1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
10 // and generates target-independent LLVM-IR.
11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
12 // of instructions in order to estimate the profitability of vectorization.
13 //
14 // The loop vectorizer combines consecutive loop iterations into a single
15 // 'wide' iteration. After this transformation the index is incremented
16 // by the SIMD vector width, and not by one.
17 //
18 // This pass has three parts:
19 // 1. The main loop pass that drives the different parts.
20 // 2. LoopVectorizationLegality - A unit that checks for the legality
21 //    of the vectorization.
22 // 3. InnerLoopVectorizer - A unit that performs the actual
23 //    widening of instructions.
24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
25 //    of vectorization. It decides on the optimal vector width, which
26 //    can be one, if vectorization is not profitable.
27 //
28 // There is a development effort going on to migrate loop vectorizer to the
29 // VPlan infrastructure and to introduce outer loop vectorization support (see
30 // docs/Proposal/VectorizationPlan.rst and
31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
32 // purpose, we temporarily introduced the VPlan-native vectorization path: an
33 // alternative vectorization path that is natively implemented on top of the
34 // VPlan infrastructure. See EnableVPlanNativePath for enabling.
35 //
36 //===----------------------------------------------------------------------===//
37 //
38 // The reduction-variable vectorization is based on the paper:
39 //  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
40 //
41 // Variable uniformity checks are inspired by:
42 //  Karrenberg, R. and Hack, S. Whole Function Vectorization.
43 //
44 // The interleaved access vectorization is based on the paper:
45 //  Dorit Nuzman, Ira Rosen and Ayal Zaks.  Auto-Vectorization of Interleaved
46 //  Data for SIMD
47 //
48 // Other ideas/concepts are from:
49 //  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
50 //
51 //  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
52 //  Vectorizing Compilers.
53 //
54 //===----------------------------------------------------------------------===//
55 
56 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
57 #include "LoopVectorizationPlanner.h"
58 #include "VPRecipeBuilder.h"
59 #include "VPlan.h"
60 #include "VPlanHCFGBuilder.h"
61 #include "VPlanPredicator.h"
62 #include "VPlanTransforms.h"
63 #include "llvm/ADT/APInt.h"
64 #include "llvm/ADT/ArrayRef.h"
65 #include "llvm/ADT/DenseMap.h"
66 #include "llvm/ADT/DenseMapInfo.h"
67 #include "llvm/ADT/Hashing.h"
68 #include "llvm/ADT/MapVector.h"
69 #include "llvm/ADT/None.h"
70 #include "llvm/ADT/Optional.h"
71 #include "llvm/ADT/STLExtras.h"
72 #include "llvm/ADT/SmallPtrSet.h"
73 #include "llvm/ADT/SmallSet.h"
74 #include "llvm/ADT/SmallVector.h"
75 #include "llvm/ADT/Statistic.h"
76 #include "llvm/ADT/StringRef.h"
77 #include "llvm/ADT/Twine.h"
78 #include "llvm/ADT/iterator_range.h"
79 #include "llvm/Analysis/AssumptionCache.h"
80 #include "llvm/Analysis/BasicAliasAnalysis.h"
81 #include "llvm/Analysis/BlockFrequencyInfo.h"
82 #include "llvm/Analysis/CFG.h"
83 #include "llvm/Analysis/CodeMetrics.h"
84 #include "llvm/Analysis/DemandedBits.h"
85 #include "llvm/Analysis/GlobalsModRef.h"
86 #include "llvm/Analysis/LoopAccessAnalysis.h"
87 #include "llvm/Analysis/LoopAnalysisManager.h"
88 #include "llvm/Analysis/LoopInfo.h"
89 #include "llvm/Analysis/LoopIterator.h"
90 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
91 #include "llvm/Analysis/ProfileSummaryInfo.h"
92 #include "llvm/Analysis/ScalarEvolution.h"
93 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
94 #include "llvm/Analysis/TargetLibraryInfo.h"
95 #include "llvm/Analysis/TargetTransformInfo.h"
96 #include "llvm/Analysis/VectorUtils.h"
97 #include "llvm/IR/Attributes.h"
98 #include "llvm/IR/BasicBlock.h"
99 #include "llvm/IR/CFG.h"
100 #include "llvm/IR/Constant.h"
101 #include "llvm/IR/Constants.h"
102 #include "llvm/IR/DataLayout.h"
103 #include "llvm/IR/DebugInfoMetadata.h"
104 #include "llvm/IR/DebugLoc.h"
105 #include "llvm/IR/DerivedTypes.h"
106 #include "llvm/IR/DiagnosticInfo.h"
107 #include "llvm/IR/Dominators.h"
108 #include "llvm/IR/Function.h"
109 #include "llvm/IR/IRBuilder.h"
110 #include "llvm/IR/InstrTypes.h"
111 #include "llvm/IR/Instruction.h"
112 #include "llvm/IR/Instructions.h"
113 #include "llvm/IR/IntrinsicInst.h"
114 #include "llvm/IR/Intrinsics.h"
115 #include "llvm/IR/LLVMContext.h"
116 #include "llvm/IR/Metadata.h"
117 #include "llvm/IR/Module.h"
118 #include "llvm/IR/Operator.h"
119 #include "llvm/IR/PatternMatch.h"
120 #include "llvm/IR/Type.h"
121 #include "llvm/IR/Use.h"
122 #include "llvm/IR/User.h"
123 #include "llvm/IR/Value.h"
124 #include "llvm/IR/ValueHandle.h"
125 #include "llvm/IR/Verifier.h"
126 #include "llvm/InitializePasses.h"
127 #include "llvm/Pass.h"
128 #include "llvm/Support/Casting.h"
129 #include "llvm/Support/CommandLine.h"
130 #include "llvm/Support/Compiler.h"
131 #include "llvm/Support/Debug.h"
132 #include "llvm/Support/ErrorHandling.h"
133 #include "llvm/Support/InstructionCost.h"
134 #include "llvm/Support/MathExtras.h"
135 #include "llvm/Support/raw_ostream.h"
136 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
137 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
138 #include "llvm/Transforms/Utils/LoopSimplify.h"
139 #include "llvm/Transforms/Utils/LoopUtils.h"
140 #include "llvm/Transforms/Utils/LoopVersioning.h"
141 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
142 #include "llvm/Transforms/Utils/SizeOpts.h"
143 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
144 #include <algorithm>
145 #include <cassert>
146 #include <cstdint>
147 #include <cstdlib>
148 #include <functional>
149 #include <iterator>
150 #include <limits>
151 #include <memory>
152 #include <string>
153 #include <tuple>
154 #include <utility>
155 
156 using namespace llvm;
157 
158 #define LV_NAME "loop-vectorize"
159 #define DEBUG_TYPE LV_NAME
160 
161 #ifndef NDEBUG
162 const char VerboseDebug[] = DEBUG_TYPE "-verbose";
163 #endif
164 
165 /// @{
166 /// Metadata attribute names
167 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all";
168 const char LLVMLoopVectorizeFollowupVectorized[] =
169     "llvm.loop.vectorize.followup_vectorized";
170 const char LLVMLoopVectorizeFollowupEpilogue[] =
171     "llvm.loop.vectorize.followup_epilogue";
172 /// @}
173 
174 STATISTIC(LoopsVectorized, "Number of loops vectorized");
175 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
176 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized");
177 
178 static cl::opt<bool> EnableEpilogueVectorization(
179     "enable-epilogue-vectorization", cl::init(true), cl::Hidden,
180     cl::desc("Enable vectorization of epilogue loops."));
181 
182 static cl::opt<unsigned> EpilogueVectorizationForceVF(
183     "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden,
184     cl::desc("When epilogue vectorization is enabled, and a value greater than "
185              "1 is specified, forces the given VF for all applicable epilogue "
186              "loops."));
187 
188 static cl::opt<unsigned> EpilogueVectorizationMinVF(
189     "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden,
190     cl::desc("Only loops with vectorization factor equal to or larger than "
191              "the specified value are considered for epilogue vectorization."));
192 
193 /// Loops with a known constant trip count below this number are vectorized only
194 /// if no scalar iteration overheads are incurred.
195 static cl::opt<unsigned> TinyTripCountVectorThreshold(
196     "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
197     cl::desc("Loops with a constant trip count that is smaller than this "
198              "value are vectorized only if no scalar iteration overheads "
199              "are incurred."));
200 
201 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
202     "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
203     cl::desc("The maximum allowed number of runtime memory checks with a "
204              "vectorize(enable) pragma."));
205 
206 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired,
207 // that predication is preferred, and this lists all options. I.e., the
208 // vectorizer will try to fold the tail-loop (epilogue) into the vector body
209 // and predicate the instructions accordingly. If tail-folding fails, there are
210 // different fallback strategies depending on these values:
211 namespace PreferPredicateTy {
212   enum Option {
213     ScalarEpilogue = 0,
214     PredicateElseScalarEpilogue,
215     PredicateOrDontVectorize
216   };
217 } // namespace PreferPredicateTy
218 
219 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue(
220     "prefer-predicate-over-epilogue",
221     cl::init(PreferPredicateTy::ScalarEpilogue),
222     cl::Hidden,
223     cl::desc("Tail-folding and predication preferences over creating a scalar "
224              "epilogue loop."),
225     cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue,
226                          "scalar-epilogue",
227                          "Don't tail-predicate loops, create scalar epilogue"),
228               clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue,
229                          "predicate-else-scalar-epilogue",
230                          "prefer tail-folding, create scalar epilogue if tail "
231                          "folding fails."),
232               clEnumValN(PreferPredicateTy::PredicateOrDontVectorize,
233                          "predicate-dont-vectorize",
234                          "prefers tail-folding, don't attempt vectorization if "
235                          "tail-folding fails.")));
236 
237 static cl::opt<bool> MaximizeBandwidth(
238     "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
239     cl::desc("Maximize bandwidth when selecting vectorization factor which "
240              "will be determined by the smallest type in loop."));
241 
242 static cl::opt<bool> EnableInterleavedMemAccesses(
243     "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
244     cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
245 
246 /// An interleave-group may need masking if it resides in a block that needs
247 /// predication, or in order to mask away gaps.
248 static cl::opt<bool> EnableMaskedInterleavedMemAccesses(
249     "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden,
250     cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"));
251 
252 static cl::opt<unsigned> TinyTripCountInterleaveThreshold(
253     "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden,
254     cl::desc("We don't interleave loops with a estimated constant trip count "
255              "below this number"));
256 
257 static cl::opt<unsigned> ForceTargetNumScalarRegs(
258     "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
259     cl::desc("A flag that overrides the target's number of scalar registers."));
260 
261 static cl::opt<unsigned> ForceTargetNumVectorRegs(
262     "force-target-num-vector-regs", cl::init(0), cl::Hidden,
263     cl::desc("A flag that overrides the target's number of vector registers."));
264 
265 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
266     "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
267     cl::desc("A flag that overrides the target's max interleave factor for "
268              "scalar loops."));
269 
270 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
271     "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
272     cl::desc("A flag that overrides the target's max interleave factor for "
273              "vectorized loops."));
274 
275 static cl::opt<unsigned> ForceTargetInstructionCost(
276     "force-target-instruction-cost", cl::init(0), cl::Hidden,
277     cl::desc("A flag that overrides the target's expected cost for "
278              "an instruction to a single constant value. Mostly "
279              "useful for getting consistent testing."));
280 
281 static cl::opt<bool> ForceTargetSupportsScalableVectors(
282     "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden,
283     cl::desc(
284         "Pretend that scalable vectors are supported, even if the target does "
285         "not support them. This flag should only be used for testing."));
286 
287 static cl::opt<unsigned> SmallLoopCost(
288     "small-loop-cost", cl::init(20), cl::Hidden,
289     cl::desc(
290         "The cost of a loop that is considered 'small' by the interleaver."));
291 
292 static cl::opt<bool> LoopVectorizeWithBlockFrequency(
293     "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
294     cl::desc("Enable the use of the block frequency analysis to access PGO "
295              "heuristics minimizing code growth in cold regions and being more "
296              "aggressive in hot regions."));
297 
298 // Runtime interleave loops for load/store throughput.
299 static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
300     "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
301     cl::desc(
302         "Enable runtime interleaving until load/store ports are saturated"));
303 
304 /// Interleave small loops with scalar reductions.
305 static cl::opt<bool> InterleaveSmallLoopScalarReduction(
306     "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden,
307     cl::desc("Enable interleaving for loops with small iteration counts that "
308              "contain scalar reductions to expose ILP."));
309 
310 /// The number of stores in a loop that are allowed to need predication.
311 static cl::opt<unsigned> NumberOfStoresToPredicate(
312     "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
313     cl::desc("Max number of stores to be predicated behind an if."));
314 
315 static cl::opt<bool> EnableIndVarRegisterHeur(
316     "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
317     cl::desc("Count the induction variable only once when interleaving"));
318 
319 static cl::opt<bool> EnableCondStoresVectorization(
320     "enable-cond-stores-vec", cl::init(true), cl::Hidden,
321     cl::desc("Enable if predication of stores during vectorization."));
322 
323 static cl::opt<unsigned> MaxNestedScalarReductionIC(
324     "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
325     cl::desc("The maximum interleave count to use when interleaving a scalar "
326              "reduction in a nested loop."));
327 
328 static cl::opt<bool>
329     PreferInLoopReductions("prefer-inloop-reductions", cl::init(false),
330                            cl::Hidden,
331                            cl::desc("Prefer in-loop vector reductions, "
332                                     "overriding the targets preference."));
333 
334 static cl::opt<bool> ForceOrderedReductions(
335     "force-ordered-reductions", cl::init(false), cl::Hidden,
336     cl::desc("Enable the vectorisation of loops with in-order (strict) "
337              "FP reductions"));
338 
339 static cl::opt<bool> PreferPredicatedReductionSelect(
340     "prefer-predicated-reduction-select", cl::init(false), cl::Hidden,
341     cl::desc(
342         "Prefer predicating a reduction operation over an after loop select."));
343 
344 cl::opt<bool> EnableVPlanNativePath(
345     "enable-vplan-native-path", cl::init(false), cl::Hidden,
346     cl::desc("Enable VPlan-native vectorization path with "
347              "support for outer loop vectorization."));
348 
349 // FIXME: Remove this switch once we have divergence analysis. Currently we
350 // assume divergent non-backedge branches when this switch is true.
351 cl::opt<bool> EnableVPlanPredication(
352     "enable-vplan-predication", cl::init(false), cl::Hidden,
353     cl::desc("Enable VPlan-native vectorization path predicator with "
354              "support for outer loop vectorization."));
355 
356 // This flag enables the stress testing of the VPlan H-CFG construction in the
357 // VPlan-native vectorization path. It must be used in conjuction with
358 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
359 // verification of the H-CFGs built.
360 static cl::opt<bool> VPlanBuildStressTest(
361     "vplan-build-stress-test", cl::init(false), cl::Hidden,
362     cl::desc(
363         "Build VPlan for every supported loop nest in the function and bail "
364         "out right after the build (stress test the VPlan H-CFG construction "
365         "in the VPlan-native vectorization path)."));
366 
367 cl::opt<bool> llvm::EnableLoopInterleaving(
368     "interleave-loops", cl::init(true), cl::Hidden,
369     cl::desc("Enable loop interleaving in Loop vectorization passes"));
370 cl::opt<bool> llvm::EnableLoopVectorization(
371     "vectorize-loops", cl::init(true), cl::Hidden,
372     cl::desc("Run the Loop vectorization passes"));
373 
374 cl::opt<bool> PrintVPlansInDotFormat(
375     "vplan-print-in-dot-format", cl::init(false), cl::Hidden,
376     cl::desc("Use dot format instead of plain text when dumping VPlans"));
377 
378 /// A helper function that returns true if the given type is irregular. The
379 /// type is irregular if its allocated size doesn't equal the store size of an
380 /// element of the corresponding vector type.
381 static bool hasIrregularType(Type *Ty, const DataLayout &DL) {
382   // Determine if an array of N elements of type Ty is "bitcast compatible"
383   // with a <N x Ty> vector.
384   // This is only true if there is no padding between the array elements.
385   return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
386 }
387 
388 /// A helper function that returns the reciprocal of the block probability of
389 /// predicated blocks. If we return X, we are assuming the predicated block
390 /// will execute once for every X iterations of the loop header.
391 ///
392 /// TODO: We should use actual block probability here, if available. Currently,
393 ///       we always assume predicated blocks have a 50% chance of executing.
394 static unsigned getReciprocalPredBlockProb() { return 2; }
395 
396 /// A helper function that returns an integer or floating-point constant with
397 /// value C.
398 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) {
399   return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
400                            : ConstantFP::get(Ty, C);
401 }
402 
403 /// Returns "best known" trip count for the specified loop \p L as defined by
404 /// the following procedure:
405 ///   1) Returns exact trip count if it is known.
406 ///   2) Returns expected trip count according to profile data if any.
407 ///   3) Returns upper bound estimate if it is known.
408 ///   4) Returns None if all of the above failed.
409 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) {
410   // Check if exact trip count is known.
411   if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L))
412     return ExpectedTC;
413 
414   // Check if there is an expected trip count available from profile data.
415   if (LoopVectorizeWithBlockFrequency)
416     if (auto EstimatedTC = getLoopEstimatedTripCount(L))
417       return EstimatedTC;
418 
419   // Check if upper bound estimate is known.
420   if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L))
421     return ExpectedTC;
422 
423   return None;
424 }
425 
426 // Forward declare GeneratedRTChecks.
427 class GeneratedRTChecks;
428 
429 namespace llvm {
430 
431 AnalysisKey ShouldRunExtraVectorPasses::Key;
432 
433 /// InnerLoopVectorizer vectorizes loops which contain only one basic
434 /// block to a specified vectorization factor (VF).
435 /// This class performs the widening of scalars into vectors, or multiple
436 /// scalars. This class also implements the following features:
437 /// * It inserts an epilogue loop for handling loops that don't have iteration
438 ///   counts that are known to be a multiple of the vectorization factor.
439 /// * It handles the code generation for reduction variables.
440 /// * Scalarization (implementation using scalars) of un-vectorizable
441 ///   instructions.
442 /// InnerLoopVectorizer does not perform any vectorization-legality
443 /// checks, and relies on the caller to check for the different legality
444 /// aspects. The InnerLoopVectorizer relies on the
445 /// LoopVectorizationLegality class to provide information about the induction
446 /// and reduction variables that were found to a given vectorization factor.
447 class InnerLoopVectorizer {
448 public:
449   InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
450                       LoopInfo *LI, DominatorTree *DT,
451                       const TargetLibraryInfo *TLI,
452                       const TargetTransformInfo *TTI, AssumptionCache *AC,
453                       OptimizationRemarkEmitter *ORE, ElementCount VecWidth,
454                       unsigned UnrollFactor, LoopVectorizationLegality *LVL,
455                       LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
456                       ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks)
457       : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
458         AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor),
459         Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI),
460         PSI(PSI), RTChecks(RTChecks) {
461     // Query this against the original loop and save it here because the profile
462     // of the original loop header may change as the transformation happens.
463     OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize(
464         OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass);
465   }
466 
467   virtual ~InnerLoopVectorizer() = default;
468 
469   /// Create a new empty loop that will contain vectorized instructions later
470   /// on, while the old loop will be used as the scalar remainder. Control flow
471   /// is generated around the vectorized (and scalar epilogue) loops consisting
472   /// of various checks and bypasses. Return the pre-header block of the new
473   /// loop and the start value for the canonical induction, if it is != 0. The
474   /// latter is the case when vectorizing the epilogue loop. In the case of
475   /// epilogue vectorization, this function is overriden to handle the more
476   /// complex control flow around the loops.
477   virtual std::pair<BasicBlock *, Value *> createVectorizedLoopSkeleton();
478 
479   /// Widen a single call instruction within the innermost loop.
480   void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands,
481                             VPTransformState &State);
482 
483   /// Fix the vectorized code, taking care of header phi's, live-outs, and more.
484   void fixVectorizedLoop(VPTransformState &State);
485 
486   // Return true if any runtime check is added.
487   bool areSafetyChecksAdded() { return AddedSafetyChecks; }
488 
489   /// A type for vectorized values in the new loop. Each value from the
490   /// original loop, when vectorized, is represented by UF vector values in the
491   /// new unrolled loop, where UF is the unroll factor.
492   using VectorParts = SmallVector<Value *, 2>;
493 
494   /// Vectorize a single first-order recurrence or pointer induction PHINode in
495   /// a block. This method handles the induction variable canonicalization. It
496   /// supports both VF = 1 for unrolled loops and arbitrary length vectors.
497   void widenPHIInstruction(Instruction *PN, VPWidenPHIRecipe *PhiR,
498                            VPTransformState &State);
499 
500   /// A helper function to scalarize a single Instruction in the innermost loop.
501   /// Generates a sequence of scalar instances for each lane between \p MinLane
502   /// and \p MaxLane, times each part between \p MinPart and \p MaxPart,
503   /// inclusive. Uses the VPValue operands from \p RepRecipe instead of \p
504   /// Instr's operands.
505   void scalarizeInstruction(Instruction *Instr, VPReplicateRecipe *RepRecipe,
506                             const VPIteration &Instance, bool IfPredicateInstr,
507                             VPTransformState &State);
508 
509   /// Widen an integer or floating-point induction variable \p IV. If \p Trunc
510   /// is provided, the integer induction variable will first be truncated to
511   /// the corresponding type. \p CanonicalIV is the scalar value generated for
512   /// the canonical induction variable.
513   void widenIntOrFpInduction(PHINode *IV, VPWidenIntOrFpInductionRecipe *Def,
514                              VPTransformState &State, Value *CanonicalIV);
515 
516   /// Construct the vector value of a scalarized value \p V one lane at a time.
517   void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance,
518                                  VPTransformState &State);
519 
520   /// Try to vectorize interleaved access group \p Group with the base address
521   /// given in \p Addr, optionally masking the vector operations if \p
522   /// BlockInMask is non-null. Use \p State to translate given VPValues to IR
523   /// values in the vectorized loop.
524   void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group,
525                                 ArrayRef<VPValue *> VPDefs,
526                                 VPTransformState &State, VPValue *Addr,
527                                 ArrayRef<VPValue *> StoredValues,
528                                 VPValue *BlockInMask = nullptr);
529 
530   /// Set the debug location in the builder \p Ptr using the debug location in
531   /// \p V. If \p Ptr is None then it uses the class member's Builder.
532   void setDebugLocFromInst(const Value *V,
533                            Optional<IRBuilder<> *> CustomBuilder = None);
534 
535   /// Fix the non-induction PHIs in the OrigPHIsToFix vector.
536   void fixNonInductionPHIs(VPTransformState &State);
537 
538   /// Returns true if the reordering of FP operations is not allowed, but we are
539   /// able to vectorize with strict in-order reductions for the given RdxDesc.
540   bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc);
541 
542   /// Create a broadcast instruction. This method generates a broadcast
543   /// instruction (shuffle) for loop invariant values and for the induction
544   /// value. If this is the induction variable then we extend it to N, N+1, ...
545   /// this is needed because each iteration in the loop corresponds to a SIMD
546   /// element.
547   virtual Value *getBroadcastInstrs(Value *V);
548 
549   /// Add metadata from one instruction to another.
550   ///
551   /// This includes both the original MDs from \p From and additional ones (\see
552   /// addNewMetadata).  Use this for *newly created* instructions in the vector
553   /// loop.
554   void addMetadata(Instruction *To, Instruction *From);
555 
556   /// Similar to the previous function but it adds the metadata to a
557   /// vector of instructions.
558   void addMetadata(ArrayRef<Value *> To, Instruction *From);
559 
560   // Returns the resume value (bc.merge.rdx) for a reduction as
561   // generated by fixReduction.
562   PHINode *getReductionResumeValue(const RecurrenceDescriptor &RdxDesc);
563 
564 protected:
565   friend class LoopVectorizationPlanner;
566 
567   /// A small list of PHINodes.
568   using PhiVector = SmallVector<PHINode *, 4>;
569 
570   /// A type for scalarized values in the new loop. Each value from the
571   /// original loop, when scalarized, is represented by UF x VF scalar values
572   /// in the new unrolled loop, where UF is the unroll factor and VF is the
573   /// vectorization factor.
574   using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
575 
576   /// Set up the values of the IVs correctly when exiting the vector loop.
577   void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
578                     Value *CountRoundDown, Value *EndValue,
579                     BasicBlock *MiddleBlock);
580 
581   /// Introduce a conditional branch (on true, condition to be set later) at the
582   /// end of the header=latch connecting it to itself (across the backedge) and
583   /// to the exit block of \p L.
584   void createHeaderBranch(Loop *L);
585 
586   /// Handle all cross-iteration phis in the header.
587   void fixCrossIterationPHIs(VPTransformState &State);
588 
589   /// Create the exit value of first order recurrences in the middle block and
590   /// update their users.
591   void fixFirstOrderRecurrence(VPFirstOrderRecurrencePHIRecipe *PhiR,
592                                VPTransformState &State);
593 
594   /// Create code for the loop exit value of the reduction.
595   void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State);
596 
597   /// Clear NSW/NUW flags from reduction instructions if necessary.
598   void clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc,
599                                VPTransformState &State);
600 
601   /// Fixup the LCSSA phi nodes in the unique exit block.  This simply
602   /// means we need to add the appropriate incoming value from the middle
603   /// block as exiting edges from the scalar epilogue loop (if present) are
604   /// already in place, and we exit the vector loop exclusively to the middle
605   /// block.
606   void fixLCSSAPHIs(VPTransformState &State);
607 
608   /// Iteratively sink the scalarized operands of a predicated instruction into
609   /// the block that was created for it.
610   void sinkScalarOperands(Instruction *PredInst);
611 
612   /// Shrinks vector element sizes to the smallest bitwidth they can be legally
613   /// represented as.
614   void truncateToMinimalBitwidths(VPTransformState &State);
615 
616   /// Compute scalar induction steps. \p ScalarIV is the scalar induction
617   /// variable on which to base the steps, \p Step is the size of the step, and
618   /// \p EntryVal is the value from the original loop that maps to the steps.
619   /// Note that \p EntryVal doesn't have to be an induction variable - it
620   /// can also be a truncate instruction.
621   void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal,
622                         const InductionDescriptor &ID, VPValue *Def,
623                         VPTransformState &State);
624 
625   /// Create a vector induction phi node based on an existing scalar one. \p
626   /// EntryVal is the value from the original loop that maps to the vector phi
627   /// node, and \p Step is the loop-invariant step. If \p EntryVal is a
628   /// truncate instruction, instead of widening the original IV, we widen a
629   /// version of the IV truncated to \p EntryVal's type.
630   void createVectorIntOrFpInductionPHI(const InductionDescriptor &II,
631                                        Value *Step, Value *Start,
632                                        Instruction *EntryVal, VPValue *Def,
633                                        VPTransformState &State);
634 
635   /// Returns (and creates if needed) the original loop trip count.
636   Value *getOrCreateTripCount(Loop *NewLoop);
637 
638   /// Returns (and creates if needed) the trip count of the widened loop.
639   Value *getOrCreateVectorTripCount(Loop *NewLoop);
640 
641   /// Returns a bitcasted value to the requested vector type.
642   /// Also handles bitcasts of vector<float> <-> vector<pointer> types.
643   Value *createBitOrPointerCast(Value *V, VectorType *DstVTy,
644                                 const DataLayout &DL);
645 
646   /// Emit a bypass check to see if the vector trip count is zero, including if
647   /// it overflows.
648   void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass);
649 
650   /// Emit a bypass check to see if all of the SCEV assumptions we've
651   /// had to make are correct. Returns the block containing the checks or
652   /// nullptr if no checks have been added.
653   BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass);
654 
655   /// Emit bypass checks to check any memory assumptions we may have made.
656   /// Returns the block containing the checks or nullptr if no checks have been
657   /// added.
658   BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass);
659 
660   /// Compute the transformed value of Index at offset StartValue using step
661   /// StepValue.
662   /// For integer induction, returns StartValue + Index * StepValue.
663   /// For pointer induction, returns StartValue[Index * StepValue].
664   /// FIXME: The newly created binary instructions should contain nsw/nuw
665   /// flags, which can be found from the original scalar operations.
666   Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE,
667                               const DataLayout &DL,
668                               const InductionDescriptor &ID,
669                               BasicBlock *VectorHeader) const;
670 
671   /// Emit basic blocks (prefixed with \p Prefix) for the iteration check,
672   /// vector loop preheader, middle block and scalar preheader. Also
673   /// allocate a loop object for the new vector loop and return it.
674   Loop *createVectorLoopSkeleton(StringRef Prefix);
675 
676   /// Create new phi nodes for the induction variables to resume iteration count
677   /// in the scalar epilogue, from where the vectorized loop left off.
678   /// In cases where the loop skeleton is more complicated (eg. epilogue
679   /// vectorization) and the resume values can come from an additional bypass
680   /// block, the \p AdditionalBypass pair provides information about the bypass
681   /// block and the end value on the edge from bypass to this loop.
682   void createInductionResumeValues(
683       Loop *L,
684       std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr});
685 
686   /// Complete the loop skeleton by adding debug MDs, creating appropriate
687   /// conditional branches in the middle block, preparing the builder and
688   /// running the verifier. Take in the vector loop \p L as argument, and return
689   /// the preheader of the completed vector loop.
690   BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID);
691 
692   /// Add additional metadata to \p To that was not present on \p Orig.
693   ///
694   /// Currently this is used to add the noalias annotations based on the
695   /// inserted memchecks.  Use this for instructions that are *cloned* into the
696   /// vector loop.
697   void addNewMetadata(Instruction *To, const Instruction *Orig);
698 
699   /// Collect poison-generating recipes that may generate a poison value that is
700   /// used after vectorization, even when their operands are not poison. Those
701   /// recipes meet the following conditions:
702   ///  * Contribute to the address computation of a recipe generating a widen
703   ///    memory load/store (VPWidenMemoryInstructionRecipe or
704   ///    VPInterleaveRecipe).
705   ///  * Such a widen memory load/store has at least one underlying Instruction
706   ///    that is in a basic block that needs predication and after vectorization
707   ///    the generated instruction won't be predicated.
708   void collectPoisonGeneratingRecipes(VPTransformState &State);
709 
710   /// Allow subclasses to override and print debug traces before/after vplan
711   /// execution, when trace information is requested.
712   virtual void printDebugTracesAtStart(){};
713   virtual void printDebugTracesAtEnd(){};
714 
715   /// The original loop.
716   Loop *OrigLoop;
717 
718   /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
719   /// dynamic knowledge to simplify SCEV expressions and converts them to a
720   /// more usable form.
721   PredicatedScalarEvolution &PSE;
722 
723   /// Loop Info.
724   LoopInfo *LI;
725 
726   /// Dominator Tree.
727   DominatorTree *DT;
728 
729   /// Alias Analysis.
730   AAResults *AA;
731 
732   /// Target Library Info.
733   const TargetLibraryInfo *TLI;
734 
735   /// Target Transform Info.
736   const TargetTransformInfo *TTI;
737 
738   /// Assumption Cache.
739   AssumptionCache *AC;
740 
741   /// Interface to emit optimization remarks.
742   OptimizationRemarkEmitter *ORE;
743 
744   /// LoopVersioning.  It's only set up (non-null) if memchecks were
745   /// used.
746   ///
747   /// This is currently only used to add no-alias metadata based on the
748   /// memchecks.  The actually versioning is performed manually.
749   std::unique_ptr<LoopVersioning> LVer;
750 
751   /// The vectorization SIMD factor to use. Each vector will have this many
752   /// vector elements.
753   ElementCount VF;
754 
755   /// The vectorization unroll factor to use. Each scalar is vectorized to this
756   /// many different vector instructions.
757   unsigned UF;
758 
759   /// The builder that we use
760   IRBuilder<> Builder;
761 
762   // --- Vectorization state ---
763 
764   /// The vector-loop preheader.
765   BasicBlock *LoopVectorPreHeader;
766 
767   /// The scalar-loop preheader.
768   BasicBlock *LoopScalarPreHeader;
769 
770   /// Middle Block between the vector and the scalar.
771   BasicBlock *LoopMiddleBlock;
772 
773   /// The unique ExitBlock of the scalar loop if one exists.  Note that
774   /// there can be multiple exiting edges reaching this block.
775   BasicBlock *LoopExitBlock;
776 
777   /// The vector loop body.
778   BasicBlock *LoopVectorBody;
779 
780   /// The scalar loop body.
781   BasicBlock *LoopScalarBody;
782 
783   /// A list of all bypass blocks. The first block is the entry of the loop.
784   SmallVector<BasicBlock *, 4> LoopBypassBlocks;
785 
786   /// Store instructions that were predicated.
787   SmallVector<Instruction *, 4> PredicatedInstructions;
788 
789   /// Trip count of the original loop.
790   Value *TripCount = nullptr;
791 
792   /// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
793   Value *VectorTripCount = nullptr;
794 
795   /// The legality analysis.
796   LoopVectorizationLegality *Legal;
797 
798   /// The profitablity analysis.
799   LoopVectorizationCostModel *Cost;
800 
801   // Record whether runtime checks are added.
802   bool AddedSafetyChecks = false;
803 
804   // Holds the end values for each induction variable. We save the end values
805   // so we can later fix-up the external users of the induction variables.
806   DenseMap<PHINode *, Value *> IVEndValues;
807 
808   // Vector of original scalar PHIs whose corresponding widened PHIs need to be
809   // fixed up at the end of vector code generation.
810   SmallVector<PHINode *, 8> OrigPHIsToFix;
811 
812   /// BFI and PSI are used to check for profile guided size optimizations.
813   BlockFrequencyInfo *BFI;
814   ProfileSummaryInfo *PSI;
815 
816   // Whether this loop should be optimized for size based on profile guided size
817   // optimizatios.
818   bool OptForSizeBasedOnProfile;
819 
820   /// Structure to hold information about generated runtime checks, responsible
821   /// for cleaning the checks, if vectorization turns out unprofitable.
822   GeneratedRTChecks &RTChecks;
823 
824   // Holds the resume values for reductions in the loops, used to set the
825   // correct start value of reduction PHIs when vectorizing the epilogue.
826   SmallMapVector<const RecurrenceDescriptor *, PHINode *, 4>
827       ReductionResumeValues;
828 };
829 
830 class InnerLoopUnroller : public InnerLoopVectorizer {
831 public:
832   InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
833                     LoopInfo *LI, DominatorTree *DT,
834                     const TargetLibraryInfo *TLI,
835                     const TargetTransformInfo *TTI, AssumptionCache *AC,
836                     OptimizationRemarkEmitter *ORE, unsigned UnrollFactor,
837                     LoopVectorizationLegality *LVL,
838                     LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
839                     ProfileSummaryInfo *PSI, GeneratedRTChecks &Check)
840       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
841                             ElementCount::getFixed(1), UnrollFactor, LVL, CM,
842                             BFI, PSI, Check) {}
843 
844 private:
845   Value *getBroadcastInstrs(Value *V) override;
846 };
847 
848 /// Encapsulate information regarding vectorization of a loop and its epilogue.
849 /// This information is meant to be updated and used across two stages of
850 /// epilogue vectorization.
851 struct EpilogueLoopVectorizationInfo {
852   ElementCount MainLoopVF = ElementCount::getFixed(0);
853   unsigned MainLoopUF = 0;
854   ElementCount EpilogueVF = ElementCount::getFixed(0);
855   unsigned EpilogueUF = 0;
856   BasicBlock *MainLoopIterationCountCheck = nullptr;
857   BasicBlock *EpilogueIterationCountCheck = nullptr;
858   BasicBlock *SCEVSafetyCheck = nullptr;
859   BasicBlock *MemSafetyCheck = nullptr;
860   Value *TripCount = nullptr;
861   Value *VectorTripCount = nullptr;
862 
863   EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF,
864                                 ElementCount EVF, unsigned EUF)
865       : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF) {
866     assert(EUF == 1 &&
867            "A high UF for the epilogue loop is likely not beneficial.");
868   }
869 };
870 
871 /// An extension of the inner loop vectorizer that creates a skeleton for a
872 /// vectorized loop that has its epilogue (residual) also vectorized.
873 /// The idea is to run the vplan on a given loop twice, firstly to setup the
874 /// skeleton and vectorize the main loop, and secondly to complete the skeleton
875 /// from the first step and vectorize the epilogue.  This is achieved by
876 /// deriving two concrete strategy classes from this base class and invoking
877 /// them in succession from the loop vectorizer planner.
878 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer {
879 public:
880   InnerLoopAndEpilogueVectorizer(
881       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
882       DominatorTree *DT, const TargetLibraryInfo *TLI,
883       const TargetTransformInfo *TTI, AssumptionCache *AC,
884       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
885       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
886       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
887       GeneratedRTChecks &Checks)
888       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
889                             EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI,
890                             Checks),
891         EPI(EPI) {}
892 
893   // Override this function to handle the more complex control flow around the
894   // three loops.
895   std::pair<BasicBlock *, Value *>
896   createVectorizedLoopSkeleton() final override {
897     return createEpilogueVectorizedLoopSkeleton();
898   }
899 
900   /// The interface for creating a vectorized skeleton using one of two
901   /// different strategies, each corresponding to one execution of the vplan
902   /// as described above.
903   virtual std::pair<BasicBlock *, Value *>
904   createEpilogueVectorizedLoopSkeleton() = 0;
905 
906   /// Holds and updates state information required to vectorize the main loop
907   /// and its epilogue in two separate passes. This setup helps us avoid
908   /// regenerating and recomputing runtime safety checks. It also helps us to
909   /// shorten the iteration-count-check path length for the cases where the
910   /// iteration count of the loop is so small that the main vector loop is
911   /// completely skipped.
912   EpilogueLoopVectorizationInfo &EPI;
913 };
914 
915 /// A specialized derived class of inner loop vectorizer that performs
916 /// vectorization of *main* loops in the process of vectorizing loops and their
917 /// epilogues.
918 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer {
919 public:
920   EpilogueVectorizerMainLoop(
921       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
922       DominatorTree *DT, const TargetLibraryInfo *TLI,
923       const TargetTransformInfo *TTI, AssumptionCache *AC,
924       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
925       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
926       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
927       GeneratedRTChecks &Check)
928       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
929                                        EPI, LVL, CM, BFI, PSI, Check) {}
930   /// Implements the interface for creating a vectorized skeleton using the
931   /// *main loop* strategy (ie the first pass of vplan execution).
932   std::pair<BasicBlock *, Value *>
933   createEpilogueVectorizedLoopSkeleton() final override;
934 
935 protected:
936   /// Emits an iteration count bypass check once for the main loop (when \p
937   /// ForEpilogue is false) and once for the epilogue loop (when \p
938   /// ForEpilogue is true).
939   BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass,
940                                              bool ForEpilogue);
941   void printDebugTracesAtStart() override;
942   void printDebugTracesAtEnd() override;
943 };
944 
945 // A specialized derived class of inner loop vectorizer that performs
946 // vectorization of *epilogue* loops in the process of vectorizing loops and
947 // their epilogues.
948 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer {
949 public:
950   EpilogueVectorizerEpilogueLoop(
951       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
952       DominatorTree *DT, const TargetLibraryInfo *TLI,
953       const TargetTransformInfo *TTI, AssumptionCache *AC,
954       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
955       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
956       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
957       GeneratedRTChecks &Checks)
958       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
959                                        EPI, LVL, CM, BFI, PSI, Checks) {}
960   /// Implements the interface for creating a vectorized skeleton using the
961   /// *epilogue loop* strategy (ie the second pass of vplan execution).
962   std::pair<BasicBlock *, Value *>
963   createEpilogueVectorizedLoopSkeleton() final override;
964 
965 protected:
966   /// Emits an iteration count bypass check after the main vector loop has
967   /// finished to see if there are any iterations left to execute by either
968   /// the vector epilogue or the scalar epilogue.
969   BasicBlock *emitMinimumVectorEpilogueIterCountCheck(Loop *L,
970                                                       BasicBlock *Bypass,
971                                                       BasicBlock *Insert);
972   void printDebugTracesAtStart() override;
973   void printDebugTracesAtEnd() override;
974 };
975 } // end namespace llvm
976 
977 /// Look for a meaningful debug location on the instruction or it's
978 /// operands.
979 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
980   if (!I)
981     return I;
982 
983   DebugLoc Empty;
984   if (I->getDebugLoc() != Empty)
985     return I;
986 
987   for (Use &Op : I->operands()) {
988     if (Instruction *OpInst = dyn_cast<Instruction>(Op))
989       if (OpInst->getDebugLoc() != Empty)
990         return OpInst;
991   }
992 
993   return I;
994 }
995 
996 void InnerLoopVectorizer::setDebugLocFromInst(
997     const Value *V, Optional<IRBuilder<> *> CustomBuilder) {
998   IRBuilder<> *B = (CustomBuilder == None) ? &Builder : *CustomBuilder;
999   if (const Instruction *Inst = dyn_cast_or_null<Instruction>(V)) {
1000     const DILocation *DIL = Inst->getDebugLoc();
1001 
1002     // When a FSDiscriminator is enabled, we don't need to add the multiply
1003     // factors to the discriminators.
1004     if (DIL && Inst->getFunction()->isDebugInfoForProfiling() &&
1005         !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) {
1006       // FIXME: For scalable vectors, assume vscale=1.
1007       auto NewDIL =
1008           DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue());
1009       if (NewDIL)
1010         B->SetCurrentDebugLocation(NewDIL.getValue());
1011       else
1012         LLVM_DEBUG(dbgs()
1013                    << "Failed to create new discriminator: "
1014                    << DIL->getFilename() << " Line: " << DIL->getLine());
1015     } else
1016       B->SetCurrentDebugLocation(DIL);
1017   } else
1018     B->SetCurrentDebugLocation(DebugLoc());
1019 }
1020 
1021 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I
1022 /// is passed, the message relates to that particular instruction.
1023 #ifndef NDEBUG
1024 static void debugVectorizationMessage(const StringRef Prefix,
1025                                       const StringRef DebugMsg,
1026                                       Instruction *I) {
1027   dbgs() << "LV: " << Prefix << DebugMsg;
1028   if (I != nullptr)
1029     dbgs() << " " << *I;
1030   else
1031     dbgs() << '.';
1032   dbgs() << '\n';
1033 }
1034 #endif
1035 
1036 /// Create an analysis remark that explains why vectorization failed
1037 ///
1038 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint).  \p
1039 /// RemarkName is the identifier for the remark.  If \p I is passed it is an
1040 /// instruction that prevents vectorization.  Otherwise \p TheLoop is used for
1041 /// the location of the remark.  \return the remark object that can be
1042 /// streamed to.
1043 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName,
1044     StringRef RemarkName, Loop *TheLoop, Instruction *I) {
1045   Value *CodeRegion = TheLoop->getHeader();
1046   DebugLoc DL = TheLoop->getStartLoc();
1047 
1048   if (I) {
1049     CodeRegion = I->getParent();
1050     // If there is no debug location attached to the instruction, revert back to
1051     // using the loop's.
1052     if (I->getDebugLoc())
1053       DL = I->getDebugLoc();
1054   }
1055 
1056   return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion);
1057 }
1058 
1059 namespace llvm {
1060 
1061 /// Return a value for Step multiplied by VF.
1062 Value *createStepForVF(IRBuilder<> &B, Type *Ty, ElementCount VF,
1063                        int64_t Step) {
1064   assert(Ty->isIntegerTy() && "Expected an integer step");
1065   Constant *StepVal = ConstantInt::get(Ty, Step * VF.getKnownMinValue());
1066   return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal;
1067 }
1068 
1069 /// Return the runtime value for VF.
1070 Value *getRuntimeVF(IRBuilder<> &B, Type *Ty, ElementCount VF) {
1071   Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue());
1072   return VF.isScalable() ? B.CreateVScale(EC) : EC;
1073 }
1074 
1075 static Value *getRuntimeVFAsFloat(IRBuilder<> &B, Type *FTy, ElementCount VF) {
1076   assert(FTy->isFloatingPointTy() && "Expected floating point type!");
1077   Type *IntTy = IntegerType::get(FTy->getContext(), FTy->getScalarSizeInBits());
1078   Value *RuntimeVF = getRuntimeVF(B, IntTy, VF);
1079   return B.CreateUIToFP(RuntimeVF, FTy);
1080 }
1081 
1082 void reportVectorizationFailure(const StringRef DebugMsg,
1083                                 const StringRef OREMsg, const StringRef ORETag,
1084                                 OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1085                                 Instruction *I) {
1086   LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I));
1087   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1088   ORE->emit(
1089       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1090       << "loop not vectorized: " << OREMsg);
1091 }
1092 
1093 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag,
1094                              OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1095                              Instruction *I) {
1096   LLVM_DEBUG(debugVectorizationMessage("", Msg, I));
1097   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1098   ORE->emit(
1099       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1100       << Msg);
1101 }
1102 
1103 } // end namespace llvm
1104 
1105 #ifndef NDEBUG
1106 /// \return string containing a file name and a line # for the given loop.
1107 static std::string getDebugLocString(const Loop *L) {
1108   std::string Result;
1109   if (L) {
1110     raw_string_ostream OS(Result);
1111     if (const DebugLoc LoopDbgLoc = L->getStartLoc())
1112       LoopDbgLoc.print(OS);
1113     else
1114       // Just print the module name.
1115       OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
1116     OS.flush();
1117   }
1118   return Result;
1119 }
1120 #endif
1121 
1122 void InnerLoopVectorizer::addNewMetadata(Instruction *To,
1123                                          const Instruction *Orig) {
1124   // If the loop was versioned with memchecks, add the corresponding no-alias
1125   // metadata.
1126   if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
1127     LVer->annotateInstWithNoAlias(To, Orig);
1128 }
1129 
1130 void InnerLoopVectorizer::collectPoisonGeneratingRecipes(
1131     VPTransformState &State) {
1132 
1133   // Collect recipes in the backward slice of `Root` that may generate a poison
1134   // value that is used after vectorization.
1135   SmallPtrSet<VPRecipeBase *, 16> Visited;
1136   auto collectPoisonGeneratingInstrsInBackwardSlice([&](VPRecipeBase *Root) {
1137     SmallVector<VPRecipeBase *, 16> Worklist;
1138     Worklist.push_back(Root);
1139 
1140     // Traverse the backward slice of Root through its use-def chain.
1141     while (!Worklist.empty()) {
1142       VPRecipeBase *CurRec = Worklist.back();
1143       Worklist.pop_back();
1144 
1145       if (!Visited.insert(CurRec).second)
1146         continue;
1147 
1148       // Prune search if we find another recipe generating a widen memory
1149       // instruction. Widen memory instructions involved in address computation
1150       // will lead to gather/scatter instructions, which don't need to be
1151       // handled.
1152       if (isa<VPWidenMemoryInstructionRecipe>(CurRec) ||
1153           isa<VPInterleaveRecipe>(CurRec) ||
1154           isa<VPCanonicalIVPHIRecipe>(CurRec))
1155         continue;
1156 
1157       // This recipe contributes to the address computation of a widen
1158       // load/store. Collect recipe if its underlying instruction has
1159       // poison-generating flags.
1160       Instruction *Instr = CurRec->getUnderlyingInstr();
1161       if (Instr && Instr->hasPoisonGeneratingFlags())
1162         State.MayGeneratePoisonRecipes.insert(CurRec);
1163 
1164       // Add new definitions to the worklist.
1165       for (VPValue *operand : CurRec->operands())
1166         if (VPDef *OpDef = operand->getDef())
1167           Worklist.push_back(cast<VPRecipeBase>(OpDef));
1168     }
1169   });
1170 
1171   // Traverse all the recipes in the VPlan and collect the poison-generating
1172   // recipes in the backward slice starting at the address of a VPWidenRecipe or
1173   // VPInterleaveRecipe.
1174   auto Iter = depth_first(
1175       VPBlockRecursiveTraversalWrapper<VPBlockBase *>(State.Plan->getEntry()));
1176   for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) {
1177     for (VPRecipeBase &Recipe : *VPBB) {
1178       if (auto *WidenRec = dyn_cast<VPWidenMemoryInstructionRecipe>(&Recipe)) {
1179         Instruction *UnderlyingInstr = WidenRec->getUnderlyingInstr();
1180         VPDef *AddrDef = WidenRec->getAddr()->getDef();
1181         if (AddrDef && WidenRec->isConsecutive() && UnderlyingInstr &&
1182             Legal->blockNeedsPredication(UnderlyingInstr->getParent()))
1183           collectPoisonGeneratingInstrsInBackwardSlice(
1184               cast<VPRecipeBase>(AddrDef));
1185       } else if (auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(&Recipe)) {
1186         VPDef *AddrDef = InterleaveRec->getAddr()->getDef();
1187         if (AddrDef) {
1188           // Check if any member of the interleave group needs predication.
1189           const InterleaveGroup<Instruction> *InterGroup =
1190               InterleaveRec->getInterleaveGroup();
1191           bool NeedPredication = false;
1192           for (int I = 0, NumMembers = InterGroup->getNumMembers();
1193                I < NumMembers; ++I) {
1194             Instruction *Member = InterGroup->getMember(I);
1195             if (Member)
1196               NeedPredication |=
1197                   Legal->blockNeedsPredication(Member->getParent());
1198           }
1199 
1200           if (NeedPredication)
1201             collectPoisonGeneratingInstrsInBackwardSlice(
1202                 cast<VPRecipeBase>(AddrDef));
1203         }
1204       }
1205     }
1206   }
1207 }
1208 
1209 void InnerLoopVectorizer::addMetadata(Instruction *To,
1210                                       Instruction *From) {
1211   propagateMetadata(To, From);
1212   addNewMetadata(To, From);
1213 }
1214 
1215 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To,
1216                                       Instruction *From) {
1217   for (Value *V : To) {
1218     if (Instruction *I = dyn_cast<Instruction>(V))
1219       addMetadata(I, From);
1220   }
1221 }
1222 
1223 PHINode *InnerLoopVectorizer::getReductionResumeValue(
1224     const RecurrenceDescriptor &RdxDesc) {
1225   auto It = ReductionResumeValues.find(&RdxDesc);
1226   assert(It != ReductionResumeValues.end() &&
1227          "Expected to find a resume value for the reduction.");
1228   return It->second;
1229 }
1230 
1231 namespace llvm {
1232 
1233 // Loop vectorization cost-model hints how the scalar epilogue loop should be
1234 // lowered.
1235 enum ScalarEpilogueLowering {
1236 
1237   // The default: allowing scalar epilogues.
1238   CM_ScalarEpilogueAllowed,
1239 
1240   // Vectorization with OptForSize: don't allow epilogues.
1241   CM_ScalarEpilogueNotAllowedOptSize,
1242 
1243   // A special case of vectorisation with OptForSize: loops with a very small
1244   // trip count are considered for vectorization under OptForSize, thereby
1245   // making sure the cost of their loop body is dominant, free of runtime
1246   // guards and scalar iteration overheads.
1247   CM_ScalarEpilogueNotAllowedLowTripLoop,
1248 
1249   // Loop hint predicate indicating an epilogue is undesired.
1250   CM_ScalarEpilogueNotNeededUsePredicate,
1251 
1252   // Directive indicating we must either tail fold or not vectorize
1253   CM_ScalarEpilogueNotAllowedUsePredicate
1254 };
1255 
1256 /// ElementCountComparator creates a total ordering for ElementCount
1257 /// for the purposes of using it in a set structure.
1258 struct ElementCountComparator {
1259   bool operator()(const ElementCount &LHS, const ElementCount &RHS) const {
1260     return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) <
1261            std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue());
1262   }
1263 };
1264 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>;
1265 
1266 /// LoopVectorizationCostModel - estimates the expected speedups due to
1267 /// vectorization.
1268 /// In many cases vectorization is not profitable. This can happen because of
1269 /// a number of reasons. In this class we mainly attempt to predict the
1270 /// expected speedup/slowdowns due to the supported instruction set. We use the
1271 /// TargetTransformInfo to query the different backends for the cost of
1272 /// different operations.
1273 class LoopVectorizationCostModel {
1274 public:
1275   LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L,
1276                              PredicatedScalarEvolution &PSE, LoopInfo *LI,
1277                              LoopVectorizationLegality *Legal,
1278                              const TargetTransformInfo &TTI,
1279                              const TargetLibraryInfo *TLI, DemandedBits *DB,
1280                              AssumptionCache *AC,
1281                              OptimizationRemarkEmitter *ORE, const Function *F,
1282                              const LoopVectorizeHints *Hints,
1283                              InterleavedAccessInfo &IAI)
1284       : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal),
1285         TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F),
1286         Hints(Hints), InterleaveInfo(IAI) {}
1287 
1288   /// \return An upper bound for the vectorization factors (both fixed and
1289   /// scalable). If the factors are 0, vectorization and interleaving should be
1290   /// avoided up front.
1291   FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC);
1292 
1293   /// \return True if runtime checks are required for vectorization, and false
1294   /// otherwise.
1295   bool runtimeChecksRequired();
1296 
1297   /// \return The most profitable vectorization factor and the cost of that VF.
1298   /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO
1299   /// then this vectorization factor will be selected if vectorization is
1300   /// possible.
1301   VectorizationFactor
1302   selectVectorizationFactor(const ElementCountSet &CandidateVFs);
1303 
1304   VectorizationFactor
1305   selectEpilogueVectorizationFactor(const ElementCount MaxVF,
1306                                     const LoopVectorizationPlanner &LVP);
1307 
1308   /// Setup cost-based decisions for user vectorization factor.
1309   /// \return true if the UserVF is a feasible VF to be chosen.
1310   bool selectUserVectorizationFactor(ElementCount UserVF) {
1311     collectUniformsAndScalars(UserVF);
1312     collectInstsToScalarize(UserVF);
1313     return expectedCost(UserVF).first.isValid();
1314   }
1315 
1316   /// \return The size (in bits) of the smallest and widest types in the code
1317   /// that needs to be vectorized. We ignore values that remain scalar such as
1318   /// 64 bit loop indices.
1319   std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
1320 
1321   /// \return The desired interleave count.
1322   /// If interleave count has been specified by metadata it will be returned.
1323   /// Otherwise, the interleave count is computed and returned. VF and LoopCost
1324   /// are the selected vectorization factor and the cost of the selected VF.
1325   unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost);
1326 
1327   /// Memory access instruction may be vectorized in more than one way.
1328   /// Form of instruction after vectorization depends on cost.
1329   /// This function takes cost-based decisions for Load/Store instructions
1330   /// and collects them in a map. This decisions map is used for building
1331   /// the lists of loop-uniform and loop-scalar instructions.
1332   /// The calculated cost is saved with widening decision in order to
1333   /// avoid redundant calculations.
1334   void setCostBasedWideningDecision(ElementCount VF);
1335 
1336   /// A struct that represents some properties of the register usage
1337   /// of a loop.
1338   struct RegisterUsage {
1339     /// Holds the number of loop invariant values that are used in the loop.
1340     /// The key is ClassID of target-provided register class.
1341     SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs;
1342     /// Holds the maximum number of concurrent live intervals in the loop.
1343     /// The key is ClassID of target-provided register class.
1344     SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers;
1345   };
1346 
1347   /// \return Returns information about the register usages of the loop for the
1348   /// given vectorization factors.
1349   SmallVector<RegisterUsage, 8>
1350   calculateRegisterUsage(ArrayRef<ElementCount> VFs);
1351 
1352   /// Collect values we want to ignore in the cost model.
1353   void collectValuesToIgnore();
1354 
1355   /// Collect all element types in the loop for which widening is needed.
1356   void collectElementTypesForWidening();
1357 
1358   /// Split reductions into those that happen in the loop, and those that happen
1359   /// outside. In loop reductions are collected into InLoopReductionChains.
1360   void collectInLoopReductions();
1361 
1362   /// Returns true if we should use strict in-order reductions for the given
1363   /// RdxDesc. This is true if the -enable-strict-reductions flag is passed,
1364   /// the IsOrdered flag of RdxDesc is set and we do not allow reordering
1365   /// of FP operations.
1366   bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) {
1367     return !Hints->allowReordering() && RdxDesc.isOrdered();
1368   }
1369 
1370   /// \returns The smallest bitwidth each instruction can be represented with.
1371   /// The vector equivalents of these instructions should be truncated to this
1372   /// type.
1373   const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const {
1374     return MinBWs;
1375   }
1376 
1377   /// \returns True if it is more profitable to scalarize instruction \p I for
1378   /// vectorization factor \p VF.
1379   bool isProfitableToScalarize(Instruction *I, ElementCount VF) const {
1380     assert(VF.isVector() &&
1381            "Profitable to scalarize relevant only for VF > 1.");
1382 
1383     // Cost model is not run in the VPlan-native path - return conservative
1384     // result until this changes.
1385     if (EnableVPlanNativePath)
1386       return false;
1387 
1388     auto Scalars = InstsToScalarize.find(VF);
1389     assert(Scalars != InstsToScalarize.end() &&
1390            "VF not yet analyzed for scalarization profitability");
1391     return Scalars->second.find(I) != Scalars->second.end();
1392   }
1393 
1394   /// Returns true if \p I is known to be uniform after vectorization.
1395   bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const {
1396     if (VF.isScalar())
1397       return true;
1398 
1399     // Cost model is not run in the VPlan-native path - return conservative
1400     // result until this changes.
1401     if (EnableVPlanNativePath)
1402       return false;
1403 
1404     auto UniformsPerVF = Uniforms.find(VF);
1405     assert(UniformsPerVF != Uniforms.end() &&
1406            "VF not yet analyzed for uniformity");
1407     return UniformsPerVF->second.count(I);
1408   }
1409 
1410   /// Returns true if \p I is known to be scalar after vectorization.
1411   bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const {
1412     if (VF.isScalar())
1413       return true;
1414 
1415     // Cost model is not run in the VPlan-native path - return conservative
1416     // result until this changes.
1417     if (EnableVPlanNativePath)
1418       return false;
1419 
1420     auto ScalarsPerVF = Scalars.find(VF);
1421     assert(ScalarsPerVF != Scalars.end() &&
1422            "Scalar values are not calculated for VF");
1423     return ScalarsPerVF->second.count(I);
1424   }
1425 
1426   /// \returns True if instruction \p I can be truncated to a smaller bitwidth
1427   /// for vectorization factor \p VF.
1428   bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const {
1429     return VF.isVector() && MinBWs.find(I) != MinBWs.end() &&
1430            !isProfitableToScalarize(I, VF) &&
1431            !isScalarAfterVectorization(I, VF);
1432   }
1433 
1434   /// Decision that was taken during cost calculation for memory instruction.
1435   enum InstWidening {
1436     CM_Unknown,
1437     CM_Widen,         // For consecutive accesses with stride +1.
1438     CM_Widen_Reverse, // For consecutive accesses with stride -1.
1439     CM_Interleave,
1440     CM_GatherScatter,
1441     CM_Scalarize
1442   };
1443 
1444   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1445   /// instruction \p I and vector width \p VF.
1446   void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W,
1447                            InstructionCost Cost) {
1448     assert(VF.isVector() && "Expected VF >=2");
1449     WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1450   }
1451 
1452   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1453   /// interleaving group \p Grp and vector width \p VF.
1454   void setWideningDecision(const InterleaveGroup<Instruction> *Grp,
1455                            ElementCount VF, InstWidening W,
1456                            InstructionCost Cost) {
1457     assert(VF.isVector() && "Expected VF >=2");
1458     /// Broadcast this decicion to all instructions inside the group.
1459     /// But the cost will be assigned to one instruction only.
1460     for (unsigned i = 0; i < Grp->getFactor(); ++i) {
1461       if (auto *I = Grp->getMember(i)) {
1462         if (Grp->getInsertPos() == I)
1463           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1464         else
1465           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0);
1466       }
1467     }
1468   }
1469 
1470   /// Return the cost model decision for the given instruction \p I and vector
1471   /// width \p VF. Return CM_Unknown if this instruction did not pass
1472   /// through the cost modeling.
1473   InstWidening getWideningDecision(Instruction *I, ElementCount VF) const {
1474     assert(VF.isVector() && "Expected VF to be a vector VF");
1475     // Cost model is not run in the VPlan-native path - return conservative
1476     // result until this changes.
1477     if (EnableVPlanNativePath)
1478       return CM_GatherScatter;
1479 
1480     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1481     auto Itr = WideningDecisions.find(InstOnVF);
1482     if (Itr == WideningDecisions.end())
1483       return CM_Unknown;
1484     return Itr->second.first;
1485   }
1486 
1487   /// Return the vectorization cost for the given instruction \p I and vector
1488   /// width \p VF.
1489   InstructionCost getWideningCost(Instruction *I, ElementCount VF) {
1490     assert(VF.isVector() && "Expected VF >=2");
1491     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1492     assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() &&
1493            "The cost is not calculated");
1494     return WideningDecisions[InstOnVF].second;
1495   }
1496 
1497   /// Return True if instruction \p I is an optimizable truncate whose operand
1498   /// is an induction variable. Such a truncate will be removed by adding a new
1499   /// induction variable with the destination type.
1500   bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) {
1501     // If the instruction is not a truncate, return false.
1502     auto *Trunc = dyn_cast<TruncInst>(I);
1503     if (!Trunc)
1504       return false;
1505 
1506     // Get the source and destination types of the truncate.
1507     Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF);
1508     Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF);
1509 
1510     // If the truncate is free for the given types, return false. Replacing a
1511     // free truncate with an induction variable would add an induction variable
1512     // update instruction to each iteration of the loop. We exclude from this
1513     // check the primary induction variable since it will need an update
1514     // instruction regardless.
1515     Value *Op = Trunc->getOperand(0);
1516     if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
1517       return false;
1518 
1519     // If the truncated value is not an induction variable, return false.
1520     return Legal->isInductionPhi(Op);
1521   }
1522 
1523   /// Collects the instructions to scalarize for each predicated instruction in
1524   /// the loop.
1525   void collectInstsToScalarize(ElementCount VF);
1526 
1527   /// Collect Uniform and Scalar values for the given \p VF.
1528   /// The sets depend on CM decision for Load/Store instructions
1529   /// that may be vectorized as interleave, gather-scatter or scalarized.
1530   void collectUniformsAndScalars(ElementCount VF) {
1531     // Do the analysis once.
1532     if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end())
1533       return;
1534     setCostBasedWideningDecision(VF);
1535     collectLoopUniforms(VF);
1536     collectLoopScalars(VF);
1537   }
1538 
1539   /// Returns true if the target machine supports masked store operation
1540   /// for the given \p DataType and kind of access to \p Ptr.
1541   bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const {
1542     return Legal->isConsecutivePtr(DataType, Ptr) &&
1543            TTI.isLegalMaskedStore(DataType, Alignment);
1544   }
1545 
1546   /// Returns true if the target machine supports masked load operation
1547   /// for the given \p DataType and kind of access to \p Ptr.
1548   bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const {
1549     return Legal->isConsecutivePtr(DataType, Ptr) &&
1550            TTI.isLegalMaskedLoad(DataType, Alignment);
1551   }
1552 
1553   /// Returns true if the target machine can represent \p V as a masked gather
1554   /// or scatter operation.
1555   bool isLegalGatherOrScatter(Value *V,
1556                               ElementCount VF = ElementCount::getFixed(1)) {
1557     bool LI = isa<LoadInst>(V);
1558     bool SI = isa<StoreInst>(V);
1559     if (!LI && !SI)
1560       return false;
1561     auto *Ty = getLoadStoreType(V);
1562     Align Align = getLoadStoreAlignment(V);
1563     if (VF.isVector())
1564       Ty = VectorType::get(Ty, VF);
1565     return (LI && TTI.isLegalMaskedGather(Ty, Align)) ||
1566            (SI && TTI.isLegalMaskedScatter(Ty, Align));
1567   }
1568 
1569   /// Returns true if the target machine supports all of the reduction
1570   /// variables found for the given VF.
1571   bool canVectorizeReductions(ElementCount VF) const {
1572     return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
1573       const RecurrenceDescriptor &RdxDesc = Reduction.second;
1574       return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1575     }));
1576   }
1577 
1578   /// Returns true if \p I is an instruction that will be scalarized with
1579   /// predication when vectorizing \p I with vectorization factor \p VF. Such
1580   /// instructions include conditional stores and instructions that may divide
1581   /// by zero.
1582   bool isScalarWithPredication(Instruction *I, ElementCount VF) const;
1583 
1584   // Returns true if \p I is an instruction that will be predicated either
1585   // through scalar predication or masked load/store or masked gather/scatter.
1586   // \p VF is the vectorization factor that will be used to vectorize \p I.
1587   // Superset of instructions that return true for isScalarWithPredication.
1588   bool isPredicatedInst(Instruction *I, ElementCount VF,
1589                         bool IsKnownUniform = false) {
1590     // When we know the load is uniform and the original scalar loop was not
1591     // predicated we don't need to mark it as a predicated instruction. Any
1592     // vectorised blocks created when tail-folding are something artificial we
1593     // have introduced and we know there is always at least one active lane.
1594     // That's why we call Legal->blockNeedsPredication here because it doesn't
1595     // query tail-folding.
1596     if (IsKnownUniform && isa<LoadInst>(I) &&
1597         !Legal->blockNeedsPredication(I->getParent()))
1598       return false;
1599     if (!blockNeedsPredicationForAnyReason(I->getParent()))
1600       return false;
1601     // Loads and stores that need some form of masked operation are predicated
1602     // instructions.
1603     if (isa<LoadInst>(I) || isa<StoreInst>(I))
1604       return Legal->isMaskRequired(I);
1605     return isScalarWithPredication(I, VF);
1606   }
1607 
1608   /// Returns true if \p I is a memory instruction with consecutive memory
1609   /// access that can be widened.
1610   bool
1611   memoryInstructionCanBeWidened(Instruction *I,
1612                                 ElementCount VF = ElementCount::getFixed(1));
1613 
1614   /// Returns true if \p I is a memory instruction in an interleaved-group
1615   /// of memory accesses that can be vectorized with wide vector loads/stores
1616   /// and shuffles.
1617   bool
1618   interleavedAccessCanBeWidened(Instruction *I,
1619                                 ElementCount VF = ElementCount::getFixed(1));
1620 
1621   /// Check if \p Instr belongs to any interleaved access group.
1622   bool isAccessInterleaved(Instruction *Instr) {
1623     return InterleaveInfo.isInterleaved(Instr);
1624   }
1625 
1626   /// Get the interleaved access group that \p Instr belongs to.
1627   const InterleaveGroup<Instruction> *
1628   getInterleavedAccessGroup(Instruction *Instr) {
1629     return InterleaveInfo.getInterleaveGroup(Instr);
1630   }
1631 
1632   /// Returns true if we're required to use a scalar epilogue for at least
1633   /// the final iteration of the original loop.
1634   bool requiresScalarEpilogue(ElementCount VF) const {
1635     if (!isScalarEpilogueAllowed())
1636       return false;
1637     // If we might exit from anywhere but the latch, must run the exiting
1638     // iteration in scalar form.
1639     if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch())
1640       return true;
1641     return VF.isVector() && InterleaveInfo.requiresScalarEpilogue();
1642   }
1643 
1644   /// Returns true if a scalar epilogue is not allowed due to optsize or a
1645   /// loop hint annotation.
1646   bool isScalarEpilogueAllowed() const {
1647     return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed;
1648   }
1649 
1650   /// Returns true if all loop blocks should be masked to fold tail loop.
1651   bool foldTailByMasking() const { return FoldTailByMasking; }
1652 
1653   /// Returns true if the instructions in this block requires predication
1654   /// for any reason, e.g. because tail folding now requires a predicate
1655   /// or because the block in the original loop was predicated.
1656   bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const {
1657     return foldTailByMasking() || Legal->blockNeedsPredication(BB);
1658   }
1659 
1660   /// A SmallMapVector to store the InLoop reduction op chains, mapping phi
1661   /// nodes to the chain of instructions representing the reductions. Uses a
1662   /// MapVector to ensure deterministic iteration order.
1663   using ReductionChainMap =
1664       SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>;
1665 
1666   /// Return the chain of instructions representing an inloop reduction.
1667   const ReductionChainMap &getInLoopReductionChains() const {
1668     return InLoopReductionChains;
1669   }
1670 
1671   /// Returns true if the Phi is part of an inloop reduction.
1672   bool isInLoopReduction(PHINode *Phi) const {
1673     return InLoopReductionChains.count(Phi);
1674   }
1675 
1676   /// Estimate cost of an intrinsic call instruction CI if it were vectorized
1677   /// with factor VF.  Return the cost of the instruction, including
1678   /// scalarization overhead if it's needed.
1679   InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const;
1680 
1681   /// Estimate cost of a call instruction CI if it were vectorized with factor
1682   /// VF. Return the cost of the instruction, including scalarization overhead
1683   /// if it's needed. The flag NeedToScalarize shows if the call needs to be
1684   /// scalarized -
1685   /// i.e. either vector version isn't available, or is too expensive.
1686   InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF,
1687                                     bool &NeedToScalarize) const;
1688 
1689   /// Returns true if the per-lane cost of VectorizationFactor A is lower than
1690   /// that of B.
1691   bool isMoreProfitable(const VectorizationFactor &A,
1692                         const VectorizationFactor &B) const;
1693 
1694   /// Invalidates decisions already taken by the cost model.
1695   void invalidateCostModelingDecisions() {
1696     WideningDecisions.clear();
1697     Uniforms.clear();
1698     Scalars.clear();
1699   }
1700 
1701 private:
1702   unsigned NumPredStores = 0;
1703 
1704   /// Convenience function that returns the value of vscale_range iff
1705   /// vscale_range.min == vscale_range.max or otherwise returns the value
1706   /// returned by the corresponding TLI method.
1707   Optional<unsigned> getVScaleForTuning() const;
1708 
1709   /// \return An upper bound for the vectorization factors for both
1710   /// fixed and scalable vectorization, where the minimum-known number of
1711   /// elements is a power-of-2 larger than zero. If scalable vectorization is
1712   /// disabled or unsupported, then the scalable part will be equal to
1713   /// ElementCount::getScalable(0).
1714   FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount,
1715                                            ElementCount UserVF,
1716                                            bool FoldTailByMasking);
1717 
1718   /// \return the maximized element count based on the targets vector
1719   /// registers and the loop trip-count, but limited to a maximum safe VF.
1720   /// This is a helper function of computeFeasibleMaxVF.
1721   /// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure
1722   /// issue that occurred on one of the buildbots which cannot be reproduced
1723   /// without having access to the properietary compiler (see comments on
1724   /// D98509). The issue is currently under investigation and this workaround
1725   /// will be removed as soon as possible.
1726   ElementCount getMaximizedVFForTarget(unsigned ConstTripCount,
1727                                        unsigned SmallestType,
1728                                        unsigned WidestType,
1729                                        const ElementCount &MaxSafeVF,
1730                                        bool FoldTailByMasking);
1731 
1732   /// \return the maximum legal scalable VF, based on the safe max number
1733   /// of elements.
1734   ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements);
1735 
1736   /// The vectorization cost is a combination of the cost itself and a boolean
1737   /// indicating whether any of the contributing operations will actually
1738   /// operate on vector values after type legalization in the backend. If this
1739   /// latter value is false, then all operations will be scalarized (i.e. no
1740   /// vectorization has actually taken place).
1741   using VectorizationCostTy = std::pair<InstructionCost, bool>;
1742 
1743   /// Returns the expected execution cost. The unit of the cost does
1744   /// not matter because we use the 'cost' units to compare different
1745   /// vector widths. The cost that is returned is *not* normalized by
1746   /// the factor width. If \p Invalid is not nullptr, this function
1747   /// will add a pair(Instruction*, ElementCount) to \p Invalid for
1748   /// each instruction that has an Invalid cost for the given VF.
1749   using InstructionVFPair = std::pair<Instruction *, ElementCount>;
1750   VectorizationCostTy
1751   expectedCost(ElementCount VF,
1752                SmallVectorImpl<InstructionVFPair> *Invalid = nullptr);
1753 
1754   /// Returns the execution time cost of an instruction for a given vector
1755   /// width. Vector width of one means scalar.
1756   VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF);
1757 
1758   /// The cost-computation logic from getInstructionCost which provides
1759   /// the vector type as an output parameter.
1760   InstructionCost getInstructionCost(Instruction *I, ElementCount VF,
1761                                      Type *&VectorTy);
1762 
1763   /// Return the cost of instructions in an inloop reduction pattern, if I is
1764   /// part of that pattern.
1765   Optional<InstructionCost>
1766   getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy,
1767                           TTI::TargetCostKind CostKind);
1768 
1769   /// Calculate vectorization cost of memory instruction \p I.
1770   InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF);
1771 
1772   /// The cost computation for scalarized memory instruction.
1773   InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF);
1774 
1775   /// The cost computation for interleaving group of memory instructions.
1776   InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF);
1777 
1778   /// The cost computation for Gather/Scatter instruction.
1779   InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF);
1780 
1781   /// The cost computation for widening instruction \p I with consecutive
1782   /// memory access.
1783   InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF);
1784 
1785   /// The cost calculation for Load/Store instruction \p I with uniform pointer -
1786   /// Load: scalar load + broadcast.
1787   /// Store: scalar store + (loop invariant value stored? 0 : extract of last
1788   /// element)
1789   InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF);
1790 
1791   /// Estimate the overhead of scalarizing an instruction. This is a
1792   /// convenience wrapper for the type-based getScalarizationOverhead API.
1793   InstructionCost getScalarizationOverhead(Instruction *I,
1794                                            ElementCount VF) const;
1795 
1796   /// Returns whether the instruction is a load or store and will be a emitted
1797   /// as a vector operation.
1798   bool isConsecutiveLoadOrStore(Instruction *I);
1799 
1800   /// Returns true if an artificially high cost for emulated masked memrefs
1801   /// should be used.
1802   bool useEmulatedMaskMemRefHack(Instruction *I, ElementCount VF);
1803 
1804   /// Map of scalar integer values to the smallest bitwidth they can be legally
1805   /// represented as. The vector equivalents of these values should be truncated
1806   /// to this type.
1807   MapVector<Instruction *, uint64_t> MinBWs;
1808 
1809   /// A type representing the costs for instructions if they were to be
1810   /// scalarized rather than vectorized. The entries are Instruction-Cost
1811   /// pairs.
1812   using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>;
1813 
1814   /// A set containing all BasicBlocks that are known to present after
1815   /// vectorization as a predicated block.
1816   SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization;
1817 
1818   /// Records whether it is allowed to have the original scalar loop execute at
1819   /// least once. This may be needed as a fallback loop in case runtime
1820   /// aliasing/dependence checks fail, or to handle the tail/remainder
1821   /// iterations when the trip count is unknown or doesn't divide by the VF,
1822   /// or as a peel-loop to handle gaps in interleave-groups.
1823   /// Under optsize and when the trip count is very small we don't allow any
1824   /// iterations to execute in the scalar loop.
1825   ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
1826 
1827   /// All blocks of loop are to be masked to fold tail of scalar iterations.
1828   bool FoldTailByMasking = false;
1829 
1830   /// A map holding scalar costs for different vectorization factors. The
1831   /// presence of a cost for an instruction in the mapping indicates that the
1832   /// instruction will be scalarized when vectorizing with the associated
1833   /// vectorization factor. The entries are VF-ScalarCostTy pairs.
1834   DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize;
1835 
1836   /// Holds the instructions known to be uniform after vectorization.
1837   /// The data is collected per VF.
1838   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1839 
1840   /// Holds the instructions known to be scalar after vectorization.
1841   /// The data is collected per VF.
1842   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1843 
1844   /// Holds the instructions (address computations) that are forced to be
1845   /// scalarized.
1846   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1847 
1848   /// PHINodes of the reductions that should be expanded in-loop along with
1849   /// their associated chains of reduction operations, in program order from top
1850   /// (PHI) to bottom
1851   ReductionChainMap InLoopReductionChains;
1852 
1853   /// A Map of inloop reduction operations and their immediate chain operand.
1854   /// FIXME: This can be removed once reductions can be costed correctly in
1855   /// vplan. This was added to allow quick lookup to the inloop operations,
1856   /// without having to loop through InLoopReductionChains.
1857   DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
1858 
1859   /// Returns the expected difference in cost from scalarizing the expression
1860   /// feeding a predicated instruction \p PredInst. The instructions to
1861   /// scalarize and their scalar costs are collected in \p ScalarCosts. A
1862   /// non-negative return value implies the expression will be scalarized.
1863   /// Currently, only single-use chains are considered for scalarization.
1864   int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts,
1865                               ElementCount VF);
1866 
1867   /// Collect the instructions that are uniform after vectorization. An
1868   /// instruction is uniform if we represent it with a single scalar value in
1869   /// the vectorized loop corresponding to each vector iteration. Examples of
1870   /// uniform instructions include pointer operands of consecutive or
1871   /// interleaved memory accesses. Note that although uniformity implies an
1872   /// instruction will be scalar, the reverse is not true. In general, a
1873   /// scalarized instruction will be represented by VF scalar values in the
1874   /// vectorized loop, each corresponding to an iteration of the original
1875   /// scalar loop.
1876   void collectLoopUniforms(ElementCount VF);
1877 
1878   /// Collect the instructions that are scalar after vectorization. An
1879   /// instruction is scalar if it is known to be uniform or will be scalarized
1880   /// during vectorization. collectLoopScalars should only add non-uniform nodes
1881   /// to the list if they are used by a load/store instruction that is marked as
1882   /// CM_Scalarize. Non-uniform scalarized instructions will be represented by
1883   /// VF values in the vectorized loop, each corresponding to an iteration of
1884   /// the original scalar loop.
1885   void collectLoopScalars(ElementCount VF);
1886 
1887   /// Keeps cost model vectorization decision and cost for instructions.
1888   /// Right now it is used for memory instructions only.
1889   using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1890                                 std::pair<InstWidening, InstructionCost>>;
1891 
1892   DecisionList WideningDecisions;
1893 
1894   /// Returns true if \p V is expected to be vectorized and it needs to be
1895   /// extracted.
1896   bool needsExtract(Value *V, ElementCount VF) const {
1897     Instruction *I = dyn_cast<Instruction>(V);
1898     if (VF.isScalar() || !I || !TheLoop->contains(I) ||
1899         TheLoop->isLoopInvariant(I))
1900       return false;
1901 
1902     // Assume we can vectorize V (and hence we need extraction) if the
1903     // scalars are not computed yet. This can happen, because it is called
1904     // via getScalarizationOverhead from setCostBasedWideningDecision, before
1905     // the scalars are collected. That should be a safe assumption in most
1906     // cases, because we check if the operands have vectorizable types
1907     // beforehand in LoopVectorizationLegality.
1908     return Scalars.find(VF) == Scalars.end() ||
1909            !isScalarAfterVectorization(I, VF);
1910   };
1911 
1912   /// Returns a range containing only operands needing to be extracted.
1913   SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops,
1914                                                    ElementCount VF) const {
1915     return SmallVector<Value *, 4>(make_filter_range(
1916         Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); }));
1917   }
1918 
1919   /// Determines if we have the infrastructure to vectorize loop \p L and its
1920   /// epilogue, assuming the main loop is vectorized by \p VF.
1921   bool isCandidateForEpilogueVectorization(const Loop &L,
1922                                            const ElementCount VF) const;
1923 
1924   /// Returns true if epilogue vectorization is considered profitable, and
1925   /// false otherwise.
1926   /// \p VF is the vectorization factor chosen for the original loop.
1927   bool isEpilogueVectorizationProfitable(const ElementCount VF) const;
1928 
1929 public:
1930   /// The loop that we evaluate.
1931   Loop *TheLoop;
1932 
1933   /// Predicated scalar evolution analysis.
1934   PredicatedScalarEvolution &PSE;
1935 
1936   /// Loop Info analysis.
1937   LoopInfo *LI;
1938 
1939   /// Vectorization legality.
1940   LoopVectorizationLegality *Legal;
1941 
1942   /// Vector target information.
1943   const TargetTransformInfo &TTI;
1944 
1945   /// Target Library Info.
1946   const TargetLibraryInfo *TLI;
1947 
1948   /// Demanded bits analysis.
1949   DemandedBits *DB;
1950 
1951   /// Assumption cache.
1952   AssumptionCache *AC;
1953 
1954   /// Interface to emit optimization remarks.
1955   OptimizationRemarkEmitter *ORE;
1956 
1957   const Function *TheFunction;
1958 
1959   /// Loop Vectorize Hint.
1960   const LoopVectorizeHints *Hints;
1961 
1962   /// The interleave access information contains groups of interleaved accesses
1963   /// with the same stride and close to each other.
1964   InterleavedAccessInfo &InterleaveInfo;
1965 
1966   /// Values to ignore in the cost model.
1967   SmallPtrSet<const Value *, 16> ValuesToIgnore;
1968 
1969   /// Values to ignore in the cost model when VF > 1.
1970   SmallPtrSet<const Value *, 16> VecValuesToIgnore;
1971 
1972   /// All element types found in the loop.
1973   SmallPtrSet<Type *, 16> ElementTypesInLoop;
1974 
1975   /// Profitable vector factors.
1976   SmallVector<VectorizationFactor, 8> ProfitableVFs;
1977 };
1978 } // end namespace llvm
1979 
1980 /// Helper struct to manage generating runtime checks for vectorization.
1981 ///
1982 /// The runtime checks are created up-front in temporary blocks to allow better
1983 /// estimating the cost and un-linked from the existing IR. After deciding to
1984 /// vectorize, the checks are moved back. If deciding not to vectorize, the
1985 /// temporary blocks are completely removed.
1986 class GeneratedRTChecks {
1987   /// Basic block which contains the generated SCEV checks, if any.
1988   BasicBlock *SCEVCheckBlock = nullptr;
1989 
1990   /// The value representing the result of the generated SCEV checks. If it is
1991   /// nullptr, either no SCEV checks have been generated or they have been used.
1992   Value *SCEVCheckCond = nullptr;
1993 
1994   /// Basic block which contains the generated memory runtime checks, if any.
1995   BasicBlock *MemCheckBlock = nullptr;
1996 
1997   /// The value representing the result of the generated memory runtime checks.
1998   /// If it is nullptr, either no memory runtime checks have been generated or
1999   /// they have been used.
2000   Value *MemRuntimeCheckCond = nullptr;
2001 
2002   DominatorTree *DT;
2003   LoopInfo *LI;
2004 
2005   SCEVExpander SCEVExp;
2006   SCEVExpander MemCheckExp;
2007 
2008 public:
2009   GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI,
2010                     const DataLayout &DL)
2011       : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"),
2012         MemCheckExp(SE, DL, "scev.check") {}
2013 
2014   /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can
2015   /// accurately estimate the cost of the runtime checks. The blocks are
2016   /// un-linked from the IR and is added back during vector code generation. If
2017   /// there is no vector code generation, the check blocks are removed
2018   /// completely.
2019   void Create(Loop *L, const LoopAccessInfo &LAI,
2020               const SCEVUnionPredicate &UnionPred) {
2021 
2022     BasicBlock *LoopHeader = L->getHeader();
2023     BasicBlock *Preheader = L->getLoopPreheader();
2024 
2025     // Use SplitBlock to create blocks for SCEV & memory runtime checks to
2026     // ensure the blocks are properly added to LoopInfo & DominatorTree. Those
2027     // may be used by SCEVExpander. The blocks will be un-linked from their
2028     // predecessors and removed from LI & DT at the end of the function.
2029     if (!UnionPred.isAlwaysTrue()) {
2030       SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI,
2031                                   nullptr, "vector.scevcheck");
2032 
2033       SCEVCheckCond = SCEVExp.expandCodeForPredicate(
2034           &UnionPred, SCEVCheckBlock->getTerminator());
2035     }
2036 
2037     const auto &RtPtrChecking = *LAI.getRuntimePointerChecking();
2038     if (RtPtrChecking.Need) {
2039       auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
2040       MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr,
2041                                  "vector.memcheck");
2042 
2043       MemRuntimeCheckCond =
2044           addRuntimeChecks(MemCheckBlock->getTerminator(), L,
2045                            RtPtrChecking.getChecks(), MemCheckExp);
2046       assert(MemRuntimeCheckCond &&
2047              "no RT checks generated although RtPtrChecking "
2048              "claimed checks are required");
2049     }
2050 
2051     if (!MemCheckBlock && !SCEVCheckBlock)
2052       return;
2053 
2054     // Unhook the temporary block with the checks, update various places
2055     // accordingly.
2056     if (SCEVCheckBlock)
2057       SCEVCheckBlock->replaceAllUsesWith(Preheader);
2058     if (MemCheckBlock)
2059       MemCheckBlock->replaceAllUsesWith(Preheader);
2060 
2061     if (SCEVCheckBlock) {
2062       SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
2063       new UnreachableInst(Preheader->getContext(), SCEVCheckBlock);
2064       Preheader->getTerminator()->eraseFromParent();
2065     }
2066     if (MemCheckBlock) {
2067       MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
2068       new UnreachableInst(Preheader->getContext(), MemCheckBlock);
2069       Preheader->getTerminator()->eraseFromParent();
2070     }
2071 
2072     DT->changeImmediateDominator(LoopHeader, Preheader);
2073     if (MemCheckBlock) {
2074       DT->eraseNode(MemCheckBlock);
2075       LI->removeBlock(MemCheckBlock);
2076     }
2077     if (SCEVCheckBlock) {
2078       DT->eraseNode(SCEVCheckBlock);
2079       LI->removeBlock(SCEVCheckBlock);
2080     }
2081   }
2082 
2083   /// Remove the created SCEV & memory runtime check blocks & instructions, if
2084   /// unused.
2085   ~GeneratedRTChecks() {
2086     SCEVExpanderCleaner SCEVCleaner(SCEVExp);
2087     SCEVExpanderCleaner MemCheckCleaner(MemCheckExp);
2088     if (!SCEVCheckCond)
2089       SCEVCleaner.markResultUsed();
2090 
2091     if (!MemRuntimeCheckCond)
2092       MemCheckCleaner.markResultUsed();
2093 
2094     if (MemRuntimeCheckCond) {
2095       auto &SE = *MemCheckExp.getSE();
2096       // Memory runtime check generation creates compares that use expanded
2097       // values. Remove them before running the SCEVExpanderCleaners.
2098       for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) {
2099         if (MemCheckExp.isInsertedInstruction(&I))
2100           continue;
2101         SE.forgetValue(&I);
2102         I.eraseFromParent();
2103       }
2104     }
2105     MemCheckCleaner.cleanup();
2106     SCEVCleaner.cleanup();
2107 
2108     if (SCEVCheckCond)
2109       SCEVCheckBlock->eraseFromParent();
2110     if (MemRuntimeCheckCond)
2111       MemCheckBlock->eraseFromParent();
2112   }
2113 
2114   /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and
2115   /// adjusts the branches to branch to the vector preheader or \p Bypass,
2116   /// depending on the generated condition.
2117   BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass,
2118                              BasicBlock *LoopVectorPreHeader,
2119                              BasicBlock *LoopExitBlock) {
2120     if (!SCEVCheckCond)
2121       return nullptr;
2122     if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond))
2123       if (C->isZero())
2124         return nullptr;
2125 
2126     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2127 
2128     BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock);
2129     // Create new preheader for vector loop.
2130     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2131       PL->addBasicBlockToLoop(SCEVCheckBlock, *LI);
2132 
2133     SCEVCheckBlock->getTerminator()->eraseFromParent();
2134     SCEVCheckBlock->moveBefore(LoopVectorPreHeader);
2135     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2136                                                 SCEVCheckBlock);
2137 
2138     DT->addNewBlock(SCEVCheckBlock, Pred);
2139     DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock);
2140 
2141     ReplaceInstWithInst(
2142         SCEVCheckBlock->getTerminator(),
2143         BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond));
2144     // Mark the check as used, to prevent it from being removed during cleanup.
2145     SCEVCheckCond = nullptr;
2146     return SCEVCheckBlock;
2147   }
2148 
2149   /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts
2150   /// the branches to branch to the vector preheader or \p Bypass, depending on
2151   /// the generated condition.
2152   BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass,
2153                                    BasicBlock *LoopVectorPreHeader) {
2154     // Check if we generated code that checks in runtime if arrays overlap.
2155     if (!MemRuntimeCheckCond)
2156       return nullptr;
2157 
2158     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2159     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2160                                                 MemCheckBlock);
2161 
2162     DT->addNewBlock(MemCheckBlock, Pred);
2163     DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock);
2164     MemCheckBlock->moveBefore(LoopVectorPreHeader);
2165 
2166     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2167       PL->addBasicBlockToLoop(MemCheckBlock, *LI);
2168 
2169     ReplaceInstWithInst(
2170         MemCheckBlock->getTerminator(),
2171         BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond));
2172     MemCheckBlock->getTerminator()->setDebugLoc(
2173         Pred->getTerminator()->getDebugLoc());
2174 
2175     // Mark the check as used, to prevent it from being removed during cleanup.
2176     MemRuntimeCheckCond = nullptr;
2177     return MemCheckBlock;
2178   }
2179 };
2180 
2181 // Return true if \p OuterLp is an outer loop annotated with hints for explicit
2182 // vectorization. The loop needs to be annotated with #pragma omp simd
2183 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
2184 // vector length information is not provided, vectorization is not considered
2185 // explicit. Interleave hints are not allowed either. These limitations will be
2186 // relaxed in the future.
2187 // Please, note that we are currently forced to abuse the pragma 'clang
2188 // vectorize' semantics. This pragma provides *auto-vectorization hints*
2189 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
2190 // provides *explicit vectorization hints* (LV can bypass legal checks and
2191 // assume that vectorization is legal). However, both hints are implemented
2192 // using the same metadata (llvm.loop.vectorize, processed by
2193 // LoopVectorizeHints). This will be fixed in the future when the native IR
2194 // representation for pragma 'omp simd' is introduced.
2195 static bool isExplicitVecOuterLoop(Loop *OuterLp,
2196                                    OptimizationRemarkEmitter *ORE) {
2197   assert(!OuterLp->isInnermost() && "This is not an outer loop");
2198   LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
2199 
2200   // Only outer loops with an explicit vectorization hint are supported.
2201   // Unannotated outer loops are ignored.
2202   if (Hints.getForce() == LoopVectorizeHints::FK_Undefined)
2203     return false;
2204 
2205   Function *Fn = OuterLp->getHeader()->getParent();
2206   if (!Hints.allowVectorization(Fn, OuterLp,
2207                                 true /*VectorizeOnlyWhenForced*/)) {
2208     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
2209     return false;
2210   }
2211 
2212   if (Hints.getInterleave() > 1) {
2213     // TODO: Interleave support is future work.
2214     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
2215                          "outer loops.\n");
2216     Hints.emitRemarkWithHints();
2217     return false;
2218   }
2219 
2220   return true;
2221 }
2222 
2223 static void collectSupportedLoops(Loop &L, LoopInfo *LI,
2224                                   OptimizationRemarkEmitter *ORE,
2225                                   SmallVectorImpl<Loop *> &V) {
2226   // Collect inner loops and outer loops without irreducible control flow. For
2227   // now, only collect outer loops that have explicit vectorization hints. If we
2228   // are stress testing the VPlan H-CFG construction, we collect the outermost
2229   // loop of every loop nest.
2230   if (L.isInnermost() || VPlanBuildStressTest ||
2231       (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) {
2232     LoopBlocksRPO RPOT(&L);
2233     RPOT.perform(LI);
2234     if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) {
2235       V.push_back(&L);
2236       // TODO: Collect inner loops inside marked outer loops in case
2237       // vectorization fails for the outer loop. Do not invoke
2238       // 'containsIrreducibleCFG' again for inner loops when the outer loop is
2239       // already known to be reducible. We can use an inherited attribute for
2240       // that.
2241       return;
2242     }
2243   }
2244   for (Loop *InnerL : L)
2245     collectSupportedLoops(*InnerL, LI, ORE, V);
2246 }
2247 
2248 namespace {
2249 
2250 /// The LoopVectorize Pass.
2251 struct LoopVectorize : public FunctionPass {
2252   /// Pass identification, replacement for typeid
2253   static char ID;
2254 
2255   LoopVectorizePass Impl;
2256 
2257   explicit LoopVectorize(bool InterleaveOnlyWhenForced = false,
2258                          bool VectorizeOnlyWhenForced = false)
2259       : FunctionPass(ID),
2260         Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) {
2261     initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
2262   }
2263 
2264   bool runOnFunction(Function &F) override {
2265     if (skipFunction(F))
2266       return false;
2267 
2268     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2269     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2270     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2271     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2272     auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
2273     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2274     auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
2275     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2276     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2277     auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
2278     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
2279     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
2280     auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
2281 
2282     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
2283         [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
2284 
2285     return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC,
2286                         GetLAA, *ORE, PSI).MadeAnyChange;
2287   }
2288 
2289   void getAnalysisUsage(AnalysisUsage &AU) const override {
2290     AU.addRequired<AssumptionCacheTracker>();
2291     AU.addRequired<BlockFrequencyInfoWrapperPass>();
2292     AU.addRequired<DominatorTreeWrapperPass>();
2293     AU.addRequired<LoopInfoWrapperPass>();
2294     AU.addRequired<ScalarEvolutionWrapperPass>();
2295     AU.addRequired<TargetTransformInfoWrapperPass>();
2296     AU.addRequired<AAResultsWrapperPass>();
2297     AU.addRequired<LoopAccessLegacyAnalysis>();
2298     AU.addRequired<DemandedBitsWrapperPass>();
2299     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
2300     AU.addRequired<InjectTLIMappingsLegacy>();
2301 
2302     // We currently do not preserve loopinfo/dominator analyses with outer loop
2303     // vectorization. Until this is addressed, mark these analyses as preserved
2304     // only for non-VPlan-native path.
2305     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
2306     if (!EnableVPlanNativePath) {
2307       AU.addPreserved<LoopInfoWrapperPass>();
2308       AU.addPreserved<DominatorTreeWrapperPass>();
2309     }
2310 
2311     AU.addPreserved<BasicAAWrapperPass>();
2312     AU.addPreserved<GlobalsAAWrapperPass>();
2313     AU.addRequired<ProfileSummaryInfoWrapperPass>();
2314   }
2315 };
2316 
2317 } // end anonymous namespace
2318 
2319 //===----------------------------------------------------------------------===//
2320 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
2321 // LoopVectorizationCostModel and LoopVectorizationPlanner.
2322 //===----------------------------------------------------------------------===//
2323 
2324 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
2325   // We need to place the broadcast of invariant variables outside the loop,
2326   // but only if it's proven safe to do so. Else, broadcast will be inside
2327   // vector loop body.
2328   Instruction *Instr = dyn_cast<Instruction>(V);
2329   bool SafeToHoist = OrigLoop->isLoopInvariant(V) &&
2330                      (!Instr ||
2331                       DT->dominates(Instr->getParent(), LoopVectorPreHeader));
2332   // Place the code for broadcasting invariant variables in the new preheader.
2333   IRBuilder<>::InsertPointGuard Guard(Builder);
2334   if (SafeToHoist)
2335     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2336 
2337   // Broadcast the scalar into all locations in the vector.
2338   Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
2339 
2340   return Shuf;
2341 }
2342 
2343 /// This function adds
2344 /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...)
2345 /// to each vector element of Val. The sequence starts at StartIndex.
2346 /// \p Opcode is relevant for FP induction variable.
2347 static Value *getStepVector(Value *Val, Value *StartIdx, Value *Step,
2348                             Instruction::BinaryOps BinOp, ElementCount VF,
2349                             IRBuilder<> &Builder) {
2350   assert(VF.isVector() && "only vector VFs are supported");
2351 
2352   // Create and check the types.
2353   auto *ValVTy = cast<VectorType>(Val->getType());
2354   ElementCount VLen = ValVTy->getElementCount();
2355 
2356   Type *STy = Val->getType()->getScalarType();
2357   assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&
2358          "Induction Step must be an integer or FP");
2359   assert(Step->getType() == STy && "Step has wrong type");
2360 
2361   SmallVector<Constant *, 8> Indices;
2362 
2363   // Create a vector of consecutive numbers from zero to VF.
2364   VectorType *InitVecValVTy = ValVTy;
2365   Type *InitVecValSTy = STy;
2366   if (STy->isFloatingPointTy()) {
2367     InitVecValSTy =
2368         IntegerType::get(STy->getContext(), STy->getScalarSizeInBits());
2369     InitVecValVTy = VectorType::get(InitVecValSTy, VLen);
2370   }
2371   Value *InitVec = Builder.CreateStepVector(InitVecValVTy);
2372 
2373   // Splat the StartIdx
2374   Value *StartIdxSplat = Builder.CreateVectorSplat(VLen, StartIdx);
2375 
2376   if (STy->isIntegerTy()) {
2377     InitVec = Builder.CreateAdd(InitVec, StartIdxSplat);
2378     Step = Builder.CreateVectorSplat(VLen, Step);
2379     assert(Step->getType() == Val->getType() && "Invalid step vec");
2380     // FIXME: The newly created binary instructions should contain nsw/nuw
2381     // flags, which can be found from the original scalar operations.
2382     Step = Builder.CreateMul(InitVec, Step);
2383     return Builder.CreateAdd(Val, Step, "induction");
2384   }
2385 
2386   // Floating point induction.
2387   assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&
2388          "Binary Opcode should be specified for FP induction");
2389   InitVec = Builder.CreateUIToFP(InitVec, ValVTy);
2390   InitVec = Builder.CreateFAdd(InitVec, StartIdxSplat);
2391 
2392   Step = Builder.CreateVectorSplat(VLen, Step);
2393   Value *MulOp = Builder.CreateFMul(InitVec, Step);
2394   return Builder.CreateBinOp(BinOp, Val, MulOp, "induction");
2395 }
2396 
2397 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI(
2398     const InductionDescriptor &II, Value *Step, Value *Start,
2399     Instruction *EntryVal, VPValue *Def, VPTransformState &State) {
2400   IRBuilder<> &Builder = State.Builder;
2401   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
2402          "Expected either an induction phi-node or a truncate of it!");
2403 
2404   // Construct the initial value of the vector IV in the vector loop preheader
2405   auto CurrIP = Builder.saveIP();
2406   Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2407   if (isa<TruncInst>(EntryVal)) {
2408     assert(Start->getType()->isIntegerTy() &&
2409            "Truncation requires an integer type");
2410     auto *TruncType = cast<IntegerType>(EntryVal->getType());
2411     Step = Builder.CreateTrunc(Step, TruncType);
2412     Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
2413   }
2414 
2415   Value *Zero = getSignedIntOrFpConstant(Start->getType(), 0);
2416   Value *SplatStart = Builder.CreateVectorSplat(State.VF, Start);
2417   Value *SteppedStart = getStepVector(
2418       SplatStart, Zero, Step, II.getInductionOpcode(), State.VF, State.Builder);
2419 
2420   // We create vector phi nodes for both integer and floating-point induction
2421   // variables. Here, we determine the kind of arithmetic we will perform.
2422   Instruction::BinaryOps AddOp;
2423   Instruction::BinaryOps MulOp;
2424   if (Step->getType()->isIntegerTy()) {
2425     AddOp = Instruction::Add;
2426     MulOp = Instruction::Mul;
2427   } else {
2428     AddOp = II.getInductionOpcode();
2429     MulOp = Instruction::FMul;
2430   }
2431 
2432   // Multiply the vectorization factor by the step using integer or
2433   // floating-point arithmetic as appropriate.
2434   Type *StepType = Step->getType();
2435   Value *RuntimeVF;
2436   if (Step->getType()->isFloatingPointTy())
2437     RuntimeVF = getRuntimeVFAsFloat(Builder, StepType, State.VF);
2438   else
2439     RuntimeVF = getRuntimeVF(Builder, StepType, State.VF);
2440   Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF);
2441 
2442   // Create a vector splat to use in the induction update.
2443   //
2444   // FIXME: If the step is non-constant, we create the vector splat with
2445   //        IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't
2446   //        handle a constant vector splat.
2447   Value *SplatVF = isa<Constant>(Mul)
2448                        ? ConstantVector::getSplat(State.VF, cast<Constant>(Mul))
2449                        : Builder.CreateVectorSplat(State.VF, Mul);
2450   Builder.restoreIP(CurrIP);
2451 
2452   // We may need to add the step a number of times, depending on the unroll
2453   // factor. The last of those goes into the PHI.
2454   PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
2455                                     &*LoopVectorBody->getFirstInsertionPt());
2456   VecInd->setDebugLoc(EntryVal->getDebugLoc());
2457   Instruction *LastInduction = VecInd;
2458   for (unsigned Part = 0; Part < UF; ++Part) {
2459     State.set(Def, LastInduction, Part);
2460 
2461     if (isa<TruncInst>(EntryVal))
2462       addMetadata(LastInduction, EntryVal);
2463 
2464     LastInduction = cast<Instruction>(
2465         Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"));
2466     LastInduction->setDebugLoc(EntryVal->getDebugLoc());
2467   }
2468 
2469   // Move the last step to the end of the latch block. This ensures consistent
2470   // placement of all induction updates.
2471   auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
2472   auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator());
2473   LastInduction->moveBefore(Br);
2474   LastInduction->setName("vec.ind.next");
2475 
2476   VecInd->addIncoming(SteppedStart, LoopVectorPreHeader);
2477   VecInd->addIncoming(LastInduction, LoopVectorLatch);
2478 }
2479 
2480 void InnerLoopVectorizer::widenIntOrFpInduction(
2481     PHINode *IV, VPWidenIntOrFpInductionRecipe *Def, VPTransformState &State,
2482     Value *CanonicalIV) {
2483   Value *Start = Def->getStartValue()->getLiveInIRValue();
2484   const InductionDescriptor &ID = Def->getInductionDescriptor();
2485   TruncInst *Trunc = Def->getTruncInst();
2486   IRBuilder<> &Builder = State.Builder;
2487   assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");
2488   assert(!State.VF.isZero() && "VF must be non-zero");
2489 
2490   // The value from the original loop to which we are mapping the new induction
2491   // variable.
2492   Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;
2493 
2494   auto &DL = EntryVal->getModule()->getDataLayout();
2495 
2496   // Generate code for the induction step. Note that induction steps are
2497   // required to be loop-invariant
2498   auto CreateStepValue = [&](const SCEV *Step) -> Value * {
2499     assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) &&
2500            "Induction step should be loop invariant");
2501     if (PSE.getSE()->isSCEVable(IV->getType())) {
2502       SCEVExpander Exp(*PSE.getSE(), DL, "induction");
2503       return Exp.expandCodeFor(Step, Step->getType(),
2504                                State.CFG.VectorPreHeader->getTerminator());
2505     }
2506     return cast<SCEVUnknown>(Step)->getValue();
2507   };
2508 
2509   // The scalar value to broadcast. This is derived from the canonical
2510   // induction variable. If a truncation type is given, truncate the canonical
2511   // induction variable and step. Otherwise, derive these values from the
2512   // induction descriptor.
2513   auto CreateScalarIV = [&](Value *&Step) -> Value * {
2514     Value *ScalarIV = CanonicalIV;
2515     Type *NeededType = IV->getType();
2516     if (!Def->isCanonical() || ScalarIV->getType() != NeededType) {
2517       ScalarIV =
2518           NeededType->isIntegerTy()
2519               ? Builder.CreateSExtOrTrunc(ScalarIV, NeededType)
2520               : Builder.CreateCast(Instruction::SIToFP, ScalarIV, NeededType);
2521       ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID,
2522                                       State.CFG.PrevBB);
2523       ScalarIV->setName("offset.idx");
2524     }
2525     if (Trunc) {
2526       auto *TruncType = cast<IntegerType>(Trunc->getType());
2527       assert(Step->getType()->isIntegerTy() &&
2528              "Truncation requires an integer step");
2529       ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType);
2530       Step = Builder.CreateTrunc(Step, TruncType);
2531     }
2532     return ScalarIV;
2533   };
2534 
2535   // Fast-math-flags propagate from the original induction instruction.
2536   IRBuilder<>::FastMathFlagGuard FMFG(Builder);
2537   if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp()))
2538     Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags());
2539 
2540   // Now do the actual transformations, and start with creating the step value.
2541   Value *Step = CreateStepValue(ID.getStep());
2542   if (State.VF.isScalar()) {
2543     Value *ScalarIV = CreateScalarIV(Step);
2544     Type *ScalarTy = IntegerType::get(ScalarIV->getContext(),
2545                                       Step->getType()->getScalarSizeInBits());
2546 
2547     for (unsigned Part = 0; Part < UF; ++Part) {
2548       Value *StartIdx = ConstantInt::get(ScalarTy, Part);
2549       Value *EntryPart;
2550       if (Step->getType()->isFloatingPointTy()) {
2551         StartIdx = Builder.CreateUIToFP(StartIdx, Step->getType());
2552         Value *MulOp = Builder.CreateFMul(StartIdx, Step);
2553         EntryPart = Builder.CreateBinOp(ID.getInductionOpcode(), ScalarIV,
2554                                         MulOp, "induction");
2555       } else {
2556         EntryPart = Builder.CreateAdd(
2557             ScalarIV, Builder.CreateMul(StartIdx, Step), "induction");
2558       }
2559       State.set(Def, EntryPart, Part);
2560       if (Trunc) {
2561         assert(!Step->getType()->isFloatingPointTy() &&
2562                "fp inductions shouldn't be truncated");
2563         addMetadata(EntryPart, Trunc);
2564       }
2565     }
2566     return;
2567   }
2568 
2569   // Create a new independent vector induction variable, if one is needed.
2570   if (Def->needsVectorIV())
2571     createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, State);
2572 
2573   if (Def->needsScalarIV()) {
2574     // Create scalar steps that can be used by instructions we will later
2575     // scalarize. Note that the addition of the scalar steps will not increase
2576     // the number of instructions in the loop in the common case prior to
2577     // InstCombine. We will be trading one vector extract for each scalar step.
2578     Value *ScalarIV = CreateScalarIV(Step);
2579     buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, State);
2580   }
2581 }
2582 
2583 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step,
2584                                            Instruction *EntryVal,
2585                                            const InductionDescriptor &ID,
2586                                            VPValue *Def,
2587                                            VPTransformState &State) {
2588   IRBuilder<> &Builder = State.Builder;
2589   // We shouldn't have to build scalar steps if we aren't vectorizing.
2590   assert(State.VF.isVector() && "VF should be greater than one");
2591   // Get the value type and ensure it and the step have the same integer type.
2592   Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
2593   assert(ScalarIVTy == Step->getType() &&
2594          "Val and Step should have the same type");
2595 
2596   // We build scalar steps for both integer and floating-point induction
2597   // variables. Here, we determine the kind of arithmetic we will perform.
2598   Instruction::BinaryOps AddOp;
2599   Instruction::BinaryOps MulOp;
2600   if (ScalarIVTy->isIntegerTy()) {
2601     AddOp = Instruction::Add;
2602     MulOp = Instruction::Mul;
2603   } else {
2604     AddOp = ID.getInductionOpcode();
2605     MulOp = Instruction::FMul;
2606   }
2607 
2608   // Determine the number of scalars we need to generate for each unroll
2609   // iteration.
2610   bool FirstLaneOnly = vputils::onlyFirstLaneUsed(Def);
2611   unsigned Lanes = FirstLaneOnly ? 1 : State.VF.getKnownMinValue();
2612   // Compute the scalar steps and save the results in State.
2613   Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(),
2614                                      ScalarIVTy->getScalarSizeInBits());
2615   Type *VecIVTy = nullptr;
2616   Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr;
2617   if (!FirstLaneOnly && State.VF.isScalable()) {
2618     VecIVTy = VectorType::get(ScalarIVTy, State.VF);
2619     UnitStepVec =
2620         Builder.CreateStepVector(VectorType::get(IntStepTy, State.VF));
2621     SplatStep = Builder.CreateVectorSplat(State.VF, Step);
2622     SplatIV = Builder.CreateVectorSplat(State.VF, ScalarIV);
2623   }
2624 
2625   for (unsigned Part = 0; Part < State.UF; ++Part) {
2626     Value *StartIdx0 = createStepForVF(Builder, IntStepTy, State.VF, Part);
2627 
2628     if (!FirstLaneOnly && State.VF.isScalable()) {
2629       auto *SplatStartIdx = Builder.CreateVectorSplat(State.VF, StartIdx0);
2630       auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec);
2631       if (ScalarIVTy->isFloatingPointTy())
2632         InitVec = Builder.CreateSIToFP(InitVec, VecIVTy);
2633       auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep);
2634       auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul);
2635       State.set(Def, Add, Part);
2636       // It's useful to record the lane values too for the known minimum number
2637       // of elements so we do those below. This improves the code quality when
2638       // trying to extract the first element, for example.
2639     }
2640 
2641     if (ScalarIVTy->isFloatingPointTy())
2642       StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy);
2643 
2644     for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
2645       Value *StartIdx = Builder.CreateBinOp(
2646           AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane));
2647       // The step returned by `createStepForVF` is a runtime-evaluated value
2648       // when VF is scalable. Otherwise, it should be folded into a Constant.
2649       assert((State.VF.isScalable() || isa<Constant>(StartIdx)) &&
2650              "Expected StartIdx to be folded to a constant when VF is not "
2651              "scalable");
2652       auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
2653       auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul);
2654       State.set(Def, Add, VPIteration(Part, Lane));
2655     }
2656   }
2657 }
2658 
2659 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def,
2660                                                     const VPIteration &Instance,
2661                                                     VPTransformState &State) {
2662   Value *ScalarInst = State.get(Def, Instance);
2663   Value *VectorValue = State.get(Def, Instance.Part);
2664   VectorValue = Builder.CreateInsertElement(
2665       VectorValue, ScalarInst,
2666       Instance.Lane.getAsRuntimeExpr(State.Builder, VF));
2667   State.set(Def, VectorValue, Instance.Part);
2668 }
2669 
2670 // Return whether we allow using masked interleave-groups (for dealing with
2671 // strided loads/stores that reside in predicated blocks, or for dealing
2672 // with gaps).
2673 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) {
2674   // If an override option has been passed in for interleaved accesses, use it.
2675   if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0)
2676     return EnableMaskedInterleavedMemAccesses;
2677 
2678   return TTI.enableMaskedInterleavedAccessVectorization();
2679 }
2680 
2681 // Try to vectorize the interleave group that \p Instr belongs to.
2682 //
2683 // E.g. Translate following interleaved load group (factor = 3):
2684 //   for (i = 0; i < N; i+=3) {
2685 //     R = Pic[i];             // Member of index 0
2686 //     G = Pic[i+1];           // Member of index 1
2687 //     B = Pic[i+2];           // Member of index 2
2688 //     ... // do something to R, G, B
2689 //   }
2690 // To:
2691 //   %wide.vec = load <12 x i32>                       ; Read 4 tuples of R,G,B
2692 //   %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9>   ; R elements
2693 //   %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10>  ; G elements
2694 //   %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11>  ; B elements
2695 //
2696 // Or translate following interleaved store group (factor = 3):
2697 //   for (i = 0; i < N; i+=3) {
2698 //     ... do something to R, G, B
2699 //     Pic[i]   = R;           // Member of index 0
2700 //     Pic[i+1] = G;           // Member of index 1
2701 //     Pic[i+2] = B;           // Member of index 2
2702 //   }
2703 // To:
2704 //   %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
2705 //   %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u>
2706 //   %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
2707 //        <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>    ; Interleave R,G,B elements
2708 //   store <12 x i32> %interleaved.vec              ; Write 4 tuples of R,G,B
2709 void InnerLoopVectorizer::vectorizeInterleaveGroup(
2710     const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs,
2711     VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues,
2712     VPValue *BlockInMask) {
2713   Instruction *Instr = Group->getInsertPos();
2714   const DataLayout &DL = Instr->getModule()->getDataLayout();
2715 
2716   // Prepare for the vector type of the interleaved load/store.
2717   Type *ScalarTy = getLoadStoreType(Instr);
2718   unsigned InterleaveFactor = Group->getFactor();
2719   assert(!VF.isScalable() && "scalable vectors not yet supported.");
2720   auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor);
2721 
2722   // Prepare for the new pointers.
2723   SmallVector<Value *, 2> AddrParts;
2724   unsigned Index = Group->getIndex(Instr);
2725 
2726   // TODO: extend the masked interleaved-group support to reversed access.
2727   assert((!BlockInMask || !Group->isReverse()) &&
2728          "Reversed masked interleave-group not supported.");
2729 
2730   // If the group is reverse, adjust the index to refer to the last vector lane
2731   // instead of the first. We adjust the index from the first vector lane,
2732   // rather than directly getting the pointer for lane VF - 1, because the
2733   // pointer operand of the interleaved access is supposed to be uniform. For
2734   // uniform instructions, we're only required to generate a value for the
2735   // first vector lane in each unroll iteration.
2736   if (Group->isReverse())
2737     Index += (VF.getKnownMinValue() - 1) * Group->getFactor();
2738 
2739   for (unsigned Part = 0; Part < UF; Part++) {
2740     Value *AddrPart = State.get(Addr, VPIteration(Part, 0));
2741     setDebugLocFromInst(AddrPart);
2742 
2743     // Notice current instruction could be any index. Need to adjust the address
2744     // to the member of index 0.
2745     //
2746     // E.g.  a = A[i+1];     // Member of index 1 (Current instruction)
2747     //       b = A[i];       // Member of index 0
2748     // Current pointer is pointed to A[i+1], adjust it to A[i].
2749     //
2750     // E.g.  A[i+1] = a;     // Member of index 1
2751     //       A[i]   = b;     // Member of index 0
2752     //       A[i+2] = c;     // Member of index 2 (Current instruction)
2753     // Current pointer is pointed to A[i+2], adjust it to A[i].
2754 
2755     bool InBounds = false;
2756     if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts()))
2757       InBounds = gep->isInBounds();
2758     AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index));
2759     cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds);
2760 
2761     // Cast to the vector pointer type.
2762     unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace();
2763     Type *PtrTy = VecTy->getPointerTo(AddressSpace);
2764     AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy));
2765   }
2766 
2767   setDebugLocFromInst(Instr);
2768   Value *PoisonVec = PoisonValue::get(VecTy);
2769 
2770   Value *MaskForGaps = nullptr;
2771   if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) {
2772     MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2773     assert(MaskForGaps && "Mask for Gaps is required but it is null");
2774   }
2775 
2776   // Vectorize the interleaved load group.
2777   if (isa<LoadInst>(Instr)) {
2778     // For each unroll part, create a wide load for the group.
2779     SmallVector<Value *, 2> NewLoads;
2780     for (unsigned Part = 0; Part < UF; Part++) {
2781       Instruction *NewLoad;
2782       if (BlockInMask || MaskForGaps) {
2783         assert(useMaskedInterleavedAccesses(*TTI) &&
2784                "masked interleaved groups are not allowed.");
2785         Value *GroupMask = MaskForGaps;
2786         if (BlockInMask) {
2787           Value *BlockInMaskPart = State.get(BlockInMask, Part);
2788           Value *ShuffledMask = Builder.CreateShuffleVector(
2789               BlockInMaskPart,
2790               createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2791               "interleaved.mask");
2792           GroupMask = MaskForGaps
2793                           ? Builder.CreateBinOp(Instruction::And, ShuffledMask,
2794                                                 MaskForGaps)
2795                           : ShuffledMask;
2796         }
2797         NewLoad =
2798             Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(),
2799                                      GroupMask, PoisonVec, "wide.masked.vec");
2800       }
2801       else
2802         NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part],
2803                                             Group->getAlign(), "wide.vec");
2804       Group->addMetadata(NewLoad);
2805       NewLoads.push_back(NewLoad);
2806     }
2807 
2808     // For each member in the group, shuffle out the appropriate data from the
2809     // wide loads.
2810     unsigned J = 0;
2811     for (unsigned I = 0; I < InterleaveFactor; ++I) {
2812       Instruction *Member = Group->getMember(I);
2813 
2814       // Skip the gaps in the group.
2815       if (!Member)
2816         continue;
2817 
2818       auto StrideMask =
2819           createStrideMask(I, InterleaveFactor, VF.getKnownMinValue());
2820       for (unsigned Part = 0; Part < UF; Part++) {
2821         Value *StridedVec = Builder.CreateShuffleVector(
2822             NewLoads[Part], StrideMask, "strided.vec");
2823 
2824         // If this member has different type, cast the result type.
2825         if (Member->getType() != ScalarTy) {
2826           assert(!VF.isScalable() && "VF is assumed to be non scalable.");
2827           VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
2828           StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL);
2829         }
2830 
2831         if (Group->isReverse())
2832           StridedVec = Builder.CreateVectorReverse(StridedVec, "reverse");
2833 
2834         State.set(VPDefs[J], StridedVec, Part);
2835       }
2836       ++J;
2837     }
2838     return;
2839   }
2840 
2841   // The sub vector type for current instruction.
2842   auto *SubVT = VectorType::get(ScalarTy, VF);
2843 
2844   // Vectorize the interleaved store group.
2845   MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2846   assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) &&
2847          "masked interleaved groups are not allowed.");
2848   assert((!MaskForGaps || !VF.isScalable()) &&
2849          "masking gaps for scalable vectors is not yet supported.");
2850   for (unsigned Part = 0; Part < UF; Part++) {
2851     // Collect the stored vector from each member.
2852     SmallVector<Value *, 4> StoredVecs;
2853     for (unsigned i = 0; i < InterleaveFactor; i++) {
2854       assert((Group->getMember(i) || MaskForGaps) &&
2855              "Fail to get a member from an interleaved store group");
2856       Instruction *Member = Group->getMember(i);
2857 
2858       // Skip the gaps in the group.
2859       if (!Member) {
2860         Value *Undef = PoisonValue::get(SubVT);
2861         StoredVecs.push_back(Undef);
2862         continue;
2863       }
2864 
2865       Value *StoredVec = State.get(StoredValues[i], Part);
2866 
2867       if (Group->isReverse())
2868         StoredVec = Builder.CreateVectorReverse(StoredVec, "reverse");
2869 
2870       // If this member has different type, cast it to a unified type.
2871 
2872       if (StoredVec->getType() != SubVT)
2873         StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL);
2874 
2875       StoredVecs.push_back(StoredVec);
2876     }
2877 
2878     // Concatenate all vectors into a wide vector.
2879     Value *WideVec = concatenateVectors(Builder, StoredVecs);
2880 
2881     // Interleave the elements in the wide vector.
2882     Value *IVec = Builder.CreateShuffleVector(
2883         WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor),
2884         "interleaved.vec");
2885 
2886     Instruction *NewStoreInstr;
2887     if (BlockInMask || MaskForGaps) {
2888       Value *GroupMask = MaskForGaps;
2889       if (BlockInMask) {
2890         Value *BlockInMaskPart = State.get(BlockInMask, Part);
2891         Value *ShuffledMask = Builder.CreateShuffleVector(
2892             BlockInMaskPart,
2893             createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2894             "interleaved.mask");
2895         GroupMask = MaskForGaps ? Builder.CreateBinOp(Instruction::And,
2896                                                       ShuffledMask, MaskForGaps)
2897                                 : ShuffledMask;
2898       }
2899       NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part],
2900                                                 Group->getAlign(), GroupMask);
2901     } else
2902       NewStoreInstr =
2903           Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign());
2904 
2905     Group->addMetadata(NewStoreInstr);
2906   }
2907 }
2908 
2909 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr,
2910                                                VPReplicateRecipe *RepRecipe,
2911                                                const VPIteration &Instance,
2912                                                bool IfPredicateInstr,
2913                                                VPTransformState &State) {
2914   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
2915 
2916   // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for
2917   // the first lane and part.
2918   if (isa<NoAliasScopeDeclInst>(Instr))
2919     if (!Instance.isFirstIteration())
2920       return;
2921 
2922   setDebugLocFromInst(Instr);
2923 
2924   // Does this instruction return a value ?
2925   bool IsVoidRetTy = Instr->getType()->isVoidTy();
2926 
2927   Instruction *Cloned = Instr->clone();
2928   if (!IsVoidRetTy)
2929     Cloned->setName(Instr->getName() + ".cloned");
2930 
2931   // If the scalarized instruction contributes to the address computation of a
2932   // widen masked load/store which was in a basic block that needed predication
2933   // and is not predicated after vectorization, we can't propagate
2934   // poison-generating flags (nuw/nsw, exact, inbounds, etc.). The scalarized
2935   // instruction could feed a poison value to the base address of the widen
2936   // load/store.
2937   if (State.MayGeneratePoisonRecipes.contains(RepRecipe))
2938     Cloned->dropPoisonGeneratingFlags();
2939 
2940   State.Builder.SetInsertPoint(Builder.GetInsertBlock(),
2941                                Builder.GetInsertPoint());
2942   // Replace the operands of the cloned instructions with their scalar
2943   // equivalents in the new loop.
2944   for (auto &I : enumerate(RepRecipe->operands())) {
2945     auto InputInstance = Instance;
2946     VPValue *Operand = I.value();
2947     if (State.Plan->isUniformAfterVectorization(Operand))
2948       InputInstance.Lane = VPLane::getFirstLane();
2949     Cloned->setOperand(I.index(), State.get(Operand, InputInstance));
2950   }
2951   addNewMetadata(Cloned, Instr);
2952 
2953   // Place the cloned scalar in the new loop.
2954   Builder.Insert(Cloned);
2955 
2956   State.set(RepRecipe, Cloned, Instance);
2957 
2958   // If we just cloned a new assumption, add it the assumption cache.
2959   if (auto *II = dyn_cast<AssumeInst>(Cloned))
2960     AC->registerAssumption(II);
2961 
2962   // End if-block.
2963   if (IfPredicateInstr)
2964     PredicatedInstructions.push_back(Cloned);
2965 }
2966 
2967 void InnerLoopVectorizer::createHeaderBranch(Loop *L) {
2968   BasicBlock *Header = L->getHeader();
2969   assert(!L->getLoopLatch() && "loop should not have a latch at this point");
2970 
2971   IRBuilder<> B(Header->getTerminator());
2972   Instruction *OldInst =
2973       getDebugLocFromInstOrOperands(Legal->getPrimaryInduction());
2974   setDebugLocFromInst(OldInst, &B);
2975 
2976   // Connect the header to the exit and header blocks and replace the old
2977   // terminator.
2978   B.CreateCondBr(B.getTrue(), L->getUniqueExitBlock(), Header);
2979 
2980   // Now we have two terminators. Remove the old one from the block.
2981   Header->getTerminator()->eraseFromParent();
2982 }
2983 
2984 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) {
2985   if (TripCount)
2986     return TripCount;
2987 
2988   assert(L && "Create Trip Count for null loop.");
2989   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
2990   // Find the loop boundaries.
2991   ScalarEvolution *SE = PSE.getSE();
2992   const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
2993   assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
2994          "Invalid loop count");
2995 
2996   Type *IdxTy = Legal->getWidestInductionType();
2997   assert(IdxTy && "No type for induction");
2998 
2999   // The exit count might have the type of i64 while the phi is i32. This can
3000   // happen if we have an induction variable that is sign extended before the
3001   // compare. The only way that we get a backedge taken count is that the
3002   // induction variable was signed and as such will not overflow. In such a case
3003   // truncation is legal.
3004   if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) >
3005       IdxTy->getPrimitiveSizeInBits())
3006     BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy);
3007   BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);
3008 
3009   // Get the total trip count from the count by adding 1.
3010   const SCEV *ExitCount = SE->getAddExpr(
3011       BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
3012 
3013   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
3014 
3015   // Expand the trip count and place the new instructions in the preheader.
3016   // Notice that the pre-header does not change, only the loop body.
3017   SCEVExpander Exp(*SE, DL, "induction");
3018 
3019   // Count holds the overall loop count (N).
3020   TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
3021                                 L->getLoopPreheader()->getTerminator());
3022 
3023   if (TripCount->getType()->isPointerTy())
3024     TripCount =
3025         CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int",
3026                                     L->getLoopPreheader()->getTerminator());
3027 
3028   return TripCount;
3029 }
3030 
3031 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) {
3032   if (VectorTripCount)
3033     return VectorTripCount;
3034 
3035   Value *TC = getOrCreateTripCount(L);
3036   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3037 
3038   Type *Ty = TC->getType();
3039   // This is where we can make the step a runtime constant.
3040   Value *Step = createStepForVF(Builder, Ty, VF, UF);
3041 
3042   // If the tail is to be folded by masking, round the number of iterations N
3043   // up to a multiple of Step instead of rounding down. This is done by first
3044   // adding Step-1 and then rounding down. Note that it's ok if this addition
3045   // overflows: the vector induction variable will eventually wrap to zero given
3046   // that it starts at zero and its Step is a power of two; the loop will then
3047   // exit, with the last early-exit vector comparison also producing all-true.
3048   if (Cost->foldTailByMasking()) {
3049     assert(isPowerOf2_32(VF.getKnownMinValue() * UF) &&
3050            "VF*UF must be a power of 2 when folding tail by masking");
3051     Value *NumLanes = getRuntimeVF(Builder, Ty, VF * UF);
3052     TC = Builder.CreateAdd(
3053         TC, Builder.CreateSub(NumLanes, ConstantInt::get(Ty, 1)), "n.rnd.up");
3054   }
3055 
3056   // Now we need to generate the expression for the part of the loop that the
3057   // vectorized body will execute. This is equal to N - (N % Step) if scalar
3058   // iterations are not required for correctness, or N - Step, otherwise. Step
3059   // is equal to the vectorization factor (number of SIMD elements) times the
3060   // unroll factor (number of SIMD instructions).
3061   Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
3062 
3063   // There are cases where we *must* run at least one iteration in the remainder
3064   // loop.  See the cost model for when this can happen.  If the step evenly
3065   // divides the trip count, we set the remainder to be equal to the step. If
3066   // the step does not evenly divide the trip count, no adjustment is necessary
3067   // since there will already be scalar iterations. Note that the minimum
3068   // iterations check ensures that N >= Step.
3069   if (Cost->requiresScalarEpilogue(VF)) {
3070     auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
3071     R = Builder.CreateSelect(IsZero, Step, R);
3072   }
3073 
3074   VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
3075 
3076   return VectorTripCount;
3077 }
3078 
3079 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy,
3080                                                    const DataLayout &DL) {
3081   // Verify that V is a vector type with same number of elements as DstVTy.
3082   auto *DstFVTy = cast<FixedVectorType>(DstVTy);
3083   unsigned VF = DstFVTy->getNumElements();
3084   auto *SrcVecTy = cast<FixedVectorType>(V->getType());
3085   assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match");
3086   Type *SrcElemTy = SrcVecTy->getElementType();
3087   Type *DstElemTy = DstFVTy->getElementType();
3088   assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&
3089          "Vector elements must have same size");
3090 
3091   // Do a direct cast if element types are castable.
3092   if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
3093     return Builder.CreateBitOrPointerCast(V, DstFVTy);
3094   }
3095   // V cannot be directly casted to desired vector type.
3096   // May happen when V is a floating point vector but DstVTy is a vector of
3097   // pointers or vice-versa. Handle this using a two-step bitcast using an
3098   // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
3099   assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&
3100          "Only one type should be a pointer type");
3101   assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&
3102          "Only one type should be a floating point type");
3103   Type *IntTy =
3104       IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
3105   auto *VecIntTy = FixedVectorType::get(IntTy, VF);
3106   Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
3107   return Builder.CreateBitOrPointerCast(CastVal, DstFVTy);
3108 }
3109 
3110 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L,
3111                                                          BasicBlock *Bypass) {
3112   Value *Count = getOrCreateTripCount(L);
3113   // Reuse existing vector loop preheader for TC checks.
3114   // Note that new preheader block is generated for vector loop.
3115   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
3116   IRBuilder<> Builder(TCCheckBlock->getTerminator());
3117 
3118   // Generate code to check if the loop's trip count is less than VF * UF, or
3119   // equal to it in case a scalar epilogue is required; this implies that the
3120   // vector trip count is zero. This check also covers the case where adding one
3121   // to the backedge-taken count overflowed leading to an incorrect trip count
3122   // of zero. In this case we will also jump to the scalar loop.
3123   auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE
3124                                             : ICmpInst::ICMP_ULT;
3125 
3126   // If tail is to be folded, vector loop takes care of all iterations.
3127   Value *CheckMinIters = Builder.getFalse();
3128   if (!Cost->foldTailByMasking()) {
3129     Value *Step = createStepForVF(Builder, Count->getType(), VF, UF);
3130     CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check");
3131   }
3132   // Create new preheader for vector loop.
3133   LoopVectorPreHeader =
3134       SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr,
3135                  "vector.ph");
3136 
3137   assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
3138                                DT->getNode(Bypass)->getIDom()) &&
3139          "TC check is expected to dominate Bypass");
3140 
3141   // Update dominator for Bypass & LoopExit (if needed).
3142   DT->changeImmediateDominator(Bypass, TCCheckBlock);
3143   if (!Cost->requiresScalarEpilogue(VF))
3144     // If there is an epilogue which must run, there's no edge from the
3145     // middle block to exit blocks  and thus no need to update the immediate
3146     // dominator of the exit blocks.
3147     DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
3148 
3149   ReplaceInstWithInst(
3150       TCCheckBlock->getTerminator(),
3151       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
3152   LoopBypassBlocks.push_back(TCCheckBlock);
3153 }
3154 
3155 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) {
3156 
3157   BasicBlock *const SCEVCheckBlock =
3158       RTChecks.emitSCEVChecks(L, Bypass, LoopVectorPreHeader, LoopExitBlock);
3159   if (!SCEVCheckBlock)
3160     return nullptr;
3161 
3162   assert(!(SCEVCheckBlock->getParent()->hasOptSize() ||
3163            (OptForSizeBasedOnProfile &&
3164             Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) &&
3165          "Cannot SCEV check stride or overflow when optimizing for size");
3166 
3167 
3168   // Update dominator only if this is first RT check.
3169   if (LoopBypassBlocks.empty()) {
3170     DT->changeImmediateDominator(Bypass, SCEVCheckBlock);
3171     if (!Cost->requiresScalarEpilogue(VF))
3172       // If there is an epilogue which must run, there's no edge from the
3173       // middle block to exit blocks  and thus no need to update the immediate
3174       // dominator of the exit blocks.
3175       DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock);
3176   }
3177 
3178   LoopBypassBlocks.push_back(SCEVCheckBlock);
3179   AddedSafetyChecks = true;
3180   return SCEVCheckBlock;
3181 }
3182 
3183 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L,
3184                                                       BasicBlock *Bypass) {
3185   // VPlan-native path does not do any analysis for runtime checks currently.
3186   if (EnableVPlanNativePath)
3187     return nullptr;
3188 
3189   BasicBlock *const MemCheckBlock =
3190       RTChecks.emitMemRuntimeChecks(L, Bypass, LoopVectorPreHeader);
3191 
3192   // Check if we generated code that checks in runtime if arrays overlap. We put
3193   // the checks into a separate block to make the more common case of few
3194   // elements faster.
3195   if (!MemCheckBlock)
3196     return nullptr;
3197 
3198   if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) {
3199     assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled &&
3200            "Cannot emit memory checks when optimizing for size, unless forced "
3201            "to vectorize.");
3202     ORE->emit([&]() {
3203       return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize",
3204                                         L->getStartLoc(), L->getHeader())
3205              << "Code-size may be reduced by not forcing "
3206                 "vectorization, or by source-code modifications "
3207                 "eliminating the need for runtime checks "
3208                 "(e.g., adding 'restrict').";
3209     });
3210   }
3211 
3212   LoopBypassBlocks.push_back(MemCheckBlock);
3213 
3214   AddedSafetyChecks = true;
3215 
3216   // We currently don't use LoopVersioning for the actual loop cloning but we
3217   // still use it to add the noalias metadata.
3218   LVer = std::make_unique<LoopVersioning>(
3219       *Legal->getLAI(),
3220       Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI,
3221       DT, PSE.getSE());
3222   LVer->prepareNoAliasMetadata();
3223   return MemCheckBlock;
3224 }
3225 
3226 Value *InnerLoopVectorizer::emitTransformedIndex(
3227     IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL,
3228     const InductionDescriptor &ID, BasicBlock *VectorHeader) const {
3229 
3230   SCEVExpander Exp(*SE, DL, "induction");
3231   auto Step = ID.getStep();
3232   auto StartValue = ID.getStartValue();
3233   assert(Index->getType()->getScalarType() == Step->getType() &&
3234          "Index scalar type does not match StepValue type");
3235 
3236   // Note: the IR at this point is broken. We cannot use SE to create any new
3237   // SCEV and then expand it, hoping that SCEV's simplification will give us
3238   // a more optimal code. Unfortunately, attempt of doing so on invalid IR may
3239   // lead to various SCEV crashes. So all we can do is to use builder and rely
3240   // on InstCombine for future simplifications. Here we handle some trivial
3241   // cases only.
3242   auto CreateAdd = [&B](Value *X, Value *Y) {
3243     assert(X->getType() == Y->getType() && "Types don't match!");
3244     if (auto *CX = dyn_cast<ConstantInt>(X))
3245       if (CX->isZero())
3246         return Y;
3247     if (auto *CY = dyn_cast<ConstantInt>(Y))
3248       if (CY->isZero())
3249         return X;
3250     return B.CreateAdd(X, Y);
3251   };
3252 
3253   // We allow X to be a vector type, in which case Y will potentially be
3254   // splatted into a vector with the same element count.
3255   auto CreateMul = [&B](Value *X, Value *Y) {
3256     assert(X->getType()->getScalarType() == Y->getType() &&
3257            "Types don't match!");
3258     if (auto *CX = dyn_cast<ConstantInt>(X))
3259       if (CX->isOne())
3260         return Y;
3261     if (auto *CY = dyn_cast<ConstantInt>(Y))
3262       if (CY->isOne())
3263         return X;
3264     VectorType *XVTy = dyn_cast<VectorType>(X->getType());
3265     if (XVTy && !isa<VectorType>(Y->getType()))
3266       Y = B.CreateVectorSplat(XVTy->getElementCount(), Y);
3267     return B.CreateMul(X, Y);
3268   };
3269 
3270   // Get a suitable insert point for SCEV expansion. For blocks in the vector
3271   // loop, choose the end of the vector loop header (=VectorHeader), because
3272   // the DomTree is not kept up-to-date for additional blocks generated in the
3273   // vector loop. By using the header as insertion point, we guarantee that the
3274   // expanded instructions dominate all their uses.
3275   auto GetInsertPoint = [this, &B, VectorHeader]() {
3276     BasicBlock *InsertBB = B.GetInsertPoint()->getParent();
3277     if (InsertBB != LoopVectorBody &&
3278         LI->getLoopFor(VectorHeader) == LI->getLoopFor(InsertBB))
3279       return VectorHeader->getTerminator();
3280     return &*B.GetInsertPoint();
3281   };
3282 
3283   switch (ID.getKind()) {
3284   case InductionDescriptor::IK_IntInduction: {
3285     assert(!isa<VectorType>(Index->getType()) &&
3286            "Vector indices not supported for integer inductions yet");
3287     assert(Index->getType() == StartValue->getType() &&
3288            "Index type does not match StartValue type");
3289     if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne())
3290       return B.CreateSub(StartValue, Index);
3291     auto *Offset = CreateMul(
3292         Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint()));
3293     return CreateAdd(StartValue, Offset);
3294   }
3295   case InductionDescriptor::IK_PtrInduction: {
3296     assert(isa<SCEVConstant>(Step) &&
3297            "Expected constant step for pointer induction");
3298     return B.CreateGEP(
3299         ID.getElementType(), StartValue,
3300         CreateMul(Index,
3301                   Exp.expandCodeFor(Step, Index->getType()->getScalarType(),
3302                                     GetInsertPoint())));
3303   }
3304   case InductionDescriptor::IK_FpInduction: {
3305     assert(!isa<VectorType>(Index->getType()) &&
3306            "Vector indices not supported for FP inductions yet");
3307     assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
3308     auto InductionBinOp = ID.getInductionBinOp();
3309     assert(InductionBinOp &&
3310            (InductionBinOp->getOpcode() == Instruction::FAdd ||
3311             InductionBinOp->getOpcode() == Instruction::FSub) &&
3312            "Original bin op should be defined for FP induction");
3313 
3314     Value *StepValue = cast<SCEVUnknown>(Step)->getValue();
3315     Value *MulExp = B.CreateFMul(StepValue, Index);
3316     return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp,
3317                          "induction");
3318   }
3319   case InductionDescriptor::IK_NoInduction:
3320     return nullptr;
3321   }
3322   llvm_unreachable("invalid enum");
3323 }
3324 
3325 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) {
3326   LoopScalarBody = OrigLoop->getHeader();
3327   LoopVectorPreHeader = OrigLoop->getLoopPreheader();
3328   assert(LoopVectorPreHeader && "Invalid loop structure");
3329   LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr
3330   assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) &&
3331          "multiple exit loop without required epilogue?");
3332 
3333   LoopMiddleBlock =
3334       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3335                  LI, nullptr, Twine(Prefix) + "middle.block");
3336   LoopScalarPreHeader =
3337       SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI,
3338                  nullptr, Twine(Prefix) + "scalar.ph");
3339 
3340   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3341 
3342   // Set up the middle block terminator.  Two cases:
3343   // 1) If we know that we must execute the scalar epilogue, emit an
3344   //    unconditional branch.
3345   // 2) Otherwise, we must have a single unique exit block (due to how we
3346   //    implement the multiple exit case).  In this case, set up a conditonal
3347   //    branch from the middle block to the loop scalar preheader, and the
3348   //    exit block.  completeLoopSkeleton will update the condition to use an
3349   //    iteration check, if required to decide whether to execute the remainder.
3350   BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ?
3351     BranchInst::Create(LoopScalarPreHeader) :
3352     BranchInst::Create(LoopExitBlock, LoopScalarPreHeader,
3353                        Builder.getTrue());
3354   BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3355   ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst);
3356 
3357   // We intentionally don't let SplitBlock to update LoopInfo since
3358   // LoopVectorBody should belong to another loop than LoopVectorPreHeader.
3359   // LoopVectorBody is explicitly added to the correct place few lines later.
3360   LoopVectorBody =
3361       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3362                  nullptr, nullptr, Twine(Prefix) + "vector.body");
3363 
3364   // Update dominator for loop exit.
3365   if (!Cost->requiresScalarEpilogue(VF))
3366     // If there is an epilogue which must run, there's no edge from the
3367     // middle block to exit blocks  and thus no need to update the immediate
3368     // dominator of the exit blocks.
3369     DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
3370 
3371   // Create and register the new vector loop.
3372   Loop *Lp = LI->AllocateLoop();
3373   Loop *ParentLoop = OrigLoop->getParentLoop();
3374 
3375   // Insert the new loop into the loop nest and register the new basic blocks
3376   // before calling any utilities such as SCEV that require valid LoopInfo.
3377   if (ParentLoop) {
3378     ParentLoop->addChildLoop(Lp);
3379   } else {
3380     LI->addTopLevelLoop(Lp);
3381   }
3382   Lp->addBasicBlockToLoop(LoopVectorBody, *LI);
3383   return Lp;
3384 }
3385 
3386 void InnerLoopVectorizer::createInductionResumeValues(
3387     Loop *L, std::pair<BasicBlock *, Value *> AdditionalBypass) {
3388   assert(((AdditionalBypass.first && AdditionalBypass.second) ||
3389           (!AdditionalBypass.first && !AdditionalBypass.second)) &&
3390          "Inconsistent information about additional bypass.");
3391 
3392   Value *VectorTripCount = getOrCreateVectorTripCount(L);
3393   assert(VectorTripCount && L && "Expected valid arguments");
3394   // We are going to resume the execution of the scalar loop.
3395   // Go over all of the induction variables that we found and fix the
3396   // PHIs that are left in the scalar version of the loop.
3397   // The starting values of PHI nodes depend on the counter of the last
3398   // iteration in the vectorized loop.
3399   // If we come from a bypass edge then we need to start from the original
3400   // start value.
3401   Instruction *OldInduction = Legal->getPrimaryInduction();
3402   for (auto &InductionEntry : Legal->getInductionVars()) {
3403     PHINode *OrigPhi = InductionEntry.first;
3404     InductionDescriptor II = InductionEntry.second;
3405 
3406     // Create phi nodes to merge from the  backedge-taken check block.
3407     PHINode *BCResumeVal =
3408         PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val",
3409                         LoopScalarPreHeader->getTerminator());
3410     // Copy original phi DL over to the new one.
3411     BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc());
3412     Value *&EndValue = IVEndValues[OrigPhi];
3413     Value *EndValueFromAdditionalBypass = AdditionalBypass.second;
3414     if (OrigPhi == OldInduction) {
3415       // We know what the end value is.
3416       EndValue = VectorTripCount;
3417     } else {
3418       IRBuilder<> B(L->getLoopPreheader()->getTerminator());
3419 
3420       // Fast-math-flags propagate from the original induction instruction.
3421       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3422         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3423 
3424       Type *StepType = II.getStep()->getType();
3425       Instruction::CastOps CastOp =
3426           CastInst::getCastOpcode(VectorTripCount, true, StepType, true);
3427       Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd");
3428       const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout();
3429       EndValue =
3430           emitTransformedIndex(B, CRD, PSE.getSE(), DL, II, LoopVectorBody);
3431       EndValue->setName("ind.end");
3432 
3433       // Compute the end value for the additional bypass (if applicable).
3434       if (AdditionalBypass.first) {
3435         B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt()));
3436         CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true,
3437                                          StepType, true);
3438         CRD =
3439             B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd");
3440         EndValueFromAdditionalBypass =
3441             emitTransformedIndex(B, CRD, PSE.getSE(), DL, II, LoopVectorBody);
3442         EndValueFromAdditionalBypass->setName("ind.end");
3443       }
3444     }
3445     // The new PHI merges the original incoming value, in case of a bypass,
3446     // or the value at the end of the vectorized loop.
3447     BCResumeVal->addIncoming(EndValue, LoopMiddleBlock);
3448 
3449     // Fix the scalar body counter (PHI node).
3450     // The old induction's phi node in the scalar body needs the truncated
3451     // value.
3452     for (BasicBlock *BB : LoopBypassBlocks)
3453       BCResumeVal->addIncoming(II.getStartValue(), BB);
3454 
3455     if (AdditionalBypass.first)
3456       BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first,
3457                                             EndValueFromAdditionalBypass);
3458 
3459     OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal);
3460   }
3461 }
3462 
3463 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L,
3464                                                       MDNode *OrigLoopID) {
3465   assert(L && "Expected valid loop.");
3466 
3467   // The trip counts should be cached by now.
3468   Value *Count = getOrCreateTripCount(L);
3469   Value *VectorTripCount = getOrCreateVectorTripCount(L);
3470 
3471   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3472 
3473   // Add a check in the middle block to see if we have completed
3474   // all of the iterations in the first vector loop.  Three cases:
3475   // 1) If we require a scalar epilogue, there is no conditional branch as
3476   //    we unconditionally branch to the scalar preheader.  Do nothing.
3477   // 2) If (N - N%VF) == N, then we *don't* need to run the remainder.
3478   //    Thus if tail is to be folded, we know we don't need to run the
3479   //    remainder and we can use the previous value for the condition (true).
3480   // 3) Otherwise, construct a runtime check.
3481   if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) {
3482     Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ,
3483                                         Count, VectorTripCount, "cmp.n",
3484                                         LoopMiddleBlock->getTerminator());
3485 
3486     // Here we use the same DebugLoc as the scalar loop latch terminator instead
3487     // of the corresponding compare because they may have ended up with
3488     // different line numbers and we want to avoid awkward line stepping while
3489     // debugging. Eg. if the compare has got a line number inside the loop.
3490     CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3491     cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN);
3492   }
3493 
3494   // Get ready to start creating new instructions into the vectorized body.
3495   assert(LoopVectorPreHeader == L->getLoopPreheader() &&
3496          "Inconsistent vector loop preheader");
3497   Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt());
3498 
3499 #ifdef EXPENSIVE_CHECKS
3500   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
3501   LI->verify(*DT);
3502 #endif
3503 
3504   return LoopVectorPreHeader;
3505 }
3506 
3507 std::pair<BasicBlock *, Value *>
3508 InnerLoopVectorizer::createVectorizedLoopSkeleton() {
3509   /*
3510    In this function we generate a new loop. The new loop will contain
3511    the vectorized instructions while the old loop will continue to run the
3512    scalar remainder.
3513 
3514        [ ] <-- loop iteration number check.
3515     /   |
3516    /    v
3517   |    [ ] <-- vector loop bypass (may consist of multiple blocks).
3518   |  /  |
3519   | /   v
3520   ||   [ ]     <-- vector pre header.
3521   |/    |
3522   |     v
3523   |    [  ] \
3524   |    [  ]_|   <-- vector loop.
3525   |     |
3526   |     v
3527   \   -[ ]   <--- middle-block.
3528    \/   |
3529    /\   v
3530    | ->[ ]     <--- new preheader.
3531    |    |
3532  (opt)  v      <-- edge from middle to exit iff epilogue is not required.
3533    |   [ ] \
3534    |   [ ]_|   <-- old scalar loop to handle remainder (scalar epilogue).
3535     \   |
3536      \  v
3537       >[ ]     <-- exit block(s).
3538    ...
3539    */
3540 
3541   // Get the metadata of the original loop before it gets modified.
3542   MDNode *OrigLoopID = OrigLoop->getLoopID();
3543 
3544   // Workaround!  Compute the trip count of the original loop and cache it
3545   // before we start modifying the CFG.  This code has a systemic problem
3546   // wherein it tries to run analysis over partially constructed IR; this is
3547   // wrong, and not simply for SCEV.  The trip count of the original loop
3548   // simply happens to be prone to hitting this in practice.  In theory, we
3549   // can hit the same issue for any SCEV, or ValueTracking query done during
3550   // mutation.  See PR49900.
3551   getOrCreateTripCount(OrigLoop);
3552 
3553   // Create an empty vector loop, and prepare basic blocks for the runtime
3554   // checks.
3555   Loop *Lp = createVectorLoopSkeleton("");
3556 
3557   // Now, compare the new count to zero. If it is zero skip the vector loop and
3558   // jump to the scalar loop. This check also covers the case where the
3559   // backedge-taken count is uint##_max: adding one to it will overflow leading
3560   // to an incorrect trip count of zero. In this (rare) case we will also jump
3561   // to the scalar loop.
3562   emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader);
3563 
3564   // Generate the code to check any assumptions that we've made for SCEV
3565   // expressions.
3566   emitSCEVChecks(Lp, LoopScalarPreHeader);
3567 
3568   // Generate the code that checks in runtime if arrays overlap. We put the
3569   // checks into a separate block to make the more common case of few elements
3570   // faster.
3571   emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
3572 
3573   createHeaderBranch(Lp);
3574 
3575   // Emit phis for the new starting index of the scalar loop.
3576   createInductionResumeValues(Lp);
3577 
3578   return {completeLoopSkeleton(Lp, OrigLoopID), nullptr};
3579 }
3580 
3581 // Fix up external users of the induction variable. At this point, we are
3582 // in LCSSA form, with all external PHIs that use the IV having one input value,
3583 // coming from the remainder loop. We need those PHIs to also have a correct
3584 // value for the IV when arriving directly from the middle block.
3585 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
3586                                        const InductionDescriptor &II,
3587                                        Value *CountRoundDown, Value *EndValue,
3588                                        BasicBlock *MiddleBlock) {
3589   // There are two kinds of external IV usages - those that use the value
3590   // computed in the last iteration (the PHI) and those that use the penultimate
3591   // value (the value that feeds into the phi from the loop latch).
3592   // We allow both, but they, obviously, have different values.
3593 
3594   assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block");
3595 
3596   DenseMap<Value *, Value *> MissingVals;
3597 
3598   // An external user of the last iteration's value should see the value that
3599   // the remainder loop uses to initialize its own IV.
3600   Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
3601   for (User *U : PostInc->users()) {
3602     Instruction *UI = cast<Instruction>(U);
3603     if (!OrigLoop->contains(UI)) {
3604       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3605       MissingVals[UI] = EndValue;
3606     }
3607   }
3608 
3609   // An external user of the penultimate value need to see EndValue - Step.
3610   // The simplest way to get this is to recompute it from the constituent SCEVs,
3611   // that is Start + (Step * (CRD - 1)).
3612   for (User *U : OrigPhi->users()) {
3613     auto *UI = cast<Instruction>(U);
3614     if (!OrigLoop->contains(UI)) {
3615       const DataLayout &DL =
3616           OrigLoop->getHeader()->getModule()->getDataLayout();
3617       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3618 
3619       IRBuilder<> B(MiddleBlock->getTerminator());
3620 
3621       // Fast-math-flags propagate from the original induction instruction.
3622       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3623         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3624 
3625       Value *CountMinusOne = B.CreateSub(
3626           CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1));
3627       Value *CMO =
3628           !II.getStep()->getType()->isIntegerTy()
3629               ? B.CreateCast(Instruction::SIToFP, CountMinusOne,
3630                              II.getStep()->getType())
3631               : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType());
3632       CMO->setName("cast.cmo");
3633       Value *Escape =
3634           emitTransformedIndex(B, CMO, PSE.getSE(), DL, II, LoopVectorBody);
3635       Escape->setName("ind.escape");
3636       MissingVals[UI] = Escape;
3637     }
3638   }
3639 
3640   for (auto &I : MissingVals) {
3641     PHINode *PHI = cast<PHINode>(I.first);
3642     // One corner case we have to handle is two IVs "chasing" each-other,
3643     // that is %IV2 = phi [...], [ %IV1, %latch ]
3644     // In this case, if IV1 has an external use, we need to avoid adding both
3645     // "last value of IV1" and "penultimate value of IV2". So, verify that we
3646     // don't already have an incoming value for the middle block.
3647     if (PHI->getBasicBlockIndex(MiddleBlock) == -1)
3648       PHI->addIncoming(I.second, MiddleBlock);
3649   }
3650 }
3651 
3652 namespace {
3653 
3654 struct CSEDenseMapInfo {
3655   static bool canHandle(const Instruction *I) {
3656     return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
3657            isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
3658   }
3659 
3660   static inline Instruction *getEmptyKey() {
3661     return DenseMapInfo<Instruction *>::getEmptyKey();
3662   }
3663 
3664   static inline Instruction *getTombstoneKey() {
3665     return DenseMapInfo<Instruction *>::getTombstoneKey();
3666   }
3667 
3668   static unsigned getHashValue(const Instruction *I) {
3669     assert(canHandle(I) && "Unknown instruction!");
3670     return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
3671                                                            I->value_op_end()));
3672   }
3673 
3674   static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
3675     if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
3676         LHS == getTombstoneKey() || RHS == getTombstoneKey())
3677       return LHS == RHS;
3678     return LHS->isIdenticalTo(RHS);
3679   }
3680 };
3681 
3682 } // end anonymous namespace
3683 
3684 ///Perform cse of induction variable instructions.
3685 static void cse(BasicBlock *BB) {
3686   // Perform simple cse.
3687   SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
3688   for (Instruction &In : llvm::make_early_inc_range(*BB)) {
3689     if (!CSEDenseMapInfo::canHandle(&In))
3690       continue;
3691 
3692     // Check if we can replace this instruction with any of the
3693     // visited instructions.
3694     if (Instruction *V = CSEMap.lookup(&In)) {
3695       In.replaceAllUsesWith(V);
3696       In.eraseFromParent();
3697       continue;
3698     }
3699 
3700     CSEMap[&In] = &In;
3701   }
3702 }
3703 
3704 InstructionCost
3705 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF,
3706                                               bool &NeedToScalarize) const {
3707   Function *F = CI->getCalledFunction();
3708   Type *ScalarRetTy = CI->getType();
3709   SmallVector<Type *, 4> Tys, ScalarTys;
3710   for (auto &ArgOp : CI->args())
3711     ScalarTys.push_back(ArgOp->getType());
3712 
3713   // Estimate cost of scalarized vector call. The source operands are assumed
3714   // to be vectors, so we need to extract individual elements from there,
3715   // execute VF scalar calls, and then gather the result into the vector return
3716   // value.
3717   InstructionCost ScalarCallCost =
3718       TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput);
3719   if (VF.isScalar())
3720     return ScalarCallCost;
3721 
3722   // Compute corresponding vector type for return value and arguments.
3723   Type *RetTy = ToVectorTy(ScalarRetTy, VF);
3724   for (Type *ScalarTy : ScalarTys)
3725     Tys.push_back(ToVectorTy(ScalarTy, VF));
3726 
3727   // Compute costs of unpacking argument values for the scalar calls and
3728   // packing the return values to a vector.
3729   InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF);
3730 
3731   InstructionCost Cost =
3732       ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost;
3733 
3734   // If we can't emit a vector call for this function, then the currently found
3735   // cost is the cost we need to return.
3736   NeedToScalarize = true;
3737   VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
3738   Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3739 
3740   if (!TLI || CI->isNoBuiltin() || !VecFunc)
3741     return Cost;
3742 
3743   // If the corresponding vector cost is cheaper, return its cost.
3744   InstructionCost VectorCallCost =
3745       TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput);
3746   if (VectorCallCost < Cost) {
3747     NeedToScalarize = false;
3748     Cost = VectorCallCost;
3749   }
3750   return Cost;
3751 }
3752 
3753 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) {
3754   if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy()))
3755     return Elt;
3756   return VectorType::get(Elt, VF);
3757 }
3758 
3759 InstructionCost
3760 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI,
3761                                                    ElementCount VF) const {
3762   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3763   assert(ID && "Expected intrinsic call!");
3764   Type *RetTy = MaybeVectorizeType(CI->getType(), VF);
3765   FastMathFlags FMF;
3766   if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
3767     FMF = FPMO->getFastMathFlags();
3768 
3769   SmallVector<const Value *> Arguments(CI->args());
3770   FunctionType *FTy = CI->getCalledFunction()->getFunctionType();
3771   SmallVector<Type *> ParamTys;
3772   std::transform(FTy->param_begin(), FTy->param_end(),
3773                  std::back_inserter(ParamTys),
3774                  [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); });
3775 
3776   IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF,
3777                                     dyn_cast<IntrinsicInst>(CI));
3778   return TTI.getIntrinsicInstrCost(CostAttrs,
3779                                    TargetTransformInfo::TCK_RecipThroughput);
3780 }
3781 
3782 static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
3783   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3784   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3785   return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
3786 }
3787 
3788 static Type *largestIntegerVectorType(Type *T1, Type *T2) {
3789   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3790   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3791   return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
3792 }
3793 
3794 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) {
3795   // For every instruction `I` in MinBWs, truncate the operands, create a
3796   // truncated version of `I` and reextend its result. InstCombine runs
3797   // later and will remove any ext/trunc pairs.
3798   SmallPtrSet<Value *, 4> Erased;
3799   for (const auto &KV : Cost->getMinimalBitwidths()) {
3800     // If the value wasn't vectorized, we must maintain the original scalar
3801     // type. The absence of the value from State indicates that it
3802     // wasn't vectorized.
3803     // FIXME: Should not rely on getVPValue at this point.
3804     VPValue *Def = State.Plan->getVPValue(KV.first, true);
3805     if (!State.hasAnyVectorValue(Def))
3806       continue;
3807     for (unsigned Part = 0; Part < UF; ++Part) {
3808       Value *I = State.get(Def, Part);
3809       if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I))
3810         continue;
3811       Type *OriginalTy = I->getType();
3812       Type *ScalarTruncatedTy =
3813           IntegerType::get(OriginalTy->getContext(), KV.second);
3814       auto *TruncatedTy = VectorType::get(
3815           ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount());
3816       if (TruncatedTy == OriginalTy)
3817         continue;
3818 
3819       IRBuilder<> B(cast<Instruction>(I));
3820       auto ShrinkOperand = [&](Value *V) -> Value * {
3821         if (auto *ZI = dyn_cast<ZExtInst>(V))
3822           if (ZI->getSrcTy() == TruncatedTy)
3823             return ZI->getOperand(0);
3824         return B.CreateZExtOrTrunc(V, TruncatedTy);
3825       };
3826 
3827       // The actual instruction modification depends on the instruction type,
3828       // unfortunately.
3829       Value *NewI = nullptr;
3830       if (auto *BO = dyn_cast<BinaryOperator>(I)) {
3831         NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)),
3832                              ShrinkOperand(BO->getOperand(1)));
3833 
3834         // Any wrapping introduced by shrinking this operation shouldn't be
3835         // considered undefined behavior. So, we can't unconditionally copy
3836         // arithmetic wrapping flags to NewI.
3837         cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false);
3838       } else if (auto *CI = dyn_cast<ICmpInst>(I)) {
3839         NewI =
3840             B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)),
3841                          ShrinkOperand(CI->getOperand(1)));
3842       } else if (auto *SI = dyn_cast<SelectInst>(I)) {
3843         NewI = B.CreateSelect(SI->getCondition(),
3844                               ShrinkOperand(SI->getTrueValue()),
3845                               ShrinkOperand(SI->getFalseValue()));
3846       } else if (auto *CI = dyn_cast<CastInst>(I)) {
3847         switch (CI->getOpcode()) {
3848         default:
3849           llvm_unreachable("Unhandled cast!");
3850         case Instruction::Trunc:
3851           NewI = ShrinkOperand(CI->getOperand(0));
3852           break;
3853         case Instruction::SExt:
3854           NewI = B.CreateSExtOrTrunc(
3855               CI->getOperand(0),
3856               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3857           break;
3858         case Instruction::ZExt:
3859           NewI = B.CreateZExtOrTrunc(
3860               CI->getOperand(0),
3861               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3862           break;
3863         }
3864       } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) {
3865         auto Elements0 =
3866             cast<VectorType>(SI->getOperand(0)->getType())->getElementCount();
3867         auto *O0 = B.CreateZExtOrTrunc(
3868             SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0));
3869         auto Elements1 =
3870             cast<VectorType>(SI->getOperand(1)->getType())->getElementCount();
3871         auto *O1 = B.CreateZExtOrTrunc(
3872             SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1));
3873 
3874         NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask());
3875       } else if (isa<LoadInst>(I) || isa<PHINode>(I)) {
3876         // Don't do anything with the operands, just extend the result.
3877         continue;
3878       } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
3879         auto Elements =
3880             cast<VectorType>(IE->getOperand(0)->getType())->getElementCount();
3881         auto *O0 = B.CreateZExtOrTrunc(
3882             IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
3883         auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy);
3884         NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2));
3885       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
3886         auto Elements =
3887             cast<VectorType>(EE->getOperand(0)->getType())->getElementCount();
3888         auto *O0 = B.CreateZExtOrTrunc(
3889             EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
3890         NewI = B.CreateExtractElement(O0, EE->getOperand(2));
3891       } else {
3892         // If we don't know what to do, be conservative and don't do anything.
3893         continue;
3894       }
3895 
3896       // Lastly, extend the result.
3897       NewI->takeName(cast<Instruction>(I));
3898       Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
3899       I->replaceAllUsesWith(Res);
3900       cast<Instruction>(I)->eraseFromParent();
3901       Erased.insert(I);
3902       State.reset(Def, Res, Part);
3903     }
3904   }
3905 
3906   // We'll have created a bunch of ZExts that are now parentless. Clean up.
3907   for (const auto &KV : Cost->getMinimalBitwidths()) {
3908     // If the value wasn't vectorized, we must maintain the original scalar
3909     // type. The absence of the value from State indicates that it
3910     // wasn't vectorized.
3911     // FIXME: Should not rely on getVPValue at this point.
3912     VPValue *Def = State.Plan->getVPValue(KV.first, true);
3913     if (!State.hasAnyVectorValue(Def))
3914       continue;
3915     for (unsigned Part = 0; Part < UF; ++Part) {
3916       Value *I = State.get(Def, Part);
3917       ZExtInst *Inst = dyn_cast<ZExtInst>(I);
3918       if (Inst && Inst->use_empty()) {
3919         Value *NewI = Inst->getOperand(0);
3920         Inst->eraseFromParent();
3921         State.reset(Def, NewI, Part);
3922       }
3923     }
3924   }
3925 }
3926 
3927 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) {
3928   // Insert truncates and extends for any truncated instructions as hints to
3929   // InstCombine.
3930   if (VF.isVector())
3931     truncateToMinimalBitwidths(State);
3932 
3933   // Fix widened non-induction PHIs by setting up the PHI operands.
3934   if (OrigPHIsToFix.size()) {
3935     assert(EnableVPlanNativePath &&
3936            "Unexpected non-induction PHIs for fixup in non VPlan-native path");
3937     fixNonInductionPHIs(State);
3938   }
3939 
3940   // At this point every instruction in the original loop is widened to a
3941   // vector form. Now we need to fix the recurrences in the loop. These PHI
3942   // nodes are currently empty because we did not want to introduce cycles.
3943   // This is the second stage of vectorizing recurrences.
3944   fixCrossIterationPHIs(State);
3945 
3946   // Forget the original basic block.
3947   PSE.getSE()->forgetLoop(OrigLoop);
3948 
3949   // If we inserted an edge from the middle block to the unique exit block,
3950   // update uses outside the loop (phis) to account for the newly inserted
3951   // edge.
3952   if (!Cost->requiresScalarEpilogue(VF)) {
3953     // Fix-up external users of the induction variables.
3954     for (auto &Entry : Legal->getInductionVars())
3955       fixupIVUsers(Entry.first, Entry.second,
3956                    getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)),
3957                    IVEndValues[Entry.first], LoopMiddleBlock);
3958 
3959     fixLCSSAPHIs(State);
3960   }
3961 
3962   for (Instruction *PI : PredicatedInstructions)
3963     sinkScalarOperands(&*PI);
3964 
3965   // Remove redundant induction instructions.
3966   cse(LoopVectorBody);
3967 
3968   // Set/update profile weights for the vector and remainder loops as original
3969   // loop iterations are now distributed among them. Note that original loop
3970   // represented by LoopScalarBody becomes remainder loop after vectorization.
3971   //
3972   // For cases like foldTailByMasking() and requiresScalarEpiloque() we may
3973   // end up getting slightly roughened result but that should be OK since
3974   // profile is not inherently precise anyway. Note also possible bypass of
3975   // vector code caused by legality checks is ignored, assigning all the weight
3976   // to the vector loop, optimistically.
3977   //
3978   // For scalable vectorization we can't know at compile time how many iterations
3979   // of the loop are handled in one vector iteration, so instead assume a pessimistic
3980   // vscale of '1'.
3981   setProfileInfoAfterUnrolling(
3982       LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody),
3983       LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF);
3984 }
3985 
3986 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) {
3987   // In order to support recurrences we need to be able to vectorize Phi nodes.
3988   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
3989   // stage #2: We now need to fix the recurrences by adding incoming edges to
3990   // the currently empty PHI nodes. At this point every instruction in the
3991   // original loop is widened to a vector form so we can use them to construct
3992   // the incoming edges.
3993   VPBasicBlock *Header = State.Plan->getEntry()->getEntryBasicBlock();
3994   for (VPRecipeBase &R : Header->phis()) {
3995     if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R))
3996       fixReduction(ReductionPhi, State);
3997     else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R))
3998       fixFirstOrderRecurrence(FOR, State);
3999   }
4000 }
4001 
4002 void InnerLoopVectorizer::fixFirstOrderRecurrence(
4003     VPFirstOrderRecurrencePHIRecipe *PhiR, VPTransformState &State) {
4004   // This is the second phase of vectorizing first-order recurrences. An
4005   // overview of the transformation is described below. Suppose we have the
4006   // following loop.
4007   //
4008   //   for (int i = 0; i < n; ++i)
4009   //     b[i] = a[i] - a[i - 1];
4010   //
4011   // There is a first-order recurrence on "a". For this loop, the shorthand
4012   // scalar IR looks like:
4013   //
4014   //   scalar.ph:
4015   //     s_init = a[-1]
4016   //     br scalar.body
4017   //
4018   //   scalar.body:
4019   //     i = phi [0, scalar.ph], [i+1, scalar.body]
4020   //     s1 = phi [s_init, scalar.ph], [s2, scalar.body]
4021   //     s2 = a[i]
4022   //     b[i] = s2 - s1
4023   //     br cond, scalar.body, ...
4024   //
4025   // In this example, s1 is a recurrence because it's value depends on the
4026   // previous iteration. In the first phase of vectorization, we created a
4027   // vector phi v1 for s1. We now complete the vectorization and produce the
4028   // shorthand vector IR shown below (for VF = 4, UF = 1).
4029   //
4030   //   vector.ph:
4031   //     v_init = vector(..., ..., ..., a[-1])
4032   //     br vector.body
4033   //
4034   //   vector.body
4035   //     i = phi [0, vector.ph], [i+4, vector.body]
4036   //     v1 = phi [v_init, vector.ph], [v2, vector.body]
4037   //     v2 = a[i, i+1, i+2, i+3];
4038   //     v3 = vector(v1(3), v2(0, 1, 2))
4039   //     b[i, i+1, i+2, i+3] = v2 - v3
4040   //     br cond, vector.body, middle.block
4041   //
4042   //   middle.block:
4043   //     x = v2(3)
4044   //     br scalar.ph
4045   //
4046   //   scalar.ph:
4047   //     s_init = phi [x, middle.block], [a[-1], otherwise]
4048   //     br scalar.body
4049   //
4050   // After execution completes the vector loop, we extract the next value of
4051   // the recurrence (x) to use as the initial value in the scalar loop.
4052 
4053   // Extract the last vector element in the middle block. This will be the
4054   // initial value for the recurrence when jumping to the scalar loop.
4055   VPValue *PreviousDef = PhiR->getBackedgeValue();
4056   Value *Incoming = State.get(PreviousDef, UF - 1);
4057   auto *ExtractForScalar = Incoming;
4058   auto *IdxTy = Builder.getInt32Ty();
4059   if (VF.isVector()) {
4060     auto *One = ConstantInt::get(IdxTy, 1);
4061     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4062     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
4063     auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
4064     ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx,
4065                                                     "vector.recur.extract");
4066   }
4067   // Extract the second last element in the middle block if the
4068   // Phi is used outside the loop. We need to extract the phi itself
4069   // and not the last element (the phi update in the current iteration). This
4070   // will be the value when jumping to the exit block from the LoopMiddleBlock,
4071   // when the scalar loop is not run at all.
4072   Value *ExtractForPhiUsedOutsideLoop = nullptr;
4073   if (VF.isVector()) {
4074     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
4075     auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2));
4076     ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement(
4077         Incoming, Idx, "vector.recur.extract.for.phi");
4078   } else if (UF > 1)
4079     // When loop is unrolled without vectorizing, initialize
4080     // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value
4081     // of `Incoming`. This is analogous to the vectorized case above: extracting
4082     // the second last element when VF > 1.
4083     ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2);
4084 
4085   // Fix the initial value of the original recurrence in the scalar loop.
4086   Builder.SetInsertPoint(&*LoopScalarPreHeader->begin());
4087   PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue());
4088   auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init");
4089   auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue();
4090   for (auto *BB : predecessors(LoopScalarPreHeader)) {
4091     auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit;
4092     Start->addIncoming(Incoming, BB);
4093   }
4094 
4095   Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start);
4096   Phi->setName("scalar.recur");
4097 
4098   // Finally, fix users of the recurrence outside the loop. The users will need
4099   // either the last value of the scalar recurrence or the last value of the
4100   // vector recurrence we extracted in the middle block. Since the loop is in
4101   // LCSSA form, we just need to find all the phi nodes for the original scalar
4102   // recurrence in the exit block, and then add an edge for the middle block.
4103   // Note that LCSSA does not imply single entry when the original scalar loop
4104   // had multiple exiting edges (as we always run the last iteration in the
4105   // scalar epilogue); in that case, there is no edge from middle to exit and
4106   // and thus no phis which needed updated.
4107   if (!Cost->requiresScalarEpilogue(VF))
4108     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4109       if (llvm::is_contained(LCSSAPhi.incoming_values(), Phi))
4110         LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock);
4111 }
4112 
4113 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR,
4114                                        VPTransformState &State) {
4115   PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue());
4116   // Get it's reduction variable descriptor.
4117   assert(Legal->isReductionVariable(OrigPhi) &&
4118          "Unable to find the reduction variable");
4119   const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor();
4120 
4121   RecurKind RK = RdxDesc.getRecurrenceKind();
4122   TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
4123   Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
4124   setDebugLocFromInst(ReductionStartValue);
4125 
4126   VPValue *LoopExitInstDef = PhiR->getBackedgeValue();
4127   // This is the vector-clone of the value that leaves the loop.
4128   Type *VecTy = State.get(LoopExitInstDef, 0)->getType();
4129 
4130   // Wrap flags are in general invalid after vectorization, clear them.
4131   clearReductionWrapFlags(RdxDesc, State);
4132 
4133   // Before each round, move the insertion point right between
4134   // the PHIs and the values we are going to write.
4135   // This allows us to write both PHINodes and the extractelement
4136   // instructions.
4137   Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4138 
4139   setDebugLocFromInst(LoopExitInst);
4140 
4141   Type *PhiTy = OrigPhi->getType();
4142   // If tail is folded by masking, the vector value to leave the loop should be
4143   // a Select choosing between the vectorized LoopExitInst and vectorized Phi,
4144   // instead of the former. For an inloop reduction the reduction will already
4145   // be predicated, and does not need to be handled here.
4146   if (Cost->foldTailByMasking() && !PhiR->isInLoop()) {
4147     for (unsigned Part = 0; Part < UF; ++Part) {
4148       Value *VecLoopExitInst = State.get(LoopExitInstDef, Part);
4149       Value *Sel = nullptr;
4150       for (User *U : VecLoopExitInst->users()) {
4151         if (isa<SelectInst>(U)) {
4152           assert(!Sel && "Reduction exit feeding two selects");
4153           Sel = U;
4154         } else
4155           assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select");
4156       }
4157       assert(Sel && "Reduction exit feeds no select");
4158       State.reset(LoopExitInstDef, Sel, Part);
4159 
4160       // If the target can create a predicated operator for the reduction at no
4161       // extra cost in the loop (for example a predicated vadd), it can be
4162       // cheaper for the select to remain in the loop than be sunk out of it,
4163       // and so use the select value for the phi instead of the old
4164       // LoopExitValue.
4165       if (PreferPredicatedReductionSelect ||
4166           TTI->preferPredicatedReductionSelect(
4167               RdxDesc.getOpcode(), PhiTy,
4168               TargetTransformInfo::ReductionFlags())) {
4169         auto *VecRdxPhi =
4170             cast<PHINode>(State.get(PhiR, Part));
4171         VecRdxPhi->setIncomingValueForBlock(
4172             LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel);
4173       }
4174     }
4175   }
4176 
4177   // If the vector reduction can be performed in a smaller type, we truncate
4178   // then extend the loop exit value to enable InstCombine to evaluate the
4179   // entire expression in the smaller type.
4180   if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) {
4181     assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!");
4182     Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF);
4183     Builder.SetInsertPoint(
4184         LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator());
4185     VectorParts RdxParts(UF);
4186     for (unsigned Part = 0; Part < UF; ++Part) {
4187       RdxParts[Part] = State.get(LoopExitInstDef, Part);
4188       Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4189       Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
4190                                         : Builder.CreateZExt(Trunc, VecTy);
4191       for (User *U : llvm::make_early_inc_range(RdxParts[Part]->users()))
4192         if (U != Trunc) {
4193           U->replaceUsesOfWith(RdxParts[Part], Extnd);
4194           RdxParts[Part] = Extnd;
4195         }
4196     }
4197     Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4198     for (unsigned Part = 0; Part < UF; ++Part) {
4199       RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4200       State.reset(LoopExitInstDef, RdxParts[Part], Part);
4201     }
4202   }
4203 
4204   // Reduce all of the unrolled parts into a single vector.
4205   Value *ReducedPartRdx = State.get(LoopExitInstDef, 0);
4206   unsigned Op = RecurrenceDescriptor::getOpcode(RK);
4207 
4208   // The middle block terminator has already been assigned a DebugLoc here (the
4209   // OrigLoop's single latch terminator). We want the whole middle block to
4210   // appear to execute on this line because: (a) it is all compiler generated,
4211   // (b) these instructions are always executed after evaluating the latch
4212   // conditional branch, and (c) other passes may add new predecessors which
4213   // terminate on this line. This is the easiest way to ensure we don't
4214   // accidentally cause an extra step back into the loop while debugging.
4215   setDebugLocFromInst(LoopMiddleBlock->getTerminator());
4216   if (PhiR->isOrdered())
4217     ReducedPartRdx = State.get(LoopExitInstDef, UF - 1);
4218   else {
4219     // Floating-point operations should have some FMF to enable the reduction.
4220     IRBuilderBase::FastMathFlagGuard FMFG(Builder);
4221     Builder.setFastMathFlags(RdxDesc.getFastMathFlags());
4222     for (unsigned Part = 1; Part < UF; ++Part) {
4223       Value *RdxPart = State.get(LoopExitInstDef, Part);
4224       if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
4225         ReducedPartRdx = Builder.CreateBinOp(
4226             (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx");
4227       } else if (RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK))
4228         ReducedPartRdx = createSelectCmpOp(Builder, ReductionStartValue, RK,
4229                                            ReducedPartRdx, RdxPart);
4230       else
4231         ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
4232     }
4233   }
4234 
4235   // Create the reduction after the loop. Note that inloop reductions create the
4236   // target reduction in the loop using a Reduction recipe.
4237   if (VF.isVector() && !PhiR->isInLoop()) {
4238     ReducedPartRdx =
4239         createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, OrigPhi);
4240     // If the reduction can be performed in a smaller type, we need to extend
4241     // the reduction to the wider type before we branch to the original loop.
4242     if (PhiTy != RdxDesc.getRecurrenceType())
4243       ReducedPartRdx = RdxDesc.isSigned()
4244                            ? Builder.CreateSExt(ReducedPartRdx, PhiTy)
4245                            : Builder.CreateZExt(ReducedPartRdx, PhiTy);
4246   }
4247 
4248   PHINode *ResumePhi =
4249       dyn_cast<PHINode>(PhiR->getStartValue()->getUnderlyingValue());
4250 
4251   // Create a phi node that merges control-flow from the backedge-taken check
4252   // block and the middle block.
4253   PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx",
4254                                         LoopScalarPreHeader->getTerminator());
4255 
4256   // If we are fixing reductions in the epilogue loop then we should already
4257   // have created a bc.merge.rdx Phi after the main vector body. Ensure that
4258   // we carry over the incoming values correctly.
4259   for (auto *Incoming : predecessors(LoopScalarPreHeader)) {
4260     if (Incoming == LoopMiddleBlock)
4261       BCBlockPhi->addIncoming(ReducedPartRdx, Incoming);
4262     else if (ResumePhi && llvm::is_contained(ResumePhi->blocks(), Incoming))
4263       BCBlockPhi->addIncoming(ResumePhi->getIncomingValueForBlock(Incoming),
4264                               Incoming);
4265     else
4266       BCBlockPhi->addIncoming(ReductionStartValue, Incoming);
4267   }
4268 
4269   // Set the resume value for this reduction
4270   ReductionResumeValues.insert({&RdxDesc, BCBlockPhi});
4271 
4272   // Now, we need to fix the users of the reduction variable
4273   // inside and outside of the scalar remainder loop.
4274 
4275   // We know that the loop is in LCSSA form. We need to update the PHI nodes
4276   // in the exit blocks.  See comment on analogous loop in
4277   // fixFirstOrderRecurrence for a more complete explaination of the logic.
4278   if (!Cost->requiresScalarEpilogue(VF))
4279     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4280       if (llvm::is_contained(LCSSAPhi.incoming_values(), LoopExitInst))
4281         LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock);
4282 
4283   // Fix the scalar loop reduction variable with the incoming reduction sum
4284   // from the vector body and from the backedge value.
4285   int IncomingEdgeBlockIdx =
4286       OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch());
4287   assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
4288   // Pick the other block.
4289   int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
4290   OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
4291   OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
4292 }
4293 
4294 void InnerLoopVectorizer::clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc,
4295                                                   VPTransformState &State) {
4296   RecurKind RK = RdxDesc.getRecurrenceKind();
4297   if (RK != RecurKind::Add && RK != RecurKind::Mul)
4298     return;
4299 
4300   Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr();
4301   assert(LoopExitInstr && "null loop exit instruction");
4302   SmallVector<Instruction *, 8> Worklist;
4303   SmallPtrSet<Instruction *, 8> Visited;
4304   Worklist.push_back(LoopExitInstr);
4305   Visited.insert(LoopExitInstr);
4306 
4307   while (!Worklist.empty()) {
4308     Instruction *Cur = Worklist.pop_back_val();
4309     if (isa<OverflowingBinaryOperator>(Cur))
4310       for (unsigned Part = 0; Part < UF; ++Part) {
4311         // FIXME: Should not rely on getVPValue at this point.
4312         Value *V = State.get(State.Plan->getVPValue(Cur, true), Part);
4313         cast<Instruction>(V)->dropPoisonGeneratingFlags();
4314       }
4315 
4316     for (User *U : Cur->users()) {
4317       Instruction *UI = cast<Instruction>(U);
4318       if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) &&
4319           Visited.insert(UI).second)
4320         Worklist.push_back(UI);
4321     }
4322   }
4323 }
4324 
4325 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) {
4326   for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
4327     if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1)
4328       // Some phis were already hand updated by the reduction and recurrence
4329       // code above, leave them alone.
4330       continue;
4331 
4332     auto *IncomingValue = LCSSAPhi.getIncomingValue(0);
4333     // Non-instruction incoming values will have only one value.
4334 
4335     VPLane Lane = VPLane::getFirstLane();
4336     if (isa<Instruction>(IncomingValue) &&
4337         !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue),
4338                                            VF))
4339       Lane = VPLane::getLastLaneForVF(VF);
4340 
4341     // Can be a loop invariant incoming value or the last scalar value to be
4342     // extracted from the vectorized loop.
4343     // FIXME: Should not rely on getVPValue at this point.
4344     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4345     Value *lastIncomingValue =
4346         OrigLoop->isLoopInvariant(IncomingValue)
4347             ? IncomingValue
4348             : State.get(State.Plan->getVPValue(IncomingValue, true),
4349                         VPIteration(UF - 1, Lane));
4350     LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock);
4351   }
4352 }
4353 
4354 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) {
4355   // The basic block and loop containing the predicated instruction.
4356   auto *PredBB = PredInst->getParent();
4357   auto *VectorLoop = LI->getLoopFor(PredBB);
4358 
4359   // Initialize a worklist with the operands of the predicated instruction.
4360   SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end());
4361 
4362   // Holds instructions that we need to analyze again. An instruction may be
4363   // reanalyzed if we don't yet know if we can sink it or not.
4364   SmallVector<Instruction *, 8> InstsToReanalyze;
4365 
4366   // Returns true if a given use occurs in the predicated block. Phi nodes use
4367   // their operands in their corresponding predecessor blocks.
4368   auto isBlockOfUsePredicated = [&](Use &U) -> bool {
4369     auto *I = cast<Instruction>(U.getUser());
4370     BasicBlock *BB = I->getParent();
4371     if (auto *Phi = dyn_cast<PHINode>(I))
4372       BB = Phi->getIncomingBlock(
4373           PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
4374     return BB == PredBB;
4375   };
4376 
4377   // Iteratively sink the scalarized operands of the predicated instruction
4378   // into the block we created for it. When an instruction is sunk, it's
4379   // operands are then added to the worklist. The algorithm ends after one pass
4380   // through the worklist doesn't sink a single instruction.
4381   bool Changed;
4382   do {
4383     // Add the instructions that need to be reanalyzed to the worklist, and
4384     // reset the changed indicator.
4385     Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end());
4386     InstsToReanalyze.clear();
4387     Changed = false;
4388 
4389     while (!Worklist.empty()) {
4390       auto *I = dyn_cast<Instruction>(Worklist.pop_back_val());
4391 
4392       // We can't sink an instruction if it is a phi node, is not in the loop,
4393       // or may have side effects.
4394       if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) ||
4395           I->mayHaveSideEffects())
4396         continue;
4397 
4398       // If the instruction is already in PredBB, check if we can sink its
4399       // operands. In that case, VPlan's sinkScalarOperands() succeeded in
4400       // sinking the scalar instruction I, hence it appears in PredBB; but it
4401       // may have failed to sink I's operands (recursively), which we try
4402       // (again) here.
4403       if (I->getParent() == PredBB) {
4404         Worklist.insert(I->op_begin(), I->op_end());
4405         continue;
4406       }
4407 
4408       // It's legal to sink the instruction if all its uses occur in the
4409       // predicated block. Otherwise, there's nothing to do yet, and we may
4410       // need to reanalyze the instruction.
4411       if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) {
4412         InstsToReanalyze.push_back(I);
4413         continue;
4414       }
4415 
4416       // Move the instruction to the beginning of the predicated block, and add
4417       // it's operands to the worklist.
4418       I->moveBefore(&*PredBB->getFirstInsertionPt());
4419       Worklist.insert(I->op_begin(), I->op_end());
4420 
4421       // The sinking may have enabled other instructions to be sunk, so we will
4422       // need to iterate.
4423       Changed = true;
4424     }
4425   } while (Changed);
4426 }
4427 
4428 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) {
4429   for (PHINode *OrigPhi : OrigPHIsToFix) {
4430     VPWidenPHIRecipe *VPPhi =
4431         cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi));
4432     PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0));
4433     // Make sure the builder has a valid insert point.
4434     Builder.SetInsertPoint(NewPhi);
4435     for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) {
4436       VPValue *Inc = VPPhi->getIncomingValue(i);
4437       VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i);
4438       NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]);
4439     }
4440   }
4441 }
4442 
4443 bool InnerLoopVectorizer::useOrderedReductions(
4444     const RecurrenceDescriptor &RdxDesc) {
4445   return Cost->useOrderedReductions(RdxDesc);
4446 }
4447 
4448 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN,
4449                                               VPWidenPHIRecipe *PhiR,
4450                                               VPTransformState &State) {
4451   PHINode *P = cast<PHINode>(PN);
4452   if (EnableVPlanNativePath) {
4453     // Currently we enter here in the VPlan-native path for non-induction
4454     // PHIs where all control flow is uniform. We simply widen these PHIs.
4455     // Create a vector phi with no operands - the vector phi operands will be
4456     // set at the end of vector code generation.
4457     Type *VecTy = (State.VF.isScalar())
4458                       ? PN->getType()
4459                       : VectorType::get(PN->getType(), State.VF);
4460     Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi");
4461     State.set(PhiR, VecPhi, 0);
4462     OrigPHIsToFix.push_back(P);
4463 
4464     return;
4465   }
4466 
4467   assert(PN->getParent() == OrigLoop->getHeader() &&
4468          "Non-header phis should have been handled elsewhere");
4469 
4470   // In order to support recurrences we need to be able to vectorize Phi nodes.
4471   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4472   // stage #1: We create a new vector PHI node with no incoming edges. We'll use
4473   // this value when we vectorize all of the instructions that use the PHI.
4474 
4475   assert(!Legal->isReductionVariable(P) &&
4476          "reductions should be handled elsewhere");
4477 
4478   setDebugLocFromInst(P);
4479 
4480   // This PHINode must be an induction variable.
4481   // Make sure that we know about it.
4482   assert(Legal->getInductionVars().count(P) && "Not an induction variable");
4483 
4484   InductionDescriptor II = Legal->getInductionVars().lookup(P);
4485   const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
4486 
4487   auto *IVR = PhiR->getParent()->getPlan()->getCanonicalIV();
4488   PHINode *CanonicalIV = cast<PHINode>(State.get(IVR, 0));
4489 
4490   // FIXME: The newly created binary instructions should contain nsw/nuw flags,
4491   // which can be found from the original scalar operations.
4492   switch (II.getKind()) {
4493   case InductionDescriptor::IK_NoInduction:
4494     llvm_unreachable("Unknown induction");
4495   case InductionDescriptor::IK_IntInduction:
4496   case InductionDescriptor::IK_FpInduction:
4497     llvm_unreachable("Integer/fp induction is handled elsewhere.");
4498   case InductionDescriptor::IK_PtrInduction: {
4499     // Handle the pointer induction variable case.
4500     assert(P->getType()->isPointerTy() && "Unexpected type.");
4501 
4502     if (Cost->isScalarAfterVectorization(P, State.VF)) {
4503       // This is the normalized GEP that starts counting at zero.
4504       Value *PtrInd =
4505           Builder.CreateSExtOrTrunc(CanonicalIV, II.getStep()->getType());
4506       // Determine the number of scalars we need to generate for each unroll
4507       // iteration. If the instruction is uniform, we only need to generate the
4508       // first lane. Otherwise, we generate all VF values.
4509       bool IsUniform = vputils::onlyFirstLaneUsed(PhiR);
4510       assert((IsUniform || !State.VF.isScalable()) &&
4511              "Cannot scalarize a scalable VF");
4512       unsigned Lanes = IsUniform ? 1 : State.VF.getFixedValue();
4513 
4514       for (unsigned Part = 0; Part < UF; ++Part) {
4515         Value *PartStart =
4516             createStepForVF(Builder, PtrInd->getType(), VF, Part);
4517 
4518         for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
4519           Value *Idx = Builder.CreateAdd(
4520               PartStart, ConstantInt::get(PtrInd->getType(), Lane));
4521           Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx);
4522           Value *SclrGep = emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(),
4523                                                 DL, II, State.CFG.PrevBB);
4524           SclrGep->setName("next.gep");
4525           State.set(PhiR, SclrGep, VPIteration(Part, Lane));
4526         }
4527       }
4528       return;
4529     }
4530     assert(isa<SCEVConstant>(II.getStep()) &&
4531            "Induction step not a SCEV constant!");
4532     Type *PhiType = II.getStep()->getType();
4533 
4534     // Build a pointer phi
4535     Value *ScalarStartValue = PhiR->getStartValue()->getLiveInIRValue();
4536     Type *ScStValueType = ScalarStartValue->getType();
4537     PHINode *NewPointerPhi =
4538         PHINode::Create(ScStValueType, 2, "pointer.phi", CanonicalIV);
4539     NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader);
4540 
4541     // A pointer induction, performed by using a gep
4542     BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
4543     Instruction *InductionLoc = LoopLatch->getTerminator();
4544     const SCEV *ScalarStep = II.getStep();
4545     SCEVExpander Exp(*PSE.getSE(), DL, "induction");
4546     Value *ScalarStepValue =
4547         Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc);
4548     Value *RuntimeVF = getRuntimeVF(Builder, PhiType, VF);
4549     Value *NumUnrolledElems =
4550         Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF));
4551     Value *InductionGEP = GetElementPtrInst::Create(
4552         II.getElementType(), NewPointerPhi,
4553         Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind",
4554         InductionLoc);
4555     NewPointerPhi->addIncoming(InductionGEP, LoopLatch);
4556 
4557     // Create UF many actual address geps that use the pointer
4558     // phi as base and a vectorized version of the step value
4559     // (<step*0, ..., step*N>) as offset.
4560     for (unsigned Part = 0; Part < State.UF; ++Part) {
4561       Type *VecPhiType = VectorType::get(PhiType, State.VF);
4562       Value *StartOffsetScalar =
4563           Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part));
4564       Value *StartOffset =
4565           Builder.CreateVectorSplat(State.VF, StartOffsetScalar);
4566       // Create a vector of consecutive numbers from zero to VF.
4567       StartOffset =
4568           Builder.CreateAdd(StartOffset, Builder.CreateStepVector(VecPhiType));
4569 
4570       Value *GEP = Builder.CreateGEP(
4571           II.getElementType(), NewPointerPhi,
4572           Builder.CreateMul(
4573               StartOffset, Builder.CreateVectorSplat(State.VF, ScalarStepValue),
4574               "vector.gep"));
4575       State.set(PhiR, GEP, Part);
4576     }
4577   }
4578   }
4579 }
4580 
4581 /// A helper function for checking whether an integer division-related
4582 /// instruction may divide by zero (in which case it must be predicated if
4583 /// executed conditionally in the scalar code).
4584 /// TODO: It may be worthwhile to generalize and check isKnownNonZero().
4585 /// Non-zero divisors that are non compile-time constants will not be
4586 /// converted into multiplication, so we will still end up scalarizing
4587 /// the division, but can do so w/o predication.
4588 static bool mayDivideByZero(Instruction &I) {
4589   assert((I.getOpcode() == Instruction::UDiv ||
4590           I.getOpcode() == Instruction::SDiv ||
4591           I.getOpcode() == Instruction::URem ||
4592           I.getOpcode() == Instruction::SRem) &&
4593          "Unexpected instruction");
4594   Value *Divisor = I.getOperand(1);
4595   auto *CInt = dyn_cast<ConstantInt>(Divisor);
4596   return !CInt || CInt->isZero();
4597 }
4598 
4599 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def,
4600                                                VPUser &ArgOperands,
4601                                                VPTransformState &State) {
4602   assert(!isa<DbgInfoIntrinsic>(I) &&
4603          "DbgInfoIntrinsic should have been dropped during VPlan construction");
4604   setDebugLocFromInst(&I);
4605 
4606   Module *M = I.getParent()->getParent()->getParent();
4607   auto *CI = cast<CallInst>(&I);
4608 
4609   SmallVector<Type *, 4> Tys;
4610   for (Value *ArgOperand : CI->args())
4611     Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue()));
4612 
4613   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4614 
4615   // The flag shows whether we use Intrinsic or a usual Call for vectorized
4616   // version of the instruction.
4617   // Is it beneficial to perform intrinsic call compared to lib call?
4618   bool NeedToScalarize = false;
4619   InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize);
4620   InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0;
4621   bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
4622   assert((UseVectorIntrinsic || !NeedToScalarize) &&
4623          "Instruction should be scalarized elsewhere.");
4624   assert((IntrinsicCost.isValid() || CallCost.isValid()) &&
4625          "Either the intrinsic cost or vector call cost must be valid");
4626 
4627   for (unsigned Part = 0; Part < UF; ++Part) {
4628     SmallVector<Type *, 2> TysForDecl = {CI->getType()};
4629     SmallVector<Value *, 4> Args;
4630     for (auto &I : enumerate(ArgOperands.operands())) {
4631       // Some intrinsics have a scalar argument - don't replace it with a
4632       // vector.
4633       Value *Arg;
4634       if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index()))
4635         Arg = State.get(I.value(), Part);
4636       else {
4637         Arg = State.get(I.value(), VPIteration(0, 0));
4638         if (hasVectorInstrinsicOverloadedScalarOpd(ID, I.index()))
4639           TysForDecl.push_back(Arg->getType());
4640       }
4641       Args.push_back(Arg);
4642     }
4643 
4644     Function *VectorF;
4645     if (UseVectorIntrinsic) {
4646       // Use vector version of the intrinsic.
4647       if (VF.isVector())
4648         TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF);
4649       VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
4650       assert(VectorF && "Can't retrieve vector intrinsic.");
4651     } else {
4652       // Use vector version of the function call.
4653       const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
4654 #ifndef NDEBUG
4655       assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr &&
4656              "Can't create vector function.");
4657 #endif
4658         VectorF = VFDatabase(*CI).getVectorizedFunction(Shape);
4659     }
4660       SmallVector<OperandBundleDef, 1> OpBundles;
4661       CI->getOperandBundlesAsDefs(OpBundles);
4662       CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles);
4663 
4664       if (isa<FPMathOperator>(V))
4665         V->copyFastMathFlags(CI);
4666 
4667       State.set(Def, V, Part);
4668       addMetadata(V, &I);
4669   }
4670 }
4671 
4672 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) {
4673   // We should not collect Scalars more than once per VF. Right now, this
4674   // function is called from collectUniformsAndScalars(), which already does
4675   // this check. Collecting Scalars for VF=1 does not make any sense.
4676   assert(VF.isVector() && Scalars.find(VF) == Scalars.end() &&
4677          "This function should not be visited twice for the same VF");
4678 
4679   SmallSetVector<Instruction *, 8> Worklist;
4680 
4681   // These sets are used to seed the analysis with pointers used by memory
4682   // accesses that will remain scalar.
4683   SmallSetVector<Instruction *, 8> ScalarPtrs;
4684   SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
4685   auto *Latch = TheLoop->getLoopLatch();
4686 
4687   // A helper that returns true if the use of Ptr by MemAccess will be scalar.
4688   // The pointer operands of loads and stores will be scalar as long as the
4689   // memory access is not a gather or scatter operation. The value operand of a
4690   // store will remain scalar if the store is scalarized.
4691   auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
4692     InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
4693     assert(WideningDecision != CM_Unknown &&
4694            "Widening decision should be ready at this moment");
4695     if (auto *Store = dyn_cast<StoreInst>(MemAccess))
4696       if (Ptr == Store->getValueOperand())
4697         return WideningDecision == CM_Scalarize;
4698     assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
4699            "Ptr is neither a value or pointer operand");
4700     return WideningDecision != CM_GatherScatter;
4701   };
4702 
4703   // A helper that returns true if the given value is a bitcast or
4704   // getelementptr instruction contained in the loop.
4705   auto isLoopVaryingBitCastOrGEP = [&](Value *V) {
4706     return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) ||
4707             isa<GetElementPtrInst>(V)) &&
4708            !TheLoop->isLoopInvariant(V);
4709   };
4710 
4711   // A helper that evaluates a memory access's use of a pointer. If the use will
4712   // be a scalar use and the pointer is only used by memory accesses, we place
4713   // the pointer in ScalarPtrs. Otherwise, the pointer is placed in
4714   // PossibleNonScalarPtrs.
4715   auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
4716     // We only care about bitcast and getelementptr instructions contained in
4717     // the loop.
4718     if (!isLoopVaryingBitCastOrGEP(Ptr))
4719       return;
4720 
4721     // If the pointer has already been identified as scalar (e.g., if it was
4722     // also identified as uniform), there's nothing to do.
4723     auto *I = cast<Instruction>(Ptr);
4724     if (Worklist.count(I))
4725       return;
4726 
4727     // If the use of the pointer will be a scalar use, and all users of the
4728     // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
4729     // place the pointer in PossibleNonScalarPtrs.
4730     if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) {
4731           return isa<LoadInst>(U) || isa<StoreInst>(U);
4732         }))
4733       ScalarPtrs.insert(I);
4734     else
4735       PossibleNonScalarPtrs.insert(I);
4736   };
4737 
4738   // We seed the scalars analysis with three classes of instructions: (1)
4739   // instructions marked uniform-after-vectorization and (2) bitcast,
4740   // getelementptr and (pointer) phi instructions used by memory accesses
4741   // requiring a scalar use.
4742   //
4743   // (1) Add to the worklist all instructions that have been identified as
4744   // uniform-after-vectorization.
4745   Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end());
4746 
4747   // (2) Add to the worklist all bitcast and getelementptr instructions used by
4748   // memory accesses requiring a scalar use. The pointer operands of loads and
4749   // stores will be scalar as long as the memory accesses is not a gather or
4750   // scatter operation. The value operand of a store will remain scalar if the
4751   // store is scalarized.
4752   for (auto *BB : TheLoop->blocks())
4753     for (auto &I : *BB) {
4754       if (auto *Load = dyn_cast<LoadInst>(&I)) {
4755         evaluatePtrUse(Load, Load->getPointerOperand());
4756       } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
4757         evaluatePtrUse(Store, Store->getPointerOperand());
4758         evaluatePtrUse(Store, Store->getValueOperand());
4759       }
4760     }
4761   for (auto *I : ScalarPtrs)
4762     if (!PossibleNonScalarPtrs.count(I)) {
4763       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
4764       Worklist.insert(I);
4765     }
4766 
4767   // Insert the forced scalars.
4768   // FIXME: Currently widenPHIInstruction() often creates a dead vector
4769   // induction variable when the PHI user is scalarized.
4770   auto ForcedScalar = ForcedScalars.find(VF);
4771   if (ForcedScalar != ForcedScalars.end())
4772     for (auto *I : ForcedScalar->second)
4773       Worklist.insert(I);
4774 
4775   // Expand the worklist by looking through any bitcasts and getelementptr
4776   // instructions we've already identified as scalar. This is similar to the
4777   // expansion step in collectLoopUniforms(); however, here we're only
4778   // expanding to include additional bitcasts and getelementptr instructions.
4779   unsigned Idx = 0;
4780   while (Idx != Worklist.size()) {
4781     Instruction *Dst = Worklist[Idx++];
4782     if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0)))
4783       continue;
4784     auto *Src = cast<Instruction>(Dst->getOperand(0));
4785     if (llvm::all_of(Src->users(), [&](User *U) -> bool {
4786           auto *J = cast<Instruction>(U);
4787           return !TheLoop->contains(J) || Worklist.count(J) ||
4788                  ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
4789                   isScalarUse(J, Src));
4790         })) {
4791       Worklist.insert(Src);
4792       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
4793     }
4794   }
4795 
4796   // An induction variable will remain scalar if all users of the induction
4797   // variable and induction variable update remain scalar.
4798   for (auto &Induction : Legal->getInductionVars()) {
4799     auto *Ind = Induction.first;
4800     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
4801 
4802     // If tail-folding is applied, the primary induction variable will be used
4803     // to feed a vector compare.
4804     if (Ind == Legal->getPrimaryInduction() && foldTailByMasking())
4805       continue;
4806 
4807     // Returns true if \p Indvar is a pointer induction that is used directly by
4808     // load/store instruction \p I.
4809     auto IsDirectLoadStoreFromPtrIndvar = [&](Instruction *Indvar,
4810                                               Instruction *I) {
4811       return Induction.second.getKind() ==
4812                  InductionDescriptor::IK_PtrInduction &&
4813              (isa<LoadInst>(I) || isa<StoreInst>(I)) &&
4814              Indvar == getLoadStorePointerOperand(I) && isScalarUse(I, Indvar);
4815     };
4816 
4817     // Determine if all users of the induction variable are scalar after
4818     // vectorization.
4819     auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
4820       auto *I = cast<Instruction>(U);
4821       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
4822              IsDirectLoadStoreFromPtrIndvar(Ind, I);
4823     });
4824     if (!ScalarInd)
4825       continue;
4826 
4827     // Determine if all users of the induction variable update instruction are
4828     // scalar after vectorization.
4829     auto ScalarIndUpdate =
4830         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
4831           auto *I = cast<Instruction>(U);
4832           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
4833                  IsDirectLoadStoreFromPtrIndvar(IndUpdate, I);
4834         });
4835     if (!ScalarIndUpdate)
4836       continue;
4837 
4838     // The induction variable and its update instruction will remain scalar.
4839     Worklist.insert(Ind);
4840     Worklist.insert(IndUpdate);
4841     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
4842     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
4843                       << "\n");
4844   }
4845 
4846   Scalars[VF].insert(Worklist.begin(), Worklist.end());
4847 }
4848 
4849 bool LoopVectorizationCostModel::isScalarWithPredication(
4850     Instruction *I, ElementCount VF) const {
4851   if (!blockNeedsPredicationForAnyReason(I->getParent()))
4852     return false;
4853   switch(I->getOpcode()) {
4854   default:
4855     break;
4856   case Instruction::Load:
4857   case Instruction::Store: {
4858     if (!Legal->isMaskRequired(I))
4859       return false;
4860     auto *Ptr = getLoadStorePointerOperand(I);
4861     auto *Ty = getLoadStoreType(I);
4862     Type *VTy = Ty;
4863     if (VF.isVector())
4864       VTy = VectorType::get(Ty, VF);
4865     const Align Alignment = getLoadStoreAlignment(I);
4866     return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) ||
4867                                 TTI.isLegalMaskedGather(VTy, Alignment))
4868                             : !(isLegalMaskedStore(Ty, Ptr, Alignment) ||
4869                                 TTI.isLegalMaskedScatter(VTy, Alignment));
4870   }
4871   case Instruction::UDiv:
4872   case Instruction::SDiv:
4873   case Instruction::SRem:
4874   case Instruction::URem:
4875     return mayDivideByZero(*I);
4876   }
4877   return false;
4878 }
4879 
4880 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(
4881     Instruction *I, ElementCount VF) {
4882   assert(isAccessInterleaved(I) && "Expecting interleaved access.");
4883   assert(getWideningDecision(I, VF) == CM_Unknown &&
4884          "Decision should not be set yet.");
4885   auto *Group = getInterleavedAccessGroup(I);
4886   assert(Group && "Must have a group.");
4887 
4888   // If the instruction's allocated size doesn't equal it's type size, it
4889   // requires padding and will be scalarized.
4890   auto &DL = I->getModule()->getDataLayout();
4891   auto *ScalarTy = getLoadStoreType(I);
4892   if (hasIrregularType(ScalarTy, DL))
4893     return false;
4894 
4895   // Check if masking is required.
4896   // A Group may need masking for one of two reasons: it resides in a block that
4897   // needs predication, or it was decided to use masking to deal with gaps
4898   // (either a gap at the end of a load-access that may result in a speculative
4899   // load, or any gaps in a store-access).
4900   bool PredicatedAccessRequiresMasking =
4901       blockNeedsPredicationForAnyReason(I->getParent()) &&
4902       Legal->isMaskRequired(I);
4903   bool LoadAccessWithGapsRequiresEpilogMasking =
4904       isa<LoadInst>(I) && Group->requiresScalarEpilogue() &&
4905       !isScalarEpilogueAllowed();
4906   bool StoreAccessWithGapsRequiresMasking =
4907       isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor());
4908   if (!PredicatedAccessRequiresMasking &&
4909       !LoadAccessWithGapsRequiresEpilogMasking &&
4910       !StoreAccessWithGapsRequiresMasking)
4911     return true;
4912 
4913   // If masked interleaving is required, we expect that the user/target had
4914   // enabled it, because otherwise it either wouldn't have been created or
4915   // it should have been invalidated by the CostModel.
4916   assert(useMaskedInterleavedAccesses(TTI) &&
4917          "Masked interleave-groups for predicated accesses are not enabled.");
4918 
4919   if (Group->isReverse())
4920     return false;
4921 
4922   auto *Ty = getLoadStoreType(I);
4923   const Align Alignment = getLoadStoreAlignment(I);
4924   return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment)
4925                           : TTI.isLegalMaskedStore(Ty, Alignment);
4926 }
4927 
4928 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(
4929     Instruction *I, ElementCount VF) {
4930   // Get and ensure we have a valid memory instruction.
4931   assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction");
4932 
4933   auto *Ptr = getLoadStorePointerOperand(I);
4934   auto *ScalarTy = getLoadStoreType(I);
4935 
4936   // In order to be widened, the pointer should be consecutive, first of all.
4937   if (!Legal->isConsecutivePtr(ScalarTy, Ptr))
4938     return false;
4939 
4940   // If the instruction is a store located in a predicated block, it will be
4941   // scalarized.
4942   if (isScalarWithPredication(I, VF))
4943     return false;
4944 
4945   // If the instruction's allocated size doesn't equal it's type size, it
4946   // requires padding and will be scalarized.
4947   auto &DL = I->getModule()->getDataLayout();
4948   if (hasIrregularType(ScalarTy, DL))
4949     return false;
4950 
4951   return true;
4952 }
4953 
4954 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) {
4955   // We should not collect Uniforms more than once per VF. Right now,
4956   // this function is called from collectUniformsAndScalars(), which
4957   // already does this check. Collecting Uniforms for VF=1 does not make any
4958   // sense.
4959 
4960   assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() &&
4961          "This function should not be visited twice for the same VF");
4962 
4963   // Visit the list of Uniforms. If we'll not find any uniform value, we'll
4964   // not analyze again.  Uniforms.count(VF) will return 1.
4965   Uniforms[VF].clear();
4966 
4967   // We now know that the loop is vectorizable!
4968   // Collect instructions inside the loop that will remain uniform after
4969   // vectorization.
4970 
4971   // Global values, params and instructions outside of current loop are out of
4972   // scope.
4973   auto isOutOfScope = [&](Value *V) -> bool {
4974     Instruction *I = dyn_cast<Instruction>(V);
4975     return (!I || !TheLoop->contains(I));
4976   };
4977 
4978   // Worklist containing uniform instructions demanding lane 0.
4979   SetVector<Instruction *> Worklist;
4980   BasicBlock *Latch = TheLoop->getLoopLatch();
4981 
4982   // Add uniform instructions demanding lane 0 to the worklist. Instructions
4983   // that are scalar with predication must not be considered uniform after
4984   // vectorization, because that would create an erroneous replicating region
4985   // where only a single instance out of VF should be formed.
4986   // TODO: optimize such seldom cases if found important, see PR40816.
4987   auto addToWorklistIfAllowed = [&](Instruction *I) -> void {
4988     if (isOutOfScope(I)) {
4989       LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: "
4990                         << *I << "\n");
4991       return;
4992     }
4993     if (isScalarWithPredication(I, VF)) {
4994       LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: "
4995                         << *I << "\n");
4996       return;
4997     }
4998     LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n");
4999     Worklist.insert(I);
5000   };
5001 
5002   // Start with the conditional branch. If the branch condition is an
5003   // instruction contained in the loop that is only used by the branch, it is
5004   // uniform.
5005   auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
5006   if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse())
5007     addToWorklistIfAllowed(Cmp);
5008 
5009   auto isUniformDecision = [&](Instruction *I, ElementCount VF) {
5010     InstWidening WideningDecision = getWideningDecision(I, VF);
5011     assert(WideningDecision != CM_Unknown &&
5012            "Widening decision should be ready at this moment");
5013 
5014     // A uniform memory op is itself uniform.  We exclude uniform stores
5015     // here as they demand the last lane, not the first one.
5016     if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) {
5017       assert(WideningDecision == CM_Scalarize);
5018       return true;
5019     }
5020 
5021     return (WideningDecision == CM_Widen ||
5022             WideningDecision == CM_Widen_Reverse ||
5023             WideningDecision == CM_Interleave);
5024   };
5025 
5026 
5027   // Returns true if Ptr is the pointer operand of a memory access instruction
5028   // I, and I is known to not require scalarization.
5029   auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
5030     return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF);
5031   };
5032 
5033   // Holds a list of values which are known to have at least one uniform use.
5034   // Note that there may be other uses which aren't uniform.  A "uniform use"
5035   // here is something which only demands lane 0 of the unrolled iterations;
5036   // it does not imply that all lanes produce the same value (e.g. this is not
5037   // the usual meaning of uniform)
5038   SetVector<Value *> HasUniformUse;
5039 
5040   // Scan the loop for instructions which are either a) known to have only
5041   // lane 0 demanded or b) are uses which demand only lane 0 of their operand.
5042   for (auto *BB : TheLoop->blocks())
5043     for (auto &I : *BB) {
5044       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) {
5045         switch (II->getIntrinsicID()) {
5046         case Intrinsic::sideeffect:
5047         case Intrinsic::experimental_noalias_scope_decl:
5048         case Intrinsic::assume:
5049         case Intrinsic::lifetime_start:
5050         case Intrinsic::lifetime_end:
5051           if (TheLoop->hasLoopInvariantOperands(&I))
5052             addToWorklistIfAllowed(&I);
5053           break;
5054         default:
5055           break;
5056         }
5057       }
5058 
5059       // ExtractValue instructions must be uniform, because the operands are
5060       // known to be loop-invariant.
5061       if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) {
5062         assert(isOutOfScope(EVI->getAggregateOperand()) &&
5063                "Expected aggregate value to be loop invariant");
5064         addToWorklistIfAllowed(EVI);
5065         continue;
5066       }
5067 
5068       // If there's no pointer operand, there's nothing to do.
5069       auto *Ptr = getLoadStorePointerOperand(&I);
5070       if (!Ptr)
5071         continue;
5072 
5073       // A uniform memory op is itself uniform.  We exclude uniform stores
5074       // here as they demand the last lane, not the first one.
5075       if (isa<LoadInst>(I) && Legal->isUniformMemOp(I))
5076         addToWorklistIfAllowed(&I);
5077 
5078       if (isUniformDecision(&I, VF)) {
5079         assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check");
5080         HasUniformUse.insert(Ptr);
5081       }
5082     }
5083 
5084   // Add to the worklist any operands which have *only* uniform (e.g. lane 0
5085   // demanding) users.  Since loops are assumed to be in LCSSA form, this
5086   // disallows uses outside the loop as well.
5087   for (auto *V : HasUniformUse) {
5088     if (isOutOfScope(V))
5089       continue;
5090     auto *I = cast<Instruction>(V);
5091     auto UsersAreMemAccesses =
5092       llvm::all_of(I->users(), [&](User *U) -> bool {
5093         return isVectorizedMemAccessUse(cast<Instruction>(U), V);
5094       });
5095     if (UsersAreMemAccesses)
5096       addToWorklistIfAllowed(I);
5097   }
5098 
5099   // Expand Worklist in topological order: whenever a new instruction
5100   // is added , its users should be already inside Worklist.  It ensures
5101   // a uniform instruction will only be used by uniform instructions.
5102   unsigned idx = 0;
5103   while (idx != Worklist.size()) {
5104     Instruction *I = Worklist[idx++];
5105 
5106     for (auto OV : I->operand_values()) {
5107       // isOutOfScope operands cannot be uniform instructions.
5108       if (isOutOfScope(OV))
5109         continue;
5110       // First order recurrence Phi's should typically be considered
5111       // non-uniform.
5112       auto *OP = dyn_cast<PHINode>(OV);
5113       if (OP && Legal->isFirstOrderRecurrence(OP))
5114         continue;
5115       // If all the users of the operand are uniform, then add the
5116       // operand into the uniform worklist.
5117       auto *OI = cast<Instruction>(OV);
5118       if (llvm::all_of(OI->users(), [&](User *U) -> bool {
5119             auto *J = cast<Instruction>(U);
5120             return Worklist.count(J) || isVectorizedMemAccessUse(J, OI);
5121           }))
5122         addToWorklistIfAllowed(OI);
5123     }
5124   }
5125 
5126   // For an instruction to be added into Worklist above, all its users inside
5127   // the loop should also be in Worklist. However, this condition cannot be
5128   // true for phi nodes that form a cyclic dependence. We must process phi
5129   // nodes separately. An induction variable will remain uniform if all users
5130   // of the induction variable and induction variable update remain uniform.
5131   // The code below handles both pointer and non-pointer induction variables.
5132   for (auto &Induction : Legal->getInductionVars()) {
5133     auto *Ind = Induction.first;
5134     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5135 
5136     // Determine if all users of the induction variable are uniform after
5137     // vectorization.
5138     auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
5139       auto *I = cast<Instruction>(U);
5140       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
5141              isVectorizedMemAccessUse(I, Ind);
5142     });
5143     if (!UniformInd)
5144       continue;
5145 
5146     // Determine if all users of the induction variable update instruction are
5147     // uniform after vectorization.
5148     auto UniformIndUpdate =
5149         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
5150           auto *I = cast<Instruction>(U);
5151           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
5152                  isVectorizedMemAccessUse(I, IndUpdate);
5153         });
5154     if (!UniformIndUpdate)
5155       continue;
5156 
5157     // The induction variable and its update instruction will remain uniform.
5158     addToWorklistIfAllowed(Ind);
5159     addToWorklistIfAllowed(IndUpdate);
5160   }
5161 
5162   Uniforms[VF].insert(Worklist.begin(), Worklist.end());
5163 }
5164 
5165 bool LoopVectorizationCostModel::runtimeChecksRequired() {
5166   LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n");
5167 
5168   if (Legal->getRuntimePointerChecking()->Need) {
5169     reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz",
5170         "runtime pointer checks needed. Enable vectorization of this "
5171         "loop with '#pragma clang loop vectorize(enable)' when "
5172         "compiling with -Os/-Oz",
5173         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5174     return true;
5175   }
5176 
5177   if (!PSE.getUnionPredicate().getPredicates().empty()) {
5178     reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz",
5179         "runtime SCEV checks needed. Enable vectorization of this "
5180         "loop with '#pragma clang loop vectorize(enable)' when "
5181         "compiling with -Os/-Oz",
5182         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5183     return true;
5184   }
5185 
5186   // FIXME: Avoid specializing for stride==1 instead of bailing out.
5187   if (!Legal->getLAI()->getSymbolicStrides().empty()) {
5188     reportVectorizationFailure("Runtime stride check for small trip count",
5189         "runtime stride == 1 checks needed. Enable vectorization of "
5190         "this loop without such check by compiling with -Os/-Oz",
5191         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5192     return true;
5193   }
5194 
5195   return false;
5196 }
5197 
5198 ElementCount
5199 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) {
5200   if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors)
5201     return ElementCount::getScalable(0);
5202 
5203   if (Hints->isScalableVectorizationDisabled()) {
5204     reportVectorizationInfo("Scalable vectorization is explicitly disabled",
5205                             "ScalableVectorizationDisabled", ORE, TheLoop);
5206     return ElementCount::getScalable(0);
5207   }
5208 
5209   LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n");
5210 
5211   auto MaxScalableVF = ElementCount::getScalable(
5212       std::numeric_limits<ElementCount::ScalarTy>::max());
5213 
5214   // Test that the loop-vectorizer can legalize all operations for this MaxVF.
5215   // FIXME: While for scalable vectors this is currently sufficient, this should
5216   // be replaced by a more detailed mechanism that filters out specific VFs,
5217   // instead of invalidating vectorization for a whole set of VFs based on the
5218   // MaxVF.
5219 
5220   // Disable scalable vectorization if the loop contains unsupported reductions.
5221   if (!canVectorizeReductions(MaxScalableVF)) {
5222     reportVectorizationInfo(
5223         "Scalable vectorization not supported for the reduction "
5224         "operations found in this loop.",
5225         "ScalableVFUnfeasible", ORE, TheLoop);
5226     return ElementCount::getScalable(0);
5227   }
5228 
5229   // Disable scalable vectorization if the loop contains any instructions
5230   // with element types not supported for scalable vectors.
5231   if (any_of(ElementTypesInLoop, [&](Type *Ty) {
5232         return !Ty->isVoidTy() &&
5233                !this->TTI.isElementTypeLegalForScalableVector(Ty);
5234       })) {
5235     reportVectorizationInfo("Scalable vectorization is not supported "
5236                             "for all element types found in this loop.",
5237                             "ScalableVFUnfeasible", ORE, TheLoop);
5238     return ElementCount::getScalable(0);
5239   }
5240 
5241   if (Legal->isSafeForAnyVectorWidth())
5242     return MaxScalableVF;
5243 
5244   // Limit MaxScalableVF by the maximum safe dependence distance.
5245   Optional<unsigned> MaxVScale = TTI.getMaxVScale();
5246   if (!MaxVScale && TheFunction->hasFnAttribute(Attribute::VScaleRange))
5247     MaxVScale =
5248         TheFunction->getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax();
5249   MaxScalableVF = ElementCount::getScalable(
5250       MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0);
5251   if (!MaxScalableVF)
5252     reportVectorizationInfo(
5253         "Max legal vector width too small, scalable vectorization "
5254         "unfeasible.",
5255         "ScalableVFUnfeasible", ORE, TheLoop);
5256 
5257   return MaxScalableVF;
5258 }
5259 
5260 FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF(
5261     unsigned ConstTripCount, ElementCount UserVF, bool FoldTailByMasking) {
5262   MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
5263   unsigned SmallestType, WidestType;
5264   std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
5265 
5266   // Get the maximum safe dependence distance in bits computed by LAA.
5267   // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
5268   // the memory accesses that is most restrictive (involved in the smallest
5269   // dependence distance).
5270   unsigned MaxSafeElements =
5271       PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType);
5272 
5273   auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements);
5274   auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements);
5275 
5276   LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF
5277                     << ".\n");
5278   LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF
5279                     << ".\n");
5280 
5281   // First analyze the UserVF, fall back if the UserVF should be ignored.
5282   if (UserVF) {
5283     auto MaxSafeUserVF =
5284         UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
5285 
5286     if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) {
5287       // If `VF=vscale x N` is safe, then so is `VF=N`
5288       if (UserVF.isScalable())
5289         return FixedScalableVFPair(
5290             ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF);
5291       else
5292         return UserVF;
5293     }
5294 
5295     assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF));
5296 
5297     // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it
5298     // is better to ignore the hint and let the compiler choose a suitable VF.
5299     if (!UserVF.isScalable()) {
5300       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5301                         << " is unsafe, clamping to max safe VF="
5302                         << MaxSafeFixedVF << ".\n");
5303       ORE->emit([&]() {
5304         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5305                                           TheLoop->getStartLoc(),
5306                                           TheLoop->getHeader())
5307                << "User-specified vectorization factor "
5308                << ore::NV("UserVectorizationFactor", UserVF)
5309                << " is unsafe, clamping to maximum safe vectorization factor "
5310                << ore::NV("VectorizationFactor", MaxSafeFixedVF);
5311       });
5312       return MaxSafeFixedVF;
5313     }
5314 
5315     if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) {
5316       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5317                         << " is ignored because scalable vectors are not "
5318                            "available.\n");
5319       ORE->emit([&]() {
5320         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5321                                           TheLoop->getStartLoc(),
5322                                           TheLoop->getHeader())
5323                << "User-specified vectorization factor "
5324                << ore::NV("UserVectorizationFactor", UserVF)
5325                << " is ignored because the target does not support scalable "
5326                   "vectors. The compiler will pick a more suitable value.";
5327       });
5328     } else {
5329       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5330                         << " is unsafe. Ignoring scalable UserVF.\n");
5331       ORE->emit([&]() {
5332         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5333                                           TheLoop->getStartLoc(),
5334                                           TheLoop->getHeader())
5335                << "User-specified vectorization factor "
5336                << ore::NV("UserVectorizationFactor", UserVF)
5337                << " is unsafe. Ignoring the hint to let the compiler pick a "
5338                   "more suitable value.";
5339       });
5340     }
5341   }
5342 
5343   LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
5344                     << " / " << WidestType << " bits.\n");
5345 
5346   FixedScalableVFPair Result(ElementCount::getFixed(1),
5347                              ElementCount::getScalable(0));
5348   if (auto MaxVF =
5349           getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType,
5350                                   MaxSafeFixedVF, FoldTailByMasking))
5351     Result.FixedVF = MaxVF;
5352 
5353   if (auto MaxVF =
5354           getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType,
5355                                   MaxSafeScalableVF, FoldTailByMasking))
5356     if (MaxVF.isScalable()) {
5357       Result.ScalableVF = MaxVF;
5358       LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF
5359                         << "\n");
5360     }
5361 
5362   return Result;
5363 }
5364 
5365 FixedScalableVFPair
5366 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) {
5367   if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
5368     // TODO: It may by useful to do since it's still likely to be dynamically
5369     // uniform if the target can skip.
5370     reportVectorizationFailure(
5371         "Not inserting runtime ptr check for divergent target",
5372         "runtime pointer checks needed. Not enabled for divergent target",
5373         "CantVersionLoopWithDivergentTarget", ORE, TheLoop);
5374     return FixedScalableVFPair::getNone();
5375   }
5376 
5377   unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
5378   LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
5379   if (TC == 1) {
5380     reportVectorizationFailure("Single iteration (non) loop",
5381         "loop trip count is one, irrelevant for vectorization",
5382         "SingleIterationLoop", ORE, TheLoop);
5383     return FixedScalableVFPair::getNone();
5384   }
5385 
5386   switch (ScalarEpilogueStatus) {
5387   case CM_ScalarEpilogueAllowed:
5388     return computeFeasibleMaxVF(TC, UserVF, false);
5389   case CM_ScalarEpilogueNotAllowedUsePredicate:
5390     LLVM_FALLTHROUGH;
5391   case CM_ScalarEpilogueNotNeededUsePredicate:
5392     LLVM_DEBUG(
5393         dbgs() << "LV: vector predicate hint/switch found.\n"
5394                << "LV: Not allowing scalar epilogue, creating predicated "
5395                << "vector loop.\n");
5396     break;
5397   case CM_ScalarEpilogueNotAllowedLowTripLoop:
5398     // fallthrough as a special case of OptForSize
5399   case CM_ScalarEpilogueNotAllowedOptSize:
5400     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize)
5401       LLVM_DEBUG(
5402           dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
5403     else
5404       LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip "
5405                         << "count.\n");
5406 
5407     // Bail if runtime checks are required, which are not good when optimising
5408     // for size.
5409     if (runtimeChecksRequired())
5410       return FixedScalableVFPair::getNone();
5411 
5412     break;
5413   }
5414 
5415   // The only loops we can vectorize without a scalar epilogue, are loops with
5416   // a bottom-test and a single exiting block. We'd have to handle the fact
5417   // that not every instruction executes on the last iteration.  This will
5418   // require a lane mask which varies through the vector loop body.  (TODO)
5419   if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
5420     // If there was a tail-folding hint/switch, but we can't fold the tail by
5421     // masking, fallback to a vectorization with a scalar epilogue.
5422     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5423       LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5424                            "scalar epilogue instead.\n");
5425       ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5426       return computeFeasibleMaxVF(TC, UserVF, false);
5427     }
5428     return FixedScalableVFPair::getNone();
5429   }
5430 
5431   // Now try the tail folding
5432 
5433   // Invalidate interleave groups that require an epilogue if we can't mask
5434   // the interleave-group.
5435   if (!useMaskedInterleavedAccesses(TTI)) {
5436     assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
5437            "No decisions should have been taken at this point");
5438     // Note: There is no need to invalidate any cost modeling decisions here, as
5439     // non where taken so far.
5440     InterleaveInfo.invalidateGroupsRequiringScalarEpilogue();
5441   }
5442 
5443   FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF, true);
5444   // Avoid tail folding if the trip count is known to be a multiple of any VF
5445   // we chose.
5446   // FIXME: The condition below pessimises the case for fixed-width vectors,
5447   // when scalable VFs are also candidates for vectorization.
5448   if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) {
5449     ElementCount MaxFixedVF = MaxFactors.FixedVF;
5450     assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) &&
5451            "MaxFixedVF must be a power of 2");
5452     unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC
5453                                    : MaxFixedVF.getFixedValue();
5454     ScalarEvolution *SE = PSE.getSE();
5455     const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
5456     const SCEV *ExitCount = SE->getAddExpr(
5457         BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
5458     const SCEV *Rem = SE->getURemExpr(
5459         SE->applyLoopGuards(ExitCount, TheLoop),
5460         SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC));
5461     if (Rem->isZero()) {
5462       // Accept MaxFixedVF if we do not have a tail.
5463       LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
5464       return MaxFactors;
5465     }
5466   }
5467 
5468   // For scalable vectors don't use tail folding for low trip counts or
5469   // optimizing for code size. We only permit this if the user has explicitly
5470   // requested it.
5471   if (ScalarEpilogueStatus != CM_ScalarEpilogueNotNeededUsePredicate &&
5472       ScalarEpilogueStatus != CM_ScalarEpilogueNotAllowedUsePredicate &&
5473       MaxFactors.ScalableVF.isVector())
5474     MaxFactors.ScalableVF = ElementCount::getScalable(0);
5475 
5476   // If we don't know the precise trip count, or if the trip count that we
5477   // found modulo the vectorization factor is not zero, try to fold the tail
5478   // by masking.
5479   // FIXME: look for a smaller MaxVF that does divide TC rather than masking.
5480   if (Legal->prepareToFoldTailByMasking()) {
5481     FoldTailByMasking = true;
5482     return MaxFactors;
5483   }
5484 
5485   // If there was a tail-folding hint/switch, but we can't fold the tail by
5486   // masking, fallback to a vectorization with a scalar epilogue.
5487   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5488     LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5489                          "scalar epilogue instead.\n");
5490     ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5491     return MaxFactors;
5492   }
5493 
5494   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) {
5495     LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n");
5496     return FixedScalableVFPair::getNone();
5497   }
5498 
5499   if (TC == 0) {
5500     reportVectorizationFailure(
5501         "Unable to calculate the loop count due to complex control flow",
5502         "unable to calculate the loop count due to complex control flow",
5503         "UnknownLoopCountComplexCFG", ORE, TheLoop);
5504     return FixedScalableVFPair::getNone();
5505   }
5506 
5507   reportVectorizationFailure(
5508       "Cannot optimize for size and vectorize at the same time.",
5509       "cannot optimize for size and vectorize at the same time. "
5510       "Enable vectorization of this loop with '#pragma clang loop "
5511       "vectorize(enable)' when compiling with -Os/-Oz",
5512       "NoTailLoopWithOptForSize", ORE, TheLoop);
5513   return FixedScalableVFPair::getNone();
5514 }
5515 
5516 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
5517     unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType,
5518     const ElementCount &MaxSafeVF, bool FoldTailByMasking) {
5519   bool ComputeScalableMaxVF = MaxSafeVF.isScalable();
5520   TypeSize WidestRegister = TTI.getRegisterBitWidth(
5521       ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
5522                            : TargetTransformInfo::RGK_FixedWidthVector);
5523 
5524   // Convenience function to return the minimum of two ElementCounts.
5525   auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) {
5526     assert((LHS.isScalable() == RHS.isScalable()) &&
5527            "Scalable flags must match");
5528     return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS;
5529   };
5530 
5531   // Ensure MaxVF is a power of 2; the dependence distance bound may not be.
5532   // Note that both WidestRegister and WidestType may not be a powers of 2.
5533   auto MaxVectorElementCount = ElementCount::get(
5534       PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType),
5535       ComputeScalableMaxVF);
5536   MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
5537   LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
5538                     << (MaxVectorElementCount * WidestType) << " bits.\n");
5539 
5540   if (!MaxVectorElementCount) {
5541     LLVM_DEBUG(dbgs() << "LV: The target has no "
5542                       << (ComputeScalableMaxVF ? "scalable" : "fixed")
5543                       << " vector registers.\n");
5544     return ElementCount::getFixed(1);
5545   }
5546 
5547   const auto TripCountEC = ElementCount::getFixed(ConstTripCount);
5548   if (ConstTripCount &&
5549       ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) &&
5550       (!FoldTailByMasking || isPowerOf2_32(ConstTripCount))) {
5551     // If loop trip count (TC) is known at compile time there is no point in
5552     // choosing VF greater than TC (as done in the loop below). Select maximum
5553     // power of two which doesn't exceed TC.
5554     // If MaxVectorElementCount is scalable, we only fall back on a fixed VF
5555     // when the TC is less than or equal to the known number of lanes.
5556     auto ClampedConstTripCount = PowerOf2Floor(ConstTripCount);
5557     LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to maximum power of two not "
5558                          "exceeding the constant trip count: "
5559                       << ClampedConstTripCount << "\n");
5560     return ElementCount::getFixed(ClampedConstTripCount);
5561   }
5562 
5563   ElementCount MaxVF = MaxVectorElementCount;
5564   if (TTI.shouldMaximizeVectorBandwidth() ||
5565       (MaximizeBandwidth && isScalarEpilogueAllowed())) {
5566     auto MaxVectorElementCountMaxBW = ElementCount::get(
5567         PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType),
5568         ComputeScalableMaxVF);
5569     MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
5570 
5571     // Collect all viable vectorization factors larger than the default MaxVF
5572     // (i.e. MaxVectorElementCount).
5573     SmallVector<ElementCount, 8> VFs;
5574     for (ElementCount VS = MaxVectorElementCount * 2;
5575          ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2)
5576       VFs.push_back(VS);
5577 
5578     // For each VF calculate its register usage.
5579     auto RUs = calculateRegisterUsage(VFs);
5580 
5581     // Select the largest VF which doesn't require more registers than existing
5582     // ones.
5583     for (int i = RUs.size() - 1; i >= 0; --i) {
5584       bool Selected = true;
5585       for (auto &pair : RUs[i].MaxLocalUsers) {
5586         unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5587         if (pair.second > TargetNumRegisters)
5588           Selected = false;
5589       }
5590       if (Selected) {
5591         MaxVF = VFs[i];
5592         break;
5593       }
5594     }
5595     if (ElementCount MinVF =
5596             TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) {
5597       if (ElementCount::isKnownLT(MaxVF, MinVF)) {
5598         LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
5599                           << ") with target's minimum: " << MinVF << '\n');
5600         MaxVF = MinVF;
5601       }
5602     }
5603   }
5604   return MaxVF;
5605 }
5606 
5607 Optional<unsigned> LoopVectorizationCostModel::getVScaleForTuning() const {
5608   if (TheFunction->hasFnAttribute(Attribute::VScaleRange)) {
5609     auto Attr = TheFunction->getFnAttribute(Attribute::VScaleRange);
5610     auto Min = Attr.getVScaleRangeMin();
5611     auto Max = Attr.getVScaleRangeMax();
5612     if (Max && Min == Max)
5613       return Max;
5614   }
5615 
5616   return TTI.getVScaleForTuning();
5617 }
5618 
5619 bool LoopVectorizationCostModel::isMoreProfitable(
5620     const VectorizationFactor &A, const VectorizationFactor &B) const {
5621   InstructionCost CostA = A.Cost;
5622   InstructionCost CostB = B.Cost;
5623 
5624   unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop);
5625 
5626   if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking &&
5627       MaxTripCount) {
5628     // If we are folding the tail and the trip count is a known (possibly small)
5629     // constant, the trip count will be rounded up to an integer number of
5630     // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF),
5631     // which we compare directly. When not folding the tail, the total cost will
5632     // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is
5633     // approximated with the per-lane cost below instead of using the tripcount
5634     // as here.
5635     auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue());
5636     auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue());
5637     return RTCostA < RTCostB;
5638   }
5639 
5640   // Improve estimate for the vector width if it is scalable.
5641   unsigned EstimatedWidthA = A.Width.getKnownMinValue();
5642   unsigned EstimatedWidthB = B.Width.getKnownMinValue();
5643   if (Optional<unsigned> VScale = getVScaleForTuning()) {
5644     if (A.Width.isScalable())
5645       EstimatedWidthA *= VScale.getValue();
5646     if (B.Width.isScalable())
5647       EstimatedWidthB *= VScale.getValue();
5648   }
5649 
5650   // Assume vscale may be larger than 1 (or the value being tuned for),
5651   // so that scalable vectorization is slightly favorable over fixed-width
5652   // vectorization.
5653   if (A.Width.isScalable() && !B.Width.isScalable())
5654     return (CostA * B.Width.getFixedValue()) <= (CostB * EstimatedWidthA);
5655 
5656   // To avoid the need for FP division:
5657   //      (CostA / A.Width) < (CostB / B.Width)
5658   // <=>  (CostA * B.Width) < (CostB * A.Width)
5659   return (CostA * EstimatedWidthB) < (CostB * EstimatedWidthA);
5660 }
5661 
5662 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor(
5663     const ElementCountSet &VFCandidates) {
5664   InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first;
5665   LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n");
5666   assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop");
5667   assert(VFCandidates.count(ElementCount::getFixed(1)) &&
5668          "Expected Scalar VF to be a candidate");
5669 
5670   const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost);
5671   VectorizationFactor ChosenFactor = ScalarCost;
5672 
5673   bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
5674   if (ForceVectorization && VFCandidates.size() > 1) {
5675     // Ignore scalar width, because the user explicitly wants vectorization.
5676     // Initialize cost to max so that VF = 2 is, at least, chosen during cost
5677     // evaluation.
5678     ChosenFactor.Cost = InstructionCost::getMax();
5679   }
5680 
5681   SmallVector<InstructionVFPair> InvalidCosts;
5682   for (const auto &i : VFCandidates) {
5683     // The cost for scalar VF=1 is already calculated, so ignore it.
5684     if (i.isScalar())
5685       continue;
5686 
5687     VectorizationCostTy C = expectedCost(i, &InvalidCosts);
5688     VectorizationFactor Candidate(i, C.first);
5689 
5690 #ifndef NDEBUG
5691     unsigned AssumedMinimumVscale = 1;
5692     if (Optional<unsigned> VScale = getVScaleForTuning())
5693       AssumedMinimumVscale = VScale.getValue();
5694     unsigned Width =
5695         Candidate.Width.isScalable()
5696             ? Candidate.Width.getKnownMinValue() * AssumedMinimumVscale
5697             : Candidate.Width.getFixedValue();
5698     LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i
5699                       << " costs: " << (Candidate.Cost / Width));
5700     if (i.isScalable())
5701       LLVM_DEBUG(dbgs() << " (assuming a minimum vscale of "
5702                         << AssumedMinimumVscale << ")");
5703     LLVM_DEBUG(dbgs() << ".\n");
5704 #endif
5705 
5706     if (!C.second && !ForceVectorization) {
5707       LLVM_DEBUG(
5708           dbgs() << "LV: Not considering vector loop of width " << i
5709                  << " because it will not generate any vector instructions.\n");
5710       continue;
5711     }
5712 
5713     // If profitable add it to ProfitableVF list.
5714     if (isMoreProfitable(Candidate, ScalarCost))
5715       ProfitableVFs.push_back(Candidate);
5716 
5717     if (isMoreProfitable(Candidate, ChosenFactor))
5718       ChosenFactor = Candidate;
5719   }
5720 
5721   // Emit a report of VFs with invalid costs in the loop.
5722   if (!InvalidCosts.empty()) {
5723     // Group the remarks per instruction, keeping the instruction order from
5724     // InvalidCosts.
5725     std::map<Instruction *, unsigned> Numbering;
5726     unsigned I = 0;
5727     for (auto &Pair : InvalidCosts)
5728       if (!Numbering.count(Pair.first))
5729         Numbering[Pair.first] = I++;
5730 
5731     // Sort the list, first on instruction(number) then on VF.
5732     llvm::sort(InvalidCosts,
5733                [&Numbering](InstructionVFPair &A, InstructionVFPair &B) {
5734                  if (Numbering[A.first] != Numbering[B.first])
5735                    return Numbering[A.first] < Numbering[B.first];
5736                  ElementCountComparator ECC;
5737                  return ECC(A.second, B.second);
5738                });
5739 
5740     // For a list of ordered instruction-vf pairs:
5741     //   [(load, vf1), (load, vf2), (store, vf1)]
5742     // Group the instructions together to emit separate remarks for:
5743     //   load  (vf1, vf2)
5744     //   store (vf1)
5745     auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts);
5746     auto Subset = ArrayRef<InstructionVFPair>();
5747     do {
5748       if (Subset.empty())
5749         Subset = Tail.take_front(1);
5750 
5751       Instruction *I = Subset.front().first;
5752 
5753       // If the next instruction is different, or if there are no other pairs,
5754       // emit a remark for the collated subset. e.g.
5755       //   [(load, vf1), (load, vf2))]
5756       // to emit:
5757       //  remark: invalid costs for 'load' at VF=(vf, vf2)
5758       if (Subset == Tail || Tail[Subset.size()].first != I) {
5759         std::string OutString;
5760         raw_string_ostream OS(OutString);
5761         assert(!Subset.empty() && "Unexpected empty range");
5762         OS << "Instruction with invalid costs prevented vectorization at VF=(";
5763         for (auto &Pair : Subset)
5764           OS << (Pair.second == Subset.front().second ? "" : ", ")
5765              << Pair.second;
5766         OS << "):";
5767         if (auto *CI = dyn_cast<CallInst>(I))
5768           OS << " call to " << CI->getCalledFunction()->getName();
5769         else
5770           OS << " " << I->getOpcodeName();
5771         OS.flush();
5772         reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I);
5773         Tail = Tail.drop_front(Subset.size());
5774         Subset = {};
5775       } else
5776         // Grow the subset by one element
5777         Subset = Tail.take_front(Subset.size() + 1);
5778     } while (!Tail.empty());
5779   }
5780 
5781   if (!EnableCondStoresVectorization && NumPredStores) {
5782     reportVectorizationFailure("There are conditional stores.",
5783         "store that is conditionally executed prevents vectorization",
5784         "ConditionalStore", ORE, TheLoop);
5785     ChosenFactor = ScalarCost;
5786   }
5787 
5788   LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() &&
5789                  ChosenFactor.Cost >= ScalarCost.Cost) dbgs()
5790              << "LV: Vectorization seems to be not beneficial, "
5791              << "but was forced by a user.\n");
5792   LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n");
5793   return ChosenFactor;
5794 }
5795 
5796 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization(
5797     const Loop &L, ElementCount VF) const {
5798   // Cross iteration phis such as reductions need special handling and are
5799   // currently unsupported.
5800   if (any_of(L.getHeader()->phis(),
5801              [&](PHINode &Phi) { return Legal->isFirstOrderRecurrence(&Phi); }))
5802     return false;
5803 
5804   // Phis with uses outside of the loop require special handling and are
5805   // currently unsupported.
5806   for (auto &Entry : Legal->getInductionVars()) {
5807     // Look for uses of the value of the induction at the last iteration.
5808     Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch());
5809     for (User *U : PostInc->users())
5810       if (!L.contains(cast<Instruction>(U)))
5811         return false;
5812     // Look for uses of penultimate value of the induction.
5813     for (User *U : Entry.first->users())
5814       if (!L.contains(cast<Instruction>(U)))
5815         return false;
5816   }
5817 
5818   // Induction variables that are widened require special handling that is
5819   // currently not supported.
5820   if (any_of(Legal->getInductionVars(), [&](auto &Entry) {
5821         return !(this->isScalarAfterVectorization(Entry.first, VF) ||
5822                  this->isProfitableToScalarize(Entry.first, VF));
5823       }))
5824     return false;
5825 
5826   // Epilogue vectorization code has not been auditted to ensure it handles
5827   // non-latch exits properly.  It may be fine, but it needs auditted and
5828   // tested.
5829   if (L.getExitingBlock() != L.getLoopLatch())
5830     return false;
5831 
5832   return true;
5833 }
5834 
5835 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable(
5836     const ElementCount VF) const {
5837   // FIXME: We need a much better cost-model to take different parameters such
5838   // as register pressure, code size increase and cost of extra branches into
5839   // account. For now we apply a very crude heuristic and only consider loops
5840   // with vectorization factors larger than a certain value.
5841   // We also consider epilogue vectorization unprofitable for targets that don't
5842   // consider interleaving beneficial (eg. MVE).
5843   if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1)
5844     return false;
5845   // FIXME: We should consider changing the threshold for scalable
5846   // vectors to take VScaleForTuning into account.
5847   if (VF.getKnownMinValue() >= EpilogueVectorizationMinVF)
5848     return true;
5849   return false;
5850 }
5851 
5852 VectorizationFactor
5853 LoopVectorizationCostModel::selectEpilogueVectorizationFactor(
5854     const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) {
5855   VectorizationFactor Result = VectorizationFactor::Disabled();
5856   if (!EnableEpilogueVectorization) {
5857     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";);
5858     return Result;
5859   }
5860 
5861   if (!isScalarEpilogueAllowed()) {
5862     LLVM_DEBUG(
5863         dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is "
5864                   "allowed.\n";);
5865     return Result;
5866   }
5867 
5868   // Not really a cost consideration, but check for unsupported cases here to
5869   // simplify the logic.
5870   if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) {
5871     LLVM_DEBUG(
5872         dbgs() << "LEV: Unable to vectorize epilogue because the loop is "
5873                   "not a supported candidate.\n";);
5874     return Result;
5875   }
5876 
5877   if (EpilogueVectorizationForceVF > 1) {
5878     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";);
5879     ElementCount ForcedEC = ElementCount::getFixed(EpilogueVectorizationForceVF);
5880     if (LVP.hasPlanWithVF(ForcedEC))
5881       return {ForcedEC, 0};
5882     else {
5883       LLVM_DEBUG(
5884           dbgs()
5885               << "LEV: Epilogue vectorization forced factor is not viable.\n";);
5886       return Result;
5887     }
5888   }
5889 
5890   if (TheLoop->getHeader()->getParent()->hasOptSize() ||
5891       TheLoop->getHeader()->getParent()->hasMinSize()) {
5892     LLVM_DEBUG(
5893         dbgs()
5894             << "LEV: Epilogue vectorization skipped due to opt for size.\n";);
5895     return Result;
5896   }
5897 
5898   if (!isEpilogueVectorizationProfitable(MainLoopVF)) {
5899     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is not profitable for "
5900                          "this loop\n");
5901     return Result;
5902   }
5903 
5904   // If MainLoopVF = vscale x 2, and vscale is expected to be 4, then we know
5905   // the main loop handles 8 lanes per iteration. We could still benefit from
5906   // vectorizing the epilogue loop with VF=4.
5907   ElementCount EstimatedRuntimeVF = MainLoopVF;
5908   if (MainLoopVF.isScalable()) {
5909     EstimatedRuntimeVF = ElementCount::getFixed(MainLoopVF.getKnownMinValue());
5910     if (Optional<unsigned> VScale = getVScaleForTuning())
5911       EstimatedRuntimeVF *= VScale.getValue();
5912   }
5913 
5914   for (auto &NextVF : ProfitableVFs)
5915     if (((!NextVF.Width.isScalable() && MainLoopVF.isScalable() &&
5916           ElementCount::isKnownLT(NextVF.Width, EstimatedRuntimeVF)) ||
5917          ElementCount::isKnownLT(NextVF.Width, MainLoopVF)) &&
5918         (Result.Width.isScalar() || isMoreProfitable(NextVF, Result)) &&
5919         LVP.hasPlanWithVF(NextVF.Width))
5920       Result = NextVF;
5921 
5922   if (Result != VectorizationFactor::Disabled())
5923     LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = "
5924                       << Result.Width << "\n";);
5925   return Result;
5926 }
5927 
5928 std::pair<unsigned, unsigned>
5929 LoopVectorizationCostModel::getSmallestAndWidestTypes() {
5930   unsigned MinWidth = -1U;
5931   unsigned MaxWidth = 8;
5932   const DataLayout &DL = TheFunction->getParent()->getDataLayout();
5933   // For in-loop reductions, no element types are added to ElementTypesInLoop
5934   // if there are no loads/stores in the loop. In this case, check through the
5935   // reduction variables to determine the maximum width.
5936   if (ElementTypesInLoop.empty() && !Legal->getReductionVars().empty()) {
5937     // Reset MaxWidth so that we can find the smallest type used by recurrences
5938     // in the loop.
5939     MaxWidth = -1U;
5940     for (auto &PhiDescriptorPair : Legal->getReductionVars()) {
5941       const RecurrenceDescriptor &RdxDesc = PhiDescriptorPair.second;
5942       // When finding the min width used by the recurrence we need to account
5943       // for casts on the input operands of the recurrence.
5944       MaxWidth = std::min<unsigned>(
5945           MaxWidth, std::min<unsigned>(
5946                         RdxDesc.getMinWidthCastToRecurrenceTypeInBits(),
5947                         RdxDesc.getRecurrenceType()->getScalarSizeInBits()));
5948     }
5949   } else {
5950     for (Type *T : ElementTypesInLoop) {
5951       MinWidth = std::min<unsigned>(
5952           MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
5953       MaxWidth = std::max<unsigned>(
5954           MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
5955     }
5956   }
5957   return {MinWidth, MaxWidth};
5958 }
5959 
5960 void LoopVectorizationCostModel::collectElementTypesForWidening() {
5961   ElementTypesInLoop.clear();
5962   // For each block.
5963   for (BasicBlock *BB : TheLoop->blocks()) {
5964     // For each instruction in the loop.
5965     for (Instruction &I : BB->instructionsWithoutDebug()) {
5966       Type *T = I.getType();
5967 
5968       // Skip ignored values.
5969       if (ValuesToIgnore.count(&I))
5970         continue;
5971 
5972       // Only examine Loads, Stores and PHINodes.
5973       if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
5974         continue;
5975 
5976       // Examine PHI nodes that are reduction variables. Update the type to
5977       // account for the recurrence type.
5978       if (auto *PN = dyn_cast<PHINode>(&I)) {
5979         if (!Legal->isReductionVariable(PN))
5980           continue;
5981         const RecurrenceDescriptor &RdxDesc =
5982             Legal->getReductionVars().find(PN)->second;
5983         if (PreferInLoopReductions || useOrderedReductions(RdxDesc) ||
5984             TTI.preferInLoopReduction(RdxDesc.getOpcode(),
5985                                       RdxDesc.getRecurrenceType(),
5986                                       TargetTransformInfo::ReductionFlags()))
5987           continue;
5988         T = RdxDesc.getRecurrenceType();
5989       }
5990 
5991       // Examine the stored values.
5992       if (auto *ST = dyn_cast<StoreInst>(&I))
5993         T = ST->getValueOperand()->getType();
5994 
5995       assert(T->isSized() &&
5996              "Expected the load/store/recurrence type to be sized");
5997 
5998       ElementTypesInLoop.insert(T);
5999     }
6000   }
6001 }
6002 
6003 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF,
6004                                                            unsigned LoopCost) {
6005   // -- The interleave heuristics --
6006   // We interleave the loop in order to expose ILP and reduce the loop overhead.
6007   // There are many micro-architectural considerations that we can't predict
6008   // at this level. For example, frontend pressure (on decode or fetch) due to
6009   // code size, or the number and capabilities of the execution ports.
6010   //
6011   // We use the following heuristics to select the interleave count:
6012   // 1. If the code has reductions, then we interleave to break the cross
6013   // iteration dependency.
6014   // 2. If the loop is really small, then we interleave to reduce the loop
6015   // overhead.
6016   // 3. We don't interleave if we think that we will spill registers to memory
6017   // due to the increased register pressure.
6018 
6019   if (!isScalarEpilogueAllowed())
6020     return 1;
6021 
6022   // We used the distance for the interleave count.
6023   if (Legal->getMaxSafeDepDistBytes() != -1U)
6024     return 1;
6025 
6026   auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop);
6027   const bool HasReductions = !Legal->getReductionVars().empty();
6028   // Do not interleave loops with a relatively small known or estimated trip
6029   // count. But we will interleave when InterleaveSmallLoopScalarReduction is
6030   // enabled, and the code has scalar reductions(HasReductions && VF = 1),
6031   // because with the above conditions interleaving can expose ILP and break
6032   // cross iteration dependences for reductions.
6033   if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) &&
6034       !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar()))
6035     return 1;
6036 
6037   // If we did not calculate the cost for VF (because the user selected the VF)
6038   // then we calculate the cost of VF here.
6039   if (LoopCost == 0) {
6040     InstructionCost C = expectedCost(VF).first;
6041     assert(C.isValid() && "Expected to have chosen a VF with valid cost");
6042     LoopCost = *C.getValue();
6043 
6044     // Loop body is free and there is no need for interleaving.
6045     if (LoopCost == 0)
6046       return 1;
6047   }
6048 
6049   RegisterUsage R = calculateRegisterUsage({VF})[0];
6050   // We divide by these constants so assume that we have at least one
6051   // instruction that uses at least one register.
6052   for (auto& pair : R.MaxLocalUsers) {
6053     pair.second = std::max(pair.second, 1U);
6054   }
6055 
6056   // We calculate the interleave count using the following formula.
6057   // Subtract the number of loop invariants from the number of available
6058   // registers. These registers are used by all of the interleaved instances.
6059   // Next, divide the remaining registers by the number of registers that is
6060   // required by the loop, in order to estimate how many parallel instances
6061   // fit without causing spills. All of this is rounded down if necessary to be
6062   // a power of two. We want power of two interleave count to simplify any
6063   // addressing operations or alignment considerations.
6064   // We also want power of two interleave counts to ensure that the induction
6065   // variable of the vector loop wraps to zero, when tail is folded by masking;
6066   // this currently happens when OptForSize, in which case IC is set to 1 above.
6067   unsigned IC = UINT_MAX;
6068 
6069   for (auto& pair : R.MaxLocalUsers) {
6070     unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
6071     LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
6072                       << " registers of "
6073                       << TTI.getRegisterClassName(pair.first) << " register class\n");
6074     if (VF.isScalar()) {
6075       if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
6076         TargetNumRegisters = ForceTargetNumScalarRegs;
6077     } else {
6078       if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
6079         TargetNumRegisters = ForceTargetNumVectorRegs;
6080     }
6081     unsigned MaxLocalUsers = pair.second;
6082     unsigned LoopInvariantRegs = 0;
6083     if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end())
6084       LoopInvariantRegs = R.LoopInvariantRegs[pair.first];
6085 
6086     unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers);
6087     // Don't count the induction variable as interleaved.
6088     if (EnableIndVarRegisterHeur) {
6089       TmpIC =
6090           PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) /
6091                         std::max(1U, (MaxLocalUsers - 1)));
6092     }
6093 
6094     IC = std::min(IC, TmpIC);
6095   }
6096 
6097   // Clamp the interleave ranges to reasonable counts.
6098   unsigned MaxInterleaveCount =
6099       TTI.getMaxInterleaveFactor(VF.getKnownMinValue());
6100 
6101   // Check if the user has overridden the max.
6102   if (VF.isScalar()) {
6103     if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
6104       MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
6105   } else {
6106     if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
6107       MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
6108   }
6109 
6110   // If trip count is known or estimated compile time constant, limit the
6111   // interleave count to be less than the trip count divided by VF, provided it
6112   // is at least 1.
6113   //
6114   // For scalable vectors we can't know if interleaving is beneficial. It may
6115   // not be beneficial for small loops if none of the lanes in the second vector
6116   // iterations is enabled. However, for larger loops, there is likely to be a
6117   // similar benefit as for fixed-width vectors. For now, we choose to leave
6118   // the InterleaveCount as if vscale is '1', although if some information about
6119   // the vector is known (e.g. min vector size), we can make a better decision.
6120   if (BestKnownTC) {
6121     MaxInterleaveCount =
6122         std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount);
6123     // Make sure MaxInterleaveCount is greater than 0.
6124     MaxInterleaveCount = std::max(1u, MaxInterleaveCount);
6125   }
6126 
6127   assert(MaxInterleaveCount > 0 &&
6128          "Maximum interleave count must be greater than 0");
6129 
6130   // Clamp the calculated IC to be between the 1 and the max interleave count
6131   // that the target and trip count allows.
6132   if (IC > MaxInterleaveCount)
6133     IC = MaxInterleaveCount;
6134   else
6135     // Make sure IC is greater than 0.
6136     IC = std::max(1u, IC);
6137 
6138   assert(IC > 0 && "Interleave count must be greater than 0.");
6139 
6140   // Interleave if we vectorized this loop and there is a reduction that could
6141   // benefit from interleaving.
6142   if (VF.isVector() && HasReductions) {
6143     LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
6144     return IC;
6145   }
6146 
6147   // Note that if we've already vectorized the loop we will have done the
6148   // runtime check and so interleaving won't require further checks.
6149   bool InterleavingRequiresRuntimePointerCheck =
6150       (VF.isScalar() && Legal->getRuntimePointerChecking()->Need);
6151 
6152   // We want to interleave small loops in order to reduce the loop overhead and
6153   // potentially expose ILP opportunities.
6154   LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'
6155                     << "LV: IC is " << IC << '\n'
6156                     << "LV: VF is " << VF << '\n');
6157   const bool AggressivelyInterleaveReductions =
6158       TTI.enableAggressiveInterleaving(HasReductions);
6159   if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) {
6160     // We assume that the cost overhead is 1 and we use the cost model
6161     // to estimate the cost of the loop and interleave until the cost of the
6162     // loop overhead is about 5% of the cost of the loop.
6163     unsigned SmallIC =
6164         std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
6165 
6166     // Interleave until store/load ports (estimated by max interleave count) are
6167     // saturated.
6168     unsigned NumStores = Legal->getNumStores();
6169     unsigned NumLoads = Legal->getNumLoads();
6170     unsigned StoresIC = IC / (NumStores ? NumStores : 1);
6171     unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
6172 
6173     // There is little point in interleaving for reductions containing selects
6174     // and compares when VF=1 since it may just create more overhead than it's
6175     // worth for loops with small trip counts. This is because we still have to
6176     // do the final reduction after the loop.
6177     bool HasSelectCmpReductions =
6178         HasReductions &&
6179         any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
6180           const RecurrenceDescriptor &RdxDesc = Reduction.second;
6181           return RecurrenceDescriptor::isSelectCmpRecurrenceKind(
6182               RdxDesc.getRecurrenceKind());
6183         });
6184     if (HasSelectCmpReductions) {
6185       LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n");
6186       return 1;
6187     }
6188 
6189     // If we have a scalar reduction (vector reductions are already dealt with
6190     // by this point), we can increase the critical path length if the loop
6191     // we're interleaving is inside another loop. For tree-wise reductions
6192     // set the limit to 2, and for ordered reductions it's best to disable
6193     // interleaving entirely.
6194     if (HasReductions && TheLoop->getLoopDepth() > 1) {
6195       bool HasOrderedReductions =
6196           any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
6197             const RecurrenceDescriptor &RdxDesc = Reduction.second;
6198             return RdxDesc.isOrdered();
6199           });
6200       if (HasOrderedReductions) {
6201         LLVM_DEBUG(
6202             dbgs() << "LV: Not interleaving scalar ordered reductions.\n");
6203         return 1;
6204       }
6205 
6206       unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
6207       SmallIC = std::min(SmallIC, F);
6208       StoresIC = std::min(StoresIC, F);
6209       LoadsIC = std::min(LoadsIC, F);
6210     }
6211 
6212     if (EnableLoadStoreRuntimeInterleave &&
6213         std::max(StoresIC, LoadsIC) > SmallIC) {
6214       LLVM_DEBUG(
6215           dbgs() << "LV: Interleaving to saturate store or load ports.\n");
6216       return std::max(StoresIC, LoadsIC);
6217     }
6218 
6219     // If there are scalar reductions and TTI has enabled aggressive
6220     // interleaving for reductions, we will interleave to expose ILP.
6221     if (InterleaveSmallLoopScalarReduction && VF.isScalar() &&
6222         AggressivelyInterleaveReductions) {
6223       LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6224       // Interleave no less than SmallIC but not as aggressive as the normal IC
6225       // to satisfy the rare situation when resources are too limited.
6226       return std::max(IC / 2, SmallIC);
6227     } else {
6228       LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
6229       return SmallIC;
6230     }
6231   }
6232 
6233   // Interleave if this is a large loop (small loops are already dealt with by
6234   // this point) that could benefit from interleaving.
6235   if (AggressivelyInterleaveReductions) {
6236     LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6237     return IC;
6238   }
6239 
6240   LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
6241   return 1;
6242 }
6243 
6244 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
6245 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) {
6246   // This function calculates the register usage by measuring the highest number
6247   // of values that are alive at a single location. Obviously, this is a very
6248   // rough estimation. We scan the loop in a topological order in order and
6249   // assign a number to each instruction. We use RPO to ensure that defs are
6250   // met before their users. We assume that each instruction that has in-loop
6251   // users starts an interval. We record every time that an in-loop value is
6252   // used, so we have a list of the first and last occurrences of each
6253   // instruction. Next, we transpose this data structure into a multi map that
6254   // holds the list of intervals that *end* at a specific location. This multi
6255   // map allows us to perform a linear search. We scan the instructions linearly
6256   // and record each time that a new interval starts, by placing it in a set.
6257   // If we find this value in the multi-map then we remove it from the set.
6258   // The max register usage is the maximum size of the set.
6259   // We also search for instructions that are defined outside the loop, but are
6260   // used inside the loop. We need this number separately from the max-interval
6261   // usage number because when we unroll, loop-invariant values do not take
6262   // more register.
6263   LoopBlocksDFS DFS(TheLoop);
6264   DFS.perform(LI);
6265 
6266   RegisterUsage RU;
6267 
6268   // Each 'key' in the map opens a new interval. The values
6269   // of the map are the index of the 'last seen' usage of the
6270   // instruction that is the key.
6271   using IntervalMap = DenseMap<Instruction *, unsigned>;
6272 
6273   // Maps instruction to its index.
6274   SmallVector<Instruction *, 64> IdxToInstr;
6275   // Marks the end of each interval.
6276   IntervalMap EndPoint;
6277   // Saves the list of instruction indices that are used in the loop.
6278   SmallPtrSet<Instruction *, 8> Ends;
6279   // Saves the list of values that are used in the loop but are
6280   // defined outside the loop, such as arguments and constants.
6281   SmallPtrSet<Value *, 8> LoopInvariants;
6282 
6283   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
6284     for (Instruction &I : BB->instructionsWithoutDebug()) {
6285       IdxToInstr.push_back(&I);
6286 
6287       // Save the end location of each USE.
6288       for (Value *U : I.operands()) {
6289         auto *Instr = dyn_cast<Instruction>(U);
6290 
6291         // Ignore non-instruction values such as arguments, constants, etc.
6292         if (!Instr)
6293           continue;
6294 
6295         // If this instruction is outside the loop then record it and continue.
6296         if (!TheLoop->contains(Instr)) {
6297           LoopInvariants.insert(Instr);
6298           continue;
6299         }
6300 
6301         // Overwrite previous end points.
6302         EndPoint[Instr] = IdxToInstr.size();
6303         Ends.insert(Instr);
6304       }
6305     }
6306   }
6307 
6308   // Saves the list of intervals that end with the index in 'key'.
6309   using InstrList = SmallVector<Instruction *, 2>;
6310   DenseMap<unsigned, InstrList> TransposeEnds;
6311 
6312   // Transpose the EndPoints to a list of values that end at each index.
6313   for (auto &Interval : EndPoint)
6314     TransposeEnds[Interval.second].push_back(Interval.first);
6315 
6316   SmallPtrSet<Instruction *, 8> OpenIntervals;
6317   SmallVector<RegisterUsage, 8> RUs(VFs.size());
6318   SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size());
6319 
6320   LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
6321 
6322   // A lambda that gets the register usage for the given type and VF.
6323   const auto &TTICapture = TTI;
6324   auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned {
6325     if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty))
6326       return 0;
6327     InstructionCost::CostType RegUsage =
6328         *TTICapture.getRegUsageForType(VectorType::get(Ty, VF)).getValue();
6329     assert(RegUsage >= 0 && RegUsage <= std::numeric_limits<unsigned>::max() &&
6330            "Nonsensical values for register usage.");
6331     return RegUsage;
6332   };
6333 
6334   for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) {
6335     Instruction *I = IdxToInstr[i];
6336 
6337     // Remove all of the instructions that end at this location.
6338     InstrList &List = TransposeEnds[i];
6339     for (Instruction *ToRemove : List)
6340       OpenIntervals.erase(ToRemove);
6341 
6342     // Ignore instructions that are never used within the loop.
6343     if (!Ends.count(I))
6344       continue;
6345 
6346     // Skip ignored values.
6347     if (ValuesToIgnore.count(I))
6348       continue;
6349 
6350     // For each VF find the maximum usage of registers.
6351     for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
6352       // Count the number of live intervals.
6353       SmallMapVector<unsigned, unsigned, 4> RegUsage;
6354 
6355       if (VFs[j].isScalar()) {
6356         for (auto Inst : OpenIntervals) {
6357           unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6358           if (RegUsage.find(ClassID) == RegUsage.end())
6359             RegUsage[ClassID] = 1;
6360           else
6361             RegUsage[ClassID] += 1;
6362         }
6363       } else {
6364         collectUniformsAndScalars(VFs[j]);
6365         for (auto Inst : OpenIntervals) {
6366           // Skip ignored values for VF > 1.
6367           if (VecValuesToIgnore.count(Inst))
6368             continue;
6369           if (isScalarAfterVectorization(Inst, VFs[j])) {
6370             unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6371             if (RegUsage.find(ClassID) == RegUsage.end())
6372               RegUsage[ClassID] = 1;
6373             else
6374               RegUsage[ClassID] += 1;
6375           } else {
6376             unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType());
6377             if (RegUsage.find(ClassID) == RegUsage.end())
6378               RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]);
6379             else
6380               RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]);
6381           }
6382         }
6383       }
6384 
6385       for (auto& pair : RegUsage) {
6386         if (MaxUsages[j].find(pair.first) != MaxUsages[j].end())
6387           MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second);
6388         else
6389           MaxUsages[j][pair.first] = pair.second;
6390       }
6391     }
6392 
6393     LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "
6394                       << OpenIntervals.size() << '\n');
6395 
6396     // Add the current instruction to the list of open intervals.
6397     OpenIntervals.insert(I);
6398   }
6399 
6400   for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
6401     SmallMapVector<unsigned, unsigned, 4> Invariant;
6402 
6403     for (auto Inst : LoopInvariants) {
6404       unsigned Usage =
6405           VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]);
6406       unsigned ClassID =
6407           TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType());
6408       if (Invariant.find(ClassID) == Invariant.end())
6409         Invariant[ClassID] = Usage;
6410       else
6411         Invariant[ClassID] += Usage;
6412     }
6413 
6414     LLVM_DEBUG({
6415       dbgs() << "LV(REG): VF = " << VFs[i] << '\n';
6416       dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size()
6417              << " item\n";
6418       for (const auto &pair : MaxUsages[i]) {
6419         dbgs() << "LV(REG): RegisterClass: "
6420                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6421                << " registers\n";
6422       }
6423       dbgs() << "LV(REG): Found invariant usage: " << Invariant.size()
6424              << " item\n";
6425       for (const auto &pair : Invariant) {
6426         dbgs() << "LV(REG): RegisterClass: "
6427                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6428                << " registers\n";
6429       }
6430     });
6431 
6432     RU.LoopInvariantRegs = Invariant;
6433     RU.MaxLocalUsers = MaxUsages[i];
6434     RUs[i] = RU;
6435   }
6436 
6437   return RUs;
6438 }
6439 
6440 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I,
6441                                                            ElementCount VF) {
6442   // TODO: Cost model for emulated masked load/store is completely
6443   // broken. This hack guides the cost model to use an artificially
6444   // high enough value to practically disable vectorization with such
6445   // operations, except where previously deployed legality hack allowed
6446   // using very low cost values. This is to avoid regressions coming simply
6447   // from moving "masked load/store" check from legality to cost model.
6448   // Masked Load/Gather emulation was previously never allowed.
6449   // Limited number of Masked Store/Scatter emulation was allowed.
6450   assert(isPredicatedInst(I, VF) && "Expecting a scalar emulated instruction");
6451   return isa<LoadInst>(I) ||
6452          (isa<StoreInst>(I) &&
6453           NumPredStores > NumberOfStoresToPredicate);
6454 }
6455 
6456 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) {
6457   // If we aren't vectorizing the loop, or if we've already collected the
6458   // instructions to scalarize, there's nothing to do. Collection may already
6459   // have occurred if we have a user-selected VF and are now computing the
6460   // expected cost for interleaving.
6461   if (VF.isScalar() || VF.isZero() ||
6462       InstsToScalarize.find(VF) != InstsToScalarize.end())
6463     return;
6464 
6465   // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
6466   // not profitable to scalarize any instructions, the presence of VF in the
6467   // map will indicate that we've analyzed it already.
6468   ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
6469 
6470   // Find all the instructions that are scalar with predication in the loop and
6471   // determine if it would be better to not if-convert the blocks they are in.
6472   // If so, we also record the instructions to scalarize.
6473   for (BasicBlock *BB : TheLoop->blocks()) {
6474     if (!blockNeedsPredicationForAnyReason(BB))
6475       continue;
6476     for (Instruction &I : *BB)
6477       if (isScalarWithPredication(&I, VF)) {
6478         ScalarCostsTy ScalarCosts;
6479         // Do not apply discount if scalable, because that would lead to
6480         // invalid scalarization costs.
6481         // Do not apply discount logic if hacked cost is needed
6482         // for emulated masked memrefs.
6483         if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I, VF) &&
6484             computePredInstDiscount(&I, ScalarCosts, VF) >= 0)
6485           ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end());
6486         // Remember that BB will remain after vectorization.
6487         PredicatedBBsAfterVectorization.insert(BB);
6488       }
6489   }
6490 }
6491 
6492 int LoopVectorizationCostModel::computePredInstDiscount(
6493     Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) {
6494   assert(!isUniformAfterVectorization(PredInst, VF) &&
6495          "Instruction marked uniform-after-vectorization will be predicated");
6496 
6497   // Initialize the discount to zero, meaning that the scalar version and the
6498   // vector version cost the same.
6499   InstructionCost Discount = 0;
6500 
6501   // Holds instructions to analyze. The instructions we visit are mapped in
6502   // ScalarCosts. Those instructions are the ones that would be scalarized if
6503   // we find that the scalar version costs less.
6504   SmallVector<Instruction *, 8> Worklist;
6505 
6506   // Returns true if the given instruction can be scalarized.
6507   auto canBeScalarized = [&](Instruction *I) -> bool {
6508     // We only attempt to scalarize instructions forming a single-use chain
6509     // from the original predicated block that would otherwise be vectorized.
6510     // Although not strictly necessary, we give up on instructions we know will
6511     // already be scalar to avoid traversing chains that are unlikely to be
6512     // beneficial.
6513     if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
6514         isScalarAfterVectorization(I, VF))
6515       return false;
6516 
6517     // If the instruction is scalar with predication, it will be analyzed
6518     // separately. We ignore it within the context of PredInst.
6519     if (isScalarWithPredication(I, VF))
6520       return false;
6521 
6522     // If any of the instruction's operands are uniform after vectorization,
6523     // the instruction cannot be scalarized. This prevents, for example, a
6524     // masked load from being scalarized.
6525     //
6526     // We assume we will only emit a value for lane zero of an instruction
6527     // marked uniform after vectorization, rather than VF identical values.
6528     // Thus, if we scalarize an instruction that uses a uniform, we would
6529     // create uses of values corresponding to the lanes we aren't emitting code
6530     // for. This behavior can be changed by allowing getScalarValue to clone
6531     // the lane zero values for uniforms rather than asserting.
6532     for (Use &U : I->operands())
6533       if (auto *J = dyn_cast<Instruction>(U.get()))
6534         if (isUniformAfterVectorization(J, VF))
6535           return false;
6536 
6537     // Otherwise, we can scalarize the instruction.
6538     return true;
6539   };
6540 
6541   // Compute the expected cost discount from scalarizing the entire expression
6542   // feeding the predicated instruction. We currently only consider expressions
6543   // that are single-use instruction chains.
6544   Worklist.push_back(PredInst);
6545   while (!Worklist.empty()) {
6546     Instruction *I = Worklist.pop_back_val();
6547 
6548     // If we've already analyzed the instruction, there's nothing to do.
6549     if (ScalarCosts.find(I) != ScalarCosts.end())
6550       continue;
6551 
6552     // Compute the cost of the vector instruction. Note that this cost already
6553     // includes the scalarization overhead of the predicated instruction.
6554     InstructionCost VectorCost = getInstructionCost(I, VF).first;
6555 
6556     // Compute the cost of the scalarized instruction. This cost is the cost of
6557     // the instruction as if it wasn't if-converted and instead remained in the
6558     // predicated block. We will scale this cost by block probability after
6559     // computing the scalarization overhead.
6560     InstructionCost ScalarCost =
6561         VF.getFixedValue() *
6562         getInstructionCost(I, ElementCount::getFixed(1)).first;
6563 
6564     // Compute the scalarization overhead of needed insertelement instructions
6565     // and phi nodes.
6566     if (isScalarWithPredication(I, VF) && !I->getType()->isVoidTy()) {
6567       ScalarCost += TTI.getScalarizationOverhead(
6568           cast<VectorType>(ToVectorTy(I->getType(), VF)),
6569           APInt::getAllOnes(VF.getFixedValue()), true, false);
6570       ScalarCost +=
6571           VF.getFixedValue() *
6572           TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput);
6573     }
6574 
6575     // Compute the scalarization overhead of needed extractelement
6576     // instructions. For each of the instruction's operands, if the operand can
6577     // be scalarized, add it to the worklist; otherwise, account for the
6578     // overhead.
6579     for (Use &U : I->operands())
6580       if (auto *J = dyn_cast<Instruction>(U.get())) {
6581         assert(VectorType::isValidElementType(J->getType()) &&
6582                "Instruction has non-scalar type");
6583         if (canBeScalarized(J))
6584           Worklist.push_back(J);
6585         else if (needsExtract(J, VF)) {
6586           ScalarCost += TTI.getScalarizationOverhead(
6587               cast<VectorType>(ToVectorTy(J->getType(), VF)),
6588               APInt::getAllOnes(VF.getFixedValue()), false, true);
6589         }
6590       }
6591 
6592     // Scale the total scalar cost by block probability.
6593     ScalarCost /= getReciprocalPredBlockProb();
6594 
6595     // Compute the discount. A non-negative discount means the vector version
6596     // of the instruction costs more, and scalarizing would be beneficial.
6597     Discount += VectorCost - ScalarCost;
6598     ScalarCosts[I] = ScalarCost;
6599   }
6600 
6601   return *Discount.getValue();
6602 }
6603 
6604 LoopVectorizationCostModel::VectorizationCostTy
6605 LoopVectorizationCostModel::expectedCost(
6606     ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) {
6607   VectorizationCostTy Cost;
6608 
6609   // For each block.
6610   for (BasicBlock *BB : TheLoop->blocks()) {
6611     VectorizationCostTy BlockCost;
6612 
6613     // For each instruction in the old loop.
6614     for (Instruction &I : BB->instructionsWithoutDebug()) {
6615       // Skip ignored values.
6616       if (ValuesToIgnore.count(&I) ||
6617           (VF.isVector() && VecValuesToIgnore.count(&I)))
6618         continue;
6619 
6620       VectorizationCostTy C = getInstructionCost(&I, VF);
6621 
6622       // Check if we should override the cost.
6623       if (C.first.isValid() &&
6624           ForceTargetInstructionCost.getNumOccurrences() > 0)
6625         C.first = InstructionCost(ForceTargetInstructionCost);
6626 
6627       // Keep a list of instructions with invalid costs.
6628       if (Invalid && !C.first.isValid())
6629         Invalid->emplace_back(&I, VF);
6630 
6631       BlockCost.first += C.first;
6632       BlockCost.second |= C.second;
6633       LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first
6634                         << " for VF " << VF << " For instruction: " << I
6635                         << '\n');
6636     }
6637 
6638     // If we are vectorizing a predicated block, it will have been
6639     // if-converted. This means that the block's instructions (aside from
6640     // stores and instructions that may divide by zero) will now be
6641     // unconditionally executed. For the scalar case, we may not always execute
6642     // the predicated block, if it is an if-else block. Thus, scale the block's
6643     // cost by the probability of executing it. blockNeedsPredication from
6644     // Legal is used so as to not include all blocks in tail folded loops.
6645     if (VF.isScalar() && Legal->blockNeedsPredication(BB))
6646       BlockCost.first /= getReciprocalPredBlockProb();
6647 
6648     Cost.first += BlockCost.first;
6649     Cost.second |= BlockCost.second;
6650   }
6651 
6652   return Cost;
6653 }
6654 
6655 /// Gets Address Access SCEV after verifying that the access pattern
6656 /// is loop invariant except the induction variable dependence.
6657 ///
6658 /// This SCEV can be sent to the Target in order to estimate the address
6659 /// calculation cost.
6660 static const SCEV *getAddressAccessSCEV(
6661               Value *Ptr,
6662               LoopVectorizationLegality *Legal,
6663               PredicatedScalarEvolution &PSE,
6664               const Loop *TheLoop) {
6665 
6666   auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
6667   if (!Gep)
6668     return nullptr;
6669 
6670   // We are looking for a gep with all loop invariant indices except for one
6671   // which should be an induction variable.
6672   auto SE = PSE.getSE();
6673   unsigned NumOperands = Gep->getNumOperands();
6674   for (unsigned i = 1; i < NumOperands; ++i) {
6675     Value *Opd = Gep->getOperand(i);
6676     if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
6677         !Legal->isInductionVariable(Opd))
6678       return nullptr;
6679   }
6680 
6681   // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
6682   return PSE.getSCEV(Ptr);
6683 }
6684 
6685 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
6686   return Legal->hasStride(I->getOperand(0)) ||
6687          Legal->hasStride(I->getOperand(1));
6688 }
6689 
6690 InstructionCost
6691 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
6692                                                         ElementCount VF) {
6693   assert(VF.isVector() &&
6694          "Scalarization cost of instruction implies vectorization.");
6695   if (VF.isScalable())
6696     return InstructionCost::getInvalid();
6697 
6698   Type *ValTy = getLoadStoreType(I);
6699   auto SE = PSE.getSE();
6700 
6701   unsigned AS = getLoadStoreAddressSpace(I);
6702   Value *Ptr = getLoadStorePointerOperand(I);
6703   Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
6704   // NOTE: PtrTy is a vector to signal `TTI::getAddressComputationCost`
6705   //       that it is being called from this specific place.
6706 
6707   // Figure out whether the access is strided and get the stride value
6708   // if it's known in compile time
6709   const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
6710 
6711   // Get the cost of the scalar memory instruction and address computation.
6712   InstructionCost Cost =
6713       VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV);
6714 
6715   // Don't pass *I here, since it is scalar but will actually be part of a
6716   // vectorized loop where the user of it is a vectorized instruction.
6717   const Align Alignment = getLoadStoreAlignment(I);
6718   Cost += VF.getKnownMinValue() *
6719           TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment,
6720                               AS, TTI::TCK_RecipThroughput);
6721 
6722   // Get the overhead of the extractelement and insertelement instructions
6723   // we might create due to scalarization.
6724   Cost += getScalarizationOverhead(I, VF);
6725 
6726   // If we have a predicated load/store, it will need extra i1 extracts and
6727   // conditional branches, but may not be executed for each vector lane. Scale
6728   // the cost by the probability of executing the predicated block.
6729   if (isPredicatedInst(I, VF)) {
6730     Cost /= getReciprocalPredBlockProb();
6731 
6732     // Add the cost of an i1 extract and a branch
6733     auto *Vec_i1Ty =
6734         VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF);
6735     Cost += TTI.getScalarizationOverhead(
6736         Vec_i1Ty, APInt::getAllOnes(VF.getKnownMinValue()),
6737         /*Insert=*/false, /*Extract=*/true);
6738     Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput);
6739 
6740     if (useEmulatedMaskMemRefHack(I, VF))
6741       // Artificially setting to a high enough value to practically disable
6742       // vectorization with such operations.
6743       Cost = 3000000;
6744   }
6745 
6746   return Cost;
6747 }
6748 
6749 InstructionCost
6750 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
6751                                                     ElementCount VF) {
6752   Type *ValTy = getLoadStoreType(I);
6753   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6754   Value *Ptr = getLoadStorePointerOperand(I);
6755   unsigned AS = getLoadStoreAddressSpace(I);
6756   int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr);
6757   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6758 
6759   assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
6760          "Stride should be 1 or -1 for consecutive memory access");
6761   const Align Alignment = getLoadStoreAlignment(I);
6762   InstructionCost Cost = 0;
6763   if (Legal->isMaskRequired(I))
6764     Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
6765                                       CostKind);
6766   else
6767     Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
6768                                 CostKind, I);
6769 
6770   bool Reverse = ConsecutiveStride < 0;
6771   if (Reverse)
6772     Cost +=
6773         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
6774   return Cost;
6775 }
6776 
6777 InstructionCost
6778 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
6779                                                 ElementCount VF) {
6780   assert(Legal->isUniformMemOp(*I));
6781 
6782   Type *ValTy = getLoadStoreType(I);
6783   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6784   const Align Alignment = getLoadStoreAlignment(I);
6785   unsigned AS = getLoadStoreAddressSpace(I);
6786   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6787   if (isa<LoadInst>(I)) {
6788     return TTI.getAddressComputationCost(ValTy) +
6789            TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS,
6790                                CostKind) +
6791            TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy);
6792   }
6793   StoreInst *SI = cast<StoreInst>(I);
6794 
6795   bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand());
6796   return TTI.getAddressComputationCost(ValTy) +
6797          TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS,
6798                              CostKind) +
6799          (isLoopInvariantStoreValue
6800               ? 0
6801               : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy,
6802                                        VF.getKnownMinValue() - 1));
6803 }
6804 
6805 InstructionCost
6806 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
6807                                                  ElementCount VF) {
6808   Type *ValTy = getLoadStoreType(I);
6809   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6810   const Align Alignment = getLoadStoreAlignment(I);
6811   const Value *Ptr = getLoadStorePointerOperand(I);
6812 
6813   return TTI.getAddressComputationCost(VectorTy) +
6814          TTI.getGatherScatterOpCost(
6815              I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment,
6816              TargetTransformInfo::TCK_RecipThroughput, I);
6817 }
6818 
6819 InstructionCost
6820 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
6821                                                    ElementCount VF) {
6822   // TODO: Once we have support for interleaving with scalable vectors
6823   // we can calculate the cost properly here.
6824   if (VF.isScalable())
6825     return InstructionCost::getInvalid();
6826 
6827   Type *ValTy = getLoadStoreType(I);
6828   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6829   unsigned AS = getLoadStoreAddressSpace(I);
6830 
6831   auto Group = getInterleavedAccessGroup(I);
6832   assert(Group && "Fail to get an interleaved access group.");
6833 
6834   unsigned InterleaveFactor = Group->getFactor();
6835   auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
6836 
6837   // Holds the indices of existing members in the interleaved group.
6838   SmallVector<unsigned, 4> Indices;
6839   for (unsigned IF = 0; IF < InterleaveFactor; IF++)
6840     if (Group->getMember(IF))
6841       Indices.push_back(IF);
6842 
6843   // Calculate the cost of the whole interleaved group.
6844   bool UseMaskForGaps =
6845       (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) ||
6846       (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()));
6847   InstructionCost Cost = TTI.getInterleavedMemoryOpCost(
6848       I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(),
6849       AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps);
6850 
6851   if (Group->isReverse()) {
6852     // TODO: Add support for reversed masked interleaved access.
6853     assert(!Legal->isMaskRequired(I) &&
6854            "Reverse masked interleaved access not supported.");
6855     Cost +=
6856         Group->getNumMembers() *
6857         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
6858   }
6859   return Cost;
6860 }
6861 
6862 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost(
6863     Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) {
6864   using namespace llvm::PatternMatch;
6865   // Early exit for no inloop reductions
6866   if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty))
6867     return None;
6868   auto *VectorTy = cast<VectorType>(Ty);
6869 
6870   // We are looking for a pattern of, and finding the minimal acceptable cost:
6871   //  reduce(mul(ext(A), ext(B))) or
6872   //  reduce(mul(A, B)) or
6873   //  reduce(ext(A)) or
6874   //  reduce(A).
6875   // The basic idea is that we walk down the tree to do that, finding the root
6876   // reduction instruction in InLoopReductionImmediateChains. From there we find
6877   // the pattern of mul/ext and test the cost of the entire pattern vs the cost
6878   // of the components. If the reduction cost is lower then we return it for the
6879   // reduction instruction and 0 for the other instructions in the pattern. If
6880   // it is not we return an invalid cost specifying the orignal cost method
6881   // should be used.
6882   Instruction *RetI = I;
6883   if (match(RetI, m_ZExtOrSExt(m_Value()))) {
6884     if (!RetI->hasOneUser())
6885       return None;
6886     RetI = RetI->user_back();
6887   }
6888   if (match(RetI, m_Mul(m_Value(), m_Value())) &&
6889       RetI->user_back()->getOpcode() == Instruction::Add) {
6890     if (!RetI->hasOneUser())
6891       return None;
6892     RetI = RetI->user_back();
6893   }
6894 
6895   // Test if the found instruction is a reduction, and if not return an invalid
6896   // cost specifying the parent to use the original cost modelling.
6897   if (!InLoopReductionImmediateChains.count(RetI))
6898     return None;
6899 
6900   // Find the reduction this chain is a part of and calculate the basic cost of
6901   // the reduction on its own.
6902   Instruction *LastChain = InLoopReductionImmediateChains[RetI];
6903   Instruction *ReductionPhi = LastChain;
6904   while (!isa<PHINode>(ReductionPhi))
6905     ReductionPhi = InLoopReductionImmediateChains[ReductionPhi];
6906 
6907   const RecurrenceDescriptor &RdxDesc =
6908       Legal->getReductionVars().find(cast<PHINode>(ReductionPhi))->second;
6909 
6910   InstructionCost BaseCost = TTI.getArithmeticReductionCost(
6911       RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind);
6912 
6913   // For a call to the llvm.fmuladd intrinsic we need to add the cost of a
6914   // normal fmul instruction to the cost of the fadd reduction.
6915   if (RdxDesc.getRecurrenceKind() == RecurKind::FMulAdd)
6916     BaseCost +=
6917         TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy, CostKind);
6918 
6919   // If we're using ordered reductions then we can just return the base cost
6920   // here, since getArithmeticReductionCost calculates the full ordered
6921   // reduction cost when FP reassociation is not allowed.
6922   if (useOrderedReductions(RdxDesc))
6923     return BaseCost;
6924 
6925   // Get the operand that was not the reduction chain and match it to one of the
6926   // patterns, returning the better cost if it is found.
6927   Instruction *RedOp = RetI->getOperand(1) == LastChain
6928                            ? dyn_cast<Instruction>(RetI->getOperand(0))
6929                            : dyn_cast<Instruction>(RetI->getOperand(1));
6930 
6931   VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy);
6932 
6933   Instruction *Op0, *Op1;
6934   if (RedOp &&
6935       match(RedOp,
6936             m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) &&
6937       match(Op0, m_ZExtOrSExt(m_Value())) &&
6938       Op0->getOpcode() == Op1->getOpcode() &&
6939       Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
6940       !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) &&
6941       (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) {
6942 
6943     // Matched reduce(ext(mul(ext(A), ext(B)))
6944     // Note that the extend opcodes need to all match, or if A==B they will have
6945     // been converted to zext(mul(sext(A), sext(A))) as it is known positive,
6946     // which is equally fine.
6947     bool IsUnsigned = isa<ZExtInst>(Op0);
6948     auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
6949     auto *MulType = VectorType::get(Op0->getType(), VectorTy);
6950 
6951     InstructionCost ExtCost =
6952         TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType,
6953                              TTI::CastContextHint::None, CostKind, Op0);
6954     InstructionCost MulCost =
6955         TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind);
6956     InstructionCost Ext2Cost =
6957         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType,
6958                              TTI::CastContextHint::None, CostKind, RedOp);
6959 
6960     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6961         /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
6962         CostKind);
6963 
6964     if (RedCost.isValid() &&
6965         RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost)
6966       return I == RetI ? RedCost : 0;
6967   } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) &&
6968              !TheLoop->isLoopInvariant(RedOp)) {
6969     // Matched reduce(ext(A))
6970     bool IsUnsigned = isa<ZExtInst>(RedOp);
6971     auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy);
6972     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6973         /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
6974         CostKind);
6975 
6976     InstructionCost ExtCost =
6977         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType,
6978                              TTI::CastContextHint::None, CostKind, RedOp);
6979     if (RedCost.isValid() && RedCost < BaseCost + ExtCost)
6980       return I == RetI ? RedCost : 0;
6981   } else if (RedOp &&
6982              match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) {
6983     if (match(Op0, m_ZExtOrSExt(m_Value())) &&
6984         Op0->getOpcode() == Op1->getOpcode() &&
6985         !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) {
6986       bool IsUnsigned = isa<ZExtInst>(Op0);
6987       Type *Op0Ty = Op0->getOperand(0)->getType();
6988       Type *Op1Ty = Op1->getOperand(0)->getType();
6989       Type *LargestOpTy =
6990           Op0Ty->getIntegerBitWidth() < Op1Ty->getIntegerBitWidth() ? Op1Ty
6991                                                                     : Op0Ty;
6992       auto *ExtType = VectorType::get(LargestOpTy, VectorTy);
6993 
6994       // Matched reduce(mul(ext(A), ext(B))), where the two ext may be of
6995       // different sizes. We take the largest type as the ext to reduce, and add
6996       // the remaining cost as, for example reduce(mul(ext(ext(A)), ext(B))).
6997       InstructionCost ExtCost0 = TTI.getCastInstrCost(
6998           Op0->getOpcode(), VectorTy, VectorType::get(Op0Ty, VectorTy),
6999           TTI::CastContextHint::None, CostKind, Op0);
7000       InstructionCost ExtCost1 = TTI.getCastInstrCost(
7001           Op1->getOpcode(), VectorTy, VectorType::get(Op1Ty, VectorTy),
7002           TTI::CastContextHint::None, CostKind, Op1);
7003       InstructionCost MulCost =
7004           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7005 
7006       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7007           /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
7008           CostKind);
7009       InstructionCost ExtraExtCost = 0;
7010       if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) {
7011         Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1;
7012         ExtraExtCost = TTI.getCastInstrCost(
7013             ExtraExtOp->getOpcode(), ExtType,
7014             VectorType::get(ExtraExtOp->getOperand(0)->getType(), VectorTy),
7015             TTI::CastContextHint::None, CostKind, ExtraExtOp);
7016       }
7017 
7018       if (RedCost.isValid() &&
7019           (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost))
7020         return I == RetI ? RedCost : 0;
7021     } else if (!match(I, m_ZExtOrSExt(m_Value()))) {
7022       // Matched reduce(mul())
7023       InstructionCost MulCost =
7024           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7025 
7026       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7027           /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy,
7028           CostKind);
7029 
7030       if (RedCost.isValid() && RedCost < MulCost + BaseCost)
7031         return I == RetI ? RedCost : 0;
7032     }
7033   }
7034 
7035   return I == RetI ? Optional<InstructionCost>(BaseCost) : None;
7036 }
7037 
7038 InstructionCost
7039 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
7040                                                      ElementCount VF) {
7041   // Calculate scalar cost only. Vectorization cost should be ready at this
7042   // moment.
7043   if (VF.isScalar()) {
7044     Type *ValTy = getLoadStoreType(I);
7045     const Align Alignment = getLoadStoreAlignment(I);
7046     unsigned AS = getLoadStoreAddressSpace(I);
7047 
7048     return TTI.getAddressComputationCost(ValTy) +
7049            TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS,
7050                                TTI::TCK_RecipThroughput, I);
7051   }
7052   return getWideningCost(I, VF);
7053 }
7054 
7055 LoopVectorizationCostModel::VectorizationCostTy
7056 LoopVectorizationCostModel::getInstructionCost(Instruction *I,
7057                                                ElementCount VF) {
7058   // If we know that this instruction will remain uniform, check the cost of
7059   // the scalar version.
7060   if (isUniformAfterVectorization(I, VF))
7061     VF = ElementCount::getFixed(1);
7062 
7063   if (VF.isVector() && isProfitableToScalarize(I, VF))
7064     return VectorizationCostTy(InstsToScalarize[VF][I], false);
7065 
7066   // Forced scalars do not have any scalarization overhead.
7067   auto ForcedScalar = ForcedScalars.find(VF);
7068   if (VF.isVector() && ForcedScalar != ForcedScalars.end()) {
7069     auto InstSet = ForcedScalar->second;
7070     if (InstSet.count(I))
7071       return VectorizationCostTy(
7072           (getInstructionCost(I, ElementCount::getFixed(1)).first *
7073            VF.getKnownMinValue()),
7074           false);
7075   }
7076 
7077   Type *VectorTy;
7078   InstructionCost C = getInstructionCost(I, VF, VectorTy);
7079 
7080   bool TypeNotScalarized = false;
7081   if (VF.isVector() && VectorTy->isVectorTy()) {
7082     unsigned NumParts = TTI.getNumberOfParts(VectorTy);
7083     if (NumParts)
7084       TypeNotScalarized = NumParts < VF.getKnownMinValue();
7085     else
7086       C = InstructionCost::getInvalid();
7087   }
7088   return VectorizationCostTy(C, TypeNotScalarized);
7089 }
7090 
7091 InstructionCost
7092 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I,
7093                                                      ElementCount VF) const {
7094 
7095   // There is no mechanism yet to create a scalable scalarization loop,
7096   // so this is currently Invalid.
7097   if (VF.isScalable())
7098     return InstructionCost::getInvalid();
7099 
7100   if (VF.isScalar())
7101     return 0;
7102 
7103   InstructionCost Cost = 0;
7104   Type *RetTy = ToVectorTy(I->getType(), VF);
7105   if (!RetTy->isVoidTy() &&
7106       (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore()))
7107     Cost += TTI.getScalarizationOverhead(
7108         cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()), true,
7109         false);
7110 
7111   // Some targets keep addresses scalar.
7112   if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing())
7113     return Cost;
7114 
7115   // Some targets support efficient element stores.
7116   if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore())
7117     return Cost;
7118 
7119   // Collect operands to consider.
7120   CallInst *CI = dyn_cast<CallInst>(I);
7121   Instruction::op_range Ops = CI ? CI->args() : I->operands();
7122 
7123   // Skip operands that do not require extraction/scalarization and do not incur
7124   // any overhead.
7125   SmallVector<Type *> Tys;
7126   for (auto *V : filterExtractingOperands(Ops, VF))
7127     Tys.push_back(MaybeVectorizeType(V->getType(), VF));
7128   return Cost + TTI.getOperandsScalarizationOverhead(
7129                     filterExtractingOperands(Ops, VF), Tys);
7130 }
7131 
7132 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) {
7133   if (VF.isScalar())
7134     return;
7135   NumPredStores = 0;
7136   for (BasicBlock *BB : TheLoop->blocks()) {
7137     // For each instruction in the old loop.
7138     for (Instruction &I : *BB) {
7139       Value *Ptr =  getLoadStorePointerOperand(&I);
7140       if (!Ptr)
7141         continue;
7142 
7143       // TODO: We should generate better code and update the cost model for
7144       // predicated uniform stores. Today they are treated as any other
7145       // predicated store (see added test cases in
7146       // invariant-store-vectorization.ll).
7147       if (isa<StoreInst>(&I) && isScalarWithPredication(&I, VF))
7148         NumPredStores++;
7149 
7150       if (Legal->isUniformMemOp(I)) {
7151         // TODO: Avoid replicating loads and stores instead of
7152         // relying on instcombine to remove them.
7153         // Load: Scalar load + broadcast
7154         // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
7155         InstructionCost Cost;
7156         if (isa<StoreInst>(&I) && VF.isScalable() &&
7157             isLegalGatherOrScatter(&I, VF)) {
7158           Cost = getGatherScatterCost(&I, VF);
7159           setWideningDecision(&I, VF, CM_GatherScatter, Cost);
7160         } else {
7161           assert((isa<LoadInst>(&I) || !VF.isScalable()) &&
7162                  "Cannot yet scalarize uniform stores");
7163           Cost = getUniformMemOpCost(&I, VF);
7164           setWideningDecision(&I, VF, CM_Scalarize, Cost);
7165         }
7166         continue;
7167       }
7168 
7169       // We assume that widening is the best solution when possible.
7170       if (memoryInstructionCanBeWidened(&I, VF)) {
7171         InstructionCost Cost = getConsecutiveMemOpCost(&I, VF);
7172         int ConsecutiveStride = Legal->isConsecutivePtr(
7173             getLoadStoreType(&I), getLoadStorePointerOperand(&I));
7174         assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
7175                "Expected consecutive stride.");
7176         InstWidening Decision =
7177             ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
7178         setWideningDecision(&I, VF, Decision, Cost);
7179         continue;
7180       }
7181 
7182       // Choose between Interleaving, Gather/Scatter or Scalarization.
7183       InstructionCost InterleaveCost = InstructionCost::getInvalid();
7184       unsigned NumAccesses = 1;
7185       if (isAccessInterleaved(&I)) {
7186         auto Group = getInterleavedAccessGroup(&I);
7187         assert(Group && "Fail to get an interleaved access group.");
7188 
7189         // Make one decision for the whole group.
7190         if (getWideningDecision(&I, VF) != CM_Unknown)
7191           continue;
7192 
7193         NumAccesses = Group->getNumMembers();
7194         if (interleavedAccessCanBeWidened(&I, VF))
7195           InterleaveCost = getInterleaveGroupCost(&I, VF);
7196       }
7197 
7198       InstructionCost GatherScatterCost =
7199           isLegalGatherOrScatter(&I, VF)
7200               ? getGatherScatterCost(&I, VF) * NumAccesses
7201               : InstructionCost::getInvalid();
7202 
7203       InstructionCost ScalarizationCost =
7204           getMemInstScalarizationCost(&I, VF) * NumAccesses;
7205 
7206       // Choose better solution for the current VF,
7207       // write down this decision and use it during vectorization.
7208       InstructionCost Cost;
7209       InstWidening Decision;
7210       if (InterleaveCost <= GatherScatterCost &&
7211           InterleaveCost < ScalarizationCost) {
7212         Decision = CM_Interleave;
7213         Cost = InterleaveCost;
7214       } else if (GatherScatterCost < ScalarizationCost) {
7215         Decision = CM_GatherScatter;
7216         Cost = GatherScatterCost;
7217       } else {
7218         Decision = CM_Scalarize;
7219         Cost = ScalarizationCost;
7220       }
7221       // If the instructions belongs to an interleave group, the whole group
7222       // receives the same decision. The whole group receives the cost, but
7223       // the cost will actually be assigned to one instruction.
7224       if (auto Group = getInterleavedAccessGroup(&I))
7225         setWideningDecision(Group, VF, Decision, Cost);
7226       else
7227         setWideningDecision(&I, VF, Decision, Cost);
7228     }
7229   }
7230 
7231   // Make sure that any load of address and any other address computation
7232   // remains scalar unless there is gather/scatter support. This avoids
7233   // inevitable extracts into address registers, and also has the benefit of
7234   // activating LSR more, since that pass can't optimize vectorized
7235   // addresses.
7236   if (TTI.prefersVectorizedAddressing())
7237     return;
7238 
7239   // Start with all scalar pointer uses.
7240   SmallPtrSet<Instruction *, 8> AddrDefs;
7241   for (BasicBlock *BB : TheLoop->blocks())
7242     for (Instruction &I : *BB) {
7243       Instruction *PtrDef =
7244         dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
7245       if (PtrDef && TheLoop->contains(PtrDef) &&
7246           getWideningDecision(&I, VF) != CM_GatherScatter)
7247         AddrDefs.insert(PtrDef);
7248     }
7249 
7250   // Add all instructions used to generate the addresses.
7251   SmallVector<Instruction *, 4> Worklist;
7252   append_range(Worklist, AddrDefs);
7253   while (!Worklist.empty()) {
7254     Instruction *I = Worklist.pop_back_val();
7255     for (auto &Op : I->operands())
7256       if (auto *InstOp = dyn_cast<Instruction>(Op))
7257         if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) &&
7258             AddrDefs.insert(InstOp).second)
7259           Worklist.push_back(InstOp);
7260   }
7261 
7262   for (auto *I : AddrDefs) {
7263     if (isa<LoadInst>(I)) {
7264       // Setting the desired widening decision should ideally be handled in
7265       // by cost functions, but since this involves the task of finding out
7266       // if the loaded register is involved in an address computation, it is
7267       // instead changed here when we know this is the case.
7268       InstWidening Decision = getWideningDecision(I, VF);
7269       if (Decision == CM_Widen || Decision == CM_Widen_Reverse)
7270         // Scalarize a widened load of address.
7271         setWideningDecision(
7272             I, VF, CM_Scalarize,
7273             (VF.getKnownMinValue() *
7274              getMemoryInstructionCost(I, ElementCount::getFixed(1))));
7275       else if (auto Group = getInterleavedAccessGroup(I)) {
7276         // Scalarize an interleave group of address loads.
7277         for (unsigned I = 0; I < Group->getFactor(); ++I) {
7278           if (Instruction *Member = Group->getMember(I))
7279             setWideningDecision(
7280                 Member, VF, CM_Scalarize,
7281                 (VF.getKnownMinValue() *
7282                  getMemoryInstructionCost(Member, ElementCount::getFixed(1))));
7283         }
7284       }
7285     } else
7286       // Make sure I gets scalarized and a cost estimate without
7287       // scalarization overhead.
7288       ForcedScalars[VF].insert(I);
7289   }
7290 }
7291 
7292 InstructionCost
7293 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF,
7294                                                Type *&VectorTy) {
7295   Type *RetTy = I->getType();
7296   if (canTruncateToMinimalBitwidth(I, VF))
7297     RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
7298   auto SE = PSE.getSE();
7299   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7300 
7301   auto hasSingleCopyAfterVectorization = [this](Instruction *I,
7302                                                 ElementCount VF) -> bool {
7303     if (VF.isScalar())
7304       return true;
7305 
7306     auto Scalarized = InstsToScalarize.find(VF);
7307     assert(Scalarized != InstsToScalarize.end() &&
7308            "VF not yet analyzed for scalarization profitability");
7309     return !Scalarized->second.count(I) &&
7310            llvm::all_of(I->users(), [&](User *U) {
7311              auto *UI = cast<Instruction>(U);
7312              return !Scalarized->second.count(UI);
7313            });
7314   };
7315   (void) hasSingleCopyAfterVectorization;
7316 
7317   if (isScalarAfterVectorization(I, VF)) {
7318     // With the exception of GEPs and PHIs, after scalarization there should
7319     // only be one copy of the instruction generated in the loop. This is
7320     // because the VF is either 1, or any instructions that need scalarizing
7321     // have already been dealt with by the the time we get here. As a result,
7322     // it means we don't have to multiply the instruction cost by VF.
7323     assert(I->getOpcode() == Instruction::GetElementPtr ||
7324            I->getOpcode() == Instruction::PHI ||
7325            (I->getOpcode() == Instruction::BitCast &&
7326             I->getType()->isPointerTy()) ||
7327            hasSingleCopyAfterVectorization(I, VF));
7328     VectorTy = RetTy;
7329   } else
7330     VectorTy = ToVectorTy(RetTy, VF);
7331 
7332   // TODO: We need to estimate the cost of intrinsic calls.
7333   switch (I->getOpcode()) {
7334   case Instruction::GetElementPtr:
7335     // We mark this instruction as zero-cost because the cost of GEPs in
7336     // vectorized code depends on whether the corresponding memory instruction
7337     // is scalarized or not. Therefore, we handle GEPs with the memory
7338     // instruction cost.
7339     return 0;
7340   case Instruction::Br: {
7341     // In cases of scalarized and predicated instructions, there will be VF
7342     // predicated blocks in the vectorized loop. Each branch around these
7343     // blocks requires also an extract of its vector compare i1 element.
7344     bool ScalarPredicatedBB = false;
7345     BranchInst *BI = cast<BranchInst>(I);
7346     if (VF.isVector() && BI->isConditional() &&
7347         (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) ||
7348          PredicatedBBsAfterVectorization.count(BI->getSuccessor(1))))
7349       ScalarPredicatedBB = true;
7350 
7351     if (ScalarPredicatedBB) {
7352       // Not possible to scalarize scalable vector with predicated instructions.
7353       if (VF.isScalable())
7354         return InstructionCost::getInvalid();
7355       // Return cost for branches around scalarized and predicated blocks.
7356       auto *Vec_i1Ty =
7357           VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF);
7358       return (
7359           TTI.getScalarizationOverhead(
7360               Vec_i1Ty, APInt::getAllOnes(VF.getFixedValue()), false, true) +
7361           (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue()));
7362     } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar())
7363       // The back-edge branch will remain, as will all scalar branches.
7364       return TTI.getCFInstrCost(Instruction::Br, CostKind);
7365     else
7366       // This branch will be eliminated by if-conversion.
7367       return 0;
7368     // Note: We currently assume zero cost for an unconditional branch inside
7369     // a predicated block since it will become a fall-through, although we
7370     // may decide in the future to call TTI for all branches.
7371   }
7372   case Instruction::PHI: {
7373     auto *Phi = cast<PHINode>(I);
7374 
7375     // First-order recurrences are replaced by vector shuffles inside the loop.
7376     // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type.
7377     if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi))
7378       return TTI.getShuffleCost(
7379           TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy),
7380           None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1));
7381 
7382     // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
7383     // converted into select instructions. We require N - 1 selects per phi
7384     // node, where N is the number of incoming values.
7385     if (VF.isVector() && Phi->getParent() != TheLoop->getHeader())
7386       return (Phi->getNumIncomingValues() - 1) *
7387              TTI.getCmpSelInstrCost(
7388                  Instruction::Select, ToVectorTy(Phi->getType(), VF),
7389                  ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF),
7390                  CmpInst::BAD_ICMP_PREDICATE, CostKind);
7391 
7392     return TTI.getCFInstrCost(Instruction::PHI, CostKind);
7393   }
7394   case Instruction::UDiv:
7395   case Instruction::SDiv:
7396   case Instruction::URem:
7397   case Instruction::SRem:
7398     // If we have a predicated instruction, it may not be executed for each
7399     // vector lane. Get the scalarization cost and scale this amount by the
7400     // probability of executing the predicated block. If the instruction is not
7401     // predicated, we fall through to the next case.
7402     if (VF.isVector() && isScalarWithPredication(I, VF)) {
7403       InstructionCost Cost = 0;
7404 
7405       // These instructions have a non-void type, so account for the phi nodes
7406       // that we will create. This cost is likely to be zero. The phi node
7407       // cost, if any, should be scaled by the block probability because it
7408       // models a copy at the end of each predicated block.
7409       Cost += VF.getKnownMinValue() *
7410               TTI.getCFInstrCost(Instruction::PHI, CostKind);
7411 
7412       // The cost of the non-predicated instruction.
7413       Cost += VF.getKnownMinValue() *
7414               TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind);
7415 
7416       // The cost of insertelement and extractelement instructions needed for
7417       // scalarization.
7418       Cost += getScalarizationOverhead(I, VF);
7419 
7420       // Scale the cost by the probability of executing the predicated blocks.
7421       // This assumes the predicated block for each vector lane is equally
7422       // likely.
7423       return Cost / getReciprocalPredBlockProb();
7424     }
7425     LLVM_FALLTHROUGH;
7426   case Instruction::Add:
7427   case Instruction::FAdd:
7428   case Instruction::Sub:
7429   case Instruction::FSub:
7430   case Instruction::Mul:
7431   case Instruction::FMul:
7432   case Instruction::FDiv:
7433   case Instruction::FRem:
7434   case Instruction::Shl:
7435   case Instruction::LShr:
7436   case Instruction::AShr:
7437   case Instruction::And:
7438   case Instruction::Or:
7439   case Instruction::Xor: {
7440     // Since we will replace the stride by 1 the multiplication should go away.
7441     if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
7442       return 0;
7443 
7444     // Detect reduction patterns
7445     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7446       return *RedCost;
7447 
7448     // Certain instructions can be cheaper to vectorize if they have a constant
7449     // second vector operand. One example of this are shifts on x86.
7450     Value *Op2 = I->getOperand(1);
7451     TargetTransformInfo::OperandValueProperties Op2VP;
7452     TargetTransformInfo::OperandValueKind Op2VK =
7453         TTI.getOperandInfo(Op2, Op2VP);
7454     if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2))
7455       Op2VK = TargetTransformInfo::OK_UniformValue;
7456 
7457     SmallVector<const Value *, 4> Operands(I->operand_values());
7458     return TTI.getArithmeticInstrCost(
7459         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7460         Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I);
7461   }
7462   case Instruction::FNeg: {
7463     return TTI.getArithmeticInstrCost(
7464         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7465         TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None,
7466         TargetTransformInfo::OP_None, I->getOperand(0), I);
7467   }
7468   case Instruction::Select: {
7469     SelectInst *SI = cast<SelectInst>(I);
7470     const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
7471     bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
7472 
7473     const Value *Op0, *Op1;
7474     using namespace llvm::PatternMatch;
7475     if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) ||
7476                         match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) {
7477       // select x, y, false --> x & y
7478       // select x, true, y --> x | y
7479       TTI::OperandValueProperties Op1VP = TTI::OP_None;
7480       TTI::OperandValueProperties Op2VP = TTI::OP_None;
7481       TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP);
7482       TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP);
7483       assert(Op0->getType()->getScalarSizeInBits() == 1 &&
7484               Op1->getType()->getScalarSizeInBits() == 1);
7485 
7486       SmallVector<const Value *, 2> Operands{Op0, Op1};
7487       return TTI.getArithmeticInstrCost(
7488           match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy,
7489           CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I);
7490     }
7491 
7492     Type *CondTy = SI->getCondition()->getType();
7493     if (!ScalarCond)
7494       CondTy = VectorType::get(CondTy, VF);
7495 
7496     CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
7497     if (auto *Cmp = dyn_cast<CmpInst>(SI->getCondition()))
7498       Pred = Cmp->getPredicate();
7499     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, Pred,
7500                                   CostKind, I);
7501   }
7502   case Instruction::ICmp:
7503   case Instruction::FCmp: {
7504     Type *ValTy = I->getOperand(0)->getType();
7505     Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
7506     if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
7507       ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]);
7508     VectorTy = ToVectorTy(ValTy, VF);
7509     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr,
7510                                   cast<CmpInst>(I)->getPredicate(), CostKind,
7511                                   I);
7512   }
7513   case Instruction::Store:
7514   case Instruction::Load: {
7515     ElementCount Width = VF;
7516     if (Width.isVector()) {
7517       InstWidening Decision = getWideningDecision(I, Width);
7518       assert(Decision != CM_Unknown &&
7519              "CM decision should be taken at this point");
7520       if (Decision == CM_Scalarize)
7521         Width = ElementCount::getFixed(1);
7522     }
7523     VectorTy = ToVectorTy(getLoadStoreType(I), Width);
7524     return getMemoryInstructionCost(I, VF);
7525   }
7526   case Instruction::BitCast:
7527     if (I->getType()->isPointerTy())
7528       return 0;
7529     LLVM_FALLTHROUGH;
7530   case Instruction::ZExt:
7531   case Instruction::SExt:
7532   case Instruction::FPToUI:
7533   case Instruction::FPToSI:
7534   case Instruction::FPExt:
7535   case Instruction::PtrToInt:
7536   case Instruction::IntToPtr:
7537   case Instruction::SIToFP:
7538   case Instruction::UIToFP:
7539   case Instruction::Trunc:
7540   case Instruction::FPTrunc: {
7541     // Computes the CastContextHint from a Load/Store instruction.
7542     auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint {
7543       assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
7544              "Expected a load or a store!");
7545 
7546       if (VF.isScalar() || !TheLoop->contains(I))
7547         return TTI::CastContextHint::Normal;
7548 
7549       switch (getWideningDecision(I, VF)) {
7550       case LoopVectorizationCostModel::CM_GatherScatter:
7551         return TTI::CastContextHint::GatherScatter;
7552       case LoopVectorizationCostModel::CM_Interleave:
7553         return TTI::CastContextHint::Interleave;
7554       case LoopVectorizationCostModel::CM_Scalarize:
7555       case LoopVectorizationCostModel::CM_Widen:
7556         return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked
7557                                         : TTI::CastContextHint::Normal;
7558       case LoopVectorizationCostModel::CM_Widen_Reverse:
7559         return TTI::CastContextHint::Reversed;
7560       case LoopVectorizationCostModel::CM_Unknown:
7561         llvm_unreachable("Instr did not go through cost modelling?");
7562       }
7563 
7564       llvm_unreachable("Unhandled case!");
7565     };
7566 
7567     unsigned Opcode = I->getOpcode();
7568     TTI::CastContextHint CCH = TTI::CastContextHint::None;
7569     // For Trunc, the context is the only user, which must be a StoreInst.
7570     if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
7571       if (I->hasOneUse())
7572         if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin()))
7573           CCH = ComputeCCH(Store);
7574     }
7575     // For Z/Sext, the context is the operand, which must be a LoadInst.
7576     else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
7577              Opcode == Instruction::FPExt) {
7578       if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0)))
7579         CCH = ComputeCCH(Load);
7580     }
7581 
7582     // We optimize the truncation of induction variables having constant
7583     // integer steps. The cost of these truncations is the same as the scalar
7584     // operation.
7585     if (isOptimizableIVTruncate(I, VF)) {
7586       auto *Trunc = cast<TruncInst>(I);
7587       return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
7588                                   Trunc->getSrcTy(), CCH, CostKind, Trunc);
7589     }
7590 
7591     // Detect reduction patterns
7592     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7593       return *RedCost;
7594 
7595     Type *SrcScalarTy = I->getOperand(0)->getType();
7596     Type *SrcVecTy =
7597         VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy;
7598     if (canTruncateToMinimalBitwidth(I, VF)) {
7599       // This cast is going to be shrunk. This may remove the cast or it might
7600       // turn it into slightly different cast. For example, if MinBW == 16,
7601       // "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
7602       //
7603       // Calculate the modified src and dest types.
7604       Type *MinVecTy = VectorTy;
7605       if (Opcode == Instruction::Trunc) {
7606         SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
7607         VectorTy =
7608             largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7609       } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
7610         SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy);
7611         VectorTy =
7612             smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7613       }
7614     }
7615 
7616     return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I);
7617   }
7618   case Instruction::Call: {
7619     if (RecurrenceDescriptor::isFMulAddIntrinsic(I))
7620       if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7621         return *RedCost;
7622     bool NeedToScalarize;
7623     CallInst *CI = cast<CallInst>(I);
7624     InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize);
7625     if (getVectorIntrinsicIDForCall(CI, TLI)) {
7626       InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF);
7627       return std::min(CallCost, IntrinsicCost);
7628     }
7629     return CallCost;
7630   }
7631   case Instruction::ExtractValue:
7632     return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput);
7633   case Instruction::Alloca:
7634     // We cannot easily widen alloca to a scalable alloca, as
7635     // the result would need to be a vector of pointers.
7636     if (VF.isScalable())
7637       return InstructionCost::getInvalid();
7638     LLVM_FALLTHROUGH;
7639   default:
7640     // This opcode is unknown. Assume that it is the same as 'mul'.
7641     return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7642   } // end of switch.
7643 }
7644 
7645 char LoopVectorize::ID = 0;
7646 
7647 static const char lv_name[] = "Loop Vectorization";
7648 
7649 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
7650 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
7651 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
7652 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
7653 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
7654 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
7655 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
7656 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
7657 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
7658 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
7659 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
7660 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
7661 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
7662 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
7663 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
7664 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
7665 
7666 namespace llvm {
7667 
7668 Pass *createLoopVectorizePass() { return new LoopVectorize(); }
7669 
7670 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced,
7671                               bool VectorizeOnlyWhenForced) {
7672   return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced);
7673 }
7674 
7675 } // end namespace llvm
7676 
7677 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
7678   // Check if the pointer operand of a load or store instruction is
7679   // consecutive.
7680   if (auto *Ptr = getLoadStorePointerOperand(Inst))
7681     return Legal->isConsecutivePtr(getLoadStoreType(Inst), Ptr);
7682   return false;
7683 }
7684 
7685 void LoopVectorizationCostModel::collectValuesToIgnore() {
7686   // Ignore ephemeral values.
7687   CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
7688 
7689   // Ignore type-promoting instructions we identified during reduction
7690   // detection.
7691   for (auto &Reduction : Legal->getReductionVars()) {
7692     const RecurrenceDescriptor &RedDes = Reduction.second;
7693     const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
7694     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7695   }
7696   // Ignore type-casting instructions we identified during induction
7697   // detection.
7698   for (auto &Induction : Legal->getInductionVars()) {
7699     const InductionDescriptor &IndDes = Induction.second;
7700     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
7701     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7702   }
7703 }
7704 
7705 void LoopVectorizationCostModel::collectInLoopReductions() {
7706   for (auto &Reduction : Legal->getReductionVars()) {
7707     PHINode *Phi = Reduction.first;
7708     const RecurrenceDescriptor &RdxDesc = Reduction.second;
7709 
7710     // We don't collect reductions that are type promoted (yet).
7711     if (RdxDesc.getRecurrenceType() != Phi->getType())
7712       continue;
7713 
7714     // If the target would prefer this reduction to happen "in-loop", then we
7715     // want to record it as such.
7716     unsigned Opcode = RdxDesc.getOpcode();
7717     if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) &&
7718         !TTI.preferInLoopReduction(Opcode, Phi->getType(),
7719                                    TargetTransformInfo::ReductionFlags()))
7720       continue;
7721 
7722     // Check that we can correctly put the reductions into the loop, by
7723     // finding the chain of operations that leads from the phi to the loop
7724     // exit value.
7725     SmallVector<Instruction *, 4> ReductionOperations =
7726         RdxDesc.getReductionOpChain(Phi, TheLoop);
7727     bool InLoop = !ReductionOperations.empty();
7728     if (InLoop) {
7729       InLoopReductionChains[Phi] = ReductionOperations;
7730       // Add the elements to InLoopReductionImmediateChains for cost modelling.
7731       Instruction *LastChain = Phi;
7732       for (auto *I : ReductionOperations) {
7733         InLoopReductionImmediateChains[I] = LastChain;
7734         LastChain = I;
7735       }
7736     }
7737     LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop")
7738                       << " reduction for phi: " << *Phi << "\n");
7739   }
7740 }
7741 
7742 // TODO: we could return a pair of values that specify the max VF and
7743 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of
7744 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment
7745 // doesn't have a cost model that can choose which plan to execute if
7746 // more than one is generated.
7747 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits,
7748                                  LoopVectorizationCostModel &CM) {
7749   unsigned WidestType;
7750   std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes();
7751   return WidestVectorRegBits / WidestType;
7752 }
7753 
7754 VectorizationFactor
7755 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) {
7756   assert(!UserVF.isScalable() && "scalable vectors not yet supported");
7757   ElementCount VF = UserVF;
7758   // Outer loop handling: They may require CFG and instruction level
7759   // transformations before even evaluating whether vectorization is profitable.
7760   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
7761   // the vectorization pipeline.
7762   if (!OrigLoop->isInnermost()) {
7763     // If the user doesn't provide a vectorization factor, determine a
7764     // reasonable one.
7765     if (UserVF.isZero()) {
7766       VF = ElementCount::getFixed(determineVPlanVF(
7767           TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
7768               .getFixedSize(),
7769           CM));
7770       LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n");
7771 
7772       // Make sure we have a VF > 1 for stress testing.
7773       if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) {
7774         LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: "
7775                           << "overriding computed VF.\n");
7776         VF = ElementCount::getFixed(4);
7777       }
7778     }
7779     assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
7780     assert(isPowerOf2_32(VF.getKnownMinValue()) &&
7781            "VF needs to be a power of two");
7782     LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "")
7783                       << "VF " << VF << " to build VPlans.\n");
7784     buildVPlans(VF, VF);
7785 
7786     // For VPlan build stress testing, we bail out after VPlan construction.
7787     if (VPlanBuildStressTest)
7788       return VectorizationFactor::Disabled();
7789 
7790     return {VF, 0 /*Cost*/};
7791   }
7792 
7793   LLVM_DEBUG(
7794       dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
7795                 "VPlan-native path.\n");
7796   return VectorizationFactor::Disabled();
7797 }
7798 
7799 Optional<VectorizationFactor>
7800 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
7801   assert(OrigLoop->isInnermost() && "Inner loop expected.");
7802   FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC);
7803   if (!MaxFactors) // Cases that should not to be vectorized nor interleaved.
7804     return None;
7805 
7806   // Invalidate interleave groups if all blocks of loop will be predicated.
7807   if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) &&
7808       !useMaskedInterleavedAccesses(*TTI)) {
7809     LLVM_DEBUG(
7810         dbgs()
7811         << "LV: Invalidate all interleaved groups due to fold-tail by masking "
7812            "which requires masked-interleaved support.\n");
7813     if (CM.InterleaveInfo.invalidateGroups())
7814       // Invalidating interleave groups also requires invalidating all decisions
7815       // based on them, which includes widening decisions and uniform and scalar
7816       // values.
7817       CM.invalidateCostModelingDecisions();
7818   }
7819 
7820   ElementCount MaxUserVF =
7821       UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF;
7822   bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF);
7823   if (!UserVF.isZero() && UserVFIsLegal) {
7824     assert(isPowerOf2_32(UserVF.getKnownMinValue()) &&
7825            "VF needs to be a power of two");
7826     // Collect the instructions (and their associated costs) that will be more
7827     // profitable to scalarize.
7828     if (CM.selectUserVectorizationFactor(UserVF)) {
7829       LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
7830       CM.collectInLoopReductions();
7831       buildVPlansWithVPRecipes(UserVF, UserVF);
7832       LLVM_DEBUG(printPlans(dbgs()));
7833       return {{UserVF, 0}};
7834     } else
7835       reportVectorizationInfo("UserVF ignored because of invalid costs.",
7836                               "InvalidCost", ORE, OrigLoop);
7837   }
7838 
7839   // Populate the set of Vectorization Factor Candidates.
7840   ElementCountSet VFCandidates;
7841   for (auto VF = ElementCount::getFixed(1);
7842        ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2)
7843     VFCandidates.insert(VF);
7844   for (auto VF = ElementCount::getScalable(1);
7845        ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2)
7846     VFCandidates.insert(VF);
7847 
7848   for (const auto &VF : VFCandidates) {
7849     // Collect Uniform and Scalar instructions after vectorization with VF.
7850     CM.collectUniformsAndScalars(VF);
7851 
7852     // Collect the instructions (and their associated costs) that will be more
7853     // profitable to scalarize.
7854     if (VF.isVector())
7855       CM.collectInstsToScalarize(VF);
7856   }
7857 
7858   CM.collectInLoopReductions();
7859   buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF);
7860   buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF);
7861 
7862   LLVM_DEBUG(printPlans(dbgs()));
7863   if (!MaxFactors.hasVector())
7864     return VectorizationFactor::Disabled();
7865 
7866   // Select the optimal vectorization factor.
7867   auto SelectedVF = CM.selectVectorizationFactor(VFCandidates);
7868 
7869   // Check if it is profitable to vectorize with runtime checks.
7870   unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks();
7871   if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) {
7872     bool PragmaThresholdReached =
7873         NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
7874     bool ThresholdReached =
7875         NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold;
7876     if ((ThresholdReached && !Hints.allowReordering()) ||
7877         PragmaThresholdReached) {
7878       ORE->emit([&]() {
7879         return OptimizationRemarkAnalysisAliasing(
7880                    DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(),
7881                    OrigLoop->getHeader())
7882                << "loop not vectorized: cannot prove it is safe to reorder "
7883                   "memory operations";
7884       });
7885       LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
7886       Hints.emitRemarkWithHints();
7887       return VectorizationFactor::Disabled();
7888     }
7889   }
7890   return SelectedVF;
7891 }
7892 
7893 VPlan &LoopVectorizationPlanner::getBestPlanFor(ElementCount VF) const {
7894   assert(count_if(VPlans,
7895                   [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) ==
7896              1 &&
7897          "Best VF has not a single VPlan.");
7898 
7899   for (const VPlanPtr &Plan : VPlans) {
7900     if (Plan->hasVF(VF))
7901       return *Plan.get();
7902   }
7903   llvm_unreachable("No plan found!");
7904 }
7905 
7906 static void AddRuntimeUnrollDisableMetaData(Loop *L) {
7907   SmallVector<Metadata *, 4> MDs;
7908   // Reserve first location for self reference to the LoopID metadata node.
7909   MDs.push_back(nullptr);
7910   bool IsUnrollMetadata = false;
7911   MDNode *LoopID = L->getLoopID();
7912   if (LoopID) {
7913     // First find existing loop unrolling disable metadata.
7914     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
7915       auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
7916       if (MD) {
7917         const auto *S = dyn_cast<MDString>(MD->getOperand(0));
7918         IsUnrollMetadata =
7919             S && S->getString().startswith("llvm.loop.unroll.disable");
7920       }
7921       MDs.push_back(LoopID->getOperand(i));
7922     }
7923   }
7924 
7925   if (!IsUnrollMetadata) {
7926     // Add runtime unroll disable metadata.
7927     LLVMContext &Context = L->getHeader()->getContext();
7928     SmallVector<Metadata *, 1> DisableOperands;
7929     DisableOperands.push_back(
7930         MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
7931     MDNode *DisableNode = MDNode::get(Context, DisableOperands);
7932     MDs.push_back(DisableNode);
7933     MDNode *NewLoopID = MDNode::get(Context, MDs);
7934     // Set operand 0 to refer to the loop id itself.
7935     NewLoopID->replaceOperandWith(0, NewLoopID);
7936     L->setLoopID(NewLoopID);
7937   }
7938 }
7939 
7940 void LoopVectorizationPlanner::executePlan(ElementCount BestVF, unsigned BestUF,
7941                                            VPlan &BestVPlan,
7942                                            InnerLoopVectorizer &ILV,
7943                                            DominatorTree *DT) {
7944   LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << BestVF << ", UF=" << BestUF
7945                     << '\n');
7946 
7947   // Perform the actual loop transformation.
7948 
7949   // 1. Create a new empty loop. Unlink the old loop and connect the new one.
7950   VPTransformState State{BestVF, BestUF, LI, DT, ILV.Builder, &ILV, &BestVPlan};
7951   Value *CanonicalIVStartValue;
7952   std::tie(State.CFG.PrevBB, CanonicalIVStartValue) =
7953       ILV.createVectorizedLoopSkeleton();
7954   ILV.collectPoisonGeneratingRecipes(State);
7955 
7956   ILV.printDebugTracesAtStart();
7957 
7958   //===------------------------------------------------===//
7959   //
7960   // Notice: any optimization or new instruction that go
7961   // into the code below should also be implemented in
7962   // the cost-model.
7963   //
7964   //===------------------------------------------------===//
7965 
7966   // 2. Copy and widen instructions from the old loop into the new loop.
7967   BestVPlan.prepareToExecute(ILV.getOrCreateTripCount(nullptr),
7968                              ILV.getOrCreateVectorTripCount(nullptr),
7969                              CanonicalIVStartValue, State);
7970   BestVPlan.execute(&State);
7971 
7972   // Keep all loop hints from the original loop on the vector loop (we'll
7973   // replace the vectorizer-specific hints below).
7974   MDNode *OrigLoopID = OrigLoop->getLoopID();
7975 
7976   Optional<MDNode *> VectorizedLoopID =
7977       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
7978                                       LLVMLoopVectorizeFollowupVectorized});
7979 
7980   Loop *L = LI->getLoopFor(State.CFG.PrevBB);
7981   if (VectorizedLoopID.hasValue())
7982     L->setLoopID(VectorizedLoopID.getValue());
7983   else {
7984     // Keep all loop hints from the original loop on the vector loop (we'll
7985     // replace the vectorizer-specific hints below).
7986     if (MDNode *LID = OrigLoop->getLoopID())
7987       L->setLoopID(LID);
7988 
7989     LoopVectorizeHints Hints(L, true, *ORE);
7990     Hints.setAlreadyVectorized();
7991   }
7992   // Disable runtime unrolling when vectorizing the epilogue loop.
7993   if (CanonicalIVStartValue)
7994     AddRuntimeUnrollDisableMetaData(L);
7995 
7996   // 3. Fix the vectorized code: take care of header phi's, live-outs,
7997   //    predication, updating analyses.
7998   ILV.fixVectorizedLoop(State);
7999 
8000   ILV.printDebugTracesAtEnd();
8001 }
8002 
8003 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
8004 void LoopVectorizationPlanner::printPlans(raw_ostream &O) {
8005   for (const auto &Plan : VPlans)
8006     if (PrintVPlansInDotFormat)
8007       Plan->printDOT(O);
8008     else
8009       Plan->print(O);
8010 }
8011 #endif
8012 
8013 void LoopVectorizationPlanner::collectTriviallyDeadInstructions(
8014     SmallPtrSetImpl<Instruction *> &DeadInstructions) {
8015 
8016   // We create new control-flow for the vectorized loop, so the original exit
8017   // conditions will be dead after vectorization if it's only used by the
8018   // terminator
8019   SmallVector<BasicBlock*> ExitingBlocks;
8020   OrigLoop->getExitingBlocks(ExitingBlocks);
8021   for (auto *BB : ExitingBlocks) {
8022     auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0));
8023     if (!Cmp || !Cmp->hasOneUse())
8024       continue;
8025 
8026     // TODO: we should introduce a getUniqueExitingBlocks on Loop
8027     if (!DeadInstructions.insert(Cmp).second)
8028       continue;
8029 
8030     // The operands of the icmp is often a dead trunc, used by IndUpdate.
8031     // TODO: can recurse through operands in general
8032     for (Value *Op : Cmp->operands()) {
8033       if (isa<TruncInst>(Op) && Op->hasOneUse())
8034           DeadInstructions.insert(cast<Instruction>(Op));
8035     }
8036   }
8037 
8038   // We create new "steps" for induction variable updates to which the original
8039   // induction variables map. An original update instruction will be dead if
8040   // all its users except the induction variable are dead.
8041   auto *Latch = OrigLoop->getLoopLatch();
8042   for (auto &Induction : Legal->getInductionVars()) {
8043     PHINode *Ind = Induction.first;
8044     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
8045 
8046     // If the tail is to be folded by masking, the primary induction variable,
8047     // if exists, isn't dead: it will be used for masking. Don't kill it.
8048     if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction())
8049       continue;
8050 
8051     if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
8052           return U == Ind || DeadInstructions.count(cast<Instruction>(U));
8053         }))
8054       DeadInstructions.insert(IndUpdate);
8055   }
8056 }
8057 
8058 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; }
8059 
8060 //===--------------------------------------------------------------------===//
8061 // EpilogueVectorizerMainLoop
8062 //===--------------------------------------------------------------------===//
8063 
8064 /// This function is partially responsible for generating the control flow
8065 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
8066 std::pair<BasicBlock *, Value *>
8067 EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() {
8068   MDNode *OrigLoopID = OrigLoop->getLoopID();
8069   Loop *Lp = createVectorLoopSkeleton("");
8070 
8071   // Generate the code to check the minimum iteration count of the vector
8072   // epilogue (see below).
8073   EPI.EpilogueIterationCountCheck =
8074       emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, true);
8075   EPI.EpilogueIterationCountCheck->setName("iter.check");
8076 
8077   // Generate the code to check any assumptions that we've made for SCEV
8078   // expressions.
8079   EPI.SCEVSafetyCheck = emitSCEVChecks(Lp, LoopScalarPreHeader);
8080 
8081   // Generate the code that checks at runtime if arrays overlap. We put the
8082   // checks into a separate block to make the more common case of few elements
8083   // faster.
8084   EPI.MemSafetyCheck = emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
8085 
8086   // Generate the iteration count check for the main loop, *after* the check
8087   // for the epilogue loop, so that the path-length is shorter for the case
8088   // that goes directly through the vector epilogue. The longer-path length for
8089   // the main loop is compensated for, by the gain from vectorizing the larger
8090   // trip count. Note: the branch will get updated later on when we vectorize
8091   // the epilogue.
8092   EPI.MainLoopIterationCountCheck =
8093       emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, false);
8094 
8095   // Generate the induction variable.
8096   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
8097   EPI.VectorTripCount = CountRoundDown;
8098   createHeaderBranch(Lp);
8099 
8100   // Skip induction resume value creation here because they will be created in
8101   // the second pass. If we created them here, they wouldn't be used anyway,
8102   // because the vplan in the second pass still contains the inductions from the
8103   // original loop.
8104 
8105   return {completeLoopSkeleton(Lp, OrigLoopID), nullptr};
8106 }
8107 
8108 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() {
8109   LLVM_DEBUG({
8110     dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n"
8111            << "Main Loop VF:" << EPI.MainLoopVF
8112            << ", Main Loop UF:" << EPI.MainLoopUF
8113            << ", Epilogue Loop VF:" << EPI.EpilogueVF
8114            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
8115   });
8116 }
8117 
8118 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() {
8119   DEBUG_WITH_TYPE(VerboseDebug, {
8120     dbgs() << "intermediate fn:\n"
8121            << *OrigLoop->getHeader()->getParent() << "\n";
8122   });
8123 }
8124 
8125 BasicBlock *EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck(
8126     Loop *L, BasicBlock *Bypass, bool ForEpilogue) {
8127   assert(L && "Expected valid Loop.");
8128   assert(Bypass && "Expected valid bypass basic block.");
8129   ElementCount VFactor = ForEpilogue ? EPI.EpilogueVF : VF;
8130   unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF;
8131   Value *Count = getOrCreateTripCount(L);
8132   // Reuse existing vector loop preheader for TC checks.
8133   // Note that new preheader block is generated for vector loop.
8134   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
8135   IRBuilder<> Builder(TCCheckBlock->getTerminator());
8136 
8137   // Generate code to check if the loop's trip count is less than VF * UF of the
8138   // main vector loop.
8139   auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ?
8140       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
8141 
8142   Value *CheckMinIters = Builder.CreateICmp(
8143       P, Count, createStepForVF(Builder, Count->getType(), VFactor, UFactor),
8144       "min.iters.check");
8145 
8146   if (!ForEpilogue)
8147     TCCheckBlock->setName("vector.main.loop.iter.check");
8148 
8149   // Create new preheader for vector loop.
8150   LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(),
8151                                    DT, LI, nullptr, "vector.ph");
8152 
8153   if (ForEpilogue) {
8154     assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
8155                                  DT->getNode(Bypass)->getIDom()) &&
8156            "TC check is expected to dominate Bypass");
8157 
8158     // Update dominator for Bypass & LoopExit.
8159     DT->changeImmediateDominator(Bypass, TCCheckBlock);
8160     if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
8161       // For loops with multiple exits, there's no edge from the middle block
8162       // to exit blocks (as the epilogue must run) and thus no need to update
8163       // the immediate dominator of the exit blocks.
8164       DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
8165 
8166     LoopBypassBlocks.push_back(TCCheckBlock);
8167 
8168     // Save the trip count so we don't have to regenerate it in the
8169     // vec.epilog.iter.check. This is safe to do because the trip count
8170     // generated here dominates the vector epilog iter check.
8171     EPI.TripCount = Count;
8172   }
8173 
8174   ReplaceInstWithInst(
8175       TCCheckBlock->getTerminator(),
8176       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
8177 
8178   return TCCheckBlock;
8179 }
8180 
8181 //===--------------------------------------------------------------------===//
8182 // EpilogueVectorizerEpilogueLoop
8183 //===--------------------------------------------------------------------===//
8184 
8185 /// This function is partially responsible for generating the control flow
8186 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
8187 std::pair<BasicBlock *, Value *>
8188 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() {
8189   MDNode *OrigLoopID = OrigLoop->getLoopID();
8190   Loop *Lp = createVectorLoopSkeleton("vec.epilog.");
8191 
8192   // Now, compare the remaining count and if there aren't enough iterations to
8193   // execute the vectorized epilogue skip to the scalar part.
8194   BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader;
8195   VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check");
8196   LoopVectorPreHeader =
8197       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
8198                  LI, nullptr, "vec.epilog.ph");
8199   emitMinimumVectorEpilogueIterCountCheck(Lp, LoopScalarPreHeader,
8200                                           VecEpilogueIterationCountCheck);
8201 
8202   // Adjust the control flow taking the state info from the main loop
8203   // vectorization into account.
8204   assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck &&
8205          "expected this to be saved from the previous pass.");
8206   EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith(
8207       VecEpilogueIterationCountCheck, LoopVectorPreHeader);
8208 
8209   DT->changeImmediateDominator(LoopVectorPreHeader,
8210                                EPI.MainLoopIterationCountCheck);
8211 
8212   EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith(
8213       VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8214 
8215   if (EPI.SCEVSafetyCheck)
8216     EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith(
8217         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8218   if (EPI.MemSafetyCheck)
8219     EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith(
8220         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8221 
8222   DT->changeImmediateDominator(
8223       VecEpilogueIterationCountCheck,
8224       VecEpilogueIterationCountCheck->getSinglePredecessor());
8225 
8226   DT->changeImmediateDominator(LoopScalarPreHeader,
8227                                EPI.EpilogueIterationCountCheck);
8228   if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
8229     // If there is an epilogue which must run, there's no edge from the
8230     // middle block to exit blocks  and thus no need to update the immediate
8231     // dominator of the exit blocks.
8232     DT->changeImmediateDominator(LoopExitBlock,
8233                                  EPI.EpilogueIterationCountCheck);
8234 
8235   // Keep track of bypass blocks, as they feed start values to the induction
8236   // phis in the scalar loop preheader.
8237   if (EPI.SCEVSafetyCheck)
8238     LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck);
8239   if (EPI.MemSafetyCheck)
8240     LoopBypassBlocks.push_back(EPI.MemSafetyCheck);
8241   LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck);
8242 
8243   // The vec.epilog.iter.check block may contain Phi nodes from reductions which
8244   // merge control-flow from the latch block and the middle block. Update the
8245   // incoming values here and move the Phi into the preheader.
8246   SmallVector<PHINode *, 4> PhisInBlock;
8247   for (PHINode &Phi : VecEpilogueIterationCountCheck->phis())
8248     PhisInBlock.push_back(&Phi);
8249 
8250   for (PHINode *Phi : PhisInBlock) {
8251     Phi->replaceIncomingBlockWith(
8252         VecEpilogueIterationCountCheck->getSinglePredecessor(),
8253         VecEpilogueIterationCountCheck);
8254     Phi->removeIncomingValue(EPI.EpilogueIterationCountCheck);
8255     if (EPI.SCEVSafetyCheck)
8256       Phi->removeIncomingValue(EPI.SCEVSafetyCheck);
8257     if (EPI.MemSafetyCheck)
8258       Phi->removeIncomingValue(EPI.MemSafetyCheck);
8259     Phi->moveBefore(LoopVectorPreHeader->getFirstNonPHI());
8260   }
8261 
8262   // Generate a resume induction for the vector epilogue and put it in the
8263   // vector epilogue preheader
8264   Type *IdxTy = Legal->getWidestInductionType();
8265   PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val",
8266                                          LoopVectorPreHeader->getFirstNonPHI());
8267   EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck);
8268   EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0),
8269                            EPI.MainLoopIterationCountCheck);
8270 
8271   // Generate the induction variable.
8272   createHeaderBranch(Lp);
8273 
8274   // Generate induction resume values. These variables save the new starting
8275   // indexes for the scalar loop. They are used to test if there are any tail
8276   // iterations left once the vector loop has completed.
8277   // Note that when the vectorized epilogue is skipped due to iteration count
8278   // check, then the resume value for the induction variable comes from
8279   // the trip count of the main vector loop, hence passing the AdditionalBypass
8280   // argument.
8281   createInductionResumeValues(Lp, {VecEpilogueIterationCountCheck,
8282                                    EPI.VectorTripCount} /* AdditionalBypass */);
8283 
8284   return {completeLoopSkeleton(Lp, OrigLoopID), EPResumeVal};
8285 }
8286 
8287 BasicBlock *
8288 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck(
8289     Loop *L, BasicBlock *Bypass, BasicBlock *Insert) {
8290 
8291   assert(EPI.TripCount &&
8292          "Expected trip count to have been safed in the first pass.");
8293   assert(
8294       (!isa<Instruction>(EPI.TripCount) ||
8295        DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) &&
8296       "saved trip count does not dominate insertion point.");
8297   Value *TC = EPI.TripCount;
8298   IRBuilder<> Builder(Insert->getTerminator());
8299   Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining");
8300 
8301   // Generate code to check if the loop's trip count is less than VF * UF of the
8302   // vector epilogue loop.
8303   auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ?
8304       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
8305 
8306   Value *CheckMinIters =
8307       Builder.CreateICmp(P, Count,
8308                          createStepForVF(Builder, Count->getType(),
8309                                          EPI.EpilogueVF, EPI.EpilogueUF),
8310                          "min.epilog.iters.check");
8311 
8312   ReplaceInstWithInst(
8313       Insert->getTerminator(),
8314       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
8315 
8316   LoopBypassBlocks.push_back(Insert);
8317   return Insert;
8318 }
8319 
8320 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() {
8321   LLVM_DEBUG({
8322     dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n"
8323            << "Epilogue Loop VF:" << EPI.EpilogueVF
8324            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
8325   });
8326 }
8327 
8328 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() {
8329   DEBUG_WITH_TYPE(VerboseDebug, {
8330     dbgs() << "final fn:\n" << *OrigLoop->getHeader()->getParent() << "\n";
8331   });
8332 }
8333 
8334 bool LoopVectorizationPlanner::getDecisionAndClampRange(
8335     const std::function<bool(ElementCount)> &Predicate, VFRange &Range) {
8336   assert(!Range.isEmpty() && "Trying to test an empty VF range.");
8337   bool PredicateAtRangeStart = Predicate(Range.Start);
8338 
8339   for (ElementCount TmpVF = Range.Start * 2;
8340        ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2)
8341     if (Predicate(TmpVF) != PredicateAtRangeStart) {
8342       Range.End = TmpVF;
8343       break;
8344     }
8345 
8346   return PredicateAtRangeStart;
8347 }
8348 
8349 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
8350 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
8351 /// of VF's starting at a given VF and extending it as much as possible. Each
8352 /// vectorization decision can potentially shorten this sub-range during
8353 /// buildVPlan().
8354 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF,
8355                                            ElementCount MaxVF) {
8356   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
8357   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
8358     VFRange SubRange = {VF, MaxVFPlusOne};
8359     VPlans.push_back(buildVPlan(SubRange));
8360     VF = SubRange.End;
8361   }
8362 }
8363 
8364 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst,
8365                                          VPlanPtr &Plan) {
8366   assert(is_contained(predecessors(Dst), Src) && "Invalid edge");
8367 
8368   // Look for cached value.
8369   std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
8370   EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge);
8371   if (ECEntryIt != EdgeMaskCache.end())
8372     return ECEntryIt->second;
8373 
8374   VPValue *SrcMask = createBlockInMask(Src, Plan);
8375 
8376   // The terminator has to be a branch inst!
8377   BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
8378   assert(BI && "Unexpected terminator found");
8379 
8380   if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1))
8381     return EdgeMaskCache[Edge] = SrcMask;
8382 
8383   // If source is an exiting block, we know the exit edge is dynamically dead
8384   // in the vector loop, and thus we don't need to restrict the mask.  Avoid
8385   // adding uses of an otherwise potentially dead instruction.
8386   if (OrigLoop->isLoopExiting(Src))
8387     return EdgeMaskCache[Edge] = SrcMask;
8388 
8389   VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition());
8390   assert(EdgeMask && "No Edge Mask found for condition");
8391 
8392   if (BI->getSuccessor(0) != Dst)
8393     EdgeMask = Builder.createNot(EdgeMask, BI->getDebugLoc());
8394 
8395   if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND.
8396     // The condition is 'SrcMask && EdgeMask', which is equivalent to
8397     // 'select i1 SrcMask, i1 EdgeMask, i1 false'.
8398     // The select version does not introduce new UB if SrcMask is false and
8399     // EdgeMask is poison. Using 'and' here introduces undefined behavior.
8400     VPValue *False = Plan->getOrAddVPValue(
8401         ConstantInt::getFalse(BI->getCondition()->getType()));
8402     EdgeMask =
8403         Builder.createSelect(SrcMask, EdgeMask, False, BI->getDebugLoc());
8404   }
8405 
8406   return EdgeMaskCache[Edge] = EdgeMask;
8407 }
8408 
8409 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) {
8410   assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
8411 
8412   // Look for cached value.
8413   BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB);
8414   if (BCEntryIt != BlockMaskCache.end())
8415     return BCEntryIt->second;
8416 
8417   // All-one mask is modelled as no-mask following the convention for masked
8418   // load/store/gather/scatter. Initialize BlockMask to no-mask.
8419   VPValue *BlockMask = nullptr;
8420 
8421   if (OrigLoop->getHeader() == BB) {
8422     if (!CM.blockNeedsPredicationForAnyReason(BB))
8423       return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one.
8424 
8425     // Introduce the early-exit compare IV <= BTC to form header block mask.
8426     // This is used instead of IV < TC because TC may wrap, unlike BTC. Start by
8427     // constructing the desired canonical IV in the header block as its first
8428     // non-phi instructions.
8429     assert(CM.foldTailByMasking() && "must fold the tail");
8430     VPBasicBlock *HeaderVPBB = Plan->getEntry()->getEntryBasicBlock();
8431     auto NewInsertionPoint = HeaderVPBB->getFirstNonPhi();
8432     auto *IV = new VPWidenCanonicalIVRecipe(Plan->getCanonicalIV());
8433     HeaderVPBB->insert(IV, HeaderVPBB->getFirstNonPhi());
8434 
8435     VPBuilder::InsertPointGuard Guard(Builder);
8436     Builder.setInsertPoint(HeaderVPBB, NewInsertionPoint);
8437     if (CM.TTI.emitGetActiveLaneMask()) {
8438       VPValue *TC = Plan->getOrCreateTripCount();
8439       BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV, TC});
8440     } else {
8441       VPValue *BTC = Plan->getOrCreateBackedgeTakenCount();
8442       BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC});
8443     }
8444     return BlockMaskCache[BB] = BlockMask;
8445   }
8446 
8447   // This is the block mask. We OR all incoming edges.
8448   for (auto *Predecessor : predecessors(BB)) {
8449     VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan);
8450     if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too.
8451       return BlockMaskCache[BB] = EdgeMask;
8452 
8453     if (!BlockMask) { // BlockMask has its initialized nullptr value.
8454       BlockMask = EdgeMask;
8455       continue;
8456     }
8457 
8458     BlockMask = Builder.createOr(BlockMask, EdgeMask, {});
8459   }
8460 
8461   return BlockMaskCache[BB] = BlockMask;
8462 }
8463 
8464 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I,
8465                                                 ArrayRef<VPValue *> Operands,
8466                                                 VFRange &Range,
8467                                                 VPlanPtr &Plan) {
8468   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
8469          "Must be called with either a load or store");
8470 
8471   auto willWiden = [&](ElementCount VF) -> bool {
8472     if (VF.isScalar())
8473       return false;
8474     LoopVectorizationCostModel::InstWidening Decision =
8475         CM.getWideningDecision(I, VF);
8476     assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
8477            "CM decision should be taken at this point.");
8478     if (Decision == LoopVectorizationCostModel::CM_Interleave)
8479       return true;
8480     if (CM.isScalarAfterVectorization(I, VF) ||
8481         CM.isProfitableToScalarize(I, VF))
8482       return false;
8483     return Decision != LoopVectorizationCostModel::CM_Scalarize;
8484   };
8485 
8486   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8487     return nullptr;
8488 
8489   VPValue *Mask = nullptr;
8490   if (Legal->isMaskRequired(I))
8491     Mask = createBlockInMask(I->getParent(), Plan);
8492 
8493   // Determine if the pointer operand of the access is either consecutive or
8494   // reverse consecutive.
8495   LoopVectorizationCostModel::InstWidening Decision =
8496       CM.getWideningDecision(I, Range.Start);
8497   bool Reverse = Decision == LoopVectorizationCostModel::CM_Widen_Reverse;
8498   bool Consecutive =
8499       Reverse || Decision == LoopVectorizationCostModel::CM_Widen;
8500 
8501   if (LoadInst *Load = dyn_cast<LoadInst>(I))
8502     return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask,
8503                                               Consecutive, Reverse);
8504 
8505   StoreInst *Store = cast<StoreInst>(I);
8506   return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0],
8507                                             Mask, Consecutive, Reverse);
8508 }
8509 
8510 static VPWidenIntOrFpInductionRecipe *
8511 createWidenInductionRecipe(PHINode *Phi, Instruction *PhiOrTrunc,
8512                            VPValue *Start, const InductionDescriptor &IndDesc,
8513                            LoopVectorizationCostModel &CM, Loop &OrigLoop,
8514                            VFRange &Range) {
8515   // Returns true if an instruction \p I should be scalarized instead of
8516   // vectorized for the chosen vectorization factor.
8517   auto ShouldScalarizeInstruction = [&CM](Instruction *I, ElementCount VF) {
8518     return CM.isScalarAfterVectorization(I, VF) ||
8519            CM.isProfitableToScalarize(I, VF);
8520   };
8521 
8522   bool NeedsScalarIV = LoopVectorizationPlanner::getDecisionAndClampRange(
8523       [&](ElementCount VF) {
8524         // Returns true if we should generate a scalar version of \p IV.
8525         if (ShouldScalarizeInstruction(PhiOrTrunc, VF))
8526           return true;
8527         auto isScalarInst = [&](User *U) -> bool {
8528           auto *I = cast<Instruction>(U);
8529           return OrigLoop.contains(I) && ShouldScalarizeInstruction(I, VF);
8530         };
8531         return any_of(PhiOrTrunc->users(), isScalarInst);
8532       },
8533       Range);
8534   bool NeedsScalarIVOnly = LoopVectorizationPlanner::getDecisionAndClampRange(
8535       [&](ElementCount VF) {
8536         return ShouldScalarizeInstruction(PhiOrTrunc, VF);
8537       },
8538       Range);
8539   assert(IndDesc.getStartValue() ==
8540          Phi->getIncomingValueForBlock(OrigLoop.getLoopPreheader()));
8541   if (auto *TruncI = dyn_cast<TruncInst>(PhiOrTrunc)) {
8542     return new VPWidenIntOrFpInductionRecipe(Phi, Start, IndDesc, TruncI,
8543                                              NeedsScalarIV, !NeedsScalarIVOnly);
8544   }
8545   assert(isa<PHINode>(PhiOrTrunc) && "must be a phi node here");
8546   return new VPWidenIntOrFpInductionRecipe(Phi, Start, IndDesc, NeedsScalarIV,
8547                                            !NeedsScalarIVOnly);
8548 }
8549 
8550 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionPHI(
8551     PHINode *Phi, ArrayRef<VPValue *> Operands, VFRange &Range) const {
8552 
8553   // Check if this is an integer or fp induction. If so, build the recipe that
8554   // produces its scalar and vector values.
8555   if (auto *II = Legal->getIntOrFpInductionDescriptor(Phi))
8556     return createWidenInductionRecipe(Phi, Phi, Operands[0], *II, CM, *OrigLoop,
8557                                       Range);
8558 
8559   return nullptr;
8560 }
8561 
8562 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate(
8563     TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range,
8564     VPlan &Plan) const {
8565   // Optimize the special case where the source is a constant integer
8566   // induction variable. Notice that we can only optimize the 'trunc' case
8567   // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
8568   // (c) other casts depend on pointer size.
8569 
8570   // Determine whether \p K is a truncation based on an induction variable that
8571   // can be optimized.
8572   auto isOptimizableIVTruncate =
8573       [&](Instruction *K) -> std::function<bool(ElementCount)> {
8574     return [=](ElementCount VF) -> bool {
8575       return CM.isOptimizableIVTruncate(K, VF);
8576     };
8577   };
8578 
8579   if (LoopVectorizationPlanner::getDecisionAndClampRange(
8580           isOptimizableIVTruncate(I), Range)) {
8581 
8582     auto *Phi = cast<PHINode>(I->getOperand(0));
8583     const InductionDescriptor &II = *Legal->getIntOrFpInductionDescriptor(Phi);
8584     VPValue *Start = Plan.getOrAddVPValue(II.getStartValue());
8585     return createWidenInductionRecipe(Phi, I, Start, II, CM, *OrigLoop, Range);
8586   }
8587   return nullptr;
8588 }
8589 
8590 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi,
8591                                                 ArrayRef<VPValue *> Operands,
8592                                                 VPlanPtr &Plan) {
8593   // If all incoming values are equal, the incoming VPValue can be used directly
8594   // instead of creating a new VPBlendRecipe.
8595   VPValue *FirstIncoming = Operands[0];
8596   if (all_of(Operands, [FirstIncoming](const VPValue *Inc) {
8597         return FirstIncoming == Inc;
8598       })) {
8599     return Operands[0];
8600   }
8601 
8602   // We know that all PHIs in non-header blocks are converted into selects, so
8603   // we don't have to worry about the insertion order and we can just use the
8604   // builder. At this point we generate the predication tree. There may be
8605   // duplications since this is a simple recursive scan, but future
8606   // optimizations will clean it up.
8607   SmallVector<VPValue *, 2> OperandsWithMask;
8608   unsigned NumIncoming = Phi->getNumIncomingValues();
8609 
8610   for (unsigned In = 0; In < NumIncoming; In++) {
8611     VPValue *EdgeMask =
8612       createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan);
8613     assert((EdgeMask || NumIncoming == 1) &&
8614            "Multiple predecessors with one having a full mask");
8615     OperandsWithMask.push_back(Operands[In]);
8616     if (EdgeMask)
8617       OperandsWithMask.push_back(EdgeMask);
8618   }
8619   return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask));
8620 }
8621 
8622 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI,
8623                                                    ArrayRef<VPValue *> Operands,
8624                                                    VFRange &Range) const {
8625 
8626   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8627       [this, CI](ElementCount VF) {
8628         return CM.isScalarWithPredication(CI, VF);
8629       },
8630       Range);
8631 
8632   if (IsPredicated)
8633     return nullptr;
8634 
8635   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8636   if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
8637              ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect ||
8638              ID == Intrinsic::pseudoprobe ||
8639              ID == Intrinsic::experimental_noalias_scope_decl))
8640     return nullptr;
8641 
8642   auto willWiden = [&](ElementCount VF) -> bool {
8643     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8644     // The following case may be scalarized depending on the VF.
8645     // The flag shows whether we use Intrinsic or a usual Call for vectorized
8646     // version of the instruction.
8647     // Is it beneficial to perform intrinsic call compared to lib call?
8648     bool NeedToScalarize = false;
8649     InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize);
8650     InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0;
8651     bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
8652     return UseVectorIntrinsic || !NeedToScalarize;
8653   };
8654 
8655   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8656     return nullptr;
8657 
8658   ArrayRef<VPValue *> Ops = Operands.take_front(CI->arg_size());
8659   return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end()));
8660 }
8661 
8662 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const {
8663   assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) &&
8664          !isa<StoreInst>(I) && "Instruction should have been handled earlier");
8665   // Instruction should be widened, unless it is scalar after vectorization,
8666   // scalarization is profitable or it is predicated.
8667   auto WillScalarize = [this, I](ElementCount VF) -> bool {
8668     return CM.isScalarAfterVectorization(I, VF) ||
8669            CM.isProfitableToScalarize(I, VF) ||
8670            CM.isScalarWithPredication(I, VF);
8671   };
8672   return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize,
8673                                                              Range);
8674 }
8675 
8676 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I,
8677                                            ArrayRef<VPValue *> Operands) const {
8678   auto IsVectorizableOpcode = [](unsigned Opcode) {
8679     switch (Opcode) {
8680     case Instruction::Add:
8681     case Instruction::And:
8682     case Instruction::AShr:
8683     case Instruction::BitCast:
8684     case Instruction::FAdd:
8685     case Instruction::FCmp:
8686     case Instruction::FDiv:
8687     case Instruction::FMul:
8688     case Instruction::FNeg:
8689     case Instruction::FPExt:
8690     case Instruction::FPToSI:
8691     case Instruction::FPToUI:
8692     case Instruction::FPTrunc:
8693     case Instruction::FRem:
8694     case Instruction::FSub:
8695     case Instruction::ICmp:
8696     case Instruction::IntToPtr:
8697     case Instruction::LShr:
8698     case Instruction::Mul:
8699     case Instruction::Or:
8700     case Instruction::PtrToInt:
8701     case Instruction::SDiv:
8702     case Instruction::Select:
8703     case Instruction::SExt:
8704     case Instruction::Shl:
8705     case Instruction::SIToFP:
8706     case Instruction::SRem:
8707     case Instruction::Sub:
8708     case Instruction::Trunc:
8709     case Instruction::UDiv:
8710     case Instruction::UIToFP:
8711     case Instruction::URem:
8712     case Instruction::Xor:
8713     case Instruction::ZExt:
8714       return true;
8715     }
8716     return false;
8717   };
8718 
8719   if (!IsVectorizableOpcode(I->getOpcode()))
8720     return nullptr;
8721 
8722   // Success: widen this instruction.
8723   return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end()));
8724 }
8725 
8726 void VPRecipeBuilder::fixHeaderPhis() {
8727   BasicBlock *OrigLatch = OrigLoop->getLoopLatch();
8728   for (VPHeaderPHIRecipe *R : PhisToFix) {
8729     auto *PN = cast<PHINode>(R->getUnderlyingValue());
8730     VPRecipeBase *IncR =
8731         getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch)));
8732     R->addOperand(IncR->getVPSingleValue());
8733   }
8734 }
8735 
8736 VPBasicBlock *VPRecipeBuilder::handleReplication(
8737     Instruction *I, VFRange &Range, VPBasicBlock *VPBB,
8738     VPlanPtr &Plan) {
8739   bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange(
8740       [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); },
8741       Range);
8742 
8743   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8744       [&](ElementCount VF) { return CM.isPredicatedInst(I, VF, IsUniform); },
8745       Range);
8746 
8747   // Even if the instruction is not marked as uniform, there are certain
8748   // intrinsic calls that can be effectively treated as such, so we check for
8749   // them here. Conservatively, we only do this for scalable vectors, since
8750   // for fixed-width VFs we can always fall back on full scalarization.
8751   if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) {
8752     switch (cast<IntrinsicInst>(I)->getIntrinsicID()) {
8753     case Intrinsic::assume:
8754     case Intrinsic::lifetime_start:
8755     case Intrinsic::lifetime_end:
8756       // For scalable vectors if one of the operands is variant then we still
8757       // want to mark as uniform, which will generate one instruction for just
8758       // the first lane of the vector. We can't scalarize the call in the same
8759       // way as for fixed-width vectors because we don't know how many lanes
8760       // there are.
8761       //
8762       // The reasons for doing it this way for scalable vectors are:
8763       //   1. For the assume intrinsic generating the instruction for the first
8764       //      lane is still be better than not generating any at all. For
8765       //      example, the input may be a splat across all lanes.
8766       //   2. For the lifetime start/end intrinsics the pointer operand only
8767       //      does anything useful when the input comes from a stack object,
8768       //      which suggests it should always be uniform. For non-stack objects
8769       //      the effect is to poison the object, which still allows us to
8770       //      remove the call.
8771       IsUniform = true;
8772       break;
8773     default:
8774       break;
8775     }
8776   }
8777 
8778   auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()),
8779                                        IsUniform, IsPredicated);
8780   setRecipe(I, Recipe);
8781   Plan->addVPValue(I, Recipe);
8782 
8783   // Find if I uses a predicated instruction. If so, it will use its scalar
8784   // value. Avoid hoisting the insert-element which packs the scalar value into
8785   // a vector value, as that happens iff all users use the vector value.
8786   for (VPValue *Op : Recipe->operands()) {
8787     auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef());
8788     if (!PredR)
8789       continue;
8790     auto *RepR =
8791         cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef());
8792     assert(RepR->isPredicated() &&
8793            "expected Replicate recipe to be predicated");
8794     RepR->setAlsoPack(false);
8795   }
8796 
8797   // Finalize the recipe for Instr, first if it is not predicated.
8798   if (!IsPredicated) {
8799     LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
8800     VPBB->appendRecipe(Recipe);
8801     return VPBB;
8802   }
8803   LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
8804 
8805   VPBlockBase *SingleSucc = VPBB->getSingleSuccessor();
8806   assert(SingleSucc && "VPBB must have a single successor when handling "
8807                        "predicated replication.");
8808   VPBlockUtils::disconnectBlocks(VPBB, SingleSucc);
8809   // Record predicated instructions for above packing optimizations.
8810   VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan);
8811   VPBlockUtils::insertBlockAfter(Region, VPBB);
8812   auto *RegSucc = new VPBasicBlock();
8813   VPBlockUtils::insertBlockAfter(RegSucc, Region);
8814   VPBlockUtils::connectBlocks(RegSucc, SingleSucc);
8815   return RegSucc;
8816 }
8817 
8818 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr,
8819                                                       VPRecipeBase *PredRecipe,
8820                                                       VPlanPtr &Plan) {
8821   // Instructions marked for predication are replicated and placed under an
8822   // if-then construct to prevent side-effects.
8823 
8824   // Generate recipes to compute the block mask for this region.
8825   VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan);
8826 
8827   // Build the triangular if-then region.
8828   std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
8829   assert(Instr->getParent() && "Predicated instruction not in any basic block");
8830   auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask);
8831   auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
8832   auto *PHIRecipe = Instr->getType()->isVoidTy()
8833                         ? nullptr
8834                         : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr));
8835   if (PHIRecipe) {
8836     Plan->removeVPValueFor(Instr);
8837     Plan->addVPValue(Instr, PHIRecipe);
8838   }
8839   auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
8840   auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe);
8841   VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true);
8842 
8843   // Note: first set Entry as region entry and then connect successors starting
8844   // from it in order, to propagate the "parent" of each VPBasicBlock.
8845   VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry);
8846   VPBlockUtils::connectBlocks(Pred, Exit);
8847 
8848   return Region;
8849 }
8850 
8851 VPRecipeOrVPValueTy
8852 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr,
8853                                         ArrayRef<VPValue *> Operands,
8854                                         VFRange &Range, VPlanPtr &Plan) {
8855   // First, check for specific widening recipes that deal with calls, memory
8856   // operations, inductions and Phi nodes.
8857   if (auto *CI = dyn_cast<CallInst>(Instr))
8858     return toVPRecipeResult(tryToWidenCall(CI, Operands, Range));
8859 
8860   if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr))
8861     return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan));
8862 
8863   VPRecipeBase *Recipe;
8864   if (auto Phi = dyn_cast<PHINode>(Instr)) {
8865     if (Phi->getParent() != OrigLoop->getHeader())
8866       return tryToBlend(Phi, Operands, Plan);
8867     if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands, Range)))
8868       return toVPRecipeResult(Recipe);
8869 
8870     VPHeaderPHIRecipe *PhiRecipe = nullptr;
8871     if (Legal->isReductionVariable(Phi) || Legal->isFirstOrderRecurrence(Phi)) {
8872       VPValue *StartV = Operands[0];
8873       if (Legal->isReductionVariable(Phi)) {
8874         const RecurrenceDescriptor &RdxDesc =
8875             Legal->getReductionVars().find(Phi)->second;
8876         assert(RdxDesc.getRecurrenceStartValue() ==
8877                Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
8878         PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV,
8879                                              CM.isInLoopReduction(Phi),
8880                                              CM.useOrderedReductions(RdxDesc));
8881       } else {
8882         PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV);
8883       }
8884 
8885       // Record the incoming value from the backedge, so we can add the incoming
8886       // value from the backedge after all recipes have been created.
8887       recordRecipeOf(cast<Instruction>(
8888           Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch())));
8889       PhisToFix.push_back(PhiRecipe);
8890     } else {
8891       // TODO: record backedge value for remaining pointer induction phis.
8892       assert(Phi->getType()->isPointerTy() &&
8893              "only pointer phis should be handled here");
8894       assert(Legal->getInductionVars().count(Phi) &&
8895              "Not an induction variable");
8896       InductionDescriptor II = Legal->getInductionVars().lookup(Phi);
8897       VPValue *Start = Plan->getOrAddVPValue(II.getStartValue());
8898       PhiRecipe = new VPWidenPHIRecipe(Phi, Start);
8899     }
8900 
8901     return toVPRecipeResult(PhiRecipe);
8902   }
8903 
8904   if (isa<TruncInst>(Instr) &&
8905       (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands,
8906                                                Range, *Plan)))
8907     return toVPRecipeResult(Recipe);
8908 
8909   if (!shouldWiden(Instr, Range))
8910     return nullptr;
8911 
8912   if (auto GEP = dyn_cast<GetElementPtrInst>(Instr))
8913     return toVPRecipeResult(new VPWidenGEPRecipe(
8914         GEP, make_range(Operands.begin(), Operands.end()), OrigLoop));
8915 
8916   if (auto *SI = dyn_cast<SelectInst>(Instr)) {
8917     bool InvariantCond =
8918         PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop);
8919     return toVPRecipeResult(new VPWidenSelectRecipe(
8920         *SI, make_range(Operands.begin(), Operands.end()), InvariantCond));
8921   }
8922 
8923   return toVPRecipeResult(tryToWiden(Instr, Operands));
8924 }
8925 
8926 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF,
8927                                                         ElementCount MaxVF) {
8928   assert(OrigLoop->isInnermost() && "Inner loop expected.");
8929 
8930   // Collect instructions from the original loop that will become trivially dead
8931   // in the vectorized loop. We don't need to vectorize these instructions. For
8932   // example, original induction update instructions can become dead because we
8933   // separately emit induction "steps" when generating code for the new loop.
8934   // Similarly, we create a new latch condition when setting up the structure
8935   // of the new loop, so the old one can become dead.
8936   SmallPtrSet<Instruction *, 4> DeadInstructions;
8937   collectTriviallyDeadInstructions(DeadInstructions);
8938 
8939   // Add assume instructions we need to drop to DeadInstructions, to prevent
8940   // them from being added to the VPlan.
8941   // TODO: We only need to drop assumes in blocks that get flattend. If the
8942   // control flow is preserved, we should keep them.
8943   auto &ConditionalAssumes = Legal->getConditionalAssumes();
8944   DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end());
8945 
8946   MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter();
8947   // Dead instructions do not need sinking. Remove them from SinkAfter.
8948   for (Instruction *I : DeadInstructions)
8949     SinkAfter.erase(I);
8950 
8951   // Cannot sink instructions after dead instructions (there won't be any
8952   // recipes for them). Instead, find the first non-dead previous instruction.
8953   for (auto &P : Legal->getSinkAfter()) {
8954     Instruction *SinkTarget = P.second;
8955     Instruction *FirstInst = &*SinkTarget->getParent()->begin();
8956     (void)FirstInst;
8957     while (DeadInstructions.contains(SinkTarget)) {
8958       assert(
8959           SinkTarget != FirstInst &&
8960           "Must find a live instruction (at least the one feeding the "
8961           "first-order recurrence PHI) before reaching beginning of the block");
8962       SinkTarget = SinkTarget->getPrevNode();
8963       assert(SinkTarget != P.first &&
8964              "sink source equals target, no sinking required");
8965     }
8966     P.second = SinkTarget;
8967   }
8968 
8969   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
8970   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
8971     VFRange SubRange = {VF, MaxVFPlusOne};
8972     VPlans.push_back(
8973         buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter));
8974     VF = SubRange.End;
8975   }
8976 }
8977 
8978 // Add a VPCanonicalIVPHIRecipe starting at 0 to the header, a
8979 // CanonicalIVIncrement{NUW} VPInstruction to increment it by VF * UF and a
8980 // BranchOnCount VPInstruction to the latch.
8981 static void addCanonicalIVRecipes(VPlan &Plan, Type *IdxTy, DebugLoc DL,
8982                                   bool HasNUW, bool IsVPlanNative) {
8983   Value *StartIdx = ConstantInt::get(IdxTy, 0);
8984   auto *StartV = Plan.getOrAddVPValue(StartIdx);
8985 
8986   auto *CanonicalIVPHI = new VPCanonicalIVPHIRecipe(StartV, DL);
8987   VPRegionBlock *TopRegion = Plan.getVectorLoopRegion();
8988   VPBasicBlock *Header = TopRegion->getEntryBasicBlock();
8989   if (IsVPlanNative)
8990     Header = cast<VPBasicBlock>(Header->getSingleSuccessor());
8991   Header->insert(CanonicalIVPHI, Header->begin());
8992 
8993   auto *CanonicalIVIncrement =
8994       new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementNUW
8995                                : VPInstruction::CanonicalIVIncrement,
8996                         {CanonicalIVPHI}, DL);
8997   CanonicalIVPHI->addOperand(CanonicalIVIncrement);
8998 
8999   VPBasicBlock *EB = TopRegion->getExitBasicBlock();
9000   if (IsVPlanNative) {
9001     EB = cast<VPBasicBlock>(EB->getSinglePredecessor());
9002     EB->setCondBit(nullptr);
9003   }
9004   EB->appendRecipe(CanonicalIVIncrement);
9005 
9006   auto *BranchOnCount =
9007       new VPInstruction(VPInstruction::BranchOnCount,
9008                         {CanonicalIVIncrement, &Plan.getVectorTripCount()}, DL);
9009   EB->appendRecipe(BranchOnCount);
9010 }
9011 
9012 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes(
9013     VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions,
9014     const MapVector<Instruction *, Instruction *> &SinkAfter) {
9015 
9016   SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
9017 
9018   VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder);
9019 
9020   // ---------------------------------------------------------------------------
9021   // Pre-construction: record ingredients whose recipes we'll need to further
9022   // process after constructing the initial VPlan.
9023   // ---------------------------------------------------------------------------
9024 
9025   // Mark instructions we'll need to sink later and their targets as
9026   // ingredients whose recipe we'll need to record.
9027   for (auto &Entry : SinkAfter) {
9028     RecipeBuilder.recordRecipeOf(Entry.first);
9029     RecipeBuilder.recordRecipeOf(Entry.second);
9030   }
9031   for (auto &Reduction : CM.getInLoopReductionChains()) {
9032     PHINode *Phi = Reduction.first;
9033     RecurKind Kind =
9034         Legal->getReductionVars().find(Phi)->second.getRecurrenceKind();
9035     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
9036 
9037     RecipeBuilder.recordRecipeOf(Phi);
9038     for (auto &R : ReductionOperations) {
9039       RecipeBuilder.recordRecipeOf(R);
9040       // For min/max reducitons, where we have a pair of icmp/select, we also
9041       // need to record the ICmp recipe, so it can be removed later.
9042       assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) &&
9043              "Only min/max recurrences allowed for inloop reductions");
9044       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind))
9045         RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0)));
9046     }
9047   }
9048 
9049   // For each interleave group which is relevant for this (possibly trimmed)
9050   // Range, add it to the set of groups to be later applied to the VPlan and add
9051   // placeholders for its members' Recipes which we'll be replacing with a
9052   // single VPInterleaveRecipe.
9053   for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
9054     auto applyIG = [IG, this](ElementCount VF) -> bool {
9055       return (VF.isVector() && // Query is illegal for VF == 1
9056               CM.getWideningDecision(IG->getInsertPos(), VF) ==
9057                   LoopVectorizationCostModel::CM_Interleave);
9058     };
9059     if (!getDecisionAndClampRange(applyIG, Range))
9060       continue;
9061     InterleaveGroups.insert(IG);
9062     for (unsigned i = 0; i < IG->getFactor(); i++)
9063       if (Instruction *Member = IG->getMember(i))
9064         RecipeBuilder.recordRecipeOf(Member);
9065   };
9066 
9067   // ---------------------------------------------------------------------------
9068   // Build initial VPlan: Scan the body of the loop in a topological order to
9069   // visit each basic block after having visited its predecessor basic blocks.
9070   // ---------------------------------------------------------------------------
9071 
9072   // Create initial VPlan skeleton, with separate header and latch blocks.
9073   VPBasicBlock *HeaderVPBB = new VPBasicBlock();
9074   VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch");
9075   VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB);
9076   auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop");
9077   auto Plan = std::make_unique<VPlan>(TopRegion);
9078 
9079   Instruction *DLInst =
9080       getDebugLocFromInstOrOperands(Legal->getPrimaryInduction());
9081   addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(),
9082                         DLInst ? DLInst->getDebugLoc() : DebugLoc(),
9083                         !CM.foldTailByMasking(), false);
9084 
9085   // Scan the body of the loop in a topological order to visit each basic block
9086   // after having visited its predecessor basic blocks.
9087   LoopBlocksDFS DFS(OrigLoop);
9088   DFS.perform(LI);
9089 
9090   VPBasicBlock *VPBB = HeaderVPBB;
9091   SmallVector<VPWidenIntOrFpInductionRecipe *> InductionsToMove;
9092   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
9093     // Relevant instructions from basic block BB will be grouped into VPRecipe
9094     // ingredients and fill a new VPBasicBlock.
9095     unsigned VPBBsForBB = 0;
9096     VPBB->setName(BB->getName());
9097     Builder.setInsertPoint(VPBB);
9098 
9099     // Introduce each ingredient into VPlan.
9100     // TODO: Model and preserve debug instrinsics in VPlan.
9101     for (Instruction &I : BB->instructionsWithoutDebug()) {
9102       Instruction *Instr = &I;
9103 
9104       // First filter out irrelevant instructions, to ensure no recipes are
9105       // built for them.
9106       if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr))
9107         continue;
9108 
9109       SmallVector<VPValue *, 4> Operands;
9110       auto *Phi = dyn_cast<PHINode>(Instr);
9111       if (Phi && Phi->getParent() == OrigLoop->getHeader()) {
9112         Operands.push_back(Plan->getOrAddVPValue(
9113             Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())));
9114       } else {
9115         auto OpRange = Plan->mapToVPValues(Instr->operands());
9116         Operands = {OpRange.begin(), OpRange.end()};
9117       }
9118       if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe(
9119               Instr, Operands, Range, Plan)) {
9120         // If Instr can be simplified to an existing VPValue, use it.
9121         if (RecipeOrValue.is<VPValue *>()) {
9122           auto *VPV = RecipeOrValue.get<VPValue *>();
9123           Plan->addVPValue(Instr, VPV);
9124           // If the re-used value is a recipe, register the recipe for the
9125           // instruction, in case the recipe for Instr needs to be recorded.
9126           if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef()))
9127             RecipeBuilder.setRecipe(Instr, R);
9128           continue;
9129         }
9130         // Otherwise, add the new recipe.
9131         VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>();
9132         for (auto *Def : Recipe->definedValues()) {
9133           auto *UV = Def->getUnderlyingValue();
9134           Plan->addVPValue(UV, Def);
9135         }
9136 
9137         if (isa<VPWidenIntOrFpInductionRecipe>(Recipe) &&
9138             HeaderVPBB->getFirstNonPhi() != VPBB->end()) {
9139           // Keep track of VPWidenIntOrFpInductionRecipes not in the phi section
9140           // of the header block. That can happen for truncates of induction
9141           // variables. Those recipes are moved to the phi section of the header
9142           // block after applying SinkAfter, which relies on the original
9143           // position of the trunc.
9144           assert(isa<TruncInst>(Instr));
9145           InductionsToMove.push_back(
9146               cast<VPWidenIntOrFpInductionRecipe>(Recipe));
9147         }
9148         RecipeBuilder.setRecipe(Instr, Recipe);
9149         VPBB->appendRecipe(Recipe);
9150         continue;
9151       }
9152 
9153       // Otherwise, if all widening options failed, Instruction is to be
9154       // replicated. This may create a successor for VPBB.
9155       VPBasicBlock *NextVPBB =
9156           RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan);
9157       if (NextVPBB != VPBB) {
9158         VPBB = NextVPBB;
9159         VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++)
9160                                     : "");
9161       }
9162     }
9163 
9164     VPBlockUtils::insertBlockAfter(new VPBasicBlock(), VPBB);
9165     VPBB = cast<VPBasicBlock>(VPBB->getSingleSuccessor());
9166   }
9167 
9168   // Fold the last, empty block into its predecessor.
9169   VPBB = VPBlockUtils::tryToMergeBlockIntoPredecessor(VPBB);
9170   assert(VPBB && "expected to fold last (empty) block");
9171   // After here, VPBB should not be used.
9172   VPBB = nullptr;
9173 
9174   assert(isa<VPRegionBlock>(Plan->getEntry()) &&
9175          !Plan->getEntry()->getEntryBasicBlock()->empty() &&
9176          "entry block must be set to a VPRegionBlock having a non-empty entry "
9177          "VPBasicBlock");
9178   RecipeBuilder.fixHeaderPhis();
9179 
9180   // ---------------------------------------------------------------------------
9181   // Transform initial VPlan: Apply previously taken decisions, in order, to
9182   // bring the VPlan to its final state.
9183   // ---------------------------------------------------------------------------
9184 
9185   // Apply Sink-After legal constraints.
9186   auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * {
9187     auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent());
9188     if (Region && Region->isReplicator()) {
9189       assert(Region->getNumSuccessors() == 1 &&
9190              Region->getNumPredecessors() == 1 && "Expected SESE region!");
9191       assert(R->getParent()->size() == 1 &&
9192              "A recipe in an original replicator region must be the only "
9193              "recipe in its block");
9194       return Region;
9195     }
9196     return nullptr;
9197   };
9198   for (auto &Entry : SinkAfter) {
9199     VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first);
9200     VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second);
9201 
9202     auto *TargetRegion = GetReplicateRegion(Target);
9203     auto *SinkRegion = GetReplicateRegion(Sink);
9204     if (!SinkRegion) {
9205       // If the sink source is not a replicate region, sink the recipe directly.
9206       if (TargetRegion) {
9207         // The target is in a replication region, make sure to move Sink to
9208         // the block after it, not into the replication region itself.
9209         VPBasicBlock *NextBlock =
9210             cast<VPBasicBlock>(TargetRegion->getSuccessors().front());
9211         Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi());
9212       } else
9213         Sink->moveAfter(Target);
9214       continue;
9215     }
9216 
9217     // The sink source is in a replicate region. Unhook the region from the CFG.
9218     auto *SinkPred = SinkRegion->getSinglePredecessor();
9219     auto *SinkSucc = SinkRegion->getSingleSuccessor();
9220     VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion);
9221     VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc);
9222     VPBlockUtils::connectBlocks(SinkPred, SinkSucc);
9223 
9224     if (TargetRegion) {
9225       // The target recipe is also in a replicate region, move the sink region
9226       // after the target region.
9227       auto *TargetSucc = TargetRegion->getSingleSuccessor();
9228       VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc);
9229       VPBlockUtils::connectBlocks(TargetRegion, SinkRegion);
9230       VPBlockUtils::connectBlocks(SinkRegion, TargetSucc);
9231     } else {
9232       // The sink source is in a replicate region, we need to move the whole
9233       // replicate region, which should only contain a single recipe in the
9234       // main block.
9235       auto *SplitBlock =
9236           Target->getParent()->splitAt(std::next(Target->getIterator()));
9237 
9238       auto *SplitPred = SplitBlock->getSinglePredecessor();
9239 
9240       VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock);
9241       VPBlockUtils::connectBlocks(SplitPred, SinkRegion);
9242       VPBlockUtils::connectBlocks(SinkRegion, SplitBlock);
9243     }
9244   }
9245 
9246   VPlanTransforms::removeRedundantCanonicalIVs(*Plan);
9247   VPlanTransforms::removeRedundantInductionCasts(*Plan);
9248 
9249   // Now that sink-after is done, move induction recipes for optimized truncates
9250   // to the phi section of the header block.
9251   for (VPWidenIntOrFpInductionRecipe *Ind : InductionsToMove)
9252     Ind->moveBefore(*HeaderVPBB, HeaderVPBB->getFirstNonPhi());
9253 
9254   // Adjust the recipes for any inloop reductions.
9255   adjustRecipesForReductions(cast<VPBasicBlock>(TopRegion->getExit()), Plan,
9256                              RecipeBuilder, Range.Start);
9257 
9258   // Introduce a recipe to combine the incoming and previous values of a
9259   // first-order recurrence.
9260   for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) {
9261     auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R);
9262     if (!RecurPhi)
9263       continue;
9264 
9265     VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe();
9266     VPBasicBlock *InsertBlock = PrevRecipe->getParent();
9267     auto *Region = GetReplicateRegion(PrevRecipe);
9268     if (Region)
9269       InsertBlock = dyn_cast<VPBasicBlock>(Region->getSingleSuccessor());
9270     if (!InsertBlock) {
9271       InsertBlock = new VPBasicBlock(Region->getName() + ".succ");
9272       VPBlockUtils::insertBlockAfter(InsertBlock, Region);
9273     }
9274     if (Region || PrevRecipe->isPhi())
9275       Builder.setInsertPoint(InsertBlock, InsertBlock->getFirstNonPhi());
9276     else
9277       Builder.setInsertPoint(InsertBlock, std::next(PrevRecipe->getIterator()));
9278 
9279     auto *RecurSplice = cast<VPInstruction>(
9280         Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice,
9281                              {RecurPhi, RecurPhi->getBackedgeValue()}));
9282 
9283     RecurPhi->replaceAllUsesWith(RecurSplice);
9284     // Set the first operand of RecurSplice to RecurPhi again, after replacing
9285     // all users.
9286     RecurSplice->setOperand(0, RecurPhi);
9287   }
9288 
9289   // Interleave memory: for each Interleave Group we marked earlier as relevant
9290   // for this VPlan, replace the Recipes widening its memory instructions with a
9291   // single VPInterleaveRecipe at its insertion point.
9292   for (auto IG : InterleaveGroups) {
9293     auto *Recipe = cast<VPWidenMemoryInstructionRecipe>(
9294         RecipeBuilder.getRecipe(IG->getInsertPos()));
9295     SmallVector<VPValue *, 4> StoredValues;
9296     for (unsigned i = 0; i < IG->getFactor(); ++i)
9297       if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) {
9298         auto *StoreR =
9299             cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI));
9300         StoredValues.push_back(StoreR->getStoredValue());
9301       }
9302 
9303     auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues,
9304                                         Recipe->getMask());
9305     VPIG->insertBefore(Recipe);
9306     unsigned J = 0;
9307     for (unsigned i = 0; i < IG->getFactor(); ++i)
9308       if (Instruction *Member = IG->getMember(i)) {
9309         if (!Member->getType()->isVoidTy()) {
9310           VPValue *OriginalV = Plan->getVPValue(Member);
9311           Plan->removeVPValueFor(Member);
9312           Plan->addVPValue(Member, VPIG->getVPValue(J));
9313           OriginalV->replaceAllUsesWith(VPIG->getVPValue(J));
9314           J++;
9315         }
9316         RecipeBuilder.getRecipe(Member)->eraseFromParent();
9317       }
9318   }
9319 
9320   // From this point onwards, VPlan-to-VPlan transformations may change the plan
9321   // in ways that accessing values using original IR values is incorrect.
9322   Plan->disableValue2VPValue();
9323 
9324   VPlanTransforms::sinkScalarOperands(*Plan);
9325   VPlanTransforms::mergeReplicateRegions(*Plan);
9326 
9327   std::string PlanName;
9328   raw_string_ostream RSO(PlanName);
9329   ElementCount VF = Range.Start;
9330   Plan->addVF(VF);
9331   RSO << "Initial VPlan for VF={" << VF;
9332   for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) {
9333     Plan->addVF(VF);
9334     RSO << "," << VF;
9335   }
9336   RSO << "},UF>=1";
9337   RSO.flush();
9338   Plan->setName(PlanName);
9339 
9340   // Fold Exit block into its predecessor if possible.
9341   // TODO: Fold block earlier once all VPlan transforms properly maintain a
9342   // VPBasicBlock as exit.
9343   VPBlockUtils::tryToMergeBlockIntoPredecessor(TopRegion->getExit());
9344 
9345   assert(VPlanVerifier::verifyPlanIsValid(*Plan) && "VPlan is invalid");
9346   return Plan;
9347 }
9348 
9349 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) {
9350   // Outer loop handling: They may require CFG and instruction level
9351   // transformations before even evaluating whether vectorization is profitable.
9352   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
9353   // the vectorization pipeline.
9354   assert(!OrigLoop->isInnermost());
9355   assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
9356 
9357   // Create new empty VPlan
9358   auto Plan = std::make_unique<VPlan>();
9359 
9360   // Build hierarchical CFG
9361   VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan);
9362   HCFGBuilder.buildHierarchicalCFG();
9363 
9364   for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End);
9365        VF *= 2)
9366     Plan->addVF(VF);
9367 
9368   if (EnableVPlanPredication) {
9369     VPlanPredicator VPP(*Plan);
9370     VPP.predicate();
9371 
9372     // Avoid running transformation to recipes until masked code generation in
9373     // VPlan-native path is in place.
9374     return Plan;
9375   }
9376 
9377   SmallPtrSet<Instruction *, 1> DeadInstructions;
9378   VPlanTransforms::VPInstructionsToVPRecipes(
9379       OrigLoop, Plan,
9380       [this](PHINode *P) { return Legal->getIntOrFpInductionDescriptor(P); },
9381       DeadInstructions, *PSE.getSE());
9382 
9383   addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), DebugLoc(),
9384                         true, true);
9385   return Plan;
9386 }
9387 
9388 // Adjust the recipes for reductions. For in-loop reductions the chain of
9389 // instructions leading from the loop exit instr to the phi need to be converted
9390 // to reductions, with one operand being vector and the other being the scalar
9391 // reduction chain. For other reductions, a select is introduced between the phi
9392 // and live-out recipes when folding the tail.
9393 void LoopVectorizationPlanner::adjustRecipesForReductions(
9394     VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder,
9395     ElementCount MinVF) {
9396   for (auto &Reduction : CM.getInLoopReductionChains()) {
9397     PHINode *Phi = Reduction.first;
9398     const RecurrenceDescriptor &RdxDesc =
9399         Legal->getReductionVars().find(Phi)->second;
9400     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
9401 
9402     if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc))
9403       continue;
9404 
9405     // ReductionOperations are orders top-down from the phi's use to the
9406     // LoopExitValue. We keep a track of the previous item (the Chain) to tell
9407     // which of the two operands will remain scalar and which will be reduced.
9408     // For minmax the chain will be the select instructions.
9409     Instruction *Chain = Phi;
9410     for (Instruction *R : ReductionOperations) {
9411       VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R);
9412       RecurKind Kind = RdxDesc.getRecurrenceKind();
9413 
9414       VPValue *ChainOp = Plan->getVPValue(Chain);
9415       unsigned FirstOpId;
9416       assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) &&
9417              "Only min/max recurrences allowed for inloop reductions");
9418       // Recognize a call to the llvm.fmuladd intrinsic.
9419       bool IsFMulAdd = (Kind == RecurKind::FMulAdd);
9420       assert((!IsFMulAdd || RecurrenceDescriptor::isFMulAddIntrinsic(R)) &&
9421              "Expected instruction to be a call to the llvm.fmuladd intrinsic");
9422       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9423         assert(isa<VPWidenSelectRecipe>(WidenRecipe) &&
9424                "Expected to replace a VPWidenSelectSC");
9425         FirstOpId = 1;
9426       } else {
9427         assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe) ||
9428                 (IsFMulAdd && isa<VPWidenCallRecipe>(WidenRecipe))) &&
9429                "Expected to replace a VPWidenSC");
9430         FirstOpId = 0;
9431       }
9432       unsigned VecOpId =
9433           R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId;
9434       VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId));
9435 
9436       auto *CondOp = CM.foldTailByMasking()
9437                          ? RecipeBuilder.createBlockInMask(R->getParent(), Plan)
9438                          : nullptr;
9439 
9440       if (IsFMulAdd) {
9441         // If the instruction is a call to the llvm.fmuladd intrinsic then we
9442         // need to create an fmul recipe to use as the vector operand for the
9443         // fadd reduction.
9444         VPInstruction *FMulRecipe = new VPInstruction(
9445             Instruction::FMul, {VecOp, Plan->getVPValue(R->getOperand(1))});
9446         FMulRecipe->setFastMathFlags(R->getFastMathFlags());
9447         WidenRecipe->getParent()->insert(FMulRecipe,
9448                                          WidenRecipe->getIterator());
9449         VecOp = FMulRecipe;
9450       }
9451       VPReductionRecipe *RedRecipe =
9452           new VPReductionRecipe(&RdxDesc, R, ChainOp, VecOp, CondOp, TTI);
9453       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9454       Plan->removeVPValueFor(R);
9455       Plan->addVPValue(R, RedRecipe);
9456       WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator());
9457       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9458       WidenRecipe->eraseFromParent();
9459 
9460       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9461         VPRecipeBase *CompareRecipe =
9462             RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0)));
9463         assert(isa<VPWidenRecipe>(CompareRecipe) &&
9464                "Expected to replace a VPWidenSC");
9465         assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 &&
9466                "Expected no remaining users");
9467         CompareRecipe->eraseFromParent();
9468       }
9469       Chain = R;
9470     }
9471   }
9472 
9473   // If tail is folded by masking, introduce selects between the phi
9474   // and the live-out instruction of each reduction, at the beginning of the
9475   // dedicated latch block.
9476   if (CM.foldTailByMasking()) {
9477     Builder.setInsertPoint(LatchVPBB, LatchVPBB->begin());
9478     for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) {
9479       VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
9480       if (!PhiR || PhiR->isInLoop())
9481         continue;
9482       VPValue *Cond =
9483           RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan);
9484       VPValue *Red = PhiR->getBackedgeValue();
9485       assert(cast<VPRecipeBase>(Red->getDef())->getParent() != LatchVPBB &&
9486              "reduction recipe must be defined before latch");
9487       Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR});
9488     }
9489   }
9490 }
9491 
9492 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
9493 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent,
9494                                VPSlotTracker &SlotTracker) const {
9495   O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
9496   IG->getInsertPos()->printAsOperand(O, false);
9497   O << ", ";
9498   getAddr()->printAsOperand(O, SlotTracker);
9499   VPValue *Mask = getMask();
9500   if (Mask) {
9501     O << ", ";
9502     Mask->printAsOperand(O, SlotTracker);
9503   }
9504 
9505   unsigned OpIdx = 0;
9506   for (unsigned i = 0; i < IG->getFactor(); ++i) {
9507     if (!IG->getMember(i))
9508       continue;
9509     if (getNumStoreOperands() > 0) {
9510       O << "\n" << Indent << "  store ";
9511       getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker);
9512       O << " to index " << i;
9513     } else {
9514       O << "\n" << Indent << "  ";
9515       getVPValue(OpIdx)->printAsOperand(O, SlotTracker);
9516       O << " = load from index " << i;
9517     }
9518     ++OpIdx;
9519   }
9520 }
9521 #endif
9522 
9523 void VPWidenCallRecipe::execute(VPTransformState &State) {
9524   State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this,
9525                                   *this, State);
9526 }
9527 
9528 void VPWidenSelectRecipe::execute(VPTransformState &State) {
9529   auto &I = *cast<SelectInst>(getUnderlyingInstr());
9530   State.ILV->setDebugLocFromInst(&I);
9531 
9532   // The condition can be loop invariant  but still defined inside the
9533   // loop. This means that we can't just use the original 'cond' value.
9534   // We have to take the 'vectorized' value and pick the first lane.
9535   // Instcombine will make this a no-op.
9536   auto *InvarCond =
9537       InvariantCond ? State.get(getOperand(0), VPIteration(0, 0)) : nullptr;
9538 
9539   for (unsigned Part = 0; Part < State.UF; ++Part) {
9540     Value *Cond = InvarCond ? InvarCond : State.get(getOperand(0), Part);
9541     Value *Op0 = State.get(getOperand(1), Part);
9542     Value *Op1 = State.get(getOperand(2), Part);
9543     Value *Sel = State.Builder.CreateSelect(Cond, Op0, Op1);
9544     State.set(this, Sel, Part);
9545     State.ILV->addMetadata(Sel, &I);
9546   }
9547 }
9548 
9549 void VPWidenRecipe::execute(VPTransformState &State) {
9550   auto &I = *cast<Instruction>(getUnderlyingValue());
9551   auto &Builder = State.Builder;
9552   switch (I.getOpcode()) {
9553   case Instruction::Call:
9554   case Instruction::Br:
9555   case Instruction::PHI:
9556   case Instruction::GetElementPtr:
9557   case Instruction::Select:
9558     llvm_unreachable("This instruction is handled by a different recipe.");
9559   case Instruction::UDiv:
9560   case Instruction::SDiv:
9561   case Instruction::SRem:
9562   case Instruction::URem:
9563   case Instruction::Add:
9564   case Instruction::FAdd:
9565   case Instruction::Sub:
9566   case Instruction::FSub:
9567   case Instruction::FNeg:
9568   case Instruction::Mul:
9569   case Instruction::FMul:
9570   case Instruction::FDiv:
9571   case Instruction::FRem:
9572   case Instruction::Shl:
9573   case Instruction::LShr:
9574   case Instruction::AShr:
9575   case Instruction::And:
9576   case Instruction::Or:
9577   case Instruction::Xor: {
9578     // Just widen unops and binops.
9579     State.ILV->setDebugLocFromInst(&I);
9580 
9581     for (unsigned Part = 0; Part < State.UF; ++Part) {
9582       SmallVector<Value *, 2> Ops;
9583       for (VPValue *VPOp : operands())
9584         Ops.push_back(State.get(VPOp, Part));
9585 
9586       Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops);
9587 
9588       if (auto *VecOp = dyn_cast<Instruction>(V)) {
9589         VecOp->copyIRFlags(&I);
9590 
9591         // If the instruction is vectorized and was in a basic block that needed
9592         // predication, we can't propagate poison-generating flags (nuw/nsw,
9593         // exact, etc.). The control flow has been linearized and the
9594         // instruction is no longer guarded by the predicate, which could make
9595         // the flag properties to no longer hold.
9596         if (State.MayGeneratePoisonRecipes.contains(this))
9597           VecOp->dropPoisonGeneratingFlags();
9598       }
9599 
9600       // Use this vector value for all users of the original instruction.
9601       State.set(this, V, Part);
9602       State.ILV->addMetadata(V, &I);
9603     }
9604 
9605     break;
9606   }
9607   case Instruction::ICmp:
9608   case Instruction::FCmp: {
9609     // Widen compares. Generate vector compares.
9610     bool FCmp = (I.getOpcode() == Instruction::FCmp);
9611     auto *Cmp = cast<CmpInst>(&I);
9612     State.ILV->setDebugLocFromInst(Cmp);
9613     for (unsigned Part = 0; Part < State.UF; ++Part) {
9614       Value *A = State.get(getOperand(0), Part);
9615       Value *B = State.get(getOperand(1), Part);
9616       Value *C = nullptr;
9617       if (FCmp) {
9618         // Propagate fast math flags.
9619         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
9620         Builder.setFastMathFlags(Cmp->getFastMathFlags());
9621         C = Builder.CreateFCmp(Cmp->getPredicate(), A, B);
9622       } else {
9623         C = Builder.CreateICmp(Cmp->getPredicate(), A, B);
9624       }
9625       State.set(this, C, Part);
9626       State.ILV->addMetadata(C, &I);
9627     }
9628 
9629     break;
9630   }
9631 
9632   case Instruction::ZExt:
9633   case Instruction::SExt:
9634   case Instruction::FPToUI:
9635   case Instruction::FPToSI:
9636   case Instruction::FPExt:
9637   case Instruction::PtrToInt:
9638   case Instruction::IntToPtr:
9639   case Instruction::SIToFP:
9640   case Instruction::UIToFP:
9641   case Instruction::Trunc:
9642   case Instruction::FPTrunc:
9643   case Instruction::BitCast: {
9644     auto *CI = cast<CastInst>(&I);
9645     State.ILV->setDebugLocFromInst(CI);
9646 
9647     /// Vectorize casts.
9648     Type *DestTy = (State.VF.isScalar())
9649                        ? CI->getType()
9650                        : VectorType::get(CI->getType(), State.VF);
9651 
9652     for (unsigned Part = 0; Part < State.UF; ++Part) {
9653       Value *A = State.get(getOperand(0), Part);
9654       Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy);
9655       State.set(this, Cast, Part);
9656       State.ILV->addMetadata(Cast, &I);
9657     }
9658     break;
9659   }
9660   default:
9661     // This instruction is not vectorized by simple widening.
9662     LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I);
9663     llvm_unreachable("Unhandled instruction!");
9664   } // end of switch.
9665 }
9666 
9667 void VPWidenGEPRecipe::execute(VPTransformState &State) {
9668   auto *GEP = cast<GetElementPtrInst>(getUnderlyingInstr());
9669   // Construct a vector GEP by widening the operands of the scalar GEP as
9670   // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP
9671   // results in a vector of pointers when at least one operand of the GEP
9672   // is vector-typed. Thus, to keep the representation compact, we only use
9673   // vector-typed operands for loop-varying values.
9674 
9675   if (State.VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) {
9676     // If we are vectorizing, but the GEP has only loop-invariant operands,
9677     // the GEP we build (by only using vector-typed operands for
9678     // loop-varying values) would be a scalar pointer. Thus, to ensure we
9679     // produce a vector of pointers, we need to either arbitrarily pick an
9680     // operand to broadcast, or broadcast a clone of the original GEP.
9681     // Here, we broadcast a clone of the original.
9682     //
9683     // TODO: If at some point we decide to scalarize instructions having
9684     //       loop-invariant operands, this special case will no longer be
9685     //       required. We would add the scalarization decision to
9686     //       collectLoopScalars() and teach getVectorValue() to broadcast
9687     //       the lane-zero scalar value.
9688     auto *Clone = State.Builder.Insert(GEP->clone());
9689     for (unsigned Part = 0; Part < State.UF; ++Part) {
9690       Value *EntryPart = State.Builder.CreateVectorSplat(State.VF, Clone);
9691       State.set(this, EntryPart, Part);
9692       State.ILV->addMetadata(EntryPart, GEP);
9693     }
9694   } else {
9695     // If the GEP has at least one loop-varying operand, we are sure to
9696     // produce a vector of pointers. But if we are only unrolling, we want
9697     // to produce a scalar GEP for each unroll part. Thus, the GEP we
9698     // produce with the code below will be scalar (if VF == 1) or vector
9699     // (otherwise). Note that for the unroll-only case, we still maintain
9700     // values in the vector mapping with initVector, as we do for other
9701     // instructions.
9702     for (unsigned Part = 0; Part < State.UF; ++Part) {
9703       // The pointer operand of the new GEP. If it's loop-invariant, we
9704       // won't broadcast it.
9705       auto *Ptr = IsPtrLoopInvariant
9706                       ? State.get(getOperand(0), VPIteration(0, 0))
9707                       : State.get(getOperand(0), Part);
9708 
9709       // Collect all the indices for the new GEP. If any index is
9710       // loop-invariant, we won't broadcast it.
9711       SmallVector<Value *, 4> Indices;
9712       for (unsigned I = 1, E = getNumOperands(); I < E; I++) {
9713         VPValue *Operand = getOperand(I);
9714         if (IsIndexLoopInvariant[I - 1])
9715           Indices.push_back(State.get(Operand, VPIteration(0, 0)));
9716         else
9717           Indices.push_back(State.get(Operand, Part));
9718       }
9719 
9720       // If the GEP instruction is vectorized and was in a basic block that
9721       // needed predication, we can't propagate the poison-generating 'inbounds'
9722       // flag. The control flow has been linearized and the GEP is no longer
9723       // guarded by the predicate, which could make the 'inbounds' properties to
9724       // no longer hold.
9725       bool IsInBounds =
9726           GEP->isInBounds() && State.MayGeneratePoisonRecipes.count(this) == 0;
9727 
9728       // Create the new GEP. Note that this GEP may be a scalar if VF == 1,
9729       // but it should be a vector, otherwise.
9730       auto *NewGEP = IsInBounds
9731                          ? State.Builder.CreateInBoundsGEP(
9732                                GEP->getSourceElementType(), Ptr, Indices)
9733                          : State.Builder.CreateGEP(GEP->getSourceElementType(),
9734                                                    Ptr, Indices);
9735       assert((State.VF.isScalar() || NewGEP->getType()->isVectorTy()) &&
9736              "NewGEP is not a pointer vector");
9737       State.set(this, NewGEP, Part);
9738       State.ILV->addMetadata(NewGEP, GEP);
9739     }
9740   }
9741 }
9742 
9743 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) {
9744   assert(!State.Instance && "Int or FP induction being replicated.");
9745   auto *CanonicalIV = State.get(getParent()->getPlan()->getCanonicalIV(), 0);
9746   State.ILV->widenIntOrFpInduction(IV, this, State, CanonicalIV);
9747 }
9748 
9749 void VPWidenPHIRecipe::execute(VPTransformState &State) {
9750   State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), this,
9751                                  State);
9752 }
9753 
9754 void VPBlendRecipe::execute(VPTransformState &State) {
9755   State.ILV->setDebugLocFromInst(Phi, &State.Builder);
9756   // We know that all PHIs in non-header blocks are converted into
9757   // selects, so we don't have to worry about the insertion order and we
9758   // can just use the builder.
9759   // At this point we generate the predication tree. There may be
9760   // duplications since this is a simple recursive scan, but future
9761   // optimizations will clean it up.
9762 
9763   unsigned NumIncoming = getNumIncomingValues();
9764 
9765   // Generate a sequence of selects of the form:
9766   // SELECT(Mask3, In3,
9767   //        SELECT(Mask2, In2,
9768   //               SELECT(Mask1, In1,
9769   //                      In0)))
9770   // Note that Mask0 is never used: lanes for which no path reaches this phi and
9771   // are essentially undef are taken from In0.
9772   InnerLoopVectorizer::VectorParts Entry(State.UF);
9773   for (unsigned In = 0; In < NumIncoming; ++In) {
9774     for (unsigned Part = 0; Part < State.UF; ++Part) {
9775       // We might have single edge PHIs (blocks) - use an identity
9776       // 'select' for the first PHI operand.
9777       Value *In0 = State.get(getIncomingValue(In), Part);
9778       if (In == 0)
9779         Entry[Part] = In0; // Initialize with the first incoming value.
9780       else {
9781         // Select between the current value and the previous incoming edge
9782         // based on the incoming mask.
9783         Value *Cond = State.get(getMask(In), Part);
9784         Entry[Part] =
9785             State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi");
9786       }
9787     }
9788   }
9789   for (unsigned Part = 0; Part < State.UF; ++Part)
9790     State.set(this, Entry[Part], Part);
9791 }
9792 
9793 void VPInterleaveRecipe::execute(VPTransformState &State) {
9794   assert(!State.Instance && "Interleave group being replicated.");
9795   State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(),
9796                                       getStoredValues(), getMask());
9797 }
9798 
9799 void VPReductionRecipe::execute(VPTransformState &State) {
9800   assert(!State.Instance && "Reduction being replicated.");
9801   Value *PrevInChain = State.get(getChainOp(), 0);
9802   RecurKind Kind = RdxDesc->getRecurrenceKind();
9803   bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc);
9804   // Propagate the fast-math flags carried by the underlying instruction.
9805   IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder);
9806   State.Builder.setFastMathFlags(RdxDesc->getFastMathFlags());
9807   for (unsigned Part = 0; Part < State.UF; ++Part) {
9808     Value *NewVecOp = State.get(getVecOp(), Part);
9809     if (VPValue *Cond = getCondOp()) {
9810       Value *NewCond = State.get(Cond, Part);
9811       VectorType *VecTy = cast<VectorType>(NewVecOp->getType());
9812       Value *Iden = RdxDesc->getRecurrenceIdentity(
9813           Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags());
9814       Value *IdenVec =
9815           State.Builder.CreateVectorSplat(VecTy->getElementCount(), Iden);
9816       Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec);
9817       NewVecOp = Select;
9818     }
9819     Value *NewRed;
9820     Value *NextInChain;
9821     if (IsOrdered) {
9822       if (State.VF.isVector())
9823         NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp,
9824                                         PrevInChain);
9825       else
9826         NewRed = State.Builder.CreateBinOp(
9827             (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), PrevInChain,
9828             NewVecOp);
9829       PrevInChain = NewRed;
9830     } else {
9831       PrevInChain = State.get(getChainOp(), Part);
9832       NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp);
9833     }
9834     if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9835       NextInChain =
9836           createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(),
9837                          NewRed, PrevInChain);
9838     } else if (IsOrdered)
9839       NextInChain = NewRed;
9840     else
9841       NextInChain = State.Builder.CreateBinOp(
9842           (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), NewRed,
9843           PrevInChain);
9844     State.set(this, NextInChain, Part);
9845   }
9846 }
9847 
9848 void VPReplicateRecipe::execute(VPTransformState &State) {
9849   if (State.Instance) { // Generate a single instance.
9850     assert(!State.VF.isScalable() && "Can't scalarize a scalable vector");
9851     State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *State.Instance,
9852                                     IsPredicated, State);
9853     // Insert scalar instance packing it into a vector.
9854     if (AlsoPack && State.VF.isVector()) {
9855       // If we're constructing lane 0, initialize to start from poison.
9856       if (State.Instance->Lane.isFirstLane()) {
9857         assert(!State.VF.isScalable() && "VF is assumed to be non scalable.");
9858         Value *Poison = PoisonValue::get(
9859             VectorType::get(getUnderlyingValue()->getType(), State.VF));
9860         State.set(this, Poison, State.Instance->Part);
9861       }
9862       State.ILV->packScalarIntoVectorValue(this, *State.Instance, State);
9863     }
9864     return;
9865   }
9866 
9867   // Generate scalar instances for all VF lanes of all UF parts, unless the
9868   // instruction is uniform inwhich case generate only the first lane for each
9869   // of the UF parts.
9870   unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue();
9871   assert((!State.VF.isScalable() || IsUniform) &&
9872          "Can't scalarize a scalable vector");
9873   for (unsigned Part = 0; Part < State.UF; ++Part)
9874     for (unsigned Lane = 0; Lane < EndLane; ++Lane)
9875       State.ILV->scalarizeInstruction(getUnderlyingInstr(), this,
9876                                       VPIteration(Part, Lane), IsPredicated,
9877                                       State);
9878 }
9879 
9880 void VPBranchOnMaskRecipe::execute(VPTransformState &State) {
9881   assert(State.Instance && "Branch on Mask works only on single instance.");
9882 
9883   unsigned Part = State.Instance->Part;
9884   unsigned Lane = State.Instance->Lane.getKnownLane();
9885 
9886   Value *ConditionBit = nullptr;
9887   VPValue *BlockInMask = getMask();
9888   if (BlockInMask) {
9889     ConditionBit = State.get(BlockInMask, Part);
9890     if (ConditionBit->getType()->isVectorTy())
9891       ConditionBit = State.Builder.CreateExtractElement(
9892           ConditionBit, State.Builder.getInt32(Lane));
9893   } else // Block in mask is all-one.
9894     ConditionBit = State.Builder.getTrue();
9895 
9896   // Replace the temporary unreachable terminator with a new conditional branch,
9897   // whose two destinations will be set later when they are created.
9898   auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
9899   assert(isa<UnreachableInst>(CurrentTerminator) &&
9900          "Expected to replace unreachable terminator with conditional branch.");
9901   auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit);
9902   CondBr->setSuccessor(0, nullptr);
9903   ReplaceInstWithInst(CurrentTerminator, CondBr);
9904 }
9905 
9906 void VPPredInstPHIRecipe::execute(VPTransformState &State) {
9907   assert(State.Instance && "Predicated instruction PHI works per instance.");
9908   Instruction *ScalarPredInst =
9909       cast<Instruction>(State.get(getOperand(0), *State.Instance));
9910   BasicBlock *PredicatedBB = ScalarPredInst->getParent();
9911   BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor();
9912   assert(PredicatingBB && "Predicated block has no single predecessor.");
9913   assert(isa<VPReplicateRecipe>(getOperand(0)) &&
9914          "operand must be VPReplicateRecipe");
9915 
9916   // By current pack/unpack logic we need to generate only a single phi node: if
9917   // a vector value for the predicated instruction exists at this point it means
9918   // the instruction has vector users only, and a phi for the vector value is
9919   // needed. In this case the recipe of the predicated instruction is marked to
9920   // also do that packing, thereby "hoisting" the insert-element sequence.
9921   // Otherwise, a phi node for the scalar value is needed.
9922   unsigned Part = State.Instance->Part;
9923   if (State.hasVectorValue(getOperand(0), Part)) {
9924     Value *VectorValue = State.get(getOperand(0), Part);
9925     InsertElementInst *IEI = cast<InsertElementInst>(VectorValue);
9926     PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2);
9927     VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector.
9928     VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element.
9929     if (State.hasVectorValue(this, Part))
9930       State.reset(this, VPhi, Part);
9931     else
9932       State.set(this, VPhi, Part);
9933     // NOTE: Currently we need to update the value of the operand, so the next
9934     // predicated iteration inserts its generated value in the correct vector.
9935     State.reset(getOperand(0), VPhi, Part);
9936   } else {
9937     Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType();
9938     PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
9939     Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()),
9940                      PredicatingBB);
9941     Phi->addIncoming(ScalarPredInst, PredicatedBB);
9942     if (State.hasScalarValue(this, *State.Instance))
9943       State.reset(this, Phi, *State.Instance);
9944     else
9945       State.set(this, Phi, *State.Instance);
9946     // NOTE: Currently we need to update the value of the operand, so the next
9947     // predicated iteration inserts its generated value in the correct vector.
9948     State.reset(getOperand(0), Phi, *State.Instance);
9949   }
9950 }
9951 
9952 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) {
9953   VPValue *StoredValue = isStore() ? getStoredValue() : nullptr;
9954 
9955   // Attempt to issue a wide load.
9956   LoadInst *LI = dyn_cast<LoadInst>(&Ingredient);
9957   StoreInst *SI = dyn_cast<StoreInst>(&Ingredient);
9958 
9959   assert((LI || SI) && "Invalid Load/Store instruction");
9960   assert((!SI || StoredValue) && "No stored value provided for widened store");
9961   assert((!LI || !StoredValue) && "Stored value provided for widened load");
9962 
9963   Type *ScalarDataTy = getLoadStoreType(&Ingredient);
9964 
9965   auto *DataTy = VectorType::get(ScalarDataTy, State.VF);
9966   const Align Alignment = getLoadStoreAlignment(&Ingredient);
9967   bool CreateGatherScatter = !Consecutive;
9968 
9969   auto &Builder = State.Builder;
9970   InnerLoopVectorizer::VectorParts BlockInMaskParts(State.UF);
9971   bool isMaskRequired = getMask();
9972   if (isMaskRequired)
9973     for (unsigned Part = 0; Part < State.UF; ++Part)
9974       BlockInMaskParts[Part] = State.get(getMask(), Part);
9975 
9976   const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * {
9977     // Calculate the pointer for the specific unroll-part.
9978     GetElementPtrInst *PartPtr = nullptr;
9979 
9980     bool InBounds = false;
9981     if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts()))
9982       InBounds = gep->isInBounds();
9983     if (Reverse) {
9984       // If the address is consecutive but reversed, then the
9985       // wide store needs to start at the last vector element.
9986       // RunTimeVF =  VScale * VF.getKnownMinValue()
9987       // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue()
9988       Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), State.VF);
9989       // NumElt = -Part * RunTimeVF
9990       Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF);
9991       // LastLane = 1 - RunTimeVF
9992       Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF);
9993       PartPtr =
9994           cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt));
9995       PartPtr->setIsInBounds(InBounds);
9996       PartPtr = cast<GetElementPtrInst>(
9997           Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane));
9998       PartPtr->setIsInBounds(InBounds);
9999       if (isMaskRequired) // Reverse of a null all-one mask is a null mask.
10000         BlockInMaskParts[Part] =
10001             Builder.CreateVectorReverse(BlockInMaskParts[Part], "reverse");
10002     } else {
10003       Value *Increment =
10004           createStepForVF(Builder, Builder.getInt32Ty(), State.VF, Part);
10005       PartPtr = cast<GetElementPtrInst>(
10006           Builder.CreateGEP(ScalarDataTy, Ptr, Increment));
10007       PartPtr->setIsInBounds(InBounds);
10008     }
10009 
10010     unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
10011     return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
10012   };
10013 
10014   // Handle Stores:
10015   if (SI) {
10016     State.ILV->setDebugLocFromInst(SI);
10017 
10018     for (unsigned Part = 0; Part < State.UF; ++Part) {
10019       Instruction *NewSI = nullptr;
10020       Value *StoredVal = State.get(StoredValue, Part);
10021       if (CreateGatherScatter) {
10022         Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
10023         Value *VectorGep = State.get(getAddr(), Part);
10024         NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment,
10025                                             MaskPart);
10026       } else {
10027         if (Reverse) {
10028           // If we store to reverse consecutive memory locations, then we need
10029           // to reverse the order of elements in the stored value.
10030           StoredVal = Builder.CreateVectorReverse(StoredVal, "reverse");
10031           // We don't want to update the value in the map as it might be used in
10032           // another expression. So don't call resetVectorValue(StoredVal).
10033         }
10034         auto *VecPtr =
10035             CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0)));
10036         if (isMaskRequired)
10037           NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment,
10038                                             BlockInMaskParts[Part]);
10039         else
10040           NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment);
10041       }
10042       State.ILV->addMetadata(NewSI, SI);
10043     }
10044     return;
10045   }
10046 
10047   // Handle loads.
10048   assert(LI && "Must have a load instruction");
10049   State.ILV->setDebugLocFromInst(LI);
10050   for (unsigned Part = 0; Part < State.UF; ++Part) {
10051     Value *NewLI;
10052     if (CreateGatherScatter) {
10053       Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
10054       Value *VectorGep = State.get(getAddr(), Part);
10055       NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart,
10056                                          nullptr, "wide.masked.gather");
10057       State.ILV->addMetadata(NewLI, LI);
10058     } else {
10059       auto *VecPtr =
10060           CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0)));
10061       if (isMaskRequired)
10062         NewLI = Builder.CreateMaskedLoad(
10063             DataTy, VecPtr, Alignment, BlockInMaskParts[Part],
10064             PoisonValue::get(DataTy), "wide.masked.load");
10065       else
10066         NewLI =
10067             Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load");
10068 
10069       // Add metadata to the load, but setVectorValue to the reverse shuffle.
10070       State.ILV->addMetadata(NewLI, LI);
10071       if (Reverse)
10072         NewLI = Builder.CreateVectorReverse(NewLI, "reverse");
10073     }
10074 
10075     State.set(this, NewLI, Part);
10076   }
10077 }
10078 
10079 // Determine how to lower the scalar epilogue, which depends on 1) optimising
10080 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing
10081 // predication, and 4) a TTI hook that analyses whether the loop is suitable
10082 // for predication.
10083 static ScalarEpilogueLowering getScalarEpilogueLowering(
10084     Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI,
10085     BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI,
10086     AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
10087     LoopVectorizationLegality &LVL) {
10088   // 1) OptSize takes precedence over all other options, i.e. if this is set,
10089   // don't look at hints or options, and don't request a scalar epilogue.
10090   // (For PGSO, as shouldOptimizeForSize isn't currently accessible from
10091   // LoopAccessInfo (due to code dependency and not being able to reliably get
10092   // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection
10093   // of strides in LoopAccessInfo::analyzeLoop() and vectorize without
10094   // versioning when the vectorization is forced, unlike hasOptSize. So revert
10095   // back to the old way and vectorize with versioning when forced. See D81345.)
10096   if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
10097                                                       PGSOQueryType::IRPass) &&
10098                           Hints.getForce() != LoopVectorizeHints::FK_Enabled))
10099     return CM_ScalarEpilogueNotAllowedOptSize;
10100 
10101   // 2) If set, obey the directives
10102   if (PreferPredicateOverEpilogue.getNumOccurrences()) {
10103     switch (PreferPredicateOverEpilogue) {
10104     case PreferPredicateTy::ScalarEpilogue:
10105       return CM_ScalarEpilogueAllowed;
10106     case PreferPredicateTy::PredicateElseScalarEpilogue:
10107       return CM_ScalarEpilogueNotNeededUsePredicate;
10108     case PreferPredicateTy::PredicateOrDontVectorize:
10109       return CM_ScalarEpilogueNotAllowedUsePredicate;
10110     };
10111   }
10112 
10113   // 3) If set, obey the hints
10114   switch (Hints.getPredicate()) {
10115   case LoopVectorizeHints::FK_Enabled:
10116     return CM_ScalarEpilogueNotNeededUsePredicate;
10117   case LoopVectorizeHints::FK_Disabled:
10118     return CM_ScalarEpilogueAllowed;
10119   };
10120 
10121   // 4) if the TTI hook indicates this is profitable, request predication.
10122   if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT,
10123                                        LVL.getLAI()))
10124     return CM_ScalarEpilogueNotNeededUsePredicate;
10125 
10126   return CM_ScalarEpilogueAllowed;
10127 }
10128 
10129 Value *VPTransformState::get(VPValue *Def, unsigned Part) {
10130   // If Values have been set for this Def return the one relevant for \p Part.
10131   if (hasVectorValue(Def, Part))
10132     return Data.PerPartOutput[Def][Part];
10133 
10134   if (!hasScalarValue(Def, {Part, 0})) {
10135     Value *IRV = Def->getLiveInIRValue();
10136     Value *B = ILV->getBroadcastInstrs(IRV);
10137     set(Def, B, Part);
10138     return B;
10139   }
10140 
10141   Value *ScalarValue = get(Def, {Part, 0});
10142   // If we aren't vectorizing, we can just copy the scalar map values over
10143   // to the vector map.
10144   if (VF.isScalar()) {
10145     set(Def, ScalarValue, Part);
10146     return ScalarValue;
10147   }
10148 
10149   auto *RepR = dyn_cast<VPReplicateRecipe>(Def);
10150   bool IsUniform = RepR && RepR->isUniform();
10151 
10152   unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1;
10153   // Check if there is a scalar value for the selected lane.
10154   if (!hasScalarValue(Def, {Part, LastLane})) {
10155     // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform.
10156     assert(isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) &&
10157            "unexpected recipe found to be invariant");
10158     IsUniform = true;
10159     LastLane = 0;
10160   }
10161 
10162   auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane}));
10163   // Set the insert point after the last scalarized instruction or after the
10164   // last PHI, if LastInst is a PHI. This ensures the insertelement sequence
10165   // will directly follow the scalar definitions.
10166   auto OldIP = Builder.saveIP();
10167   auto NewIP =
10168       isa<PHINode>(LastInst)
10169           ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI())
10170           : std::next(BasicBlock::iterator(LastInst));
10171   Builder.SetInsertPoint(&*NewIP);
10172 
10173   // However, if we are vectorizing, we need to construct the vector values.
10174   // If the value is known to be uniform after vectorization, we can just
10175   // broadcast the scalar value corresponding to lane zero for each unroll
10176   // iteration. Otherwise, we construct the vector values using
10177   // insertelement instructions. Since the resulting vectors are stored in
10178   // State, we will only generate the insertelements once.
10179   Value *VectorValue = nullptr;
10180   if (IsUniform) {
10181     VectorValue = ILV->getBroadcastInstrs(ScalarValue);
10182     set(Def, VectorValue, Part);
10183   } else {
10184     // Initialize packing with insertelements to start from undef.
10185     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
10186     Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF));
10187     set(Def, Undef, Part);
10188     for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
10189       ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this);
10190     VectorValue = get(Def, Part);
10191   }
10192   Builder.restoreIP(OldIP);
10193   return VectorValue;
10194 }
10195 
10196 // Process the loop in the VPlan-native vectorization path. This path builds
10197 // VPlan upfront in the vectorization pipeline, which allows to apply
10198 // VPlan-to-VPlan transformations from the very beginning without modifying the
10199 // input LLVM IR.
10200 static bool processLoopInVPlanNativePath(
10201     Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT,
10202     LoopVectorizationLegality *LVL, TargetTransformInfo *TTI,
10203     TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC,
10204     OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI,
10205     ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints,
10206     LoopVectorizationRequirements &Requirements) {
10207 
10208   if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) {
10209     LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n");
10210     return false;
10211   }
10212   assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
10213   Function *F = L->getHeader()->getParent();
10214   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());
10215 
10216   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
10217       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL);
10218 
10219   LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F,
10220                                 &Hints, IAI);
10221   // Use the planner for outer loop vectorization.
10222   // TODO: CM is not used at this point inside the planner. Turn CM into an
10223   // optional argument if we don't need it in the future.
10224   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints,
10225                                Requirements, ORE);
10226 
10227   // Get user vectorization factor.
10228   ElementCount UserVF = Hints.getWidth();
10229 
10230   CM.collectElementTypesForWidening();
10231 
10232   // Plan how to best vectorize, return the best VF and its cost.
10233   const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF);
10234 
10235   // If we are stress testing VPlan builds, do not attempt to generate vector
10236   // code. Masked vector code generation support will follow soon.
10237   // Also, do not attempt to vectorize if no vector code will be produced.
10238   if (VPlanBuildStressTest || EnableVPlanPredication ||
10239       VectorizationFactor::Disabled() == VF)
10240     return false;
10241 
10242   VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10243 
10244   {
10245     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
10246                              F->getParent()->getDataLayout());
10247     InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL,
10248                            &CM, BFI, PSI, Checks);
10249     LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""
10250                       << L->getHeader()->getParent()->getName() << "\"\n");
10251     LVP.executePlan(VF.Width, 1, BestPlan, LB, DT);
10252   }
10253 
10254   // Mark the loop as already vectorized to avoid vectorizing again.
10255   Hints.setAlreadyVectorized();
10256   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10257   return true;
10258 }
10259 
10260 // Emit a remark if there are stores to floats that required a floating point
10261 // extension. If the vectorized loop was generated with floating point there
10262 // will be a performance penalty from the conversion overhead and the change in
10263 // the vector width.
10264 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) {
10265   SmallVector<Instruction *, 4> Worklist;
10266   for (BasicBlock *BB : L->getBlocks()) {
10267     for (Instruction &Inst : *BB) {
10268       if (auto *S = dyn_cast<StoreInst>(&Inst)) {
10269         if (S->getValueOperand()->getType()->isFloatTy())
10270           Worklist.push_back(S);
10271       }
10272     }
10273   }
10274 
10275   // Traverse the floating point stores upwards searching, for floating point
10276   // conversions.
10277   SmallPtrSet<const Instruction *, 4> Visited;
10278   SmallPtrSet<const Instruction *, 4> EmittedRemark;
10279   while (!Worklist.empty()) {
10280     auto *I = Worklist.pop_back_val();
10281     if (!L->contains(I))
10282       continue;
10283     if (!Visited.insert(I).second)
10284       continue;
10285 
10286     // Emit a remark if the floating point store required a floating
10287     // point conversion.
10288     // TODO: More work could be done to identify the root cause such as a
10289     // constant or a function return type and point the user to it.
10290     if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second)
10291       ORE->emit([&]() {
10292         return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision",
10293                                           I->getDebugLoc(), L->getHeader())
10294                << "floating point conversion changes vector width. "
10295                << "Mixed floating point precision requires an up/down "
10296                << "cast that will negatively impact performance.";
10297       });
10298 
10299     for (Use &Op : I->operands())
10300       if (auto *OpI = dyn_cast<Instruction>(Op))
10301         Worklist.push_back(OpI);
10302   }
10303 }
10304 
10305 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts)
10306     : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
10307                                !EnableLoopInterleaving),
10308       VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
10309                               !EnableLoopVectorization) {}
10310 
10311 bool LoopVectorizePass::processLoop(Loop *L) {
10312   assert((EnableVPlanNativePath || L->isInnermost()) &&
10313          "VPlan-native path is not enabled. Only process inner loops.");
10314 
10315 #ifndef NDEBUG
10316   const std::string DebugLocStr = getDebugLocString(L);
10317 #endif /* NDEBUG */
10318 
10319   LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \""
10320                     << L->getHeader()->getParent()->getName() << "\" from "
10321                     << DebugLocStr << "\n");
10322 
10323   LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE, TTI);
10324 
10325   LLVM_DEBUG(
10326       dbgs() << "LV: Loop hints:"
10327              << " force="
10328              << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
10329                      ? "disabled"
10330                      : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
10331                             ? "enabled"
10332                             : "?"))
10333              << " width=" << Hints.getWidth()
10334              << " interleave=" << Hints.getInterleave() << "\n");
10335 
10336   // Function containing loop
10337   Function *F = L->getHeader()->getParent();
10338 
10339   // Looking at the diagnostic output is the only way to determine if a loop
10340   // was vectorized (other than looking at the IR or machine code), so it
10341   // is important to generate an optimization remark for each loop. Most of
10342   // these messages are generated as OptimizationRemarkAnalysis. Remarks
10343   // generated as OptimizationRemark and OptimizationRemarkMissed are
10344   // less verbose reporting vectorized loops and unvectorized loops that may
10345   // benefit from vectorization, respectively.
10346 
10347   if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) {
10348     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
10349     return false;
10350   }
10351 
10352   PredicatedScalarEvolution PSE(*SE, *L);
10353 
10354   // Check if it is legal to vectorize the loop.
10355   LoopVectorizationRequirements Requirements;
10356   LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE,
10357                                 &Requirements, &Hints, DB, AC, BFI, PSI);
10358   if (!LVL.canVectorize(EnableVPlanNativePath)) {
10359     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
10360     Hints.emitRemarkWithHints();
10361     return false;
10362   }
10363 
10364   // Check the function attributes and profiles to find out if this function
10365   // should be optimized for size.
10366   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
10367       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL);
10368 
10369   // Entrance to the VPlan-native vectorization path. Outer loops are processed
10370   // here. They may require CFG and instruction level transformations before
10371   // even evaluating whether vectorization is profitable. Since we cannot modify
10372   // the incoming IR, we need to build VPlan upfront in the vectorization
10373   // pipeline.
10374   if (!L->isInnermost())
10375     return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
10376                                         ORE, BFI, PSI, Hints, Requirements);
10377 
10378   assert(L->isInnermost() && "Inner loop expected.");
10379 
10380   // Check the loop for a trip count threshold: vectorize loops with a tiny trip
10381   // count by optimizing for size, to minimize overheads.
10382   auto ExpectedTC = getSmallBestKnownTC(*SE, L);
10383   if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) {
10384     LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
10385                       << "This loop is worth vectorizing only if no scalar "
10386                       << "iteration overheads are incurred.");
10387     if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
10388       LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
10389     else {
10390       LLVM_DEBUG(dbgs() << "\n");
10391       SEL = CM_ScalarEpilogueNotAllowedLowTripLoop;
10392     }
10393   }
10394 
10395   // Check the function attributes to see if implicit floats are allowed.
10396   // FIXME: This check doesn't seem possibly correct -- what if the loop is
10397   // an integer loop and the vector instructions selected are purely integer
10398   // vector instructions?
10399   if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
10400     reportVectorizationFailure(
10401         "Can't vectorize when the NoImplicitFloat attribute is used",
10402         "loop not vectorized due to NoImplicitFloat attribute",
10403         "NoImplicitFloat", ORE, L);
10404     Hints.emitRemarkWithHints();
10405     return false;
10406   }
10407 
10408   // Check if the target supports potentially unsafe FP vectorization.
10409   // FIXME: Add a check for the type of safety issue (denormal, signaling)
10410   // for the target we're vectorizing for, to make sure none of the
10411   // additional fp-math flags can help.
10412   if (Hints.isPotentiallyUnsafe() &&
10413       TTI->isFPVectorizationPotentiallyUnsafe()) {
10414     reportVectorizationFailure(
10415         "Potentially unsafe FP op prevents vectorization",
10416         "loop not vectorized due to unsafe FP support.",
10417         "UnsafeFP", ORE, L);
10418     Hints.emitRemarkWithHints();
10419     return false;
10420   }
10421 
10422   bool AllowOrderedReductions;
10423   // If the flag is set, use that instead and override the TTI behaviour.
10424   if (ForceOrderedReductions.getNumOccurrences() > 0)
10425     AllowOrderedReductions = ForceOrderedReductions;
10426   else
10427     AllowOrderedReductions = TTI->enableOrderedReductions();
10428   if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) {
10429     ORE->emit([&]() {
10430       auto *ExactFPMathInst = Requirements.getExactFPInst();
10431       return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps",
10432                                                  ExactFPMathInst->getDebugLoc(),
10433                                                  ExactFPMathInst->getParent())
10434              << "loop not vectorized: cannot prove it is safe to reorder "
10435                 "floating-point operations";
10436     });
10437     LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to "
10438                          "reorder floating-point operations\n");
10439     Hints.emitRemarkWithHints();
10440     return false;
10441   }
10442 
10443   bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
10444   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
10445 
10446   // If an override option has been passed in for interleaved accesses, use it.
10447   if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
10448     UseInterleaved = EnableInterleavedMemAccesses;
10449 
10450   // Analyze interleaved memory accesses.
10451   if (UseInterleaved) {
10452     IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI));
10453   }
10454 
10455   // Use the cost model.
10456   LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE,
10457                                 F, &Hints, IAI);
10458   CM.collectValuesToIgnore();
10459   CM.collectElementTypesForWidening();
10460 
10461   // Use the planner for vectorization.
10462   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints,
10463                                Requirements, ORE);
10464 
10465   // Get user vectorization factor and interleave count.
10466   ElementCount UserVF = Hints.getWidth();
10467   unsigned UserIC = Hints.getInterleave();
10468 
10469   // Plan how to best vectorize, return the best VF and its cost.
10470   Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC);
10471 
10472   VectorizationFactor VF = VectorizationFactor::Disabled();
10473   unsigned IC = 1;
10474 
10475   if (MaybeVF) {
10476     VF = *MaybeVF;
10477     // Select the interleave count.
10478     IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue());
10479   }
10480 
10481   // Identify the diagnostic messages that should be produced.
10482   std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
10483   bool VectorizeLoop = true, InterleaveLoop = true;
10484   if (VF.Width.isScalar()) {
10485     LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
10486     VecDiagMsg = std::make_pair(
10487         "VectorizationNotBeneficial",
10488         "the cost-model indicates that vectorization is not beneficial");
10489     VectorizeLoop = false;
10490   }
10491 
10492   if (!MaybeVF && UserIC > 1) {
10493     // Tell the user interleaving was avoided up-front, despite being explicitly
10494     // requested.
10495     LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and "
10496                          "interleaving should be avoided up front\n");
10497     IntDiagMsg = std::make_pair(
10498         "InterleavingAvoided",
10499         "Ignoring UserIC, because interleaving was avoided up front");
10500     InterleaveLoop = false;
10501   } else if (IC == 1 && UserIC <= 1) {
10502     // Tell the user interleaving is not beneficial.
10503     LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
10504     IntDiagMsg = std::make_pair(
10505         "InterleavingNotBeneficial",
10506         "the cost-model indicates that interleaving is not beneficial");
10507     InterleaveLoop = false;
10508     if (UserIC == 1) {
10509       IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
10510       IntDiagMsg.second +=
10511           " and is explicitly disabled or interleave count is set to 1";
10512     }
10513   } else if (IC > 1 && UserIC == 1) {
10514     // Tell the user interleaving is beneficial, but it explicitly disabled.
10515     LLVM_DEBUG(
10516         dbgs() << "LV: Interleaving is beneficial but is explicitly disabled.");
10517     IntDiagMsg = std::make_pair(
10518         "InterleavingBeneficialButDisabled",
10519         "the cost-model indicates that interleaving is beneficial "
10520         "but is explicitly disabled or interleave count is set to 1");
10521     InterleaveLoop = false;
10522   }
10523 
10524   // Override IC if user provided an interleave count.
10525   IC = UserIC > 0 ? UserIC : IC;
10526 
10527   // Emit diagnostic messages, if any.
10528   const char *VAPassName = Hints.vectorizeAnalysisPassName();
10529   if (!VectorizeLoop && !InterleaveLoop) {
10530     // Do not vectorize or interleaving the loop.
10531     ORE->emit([&]() {
10532       return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
10533                                       L->getStartLoc(), L->getHeader())
10534              << VecDiagMsg.second;
10535     });
10536     ORE->emit([&]() {
10537       return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
10538                                       L->getStartLoc(), L->getHeader())
10539              << IntDiagMsg.second;
10540     });
10541     return false;
10542   } else if (!VectorizeLoop && InterleaveLoop) {
10543     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10544     ORE->emit([&]() {
10545       return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
10546                                         L->getStartLoc(), L->getHeader())
10547              << VecDiagMsg.second;
10548     });
10549   } else if (VectorizeLoop && !InterleaveLoop) {
10550     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10551                       << ") in " << DebugLocStr << '\n');
10552     ORE->emit([&]() {
10553       return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
10554                                         L->getStartLoc(), L->getHeader())
10555              << IntDiagMsg.second;
10556     });
10557   } else if (VectorizeLoop && InterleaveLoop) {
10558     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10559                       << ") in " << DebugLocStr << '\n');
10560     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10561   }
10562 
10563   bool DisableRuntimeUnroll = false;
10564   MDNode *OrigLoopID = L->getLoopID();
10565   {
10566     // Optimistically generate runtime checks. Drop them if they turn out to not
10567     // be profitable. Limit the scope of Checks, so the cleanup happens
10568     // immediately after vector codegeneration is done.
10569     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
10570                              F->getParent()->getDataLayout());
10571     if (!VF.Width.isScalar() || IC > 1)
10572       Checks.Create(L, *LVL.getLAI(), PSE.getUnionPredicate());
10573 
10574     using namespace ore;
10575     if (!VectorizeLoop) {
10576       assert(IC > 1 && "interleave count should not be 1 or 0");
10577       // If we decided that it is not legal to vectorize the loop, then
10578       // interleave it.
10579       InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL,
10580                                  &CM, BFI, PSI, Checks);
10581 
10582       VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10583       LVP.executePlan(VF.Width, IC, BestPlan, Unroller, DT);
10584 
10585       ORE->emit([&]() {
10586         return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
10587                                   L->getHeader())
10588                << "interleaved loop (interleaved count: "
10589                << NV("InterleaveCount", IC) << ")";
10590       });
10591     } else {
10592       // If we decided that it is *legal* to vectorize the loop, then do it.
10593 
10594       // Consider vectorizing the epilogue too if it's profitable.
10595       VectorizationFactor EpilogueVF =
10596           CM.selectEpilogueVectorizationFactor(VF.Width, LVP);
10597       if (EpilogueVF.Width.isVector()) {
10598 
10599         // The first pass vectorizes the main loop and creates a scalar epilogue
10600         // to be vectorized by executing the plan (potentially with a different
10601         // factor) again shortly afterwards.
10602         EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1);
10603         EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE,
10604                                            EPI, &LVL, &CM, BFI, PSI, Checks);
10605 
10606         VPlan &BestMainPlan = LVP.getBestPlanFor(EPI.MainLoopVF);
10607         LVP.executePlan(EPI.MainLoopVF, EPI.MainLoopUF, BestMainPlan, MainILV,
10608                         DT);
10609         ++LoopsVectorized;
10610 
10611         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10612         formLCSSARecursively(*L, *DT, LI, SE);
10613 
10614         // Second pass vectorizes the epilogue and adjusts the control flow
10615         // edges from the first pass.
10616         EPI.MainLoopVF = EPI.EpilogueVF;
10617         EPI.MainLoopUF = EPI.EpilogueUF;
10618         EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC,
10619                                                  ORE, EPI, &LVL, &CM, BFI, PSI,
10620                                                  Checks);
10621 
10622         VPlan &BestEpiPlan = LVP.getBestPlanFor(EPI.EpilogueVF);
10623 
10624         // Ensure that the start values for any VPReductionPHIRecipes are
10625         // updated before vectorising the epilogue loop.
10626         VPBasicBlock *Header = BestEpiPlan.getEntry()->getEntryBasicBlock();
10627         for (VPRecipeBase &R : Header->phis()) {
10628           if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) {
10629             if (auto *Resume = MainILV.getReductionResumeValue(
10630                     ReductionPhi->getRecurrenceDescriptor())) {
10631               VPValue *StartVal = new VPValue(Resume);
10632               BestEpiPlan.addExternalDef(StartVal);
10633               ReductionPhi->setOperand(0, StartVal);
10634             }
10635           }
10636         }
10637 
10638         LVP.executePlan(EPI.EpilogueVF, EPI.EpilogueUF, BestEpiPlan, EpilogILV,
10639                         DT);
10640         ++LoopsEpilogueVectorized;
10641 
10642         if (!MainILV.areSafetyChecksAdded())
10643           DisableRuntimeUnroll = true;
10644       } else {
10645         InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC,
10646                                &LVL, &CM, BFI, PSI, Checks);
10647 
10648         VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10649         LVP.executePlan(VF.Width, IC, BestPlan, LB, DT);
10650         ++LoopsVectorized;
10651 
10652         // Add metadata to disable runtime unrolling a scalar loop when there
10653         // are no runtime checks about strides and memory. A scalar loop that is
10654         // rarely used is not worth unrolling.
10655         if (!LB.areSafetyChecksAdded())
10656           DisableRuntimeUnroll = true;
10657       }
10658       // Report the vectorization decision.
10659       ORE->emit([&]() {
10660         return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(),
10661                                   L->getHeader())
10662                << "vectorized loop (vectorization width: "
10663                << NV("VectorizationFactor", VF.Width)
10664                << ", interleaved count: " << NV("InterleaveCount", IC) << ")";
10665       });
10666     }
10667 
10668     if (ORE->allowExtraAnalysis(LV_NAME))
10669       checkMixedPrecision(L, ORE);
10670   }
10671 
10672   Optional<MDNode *> RemainderLoopID =
10673       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
10674                                       LLVMLoopVectorizeFollowupEpilogue});
10675   if (RemainderLoopID.hasValue()) {
10676     L->setLoopID(RemainderLoopID.getValue());
10677   } else {
10678     if (DisableRuntimeUnroll)
10679       AddRuntimeUnrollDisableMetaData(L);
10680 
10681     // Mark the loop as already vectorized to avoid vectorizing again.
10682     Hints.setAlreadyVectorized();
10683   }
10684 
10685   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10686   return true;
10687 }
10688 
10689 LoopVectorizeResult LoopVectorizePass::runImpl(
10690     Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_,
10691     DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_,
10692     DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_,
10693     std::function<const LoopAccessInfo &(Loop &)> &GetLAA_,
10694     OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) {
10695   SE = &SE_;
10696   LI = &LI_;
10697   TTI = &TTI_;
10698   DT = &DT_;
10699   BFI = &BFI_;
10700   TLI = TLI_;
10701   AA = &AA_;
10702   AC = &AC_;
10703   GetLAA = &GetLAA_;
10704   DB = &DB_;
10705   ORE = &ORE_;
10706   PSI = PSI_;
10707 
10708   // Don't attempt if
10709   // 1. the target claims to have no vector registers, and
10710   // 2. interleaving won't help ILP.
10711   //
10712   // The second condition is necessary because, even if the target has no
10713   // vector registers, loop vectorization may still enable scalar
10714   // interleaving.
10715   if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) &&
10716       TTI->getMaxInterleaveFactor(1) < 2)
10717     return LoopVectorizeResult(false, false);
10718 
10719   bool Changed = false, CFGChanged = false;
10720 
10721   // The vectorizer requires loops to be in simplified form.
10722   // Since simplification may add new inner loops, it has to run before the
10723   // legality and profitability checks. This means running the loop vectorizer
10724   // will simplify all loops, regardless of whether anything end up being
10725   // vectorized.
10726   for (auto &L : *LI)
10727     Changed |= CFGChanged |=
10728         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10729 
10730   // Build up a worklist of inner-loops to vectorize. This is necessary as
10731   // the act of vectorizing or partially unrolling a loop creates new loops
10732   // and can invalidate iterators across the loops.
10733   SmallVector<Loop *, 8> Worklist;
10734 
10735   for (Loop *L : *LI)
10736     collectSupportedLoops(*L, LI, ORE, Worklist);
10737 
10738   LoopsAnalyzed += Worklist.size();
10739 
10740   // Now walk the identified inner loops.
10741   while (!Worklist.empty()) {
10742     Loop *L = Worklist.pop_back_val();
10743 
10744     // For the inner loops we actually process, form LCSSA to simplify the
10745     // transform.
10746     Changed |= formLCSSARecursively(*L, *DT, LI, SE);
10747 
10748     Changed |= CFGChanged |= processLoop(L);
10749   }
10750 
10751   // Process each loop nest in the function.
10752   return LoopVectorizeResult(Changed, CFGChanged);
10753 }
10754 
10755 PreservedAnalyses LoopVectorizePass::run(Function &F,
10756                                          FunctionAnalysisManager &AM) {
10757     auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
10758     auto &LI = AM.getResult<LoopAnalysis>(F);
10759     auto &TTI = AM.getResult<TargetIRAnalysis>(F);
10760     auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
10761     auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F);
10762     auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
10763     auto &AA = AM.getResult<AAManager>(F);
10764     auto &AC = AM.getResult<AssumptionAnalysis>(F);
10765     auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
10766     auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
10767 
10768     auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
10769     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
10770         [&](Loop &L) -> const LoopAccessInfo & {
10771       LoopStandardAnalysisResults AR = {AA,  AC,  DT,      LI,      SE,
10772                                         TLI, TTI, nullptr, nullptr, nullptr};
10773       return LAM.getResult<LoopAccessAnalysis>(L, AR);
10774     };
10775     auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
10776     ProfileSummaryInfo *PSI =
10777         MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
10778     LoopVectorizeResult Result =
10779         runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI);
10780     if (!Result.MadeAnyChange)
10781       return PreservedAnalyses::all();
10782     PreservedAnalyses PA;
10783 
10784     // We currently do not preserve loopinfo/dominator analyses with outer loop
10785     // vectorization. Until this is addressed, mark these analyses as preserved
10786     // only for non-VPlan-native path.
10787     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
10788     if (!EnableVPlanNativePath) {
10789       PA.preserve<LoopAnalysis>();
10790       PA.preserve<DominatorTreeAnalysis>();
10791     }
10792 
10793     if (Result.MadeCFGChange) {
10794       // Making CFG changes likely means a loop got vectorized. Indicate that
10795       // extra simplification passes should be run.
10796       // TODO: MadeCFGChanges is not a prefect proxy. Extra passes should only
10797       // be run if runtime checks have been added.
10798       AM.getResult<ShouldRunExtraVectorPasses>(F);
10799       PA.preserve<ShouldRunExtraVectorPasses>();
10800     } else {
10801       PA.preserveSet<CFGAnalyses>();
10802     }
10803     return PA;
10804 }
10805 
10806 void LoopVectorizePass::printPipeline(
10807     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
10808   static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline(
10809       OS, MapClassName2PassName);
10810 
10811   OS << "<";
10812   OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;";
10813   OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;";
10814   OS << ">";
10815 }
10816