1 //===- UnifyLoopExits.cpp - Redirect exiting edges to one block -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // For each natural loop with multiple exit blocks, this pass creates a new
10 // block N such that all exiting blocks now branch to N, and then control flow
11 // is redistributed to all the original exit blocks.
12 //
13 // Limitation: This assumes that all terminators in the CFG are direct branches
14 //             (the "br" instruction). The presence of any other control flow
15 //             such as indirectbr, switch or callbr will cause an assert.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/Transforms/Utils/UnifyLoopExits.h"
20 #include "llvm/ADT/MapVector.h"
21 #include "llvm/Analysis/DomTreeUpdater.h"
22 #include "llvm/Analysis/LoopInfo.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/IR/Dominators.h"
25 #include "llvm/InitializePasses.h"
26 #include "llvm/Support/CommandLine.h"
27 #include "llvm/Transforms/Utils.h"
28 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
29 
30 #define DEBUG_TYPE "unify-loop-exits"
31 
32 using namespace llvm;
33 
34 static cl::opt<unsigned> MaxBooleansInControlFlowHub(
35     "max-booleans-in-control-flow-hub", cl::init(32), cl::Hidden,
36     cl::desc("Set the maximum number of outgoing blocks for using a boolean "
37              "value to record the exiting block in CreateControlFlowHub."));
38 
39 namespace {
40 struct UnifyLoopExitsLegacyPass : public FunctionPass {
41   static char ID;
UnifyLoopExitsLegacyPass__anon3e0df5280111::UnifyLoopExitsLegacyPass42   UnifyLoopExitsLegacyPass() : FunctionPass(ID) {
43     initializeUnifyLoopExitsLegacyPassPass(*PassRegistry::getPassRegistry());
44   }
45 
getAnalysisUsage__anon3e0df5280111::UnifyLoopExitsLegacyPass46   void getAnalysisUsage(AnalysisUsage &AU) const override {
47     AU.addRequired<LoopInfoWrapperPass>();
48     AU.addRequired<DominatorTreeWrapperPass>();
49     AU.addPreserved<LoopInfoWrapperPass>();
50     AU.addPreserved<DominatorTreeWrapperPass>();
51   }
52 
53   bool runOnFunction(Function &F) override;
54 };
55 } // namespace
56 
57 char UnifyLoopExitsLegacyPass::ID = 0;
58 
createUnifyLoopExitsPass()59 FunctionPass *llvm::createUnifyLoopExitsPass() {
60   return new UnifyLoopExitsLegacyPass();
61 }
62 
63 INITIALIZE_PASS_BEGIN(UnifyLoopExitsLegacyPass, "unify-loop-exits",
64                       "Fixup each natural loop to have a single exit block",
65                       false /* Only looks at CFG */, false /* Analysis Pass */)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)66 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
67 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
68 INITIALIZE_PASS_END(UnifyLoopExitsLegacyPass, "unify-loop-exits",
69                     "Fixup each natural loop to have a single exit block",
70                     false /* Only looks at CFG */, false /* Analysis Pass */)
71 
72 // The current transform introduces new control flow paths which may break the
73 // SSA requirement that every def must dominate all its uses. For example,
74 // consider a value D defined inside the loop that is used by some instruction
75 // U outside the loop. It follows that D dominates U, since the original
76 // program has valid SSA form. After merging the exits, all paths from D to U
77 // now flow through the unified exit block. In addition, there may be other
78 // paths that do not pass through D, but now reach the unified exit
79 // block. Thus, D no longer dominates U.
80 //
81 // Restore the dominance by creating a phi for each such D at the new unified
82 // loop exit. But when doing this, ignore any uses U that are in the new unified
83 // loop exit, since those were introduced specially when the block was created.
84 //
85 // The use of SSAUpdater seems like overkill for this operation. The location
86 // for creating the new PHI is well-known, and also the set of incoming blocks
87 // to the new PHI.
88 static void restoreSSA(const DominatorTree &DT, const Loop *L,
89                        const SetVector<BasicBlock *> &Incoming,
90                        BasicBlock *LoopExitBlock) {
91   using InstVector = SmallVector<Instruction *, 8>;
92   using IIMap = MapVector<Instruction *, InstVector>;
93   IIMap ExternalUsers;
94   for (auto *BB : L->blocks()) {
95     for (auto &I : *BB) {
96       for (auto &U : I.uses()) {
97         auto UserInst = cast<Instruction>(U.getUser());
98         auto UserBlock = UserInst->getParent();
99         if (UserBlock == LoopExitBlock)
100           continue;
101         if (L->contains(UserBlock))
102           continue;
103         LLVM_DEBUG(dbgs() << "added ext use for " << I.getName() << "("
104                           << BB->getName() << ")"
105                           << ": " << UserInst->getName() << "("
106                           << UserBlock->getName() << ")"
107                           << "\n");
108         ExternalUsers[&I].push_back(UserInst);
109       }
110     }
111   }
112 
113   for (const auto &II : ExternalUsers) {
114     // For each Def used outside the loop, create NewPhi in
115     // LoopExitBlock. NewPhi receives Def only along exiting blocks that
116     // dominate it, while the remaining values are undefined since those paths
117     // didn't exist in the original CFG.
118     auto Def = II.first;
119     LLVM_DEBUG(dbgs() << "externally used: " << Def->getName() << "\n");
120     auto NewPhi =
121         PHINode::Create(Def->getType(), Incoming.size(),
122                         Def->getName() + ".moved", &LoopExitBlock->front());
123     for (auto *In : Incoming) {
124       LLVM_DEBUG(dbgs() << "predecessor " << In->getName() << ": ");
125       if (Def->getParent() == In || DT.dominates(Def, In)) {
126         LLVM_DEBUG(dbgs() << "dominated\n");
127         NewPhi->addIncoming(Def, In);
128       } else {
129         LLVM_DEBUG(dbgs() << "not dominated\n");
130         NewPhi->addIncoming(PoisonValue::get(Def->getType()), In);
131       }
132     }
133 
134     LLVM_DEBUG(dbgs() << "external users:");
135     for (auto *U : II.second) {
136       LLVM_DEBUG(dbgs() << " " << U->getName());
137       U->replaceUsesOfWith(Def, NewPhi);
138     }
139     LLVM_DEBUG(dbgs() << "\n");
140   }
141 }
142 
unifyLoopExits(DominatorTree & DT,LoopInfo & LI,Loop * L)143 static bool unifyLoopExits(DominatorTree &DT, LoopInfo &LI, Loop *L) {
144   // To unify the loop exits, we need a list of the exiting blocks as
145   // well as exit blocks. The functions for locating these lists both
146   // traverse the entire loop body. It is more efficient to first
147   // locate the exiting blocks and then examine their successors to
148   // locate the exit blocks.
149   SetVector<BasicBlock *> ExitingBlocks;
150   SetVector<BasicBlock *> Exits;
151 
152   // We need SetVectors, but the Loop API takes a vector, so we use a temporary.
153   SmallVector<BasicBlock *, 8> Temp;
154   L->getExitingBlocks(Temp);
155   for (auto *BB : Temp) {
156     ExitingBlocks.insert(BB);
157     for (auto *S : successors(BB)) {
158       auto SL = LI.getLoopFor(S);
159       // A successor is not an exit if it is directly or indirectly in the
160       // current loop.
161       if (SL == L || L->contains(SL))
162         continue;
163       Exits.insert(S);
164     }
165   }
166 
167   LLVM_DEBUG(
168       dbgs() << "Found exit blocks:";
169       for (auto Exit : Exits) {
170         dbgs() << " " << Exit->getName();
171       }
172       dbgs() << "\n";
173 
174       dbgs() << "Found exiting blocks:";
175       for (auto EB : ExitingBlocks) {
176         dbgs() << " " << EB->getName();
177       }
178       dbgs() << "\n";);
179 
180   if (Exits.size() <= 1) {
181     LLVM_DEBUG(dbgs() << "loop does not have multiple exits; nothing to do\n");
182     return false;
183   }
184 
185   SmallVector<BasicBlock *, 8> GuardBlocks;
186   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
187   auto LoopExitBlock =
188       CreateControlFlowHub(&DTU, GuardBlocks, ExitingBlocks, Exits, "loop.exit",
189                            MaxBooleansInControlFlowHub.getValue());
190 
191   restoreSSA(DT, L, ExitingBlocks, LoopExitBlock);
192 
193 #if defined(EXPENSIVE_CHECKS)
194   assert(DT.verify(DominatorTree::VerificationLevel::Full));
195 #else
196   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
197 #endif // EXPENSIVE_CHECKS
198   L->verifyLoop();
199 
200   // The guard blocks were created outside the loop, so they need to become
201   // members of the parent loop.
202   if (auto ParentLoop = L->getParentLoop()) {
203     for (auto *G : GuardBlocks) {
204       ParentLoop->addBasicBlockToLoop(G, LI);
205     }
206     ParentLoop->verifyLoop();
207   }
208 
209 #if defined(EXPENSIVE_CHECKS)
210   LI.verify(DT);
211 #endif // EXPENSIVE_CHECKS
212 
213   return true;
214 }
215 
runImpl(LoopInfo & LI,DominatorTree & DT)216 static bool runImpl(LoopInfo &LI, DominatorTree &DT) {
217 
218   bool Changed = false;
219   auto Loops = LI.getLoopsInPreorder();
220   for (auto *L : Loops) {
221     LLVM_DEBUG(dbgs() << "Loop: " << L->getHeader()->getName() << " (depth: "
222                       << LI.getLoopDepth(L->getHeader()) << ")\n");
223     Changed |= unifyLoopExits(DT, LI, L);
224   }
225   return Changed;
226 }
227 
runOnFunction(Function & F)228 bool UnifyLoopExitsLegacyPass::runOnFunction(Function &F) {
229   LLVM_DEBUG(dbgs() << "===== Unifying loop exits in function " << F.getName()
230                     << "\n");
231   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
232   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
233 
234   assert(hasOnlySimpleTerminator(F) && "Unsupported block terminator.");
235 
236   return runImpl(LI, DT);
237 }
238 
239 namespace llvm {
240 
run(Function & F,FunctionAnalysisManager & AM)241 PreservedAnalyses UnifyLoopExitsPass::run(Function &F,
242                                           FunctionAnalysisManager &AM) {
243   auto &LI = AM.getResult<LoopAnalysis>(F);
244   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
245 
246   if (!runImpl(LI, DT))
247     return PreservedAnalyses::all();
248   PreservedAnalyses PA;
249   PA.preserve<LoopAnalysis>();
250   PA.preserve<DominatorTreeAnalysis>();
251   return PA;
252 }
253 } // namespace llvm
254