819     BasicBlock *MaskBB = LookupBB;
5820     MaskBB->setName("switch.hole_check");
5821     LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
5822                                   CommonDest->getParent(), CommonDest);
5823 
5824     // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid
5825     // unnecessary illegal types.
5826     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
5827     APInt MaskInt(TableSizePowOf2, 0);
5828     APInt One(TableSizePowOf2, 1);
5829     // Build bitmask; fill in a 1 bit for every case.
5830     const ResultListTy &ResultList = ResultLists[PHIs[0]];
5831     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
5832       uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue())
5833                          .getLimitedValue();
5834       MaskInt |= One << Idx;
5835     }
5836     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
5837 
5838     // Get the TableIndex'th bit of the bitmask.
5839     // If this bit is 0 (meaning hole) jump to the default destination,
5840     // else continue with table lookup.
5841     IntegerType *MapTy = TableMask->getType();
5842     Value *MaskIndex =
5843         Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
5844     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
5845     Value *LoBit = Builder.CreateTrunc(
5846         Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
5847     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
5848     Updates.push_back({DominatorTree::Insert, MaskBB, LookupBB});
5849     Updates.push_back({DominatorTree::Insert, MaskBB, SI->getDefaultDest()});
5850     Builder.SetInsertPoint(LookupBB);
5851     AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, BB);
5852   }
5853 
5854   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5855     // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later,
5856     // do not delete PHINodes here.
5857     SI->getDefaultDest()->removePredecessor(BB,
5858                                             /*KeepOneInputPHIs=*/true);
5859     Updates.push_back({DominatorTree::Delete, BB, SI->getDefaultDest()});
5860   }
5861 
5862   bool ReturnedEarly = false;
5863   for (PHINode *PHI : PHIs) {
5864     const ResultListTy &ResultList = ResultLists[PHI];
5865 
5866     // If using a bitmask, use any value to fill the lookup table holes.
5867     Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
5868     StringRef FuncName = Fn->getName();
5869     SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL,
5870                             FuncName);
5871 
5872     Value *Result = Table.BuildLookup(TableIndex, Builder);
5873 
5874     // If the result is used to return immediately from the function, we want to
5875     // do that right here.
5876     if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) &&
5877         PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) {
5878       Builder.CreateRet(Result);
5879       ReturnedEarly = true;
5880       break;
5881     }
5882 
5883     // Do a small peephole optimization: re-use the switch table compare if
5884     // possible.
5885     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
5886       BasicBlock *PhiBlock = PHI->getParent();
5887       // Search for compare instructions which use the phi.
5888       for (auto *User : PHI->users()) {
5889         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
5890       }
5891     }
5892 
5893     PHI->addIncoming(Result, LookupBB);
5894   }
5895 
5896   if (!ReturnedEarly) {
5897     Builder.CreateBr(CommonDest);
5898     Updates.push_back({DominatorTree::Insert, LookupBB, CommonDest});
5899   }
5900 
5901   // Remove the switch.
5902   SmallSetVector<BasicBlock *, 8> RemovedSuccessors;
5903   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5904     BasicBlock *Succ = SI->getSuccessor(i);
5905 
5906     if (Succ == SI->getDefaultDest())
5907       continue;
5908     Succ->removePredecessor(BB);
5909     RemovedSuccessors.insert(Succ);
5910   }
5911   SI->eraseFromParent();
5912 
5913   if (DTU) {
5914     for (BasicBlock *RemovedSuccessor : RemovedSuccessors)
5915       Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
5916     DTU->applyUpdates(Updates);
5917   }
5918 
5919   ++NumLookupTables;
5920   if (NeedMask)
5921     ++NumLookupTablesHoles;
5922   return true;
5923 }
5924 
5925 static bool isSwitchDense(ArrayRef<int64_t> Values) {
5926   // See also SelectionDAGBuilder::isDense(), which this function was based on.
5927   uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
5928   uint64_t Range = Diff + 1;
5929   uint64_t NumCases = Values.size();
5930   // 40% is the default density for building a jump table in optsize/minsize mode.
5931   uint64_t MinDensity = 40;
5932 
5933   return NumCases * 100 >= Range * MinDensity;
5934 }
5935 
5936 /// Try to transform a switch that has "holes" in it to a contiguous sequence
5937 /// of cases.
5938 ///
5939 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
5940 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
5941 ///
5942 /// This converts a sparse switch into a dense switch which allows better
5943 /// lowering and could also allow transforming into a lookup table.
5944 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
5945                               const DataLayout &DL,
5946                               const TargetTransformInfo &TTI) {
5947   auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
5948   if (CondTy->getIntegerBitWidth() > 64 ||
5949       !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
5950     return false;
5951   // Only bother with this optimization if there are more than 3 switch cases;
5952   // SDAG will only bother creating jump tables for 4 or more cases.
5953   if (SI->getNumCases() < 4)
5954     return false;
5955 
5956   // This transform is agnostic to the signedness of the input or case values. We
5957   // can treat the case values as signed or unsigned. We can optimize more common
5958   // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
5959   // as signed.
5960   SmallVector<int64_t,4> Values;
5961   for (auto &C : SI->cases())
5962     Values.push_back(C.getCaseValue()->getValue().getSExtValue());
5963   llvm::sort(Values);
5964 
5965   // If the switch is already dense, there's nothing useful to do here.
5966   if (isSwitchDense(Values))
5967     return false;
5968 
5969   // First, transform the values such that they start at zero and ascend.
5970   int64_t Base = Values[0];
5971   for (auto &V : Values)
5972     V -= (uint64_t)(Base);
5973 
5974   // Now we have signed numbers that have been shifted so that, given enough
5975   // precision, there are no negative values. Since the rest of the transform
5976   // is bitwise only, we switch now to an unsigned representation.
5977 
5978   // This transform can be done speculatively because it is so cheap - it
5979   // results in a single rotate operation being inserted.
5980   // FIXME: It's possible that optimizing a switch on powers of two might also
5981   // be beneficial - flag values are often powers of two and we could use a CLZ
5982   // as the key function.
5983 
5984   // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than
5985   // one element and LLVM disallows duplicate cases, Shift is guaranteed to be
5986   // less than 64.
5987   unsigned Shift = 64;
5988   for (auto &V : Values)
5989     Shift = std::min(Shift, countTrailingZeros((uint64_t)V));
5990   assert(Shift < 64);
5991   if (Shift > 0)
5992     for (auto &V : Values)
5993       V = (int64_t)((uint64_t)V >> Shift);
5994 
5995   if (!isSwitchDense(Values))
5996     // Transform didn't create a dense switch.
5997     return false;
5998 
5999   // The obvious transform is to shift the switch condition right and emit a
6000   // check that the condition actually cleanly divided by GCD, i.e.
6001   //   C & (1 << Shift - 1) == 0
6002   // inserting a new CFG edge to handle the case where it didn't divide cleanly.
6003   //
6004   // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
6005   // shift and puts the shifted-off bits in the uppermost bits. If any of these
6006   // are nonzero then the switch condition will be very large and will hit the
6007   // default case.
6008 
6009   auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
6010   Builder.SetInsertPoint(SI);
6011   auto *ShiftC = ConstantInt::get(Ty, Shift);
6012   auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
6013   auto *LShr = Builder.CreateLShr(Sub, ShiftC);
6014   auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift);
6015   auto *Rot = Builder.CreateOr(LShr, Shl);
6016   SI->replaceUsesOfWith(SI->getCondition(), Rot);
6017 
6018   for (auto Case : SI->cases()) {
6019     auto *Orig = Case.getCaseValue();
6020     auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base);
6021     Case.setValue(
6022         cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue()))));
6023   }
6024   return true;
6025 }
6026 
6027 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
6028   BasicBlock *BB = SI->getParent();
6029 
6030   if (isValueEqualityComparison(SI)) {
6031     // If we only have one predecessor, and if it is a branch on this value,
6032     // see if that predecessor totally determines the outcome of this switch.
6033     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
6034       if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
6035         return requestResimplify();
6036 
6037     Value *Cond = SI->getCondition();
6038     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
6039       if (SimplifySwitchOnSelect(SI, Select))
6040         return requestResimplify();
6041 
6042     // If the block only contains the switch, see if we can fold the block
6043     // away into any preds.
6044     if (SI == &*BB->instructionsWithoutDebug().begin())
6045       if (FoldValueComparisonIntoPredecessors(SI, Builder))
6046         return requestResimplify();
6047   }
6048 
6049   // Try to transform the switch into an icmp and a branch.
6050   if (TurnSwitchRangeIntoICmp(SI, Builder))
6051     return requestResimplify();
6052 
6053   // Remove unreachable cases.
6054   if (eliminateDeadSwitchCases(SI, DTU, Options.AC, DL))
6055     return requestResimplify();
6056 
6057   if (switchToSelect(SI, Builder, DTU, DL, TTI))
6058     return requestResimplify();
6059 
6060   if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI))
6061     return requestResimplify();
6062 
6063   // The conversion from switch to lookup tables results in difficult-to-analyze
6064   // code and makes pruning branches much harder. This is a problem if the
6065   // switch expression itself can still be restricted as a result of inlining or
6066   // CVP. Therefore, only apply this transformation during late stages of the
6067   // optimisation pipeline.
6068   if (Options.ConvertSwitchToLookupTable &&
6069       SwitchToLookupTable(SI, Builder, DTU, DL, TTI))
6070     return requestResimplify();
6071 
6072   if (ReduceSwitchRange(SI, Builder, DL, TTI))
6073     return requestResimplify();
6074 
6075   return false;
6076 }
6077 
6078 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) {
6079   BasicBlock *BB = IBI->getParent();
6080   bool Changed = false;
6081 
6082   // Eliminate redundant destinations.
6083   SmallPtrSet<Value *, 8> Succs;
6084   SmallSetVector<BasicBlock *, 8> RemovedSuccs;
6085   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
6086     BasicBlock *Dest = IBI->getDestination(i);
6087     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
6088       if (!Dest->hasAddressTaken())
6089         RemovedSuccs.insert(Dest);
6090       Dest->removePredecessor(BB);
6091       IBI->removeDestination(i);
6092       --i;
6093       --e;
6094       Changed = true;
6095     }
6096   }
6097 
6098   if (DTU) {
6099     std::vector<DominatorTree::UpdateType> Updates;
6100     Updates.reserve(RemovedSuccs.size());
6101     for (auto *RemovedSucc : RemovedSuccs)
6102       Updates.push_back({DominatorTree::Delete, BB, RemovedSucc});
6103     DTU->applyUpdates(Updates);
6104   }
6105 
6106   if (IBI->getNumDestinations() == 0) {
6107     // If the indirectbr has no successors, change it to unreachable.
6108     new UnreachableInst(IBI->getContext(), IBI);
6109     EraseTerminatorAndDCECond(IBI);
6110     return true;
6111   }
6112 
6113   if (IBI->getNumDestinations() == 1) {
6114     // If the indirectbr has one successor, change it to a direct branch.
6115     BranchInst::Create(IBI->getDestination(0), IBI);
6116     EraseTerminatorAndDCECond(IBI);
6117     return true;
6118   }
6119 
6120   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
6121     if (SimplifyIndirectBrOnSelect(IBI, SI))
6122       return requestResimplify();
6123   }
6124   return Changed;
6125 }
6126 
6127 /// Given an block with only a single landing pad and a unconditional branch
6128 /// try to find another basic block which this one can be merged with.  This
6129 /// handles cases where we have multiple invokes with unique landing pads, but
6130 /// a shared handler.
6131 ///
6132 /// We specifically choose to not worry about merging non-empty blocks
6133 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
6134 /// practice, the optimizer produces empty landing pad blocks quite frequently
6135 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
6136 /// sinking in this file)
6137 ///
6138 /// This is primarily a code size optimization.  We need to avoid performing
6139 /// any transform which might inhibit optimization (such as our ability to
6140 /// specialize a particular handler via tail commoning).  We do this by not
6141 /// merging any blocks which require us to introduce a phi.  Since the same
6142 /// values are flowing through both blocks, we don't lose any ability to
6143 /// specialize.  If anything, we make such specialization more likely.
6144 ///
6145 /// TODO - This transformation could remove entries from a phi in the target
6146 /// block when the inputs in the phi are the same for the two blocks being
6147 /// merged.  In some cases, this could result in removal of the PHI entirely.
6148 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
6149                                  BasicBlock *BB, DomTreeUpdater *DTU) {
6150   auto Succ = BB->getUniqueSuccessor();
6151   assert(Succ);
6152   // If there's a phi in the successor block, we'd likely have to introduce
6153   // a phi into the merged landing pad block.
6154   if (isa<PHINode>(*Succ->begin()))
6155     return false;
6156 
6157   for (BasicBlock *OtherPred : predecessors(Succ)) {
6158     if (BB == OtherPred)
6159       continue;
6160     BasicBlock::iterator I = OtherPred->begin();
6161     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
6162     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
6163       continue;
6164     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6165       ;
6166     BranchInst *BI2 = dyn_cast<BranchInst>(I);
6167     if (!BI2 || !BI2->isIdenticalTo(BI))
6168       continue;
6169 
6170     std::vector<DominatorTree::UpdateType> Updates;
6171 
6172     // We've found an identical block.  Update our predecessors to take that
6173     // path instead and make ourselves dead.
6174     SmallPtrSet<BasicBlock *, 16> Preds;
6175     Preds.insert(pred_begin(BB), pred_end(BB));
6176     for (BasicBlock *Pred : Preds) {
6177       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
6178       assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
6179              "unexpected successor");
6180       II->setUnwindDest(OtherPred);
6181       Updates.push_back({DominatorTree::Insert, Pred, OtherPred});
6182       Updates.push_back({DominatorTree::Delete, Pred, BB});
6183     }
6184 
6185     // The debug info in OtherPred doesn't cover the merged control flow that
6186     // used to go through BB.  We need to delete it or update it.
6187     for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) {
6188       Instruction &Inst = *I;
6189       I++;
6190       if (isa<DbgInfoIntrinsic>(Inst))
6191         Inst.eraseFromParent();
6192     }
6193 
6194     SmallPtrSet<BasicBlock *, 16> Succs;
6195     Succs.insert(succ_begin(BB), succ_end(BB));
6196     for (BasicBlock *Succ : Succs) {
6197       Succ->removePredecessor(BB);
6198       Updates.push_back({DominatorTree::Delete, BB, Succ});
6199     }
6200 
6201     IRBuilder<> Builder(BI);
6202     Builder.CreateUnreachable();
6203     BI->eraseFromParent();
6204     if (DTU)
6205       DTU->applyUpdates(Updates);
6206     return true;
6207   }
6208   return false;
6209 }
6210 
6211 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) {
6212   return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder)
6213                                    : simplifyCondBranch(Branch, Builder);
6214 }
6215 
6216 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI,
6217                                           IRBuilder<> &Builder) {
6218   BasicBlock *BB = BI->getParent();
6219   BasicBlock *Succ = BI->getSuccessor(0);
6220 
6221   // If the Terminator is the only non-phi instruction, simplify the block.
6222   // If LoopHeader is provided, check if the block or its successor is a loop
6223   // header. (This is for early invocations before loop simplify and
6224   // vectorization to keep canonical loop forms for nested loops. These blocks
6225   // can be eliminated when the pass is invoked later in the back-end.)
6226   // Note that if BB has only one predecessor then we do not introduce new
6227   // backedge, so we can eliminate BB.
6228   bool NeedCanonicalLoop =
6229       Options.NeedCanonicalLoop &&
6230       (!LoopHeaders.empty() && BB->hasNPredecessorsOrMore(2) &&
6231        (is_contained(LoopHeaders, BB) || is_contained(LoopHeaders, Succ)));
6232   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator();
6233   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
6234       !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB, DTU))
6235     return true;
6236 
6237   // If the only instruction in the block is a seteq/setne comparison against a
6238   // constant, try to simplify the block.
6239   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
6240     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
6241       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6242         ;
6243       if (I->isTerminator() &&
6244           tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder))
6245         return true;
6246     }
6247 
6248   // See if we can merge an empty landing pad block with another which is
6249   // equivalent.
6250   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
6251     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6252       ;
6253     if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB, DTU))
6254       return true;
6255   }
6256 
6257   // If this basic block is ONLY a compare and a branch, and if a predecessor
6258   // branches to us and our successor, fold the comparison into the
6259   // predecessor and use logical operations to update the incoming value
6260   // for PHI nodes in common successor.
6261   if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI,
6262                              Options.BonusInstThreshold))
6263     return requestResimplify();
6264   return false;
6265 }
6266 
6267 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
6268   BasicBlock *PredPred = nullptr;
6269   for (auto *P : predecessors(BB)) {
6270     BasicBlock *PPred = P->getSinglePredecessor();
6271     if (!PPred || (PredPred && PredPred != PPred))
6272       return nullptr;
6273     PredPred = PPred;
6274   }
6275   return PredPred;
6276 }
6277 
6278 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
6279   BasicBlock *BB = BI->getParent();
6280   if (!Options.SimplifyCondBranch)
6281     return false;
6282 
6283   // Conditional branch
6284   if (isValueEqualityComparison(BI)) {
6285     // If we only have one predecessor, and if it is a branch on this value,
6286     // see if that predecessor totally determines the outcome of this
6287     // switch.
6288     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
6289       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
6290         return requestResimplify();
6291 
6292     // This block must be empty, except for the setcond inst, if it exists.
6293     // Ignore dbg intrinsics.
6294     auto I = BB->instructionsWithoutDebug().begin();
6295     if (&*I == BI) {
6296       if (FoldValueComparisonIntoPredecessors(BI, Builder))
6297         return requestResimplify();
6298     } else if (&*I == cast<Instruction>(BI->getCondition())) {
6299       ++I;
6300       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
6301         return requestResimplify();
6302     }
6303   }
6304 
6305   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
6306   if (SimplifyBranchOnICmpChain(BI, Builder, DL))
6307     return true;
6308 
6309   // If this basic block has dominating predecessor blocks and the dominating
6310   // blocks' conditions imply BI's condition, we know the direction of BI.
6311   Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL);
6312   if (Imp) {
6313     // Turn this into a branch on constant.
6314     auto *OldCond = BI->getCondition();
6315     ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext())
6316                              : ConstantInt::getFalse(BB->getContext());
6317     BI->setCondition(TorF);
6318     RecursivelyDeleteTriviallyDeadInstructions(OldCond);
6319     return requestResimplify();
6320   }
6321 
6322   // If this basic block is ONLY a compare and a branch, and if a predecessor
6323   // branches to us and one of our successors, fold the comparison into the
6324   // predecessor and use logical operations to pick the right destination.
6325   if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI,
6326                              Options.BonusInstThreshold))
6327     return requestResimplify();
6328 
6329   // We have a conditional branch to two blocks that are only reachable
6330   // from BI.  We know that the condbr dominates the two blocks, so see if
6331   // there is any identical code in the "then" and "else" blocks.  If so, we
6332   // can hoist it up to the branching block.
6333   if (BI->getSuccessor(0)->getSinglePredecessor()) {
6334     if (BI->getSuccessor(1)->getSinglePredecessor()) {
6335       if (HoistCommon && Options.HoistCommonInsts)
6336         if (HoistThenElseCodeToIf(BI, TTI))
6337           return requestResimplify();
6338     } else {
6339       // If Successor #1 has multiple preds, we may be able to conditionally
6340       // execute Successor #0 if it branches to Successor #1.
6341       Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator();
6342       if (Succ0TI->getNumSuccessors() == 1 &&
6343           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
6344         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
6345           return requestResimplify();
6346     }
6347   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
6348     // If Successor #0 has multiple preds, we may be able to conditionally
6349     // execute Successor #1 if it branches to Successor #0.
6350     Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator();
6351     if (Succ1TI->getNumSuccessors() == 1 &&
6352         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
6353       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
6354         return requestResimplify();
6355   }
6356 
6357   // If this is a branch on a phi node in the current block, thread control
6358   // through this block if any PHI node entries are constants.
6359   if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
6360     if (PN->getParent() == BI->getParent())
6361       if (FoldCondBranchOnPHI(BI, DTU, DL, Options.AC))
6362         return requestResimplify();
6363 
6364   // Scan predecessor blocks for conditional branches.
6365   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
6366     if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
6367       if (PBI != BI && PBI->isConditional())
6368         if (SimplifyCondBranchToCondBranch(PBI, BI, DTU, DL, TTI))
6369           return requestResimplify();
6370 
6371   // Look for diamond patterns.
6372   if (MergeCondStores)
6373     if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
6374       if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
6375         if (PBI != BI && PBI->isConditional())
6376           if (mergeConditionalStores(PBI, BI, DTU, DL, TTI))
6377             return requestResimplify();
6378 
6379   return false;
6380 }
6381 
6382 /// Check if passing a value to an instruction will cause undefined behavior.
6383 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified) {
6384   Constant *C = dyn_cast<Constant>(V);
6385   if (!C)
6386     return false;
6387 
6388   if (I->use_empty())
6389     return false;
6390 
6391   if (C->isNullValue() || isa<UndefValue>(C)) {
6392     // Only look at the first use, avoid hurting compile time with long uselists
6393     User *Use = *I->user_begin();
6394 
6395     // Now make sure that there are no instructions in between that can alter
6396     // control flow (eg. calls)
6397     for (BasicBlock::iterator
6398              i = ++BasicBlock::iterator(I),
6399              UI = BasicBlock::iterator(dyn_cast<Instruction>(Use));
6400          i != UI; ++i)
6401       if (i == I->getParent()->end() || i->mayHaveSideEffects())
6402         return false;
6403 
6404     // Look through GEPs. A load from a GEP derived from NULL is still undefined
6405     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
6406       if (GEP->getPointerOperand() == I) {
6407         if (!GEP->isInBounds() || !GEP->hasAllZeroIndices())
6408           PtrValueMayBeModified = true;
6409         return passingValueIsAlwaysUndefined(V, GEP, PtrValueMayBeModified);
6410       }
6411 
6412     // Look through bitcasts.
6413     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
6414       return passingValueIsAlwaysUndefined(V, BC, PtrValueMayBeModified);
6415 
6416     // Load from null is undefined.
6417     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
6418       if (!LI->isVolatile())
6419         return !NullPointerIsDefined(LI->getFunction(),
6420                                      LI->getPointerAddressSpace());
6421 
6422     // Store to null is undefined.
6423     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
6424       if (!SI->isVolatile())
6425         return (!NullPointerIsDefined(SI->getFunction(),
6426                                       SI->getPointerAddressSpace())) &&
6427                SI->getPointerOperand() == I;
6428 
6429     if (auto *CB = dyn_cast<CallBase>(Use)) {
6430       if (C->isNullValue() && NullPointerIsDefined(CB->getFunction()))
6431         return false;
6432       // A call to null is undefined.
6433       if (CB->getCalledOperand() == I)
6434         return true;
6435 
6436       if (C->isNullValue()) {
6437         for (const llvm::Use &Arg : CB->args())
6438           if (Arg == I) {
6439             unsigned ArgIdx = CB->getArgOperandNo(&Arg);
6440             if (CB->paramHasAttr(ArgIdx, Attribute::NonNull) &&
6441                 CB->paramHasAttr(ArgIdx, Attribute::NoUndef)) {
6442               // Passing null to a nonnnull+noundef argument is undefined.
6443               return !PtrValueMayBeModified;
6444             }
6445           }
6446       } else if (isa<UndefValue>(C)) {
6447         // Passing undef to a noundef argument is undefined.
6448         for (const llvm::Use &Arg : CB->args())
6449           if (Arg == I) {
6450             unsigned ArgIdx = CB->getArgOperandNo(&Arg);
6451             if (CB->paramHasAttr(ArgIdx, Attribute::NoUndef)) {
6452               // Passing undef to a noundef argument is undefined.
6453               return true;
6454             }
6455           }
6456       }
6457     }
6458   }
6459   return false;
6460 }
6461 
6462 /// If BB has an incoming value that will always trigger undefined behavior
6463 /// (eg. null pointer dereference), remove the branch leading here.
6464 static bool removeUndefIntroducingPredecessor(BasicBlock *BB,
6465                                               DomTreeUpdater *DTU) {
6466   for (PHINode &PHI : BB->phis())
6467     for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i)
6468       if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) {
6469         BasicBlock *Predecessor = PHI.getIncomingBlock(i);
6470         Instruction *T = Predecessor->getTerminator();
6471         IRBuilder<> Builder(T);
6472         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
6473           BB->removePredecessor(Predecessor);
6474           // Turn uncoditional branches into unreachables and remove the dead
6475           // destination from conditional branches.
6476           if (BI->isUnconditional())
6477             Builder.CreateUnreachable();
6478           else
6479             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
6480                                                        : BI->getSuccessor(0));
6481           BI->eraseFromParent();
6482           if (DTU)
6483             DTU->applyUpdates({{DominatorTree::Delete, Predecessor, BB}});
6484           return true;
6485         }
6486         // TODO: SwitchInst.
6487       }
6488 
6489   return false;
6490 }
6491 
6492 bool SimplifyCFGOpt::simplifyOnceImpl(BasicBlock *BB) {
6493   bool Changed = false;
6494 
6495   assert(BB && BB->getParent() && "Block not embedded in function!");
6496   assert(BB->getTerminator() && "Degenerate basic block encountered!");
6497 
6498   // Remove basic blocks that have no predecessors (except the entry block)...
6499   // or that just have themself as a predecessor.  These are unreachable.
6500   if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
6501       BB->getSinglePredecessor() == BB) {
6502     LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB);
6503     DeleteDeadBlock(BB, DTU);
6504     return true;
6505   }
6506 
6507   // Check to see if we can constant propagate this terminator instruction
6508   // away...
6509   Changed |= ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true,
6510                                     /*TLI=*/nullptr, DTU);
6511 
6512   // Check for and eliminate duplicate PHI nodes in this block.
6513   Changed |= EliminateDuplicatePHINodes(BB);
6514 
6515   // Check for and remove branches that will always cause undefined behavior.
6516   Changed |= removeUndefIntroducingPredecessor(BB, DTU);
6517 
6518   // Merge basic blocks into their predecessor if there is only one distinct
6519   // pred, and if there is only one distinct successor of the predecessor, and
6520   // if there are no PHI nodes.
6521   if (MergeBlockIntoPredecessor(BB, DTU))
6522     return true;
6523 
6524   if (SinkCommon && Options.SinkCommonInsts)
6525     Changed |= SinkCommonCodeFromPredecessors(BB, DTU);
6526 
6527   IRBuilder<> Builder(BB);
6528 
6529   if (Options.FoldTwoEntryPHINode) {
6530     // If there is a trivial two-entry PHI node in this basic block, and we can
6531     // eliminate it, do so now.
6532     if (auto *PN = dyn_cast<PHINode>(BB->begin()))
6533       if (PN->getNumIncomingValues() == 2)
6534         Changed |= FoldTwoEntryPHINode(PN, TTI, DTU, DL);
6535   }
6536 
6537   Instruction *Terminator = BB->getTerminator();
6538   Builder.SetInsertPoint(Terminator);
6539   switch (Terminator->getOpcode()) {
6540   case Instruction::Br:
6541     Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder);
6542     break;
6543   case Instruction::Ret:
6544     Changed |= simplifyReturn(cast<ReturnInst>(Terminator), Builder);
6545     break;
6546   case Instruction::Resume:
6547     Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder);
6548     break;
6549   case Instruction::CleanupRet:
6550     Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator));
6551     break;
6552   case Instruction::Switch:
6553     Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder);
6554     break;
6555   case Instruction::Unreachable:
6556     Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator));
6557     break;
6558   case Instruction::IndirectBr:
6559     Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator));
6560     break;
6561   }
6562 
6563   return Changed;
6564 }
6565 
6566 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) {
6567   bool Changed = simplifyOnceImpl(BB);
6568 
6569   assert((!RequireAndPreserveDomTree ||
6570           (DTU &&
6571            DTU->getDomTree().verify(DominatorTree::VerificationLevel::Full))) &&
6572          "Failed to maintain validity of domtree!");
6573 
6574   return Changed;
6575 }
6576 
6577 bool SimplifyCFGOpt::run(BasicBlock *BB) {
6578   assert((!RequireAndPreserveDomTree ||
6579           (DTU &&
6580            DTU->getDomTree().verify(DominatorTree::VerificationLevel::Full))) &&
6581          "Original domtree is invalid?");
6582 
6583   bool Changed = false;
6584 
6585   // Repeated simplify BB as long as resimplification is requested.
6586   do {
6587     Resimplify = false;
6588 
6589     // Perform one round of simplifcation. Resimplify flag will be set if
6590     // another iteration is requested.
6591     Changed |= simplifyOnce(BB);
6592   } while (Resimplify);
6593 
6594   return Changed;
6595 }
6596 
6597 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
6598                        DomTreeUpdater *DTU, const SimplifyCFGOptions &Options,
6599                        ArrayRef<WeakVH> LoopHeaders) {
6600   return SimplifyCFGOpt(TTI, RequireAndPreserveDomTree ? DTU : nullptr,
6601                         BB->getModule()->getDataLayout(), LoopHeaders, Options)
6602       .run(BB);
6603 }
6604