1 //===- LoopVectorizationLegality.cpp --------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides loop vectorization legality analysis. Original code
10 // resided in LoopVectorize.cpp for a long time.
11 //
12 // At this point, it is implemented as a utility class, not as an analysis
13 // pass. It should be easy to create an analysis pass around it if there
14 // is a need (but D45420 needs to happen first).
15 //
16 
17 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
18 #include "llvm/Analysis/Loads.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
21 #include "llvm/Analysis/TargetLibraryInfo.h"
22 #include "llvm/Analysis/TargetTransformInfo.h"
23 #include "llvm/Analysis/ValueTracking.h"
24 #include "llvm/Analysis/VectorUtils.h"
25 #include "llvm/IR/IntrinsicInst.h"
26 #include "llvm/IR/PatternMatch.h"
27 #include "llvm/Transforms/Utils/SizeOpts.h"
28 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
29 
30 using namespace llvm;
31 using namespace PatternMatch;
32 
33 #define LV_NAME "loop-vectorize"
34 #define DEBUG_TYPE LV_NAME
35 
36 static cl::opt<bool>
37     EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
38                        cl::desc("Enable if-conversion during vectorization."));
39 
40 namespace llvm {
41 cl::opt<bool>
42     HintsAllowReordering("hints-allow-reordering", cl::init(true), cl::Hidden,
43                          cl::desc("Allow enabling loop hints to reorder "
44                                   "FP operations during vectorization."));
45 }
46 
47 // TODO: Move size-based thresholds out of legality checking, make cost based
48 // decisions instead of hard thresholds.
49 static cl::opt<unsigned> VectorizeSCEVCheckThreshold(
50     "vectorize-scev-check-threshold", cl::init(16), cl::Hidden,
51     cl::desc("The maximum number of SCEV checks allowed."));
52 
53 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold(
54     "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden,
55     cl::desc("The maximum number of SCEV checks allowed with a "
56              "vectorize(enable) pragma"));
57 
58 static cl::opt<LoopVectorizeHints::ScalableForceKind>
59     ForceScalableVectorization(
60         "scalable-vectorization", cl::init(LoopVectorizeHints::SK_Unspecified),
61         cl::Hidden,
62         cl::desc("Control whether the compiler can use scalable vectors to "
63                  "vectorize a loop"),
64         cl::values(
65             clEnumValN(LoopVectorizeHints::SK_FixedWidthOnly, "off",
66                        "Scalable vectorization is disabled."),
67             clEnumValN(
68                 LoopVectorizeHints::SK_PreferScalable, "preferred",
69                 "Scalable vectorization is available and favored when the "
70                 "cost is inconclusive."),
71             clEnumValN(
72                 LoopVectorizeHints::SK_PreferScalable, "on",
73                 "Scalable vectorization is available and favored when the "
74                 "cost is inconclusive.")));
75 
76 /// Maximum vectorization interleave count.
77 static const unsigned MaxInterleaveFactor = 16;
78 
79 namespace llvm {
80 
81 bool LoopVectorizeHints::Hint::validate(unsigned Val) {
82   switch (Kind) {
83   case HK_WIDTH:
84     return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth;
85   case HK_INTERLEAVE:
86     return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor;
87   case HK_FORCE:
88     return (Val <= 1);
89   case HK_ISVECTORIZED:
90   case HK_PREDICATE:
91   case HK_SCALABLE:
92     return (Val == 0 || Val == 1);
93   }
94   return false;
95 }
96 
97 LoopVectorizeHints::LoopVectorizeHints(const Loop *L,
98                                        bool InterleaveOnlyWhenForced,
99                                        OptimizationRemarkEmitter &ORE,
100                                        const TargetTransformInfo *TTI)
101     : Width("vectorize.width", VectorizerParams::VectorizationFactor, HK_WIDTH),
102       Interleave("interleave.count", InterleaveOnlyWhenForced, HK_INTERLEAVE),
103       Force("vectorize.enable", FK_Undefined, HK_FORCE),
104       IsVectorized("isvectorized", 0, HK_ISVECTORIZED),
105       Predicate("vectorize.predicate.enable", FK_Undefined, HK_PREDICATE),
106       Scalable("vectorize.scalable.enable", SK_Unspecified, HK_SCALABLE),
107       TheLoop(L), ORE(ORE) {
108   // Populate values with existing loop metadata.
109   getHintsFromMetadata();
110 
111   // force-vector-interleave overrides DisableInterleaving.
112   if (VectorizerParams::isInterleaveForced())
113     Interleave.Value = VectorizerParams::VectorizationInterleave;
114 
115   // If the metadata doesn't explicitly specify whether to enable scalable
116   // vectorization, then decide based on the following criteria (increasing
117   // level of priority):
118   //  - Target default
119   //  - Metadata width
120   //  - Force option (always overrides)
121   if ((LoopVectorizeHints::ScalableForceKind)Scalable.Value == SK_Unspecified) {
122     if (TTI)
123       Scalable.Value = TTI->enableScalableVectorization() ? SK_PreferScalable
124                                                           : SK_FixedWidthOnly;
125 
126     if (Width.Value)
127       // If the width is set, but the metadata says nothing about the scalable
128       // property, then assume it concerns only a fixed-width UserVF.
129       // If width is not set, the flag takes precedence.
130       Scalable.Value = SK_FixedWidthOnly;
131   }
132 
133   // If the flag is set to force any use of scalable vectors, override the loop
134   // hints.
135   if (ForceScalableVectorization.getValue() !=
136       LoopVectorizeHints::SK_Unspecified)
137     Scalable.Value = ForceScalableVectorization.getValue();
138 
139   // Scalable vectorization is disabled if no preference is specified.
140   if ((LoopVectorizeHints::ScalableForceKind)Scalable.Value == SK_Unspecified)
141     Scalable.Value = SK_FixedWidthOnly;
142 
143   if (IsVectorized.Value != 1)
144     // If the vectorization width and interleaving count are both 1 then
145     // consider the loop to have been already vectorized because there's
146     // nothing more that we can do.
147     IsVectorized.Value =
148         getWidth() == ElementCount::getFixed(1) && getInterleave() == 1;
149   LLVM_DEBUG(if (InterleaveOnlyWhenForced && getInterleave() == 1) dbgs()
150              << "LV: Interleaving disabled by the pass manager\n");
151 }
152 
153 void LoopVectorizeHints::setAlreadyVectorized() {
154   LLVMContext &Context = TheLoop->getHeader()->getContext();
155 
156   MDNode *IsVectorizedMD = MDNode::get(
157       Context,
158       {MDString::get(Context, "llvm.loop.isvectorized"),
159        ConstantAsMetadata::get(ConstantInt::get(Context, APInt(32, 1)))});
160   MDNode *LoopID = TheLoop->getLoopID();
161   MDNode *NewLoopID =
162       makePostTransformationMetadata(Context, LoopID,
163                                      {Twine(Prefix(), "vectorize.").str(),
164                                       Twine(Prefix(), "interleave.").str()},
165                                      {IsVectorizedMD});
166   TheLoop->setLoopID(NewLoopID);
167 
168   // Update internal cache.
169   IsVectorized.Value = 1;
170 }
171 
172 bool LoopVectorizeHints::allowVectorization(
173     Function *F, Loop *L, bool VectorizeOnlyWhenForced) const {
174   if (getForce() == LoopVectorizeHints::FK_Disabled) {
175     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n");
176     emitRemarkWithHints();
177     return false;
178   }
179 
180   if (VectorizeOnlyWhenForced && getForce() != LoopVectorizeHints::FK_Enabled) {
181     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n");
182     emitRemarkWithHints();
183     return false;
184   }
185 
186   if (getIsVectorized() == 1) {
187     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n");
188     // FIXME: Add interleave.disable metadata. This will allow
189     // vectorize.disable to be used without disabling the pass and errors
190     // to differentiate between disabled vectorization and a width of 1.
191     ORE.emit([&]() {
192       return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(),
193                                         "AllDisabled", L->getStartLoc(),
194                                         L->getHeader())
195              << "loop not vectorized: vectorization and interleaving are "
196                 "explicitly disabled, or the loop has already been "
197                 "vectorized";
198     });
199     return false;
200   }
201 
202   return true;
203 }
204 
205 void LoopVectorizeHints::emitRemarkWithHints() const {
206   using namespace ore;
207 
208   ORE.emit([&]() {
209     if (Force.Value == LoopVectorizeHints::FK_Disabled)
210       return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled",
211                                       TheLoop->getStartLoc(),
212                                       TheLoop->getHeader())
213              << "loop not vectorized: vectorization is explicitly disabled";
214     else {
215       OptimizationRemarkMissed R(LV_NAME, "MissedDetails",
216                                  TheLoop->getStartLoc(), TheLoop->getHeader());
217       R << "loop not vectorized";
218       if (Force.Value == LoopVectorizeHints::FK_Enabled) {
219         R << " (Force=" << NV("Force", true);
220         if (Width.Value != 0)
221           R << ", Vector Width=" << NV("VectorWidth", getWidth());
222         if (getInterleave() != 0)
223           R << ", Interleave Count=" << NV("InterleaveCount", getInterleave());
224         R << ")";
225       }
226       return R;
227     }
228   });
229 }
230 
231 const char *LoopVectorizeHints::vectorizeAnalysisPassName() const {
232   if (getWidth() == ElementCount::getFixed(1))
233     return LV_NAME;
234   if (getForce() == LoopVectorizeHints::FK_Disabled)
235     return LV_NAME;
236   if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth().isZero())
237     return LV_NAME;
238   return OptimizationRemarkAnalysis::AlwaysPrint;
239 }
240 
241 bool LoopVectorizeHints::allowReordering() const {
242   // Allow the vectorizer to change the order of operations if enabling
243   // loop hints are provided
244   ElementCount EC = getWidth();
245   return HintsAllowReordering &&
246          (getForce() == LoopVectorizeHints::FK_Enabled ||
247           EC.getKnownMinValue() > 1);
248 }
249 
250 void LoopVectorizeHints::getHintsFromMetadata() {
251   MDNode *LoopID = TheLoop->getLoopID();
252   if (!LoopID)
253     return;
254 
255   // First operand should refer to the loop id itself.
256   assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
257   assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
258 
259   for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
260     const MDString *S = nullptr;
261     SmallVector<Metadata *, 4> Args;
262 
263     // The expected hint is either a MDString or a MDNode with the first
264     // operand a MDString.
265     if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) {
266       if (!MD || MD->getNumOperands() == 0)
267         continue;
268       S = dyn_cast<MDString>(MD->getOperand(0));
269       for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i)
270         Args.push_back(MD->getOperand(i));
271     } else {
272       S = dyn_cast<MDString>(LoopID->getOperand(i));
273       assert(Args.size() == 0 && "too many arguments for MDString");
274     }
275 
276     if (!S)
277       continue;
278 
279     // Check if the hint starts with the loop metadata prefix.
280     StringRef Name = S->getString();
281     if (Args.size() == 1)
282       setHint(Name, Args[0]);
283   }
284 }
285 
286 void LoopVectorizeHints::setHint(StringRef Name, Metadata *Arg) {
287   if (!Name.startswith(Prefix()))
288     return;
289   Name = Name.substr(Prefix().size(), StringRef::npos);
290 
291   const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg);
292   if (!C)
293     return;
294   unsigned Val = C->getZExtValue();
295 
296   Hint *Hints[] = {&Width,        &Interleave, &Force,
297                    &IsVectorized, &Predicate,  &Scalable};
298   for (auto *H : Hints) {
299     if (Name == H->Name) {
300       if (H->validate(Val))
301         H->Value = Val;
302       else
303         LLVM_DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n");
304       break;
305     }
306   }
307 }
308 
309 // Return true if the inner loop \p Lp is uniform with regard to the outer loop
310 // \p OuterLp (i.e., if the outer loop is vectorized, all the vector lanes
311 // executing the inner loop will execute the same iterations). This check is
312 // very constrained for now but it will be relaxed in the future. \p Lp is
313 // considered uniform if it meets all the following conditions:
314 //   1) it has a canonical IV (starting from 0 and with stride 1),
315 //   2) its latch terminator is a conditional branch and,
316 //   3) its latch condition is a compare instruction whose operands are the
317 //      canonical IV and an OuterLp invariant.
318 // This check doesn't take into account the uniformity of other conditions not
319 // related to the loop latch because they don't affect the loop uniformity.
320 //
321 // NOTE: We decided to keep all these checks and its associated documentation
322 // together so that we can easily have a picture of the current supported loop
323 // nests. However, some of the current checks don't depend on \p OuterLp and
324 // would be redundantly executed for each \p Lp if we invoked this function for
325 // different candidate outer loops. This is not the case for now because we
326 // don't currently have the infrastructure to evaluate multiple candidate outer
327 // loops and \p OuterLp will be a fixed parameter while we only support explicit
328 // outer loop vectorization. It's also very likely that these checks go away
329 // before introducing the aforementioned infrastructure. However, if this is not
330 // the case, we should move the \p OuterLp independent checks to a separate
331 // function that is only executed once for each \p Lp.
332 static bool isUniformLoop(Loop *Lp, Loop *OuterLp) {
333   assert(Lp->getLoopLatch() && "Expected loop with a single latch.");
334 
335   // If Lp is the outer loop, it's uniform by definition.
336   if (Lp == OuterLp)
337     return true;
338   assert(OuterLp->contains(Lp) && "OuterLp must contain Lp.");
339 
340   // 1.
341   PHINode *IV = Lp->getCanonicalInductionVariable();
342   if (!IV) {
343     LLVM_DEBUG(dbgs() << "LV: Canonical IV not found.\n");
344     return false;
345   }
346 
347   // 2.
348   BasicBlock *Latch = Lp->getLoopLatch();
349   auto *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator());
350   if (!LatchBr || LatchBr->isUnconditional()) {
351     LLVM_DEBUG(dbgs() << "LV: Unsupported loop latch branch.\n");
352     return false;
353   }
354 
355   // 3.
356   auto *LatchCmp = dyn_cast<CmpInst>(LatchBr->getCondition());
357   if (!LatchCmp) {
358     LLVM_DEBUG(
359         dbgs() << "LV: Loop latch condition is not a compare instruction.\n");
360     return false;
361   }
362 
363   Value *CondOp0 = LatchCmp->getOperand(0);
364   Value *CondOp1 = LatchCmp->getOperand(1);
365   Value *IVUpdate = IV->getIncomingValueForBlock(Latch);
366   if (!(CondOp0 == IVUpdate && OuterLp->isLoopInvariant(CondOp1)) &&
367       !(CondOp1 == IVUpdate && OuterLp->isLoopInvariant(CondOp0))) {
368     LLVM_DEBUG(dbgs() << "LV: Loop latch condition is not uniform.\n");
369     return false;
370   }
371 
372   return true;
373 }
374 
375 // Return true if \p Lp and all its nested loops are uniform with regard to \p
376 // OuterLp.
377 static bool isUniformLoopNest(Loop *Lp, Loop *OuterLp) {
378   if (!isUniformLoop(Lp, OuterLp))
379     return false;
380 
381   // Check if nested loops are uniform.
382   for (Loop *SubLp : *Lp)
383     if (!isUniformLoopNest(SubLp, OuterLp))
384       return false;
385 
386   return true;
387 }
388 
389 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) {
390   if (Ty->isPointerTy())
391     return DL.getIntPtrType(Ty);
392 
393   // It is possible that char's or short's overflow when we ask for the loop's
394   // trip count, work around this by changing the type size.
395   if (Ty->getScalarSizeInBits() < 32)
396     return Type::getInt32Ty(Ty->getContext());
397 
398   return Ty;
399 }
400 
401 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) {
402   Ty0 = convertPointerToIntegerType(DL, Ty0);
403   Ty1 = convertPointerToIntegerType(DL, Ty1);
404   if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits())
405     return Ty0;
406   return Ty1;
407 }
408 
409 /// Check that the instruction has outside loop users and is not an
410 /// identified reduction variable.
411 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst,
412                                SmallPtrSetImpl<Value *> &AllowedExit) {
413   // Reductions, Inductions and non-header phis are allowed to have exit users. All
414   // other instructions must not have external users.
415   if (!AllowedExit.count(Inst))
416     // Check that all of the users of the loop are inside the BB.
417     for (User *U : Inst->users()) {
418       Instruction *UI = cast<Instruction>(U);
419       // This user may be a reduction exit value.
420       if (!TheLoop->contains(UI)) {
421         LLVM_DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n');
422         return true;
423       }
424     }
425   return false;
426 }
427 
428 /// Returns true if A and B have same pointer operands or same SCEVs addresses
429 static bool storeToSameAddress(ScalarEvolution *SE, StoreInst *A,
430                                StoreInst *B) {
431   // Compare store
432   if (A == B)
433     return true;
434 
435   // Otherwise Compare pointers
436   Value *APtr = A->getPointerOperand();
437   Value *BPtr = B->getPointerOperand();
438   if (APtr == BPtr)
439     return true;
440 
441   // Otherwise compare address SCEVs
442   if (SE->getSCEV(APtr) == SE->getSCEV(BPtr))
443     return true;
444 
445   return false;
446 }
447 
448 int LoopVectorizationLegality::isConsecutivePtr(Type *AccessTy,
449                                                 Value *Ptr) const {
450   const ValueToValueMap &Strides =
451       getSymbolicStrides() ? *getSymbolicStrides() : ValueToValueMap();
452 
453   Function *F = TheLoop->getHeader()->getParent();
454   bool OptForSize = F->hasOptSize() ||
455                     llvm::shouldOptimizeForSize(TheLoop->getHeader(), PSI, BFI,
456                                                 PGSOQueryType::IRPass);
457   bool CanAddPredicate = !OptForSize;
458   int Stride = getPtrStride(PSE, AccessTy, Ptr, TheLoop, Strides,
459                             CanAddPredicate, false).value_or(0);
460   if (Stride == 1 || Stride == -1)
461     return Stride;
462   return 0;
463 }
464 
465 bool LoopVectorizationLegality::isUniform(Value *V) const {
466   return LAI->isUniform(V);
467 }
468 
469 bool LoopVectorizationLegality::isUniformMemOp(Instruction &I) const {
470   Value *Ptr = getLoadStorePointerOperand(&I);
471   if (!Ptr)
472     return false;
473   // Note: There's nothing inherent which prevents predicated loads and
474   // stores from being uniform.  The current lowering simply doesn't handle
475   // it; in particular, the cost model distinguishes scatter/gather from
476   // scalar w/predication, and we currently rely on the scalar path.
477   return isUniform(Ptr) && !blockNeedsPredication(I.getParent());
478 }
479 
480 bool LoopVectorizationLegality::canVectorizeOuterLoop() {
481   assert(!TheLoop->isInnermost() && "We are not vectorizing an outer loop.");
482   // Store the result and return it at the end instead of exiting early, in case
483   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
484   bool Result = true;
485   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
486 
487   for (BasicBlock *BB : TheLoop->blocks()) {
488     // Check whether the BB terminator is a BranchInst. Any other terminator is
489     // not supported yet.
490     auto *Br = dyn_cast<BranchInst>(BB->getTerminator());
491     if (!Br) {
492       reportVectorizationFailure("Unsupported basic block terminator",
493           "loop control flow is not understood by vectorizer",
494           "CFGNotUnderstood", ORE, TheLoop);
495       if (DoExtraAnalysis)
496         Result = false;
497       else
498         return false;
499     }
500 
501     // Check whether the BranchInst is a supported one. Only unconditional
502     // branches, conditional branches with an outer loop invariant condition or
503     // backedges are supported.
504     // FIXME: We skip these checks when VPlan predication is enabled as we
505     // want to allow divergent branches. This whole check will be removed
506     // once VPlan predication is on by default.
507     if (Br && Br->isConditional() &&
508         !TheLoop->isLoopInvariant(Br->getCondition()) &&
509         !LI->isLoopHeader(Br->getSuccessor(0)) &&
510         !LI->isLoopHeader(Br->getSuccessor(1))) {
511       reportVectorizationFailure("Unsupported conditional branch",
512           "loop control flow is not understood by vectorizer",
513           "CFGNotUnderstood", ORE, TheLoop);
514       if (DoExtraAnalysis)
515         Result = false;
516       else
517         return false;
518     }
519   }
520 
521   // Check whether inner loops are uniform. At this point, we only support
522   // simple outer loops scenarios with uniform nested loops.
523   if (!isUniformLoopNest(TheLoop /*loop nest*/,
524                          TheLoop /*context outer loop*/)) {
525     reportVectorizationFailure("Outer loop contains divergent loops",
526         "loop control flow is not understood by vectorizer",
527         "CFGNotUnderstood", ORE, TheLoop);
528     if (DoExtraAnalysis)
529       Result = false;
530     else
531       return false;
532   }
533 
534   // Check whether we are able to set up outer loop induction.
535   if (!setupOuterLoopInductions()) {
536     reportVectorizationFailure("Unsupported outer loop Phi(s)",
537                                "Unsupported outer loop Phi(s)",
538                                "UnsupportedPhi", ORE, TheLoop);
539     if (DoExtraAnalysis)
540       Result = false;
541     else
542       return false;
543   }
544 
545   return Result;
546 }
547 
548 void LoopVectorizationLegality::addInductionPhi(
549     PHINode *Phi, const InductionDescriptor &ID,
550     SmallPtrSetImpl<Value *> &AllowedExit) {
551   Inductions[Phi] = ID;
552 
553   // In case this induction also comes with casts that we know we can ignore
554   // in the vectorized loop body, record them here. All casts could be recorded
555   // here for ignoring, but suffices to record only the first (as it is the
556   // only one that may bw used outside the cast sequence).
557   const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
558   if (!Casts.empty())
559     InductionCastsToIgnore.insert(*Casts.begin());
560 
561   Type *PhiTy = Phi->getType();
562   const DataLayout &DL = Phi->getModule()->getDataLayout();
563 
564   // Get the widest type.
565   if (!PhiTy->isFloatingPointTy()) {
566     if (!WidestIndTy)
567       WidestIndTy = convertPointerToIntegerType(DL, PhiTy);
568     else
569       WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy);
570   }
571 
572   // Int inductions are special because we only allow one IV.
573   if (ID.getKind() == InductionDescriptor::IK_IntInduction &&
574       ID.getConstIntStepValue() && ID.getConstIntStepValue()->isOne() &&
575       isa<Constant>(ID.getStartValue()) &&
576       cast<Constant>(ID.getStartValue())->isNullValue()) {
577 
578     // Use the phi node with the widest type as induction. Use the last
579     // one if there are multiple (no good reason for doing this other
580     // than it is expedient). We've checked that it begins at zero and
581     // steps by one, so this is a canonical induction variable.
582     if (!PrimaryInduction || PhiTy == WidestIndTy)
583       PrimaryInduction = Phi;
584   }
585 
586   // Both the PHI node itself, and the "post-increment" value feeding
587   // back into the PHI node may have external users.
588   // We can allow those uses, except if the SCEVs we have for them rely
589   // on predicates that only hold within the loop, since allowing the exit
590   // currently means re-using this SCEV outside the loop (see PR33706 for more
591   // details).
592   if (PSE.getPredicate().isAlwaysTrue()) {
593     AllowedExit.insert(Phi);
594     AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch()));
595   }
596 
597   LLVM_DEBUG(dbgs() << "LV: Found an induction variable.\n");
598 }
599 
600 bool LoopVectorizationLegality::setupOuterLoopInductions() {
601   BasicBlock *Header = TheLoop->getHeader();
602 
603   // Returns true if a given Phi is a supported induction.
604   auto isSupportedPhi = [&](PHINode &Phi) -> bool {
605     InductionDescriptor ID;
606     if (InductionDescriptor::isInductionPHI(&Phi, TheLoop, PSE, ID) &&
607         ID.getKind() == InductionDescriptor::IK_IntInduction) {
608       addInductionPhi(&Phi, ID, AllowedExit);
609       return true;
610     } else {
611       // Bail out for any Phi in the outer loop header that is not a supported
612       // induction.
613       LLVM_DEBUG(
614           dbgs()
615           << "LV: Found unsupported PHI for outer loop vectorization.\n");
616       return false;
617     }
618   };
619 
620   if (llvm::all_of(Header->phis(), isSupportedPhi))
621     return true;
622   else
623     return false;
624 }
625 
626 /// Checks if a function is scalarizable according to the TLI, in
627 /// the sense that it should be vectorized and then expanded in
628 /// multiple scalar calls. This is represented in the
629 /// TLI via mappings that do not specify a vector name, as in the
630 /// following example:
631 ///
632 ///    const VecDesc VecIntrinsics[] = {
633 ///      {"llvm.phx.abs.i32", "", 4}
634 ///    };
635 static bool isTLIScalarize(const TargetLibraryInfo &TLI, const CallInst &CI) {
636   const StringRef ScalarName = CI.getCalledFunction()->getName();
637   bool Scalarize = TLI.isFunctionVectorizable(ScalarName);
638   // Check that all known VFs are not associated to a vector
639   // function, i.e. the vector name is emty.
640   if (Scalarize) {
641     ElementCount WidestFixedVF, WidestScalableVF;
642     TLI.getWidestVF(ScalarName, WidestFixedVF, WidestScalableVF);
643     for (ElementCount VF = ElementCount::getFixed(2);
644          ElementCount::isKnownLE(VF, WidestFixedVF); VF *= 2)
645       Scalarize &= !TLI.isFunctionVectorizable(ScalarName, VF);
646     for (ElementCount VF = ElementCount::getScalable(1);
647          ElementCount::isKnownLE(VF, WidestScalableVF); VF *= 2)
648       Scalarize &= !TLI.isFunctionVectorizable(ScalarName, VF);
649     assert((WidestScalableVF.isZero() || !Scalarize) &&
650            "Caller may decide to scalarize a variant using a scalable VF");
651   }
652   return Scalarize;
653 }
654 
655 bool LoopVectorizationLegality::canVectorizeInstrs() {
656   BasicBlock *Header = TheLoop->getHeader();
657 
658   // For each block in the loop.
659   for (BasicBlock *BB : TheLoop->blocks()) {
660     // Scan the instructions in the block and look for hazards.
661     for (Instruction &I : *BB) {
662       if (auto *Phi = dyn_cast<PHINode>(&I)) {
663         Type *PhiTy = Phi->getType();
664         // Check that this PHI type is allowed.
665         if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
666             !PhiTy->isPointerTy()) {
667           reportVectorizationFailure("Found a non-int non-pointer PHI",
668                                      "loop control flow is not understood by vectorizer",
669                                      "CFGNotUnderstood", ORE, TheLoop);
670           return false;
671         }
672 
673         // If this PHINode is not in the header block, then we know that we
674         // can convert it to select during if-conversion. No need to check if
675         // the PHIs in this block are induction or reduction variables.
676         if (BB != Header) {
677           // Non-header phi nodes that have outside uses can be vectorized. Add
678           // them to the list of allowed exits.
679           // Unsafe cyclic dependencies with header phis are identified during
680           // legalization for reduction, induction and fixed order
681           // recurrences.
682           AllowedExit.insert(&I);
683           continue;
684         }
685 
686         // We only allow if-converted PHIs with exactly two incoming values.
687         if (Phi->getNumIncomingValues() != 2) {
688           reportVectorizationFailure("Found an invalid PHI",
689               "loop control flow is not understood by vectorizer",
690               "CFGNotUnderstood", ORE, TheLoop, Phi);
691           return false;
692         }
693 
694         RecurrenceDescriptor RedDes;
695         if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes, DB, AC,
696                                                  DT, PSE.getSE())) {
697           Requirements->addExactFPMathInst(RedDes.getExactFPMathInst());
698           AllowedExit.insert(RedDes.getLoopExitInstr());
699           Reductions[Phi] = RedDes;
700           continue;
701         }
702 
703         // TODO: Instead of recording the AllowedExit, it would be good to
704         // record the complementary set: NotAllowedExit. These include (but may
705         // not be limited to):
706         // 1. Reduction phis as they represent the one-before-last value, which
707         // is not available when vectorized
708         // 2. Induction phis and increment when SCEV predicates cannot be used
709         // outside the loop - see addInductionPhi
710         // 3. Non-Phis with outside uses when SCEV predicates cannot be used
711         // outside the loop - see call to hasOutsideLoopUser in the non-phi
712         // handling below
713         // 4. FixedOrderRecurrence phis that can possibly be handled by
714         // extraction.
715         // By recording these, we can then reason about ways to vectorize each
716         // of these NotAllowedExit.
717         InductionDescriptor ID;
718         if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) {
719           addInductionPhi(Phi, ID, AllowedExit);
720           Requirements->addExactFPMathInst(ID.getExactFPMathInst());
721           continue;
722         }
723 
724         if (RecurrenceDescriptor::isFixedOrderRecurrence(Phi, TheLoop,
725                                                          SinkAfter, DT)) {
726           AllowedExit.insert(Phi);
727           FixedOrderRecurrences.insert(Phi);
728           continue;
729         }
730 
731         // As a last resort, coerce the PHI to a AddRec expression
732         // and re-try classifying it a an induction PHI.
733         if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) {
734           addInductionPhi(Phi, ID, AllowedExit);
735           continue;
736         }
737 
738         reportVectorizationFailure("Found an unidentified PHI",
739             "value that could not be identified as "
740             "reduction is used outside the loop",
741             "NonReductionValueUsedOutsideLoop", ORE, TheLoop, Phi);
742         return false;
743       } // end of PHI handling
744 
745       // We handle calls that:
746       //   * Are debug info intrinsics.
747       //   * Have a mapping to an IR intrinsic.
748       //   * Have a vector version available.
749       auto *CI = dyn_cast<CallInst>(&I);
750 
751       if (CI && !getVectorIntrinsicIDForCall(CI, TLI) &&
752           !isa<DbgInfoIntrinsic>(CI) &&
753           !(CI->getCalledFunction() && TLI &&
754             (!VFDatabase::getMappings(*CI).empty() ||
755              isTLIScalarize(*TLI, *CI)))) {
756         // If the call is a recognized math libary call, it is likely that
757         // we can vectorize it given loosened floating-point constraints.
758         LibFunc Func;
759         bool IsMathLibCall =
760             TLI && CI->getCalledFunction() &&
761             CI->getType()->isFloatingPointTy() &&
762             TLI->getLibFunc(CI->getCalledFunction()->getName(), Func) &&
763             TLI->hasOptimizedCodeGen(Func);
764 
765         if (IsMathLibCall) {
766           // TODO: Ideally, we should not use clang-specific language here,
767           // but it's hard to provide meaningful yet generic advice.
768           // Also, should this be guarded by allowExtraAnalysis() and/or be part
769           // of the returned info from isFunctionVectorizable()?
770           reportVectorizationFailure(
771               "Found a non-intrinsic callsite",
772               "library call cannot be vectorized. "
773               "Try compiling with -fno-math-errno, -ffast-math, "
774               "or similar flags",
775               "CantVectorizeLibcall", ORE, TheLoop, CI);
776         } else {
777           reportVectorizationFailure("Found a non-intrinsic callsite",
778                                      "call instruction cannot be vectorized",
779                                      "CantVectorizeLibcall", ORE, TheLoop, CI);
780         }
781         return false;
782       }
783 
784       // Some intrinsics have scalar arguments and should be same in order for
785       // them to be vectorized (i.e. loop invariant).
786       if (CI) {
787         auto *SE = PSE.getSE();
788         Intrinsic::ID IntrinID = getVectorIntrinsicIDForCall(CI, TLI);
789         for (unsigned i = 0, e = CI->arg_size(); i != e; ++i)
790           if (isVectorIntrinsicWithScalarOpAtArg(IntrinID, i)) {
791             if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(i)), TheLoop)) {
792               reportVectorizationFailure("Found unvectorizable intrinsic",
793                   "intrinsic instruction cannot be vectorized",
794                   "CantVectorizeIntrinsic", ORE, TheLoop, CI);
795               return false;
796             }
797           }
798       }
799 
800       // Check that the instruction return type is vectorizable.
801       // Also, we can't vectorize extractelement instructions.
802       if ((!VectorType::isValidElementType(I.getType()) &&
803            !I.getType()->isVoidTy()) ||
804           isa<ExtractElementInst>(I)) {
805         reportVectorizationFailure("Found unvectorizable type",
806             "instruction return type cannot be vectorized",
807             "CantVectorizeInstructionReturnType", ORE, TheLoop, &I);
808         return false;
809       }
810 
811       // Check that the stored type is vectorizable.
812       if (auto *ST = dyn_cast<StoreInst>(&I)) {
813         Type *T = ST->getValueOperand()->getType();
814         if (!VectorType::isValidElementType(T)) {
815           reportVectorizationFailure("Store instruction cannot be vectorized",
816                                      "store instruction cannot be vectorized",
817                                      "CantVectorizeStore", ORE, TheLoop, ST);
818           return false;
819         }
820 
821         // For nontemporal stores, check that a nontemporal vector version is
822         // supported on the target.
823         if (ST->getMetadata(LLVMContext::MD_nontemporal)) {
824           // Arbitrarily try a vector of 2 elements.
825           auto *VecTy = FixedVectorType::get(T, /*NumElts=*/2);
826           assert(VecTy && "did not find vectorized version of stored type");
827           if (!TTI->isLegalNTStore(VecTy, ST->getAlign())) {
828             reportVectorizationFailure(
829                 "nontemporal store instruction cannot be vectorized",
830                 "nontemporal store instruction cannot be vectorized",
831                 "CantVectorizeNontemporalStore", ORE, TheLoop, ST);
832             return false;
833           }
834         }
835 
836       } else if (auto *LD = dyn_cast<LoadInst>(&I)) {
837         if (LD->getMetadata(LLVMContext::MD_nontemporal)) {
838           // For nontemporal loads, check that a nontemporal vector version is
839           // supported on the target (arbitrarily try a vector of 2 elements).
840           auto *VecTy = FixedVectorType::get(I.getType(), /*NumElts=*/2);
841           assert(VecTy && "did not find vectorized version of load type");
842           if (!TTI->isLegalNTLoad(VecTy, LD->getAlign())) {
843             reportVectorizationFailure(
844                 "nontemporal load instruction cannot be vectorized",
845                 "nontemporal load instruction cannot be vectorized",
846                 "CantVectorizeNontemporalLoad", ORE, TheLoop, LD);
847             return false;
848           }
849         }
850 
851         // FP instructions can allow unsafe algebra, thus vectorizable by
852         // non-IEEE-754 compliant SIMD units.
853         // This applies to floating-point math operations and calls, not memory
854         // operations, shuffles, or casts, as they don't change precision or
855         // semantics.
856       } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) &&
857                  !I.isFast()) {
858         LLVM_DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n");
859         Hints->setPotentiallyUnsafe();
860       }
861 
862       // Reduction instructions are allowed to have exit users.
863       // All other instructions must not have external users.
864       if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) {
865         // We can safely vectorize loops where instructions within the loop are
866         // used outside the loop only if the SCEV predicates within the loop is
867         // same as outside the loop. Allowing the exit means reusing the SCEV
868         // outside the loop.
869         if (PSE.getPredicate().isAlwaysTrue()) {
870           AllowedExit.insert(&I);
871           continue;
872         }
873         reportVectorizationFailure("Value cannot be used outside the loop",
874                                    "value cannot be used outside the loop",
875                                    "ValueUsedOutsideLoop", ORE, TheLoop, &I);
876         return false;
877       }
878     } // next instr.
879   }
880 
881   if (!PrimaryInduction) {
882     if (Inductions.empty()) {
883       reportVectorizationFailure("Did not find one integer induction var",
884           "loop induction variable could not be identified",
885           "NoInductionVariable", ORE, TheLoop);
886       return false;
887     } else if (!WidestIndTy) {
888       reportVectorizationFailure("Did not find one integer induction var",
889           "integer loop induction variable could not be identified",
890           "NoIntegerInductionVariable", ORE, TheLoop);
891       return false;
892     } else {
893       LLVM_DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
894     }
895   }
896 
897   // For fixed order recurrences, we use the previous value (incoming value from
898   // the latch) to check if it dominates all users of the recurrence. Bail out
899   // if we have to sink such an instruction for another recurrence, as the
900   // dominance requirement may not hold after sinking.
901   BasicBlock *LoopLatch = TheLoop->getLoopLatch();
902   if (any_of(FixedOrderRecurrences, [LoopLatch, this](const PHINode *Phi) {
903         Instruction *V =
904             cast<Instruction>(Phi->getIncomingValueForBlock(LoopLatch));
905         return SinkAfter.find(V) != SinkAfter.end();
906       }))
907     return false;
908 
909   // Now we know the widest induction type, check if our found induction
910   // is the same size. If it's not, unset it here and InnerLoopVectorizer
911   // will create another.
912   if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType())
913     PrimaryInduction = nullptr;
914 
915   return true;
916 }
917 
918 bool LoopVectorizationLegality::canVectorizeMemory() {
919   LAI = &LAIs.getInfo(*TheLoop);
920   const OptimizationRemarkAnalysis *LAR = LAI->getReport();
921   if (LAR) {
922     ORE->emit([&]() {
923       return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(),
924                                         "loop not vectorized: ", *LAR);
925     });
926   }
927 
928   if (!LAI->canVectorizeMemory())
929     return false;
930 
931   // We can vectorize stores to invariant address when final reduction value is
932   // guaranteed to be stored at the end of the loop. Also, if decision to
933   // vectorize loop is made, runtime checks are added so as to make sure that
934   // invariant address won't alias with any other objects.
935   if (!LAI->getStoresToInvariantAddresses().empty()) {
936     // For each invariant address, check if last stored value is unconditional
937     // and the address is not calculated inside the loop.
938     for (StoreInst *SI : LAI->getStoresToInvariantAddresses()) {
939       if (!isInvariantStoreOfReduction(SI))
940         continue;
941 
942       if (blockNeedsPredication(SI->getParent())) {
943         reportVectorizationFailure(
944             "We don't allow storing to uniform addresses",
945             "write of conditional recurring variant value to a loop "
946             "invariant address could not be vectorized",
947             "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop);
948         return false;
949       }
950 
951       // Invariant address should be defined outside of loop. LICM pass usually
952       // makes sure it happens, but in rare cases it does not, we do not want
953       // to overcomplicate vectorization to support this case.
954       if (Instruction *Ptr = dyn_cast<Instruction>(SI->getPointerOperand())) {
955         if (TheLoop->contains(Ptr)) {
956           reportVectorizationFailure(
957               "Invariant address is calculated inside the loop",
958               "write to a loop invariant address could not "
959               "be vectorized",
960               "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop);
961           return false;
962         }
963       }
964     }
965 
966     if (LAI->hasDependenceInvolvingLoopInvariantAddress()) {
967       // For each invariant address, check its last stored value is the result
968       // of one of our reductions.
969       //
970       // We do not check if dependence with loads exists because they are
971       // currently rejected earlier in LoopAccessInfo::analyzeLoop. In case this
972       // behaviour changes we have to modify this code.
973       ScalarEvolution *SE = PSE.getSE();
974       SmallVector<StoreInst *, 4> UnhandledStores;
975       for (StoreInst *SI : LAI->getStoresToInvariantAddresses()) {
976         if (isInvariantStoreOfReduction(SI)) {
977           // Earlier stores to this address are effectively deadcode.
978           // With opaque pointers it is possible for one pointer to be used with
979           // different sizes of stored values:
980           //    store i32 0, ptr %x
981           //    store i8 0, ptr %x
982           // The latest store doesn't complitely overwrite the first one in the
983           // example. That is why we have to make sure that types of stored
984           // values are same.
985           // TODO: Check that bitwidth of unhandled store is smaller then the
986           // one that overwrites it and add a test.
987           erase_if(UnhandledStores, [SE, SI](StoreInst *I) {
988             return storeToSameAddress(SE, SI, I) &&
989                    I->getValueOperand()->getType() ==
990                        SI->getValueOperand()->getType();
991           });
992           continue;
993         }
994         UnhandledStores.push_back(SI);
995       }
996 
997       bool IsOK = UnhandledStores.empty();
998       // TODO: we should also validate against InvariantMemSets.
999       if (!IsOK) {
1000         reportVectorizationFailure(
1001             "We don't allow storing to uniform addresses",
1002             "write to a loop invariant address could not "
1003             "be vectorized",
1004             "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop);
1005         return false;
1006       }
1007     }
1008   }
1009 
1010   PSE.addPredicate(LAI->getPSE().getPredicate());
1011   return true;
1012 }
1013 
1014 bool LoopVectorizationLegality::canVectorizeFPMath(
1015     bool EnableStrictReductions) {
1016 
1017   // First check if there is any ExactFP math or if we allow reassociations
1018   if (!Requirements->getExactFPInst() || Hints->allowReordering())
1019     return true;
1020 
1021   // If the above is false, we have ExactFPMath & do not allow reordering.
1022   // If the EnableStrictReductions flag is set, first check if we have any
1023   // Exact FP induction vars, which we cannot vectorize.
1024   if (!EnableStrictReductions ||
1025       any_of(getInductionVars(), [&](auto &Induction) -> bool {
1026         InductionDescriptor IndDesc = Induction.second;
1027         return IndDesc.getExactFPMathInst();
1028       }))
1029     return false;
1030 
1031   // We can now only vectorize if all reductions with Exact FP math also
1032   // have the isOrdered flag set, which indicates that we can move the
1033   // reduction operations in-loop.
1034   return (all_of(getReductionVars(), [&](auto &Reduction) -> bool {
1035     const RecurrenceDescriptor &RdxDesc = Reduction.second;
1036     return !RdxDesc.hasExactFPMath() || RdxDesc.isOrdered();
1037   }));
1038 }
1039 
1040 bool LoopVectorizationLegality::isInvariantStoreOfReduction(StoreInst *SI) {
1041   return any_of(getReductionVars(), [&](auto &Reduction) -> bool {
1042     const RecurrenceDescriptor &RdxDesc = Reduction.second;
1043     return RdxDesc.IntermediateStore == SI;
1044   });
1045 }
1046 
1047 bool LoopVectorizationLegality::isInvariantAddressOfReduction(Value *V) {
1048   return any_of(getReductionVars(), [&](auto &Reduction) -> bool {
1049     const RecurrenceDescriptor &RdxDesc = Reduction.second;
1050     if (!RdxDesc.IntermediateStore)
1051       return false;
1052 
1053     ScalarEvolution *SE = PSE.getSE();
1054     Value *InvariantAddress = RdxDesc.IntermediateStore->getPointerOperand();
1055     return V == InvariantAddress ||
1056            SE->getSCEV(V) == SE->getSCEV(InvariantAddress);
1057   });
1058 }
1059 
1060 bool LoopVectorizationLegality::isInductionPhi(const Value *V) const {
1061   Value *In0 = const_cast<Value *>(V);
1062   PHINode *PN = dyn_cast_or_null<PHINode>(In0);
1063   if (!PN)
1064     return false;
1065 
1066   return Inductions.count(PN);
1067 }
1068 
1069 const InductionDescriptor *
1070 LoopVectorizationLegality::getIntOrFpInductionDescriptor(PHINode *Phi) const {
1071   if (!isInductionPhi(Phi))
1072     return nullptr;
1073   auto &ID = getInductionVars().find(Phi)->second;
1074   if (ID.getKind() == InductionDescriptor::IK_IntInduction ||
1075       ID.getKind() == InductionDescriptor::IK_FpInduction)
1076     return &ID;
1077   return nullptr;
1078 }
1079 
1080 const InductionDescriptor *
1081 LoopVectorizationLegality::getPointerInductionDescriptor(PHINode *Phi) const {
1082   if (!isInductionPhi(Phi))
1083     return nullptr;
1084   auto &ID = getInductionVars().find(Phi)->second;
1085   if (ID.getKind() == InductionDescriptor::IK_PtrInduction)
1086     return &ID;
1087   return nullptr;
1088 }
1089 
1090 bool LoopVectorizationLegality::isCastedInductionVariable(
1091     const Value *V) const {
1092   auto *Inst = dyn_cast<Instruction>(V);
1093   return (Inst && InductionCastsToIgnore.count(Inst));
1094 }
1095 
1096 bool LoopVectorizationLegality::isInductionVariable(const Value *V) const {
1097   return isInductionPhi(V) || isCastedInductionVariable(V);
1098 }
1099 
1100 bool LoopVectorizationLegality::isFixedOrderRecurrence(
1101     const PHINode *Phi) const {
1102   return FixedOrderRecurrences.count(Phi);
1103 }
1104 
1105 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) const {
1106   return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT);
1107 }
1108 
1109 bool LoopVectorizationLegality::blockCanBePredicated(
1110     BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs,
1111     SmallPtrSetImpl<const Instruction *> &MaskedOp,
1112     SmallPtrSetImpl<Instruction *> &ConditionalAssumes) const {
1113   for (Instruction &I : *BB) {
1114     // We can predicate blocks with calls to assume, as long as we drop them in
1115     // case we flatten the CFG via predication.
1116     if (match(&I, m_Intrinsic<Intrinsic::assume>())) {
1117       ConditionalAssumes.insert(&I);
1118       continue;
1119     }
1120 
1121     // Do not let llvm.experimental.noalias.scope.decl block the vectorization.
1122     // TODO: there might be cases that it should block the vectorization. Let's
1123     // ignore those for now.
1124     if (isa<NoAliasScopeDeclInst>(&I))
1125       continue;
1126 
1127     // Loads are handled via masking (or speculated if safe to do so.)
1128     if (auto *LI = dyn_cast<LoadInst>(&I)) {
1129       if (!SafePtrs.count(LI->getPointerOperand()))
1130         MaskedOp.insert(LI);
1131       continue;
1132     }
1133 
1134     // Predicated store requires some form of masking:
1135     // 1) masked store HW instruction,
1136     // 2) emulation via load-blend-store (only if safe and legal to do so,
1137     //    be aware on the race conditions), or
1138     // 3) element-by-element predicate check and scalar store.
1139     if (auto *SI = dyn_cast<StoreInst>(&I)) {
1140       MaskedOp.insert(SI);
1141       continue;
1142     }
1143 
1144     if (I.mayReadFromMemory() || I.mayWriteToMemory() || I.mayThrow())
1145       return false;
1146   }
1147 
1148   return true;
1149 }
1150 
1151 bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
1152   if (!EnableIfConversion) {
1153     reportVectorizationFailure("If-conversion is disabled",
1154                                "if-conversion is disabled",
1155                                "IfConversionDisabled",
1156                                ORE, TheLoop);
1157     return false;
1158   }
1159 
1160   assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
1161 
1162   // A list of pointers which are known to be dereferenceable within scope of
1163   // the loop body for each iteration of the loop which executes.  That is,
1164   // the memory pointed to can be dereferenced (with the access size implied by
1165   // the value's type) unconditionally within the loop header without
1166   // introducing a new fault.
1167   SmallPtrSet<Value *, 8> SafePointers;
1168 
1169   // Collect safe addresses.
1170   for (BasicBlock *BB : TheLoop->blocks()) {
1171     if (!blockNeedsPredication(BB)) {
1172       for (Instruction &I : *BB)
1173         if (auto *Ptr = getLoadStorePointerOperand(&I))
1174           SafePointers.insert(Ptr);
1175       continue;
1176     }
1177 
1178     // For a block which requires predication, a address may be safe to access
1179     // in the loop w/o predication if we can prove dereferenceability facts
1180     // sufficient to ensure it'll never fault within the loop. For the moment,
1181     // we restrict this to loads; stores are more complicated due to
1182     // concurrency restrictions.
1183     ScalarEvolution &SE = *PSE.getSE();
1184     for (Instruction &I : *BB) {
1185       LoadInst *LI = dyn_cast<LoadInst>(&I);
1186       if (LI && !LI->getType()->isVectorTy() && !mustSuppressSpeculation(*LI) &&
1187           isDereferenceableAndAlignedInLoop(LI, TheLoop, SE, *DT, AC))
1188         SafePointers.insert(LI->getPointerOperand());
1189     }
1190   }
1191 
1192   // Collect the blocks that need predication.
1193   for (BasicBlock *BB : TheLoop->blocks()) {
1194     // We don't support switch statements inside loops.
1195     if (!isa<BranchInst>(BB->getTerminator())) {
1196       reportVectorizationFailure("Loop contains a switch statement",
1197                                  "loop contains a switch statement",
1198                                  "LoopContainsSwitch", ORE, TheLoop,
1199                                  BB->getTerminator());
1200       return false;
1201     }
1202 
1203     // We must be able to predicate all blocks that need to be predicated.
1204     if (blockNeedsPredication(BB)) {
1205       if (!blockCanBePredicated(BB, SafePointers, MaskedOp,
1206                                 ConditionalAssumes)) {
1207         reportVectorizationFailure(
1208             "Control flow cannot be substituted for a select",
1209             "control flow cannot be substituted for a select",
1210             "NoCFGForSelect", ORE, TheLoop,
1211             BB->getTerminator());
1212         return false;
1213       }
1214     }
1215   }
1216 
1217   // We can if-convert this loop.
1218   return true;
1219 }
1220 
1221 // Helper function to canVectorizeLoopNestCFG.
1222 bool LoopVectorizationLegality::canVectorizeLoopCFG(Loop *Lp,
1223                                                     bool UseVPlanNativePath) {
1224   assert((UseVPlanNativePath || Lp->isInnermost()) &&
1225          "VPlan-native path is not enabled.");
1226 
1227   // TODO: ORE should be improved to show more accurate information when an
1228   // outer loop can't be vectorized because a nested loop is not understood or
1229   // legal. Something like: "outer_loop_location: loop not vectorized:
1230   // (inner_loop_location) loop control flow is not understood by vectorizer".
1231 
1232   // Store the result and return it at the end instead of exiting early, in case
1233   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1234   bool Result = true;
1235   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1236 
1237   // We must have a loop in canonical form. Loops with indirectbr in them cannot
1238   // be canonicalized.
1239   if (!Lp->getLoopPreheader()) {
1240     reportVectorizationFailure("Loop doesn't have a legal pre-header",
1241         "loop control flow is not understood by vectorizer",
1242         "CFGNotUnderstood", ORE, TheLoop);
1243     if (DoExtraAnalysis)
1244       Result = false;
1245     else
1246       return false;
1247   }
1248 
1249   // We must have a single backedge.
1250   if (Lp->getNumBackEdges() != 1) {
1251     reportVectorizationFailure("The loop must have a single backedge",
1252         "loop control flow is not understood by vectorizer",
1253         "CFGNotUnderstood", ORE, TheLoop);
1254     if (DoExtraAnalysis)
1255       Result = false;
1256     else
1257       return false;
1258   }
1259 
1260   return Result;
1261 }
1262 
1263 bool LoopVectorizationLegality::canVectorizeLoopNestCFG(
1264     Loop *Lp, bool UseVPlanNativePath) {
1265   // Store the result and return it at the end instead of exiting early, in case
1266   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1267   bool Result = true;
1268   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1269   if (!canVectorizeLoopCFG(Lp, UseVPlanNativePath)) {
1270     if (DoExtraAnalysis)
1271       Result = false;
1272     else
1273       return false;
1274   }
1275 
1276   // Recursively check whether the loop control flow of nested loops is
1277   // understood.
1278   for (Loop *SubLp : *Lp)
1279     if (!canVectorizeLoopNestCFG(SubLp, UseVPlanNativePath)) {
1280       if (DoExtraAnalysis)
1281         Result = false;
1282       else
1283         return false;
1284     }
1285 
1286   return Result;
1287 }
1288 
1289 bool LoopVectorizationLegality::canVectorize(bool UseVPlanNativePath) {
1290   // Store the result and return it at the end instead of exiting early, in case
1291   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1292   bool Result = true;
1293 
1294   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1295   // Check whether the loop-related control flow in the loop nest is expected by
1296   // vectorizer.
1297   if (!canVectorizeLoopNestCFG(TheLoop, UseVPlanNativePath)) {
1298     if (DoExtraAnalysis)
1299       Result = false;
1300     else
1301       return false;
1302   }
1303 
1304   // We need to have a loop header.
1305   LLVM_DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName()
1306                     << '\n');
1307 
1308   // Specific checks for outer loops. We skip the remaining legal checks at this
1309   // point because they don't support outer loops.
1310   if (!TheLoop->isInnermost()) {
1311     assert(UseVPlanNativePath && "VPlan-native path is not enabled.");
1312 
1313     if (!canVectorizeOuterLoop()) {
1314       reportVectorizationFailure("Unsupported outer loop",
1315                                  "unsupported outer loop",
1316                                  "UnsupportedOuterLoop",
1317                                  ORE, TheLoop);
1318       // TODO: Implement DoExtraAnalysis when subsequent legal checks support
1319       // outer loops.
1320       return false;
1321     }
1322 
1323     LLVM_DEBUG(dbgs() << "LV: We can vectorize this outer loop!\n");
1324     return Result;
1325   }
1326 
1327   assert(TheLoop->isInnermost() && "Inner loop expected.");
1328   // Check if we can if-convert non-single-bb loops.
1329   unsigned NumBlocks = TheLoop->getNumBlocks();
1330   if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
1331     LLVM_DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
1332     if (DoExtraAnalysis)
1333       Result = false;
1334     else
1335       return false;
1336   }
1337 
1338   // Check if we can vectorize the instructions and CFG in this loop.
1339   if (!canVectorizeInstrs()) {
1340     LLVM_DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
1341     if (DoExtraAnalysis)
1342       Result = false;
1343     else
1344       return false;
1345   }
1346 
1347   // Go over each instruction and look at memory deps.
1348   if (!canVectorizeMemory()) {
1349     LLVM_DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
1350     if (DoExtraAnalysis)
1351       Result = false;
1352     else
1353       return false;
1354   }
1355 
1356   LLVM_DEBUG(dbgs() << "LV: We can vectorize this loop"
1357                     << (LAI->getRuntimePointerChecking()->Need
1358                             ? " (with a runtime bound check)"
1359                             : "")
1360                     << "!\n");
1361 
1362   unsigned SCEVThreshold = VectorizeSCEVCheckThreshold;
1363   if (Hints->getForce() == LoopVectorizeHints::FK_Enabled)
1364     SCEVThreshold = PragmaVectorizeSCEVCheckThreshold;
1365 
1366   if (PSE.getPredicate().getComplexity() > SCEVThreshold) {
1367     reportVectorizationFailure("Too many SCEV checks needed",
1368         "Too many SCEV assumptions need to be made and checked at runtime",
1369         "TooManySCEVRunTimeChecks", ORE, TheLoop);
1370     if (DoExtraAnalysis)
1371       Result = false;
1372     else
1373       return false;
1374   }
1375 
1376   // Okay! We've done all the tests. If any have failed, return false. Otherwise
1377   // we can vectorize, and at this point we don't have any other mem analysis
1378   // which may limit our maximum vectorization factor, so just return true with
1379   // no restrictions.
1380   return Result;
1381 }
1382 
1383 bool LoopVectorizationLegality::prepareToFoldTailByMasking() {
1384 
1385   LLVM_DEBUG(dbgs() << "LV: checking if tail can be folded by masking.\n");
1386 
1387   SmallPtrSet<const Value *, 8> ReductionLiveOuts;
1388 
1389   for (const auto &Reduction : getReductionVars())
1390     ReductionLiveOuts.insert(Reduction.second.getLoopExitInstr());
1391 
1392   // TODO: handle non-reduction outside users when tail is folded by masking.
1393   for (auto *AE : AllowedExit) {
1394     // Check that all users of allowed exit values are inside the loop or
1395     // are the live-out of a reduction.
1396     if (ReductionLiveOuts.count(AE))
1397       continue;
1398     for (User *U : AE->users()) {
1399       Instruction *UI = cast<Instruction>(U);
1400       if (TheLoop->contains(UI))
1401         continue;
1402       LLVM_DEBUG(
1403           dbgs()
1404           << "LV: Cannot fold tail by masking, loop has an outside user for "
1405           << *UI << "\n");
1406       return false;
1407     }
1408   }
1409 
1410   // The list of pointers that we can safely read and write to remains empty.
1411   SmallPtrSet<Value *, 8> SafePointers;
1412 
1413   SmallPtrSet<const Instruction *, 8> TmpMaskedOp;
1414   SmallPtrSet<Instruction *, 8> TmpConditionalAssumes;
1415 
1416   // Check and mark all blocks for predication, including those that ordinarily
1417   // do not need predication such as the header block.
1418   for (BasicBlock *BB : TheLoop->blocks()) {
1419     if (!blockCanBePredicated(BB, SafePointers, TmpMaskedOp,
1420                               TmpConditionalAssumes)) {
1421       LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking as requested.\n");
1422       return false;
1423     }
1424   }
1425 
1426   LLVM_DEBUG(dbgs() << "LV: can fold tail by masking.\n");
1427 
1428   MaskedOp.insert(TmpMaskedOp.begin(), TmpMaskedOp.end());
1429   ConditionalAssumes.insert(TmpConditionalAssumes.begin(),
1430                             TmpConditionalAssumes.end());
1431 
1432   return true;
1433 }
1434 
1435 } // namespace llvm
1436