1 //===- LoopVectorizationPlanner.h - Planner for LoopVectorization ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file provides a LoopVectorizationPlanner class.
11 /// InnerLoopVectorizer vectorizes loops which contain only one basic
12 /// LoopVectorizationPlanner - drives the vectorization process after having
13 /// passed Legality checks.
14 /// The planner builds and optimizes the Vectorization Plans which record the
15 /// decisions how to vectorize the given loop. In particular, represent the
16 /// control-flow of the vectorized version, the replication of instructions that
17 /// are to be scalarized, and interleave access groups.
18 ///
19 /// Also provides a VPlan-based builder utility analogous to IRBuilder.
20 /// It provides an instruction-level API for generating VPInstructions while
21 /// abstracting away the Recipe manipulation details.
22 //===----------------------------------------------------------------------===//
23 
24 #ifndef LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H
25 #define LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H
26 
27 #include "VPlan.h"
28 #include "llvm/Support/InstructionCost.h"
29 
30 namespace llvm {
31 
32 class LoopInfo;
33 class LoopVectorizationLegality;
34 class LoopVectorizationCostModel;
35 class PredicatedScalarEvolution;
36 class LoopVectorizationRequirements;
37 class LoopVectorizeHints;
38 class OptimizationRemarkEmitter;
39 class TargetTransformInfo;
40 class TargetLibraryInfo;
41 class VPRecipeBuilder;
42 
43 /// VPlan-based builder utility analogous to IRBuilder.
44 class VPBuilder {
45   VPBasicBlock *BB = nullptr;
46   VPBasicBlock::iterator InsertPt = VPBasicBlock::iterator();
47 
48   VPInstruction *createInstruction(unsigned Opcode,
49                                    ArrayRef<VPValue *> Operands, DebugLoc DL) {
50     VPInstruction *Instr = new VPInstruction(Opcode, Operands, DL);
51     if (BB)
52       BB->insert(Instr, InsertPt);
53     return Instr;
54   }
55 
56   VPInstruction *createInstruction(unsigned Opcode,
57                                    std::initializer_list<VPValue *> Operands,
58                                    DebugLoc DL) {
59     return createInstruction(Opcode, ArrayRef<VPValue *>(Operands), DL);
60   }
61 
62 public:
63   VPBuilder() = default;
64 
65   /// Clear the insertion point: created instructions will not be inserted into
66   /// a block.
67   void clearInsertionPoint() {
68     BB = nullptr;
69     InsertPt = VPBasicBlock::iterator();
70   }
71 
72   VPBasicBlock *getInsertBlock() const { return BB; }
73   VPBasicBlock::iterator getInsertPoint() const { return InsertPt; }
74 
75   /// InsertPoint - A saved insertion point.
76   class VPInsertPoint {
77     VPBasicBlock *Block = nullptr;
78     VPBasicBlock::iterator Point;
79 
80   public:
81     /// Creates a new insertion point which doesn't point to anything.
82     VPInsertPoint() = default;
83 
84     /// Creates a new insertion point at the given location.
85     VPInsertPoint(VPBasicBlock *InsertBlock, VPBasicBlock::iterator InsertPoint)
86         : Block(InsertBlock), Point(InsertPoint) {}
87 
88     /// Returns true if this insert point is set.
89     bool isSet() const { return Block != nullptr; }
90 
91     VPBasicBlock *getBlock() const { return Block; }
92     VPBasicBlock::iterator getPoint() const { return Point; }
93   };
94 
95   /// Sets the current insert point to a previously-saved location.
96   void restoreIP(VPInsertPoint IP) {
97     if (IP.isSet())
98       setInsertPoint(IP.getBlock(), IP.getPoint());
99     else
100       clearInsertionPoint();
101   }
102 
103   /// This specifies that created VPInstructions should be appended to the end
104   /// of the specified block.
105   void setInsertPoint(VPBasicBlock *TheBB) {
106     assert(TheBB && "Attempting to set a null insert point");
107     BB = TheBB;
108     InsertPt = BB->end();
109   }
110 
111   /// This specifies that created instructions should be inserted at the
112   /// specified point.
113   void setInsertPoint(VPBasicBlock *TheBB, VPBasicBlock::iterator IP) {
114     BB = TheBB;
115     InsertPt = IP;
116   }
117 
118   /// Insert and return the specified instruction.
119   VPInstruction *insert(VPInstruction *I) const {
120     BB->insert(I, InsertPt);
121     return I;
122   }
123 
124   /// Create an N-ary operation with \p Opcode, \p Operands and set \p Inst as
125   /// its underlying Instruction.
126   VPValue *createNaryOp(unsigned Opcode, ArrayRef<VPValue *> Operands,
127                         Instruction *Inst = nullptr) {
128     DebugLoc DL;
129     if (Inst)
130       DL = Inst->getDebugLoc();
131     VPInstruction *NewVPInst = createInstruction(Opcode, Operands, DL);
132     NewVPInst->setUnderlyingValue(Inst);
133     return NewVPInst;
134   }
135   VPValue *createNaryOp(unsigned Opcode, ArrayRef<VPValue *> Operands,
136                         DebugLoc DL) {
137     return createInstruction(Opcode, Operands, DL);
138   }
139 
140   VPValue *createNot(VPValue *Operand, DebugLoc DL) {
141     return createInstruction(VPInstruction::Not, {Operand}, DL);
142   }
143 
144   VPValue *createAnd(VPValue *LHS, VPValue *RHS, DebugLoc DL) {
145     return createInstruction(Instruction::BinaryOps::And, {LHS, RHS}, DL);
146   }
147 
148   VPValue *createOr(VPValue *LHS, VPValue *RHS, DebugLoc DL) {
149     return createInstruction(Instruction::BinaryOps::Or, {LHS, RHS}, DL);
150   }
151 
152   VPValue *createSelect(VPValue *Cond, VPValue *TrueVal, VPValue *FalseVal,
153                         DebugLoc DL) {
154     return createNaryOp(Instruction::Select, {Cond, TrueVal, FalseVal}, DL);
155   }
156 
157   //===--------------------------------------------------------------------===//
158   // RAII helpers.
159   //===--------------------------------------------------------------------===//
160 
161   /// RAII object that stores the current insertion point and restores it when
162   /// the object is destroyed.
163   class InsertPointGuard {
164     VPBuilder &Builder;
165     VPBasicBlock *Block;
166     VPBasicBlock::iterator Point;
167 
168   public:
169     InsertPointGuard(VPBuilder &B)
170         : Builder(B), Block(B.getInsertBlock()), Point(B.getInsertPoint()) {}
171 
172     InsertPointGuard(const InsertPointGuard &) = delete;
173     InsertPointGuard &operator=(const InsertPointGuard &) = delete;
174 
175     ~InsertPointGuard() { Builder.restoreIP(VPInsertPoint(Block, Point)); }
176   };
177 };
178 
179 /// TODO: The following VectorizationFactor was pulled out of
180 /// LoopVectorizationCostModel class. LV also deals with
181 /// VectorizerParams::VectorizationFactor and VectorizationCostTy.
182 /// We need to streamline them.
183 
184 /// Information about vectorization costs.
185 struct VectorizationFactor {
186   /// Vector width with best cost.
187   ElementCount Width;
188   /// Cost of the loop with that width.
189   InstructionCost Cost;
190 
191   /// Cost of the scalar loop.
192   InstructionCost ScalarCost;
193 
194   VectorizationFactor(ElementCount Width, InstructionCost Cost,
195                       InstructionCost ScalarCost)
196       : Width(Width), Cost(Cost), ScalarCost(ScalarCost) {}
197 
198   /// Width 1 means no vectorization, cost 0 means uncomputed cost.
199   static VectorizationFactor Disabled() {
200     return {ElementCount::getFixed(1), 0, 0};
201   }
202 
203   bool operator==(const VectorizationFactor &rhs) const {
204     return Width == rhs.Width && Cost == rhs.Cost;
205   }
206 
207   bool operator!=(const VectorizationFactor &rhs) const {
208     return !(*this == rhs);
209   }
210 };
211 
212 /// A class that represents two vectorization factors (initialized with 0 by
213 /// default). One for fixed-width vectorization and one for scalable
214 /// vectorization. This can be used by the vectorizer to choose from a range of
215 /// fixed and/or scalable VFs in order to find the most cost-effective VF to
216 /// vectorize with.
217 struct FixedScalableVFPair {
218   ElementCount FixedVF;
219   ElementCount ScalableVF;
220 
221   FixedScalableVFPair()
222       : FixedVF(ElementCount::getFixed(0)),
223         ScalableVF(ElementCount::getScalable(0)) {}
224   FixedScalableVFPair(const ElementCount &Max) : FixedScalableVFPair() {
225     *(Max.isScalable() ? &ScalableVF : &FixedVF) = Max;
226   }
227   FixedScalableVFPair(const ElementCount &FixedVF,
228                       const ElementCount &ScalableVF)
229       : FixedVF(FixedVF), ScalableVF(ScalableVF) {
230     assert(!FixedVF.isScalable() && ScalableVF.isScalable() &&
231            "Invalid scalable properties");
232   }
233 
234   static FixedScalableVFPair getNone() { return FixedScalableVFPair(); }
235 
236   /// \return true if either fixed- or scalable VF is non-zero.
237   explicit operator bool() const { return FixedVF || ScalableVF; }
238 
239   /// \return true if either fixed- or scalable VF is a valid vector VF.
240   bool hasVector() const { return FixedVF.isVector() || ScalableVF.isVector(); }
241 };
242 
243 /// Planner drives the vectorization process after having passed
244 /// Legality checks.
245 class LoopVectorizationPlanner {
246   /// The loop that we evaluate.
247   Loop *OrigLoop;
248 
249   /// Loop Info analysis.
250   LoopInfo *LI;
251 
252   /// Target Library Info.
253   const TargetLibraryInfo *TLI;
254 
255   /// Target Transform Info.
256   const TargetTransformInfo *TTI;
257 
258   /// The legality analysis.
259   LoopVectorizationLegality *Legal;
260 
261   /// The profitability analysis.
262   LoopVectorizationCostModel &CM;
263 
264   /// The interleaved access analysis.
265   InterleavedAccessInfo &IAI;
266 
267   PredicatedScalarEvolution &PSE;
268 
269   const LoopVectorizeHints &Hints;
270 
271   LoopVectorizationRequirements &Requirements;
272 
273   OptimizationRemarkEmitter *ORE;
274 
275   SmallVector<VPlanPtr, 4> VPlans;
276 
277   /// A builder used to construct the current plan.
278   VPBuilder Builder;
279 
280 public:
281   LoopVectorizationPlanner(Loop *L, LoopInfo *LI, const TargetLibraryInfo *TLI,
282                            const TargetTransformInfo *TTI,
283                            LoopVectorizationLegality *Legal,
284                            LoopVectorizationCostModel &CM,
285                            InterleavedAccessInfo &IAI,
286                            PredicatedScalarEvolution &PSE,
287                            const LoopVectorizeHints &Hints,
288                            LoopVectorizationRequirements &Requirements,
289                            OptimizationRemarkEmitter *ORE)
290       : OrigLoop(L), LI(LI), TLI(TLI), TTI(TTI), Legal(Legal), CM(CM), IAI(IAI),
291         PSE(PSE), Hints(Hints), Requirements(Requirements), ORE(ORE) {}
292 
293   /// Plan how to best vectorize, return the best VF and its cost, or None if
294   /// vectorization and interleaving should be avoided up front.
295   Optional<VectorizationFactor> plan(ElementCount UserVF, unsigned UserIC);
296 
297   /// Use the VPlan-native path to plan how to best vectorize, return the best
298   /// VF and its cost.
299   VectorizationFactor planInVPlanNativePath(ElementCount UserVF);
300 
301   /// Return the best VPlan for \p VF.
302   VPlan &getBestPlanFor(ElementCount VF) const;
303 
304   /// Generate the IR code for the body of the vectorized loop according to the
305   /// best selected \p VF, \p UF and VPlan \p BestPlan.
306   /// TODO: \p IsEpilogueVectorization is needed to avoid issues due to epilogue
307   /// vectorization re-using plans for both the main and epilogue vector loops.
308   /// It should be removed once the re-use issue has been fixed.
309   void executePlan(ElementCount VF, unsigned UF, VPlan &BestPlan,
310                    InnerLoopVectorizer &LB, DominatorTree *DT,
311                    bool IsEpilogueVectorization);
312 
313 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
314   void printPlans(raw_ostream &O);
315 #endif
316 
317   /// Look through the existing plans and return true if we have one with all
318   /// the vectorization factors in question.
319   bool hasPlanWithVF(ElementCount VF) const {
320     return any_of(VPlans,
321                   [&](const VPlanPtr &Plan) { return Plan->hasVF(VF); });
322   }
323 
324   /// Test a \p Predicate on a \p Range of VF's. Return the value of applying
325   /// \p Predicate on Range.Start, possibly decreasing Range.End such that the
326   /// returned value holds for the entire \p Range.
327   static bool
328   getDecisionAndClampRange(const std::function<bool(ElementCount)> &Predicate,
329                            VFRange &Range);
330 
331   /// Check if the number of runtime checks exceeds the threshold.
332   bool requiresTooManyRuntimeChecks() const;
333 
334 protected:
335   /// Collect the instructions from the original loop that would be trivially
336   /// dead in the vectorized loop if generated.
337   void collectTriviallyDeadInstructions(
338       SmallPtrSetImpl<Instruction *> &DeadInstructions);
339 
340   /// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive,
341   /// according to the information gathered by Legal when it checked if it is
342   /// legal to vectorize the loop.
343   void buildVPlans(ElementCount MinVF, ElementCount MaxVF);
344 
345 private:
346   /// Build a VPlan according to the information gathered by Legal. \return a
347   /// VPlan for vectorization factors \p Range.Start and up to \p Range.End
348   /// exclusive, possibly decreasing \p Range.End.
349   VPlanPtr buildVPlan(VFRange &Range);
350 
351   /// Build a VPlan using VPRecipes according to the information gather by
352   /// Legal. This method is only used for the legacy inner loop vectorizer.
353   VPlanPtr buildVPlanWithVPRecipes(
354       VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions,
355       const MapVector<Instruction *, Instruction *> &SinkAfter);
356 
357   /// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive,
358   /// according to the information gathered by Legal when it checked if it is
359   /// legal to vectorize the loop. This method creates VPlans using VPRecipes.
360   void buildVPlansWithVPRecipes(ElementCount MinVF, ElementCount MaxVF);
361 
362   // Adjust the recipes for reductions. For in-loop reductions the chain of
363   // instructions leading from the loop exit instr to the phi need to be
364   // converted to reductions, with one operand being vector and the other being
365   // the scalar reduction chain. For other reductions, a select is introduced
366   // between the phi and live-out recipes when folding the tail.
367   void adjustRecipesForReductions(VPBasicBlock *LatchVPBB, VPlanPtr &Plan,
368                                   VPRecipeBuilder &RecipeBuilder,
369                                   ElementCount MinVF);
370 };
371 
372 } // namespace llvm
373 
374 #endif // LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H
375