1 //===- LoopVectorizationPlanner.h - Planner for LoopVectorization ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file provides a LoopVectorizationPlanner class.
11 /// InnerLoopVectorizer vectorizes loops which contain only one basic
12 /// LoopVectorizationPlanner - drives the vectorization process after having
13 /// passed Legality checks.
14 /// The planner builds and optimizes the Vectorization Plans which record the
15 /// decisions how to vectorize the given loop. In particular, represent the
16 /// control-flow of the vectorized version, the replication of instructions that
17 /// are to be scalarized, and interleave access groups.
18 ///
19 /// Also provides a VPlan-based builder utility analogous to IRBuilder.
20 /// It provides an instruction-level API for generating VPInstructions while
21 /// abstracting away the Recipe manipulation details.
22 //===----------------------------------------------------------------------===//
23 
24 #ifndef LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H
25 #define LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H
26 
27 #include "VPlan.h"
28 #include "llvm/Support/InstructionCost.h"
29 
30 namespace llvm {
31 
32 class LoopInfo;
33 class LoopVectorizationLegality;
34 class LoopVectorizationCostModel;
35 class PredicatedScalarEvolution;
36 class LoopVectorizeHints;
37 class OptimizationRemarkEmitter;
38 class TargetTransformInfo;
39 class TargetLibraryInfo;
40 class VPRecipeBuilder;
41 
42 /// VPlan-based builder utility analogous to IRBuilder.
43 class VPBuilder {
44   VPBasicBlock *BB = nullptr;
45   VPBasicBlock::iterator InsertPt = VPBasicBlock::iterator();
46 
47   VPInstruction *createInstruction(unsigned Opcode,
48                                    ArrayRef<VPValue *> Operands, DebugLoc DL,
49                                    const Twine &Name = "") {
50     VPInstruction *Instr = new VPInstruction(Opcode, Operands, DL, Name);
51     if (BB)
52       BB->insert(Instr, InsertPt);
53     return Instr;
54   }
55 
56   VPInstruction *createInstruction(unsigned Opcode,
57                                    std::initializer_list<VPValue *> Operands,
58                                    DebugLoc DL, const Twine &Name = "") {
59     return createInstruction(Opcode, ArrayRef<VPValue *>(Operands), DL, Name);
60   }
61 
62 public:
63   VPBuilder() = default;
64 
65   /// Clear the insertion point: created instructions will not be inserted into
66   /// a block.
67   void clearInsertionPoint() {
68     BB = nullptr;
69     InsertPt = VPBasicBlock::iterator();
70   }
71 
72   VPBasicBlock *getInsertBlock() const { return BB; }
73   VPBasicBlock::iterator getInsertPoint() const { return InsertPt; }
74 
75   /// InsertPoint - A saved insertion point.
76   class VPInsertPoint {
77     VPBasicBlock *Block = nullptr;
78     VPBasicBlock::iterator Point;
79 
80   public:
81     /// Creates a new insertion point which doesn't point to anything.
82     VPInsertPoint() = default;
83 
84     /// Creates a new insertion point at the given location.
85     VPInsertPoint(VPBasicBlock *InsertBlock, VPBasicBlock::iterator InsertPoint)
86         : Block(InsertBlock), Point(InsertPoint) {}
87 
88     /// Returns true if this insert point is set.
89     bool isSet() const { return Block != nullptr; }
90 
91     VPBasicBlock *getBlock() const { return Block; }
92     VPBasicBlock::iterator getPoint() const { return Point; }
93   };
94 
95   /// Sets the current insert point to a previously-saved location.
96   void restoreIP(VPInsertPoint IP) {
97     if (IP.isSet())
98       setInsertPoint(IP.getBlock(), IP.getPoint());
99     else
100       clearInsertionPoint();
101   }
102 
103   /// This specifies that created VPInstructions should be appended to the end
104   /// of the specified block.
105   void setInsertPoint(VPBasicBlock *TheBB) {
106     assert(TheBB && "Attempting to set a null insert point");
107     BB = TheBB;
108     InsertPt = BB->end();
109   }
110 
111   /// This specifies that created instructions should be inserted at the
112   /// specified point.
113   void setInsertPoint(VPBasicBlock *TheBB, VPBasicBlock::iterator IP) {
114     BB = TheBB;
115     InsertPt = IP;
116   }
117 
118   /// Insert and return the specified instruction.
119   VPInstruction *insert(VPInstruction *I) const {
120     BB->insert(I, InsertPt);
121     return I;
122   }
123 
124   /// Create an N-ary operation with \p Opcode, \p Operands and set \p Inst as
125   /// its underlying Instruction.
126   VPValue *createNaryOp(unsigned Opcode, ArrayRef<VPValue *> Operands,
127                         Instruction *Inst = nullptr, const Twine &Name = "") {
128     DebugLoc DL;
129     if (Inst)
130       DL = Inst->getDebugLoc();
131     VPInstruction *NewVPInst = createInstruction(Opcode, Operands, DL, Name);
132     NewVPInst->setUnderlyingValue(Inst);
133     return NewVPInst;
134   }
135   VPValue *createNaryOp(unsigned Opcode, ArrayRef<VPValue *> Operands,
136                         DebugLoc DL, const Twine &Name = "") {
137     return createInstruction(Opcode, Operands, DL, Name);
138   }
139 
140   VPValue *createNot(VPValue *Operand, DebugLoc DL, const Twine &Name = "") {
141     return createInstruction(VPInstruction::Not, {Operand}, DL, Name);
142   }
143 
144   VPValue *createAnd(VPValue *LHS, VPValue *RHS, DebugLoc DL,
145                      const Twine &Name = "") {
146     return createInstruction(Instruction::BinaryOps::And, {LHS, RHS}, DL, Name);
147   }
148 
149   VPValue *createOr(VPValue *LHS, VPValue *RHS, DebugLoc DL,
150                     const Twine &Name = "") {
151     return createInstruction(Instruction::BinaryOps::Or, {LHS, RHS}, DL, Name);
152   }
153 
154   VPValue *createSelect(VPValue *Cond, VPValue *TrueVal, VPValue *FalseVal,
155                         DebugLoc DL, const Twine &Name = "") {
156     return createNaryOp(Instruction::Select, {Cond, TrueVal, FalseVal}, DL,
157                         Name);
158   }
159 
160   //===--------------------------------------------------------------------===//
161   // RAII helpers.
162   //===--------------------------------------------------------------------===//
163 
164   /// RAII object that stores the current insertion point and restores it when
165   /// the object is destroyed.
166   class InsertPointGuard {
167     VPBuilder &Builder;
168     VPBasicBlock *Block;
169     VPBasicBlock::iterator Point;
170 
171   public:
172     InsertPointGuard(VPBuilder &B)
173         : Builder(B), Block(B.getInsertBlock()), Point(B.getInsertPoint()) {}
174 
175     InsertPointGuard(const InsertPointGuard &) = delete;
176     InsertPointGuard &operator=(const InsertPointGuard &) = delete;
177 
178     ~InsertPointGuard() { Builder.restoreIP(VPInsertPoint(Block, Point)); }
179   };
180 };
181 
182 /// TODO: The following VectorizationFactor was pulled out of
183 /// LoopVectorizationCostModel class. LV also deals with
184 /// VectorizerParams::VectorizationFactor and VectorizationCostTy.
185 /// We need to streamline them.
186 
187 /// Information about vectorization costs.
188 struct VectorizationFactor {
189   /// Vector width with best cost.
190   ElementCount Width;
191 
192   /// Cost of the loop with that width.
193   InstructionCost Cost;
194 
195   /// Cost of the scalar loop.
196   InstructionCost ScalarCost;
197 
198   /// The minimum trip count required to make vectorization profitable, e.g. due
199   /// to runtime checks.
200   ElementCount MinProfitableTripCount;
201 
202   VectorizationFactor(ElementCount Width, InstructionCost Cost,
203                       InstructionCost ScalarCost)
204       : Width(Width), Cost(Cost), ScalarCost(ScalarCost) {}
205 
206   /// Width 1 means no vectorization, cost 0 means uncomputed cost.
207   static VectorizationFactor Disabled() {
208     return {ElementCount::getFixed(1), 0, 0};
209   }
210 
211   bool operator==(const VectorizationFactor &rhs) const {
212     return Width == rhs.Width && Cost == rhs.Cost;
213   }
214 
215   bool operator!=(const VectorizationFactor &rhs) const {
216     return !(*this == rhs);
217   }
218 };
219 
220 /// A class that represents two vectorization factors (initialized with 0 by
221 /// default). One for fixed-width vectorization and one for scalable
222 /// vectorization. This can be used by the vectorizer to choose from a range of
223 /// fixed and/or scalable VFs in order to find the most cost-effective VF to
224 /// vectorize with.
225 struct FixedScalableVFPair {
226   ElementCount FixedVF;
227   ElementCount ScalableVF;
228 
229   FixedScalableVFPair()
230       : FixedVF(ElementCount::getFixed(0)),
231         ScalableVF(ElementCount::getScalable(0)) {}
232   FixedScalableVFPair(const ElementCount &Max) : FixedScalableVFPair() {
233     *(Max.isScalable() ? &ScalableVF : &FixedVF) = Max;
234   }
235   FixedScalableVFPair(const ElementCount &FixedVF,
236                       const ElementCount &ScalableVF)
237       : FixedVF(FixedVF), ScalableVF(ScalableVF) {
238     assert(!FixedVF.isScalable() && ScalableVF.isScalable() &&
239            "Invalid scalable properties");
240   }
241 
242   static FixedScalableVFPair getNone() { return FixedScalableVFPair(); }
243 
244   /// \return true if either fixed- or scalable VF is non-zero.
245   explicit operator bool() const { return FixedVF || ScalableVF; }
246 
247   /// \return true if either fixed- or scalable VF is a valid vector VF.
248   bool hasVector() const { return FixedVF.isVector() || ScalableVF.isVector(); }
249 };
250 
251 /// Planner drives the vectorization process after having passed
252 /// Legality checks.
253 class LoopVectorizationPlanner {
254   /// The loop that we evaluate.
255   Loop *OrigLoop;
256 
257   /// Loop Info analysis.
258   LoopInfo *LI;
259 
260   /// Target Library Info.
261   const TargetLibraryInfo *TLI;
262 
263   /// Target Transform Info.
264   const TargetTransformInfo *TTI;
265 
266   /// The legality analysis.
267   LoopVectorizationLegality *Legal;
268 
269   /// The profitability analysis.
270   LoopVectorizationCostModel &CM;
271 
272   /// The interleaved access analysis.
273   InterleavedAccessInfo &IAI;
274 
275   PredicatedScalarEvolution &PSE;
276 
277   const LoopVectorizeHints &Hints;
278 
279   OptimizationRemarkEmitter *ORE;
280 
281   SmallVector<VPlanPtr, 4> VPlans;
282 
283   /// A builder used to construct the current plan.
284   VPBuilder Builder;
285 
286 public:
287   LoopVectorizationPlanner(Loop *L, LoopInfo *LI, const TargetLibraryInfo *TLI,
288                            const TargetTransformInfo *TTI,
289                            LoopVectorizationLegality *Legal,
290                            LoopVectorizationCostModel &CM,
291                            InterleavedAccessInfo &IAI,
292                            PredicatedScalarEvolution &PSE,
293                            const LoopVectorizeHints &Hints,
294                            OptimizationRemarkEmitter *ORE)
295       : OrigLoop(L), LI(LI), TLI(TLI), TTI(TTI), Legal(Legal), CM(CM), IAI(IAI),
296         PSE(PSE), Hints(Hints), ORE(ORE) {}
297 
298   /// Plan how to best vectorize, return the best VF and its cost, or
299   /// std::nullopt if vectorization and interleaving should be avoided up front.
300   std::optional<VectorizationFactor> plan(ElementCount UserVF, unsigned UserIC);
301 
302   /// Use the VPlan-native path to plan how to best vectorize, return the best
303   /// VF and its cost.
304   VectorizationFactor planInVPlanNativePath(ElementCount UserVF);
305 
306   /// Return the best VPlan for \p VF.
307   VPlan &getBestPlanFor(ElementCount VF) const;
308 
309   /// Generate the IR code for the body of the vectorized loop according to the
310   /// best selected \p VF, \p UF and VPlan \p BestPlan.
311   /// TODO: \p IsEpilogueVectorization is needed to avoid issues due to epilogue
312   /// vectorization re-using plans for both the main and epilogue vector loops.
313   /// It should be removed once the re-use issue has been fixed.
314   void executePlan(ElementCount VF, unsigned UF, VPlan &BestPlan,
315                    InnerLoopVectorizer &LB, DominatorTree *DT,
316                    bool IsEpilogueVectorization);
317 
318 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
319   void printPlans(raw_ostream &O);
320 #endif
321 
322   /// Look through the existing plans and return true if we have one with all
323   /// the vectorization factors in question.
324   bool hasPlanWithVF(ElementCount VF) const {
325     return any_of(VPlans,
326                   [&](const VPlanPtr &Plan) { return Plan->hasVF(VF); });
327   }
328 
329   /// Test a \p Predicate on a \p Range of VF's. Return the value of applying
330   /// \p Predicate on Range.Start, possibly decreasing Range.End such that the
331   /// returned value holds for the entire \p Range.
332   static bool
333   getDecisionAndClampRange(const std::function<bool(ElementCount)> &Predicate,
334                            VFRange &Range);
335 
336   /// Check if the number of runtime checks exceeds the threshold.
337   bool requiresTooManyRuntimeChecks() const;
338 
339 protected:
340   /// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive,
341   /// according to the information gathered by Legal when it checked if it is
342   /// legal to vectorize the loop.
343   void buildVPlans(ElementCount MinVF, ElementCount MaxVF);
344 
345 private:
346   /// Build a VPlan according to the information gathered by Legal. \return a
347   /// VPlan for vectorization factors \p Range.Start and up to \p Range.End
348   /// exclusive, possibly decreasing \p Range.End.
349   VPlanPtr buildVPlan(VFRange &Range);
350 
351   /// Build a VPlan using VPRecipes according to the information gather by
352   /// Legal. This method is only used for the legacy inner loop vectorizer.
353   VPlanPtr buildVPlanWithVPRecipes(
354       VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions,
355       const MapVector<Instruction *, Instruction *> &SinkAfter);
356 
357   /// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive,
358   /// according to the information gathered by Legal when it checked if it is
359   /// legal to vectorize the loop. This method creates VPlans using VPRecipes.
360   void buildVPlansWithVPRecipes(ElementCount MinVF, ElementCount MaxVF);
361 
362   // Adjust the recipes for reductions. For in-loop reductions the chain of
363   // instructions leading from the loop exit instr to the phi need to be
364   // converted to reductions, with one operand being vector and the other being
365   // the scalar reduction chain. For other reductions, a select is introduced
366   // between the phi and live-out recipes when folding the tail.
367   void adjustRecipesForReductions(VPBasicBlock *LatchVPBB, VPlanPtr &Plan,
368                                   VPRecipeBuilder &RecipeBuilder,
369                                   ElementCount MinVF);
370 };
371 
372 } // namespace llvm
373 
374 #endif // LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H
375