1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive
10 // stores that can be put together into vector-stores. Next, it attempts to
11 // construct vectorizable tree using the use-def chains. If a profitable tree
12 // was found, the SLP vectorizer performs vectorization on the tree.
13 //
14 // The pass is inspired by the work described in the paper:
15 //  "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/DenseSet.h"
22 #include "llvm/ADT/Optional.h"
23 #include "llvm/ADT/PostOrderIterator.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SetOperations.h"
26 #include "llvm/ADT/SetVector.h"
27 #include "llvm/ADT/SmallBitVector.h"
28 #include "llvm/ADT/SmallPtrSet.h"
29 #include "llvm/ADT/SmallSet.h"
30 #include "llvm/ADT/SmallString.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/ADT/iterator.h"
33 #include "llvm/ADT/iterator_range.h"
34 #include "llvm/Analysis/AliasAnalysis.h"
35 #include "llvm/Analysis/AssumptionCache.h"
36 #include "llvm/Analysis/CodeMetrics.h"
37 #include "llvm/Analysis/DemandedBits.h"
38 #include "llvm/Analysis/GlobalsModRef.h"
39 #include "llvm/Analysis/IVDescriptors.h"
40 #include "llvm/Analysis/LoopAccessAnalysis.h"
41 #include "llvm/Analysis/LoopInfo.h"
42 #include "llvm/Analysis/MemoryLocation.h"
43 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
44 #include "llvm/Analysis/ScalarEvolution.h"
45 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
46 #include "llvm/Analysis/TargetLibraryInfo.h"
47 #include "llvm/Analysis/TargetTransformInfo.h"
48 #include "llvm/Analysis/ValueTracking.h"
49 #include "llvm/Analysis/VectorUtils.h"
50 #include "llvm/IR/Attributes.h"
51 #include "llvm/IR/BasicBlock.h"
52 #include "llvm/IR/Constant.h"
53 #include "llvm/IR/Constants.h"
54 #include "llvm/IR/DataLayout.h"
55 #include "llvm/IR/DebugLoc.h"
56 #include "llvm/IR/DerivedTypes.h"
57 #include "llvm/IR/Dominators.h"
58 #include "llvm/IR/Function.h"
59 #include "llvm/IR/IRBuilder.h"
60 #include "llvm/IR/InstrTypes.h"
61 #include "llvm/IR/Instruction.h"
62 #include "llvm/IR/Instructions.h"
63 #include "llvm/IR/IntrinsicInst.h"
64 #include "llvm/IR/Intrinsics.h"
65 #include "llvm/IR/Module.h"
66 #include "llvm/IR/NoFolder.h"
67 #include "llvm/IR/Operator.h"
68 #include "llvm/IR/PatternMatch.h"
69 #include "llvm/IR/Type.h"
70 #include "llvm/IR/Use.h"
71 #include "llvm/IR/User.h"
72 #include "llvm/IR/Value.h"
73 #include "llvm/IR/ValueHandle.h"
74 #include "llvm/IR/Verifier.h"
75 #include "llvm/InitializePasses.h"
76 #include "llvm/Pass.h"
77 #include "llvm/Support/Casting.h"
78 #include "llvm/Support/CommandLine.h"
79 #include "llvm/Support/Compiler.h"
80 #include "llvm/Support/DOTGraphTraits.h"
81 #include "llvm/Support/Debug.h"
82 #include "llvm/Support/ErrorHandling.h"
83 #include "llvm/Support/GraphWriter.h"
84 #include "llvm/Support/InstructionCost.h"
85 #include "llvm/Support/KnownBits.h"
86 #include "llvm/Support/MathExtras.h"
87 #include "llvm/Support/raw_ostream.h"
88 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
89 #include "llvm/Transforms/Utils/LoopUtils.h"
90 #include "llvm/Transforms/Vectorize.h"
91 #include <algorithm>
92 #include <cassert>
93 #include <cstdint>
94 #include <iterator>
95 #include <memory>
96 #include <set>
97 #include <string>
98 #include <tuple>
99 #include <utility>
100 #include <vector>
101 
102 using namespace llvm;
103 using namespace llvm::PatternMatch;
104 using namespace slpvectorizer;
105 
106 #define SV_NAME "slp-vectorizer"
107 #define DEBUG_TYPE "SLP"
108 
109 STATISTIC(NumVectorInstructions, "Number of vector instructions generated");
110 
111 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden,
112                                   cl::desc("Run the SLP vectorization passes"));
113 
114 static cl::opt<int>
115     SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
116                      cl::desc("Only vectorize if you gain more than this "
117                               "number "));
118 
119 static cl::opt<bool>
120 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden,
121                    cl::desc("Attempt to vectorize horizontal reductions"));
122 
123 static cl::opt<bool> ShouldStartVectorizeHorAtStore(
124     "slp-vectorize-hor-store", cl::init(false), cl::Hidden,
125     cl::desc(
126         "Attempt to vectorize horizontal reductions feeding into a store"));
127 
128 static cl::opt<int>
129 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden,
130     cl::desc("Attempt to vectorize for this register size in bits"));
131 
132 static cl::opt<unsigned>
133 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden,
134     cl::desc("Maximum SLP vectorization factor (0=unlimited)"));
135 
136 static cl::opt<int>
137 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden,
138     cl::desc("Maximum depth of the lookup for consecutive stores."));
139 
140 /// Limits the size of scheduling regions in a block.
141 /// It avoid long compile times for _very_ large blocks where vector
142 /// instructions are spread over a wide range.
143 /// This limit is way higher than needed by real-world functions.
144 static cl::opt<int>
145 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden,
146     cl::desc("Limit the size of the SLP scheduling region per block"));
147 
148 static cl::opt<int> MinVectorRegSizeOption(
149     "slp-min-reg-size", cl::init(128), cl::Hidden,
150     cl::desc("Attempt to vectorize for this register size in bits"));
151 
152 static cl::opt<unsigned> RecursionMaxDepth(
153     "slp-recursion-max-depth", cl::init(12), cl::Hidden,
154     cl::desc("Limit the recursion depth when building a vectorizable tree"));
155 
156 static cl::opt<unsigned> MinTreeSize(
157     "slp-min-tree-size", cl::init(3), cl::Hidden,
158     cl::desc("Only vectorize small trees if they are fully vectorizable"));
159 
160 // The maximum depth that the look-ahead score heuristic will explore.
161 // The higher this value, the higher the compilation time overhead.
162 static cl::opt<int> LookAheadMaxDepth(
163     "slp-max-look-ahead-depth", cl::init(2), cl::Hidden,
164     cl::desc("The maximum look-ahead depth for operand reordering scores"));
165 
166 // The Look-ahead heuristic goes through the users of the bundle to calculate
167 // the users cost in getExternalUsesCost(). To avoid compilation time increase
168 // we limit the number of users visited to this value.
169 static cl::opt<unsigned> LookAheadUsersBudget(
170     "slp-look-ahead-users-budget", cl::init(2), cl::Hidden,
171     cl::desc("The maximum number of users to visit while visiting the "
172              "predecessors. This prevents compilation time increase."));
173 
174 static cl::opt<bool>
175     ViewSLPTree("view-slp-tree", cl::Hidden,
176                 cl::desc("Display the SLP trees with Graphviz"));
177 
178 // Limit the number of alias checks. The limit is chosen so that
179 // it has no negative effect on the llvm benchmarks.
180 static const unsigned AliasedCheckLimit = 10;
181 
182 // Another limit for the alias checks: The maximum distance between load/store
183 // instructions where alias checks are done.
184 // This limit is useful for very large basic blocks.
185 static const unsigned MaxMemDepDistance = 160;
186 
187 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling
188 /// regions to be handled.
189 static const int MinScheduleRegionSize = 16;
190 
191 /// Predicate for the element types that the SLP vectorizer supports.
192 ///
193 /// The most important thing to filter here are types which are invalid in LLVM
194 /// vectors. We also filter target specific types which have absolutely no
195 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just
196 /// avoids spending time checking the cost model and realizing that they will
197 /// be inevitably scalarized.
198 static bool isValidElementType(Type *Ty) {
199   return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() &&
200          !Ty->isPPC_FP128Ty();
201 }
202 
203 /// \returns true if all of the instructions in \p VL are in the same block or
204 /// false otherwise.
205 static bool allSameBlock(ArrayRef<Value *> VL) {
206   Instruction *I0 = dyn_cast<Instruction>(VL[0]);
207   if (!I0)
208     return false;
209   BasicBlock *BB = I0->getParent();
210   for (int I = 1, E = VL.size(); I < E; I++) {
211     auto *II = dyn_cast<Instruction>(VL[I]);
212     if (!II)
213       return false;
214 
215     if (BB != II->getParent())
216       return false;
217   }
218   return true;
219 }
220 
221 /// \returns True if the value is a constant (but not globals/constant
222 /// expressions).
223 static bool isConstant(Value *V) {
224   return isa<Constant>(V) && !isa<ConstantExpr>(V) && !isa<GlobalValue>(V);
225 }
226 
227 /// \returns True if all of the values in \p VL are constants (but not
228 /// globals/constant expressions).
229 static bool allConstant(ArrayRef<Value *> VL) {
230   // Constant expressions and globals can't be vectorized like normal integer/FP
231   // constants.
232   return all_of(VL, isConstant);
233 }
234 
235 /// \returns True if all of the values in \p VL are identical.
236 static bool isSplat(ArrayRef<Value *> VL) {
237   for (unsigned i = 1, e = VL.size(); i < e; ++i)
238     if (VL[i] != VL[0])
239       return false;
240   return true;
241 }
242 
243 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator.
244 static bool isCommutative(Instruction *I) {
245   if (auto *Cmp = dyn_cast<CmpInst>(I))
246     return Cmp->isCommutative();
247   if (auto *BO = dyn_cast<BinaryOperator>(I))
248     return BO->isCommutative();
249   // TODO: This should check for generic Instruction::isCommutative(), but
250   //       we need to confirm that the caller code correctly handles Intrinsics
251   //       for example (does not have 2 operands).
252   return false;
253 }
254 
255 /// Checks if the vector of instructions can be represented as a shuffle, like:
256 /// %x0 = extractelement <4 x i8> %x, i32 0
257 /// %x3 = extractelement <4 x i8> %x, i32 3
258 /// %y1 = extractelement <4 x i8> %y, i32 1
259 /// %y2 = extractelement <4 x i8> %y, i32 2
260 /// %x0x0 = mul i8 %x0, %x0
261 /// %x3x3 = mul i8 %x3, %x3
262 /// %y1y1 = mul i8 %y1, %y1
263 /// %y2y2 = mul i8 %y2, %y2
264 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0
265 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1
266 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2
267 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3
268 /// ret <4 x i8> %ins4
269 /// can be transformed into:
270 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5,
271 ///                                                         i32 6>
272 /// %2 = mul <4 x i8> %1, %1
273 /// ret <4 x i8> %2
274 /// We convert this initially to something like:
275 /// %x0 = extractelement <4 x i8> %x, i32 0
276 /// %x3 = extractelement <4 x i8> %x, i32 3
277 /// %y1 = extractelement <4 x i8> %y, i32 1
278 /// %y2 = extractelement <4 x i8> %y, i32 2
279 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0
280 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1
281 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2
282 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3
283 /// %5 = mul <4 x i8> %4, %4
284 /// %6 = extractelement <4 x i8> %5, i32 0
285 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0
286 /// %7 = extractelement <4 x i8> %5, i32 1
287 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1
288 /// %8 = extractelement <4 x i8> %5, i32 2
289 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2
290 /// %9 = extractelement <4 x i8> %5, i32 3
291 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3
292 /// ret <4 x i8> %ins4
293 /// InstCombiner transforms this into a shuffle and vector mul
294 /// Mask will return the Shuffle Mask equivalent to the extracted elements.
295 /// TODO: Can we split off and reuse the shuffle mask detection from
296 /// TargetTransformInfo::getInstructionThroughput?
297 static Optional<TargetTransformInfo::ShuffleKind>
298 isShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) {
299   auto *EI0 = cast<ExtractElementInst>(VL[0]);
300   unsigned Size =
301       cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements();
302   Value *Vec1 = nullptr;
303   Value *Vec2 = nullptr;
304   enum ShuffleMode { Unknown, Select, Permute };
305   ShuffleMode CommonShuffleMode = Unknown;
306   for (unsigned I = 0, E = VL.size(); I < E; ++I) {
307     auto *EI = cast<ExtractElementInst>(VL[I]);
308     auto *Vec = EI->getVectorOperand();
309     // All vector operands must have the same number of vector elements.
310     if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size)
311       return None;
312     auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand());
313     if (!Idx)
314       return None;
315     // Undefined behavior if Idx is negative or >= Size.
316     if (Idx->getValue().uge(Size)) {
317       Mask.push_back(UndefMaskElem);
318       continue;
319     }
320     unsigned IntIdx = Idx->getValue().getZExtValue();
321     Mask.push_back(IntIdx);
322     // We can extractelement from undef or poison vector.
323     if (isa<UndefValue>(Vec))
324       continue;
325     // For correct shuffling we have to have at most 2 different vector operands
326     // in all extractelement instructions.
327     if (!Vec1 || Vec1 == Vec)
328       Vec1 = Vec;
329     else if (!Vec2 || Vec2 == Vec)
330       Vec2 = Vec;
331     else
332       return None;
333     if (CommonShuffleMode == Permute)
334       continue;
335     // If the extract index is not the same as the operation number, it is a
336     // permutation.
337     if (IntIdx != I) {
338       CommonShuffleMode = Permute;
339       continue;
340     }
341     CommonShuffleMode = Select;
342   }
343   // If we're not crossing lanes in different vectors, consider it as blending.
344   if (CommonShuffleMode == Select && Vec2)
345     return TargetTransformInfo::SK_Select;
346   // If Vec2 was never used, we have a permutation of a single vector, otherwise
347   // we have permutation of 2 vectors.
348   return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc
349               : TargetTransformInfo::SK_PermuteSingleSrc;
350 }
351 
352 namespace {
353 
354 /// Main data required for vectorization of instructions.
355 struct InstructionsState {
356   /// The very first instruction in the list with the main opcode.
357   Value *OpValue = nullptr;
358 
359   /// The main/alternate instruction.
360   Instruction *MainOp = nullptr;
361   Instruction *AltOp = nullptr;
362 
363   /// The main/alternate opcodes for the list of instructions.
364   unsigned getOpcode() const {
365     return MainOp ? MainOp->getOpcode() : 0;
366   }
367 
368   unsigned getAltOpcode() const {
369     return AltOp ? AltOp->getOpcode() : 0;
370   }
371 
372   /// Some of the instructions in the list have alternate opcodes.
373   bool isAltShuffle() const { return getOpcode() != getAltOpcode(); }
374 
375   bool isOpcodeOrAlt(Instruction *I) const {
376     unsigned CheckedOpcode = I->getOpcode();
377     return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode;
378   }
379 
380   InstructionsState() = delete;
381   InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp)
382       : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {}
383 };
384 
385 } // end anonymous namespace
386 
387 /// Chooses the correct key for scheduling data. If \p Op has the same (or
388 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p
389 /// OpValue.
390 static Value *isOneOf(const InstructionsState &S, Value *Op) {
391   auto *I = dyn_cast<Instruction>(Op);
392   if (I && S.isOpcodeOrAlt(I))
393     return Op;
394   return S.OpValue;
395 }
396 
397 /// \returns true if \p Opcode is allowed as part of of the main/alternate
398 /// instruction for SLP vectorization.
399 ///
400 /// Example of unsupported opcode is SDIV that can potentially cause UB if the
401 /// "shuffled out" lane would result in division by zero.
402 static bool isValidForAlternation(unsigned Opcode) {
403   if (Instruction::isIntDivRem(Opcode))
404     return false;
405 
406   return true;
407 }
408 
409 /// \returns analysis of the Instructions in \p VL described in
410 /// InstructionsState, the Opcode that we suppose the whole list
411 /// could be vectorized even if its structure is diverse.
412 static InstructionsState getSameOpcode(ArrayRef<Value *> VL,
413                                        unsigned BaseIndex = 0) {
414   // Make sure these are all Instructions.
415   if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); }))
416     return InstructionsState(VL[BaseIndex], nullptr, nullptr);
417 
418   bool IsCastOp = isa<CastInst>(VL[BaseIndex]);
419   bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]);
420   unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode();
421   unsigned AltOpcode = Opcode;
422   unsigned AltIndex = BaseIndex;
423 
424   // Check for one alternate opcode from another BinaryOperator.
425   // TODO - generalize to support all operators (types, calls etc.).
426   for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) {
427     unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode();
428     if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) {
429       if (InstOpcode == Opcode || InstOpcode == AltOpcode)
430         continue;
431       if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) &&
432           isValidForAlternation(Opcode)) {
433         AltOpcode = InstOpcode;
434         AltIndex = Cnt;
435         continue;
436       }
437     } else if (IsCastOp && isa<CastInst>(VL[Cnt])) {
438       Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType();
439       Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType();
440       if (Ty0 == Ty1) {
441         if (InstOpcode == Opcode || InstOpcode == AltOpcode)
442           continue;
443         if (Opcode == AltOpcode) {
444           assert(isValidForAlternation(Opcode) &&
445                  isValidForAlternation(InstOpcode) &&
446                  "Cast isn't safe for alternation, logic needs to be updated!");
447           AltOpcode = InstOpcode;
448           AltIndex = Cnt;
449           continue;
450         }
451       }
452     } else if (InstOpcode == Opcode || InstOpcode == AltOpcode)
453       continue;
454     return InstructionsState(VL[BaseIndex], nullptr, nullptr);
455   }
456 
457   return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]),
458                            cast<Instruction>(VL[AltIndex]));
459 }
460 
461 /// \returns true if all of the values in \p VL have the same type or false
462 /// otherwise.
463 static bool allSameType(ArrayRef<Value *> VL) {
464   Type *Ty = VL[0]->getType();
465   for (int i = 1, e = VL.size(); i < e; i++)
466     if (VL[i]->getType() != Ty)
467       return false;
468 
469   return true;
470 }
471 
472 /// \returns True if Extract{Value,Element} instruction extracts element Idx.
473 static Optional<unsigned> getExtractIndex(Instruction *E) {
474   unsigned Opcode = E->getOpcode();
475   assert((Opcode == Instruction::ExtractElement ||
476           Opcode == Instruction::ExtractValue) &&
477          "Expected extractelement or extractvalue instruction.");
478   if (Opcode == Instruction::ExtractElement) {
479     auto *CI = dyn_cast<ConstantInt>(E->getOperand(1));
480     if (!CI)
481       return None;
482     return CI->getZExtValue();
483   }
484   ExtractValueInst *EI = cast<ExtractValueInst>(E);
485   if (EI->getNumIndices() != 1)
486     return None;
487   return *EI->idx_begin();
488 }
489 
490 /// \returns True if in-tree use also needs extract. This refers to
491 /// possible scalar operand in vectorized instruction.
492 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst,
493                                     TargetLibraryInfo *TLI) {
494   unsigned Opcode = UserInst->getOpcode();
495   switch (Opcode) {
496   case Instruction::Load: {
497     LoadInst *LI = cast<LoadInst>(UserInst);
498     return (LI->getPointerOperand() == Scalar);
499   }
500   case Instruction::Store: {
501     StoreInst *SI = cast<StoreInst>(UserInst);
502     return (SI->getPointerOperand() == Scalar);
503   }
504   case Instruction::Call: {
505     CallInst *CI = cast<CallInst>(UserInst);
506     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
507     for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
508       if (hasVectorInstrinsicScalarOpd(ID, i))
509         return (CI->getArgOperand(i) == Scalar);
510     }
511     LLVM_FALLTHROUGH;
512   }
513   default:
514     return false;
515   }
516 }
517 
518 /// \returns the AA location that is being access by the instruction.
519 static MemoryLocation getLocation(Instruction *I, AAResults *AA) {
520   if (StoreInst *SI = dyn_cast<StoreInst>(I))
521     return MemoryLocation::get(SI);
522   if (LoadInst *LI = dyn_cast<LoadInst>(I))
523     return MemoryLocation::get(LI);
524   return MemoryLocation();
525 }
526 
527 /// \returns True if the instruction is not a volatile or atomic load/store.
528 static bool isSimple(Instruction *I) {
529   if (LoadInst *LI = dyn_cast<LoadInst>(I))
530     return LI->isSimple();
531   if (StoreInst *SI = dyn_cast<StoreInst>(I))
532     return SI->isSimple();
533   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
534     return !MI->isVolatile();
535   return true;
536 }
537 
538 namespace llvm {
539 
540 static void inversePermutation(ArrayRef<unsigned> Indices,
541                                SmallVectorImpl<int> &Mask) {
542   Mask.clear();
543   const unsigned E = Indices.size();
544   Mask.resize(E, E + 1);
545   for (unsigned I = 0; I < E; ++I)
546     Mask[Indices[I]] = I;
547 }
548 
549 /// \returns inserting index of InsertElement or InsertValue instruction,
550 /// using Offset as base offset for index.
551 static Optional<int> getInsertIndex(Value *InsertInst, unsigned Offset) {
552   int Index = Offset;
553   if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) {
554     if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) {
555       auto *VT = cast<FixedVectorType>(IE->getType());
556       if (CI->getValue().uge(VT->getNumElements()))
557         return UndefMaskElem;
558       Index *= VT->getNumElements();
559       Index += CI->getZExtValue();
560       return Index;
561     }
562     if (isa<UndefValue>(IE->getOperand(2)))
563       return UndefMaskElem;
564     return None;
565   }
566 
567   auto *IV = cast<InsertValueInst>(InsertInst);
568   Type *CurrentType = IV->getType();
569   for (unsigned I : IV->indices()) {
570     if (auto *ST = dyn_cast<StructType>(CurrentType)) {
571       Index *= ST->getNumElements();
572       CurrentType = ST->getElementType(I);
573     } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) {
574       Index *= AT->getNumElements();
575       CurrentType = AT->getElementType();
576     } else {
577       return None;
578     }
579     Index += I;
580   }
581   return Index;
582 }
583 
584 namespace slpvectorizer {
585 
586 /// Bottom Up SLP Vectorizer.
587 class BoUpSLP {
588   struct TreeEntry;
589   struct ScheduleData;
590 
591 public:
592   using ValueList = SmallVector<Value *, 8>;
593   using InstrList = SmallVector<Instruction *, 16>;
594   using ValueSet = SmallPtrSet<Value *, 16>;
595   using StoreList = SmallVector<StoreInst *, 8>;
596   using ExtraValueToDebugLocsMap =
597       MapVector<Value *, SmallVector<Instruction *, 2>>;
598   using OrdersType = SmallVector<unsigned, 4>;
599 
600   BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti,
601           TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li,
602           DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB,
603           const DataLayout *DL, OptimizationRemarkEmitter *ORE)
604       : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC),
605         DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) {
606     CodeMetrics::collectEphemeralValues(F, AC, EphValues);
607     // Use the vector register size specified by the target unless overridden
608     // by a command-line option.
609     // TODO: It would be better to limit the vectorization factor based on
610     //       data type rather than just register size. For example, x86 AVX has
611     //       256-bit registers, but it does not support integer operations
612     //       at that width (that requires AVX2).
613     if (MaxVectorRegSizeOption.getNumOccurrences())
614       MaxVecRegSize = MaxVectorRegSizeOption;
615     else
616       MaxVecRegSize =
617           TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
618               .getFixedSize();
619 
620     if (MinVectorRegSizeOption.getNumOccurrences())
621       MinVecRegSize = MinVectorRegSizeOption;
622     else
623       MinVecRegSize = TTI->getMinVectorRegisterBitWidth();
624   }
625 
626   /// Vectorize the tree that starts with the elements in \p VL.
627   /// Returns the vectorized root.
628   Value *vectorizeTree();
629 
630   /// Vectorize the tree but with the list of externally used values \p
631   /// ExternallyUsedValues. Values in this MapVector can be replaced but the
632   /// generated extractvalue instructions.
633   Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues);
634 
635   /// \returns the cost incurred by unwanted spills and fills, caused by
636   /// holding live values over call sites.
637   InstructionCost getSpillCost() const;
638 
639   /// \returns the vectorization cost of the subtree that starts at \p VL.
640   /// A negative number means that this is profitable.
641   InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = None);
642 
643   /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
644   /// the purpose of scheduling and extraction in the \p UserIgnoreLst.
645   void buildTree(ArrayRef<Value *> Roots,
646                  ArrayRef<Value *> UserIgnoreLst = None);
647 
648   /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
649   /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking
650   /// into account (and updating it, if required) list of externally used
651   /// values stored in \p ExternallyUsedValues.
652   void buildTree(ArrayRef<Value *> Roots,
653                  ExtraValueToDebugLocsMap &ExternallyUsedValues,
654                  ArrayRef<Value *> UserIgnoreLst = None);
655 
656   /// Clear the internal data structures that are created by 'buildTree'.
657   void deleteTree() {
658     VectorizableTree.clear();
659     ScalarToTreeEntry.clear();
660     MustGather.clear();
661     ExternalUses.clear();
662     NumOpsWantToKeepOrder.clear();
663     NumOpsWantToKeepOriginalOrder = 0;
664     for (auto &Iter : BlocksSchedules) {
665       BlockScheduling *BS = Iter.second.get();
666       BS->clear();
667     }
668     MinBWs.clear();
669     InstrElementSize.clear();
670   }
671 
672   unsigned getTreeSize() const { return VectorizableTree.size(); }
673 
674   /// Perform LICM and CSE on the newly generated gather sequences.
675   void optimizeGatherSequence();
676 
677   /// \returns The best order of instructions for vectorization.
678   Optional<ArrayRef<unsigned>> bestOrder() const {
679     assert(llvm::all_of(
680                NumOpsWantToKeepOrder,
681                [this](const decltype(NumOpsWantToKeepOrder)::value_type &D) {
682                  return D.getFirst().size() ==
683                         VectorizableTree[0]->Scalars.size();
684                }) &&
685            "All orders must have the same size as number of instructions in "
686            "tree node.");
687     auto I = std::max_element(
688         NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(),
689         [](const decltype(NumOpsWantToKeepOrder)::value_type &D1,
690            const decltype(NumOpsWantToKeepOrder)::value_type &D2) {
691           return D1.second < D2.second;
692         });
693     if (I == NumOpsWantToKeepOrder.end() ||
694         I->getSecond() <= NumOpsWantToKeepOriginalOrder)
695       return None;
696 
697     return makeArrayRef(I->getFirst());
698   }
699 
700   /// Builds the correct order for root instructions.
701   /// If some leaves have the same instructions to be vectorized, we may
702   /// incorrectly evaluate the best order for the root node (it is built for the
703   /// vector of instructions without repeated instructions and, thus, has less
704   /// elements than the root node). This function builds the correct order for
705   /// the root node.
706   /// For example, if the root node is \<a+b, a+c, a+d, f+e\>, then the leaves
707   /// are \<a, a, a, f\> and \<b, c, d, e\>. When we try to vectorize the first
708   /// leaf, it will be shrink to \<a, b\>. If instructions in this leaf should
709   /// be reordered, the best order will be \<1, 0\>. We need to extend this
710   /// order for the root node. For the root node this order should look like
711   /// \<3, 0, 1, 2\>. This function extends the order for the reused
712   /// instructions.
713   void findRootOrder(OrdersType &Order) {
714     // If the leaf has the same number of instructions to vectorize as the root
715     // - order must be set already.
716     unsigned RootSize = VectorizableTree[0]->Scalars.size();
717     if (Order.size() == RootSize)
718       return;
719     SmallVector<unsigned, 4> RealOrder(Order.size());
720     std::swap(Order, RealOrder);
721     SmallVector<int, 4> Mask;
722     inversePermutation(RealOrder, Mask);
723     Order.assign(Mask.begin(), Mask.end());
724     // The leaf has less number of instructions - need to find the true order of
725     // the root.
726     // Scan the nodes starting from the leaf back to the root.
727     const TreeEntry *PNode = VectorizableTree.back().get();
728     SmallVector<const TreeEntry *, 4> Nodes(1, PNode);
729     SmallPtrSet<const TreeEntry *, 4> Visited;
730     while (!Nodes.empty() && Order.size() != RootSize) {
731       const TreeEntry *PNode = Nodes.pop_back_val();
732       if (!Visited.insert(PNode).second)
733         continue;
734       const TreeEntry &Node = *PNode;
735       for (const EdgeInfo &EI : Node.UserTreeIndices)
736         if (EI.UserTE)
737           Nodes.push_back(EI.UserTE);
738       if (Node.ReuseShuffleIndices.empty())
739         continue;
740       // Build the order for the parent node.
741       OrdersType NewOrder(Node.ReuseShuffleIndices.size(), RootSize);
742       SmallVector<unsigned, 4> OrderCounter(Order.size(), 0);
743       // The algorithm of the order extension is:
744       // 1. Calculate the number of the same instructions for the order.
745       // 2. Calculate the index of the new order: total number of instructions
746       // with order less than the order of the current instruction + reuse
747       // number of the current instruction.
748       // 3. The new order is just the index of the instruction in the original
749       // vector of the instructions.
750       for (unsigned I : Node.ReuseShuffleIndices)
751         ++OrderCounter[Order[I]];
752       SmallVector<unsigned, 4> CurrentCounter(Order.size(), 0);
753       for (unsigned I = 0, E = Node.ReuseShuffleIndices.size(); I < E; ++I) {
754         unsigned ReusedIdx = Node.ReuseShuffleIndices[I];
755         unsigned OrderIdx = Order[ReusedIdx];
756         unsigned NewIdx = 0;
757         for (unsigned J = 0; J < OrderIdx; ++J)
758           NewIdx += OrderCounter[J];
759         NewIdx += CurrentCounter[OrderIdx];
760         ++CurrentCounter[OrderIdx];
761         assert(NewOrder[NewIdx] == RootSize &&
762                "The order index should not be written already.");
763         NewOrder[NewIdx] = I;
764       }
765       std::swap(Order, NewOrder);
766     }
767     assert(Order.size() == RootSize &&
768            "Root node is expected or the size of the order must be the same as "
769            "the number of elements in the root node.");
770     assert(llvm::all_of(Order,
771                         [RootSize](unsigned Val) { return Val != RootSize; }) &&
772            "All indices must be initialized");
773   }
774 
775   /// \return The vector element size in bits to use when vectorizing the
776   /// expression tree ending at \p V. If V is a store, the size is the width of
777   /// the stored value. Otherwise, the size is the width of the largest loaded
778   /// value reaching V. This method is used by the vectorizer to calculate
779   /// vectorization factors.
780   unsigned getVectorElementSize(Value *V);
781 
782   /// Compute the minimum type sizes required to represent the entries in a
783   /// vectorizable tree.
784   void computeMinimumValueSizes();
785 
786   // \returns maximum vector register size as set by TTI or overridden by cl::opt.
787   unsigned getMaxVecRegSize() const {
788     return MaxVecRegSize;
789   }
790 
791   // \returns minimum vector register size as set by cl::opt.
792   unsigned getMinVecRegSize() const {
793     return MinVecRegSize;
794   }
795 
796   unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const {
797     unsigned MaxVF = MaxVFOption.getNumOccurrences() ?
798       MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode);
799     return MaxVF ? MaxVF : UINT_MAX;
800   }
801 
802   /// Check if homogeneous aggregate is isomorphic to some VectorType.
803   /// Accepts homogeneous multidimensional aggregate of scalars/vectors like
804   /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> },
805   /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on.
806   ///
807   /// \returns number of elements in vector if isomorphism exists, 0 otherwise.
808   unsigned canMapToVector(Type *T, const DataLayout &DL) const;
809 
810   /// \returns True if the VectorizableTree is both tiny and not fully
811   /// vectorizable. We do not vectorize such trees.
812   bool isTreeTinyAndNotFullyVectorizable() const;
813 
814   /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values
815   /// can be load combined in the backend. Load combining may not be allowed in
816   /// the IR optimizer, so we do not want to alter the pattern. For example,
817   /// partially transforming a scalar bswap() pattern into vector code is
818   /// effectively impossible for the backend to undo.
819   /// TODO: If load combining is allowed in the IR optimizer, this analysis
820   ///       may not be necessary.
821   bool isLoadCombineReductionCandidate(RecurKind RdxKind) const;
822 
823   /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values
824   /// can be load combined in the backend. Load combining may not be allowed in
825   /// the IR optimizer, so we do not want to alter the pattern. For example,
826   /// partially transforming a scalar bswap() pattern into vector code is
827   /// effectively impossible for the backend to undo.
828   /// TODO: If load combining is allowed in the IR optimizer, this analysis
829   ///       may not be necessary.
830   bool isLoadCombineCandidate() const;
831 
832   OptimizationRemarkEmitter *getORE() { return ORE; }
833 
834   /// This structure holds any data we need about the edges being traversed
835   /// during buildTree_rec(). We keep track of:
836   /// (i) the user TreeEntry index, and
837   /// (ii) the index of the edge.
838   struct EdgeInfo {
839     EdgeInfo() = default;
840     EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx)
841         : UserTE(UserTE), EdgeIdx(EdgeIdx) {}
842     /// The user TreeEntry.
843     TreeEntry *UserTE = nullptr;
844     /// The operand index of the use.
845     unsigned EdgeIdx = UINT_MAX;
846 #ifndef NDEBUG
847     friend inline raw_ostream &operator<<(raw_ostream &OS,
848                                           const BoUpSLP::EdgeInfo &EI) {
849       EI.dump(OS);
850       return OS;
851     }
852     /// Debug print.
853     void dump(raw_ostream &OS) const {
854       OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null")
855          << " EdgeIdx:" << EdgeIdx << "}";
856     }
857     LLVM_DUMP_METHOD void dump() const { dump(dbgs()); }
858 #endif
859   };
860 
861   /// A helper data structure to hold the operands of a vector of instructions.
862   /// This supports a fixed vector length for all operand vectors.
863   class VLOperands {
864     /// For each operand we need (i) the value, and (ii) the opcode that it
865     /// would be attached to if the expression was in a left-linearized form.
866     /// This is required to avoid illegal operand reordering.
867     /// For example:
868     /// \verbatim
869     ///                         0 Op1
870     ///                         |/
871     /// Op1 Op2   Linearized    + Op2
872     ///   \ /     ---------->   |/
873     ///    -                    -
874     ///
875     /// Op1 - Op2            (0 + Op1) - Op2
876     /// \endverbatim
877     ///
878     /// Value Op1 is attached to a '+' operation, and Op2 to a '-'.
879     ///
880     /// Another way to think of this is to track all the operations across the
881     /// path from the operand all the way to the root of the tree and to
882     /// calculate the operation that corresponds to this path. For example, the
883     /// path from Op2 to the root crosses the RHS of the '-', therefore the
884     /// corresponding operation is a '-' (which matches the one in the
885     /// linearized tree, as shown above).
886     ///
887     /// For lack of a better term, we refer to this operation as Accumulated
888     /// Path Operation (APO).
889     struct OperandData {
890       OperandData() = default;
891       OperandData(Value *V, bool APO, bool IsUsed)
892           : V(V), APO(APO), IsUsed(IsUsed) {}
893       /// The operand value.
894       Value *V = nullptr;
895       /// TreeEntries only allow a single opcode, or an alternate sequence of
896       /// them (e.g, +, -). Therefore, we can safely use a boolean value for the
897       /// APO. It is set to 'true' if 'V' is attached to an inverse operation
898       /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise
899       /// (e.g., Add/Mul)
900       bool APO = false;
901       /// Helper data for the reordering function.
902       bool IsUsed = false;
903     };
904 
905     /// During operand reordering, we are trying to select the operand at lane
906     /// that matches best with the operand at the neighboring lane. Our
907     /// selection is based on the type of value we are looking for. For example,
908     /// if the neighboring lane has a load, we need to look for a load that is
909     /// accessing a consecutive address. These strategies are summarized in the
910     /// 'ReorderingMode' enumerator.
911     enum class ReorderingMode {
912       Load,     ///< Matching loads to consecutive memory addresses
913       Opcode,   ///< Matching instructions based on opcode (same or alternate)
914       Constant, ///< Matching constants
915       Splat,    ///< Matching the same instruction multiple times (broadcast)
916       Failed,   ///< We failed to create a vectorizable group
917     };
918 
919     using OperandDataVec = SmallVector<OperandData, 2>;
920 
921     /// A vector of operand vectors.
922     SmallVector<OperandDataVec, 4> OpsVec;
923 
924     const DataLayout &DL;
925     ScalarEvolution &SE;
926     const BoUpSLP &R;
927 
928     /// \returns the operand data at \p OpIdx and \p Lane.
929     OperandData &getData(unsigned OpIdx, unsigned Lane) {
930       return OpsVec[OpIdx][Lane];
931     }
932 
933     /// \returns the operand data at \p OpIdx and \p Lane. Const version.
934     const OperandData &getData(unsigned OpIdx, unsigned Lane) const {
935       return OpsVec[OpIdx][Lane];
936     }
937 
938     /// Clears the used flag for all entries.
939     void clearUsed() {
940       for (unsigned OpIdx = 0, NumOperands = getNumOperands();
941            OpIdx != NumOperands; ++OpIdx)
942         for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes;
943              ++Lane)
944           OpsVec[OpIdx][Lane].IsUsed = false;
945     }
946 
947     /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2.
948     void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) {
949       std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]);
950     }
951 
952     // The hard-coded scores listed here are not very important. When computing
953     // the scores of matching one sub-tree with another, we are basically
954     // counting the number of values that are matching. So even if all scores
955     // are set to 1, we would still get a decent matching result.
956     // However, sometimes we have to break ties. For example we may have to
957     // choose between matching loads vs matching opcodes. This is what these
958     // scores are helping us with: they provide the order of preference.
959 
960     /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]).
961     static const int ScoreConsecutiveLoads = 3;
962     /// ExtractElementInst from same vector and consecutive indexes.
963     static const int ScoreConsecutiveExtracts = 3;
964     /// Constants.
965     static const int ScoreConstants = 2;
966     /// Instructions with the same opcode.
967     static const int ScoreSameOpcode = 2;
968     /// Instructions with alt opcodes (e.g, add + sub).
969     static const int ScoreAltOpcodes = 1;
970     /// Identical instructions (a.k.a. splat or broadcast).
971     static const int ScoreSplat = 1;
972     /// Matching with an undef is preferable to failing.
973     static const int ScoreUndef = 1;
974     /// Score for failing to find a decent match.
975     static const int ScoreFail = 0;
976     /// User exteranl to the vectorized code.
977     static const int ExternalUseCost = 1;
978     /// The user is internal but in a different lane.
979     static const int UserInDiffLaneCost = ExternalUseCost;
980 
981     /// \returns the score of placing \p V1 and \p V2 in consecutive lanes.
982     static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL,
983                                ScalarEvolution &SE) {
984       auto *LI1 = dyn_cast<LoadInst>(V1);
985       auto *LI2 = dyn_cast<LoadInst>(V2);
986       if (LI1 && LI2) {
987         if (LI1->getParent() != LI2->getParent())
988           return VLOperands::ScoreFail;
989 
990         Optional<int> Dist = getPointersDiff(
991             LI1->getType(), LI1->getPointerOperand(), LI2->getType(),
992             LI2->getPointerOperand(), DL, SE, /*StrictCheck=*/true);
993         return (Dist && *Dist == 1) ? VLOperands::ScoreConsecutiveLoads
994                                     : VLOperands::ScoreFail;
995       }
996 
997       auto *C1 = dyn_cast<Constant>(V1);
998       auto *C2 = dyn_cast<Constant>(V2);
999       if (C1 && C2)
1000         return VLOperands::ScoreConstants;
1001 
1002       // Extracts from consecutive indexes of the same vector better score as
1003       // the extracts could be optimized away.
1004       Value *EV;
1005       ConstantInt *Ex1Idx, *Ex2Idx;
1006       if (match(V1, m_ExtractElt(m_Value(EV), m_ConstantInt(Ex1Idx))) &&
1007           match(V2, m_ExtractElt(m_Deferred(EV), m_ConstantInt(Ex2Idx))) &&
1008           Ex1Idx->getZExtValue() + 1 == Ex2Idx->getZExtValue())
1009         return VLOperands::ScoreConsecutiveExtracts;
1010 
1011       auto *I1 = dyn_cast<Instruction>(V1);
1012       auto *I2 = dyn_cast<Instruction>(V2);
1013       if (I1 && I2) {
1014         if (I1 == I2)
1015           return VLOperands::ScoreSplat;
1016         InstructionsState S = getSameOpcode({I1, I2});
1017         // Note: Only consider instructions with <= 2 operands to avoid
1018         // complexity explosion.
1019         if (S.getOpcode() && S.MainOp->getNumOperands() <= 2)
1020           return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes
1021                                   : VLOperands::ScoreSameOpcode;
1022       }
1023 
1024       if (isa<UndefValue>(V2))
1025         return VLOperands::ScoreUndef;
1026 
1027       return VLOperands::ScoreFail;
1028     }
1029 
1030     /// Holds the values and their lane that are taking part in the look-ahead
1031     /// score calculation. This is used in the external uses cost calculation.
1032     SmallDenseMap<Value *, int> InLookAheadValues;
1033 
1034     /// \Returns the additinal cost due to uses of \p LHS and \p RHS that are
1035     /// either external to the vectorized code, or require shuffling.
1036     int getExternalUsesCost(const std::pair<Value *, int> &LHS,
1037                             const std::pair<Value *, int> &RHS) {
1038       int Cost = 0;
1039       std::array<std::pair<Value *, int>, 2> Values = {{LHS, RHS}};
1040       for (int Idx = 0, IdxE = Values.size(); Idx != IdxE; ++Idx) {
1041         Value *V = Values[Idx].first;
1042         if (isa<Constant>(V)) {
1043           // Since this is a function pass, it doesn't make semantic sense to
1044           // walk the users of a subclass of Constant. The users could be in
1045           // another function, or even another module that happens to be in
1046           // the same LLVMContext.
1047           continue;
1048         }
1049 
1050         // Calculate the absolute lane, using the minimum relative lane of LHS
1051         // and RHS as base and Idx as the offset.
1052         int Ln = std::min(LHS.second, RHS.second) + Idx;
1053         assert(Ln >= 0 && "Bad lane calculation");
1054         unsigned UsersBudget = LookAheadUsersBudget;
1055         for (User *U : V->users()) {
1056           if (const TreeEntry *UserTE = R.getTreeEntry(U)) {
1057             // The user is in the VectorizableTree. Check if we need to insert.
1058             auto It = llvm::find(UserTE->Scalars, U);
1059             assert(It != UserTE->Scalars.end() && "U is in UserTE");
1060             int UserLn = std::distance(UserTE->Scalars.begin(), It);
1061             assert(UserLn >= 0 && "Bad lane");
1062             if (UserLn != Ln)
1063               Cost += UserInDiffLaneCost;
1064           } else {
1065             // Check if the user is in the look-ahead code.
1066             auto It2 = InLookAheadValues.find(U);
1067             if (It2 != InLookAheadValues.end()) {
1068               // The user is in the look-ahead code. Check the lane.
1069               if (It2->second != Ln)
1070                 Cost += UserInDiffLaneCost;
1071             } else {
1072               // The user is neither in SLP tree nor in the look-ahead code.
1073               Cost += ExternalUseCost;
1074             }
1075           }
1076           // Limit the number of visited uses to cap compilation time.
1077           if (--UsersBudget == 0)
1078             break;
1079         }
1080       }
1081       return Cost;
1082     }
1083 
1084     /// Go through the operands of \p LHS and \p RHS recursively until \p
1085     /// MaxLevel, and return the cummulative score. For example:
1086     /// \verbatim
1087     ///  A[0]  B[0]  A[1]  B[1]  C[0] D[0]  B[1] A[1]
1088     ///     \ /         \ /         \ /        \ /
1089     ///      +           +           +          +
1090     ///     G1          G2          G3         G4
1091     /// \endverbatim
1092     /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at
1093     /// each level recursively, accumulating the score. It starts from matching
1094     /// the additions at level 0, then moves on to the loads (level 1). The
1095     /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and
1096     /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while
1097     /// {A[0],C[0]} has a score of VLOperands::ScoreFail.
1098     /// Please note that the order of the operands does not matter, as we
1099     /// evaluate the score of all profitable combinations of operands. In
1100     /// other words the score of G1 and G4 is the same as G1 and G2. This
1101     /// heuristic is based on ideas described in:
1102     ///   Look-ahead SLP: Auto-vectorization in the presence of commutative
1103     ///   operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha,
1104     ///   Luís F. W. Góes
1105     int getScoreAtLevelRec(const std::pair<Value *, int> &LHS,
1106                            const std::pair<Value *, int> &RHS, int CurrLevel,
1107                            int MaxLevel) {
1108 
1109       Value *V1 = LHS.first;
1110       Value *V2 = RHS.first;
1111       // Get the shallow score of V1 and V2.
1112       int ShallowScoreAtThisLevel =
1113           std::max((int)ScoreFail, getShallowScore(V1, V2, DL, SE) -
1114                                        getExternalUsesCost(LHS, RHS));
1115       int Lane1 = LHS.second;
1116       int Lane2 = RHS.second;
1117 
1118       // If reached MaxLevel,
1119       //  or if V1 and V2 are not instructions,
1120       //  or if they are SPLAT,
1121       //  or if they are not consecutive, early return the current cost.
1122       auto *I1 = dyn_cast<Instruction>(V1);
1123       auto *I2 = dyn_cast<Instruction>(V2);
1124       if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 ||
1125           ShallowScoreAtThisLevel == VLOperands::ScoreFail ||
1126           (isa<LoadInst>(I1) && isa<LoadInst>(I2) && ShallowScoreAtThisLevel))
1127         return ShallowScoreAtThisLevel;
1128       assert(I1 && I2 && "Should have early exited.");
1129 
1130       // Keep track of in-tree values for determining the external-use cost.
1131       InLookAheadValues[V1] = Lane1;
1132       InLookAheadValues[V2] = Lane2;
1133 
1134       // Contains the I2 operand indexes that got matched with I1 operands.
1135       SmallSet<unsigned, 4> Op2Used;
1136 
1137       // Recursion towards the operands of I1 and I2. We are trying all possbile
1138       // operand pairs, and keeping track of the best score.
1139       for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands();
1140            OpIdx1 != NumOperands1; ++OpIdx1) {
1141         // Try to pair op1I with the best operand of I2.
1142         int MaxTmpScore = 0;
1143         unsigned MaxOpIdx2 = 0;
1144         bool FoundBest = false;
1145         // If I2 is commutative try all combinations.
1146         unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1;
1147         unsigned ToIdx = isCommutative(I2)
1148                              ? I2->getNumOperands()
1149                              : std::min(I2->getNumOperands(), OpIdx1 + 1);
1150         assert(FromIdx <= ToIdx && "Bad index");
1151         for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) {
1152           // Skip operands already paired with OpIdx1.
1153           if (Op2Used.count(OpIdx2))
1154             continue;
1155           // Recursively calculate the cost at each level
1156           int TmpScore = getScoreAtLevelRec({I1->getOperand(OpIdx1), Lane1},
1157                                             {I2->getOperand(OpIdx2), Lane2},
1158                                             CurrLevel + 1, MaxLevel);
1159           // Look for the best score.
1160           if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) {
1161             MaxTmpScore = TmpScore;
1162             MaxOpIdx2 = OpIdx2;
1163             FoundBest = true;
1164           }
1165         }
1166         if (FoundBest) {
1167           // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it.
1168           Op2Used.insert(MaxOpIdx2);
1169           ShallowScoreAtThisLevel += MaxTmpScore;
1170         }
1171       }
1172       return ShallowScoreAtThisLevel;
1173     }
1174 
1175     /// \Returns the look-ahead score, which tells us how much the sub-trees
1176     /// rooted at \p LHS and \p RHS match, the more they match the higher the
1177     /// score. This helps break ties in an informed way when we cannot decide on
1178     /// the order of the operands by just considering the immediate
1179     /// predecessors.
1180     int getLookAheadScore(const std::pair<Value *, int> &LHS,
1181                           const std::pair<Value *, int> &RHS) {
1182       InLookAheadValues.clear();
1183       return getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth);
1184     }
1185 
1186     // Search all operands in Ops[*][Lane] for the one that matches best
1187     // Ops[OpIdx][LastLane] and return its opreand index.
1188     // If no good match can be found, return None.
1189     Optional<unsigned>
1190     getBestOperand(unsigned OpIdx, int Lane, int LastLane,
1191                    ArrayRef<ReorderingMode> ReorderingModes) {
1192       unsigned NumOperands = getNumOperands();
1193 
1194       // The operand of the previous lane at OpIdx.
1195       Value *OpLastLane = getData(OpIdx, LastLane).V;
1196 
1197       // Our strategy mode for OpIdx.
1198       ReorderingMode RMode = ReorderingModes[OpIdx];
1199 
1200       // The linearized opcode of the operand at OpIdx, Lane.
1201       bool OpIdxAPO = getData(OpIdx, Lane).APO;
1202 
1203       // The best operand index and its score.
1204       // Sometimes we have more than one option (e.g., Opcode and Undefs), so we
1205       // are using the score to differentiate between the two.
1206       struct BestOpData {
1207         Optional<unsigned> Idx = None;
1208         unsigned Score = 0;
1209       } BestOp;
1210 
1211       // Iterate through all unused operands and look for the best.
1212       for (unsigned Idx = 0; Idx != NumOperands; ++Idx) {
1213         // Get the operand at Idx and Lane.
1214         OperandData &OpData = getData(Idx, Lane);
1215         Value *Op = OpData.V;
1216         bool OpAPO = OpData.APO;
1217 
1218         // Skip already selected operands.
1219         if (OpData.IsUsed)
1220           continue;
1221 
1222         // Skip if we are trying to move the operand to a position with a
1223         // different opcode in the linearized tree form. This would break the
1224         // semantics.
1225         if (OpAPO != OpIdxAPO)
1226           continue;
1227 
1228         // Look for an operand that matches the current mode.
1229         switch (RMode) {
1230         case ReorderingMode::Load:
1231         case ReorderingMode::Constant:
1232         case ReorderingMode::Opcode: {
1233           bool LeftToRight = Lane > LastLane;
1234           Value *OpLeft = (LeftToRight) ? OpLastLane : Op;
1235           Value *OpRight = (LeftToRight) ? Op : OpLastLane;
1236           unsigned Score =
1237               getLookAheadScore({OpLeft, LastLane}, {OpRight, Lane});
1238           if (Score > BestOp.Score) {
1239             BestOp.Idx = Idx;
1240             BestOp.Score = Score;
1241           }
1242           break;
1243         }
1244         case ReorderingMode::Splat:
1245           if (Op == OpLastLane)
1246             BestOp.Idx = Idx;
1247           break;
1248         case ReorderingMode::Failed:
1249           return None;
1250         }
1251       }
1252 
1253       if (BestOp.Idx) {
1254         getData(BestOp.Idx.getValue(), Lane).IsUsed = true;
1255         return BestOp.Idx;
1256       }
1257       // If we could not find a good match return None.
1258       return None;
1259     }
1260 
1261     /// Helper for reorderOperandVecs. \Returns the lane that we should start
1262     /// reordering from. This is the one which has the least number of operands
1263     /// that can freely move about.
1264     unsigned getBestLaneToStartReordering() const {
1265       unsigned BestLane = 0;
1266       unsigned Min = UINT_MAX;
1267       for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes;
1268            ++Lane) {
1269         unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane);
1270         if (NumFreeOps < Min) {
1271           Min = NumFreeOps;
1272           BestLane = Lane;
1273         }
1274       }
1275       return BestLane;
1276     }
1277 
1278     /// \Returns the maximum number of operands that are allowed to be reordered
1279     /// for \p Lane. This is used as a heuristic for selecting the first lane to
1280     /// start operand reordering.
1281     unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const {
1282       unsigned CntTrue = 0;
1283       unsigned NumOperands = getNumOperands();
1284       // Operands with the same APO can be reordered. We therefore need to count
1285       // how many of them we have for each APO, like this: Cnt[APO] = x.
1286       // Since we only have two APOs, namely true and false, we can avoid using
1287       // a map. Instead we can simply count the number of operands that
1288       // correspond to one of them (in this case the 'true' APO), and calculate
1289       // the other by subtracting it from the total number of operands.
1290       for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx)
1291         if (getData(OpIdx, Lane).APO)
1292           ++CntTrue;
1293       unsigned CntFalse = NumOperands - CntTrue;
1294       return std::max(CntTrue, CntFalse);
1295     }
1296 
1297     /// Go through the instructions in VL and append their operands.
1298     void appendOperandsOfVL(ArrayRef<Value *> VL) {
1299       assert(!VL.empty() && "Bad VL");
1300       assert((empty() || VL.size() == getNumLanes()) &&
1301              "Expected same number of lanes");
1302       assert(isa<Instruction>(VL[0]) && "Expected instruction");
1303       unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands();
1304       OpsVec.resize(NumOperands);
1305       unsigned NumLanes = VL.size();
1306       for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1307         OpsVec[OpIdx].resize(NumLanes);
1308         for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1309           assert(isa<Instruction>(VL[Lane]) && "Expected instruction");
1310           // Our tree has just 3 nodes: the root and two operands.
1311           // It is therefore trivial to get the APO. We only need to check the
1312           // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or
1313           // RHS operand. The LHS operand of both add and sub is never attached
1314           // to an inversese operation in the linearized form, therefore its APO
1315           // is false. The RHS is true only if VL[Lane] is an inverse operation.
1316 
1317           // Since operand reordering is performed on groups of commutative
1318           // operations or alternating sequences (e.g., +, -), we can safely
1319           // tell the inverse operations by checking commutativity.
1320           bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane]));
1321           bool APO = (OpIdx == 0) ? false : IsInverseOperation;
1322           OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx),
1323                                  APO, false};
1324         }
1325       }
1326     }
1327 
1328     /// \returns the number of operands.
1329     unsigned getNumOperands() const { return OpsVec.size(); }
1330 
1331     /// \returns the number of lanes.
1332     unsigned getNumLanes() const { return OpsVec[0].size(); }
1333 
1334     /// \returns the operand value at \p OpIdx and \p Lane.
1335     Value *getValue(unsigned OpIdx, unsigned Lane) const {
1336       return getData(OpIdx, Lane).V;
1337     }
1338 
1339     /// \returns true if the data structure is empty.
1340     bool empty() const { return OpsVec.empty(); }
1341 
1342     /// Clears the data.
1343     void clear() { OpsVec.clear(); }
1344 
1345     /// \Returns true if there are enough operands identical to \p Op to fill
1346     /// the whole vector.
1347     /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow.
1348     bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) {
1349       bool OpAPO = getData(OpIdx, Lane).APO;
1350       for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) {
1351         if (Ln == Lane)
1352           continue;
1353         // This is set to true if we found a candidate for broadcast at Lane.
1354         bool FoundCandidate = false;
1355         for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) {
1356           OperandData &Data = getData(OpI, Ln);
1357           if (Data.APO != OpAPO || Data.IsUsed)
1358             continue;
1359           if (Data.V == Op) {
1360             FoundCandidate = true;
1361             Data.IsUsed = true;
1362             break;
1363           }
1364         }
1365         if (!FoundCandidate)
1366           return false;
1367       }
1368       return true;
1369     }
1370 
1371   public:
1372     /// Initialize with all the operands of the instruction vector \p RootVL.
1373     VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL,
1374                ScalarEvolution &SE, const BoUpSLP &R)
1375         : DL(DL), SE(SE), R(R) {
1376       // Append all the operands of RootVL.
1377       appendOperandsOfVL(RootVL);
1378     }
1379 
1380     /// \Returns a value vector with the operands across all lanes for the
1381     /// opearnd at \p OpIdx.
1382     ValueList getVL(unsigned OpIdx) const {
1383       ValueList OpVL(OpsVec[OpIdx].size());
1384       assert(OpsVec[OpIdx].size() == getNumLanes() &&
1385              "Expected same num of lanes across all operands");
1386       for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane)
1387         OpVL[Lane] = OpsVec[OpIdx][Lane].V;
1388       return OpVL;
1389     }
1390 
1391     // Performs operand reordering for 2 or more operands.
1392     // The original operands are in OrigOps[OpIdx][Lane].
1393     // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'.
1394     void reorder() {
1395       unsigned NumOperands = getNumOperands();
1396       unsigned NumLanes = getNumLanes();
1397       // Each operand has its own mode. We are using this mode to help us select
1398       // the instructions for each lane, so that they match best with the ones
1399       // we have selected so far.
1400       SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands);
1401 
1402       // This is a greedy single-pass algorithm. We are going over each lane
1403       // once and deciding on the best order right away with no back-tracking.
1404       // However, in order to increase its effectiveness, we start with the lane
1405       // that has operands that can move the least. For example, given the
1406       // following lanes:
1407       //  Lane 0 : A[0] = B[0] + C[0]   // Visited 3rd
1408       //  Lane 1 : A[1] = C[1] - B[1]   // Visited 1st
1409       //  Lane 2 : A[2] = B[2] + C[2]   // Visited 2nd
1410       //  Lane 3 : A[3] = C[3] - B[3]   // Visited 4th
1411       // we will start at Lane 1, since the operands of the subtraction cannot
1412       // be reordered. Then we will visit the rest of the lanes in a circular
1413       // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3.
1414 
1415       // Find the first lane that we will start our search from.
1416       unsigned FirstLane = getBestLaneToStartReordering();
1417 
1418       // Initialize the modes.
1419       for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1420         Value *OpLane0 = getValue(OpIdx, FirstLane);
1421         // Keep track if we have instructions with all the same opcode on one
1422         // side.
1423         if (isa<LoadInst>(OpLane0))
1424           ReorderingModes[OpIdx] = ReorderingMode::Load;
1425         else if (isa<Instruction>(OpLane0)) {
1426           // Check if OpLane0 should be broadcast.
1427           if (shouldBroadcast(OpLane0, OpIdx, FirstLane))
1428             ReorderingModes[OpIdx] = ReorderingMode::Splat;
1429           else
1430             ReorderingModes[OpIdx] = ReorderingMode::Opcode;
1431         }
1432         else if (isa<Constant>(OpLane0))
1433           ReorderingModes[OpIdx] = ReorderingMode::Constant;
1434         else if (isa<Argument>(OpLane0))
1435           // Our best hope is a Splat. It may save some cost in some cases.
1436           ReorderingModes[OpIdx] = ReorderingMode::Splat;
1437         else
1438           // NOTE: This should be unreachable.
1439           ReorderingModes[OpIdx] = ReorderingMode::Failed;
1440       }
1441 
1442       // If the initial strategy fails for any of the operand indexes, then we
1443       // perform reordering again in a second pass. This helps avoid assigning
1444       // high priority to the failed strategy, and should improve reordering for
1445       // the non-failed operand indexes.
1446       for (int Pass = 0; Pass != 2; ++Pass) {
1447         // Skip the second pass if the first pass did not fail.
1448         bool StrategyFailed = false;
1449         // Mark all operand data as free to use.
1450         clearUsed();
1451         // We keep the original operand order for the FirstLane, so reorder the
1452         // rest of the lanes. We are visiting the nodes in a circular fashion,
1453         // using FirstLane as the center point and increasing the radius
1454         // distance.
1455         for (unsigned Distance = 1; Distance != NumLanes; ++Distance) {
1456           // Visit the lane on the right and then the lane on the left.
1457           for (int Direction : {+1, -1}) {
1458             int Lane = FirstLane + Direction * Distance;
1459             if (Lane < 0 || Lane >= (int)NumLanes)
1460               continue;
1461             int LastLane = Lane - Direction;
1462             assert(LastLane >= 0 && LastLane < (int)NumLanes &&
1463                    "Out of bounds");
1464             // Look for a good match for each operand.
1465             for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1466               // Search for the operand that matches SortedOps[OpIdx][Lane-1].
1467               Optional<unsigned> BestIdx =
1468                   getBestOperand(OpIdx, Lane, LastLane, ReorderingModes);
1469               // By not selecting a value, we allow the operands that follow to
1470               // select a better matching value. We will get a non-null value in
1471               // the next run of getBestOperand().
1472               if (BestIdx) {
1473                 // Swap the current operand with the one returned by
1474                 // getBestOperand().
1475                 swap(OpIdx, BestIdx.getValue(), Lane);
1476               } else {
1477                 // We failed to find a best operand, set mode to 'Failed'.
1478                 ReorderingModes[OpIdx] = ReorderingMode::Failed;
1479                 // Enable the second pass.
1480                 StrategyFailed = true;
1481               }
1482             }
1483           }
1484         }
1485         // Skip second pass if the strategy did not fail.
1486         if (!StrategyFailed)
1487           break;
1488       }
1489     }
1490 
1491 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1492     LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) {
1493       switch (RMode) {
1494       case ReorderingMode::Load:
1495         return "Load";
1496       case ReorderingMode::Opcode:
1497         return "Opcode";
1498       case ReorderingMode::Constant:
1499         return "Constant";
1500       case ReorderingMode::Splat:
1501         return "Splat";
1502       case ReorderingMode::Failed:
1503         return "Failed";
1504       }
1505       llvm_unreachable("Unimplemented Reordering Type");
1506     }
1507 
1508     LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode,
1509                                                    raw_ostream &OS) {
1510       return OS << getModeStr(RMode);
1511     }
1512 
1513     /// Debug print.
1514     LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) {
1515       printMode(RMode, dbgs());
1516     }
1517 
1518     friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) {
1519       return printMode(RMode, OS);
1520     }
1521 
1522     LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const {
1523       const unsigned Indent = 2;
1524       unsigned Cnt = 0;
1525       for (const OperandDataVec &OpDataVec : OpsVec) {
1526         OS << "Operand " << Cnt++ << "\n";
1527         for (const OperandData &OpData : OpDataVec) {
1528           OS.indent(Indent) << "{";
1529           if (Value *V = OpData.V)
1530             OS << *V;
1531           else
1532             OS << "null";
1533           OS << ", APO:" << OpData.APO << "}\n";
1534         }
1535         OS << "\n";
1536       }
1537       return OS;
1538     }
1539 
1540     /// Debug print.
1541     LLVM_DUMP_METHOD void dump() const { print(dbgs()); }
1542 #endif
1543   };
1544 
1545   /// Checks if the instruction is marked for deletion.
1546   bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); }
1547 
1548   /// Marks values operands for later deletion by replacing them with Undefs.
1549   void eraseInstructions(ArrayRef<Value *> AV);
1550 
1551   ~BoUpSLP();
1552 
1553 private:
1554   /// Checks if all users of \p I are the part of the vectorization tree.
1555   bool areAllUsersVectorized(Instruction *I,
1556                              ArrayRef<Value *> VectorizedVals) const;
1557 
1558   /// \returns the cost of the vectorizable entry.
1559   InstructionCost getEntryCost(const TreeEntry *E,
1560                                ArrayRef<Value *> VectorizedVals);
1561 
1562   /// This is the recursive part of buildTree.
1563   void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth,
1564                      const EdgeInfo &EI);
1565 
1566   /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can
1567   /// be vectorized to use the original vector (or aggregate "bitcast" to a
1568   /// vector) and sets \p CurrentOrder to the identity permutation; otherwise
1569   /// returns false, setting \p CurrentOrder to either an empty vector or a
1570   /// non-identity permutation that allows to reuse extract instructions.
1571   bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
1572                        SmallVectorImpl<unsigned> &CurrentOrder) const;
1573 
1574   /// Vectorize a single entry in the tree.
1575   Value *vectorizeTree(TreeEntry *E);
1576 
1577   /// Vectorize a single entry in the tree, starting in \p VL.
1578   Value *vectorizeTree(ArrayRef<Value *> VL);
1579 
1580   /// \returns the scalarization cost for this type. Scalarization in this
1581   /// context means the creation of vectors from a group of scalars.
1582   InstructionCost
1583   getGatherCost(FixedVectorType *Ty,
1584                 const DenseSet<unsigned> &ShuffledIndices) const;
1585 
1586   /// Checks if the gathered \p VL can be represented as shuffle(s) of previous
1587   /// tree entries.
1588   /// \returns ShuffleKind, if gathered values can be represented as shuffles of
1589   /// previous tree entries. \p Mask is filled with the shuffle mask.
1590   Optional<TargetTransformInfo::ShuffleKind>
1591   isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask,
1592                         SmallVectorImpl<const TreeEntry *> &Entries);
1593 
1594   /// \returns the scalarization cost for this list of values. Assuming that
1595   /// this subtree gets vectorized, we may need to extract the values from the
1596   /// roots. This method calculates the cost of extracting the values.
1597   InstructionCost getGatherCost(ArrayRef<Value *> VL) const;
1598 
1599   /// Set the Builder insert point to one after the last instruction in
1600   /// the bundle
1601   void setInsertPointAfterBundle(const TreeEntry *E);
1602 
1603   /// \returns a vector from a collection of scalars in \p VL.
1604   Value *gather(ArrayRef<Value *> VL);
1605 
1606   /// \returns whether the VectorizableTree is fully vectorizable and will
1607   /// be beneficial even the tree height is tiny.
1608   bool isFullyVectorizableTinyTree() const;
1609 
1610   /// Reorder commutative or alt operands to get better probability of
1611   /// generating vectorized code.
1612   static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
1613                                              SmallVectorImpl<Value *> &Left,
1614                                              SmallVectorImpl<Value *> &Right,
1615                                              const DataLayout &DL,
1616                                              ScalarEvolution &SE,
1617                                              const BoUpSLP &R);
1618   struct TreeEntry {
1619     using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>;
1620     TreeEntry(VecTreeTy &Container) : Container(Container) {}
1621 
1622     /// \returns true if the scalars in VL are equal to this entry.
1623     bool isSame(ArrayRef<Value *> VL) const {
1624       if (VL.size() == Scalars.size())
1625         return std::equal(VL.begin(), VL.end(), Scalars.begin());
1626       return VL.size() == ReuseShuffleIndices.size() &&
1627              std::equal(
1628                  VL.begin(), VL.end(), ReuseShuffleIndices.begin(),
1629                  [this](Value *V, int Idx) { return V == Scalars[Idx]; });
1630     }
1631 
1632     /// A vector of scalars.
1633     ValueList Scalars;
1634 
1635     /// The Scalars are vectorized into this value. It is initialized to Null.
1636     Value *VectorizedValue = nullptr;
1637 
1638     /// Do we need to gather this sequence or vectorize it
1639     /// (either with vector instruction or with scatter/gather
1640     /// intrinsics for store/load)?
1641     enum EntryState { Vectorize, ScatterVectorize, NeedToGather };
1642     EntryState State;
1643 
1644     /// Does this sequence require some shuffling?
1645     SmallVector<int, 4> ReuseShuffleIndices;
1646 
1647     /// Does this entry require reordering?
1648     SmallVector<unsigned, 4> ReorderIndices;
1649 
1650     /// Points back to the VectorizableTree.
1651     ///
1652     /// Only used for Graphviz right now.  Unfortunately GraphTrait::NodeRef has
1653     /// to be a pointer and needs to be able to initialize the child iterator.
1654     /// Thus we need a reference back to the container to translate the indices
1655     /// to entries.
1656     VecTreeTy &Container;
1657 
1658     /// The TreeEntry index containing the user of this entry.  We can actually
1659     /// have multiple users so the data structure is not truly a tree.
1660     SmallVector<EdgeInfo, 1> UserTreeIndices;
1661 
1662     /// The index of this treeEntry in VectorizableTree.
1663     int Idx = -1;
1664 
1665   private:
1666     /// The operands of each instruction in each lane Operands[op_index][lane].
1667     /// Note: This helps avoid the replication of the code that performs the
1668     /// reordering of operands during buildTree_rec() and vectorizeTree().
1669     SmallVector<ValueList, 2> Operands;
1670 
1671     /// The main/alternate instruction.
1672     Instruction *MainOp = nullptr;
1673     Instruction *AltOp = nullptr;
1674 
1675   public:
1676     /// Set this bundle's \p OpIdx'th operand to \p OpVL.
1677     void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) {
1678       if (Operands.size() < OpIdx + 1)
1679         Operands.resize(OpIdx + 1);
1680       assert(Operands[OpIdx].empty() && "Already resized?");
1681       Operands[OpIdx].resize(Scalars.size());
1682       for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane)
1683         Operands[OpIdx][Lane] = OpVL[Lane];
1684     }
1685 
1686     /// Set the operands of this bundle in their original order.
1687     void setOperandsInOrder() {
1688       assert(Operands.empty() && "Already initialized?");
1689       auto *I0 = cast<Instruction>(Scalars[0]);
1690       Operands.resize(I0->getNumOperands());
1691       unsigned NumLanes = Scalars.size();
1692       for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands();
1693            OpIdx != NumOperands; ++OpIdx) {
1694         Operands[OpIdx].resize(NumLanes);
1695         for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1696           auto *I = cast<Instruction>(Scalars[Lane]);
1697           assert(I->getNumOperands() == NumOperands &&
1698                  "Expected same number of operands");
1699           Operands[OpIdx][Lane] = I->getOperand(OpIdx);
1700         }
1701       }
1702     }
1703 
1704     /// \returns the \p OpIdx operand of this TreeEntry.
1705     ValueList &getOperand(unsigned OpIdx) {
1706       assert(OpIdx < Operands.size() && "Off bounds");
1707       return Operands[OpIdx];
1708     }
1709 
1710     /// \returns the number of operands.
1711     unsigned getNumOperands() const { return Operands.size(); }
1712 
1713     /// \return the single \p OpIdx operand.
1714     Value *getSingleOperand(unsigned OpIdx) const {
1715       assert(OpIdx < Operands.size() && "Off bounds");
1716       assert(!Operands[OpIdx].empty() && "No operand available");
1717       return Operands[OpIdx][0];
1718     }
1719 
1720     /// Some of the instructions in the list have alternate opcodes.
1721     bool isAltShuffle() const {
1722       return getOpcode() != getAltOpcode();
1723     }
1724 
1725     bool isOpcodeOrAlt(Instruction *I) const {
1726       unsigned CheckedOpcode = I->getOpcode();
1727       return (getOpcode() == CheckedOpcode ||
1728               getAltOpcode() == CheckedOpcode);
1729     }
1730 
1731     /// Chooses the correct key for scheduling data. If \p Op has the same (or
1732     /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is
1733     /// \p OpValue.
1734     Value *isOneOf(Value *Op) const {
1735       auto *I = dyn_cast<Instruction>(Op);
1736       if (I && isOpcodeOrAlt(I))
1737         return Op;
1738       return MainOp;
1739     }
1740 
1741     void setOperations(const InstructionsState &S) {
1742       MainOp = S.MainOp;
1743       AltOp = S.AltOp;
1744     }
1745 
1746     Instruction *getMainOp() const {
1747       return MainOp;
1748     }
1749 
1750     Instruction *getAltOp() const {
1751       return AltOp;
1752     }
1753 
1754     /// The main/alternate opcodes for the list of instructions.
1755     unsigned getOpcode() const {
1756       return MainOp ? MainOp->getOpcode() : 0;
1757     }
1758 
1759     unsigned getAltOpcode() const {
1760       return AltOp ? AltOp->getOpcode() : 0;
1761     }
1762 
1763     /// Update operations state of this entry if reorder occurred.
1764     bool updateStateIfReorder() {
1765       if (ReorderIndices.empty())
1766         return false;
1767       InstructionsState S = getSameOpcode(Scalars, ReorderIndices.front());
1768       setOperations(S);
1769       return true;
1770     }
1771     /// When ReuseShuffleIndices is empty it just returns position of \p V
1772     /// within vector of Scalars. Otherwise, try to remap on its reuse index.
1773     int findLaneForValue(Value *V) const {
1774       unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V));
1775       assert(FoundLane < Scalars.size() && "Couldn't find extract lane");
1776       if (!ReuseShuffleIndices.empty()) {
1777         FoundLane = std::distance(ReuseShuffleIndices.begin(),
1778                                   find(ReuseShuffleIndices, FoundLane));
1779       }
1780       return FoundLane;
1781     }
1782 
1783 #ifndef NDEBUG
1784     /// Debug printer.
1785     LLVM_DUMP_METHOD void dump() const {
1786       dbgs() << Idx << ".\n";
1787       for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) {
1788         dbgs() << "Operand " << OpI << ":\n";
1789         for (const Value *V : Operands[OpI])
1790           dbgs().indent(2) << *V << "\n";
1791       }
1792       dbgs() << "Scalars: \n";
1793       for (Value *V : Scalars)
1794         dbgs().indent(2) << *V << "\n";
1795       dbgs() << "State: ";
1796       switch (State) {
1797       case Vectorize:
1798         dbgs() << "Vectorize\n";
1799         break;
1800       case ScatterVectorize:
1801         dbgs() << "ScatterVectorize\n";
1802         break;
1803       case NeedToGather:
1804         dbgs() << "NeedToGather\n";
1805         break;
1806       }
1807       dbgs() << "MainOp: ";
1808       if (MainOp)
1809         dbgs() << *MainOp << "\n";
1810       else
1811         dbgs() << "NULL\n";
1812       dbgs() << "AltOp: ";
1813       if (AltOp)
1814         dbgs() << *AltOp << "\n";
1815       else
1816         dbgs() << "NULL\n";
1817       dbgs() << "VectorizedValue: ";
1818       if (VectorizedValue)
1819         dbgs() << *VectorizedValue << "\n";
1820       else
1821         dbgs() << "NULL\n";
1822       dbgs() << "ReuseShuffleIndices: ";
1823       if (ReuseShuffleIndices.empty())
1824         dbgs() << "Empty";
1825       else
1826         for (unsigned ReuseIdx : ReuseShuffleIndices)
1827           dbgs() << ReuseIdx << ", ";
1828       dbgs() << "\n";
1829       dbgs() << "ReorderIndices: ";
1830       for (unsigned ReorderIdx : ReorderIndices)
1831         dbgs() << ReorderIdx << ", ";
1832       dbgs() << "\n";
1833       dbgs() << "UserTreeIndices: ";
1834       for (const auto &EInfo : UserTreeIndices)
1835         dbgs() << EInfo << ", ";
1836       dbgs() << "\n";
1837     }
1838 #endif
1839   };
1840 
1841 #ifndef NDEBUG
1842   void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost,
1843                      InstructionCost VecCost,
1844                      InstructionCost ScalarCost) const {
1845     dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump();
1846     dbgs() << "SLP: Costs:\n";
1847     dbgs() << "SLP:     ReuseShuffleCost = " << ReuseShuffleCost << "\n";
1848     dbgs() << "SLP:     VectorCost = " << VecCost << "\n";
1849     dbgs() << "SLP:     ScalarCost = " << ScalarCost << "\n";
1850     dbgs() << "SLP:     ReuseShuffleCost + VecCost - ScalarCost = " <<
1851                ReuseShuffleCost + VecCost - ScalarCost << "\n";
1852   }
1853 #endif
1854 
1855   /// Create a new VectorizableTree entry.
1856   TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle,
1857                           const InstructionsState &S,
1858                           const EdgeInfo &UserTreeIdx,
1859                           ArrayRef<unsigned> ReuseShuffleIndices = None,
1860                           ArrayRef<unsigned> ReorderIndices = None) {
1861     TreeEntry::EntryState EntryState =
1862         Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather;
1863     return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx,
1864                         ReuseShuffleIndices, ReorderIndices);
1865   }
1866 
1867   TreeEntry *newTreeEntry(ArrayRef<Value *> VL,
1868                           TreeEntry::EntryState EntryState,
1869                           Optional<ScheduleData *> Bundle,
1870                           const InstructionsState &S,
1871                           const EdgeInfo &UserTreeIdx,
1872                           ArrayRef<unsigned> ReuseShuffleIndices = None,
1873                           ArrayRef<unsigned> ReorderIndices = None) {
1874     assert(((!Bundle && EntryState == TreeEntry::NeedToGather) ||
1875             (Bundle && EntryState != TreeEntry::NeedToGather)) &&
1876            "Need to vectorize gather entry?");
1877     VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree));
1878     TreeEntry *Last = VectorizableTree.back().get();
1879     Last->Idx = VectorizableTree.size() - 1;
1880     Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end());
1881     Last->State = EntryState;
1882     Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(),
1883                                      ReuseShuffleIndices.end());
1884     Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end());
1885     Last->setOperations(S);
1886     if (Last->State != TreeEntry::NeedToGather) {
1887       for (Value *V : VL) {
1888         assert(!getTreeEntry(V) && "Scalar already in tree!");
1889         ScalarToTreeEntry[V] = Last;
1890       }
1891       // Update the scheduler bundle to point to this TreeEntry.
1892       unsigned Lane = 0;
1893       for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember;
1894            BundleMember = BundleMember->NextInBundle) {
1895         BundleMember->TE = Last;
1896         BundleMember->Lane = Lane;
1897         ++Lane;
1898       }
1899       assert((!Bundle.getValue() || Lane == VL.size()) &&
1900              "Bundle and VL out of sync");
1901     } else {
1902       MustGather.insert(VL.begin(), VL.end());
1903     }
1904 
1905     if (UserTreeIdx.UserTE)
1906       Last->UserTreeIndices.push_back(UserTreeIdx);
1907 
1908     return Last;
1909   }
1910 
1911   /// -- Vectorization State --
1912   /// Holds all of the tree entries.
1913   TreeEntry::VecTreeTy VectorizableTree;
1914 
1915 #ifndef NDEBUG
1916   /// Debug printer.
1917   LLVM_DUMP_METHOD void dumpVectorizableTree() const {
1918     for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) {
1919       VectorizableTree[Id]->dump();
1920       dbgs() << "\n";
1921     }
1922   }
1923 #endif
1924 
1925   TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); }
1926 
1927   const TreeEntry *getTreeEntry(Value *V) const {
1928     return ScalarToTreeEntry.lookup(V);
1929   }
1930 
1931   /// Maps a specific scalar to its tree entry.
1932   SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry;
1933 
1934   /// Maps a value to the proposed vectorizable size.
1935   SmallDenseMap<Value *, unsigned> InstrElementSize;
1936 
1937   /// A list of scalars that we found that we need to keep as scalars.
1938   ValueSet MustGather;
1939 
1940   /// This POD struct describes one external user in the vectorized tree.
1941   struct ExternalUser {
1942     ExternalUser(Value *S, llvm::User *U, int L)
1943         : Scalar(S), User(U), Lane(L) {}
1944 
1945     // Which scalar in our function.
1946     Value *Scalar;
1947 
1948     // Which user that uses the scalar.
1949     llvm::User *User;
1950 
1951     // Which lane does the scalar belong to.
1952     int Lane;
1953   };
1954   using UserList = SmallVector<ExternalUser, 16>;
1955 
1956   /// Checks if two instructions may access the same memory.
1957   ///
1958   /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it
1959   /// is invariant in the calling loop.
1960   bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1,
1961                  Instruction *Inst2) {
1962     // First check if the result is already in the cache.
1963     AliasCacheKey key = std::make_pair(Inst1, Inst2);
1964     Optional<bool> &result = AliasCache[key];
1965     if (result.hasValue()) {
1966       return result.getValue();
1967     }
1968     MemoryLocation Loc2 = getLocation(Inst2, AA);
1969     bool aliased = true;
1970     if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) {
1971       // Do the alias check.
1972       aliased = !AA->isNoAlias(Loc1, Loc2);
1973     }
1974     // Store the result in the cache.
1975     result = aliased;
1976     return aliased;
1977   }
1978 
1979   using AliasCacheKey = std::pair<Instruction *, Instruction *>;
1980 
1981   /// Cache for alias results.
1982   /// TODO: consider moving this to the AliasAnalysis itself.
1983   DenseMap<AliasCacheKey, Optional<bool>> AliasCache;
1984 
1985   /// Removes an instruction from its block and eventually deletes it.
1986   /// It's like Instruction::eraseFromParent() except that the actual deletion
1987   /// is delayed until BoUpSLP is destructed.
1988   /// This is required to ensure that there are no incorrect collisions in the
1989   /// AliasCache, which can happen if a new instruction is allocated at the
1990   /// same address as a previously deleted instruction.
1991   void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) {
1992     auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first;
1993     It->getSecond() = It->getSecond() && ReplaceOpsWithUndef;
1994   }
1995 
1996   /// Temporary store for deleted instructions. Instructions will be deleted
1997   /// eventually when the BoUpSLP is destructed.
1998   DenseMap<Instruction *, bool> DeletedInstructions;
1999 
2000   /// A list of values that need to extracted out of the tree.
2001   /// This list holds pairs of (Internal Scalar : External User). External User
2002   /// can be nullptr, it means that this Internal Scalar will be used later,
2003   /// after vectorization.
2004   UserList ExternalUses;
2005 
2006   /// Values used only by @llvm.assume calls.
2007   SmallPtrSet<const Value *, 32> EphValues;
2008 
2009   /// Holds all of the instructions that we gathered.
2010   SetVector<Instruction *> GatherSeq;
2011 
2012   /// A list of blocks that we are going to CSE.
2013   SetVector<BasicBlock *> CSEBlocks;
2014 
2015   /// Contains all scheduling relevant data for an instruction.
2016   /// A ScheduleData either represents a single instruction or a member of an
2017   /// instruction bundle (= a group of instructions which is combined into a
2018   /// vector instruction).
2019   struct ScheduleData {
2020     // The initial value for the dependency counters. It means that the
2021     // dependencies are not calculated yet.
2022     enum { InvalidDeps = -1 };
2023 
2024     ScheduleData() = default;
2025 
2026     void init(int BlockSchedulingRegionID, Value *OpVal) {
2027       FirstInBundle = this;
2028       NextInBundle = nullptr;
2029       NextLoadStore = nullptr;
2030       IsScheduled = false;
2031       SchedulingRegionID = BlockSchedulingRegionID;
2032       UnscheduledDepsInBundle = UnscheduledDeps;
2033       clearDependencies();
2034       OpValue = OpVal;
2035       TE = nullptr;
2036       Lane = -1;
2037     }
2038 
2039     /// Returns true if the dependency information has been calculated.
2040     bool hasValidDependencies() const { return Dependencies != InvalidDeps; }
2041 
2042     /// Returns true for single instructions and for bundle representatives
2043     /// (= the head of a bundle).
2044     bool isSchedulingEntity() const { return FirstInBundle == this; }
2045 
2046     /// Returns true if it represents an instruction bundle and not only a
2047     /// single instruction.
2048     bool isPartOfBundle() const {
2049       return NextInBundle != nullptr || FirstInBundle != this;
2050     }
2051 
2052     /// Returns true if it is ready for scheduling, i.e. it has no more
2053     /// unscheduled depending instructions/bundles.
2054     bool isReady() const {
2055       assert(isSchedulingEntity() &&
2056              "can't consider non-scheduling entity for ready list");
2057       return UnscheduledDepsInBundle == 0 && !IsScheduled;
2058     }
2059 
2060     /// Modifies the number of unscheduled dependencies, also updating it for
2061     /// the whole bundle.
2062     int incrementUnscheduledDeps(int Incr) {
2063       UnscheduledDeps += Incr;
2064       return FirstInBundle->UnscheduledDepsInBundle += Incr;
2065     }
2066 
2067     /// Sets the number of unscheduled dependencies to the number of
2068     /// dependencies.
2069     void resetUnscheduledDeps() {
2070       incrementUnscheduledDeps(Dependencies - UnscheduledDeps);
2071     }
2072 
2073     /// Clears all dependency information.
2074     void clearDependencies() {
2075       Dependencies = InvalidDeps;
2076       resetUnscheduledDeps();
2077       MemoryDependencies.clear();
2078     }
2079 
2080     void dump(raw_ostream &os) const {
2081       if (!isSchedulingEntity()) {
2082         os << "/ " << *Inst;
2083       } else if (NextInBundle) {
2084         os << '[' << *Inst;
2085         ScheduleData *SD = NextInBundle;
2086         while (SD) {
2087           os << ';' << *SD->Inst;
2088           SD = SD->NextInBundle;
2089         }
2090         os << ']';
2091       } else {
2092         os << *Inst;
2093       }
2094     }
2095 
2096     Instruction *Inst = nullptr;
2097 
2098     /// Points to the head in an instruction bundle (and always to this for
2099     /// single instructions).
2100     ScheduleData *FirstInBundle = nullptr;
2101 
2102     /// Single linked list of all instructions in a bundle. Null if it is a
2103     /// single instruction.
2104     ScheduleData *NextInBundle = nullptr;
2105 
2106     /// Single linked list of all memory instructions (e.g. load, store, call)
2107     /// in the block - until the end of the scheduling region.
2108     ScheduleData *NextLoadStore = nullptr;
2109 
2110     /// The dependent memory instructions.
2111     /// This list is derived on demand in calculateDependencies().
2112     SmallVector<ScheduleData *, 4> MemoryDependencies;
2113 
2114     /// This ScheduleData is in the current scheduling region if this matches
2115     /// the current SchedulingRegionID of BlockScheduling.
2116     int SchedulingRegionID = 0;
2117 
2118     /// Used for getting a "good" final ordering of instructions.
2119     int SchedulingPriority = 0;
2120 
2121     /// The number of dependencies. Constitutes of the number of users of the
2122     /// instruction plus the number of dependent memory instructions (if any).
2123     /// This value is calculated on demand.
2124     /// If InvalidDeps, the number of dependencies is not calculated yet.
2125     int Dependencies = InvalidDeps;
2126 
2127     /// The number of dependencies minus the number of dependencies of scheduled
2128     /// instructions. As soon as this is zero, the instruction/bundle gets ready
2129     /// for scheduling.
2130     /// Note that this is negative as long as Dependencies is not calculated.
2131     int UnscheduledDeps = InvalidDeps;
2132 
2133     /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for
2134     /// single instructions.
2135     int UnscheduledDepsInBundle = InvalidDeps;
2136 
2137     /// True if this instruction is scheduled (or considered as scheduled in the
2138     /// dry-run).
2139     bool IsScheduled = false;
2140 
2141     /// Opcode of the current instruction in the schedule data.
2142     Value *OpValue = nullptr;
2143 
2144     /// The TreeEntry that this instruction corresponds to.
2145     TreeEntry *TE = nullptr;
2146 
2147     /// The lane of this node in the TreeEntry.
2148     int Lane = -1;
2149   };
2150 
2151 #ifndef NDEBUG
2152   friend inline raw_ostream &operator<<(raw_ostream &os,
2153                                         const BoUpSLP::ScheduleData &SD) {
2154     SD.dump(os);
2155     return os;
2156   }
2157 #endif
2158 
2159   friend struct GraphTraits<BoUpSLP *>;
2160   friend struct DOTGraphTraits<BoUpSLP *>;
2161 
2162   /// Contains all scheduling data for a basic block.
2163   struct BlockScheduling {
2164     BlockScheduling(BasicBlock *BB)
2165         : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {}
2166 
2167     void clear() {
2168       ReadyInsts.clear();
2169       ScheduleStart = nullptr;
2170       ScheduleEnd = nullptr;
2171       FirstLoadStoreInRegion = nullptr;
2172       LastLoadStoreInRegion = nullptr;
2173 
2174       // Reduce the maximum schedule region size by the size of the
2175       // previous scheduling run.
2176       ScheduleRegionSizeLimit -= ScheduleRegionSize;
2177       if (ScheduleRegionSizeLimit < MinScheduleRegionSize)
2178         ScheduleRegionSizeLimit = MinScheduleRegionSize;
2179       ScheduleRegionSize = 0;
2180 
2181       // Make a new scheduling region, i.e. all existing ScheduleData is not
2182       // in the new region yet.
2183       ++SchedulingRegionID;
2184     }
2185 
2186     ScheduleData *getScheduleData(Value *V) {
2187       ScheduleData *SD = ScheduleDataMap[V];
2188       if (SD && SD->SchedulingRegionID == SchedulingRegionID)
2189         return SD;
2190       return nullptr;
2191     }
2192 
2193     ScheduleData *getScheduleData(Value *V, Value *Key) {
2194       if (V == Key)
2195         return getScheduleData(V);
2196       auto I = ExtraScheduleDataMap.find(V);
2197       if (I != ExtraScheduleDataMap.end()) {
2198         ScheduleData *SD = I->second[Key];
2199         if (SD && SD->SchedulingRegionID == SchedulingRegionID)
2200           return SD;
2201       }
2202       return nullptr;
2203     }
2204 
2205     bool isInSchedulingRegion(ScheduleData *SD) const {
2206       return SD->SchedulingRegionID == SchedulingRegionID;
2207     }
2208 
2209     /// Marks an instruction as scheduled and puts all dependent ready
2210     /// instructions into the ready-list.
2211     template <typename ReadyListType>
2212     void schedule(ScheduleData *SD, ReadyListType &ReadyList) {
2213       SD->IsScheduled = true;
2214       LLVM_DEBUG(dbgs() << "SLP:   schedule " << *SD << "\n");
2215 
2216       ScheduleData *BundleMember = SD;
2217       while (BundleMember) {
2218         if (BundleMember->Inst != BundleMember->OpValue) {
2219           BundleMember = BundleMember->NextInBundle;
2220           continue;
2221         }
2222         // Handle the def-use chain dependencies.
2223 
2224         // Decrement the unscheduled counter and insert to ready list if ready.
2225         auto &&DecrUnsched = [this, &ReadyList](Instruction *I) {
2226           doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) {
2227             if (OpDef && OpDef->hasValidDependencies() &&
2228                 OpDef->incrementUnscheduledDeps(-1) == 0) {
2229               // There are no more unscheduled dependencies after
2230               // decrementing, so we can put the dependent instruction
2231               // into the ready list.
2232               ScheduleData *DepBundle = OpDef->FirstInBundle;
2233               assert(!DepBundle->IsScheduled &&
2234                      "already scheduled bundle gets ready");
2235               ReadyList.insert(DepBundle);
2236               LLVM_DEBUG(dbgs()
2237                          << "SLP:    gets ready (def): " << *DepBundle << "\n");
2238             }
2239           });
2240         };
2241 
2242         // If BundleMember is a vector bundle, its operands may have been
2243         // reordered duiring buildTree(). We therefore need to get its operands
2244         // through the TreeEntry.
2245         if (TreeEntry *TE = BundleMember->TE) {
2246           int Lane = BundleMember->Lane;
2247           assert(Lane >= 0 && "Lane not set");
2248 
2249           // Since vectorization tree is being built recursively this assertion
2250           // ensures that the tree entry has all operands set before reaching
2251           // this code. Couple of exceptions known at the moment are extracts
2252           // where their second (immediate) operand is not added. Since
2253           // immediates do not affect scheduler behavior this is considered
2254           // okay.
2255           auto *In = TE->getMainOp();
2256           assert(In &&
2257                  (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) ||
2258                   In->getNumOperands() == TE->getNumOperands()) &&
2259                  "Missed TreeEntry operands?");
2260           (void)In; // fake use to avoid build failure when assertions disabled
2261 
2262           for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands();
2263                OpIdx != NumOperands; ++OpIdx)
2264             if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane]))
2265               DecrUnsched(I);
2266         } else {
2267           // If BundleMember is a stand-alone instruction, no operand reordering
2268           // has taken place, so we directly access its operands.
2269           for (Use &U : BundleMember->Inst->operands())
2270             if (auto *I = dyn_cast<Instruction>(U.get()))
2271               DecrUnsched(I);
2272         }
2273         // Handle the memory dependencies.
2274         for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) {
2275           if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) {
2276             // There are no more unscheduled dependencies after decrementing,
2277             // so we can put the dependent instruction into the ready list.
2278             ScheduleData *DepBundle = MemoryDepSD->FirstInBundle;
2279             assert(!DepBundle->IsScheduled &&
2280                    "already scheduled bundle gets ready");
2281             ReadyList.insert(DepBundle);
2282             LLVM_DEBUG(dbgs()
2283                        << "SLP:    gets ready (mem): " << *DepBundle << "\n");
2284           }
2285         }
2286         BundleMember = BundleMember->NextInBundle;
2287       }
2288     }
2289 
2290     void doForAllOpcodes(Value *V,
2291                          function_ref<void(ScheduleData *SD)> Action) {
2292       if (ScheduleData *SD = getScheduleData(V))
2293         Action(SD);
2294       auto I = ExtraScheduleDataMap.find(V);
2295       if (I != ExtraScheduleDataMap.end())
2296         for (auto &P : I->second)
2297           if (P.second->SchedulingRegionID == SchedulingRegionID)
2298             Action(P.second);
2299     }
2300 
2301     /// Put all instructions into the ReadyList which are ready for scheduling.
2302     template <typename ReadyListType>
2303     void initialFillReadyList(ReadyListType &ReadyList) {
2304       for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
2305         doForAllOpcodes(I, [&](ScheduleData *SD) {
2306           if (SD->isSchedulingEntity() && SD->isReady()) {
2307             ReadyList.insert(SD);
2308             LLVM_DEBUG(dbgs()
2309                        << "SLP:    initially in ready list: " << *I << "\n");
2310           }
2311         });
2312       }
2313     }
2314 
2315     /// Checks if a bundle of instructions can be scheduled, i.e. has no
2316     /// cyclic dependencies. This is only a dry-run, no instructions are
2317     /// actually moved at this stage.
2318     /// \returns the scheduling bundle. The returned Optional value is non-None
2319     /// if \p VL is allowed to be scheduled.
2320     Optional<ScheduleData *>
2321     tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP,
2322                       const InstructionsState &S);
2323 
2324     /// Un-bundles a group of instructions.
2325     void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue);
2326 
2327     /// Allocates schedule data chunk.
2328     ScheduleData *allocateScheduleDataChunks();
2329 
2330     /// Extends the scheduling region so that V is inside the region.
2331     /// \returns true if the region size is within the limit.
2332     bool extendSchedulingRegion(Value *V, const InstructionsState &S);
2333 
2334     /// Initialize the ScheduleData structures for new instructions in the
2335     /// scheduling region.
2336     void initScheduleData(Instruction *FromI, Instruction *ToI,
2337                           ScheduleData *PrevLoadStore,
2338                           ScheduleData *NextLoadStore);
2339 
2340     /// Updates the dependency information of a bundle and of all instructions/
2341     /// bundles which depend on the original bundle.
2342     void calculateDependencies(ScheduleData *SD, bool InsertInReadyList,
2343                                BoUpSLP *SLP);
2344 
2345     /// Sets all instruction in the scheduling region to un-scheduled.
2346     void resetSchedule();
2347 
2348     BasicBlock *BB;
2349 
2350     /// Simple memory allocation for ScheduleData.
2351     std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks;
2352 
2353     /// The size of a ScheduleData array in ScheduleDataChunks.
2354     int ChunkSize;
2355 
2356     /// The allocator position in the current chunk, which is the last entry
2357     /// of ScheduleDataChunks.
2358     int ChunkPos;
2359 
2360     /// Attaches ScheduleData to Instruction.
2361     /// Note that the mapping survives during all vectorization iterations, i.e.
2362     /// ScheduleData structures are recycled.
2363     DenseMap<Value *, ScheduleData *> ScheduleDataMap;
2364 
2365     /// Attaches ScheduleData to Instruction with the leading key.
2366     DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>>
2367         ExtraScheduleDataMap;
2368 
2369     struct ReadyList : SmallVector<ScheduleData *, 8> {
2370       void insert(ScheduleData *SD) { push_back(SD); }
2371     };
2372 
2373     /// The ready-list for scheduling (only used for the dry-run).
2374     ReadyList ReadyInsts;
2375 
2376     /// The first instruction of the scheduling region.
2377     Instruction *ScheduleStart = nullptr;
2378 
2379     /// The first instruction _after_ the scheduling region.
2380     Instruction *ScheduleEnd = nullptr;
2381 
2382     /// The first memory accessing instruction in the scheduling region
2383     /// (can be null).
2384     ScheduleData *FirstLoadStoreInRegion = nullptr;
2385 
2386     /// The last memory accessing instruction in the scheduling region
2387     /// (can be null).
2388     ScheduleData *LastLoadStoreInRegion = nullptr;
2389 
2390     /// The current size of the scheduling region.
2391     int ScheduleRegionSize = 0;
2392 
2393     /// The maximum size allowed for the scheduling region.
2394     int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget;
2395 
2396     /// The ID of the scheduling region. For a new vectorization iteration this
2397     /// is incremented which "removes" all ScheduleData from the region.
2398     // Make sure that the initial SchedulingRegionID is greater than the
2399     // initial SchedulingRegionID in ScheduleData (which is 0).
2400     int SchedulingRegionID = 1;
2401   };
2402 
2403   /// Attaches the BlockScheduling structures to basic blocks.
2404   MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules;
2405 
2406   /// Performs the "real" scheduling. Done before vectorization is actually
2407   /// performed in a basic block.
2408   void scheduleBlock(BlockScheduling *BS);
2409 
2410   /// List of users to ignore during scheduling and that don't need extracting.
2411   ArrayRef<Value *> UserIgnoreList;
2412 
2413   /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of
2414   /// sorted SmallVectors of unsigned.
2415   struct OrdersTypeDenseMapInfo {
2416     static OrdersType getEmptyKey() {
2417       OrdersType V;
2418       V.push_back(~1U);
2419       return V;
2420     }
2421 
2422     static OrdersType getTombstoneKey() {
2423       OrdersType V;
2424       V.push_back(~2U);
2425       return V;
2426     }
2427 
2428     static unsigned getHashValue(const OrdersType &V) {
2429       return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
2430     }
2431 
2432     static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) {
2433       return LHS == RHS;
2434     }
2435   };
2436 
2437   /// Contains orders of operations along with the number of bundles that have
2438   /// operations in this order. It stores only those orders that require
2439   /// reordering, if reordering is not required it is counted using \a
2440   /// NumOpsWantToKeepOriginalOrder.
2441   DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder;
2442   /// Number of bundles that do not require reordering.
2443   unsigned NumOpsWantToKeepOriginalOrder = 0;
2444 
2445   // Analysis and block reference.
2446   Function *F;
2447   ScalarEvolution *SE;
2448   TargetTransformInfo *TTI;
2449   TargetLibraryInfo *TLI;
2450   AAResults *AA;
2451   LoopInfo *LI;
2452   DominatorTree *DT;
2453   AssumptionCache *AC;
2454   DemandedBits *DB;
2455   const DataLayout *DL;
2456   OptimizationRemarkEmitter *ORE;
2457 
2458   unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt.
2459   unsigned MinVecRegSize; // Set by cl::opt (default: 128).
2460 
2461   /// Instruction builder to construct the vectorized tree.
2462   IRBuilder<> Builder;
2463 
2464   /// A map of scalar integer values to the smallest bit width with which they
2465   /// can legally be represented. The values map to (width, signed) pairs,
2466   /// where "width" indicates the minimum bit width and "signed" is True if the
2467   /// value must be signed-extended, rather than zero-extended, back to its
2468   /// original width.
2469   MapVector<Value *, std::pair<uint64_t, bool>> MinBWs;
2470 };
2471 
2472 } // end namespace slpvectorizer
2473 
2474 template <> struct GraphTraits<BoUpSLP *> {
2475   using TreeEntry = BoUpSLP::TreeEntry;
2476 
2477   /// NodeRef has to be a pointer per the GraphWriter.
2478   using NodeRef = TreeEntry *;
2479 
2480   using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy;
2481 
2482   /// Add the VectorizableTree to the index iterator to be able to return
2483   /// TreeEntry pointers.
2484   struct ChildIteratorType
2485       : public iterator_adaptor_base<
2486             ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> {
2487     ContainerTy &VectorizableTree;
2488 
2489     ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W,
2490                       ContainerTy &VT)
2491         : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {}
2492 
2493     NodeRef operator*() { return I->UserTE; }
2494   };
2495 
2496   static NodeRef getEntryNode(BoUpSLP &R) {
2497     return R.VectorizableTree[0].get();
2498   }
2499 
2500   static ChildIteratorType child_begin(NodeRef N) {
2501     return {N->UserTreeIndices.begin(), N->Container};
2502   }
2503 
2504   static ChildIteratorType child_end(NodeRef N) {
2505     return {N->UserTreeIndices.end(), N->Container};
2506   }
2507 
2508   /// For the node iterator we just need to turn the TreeEntry iterator into a
2509   /// TreeEntry* iterator so that it dereferences to NodeRef.
2510   class nodes_iterator {
2511     using ItTy = ContainerTy::iterator;
2512     ItTy It;
2513 
2514   public:
2515     nodes_iterator(const ItTy &It2) : It(It2) {}
2516     NodeRef operator*() { return It->get(); }
2517     nodes_iterator operator++() {
2518       ++It;
2519       return *this;
2520     }
2521     bool operator!=(const nodes_iterator &N2) const { return N2.It != It; }
2522   };
2523 
2524   static nodes_iterator nodes_begin(BoUpSLP *R) {
2525     return nodes_iterator(R->VectorizableTree.begin());
2526   }
2527 
2528   static nodes_iterator nodes_end(BoUpSLP *R) {
2529     return nodes_iterator(R->VectorizableTree.end());
2530   }
2531 
2532   static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); }
2533 };
2534 
2535 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits {
2536   using TreeEntry = BoUpSLP::TreeEntry;
2537 
2538   DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
2539 
2540   std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) {
2541     std::string Str;
2542     raw_string_ostream OS(Str);
2543     if (isSplat(Entry->Scalars)) {
2544       OS << "<splat> " << *Entry->Scalars[0];
2545       return Str;
2546     }
2547     for (auto V : Entry->Scalars) {
2548       OS << *V;
2549       if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) {
2550             return EU.Scalar == V;
2551           }))
2552         OS << " <extract>";
2553       OS << "\n";
2554     }
2555     return Str;
2556   }
2557 
2558   static std::string getNodeAttributes(const TreeEntry *Entry,
2559                                        const BoUpSLP *) {
2560     if (Entry->State == TreeEntry::NeedToGather)
2561       return "color=red";
2562     return "";
2563   }
2564 };
2565 
2566 } // end namespace llvm
2567 
2568 BoUpSLP::~BoUpSLP() {
2569   for (const auto &Pair : DeletedInstructions) {
2570     // Replace operands of ignored instructions with Undefs in case if they were
2571     // marked for deletion.
2572     if (Pair.getSecond()) {
2573       Value *Undef = UndefValue::get(Pair.getFirst()->getType());
2574       Pair.getFirst()->replaceAllUsesWith(Undef);
2575     }
2576     Pair.getFirst()->dropAllReferences();
2577   }
2578   for (const auto &Pair : DeletedInstructions) {
2579     assert(Pair.getFirst()->use_empty() &&
2580            "trying to erase instruction with users.");
2581     Pair.getFirst()->eraseFromParent();
2582   }
2583 #ifdef EXPENSIVE_CHECKS
2584   // If we could guarantee that this call is not extremely slow, we could
2585   // remove the ifdef limitation (see PR47712).
2586   assert(!verifyFunction(*F, &dbgs()));
2587 #endif
2588 }
2589 
2590 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) {
2591   for (auto *V : AV) {
2592     if (auto *I = dyn_cast<Instruction>(V))
2593       eraseInstruction(I, /*ReplaceOpsWithUndef=*/true);
2594   };
2595 }
2596 
2597 void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
2598                         ArrayRef<Value *> UserIgnoreLst) {
2599   ExtraValueToDebugLocsMap ExternallyUsedValues;
2600   buildTree(Roots, ExternallyUsedValues, UserIgnoreLst);
2601 }
2602 
2603 void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
2604                         ExtraValueToDebugLocsMap &ExternallyUsedValues,
2605                         ArrayRef<Value *> UserIgnoreLst) {
2606   deleteTree();
2607   UserIgnoreList = UserIgnoreLst;
2608   if (!allSameType(Roots))
2609     return;
2610   buildTree_rec(Roots, 0, EdgeInfo());
2611 
2612   // Collect the values that we need to extract from the tree.
2613   for (auto &TEPtr : VectorizableTree) {
2614     TreeEntry *Entry = TEPtr.get();
2615 
2616     // No need to handle users of gathered values.
2617     if (Entry->State == TreeEntry::NeedToGather)
2618       continue;
2619 
2620     // For each lane:
2621     for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
2622       Value *Scalar = Entry->Scalars[Lane];
2623       int FoundLane = Entry->findLaneForValue(Scalar);
2624 
2625       // Check if the scalar is externally used as an extra arg.
2626       auto ExtI = ExternallyUsedValues.find(Scalar);
2627       if (ExtI != ExternallyUsedValues.end()) {
2628         LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane "
2629                           << Lane << " from " << *Scalar << ".\n");
2630         ExternalUses.emplace_back(Scalar, nullptr, FoundLane);
2631       }
2632       for (User *U : Scalar->users()) {
2633         LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n");
2634 
2635         Instruction *UserInst = dyn_cast<Instruction>(U);
2636         if (!UserInst)
2637           continue;
2638 
2639         // Skip in-tree scalars that become vectors
2640         if (TreeEntry *UseEntry = getTreeEntry(U)) {
2641           Value *UseScalar = UseEntry->Scalars[0];
2642           // Some in-tree scalars will remain as scalar in vectorized
2643           // instructions. If that is the case, the one in Lane 0 will
2644           // be used.
2645           if (UseScalar != U ||
2646               UseEntry->State == TreeEntry::ScatterVectorize ||
2647               !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) {
2648             LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U
2649                               << ".\n");
2650             assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state");
2651             continue;
2652           }
2653         }
2654 
2655         // Ignore users in the user ignore list.
2656         if (is_contained(UserIgnoreList, UserInst))
2657           continue;
2658 
2659         LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane "
2660                           << Lane << " from " << *Scalar << ".\n");
2661         ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane));
2662       }
2663     }
2664   }
2665 }
2666 
2667 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth,
2668                             const EdgeInfo &UserTreeIdx) {
2669   assert((allConstant(VL) || allSameType(VL)) && "Invalid types!");
2670 
2671   InstructionsState S = getSameOpcode(VL);
2672   if (Depth == RecursionMaxDepth) {
2673     LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n");
2674     newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2675     return;
2676   }
2677 
2678   // Don't handle scalable vectors
2679   if (S.getOpcode() == Instruction::ExtractElement &&
2680       isa<ScalableVectorType>(
2681           cast<ExtractElementInst>(S.OpValue)->getVectorOperandType())) {
2682     LLVM_DEBUG(dbgs() << "SLP: Gathering due to scalable vector type.\n");
2683     newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2684     return;
2685   }
2686 
2687   // Don't handle vectors.
2688   if (S.OpValue->getType()->isVectorTy() &&
2689       !isa<InsertElementInst>(S.OpValue)) {
2690     LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n");
2691     newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2692     return;
2693   }
2694 
2695   if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue))
2696     if (SI->getValueOperand()->getType()->isVectorTy()) {
2697       LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n");
2698       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2699       return;
2700     }
2701 
2702   // If all of the operands are identical or constant we have a simple solution.
2703   if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) {
2704     LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n");
2705     newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2706     return;
2707   }
2708 
2709   // We now know that this is a vector of instructions of the same type from
2710   // the same block.
2711 
2712   // Don't vectorize ephemeral values.
2713   for (Value *V : VL) {
2714     if (EphValues.count(V)) {
2715       LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V
2716                         << ") is ephemeral.\n");
2717       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2718       return;
2719     }
2720   }
2721 
2722   // Check if this is a duplicate of another entry.
2723   if (TreeEntry *E = getTreeEntry(S.OpValue)) {
2724     LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n");
2725     if (!E->isSame(VL)) {
2726       LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n");
2727       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2728       return;
2729     }
2730     // Record the reuse of the tree node.  FIXME, currently this is only used to
2731     // properly draw the graph rather than for the actual vectorization.
2732     E->UserTreeIndices.push_back(UserTreeIdx);
2733     LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue
2734                       << ".\n");
2735     return;
2736   }
2737 
2738   // Check that none of the instructions in the bundle are already in the tree.
2739   for (Value *V : VL) {
2740     auto *I = dyn_cast<Instruction>(V);
2741     if (!I)
2742       continue;
2743     if (getTreeEntry(I)) {
2744       LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V
2745                         << ") is already in tree.\n");
2746       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2747       return;
2748     }
2749   }
2750 
2751   // If any of the scalars is marked as a value that needs to stay scalar, then
2752   // we need to gather the scalars.
2753   // The reduction nodes (stored in UserIgnoreList) also should stay scalar.
2754   for (Value *V : VL) {
2755     if (MustGather.count(V) || is_contained(UserIgnoreList, V)) {
2756       LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n");
2757       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2758       return;
2759     }
2760   }
2761 
2762   // Check that all of the users of the scalars that we want to vectorize are
2763   // schedulable.
2764   auto *VL0 = cast<Instruction>(S.OpValue);
2765   BasicBlock *BB = VL0->getParent();
2766 
2767   if (!DT->isReachableFromEntry(BB)) {
2768     // Don't go into unreachable blocks. They may contain instructions with
2769     // dependency cycles which confuse the final scheduling.
2770     LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n");
2771     newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2772     return;
2773   }
2774 
2775   // Check that every instruction appears once in this bundle.
2776   SmallVector<unsigned, 4> ReuseShuffleIndicies;
2777   SmallVector<Value *, 4> UniqueValues;
2778   DenseMap<Value *, unsigned> UniquePositions;
2779   for (Value *V : VL) {
2780     auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
2781     ReuseShuffleIndicies.emplace_back(Res.first->second);
2782     if (Res.second)
2783       UniqueValues.emplace_back(V);
2784   }
2785   size_t NumUniqueScalarValues = UniqueValues.size();
2786   if (NumUniqueScalarValues == VL.size()) {
2787     ReuseShuffleIndicies.clear();
2788   } else {
2789     LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n");
2790     if (NumUniqueScalarValues <= 1 ||
2791         !llvm::isPowerOf2_32(NumUniqueScalarValues)) {
2792       LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n");
2793       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2794       return;
2795     }
2796     VL = UniqueValues;
2797   }
2798 
2799   auto &BSRef = BlocksSchedules[BB];
2800   if (!BSRef)
2801     BSRef = std::make_unique<BlockScheduling>(BB);
2802 
2803   BlockScheduling &BS = *BSRef.get();
2804 
2805   Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S);
2806   if (!Bundle) {
2807     LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n");
2808     assert((!BS.getScheduleData(VL0) ||
2809             !BS.getScheduleData(VL0)->isPartOfBundle()) &&
2810            "tryScheduleBundle should cancelScheduling on failure");
2811     newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2812                  ReuseShuffleIndicies);
2813     return;
2814   }
2815   LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n");
2816 
2817   unsigned ShuffleOrOp = S.isAltShuffle() ?
2818                 (unsigned) Instruction::ShuffleVector : S.getOpcode();
2819   switch (ShuffleOrOp) {
2820     case Instruction::PHI: {
2821       auto *PH = cast<PHINode>(VL0);
2822 
2823       // Check for terminator values (e.g. invoke).
2824       for (Value *V : VL)
2825         for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) {
2826           Instruction *Term = dyn_cast<Instruction>(
2827               cast<PHINode>(V)->getIncomingValueForBlock(
2828                   PH->getIncomingBlock(I)));
2829           if (Term && Term->isTerminator()) {
2830             LLVM_DEBUG(dbgs()
2831                        << "SLP: Need to swizzle PHINodes (terminator use).\n");
2832             BS.cancelScheduling(VL, VL0);
2833             newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2834                          ReuseShuffleIndicies);
2835             return;
2836           }
2837         }
2838 
2839       TreeEntry *TE =
2840           newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies);
2841       LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n");
2842 
2843       // Keeps the reordered operands to avoid code duplication.
2844       SmallVector<ValueList, 2> OperandsVec;
2845       for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) {
2846         if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) {
2847           ValueList Operands(VL.size(), PoisonValue::get(PH->getType()));
2848           TE->setOperand(I, Operands);
2849           OperandsVec.push_back(Operands);
2850           continue;
2851         }
2852         ValueList Operands;
2853         // Prepare the operand vector.
2854         for (Value *V : VL)
2855           Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(
2856               PH->getIncomingBlock(I)));
2857         TE->setOperand(I, Operands);
2858         OperandsVec.push_back(Operands);
2859       }
2860       for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx)
2861         buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx});
2862       return;
2863     }
2864     case Instruction::ExtractValue:
2865     case Instruction::ExtractElement: {
2866       OrdersType CurrentOrder;
2867       bool Reuse = canReuseExtract(VL, VL0, CurrentOrder);
2868       if (Reuse) {
2869         LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n");
2870         ++NumOpsWantToKeepOriginalOrder;
2871         newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2872                      ReuseShuffleIndicies);
2873         // This is a special case, as it does not gather, but at the same time
2874         // we are not extending buildTree_rec() towards the operands.
2875         ValueList Op0;
2876         Op0.assign(VL.size(), VL0->getOperand(0));
2877         VectorizableTree.back()->setOperand(0, Op0);
2878         return;
2879       }
2880       if (!CurrentOrder.empty()) {
2881         LLVM_DEBUG({
2882           dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
2883                     "with order";
2884           for (unsigned Idx : CurrentOrder)
2885             dbgs() << " " << Idx;
2886           dbgs() << "\n";
2887         });
2888         // Insert new order with initial value 0, if it does not exist,
2889         // otherwise return the iterator to the existing one.
2890         newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2891                      ReuseShuffleIndicies, CurrentOrder);
2892         findRootOrder(CurrentOrder);
2893         ++NumOpsWantToKeepOrder[CurrentOrder];
2894         // This is a special case, as it does not gather, but at the same time
2895         // we are not extending buildTree_rec() towards the operands.
2896         ValueList Op0;
2897         Op0.assign(VL.size(), VL0->getOperand(0));
2898         VectorizableTree.back()->setOperand(0, Op0);
2899         return;
2900       }
2901       LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n");
2902       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2903                    ReuseShuffleIndicies);
2904       BS.cancelScheduling(VL, VL0);
2905       return;
2906     }
2907     case Instruction::InsertElement: {
2908       assert(ReuseShuffleIndicies.empty() && "All inserts should be unique");
2909 
2910       // Check that we have a buildvector and not a shuffle of 2 or more
2911       // different vectors.
2912       ValueSet SourceVectors;
2913       for (Value *V : VL)
2914         SourceVectors.insert(cast<Instruction>(V)->getOperand(0));
2915 
2916       if (count_if(VL, [&SourceVectors](Value *V) {
2917             return !SourceVectors.contains(V);
2918           }) >= 2) {
2919         // Found 2nd source vector - cancel.
2920         LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with "
2921                              "different source vectors.\n");
2922         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2923                      ReuseShuffleIndicies);
2924         BS.cancelScheduling(VL, VL0);
2925         return;
2926       }
2927 
2928       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx);
2929       LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n");
2930 
2931       constexpr int NumOps = 2;
2932       ValueList VectorOperands[NumOps];
2933       for (int I = 0; I < NumOps; ++I) {
2934         for (Value *V : VL)
2935           VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I));
2936 
2937         TE->setOperand(I, VectorOperands[I]);
2938       }
2939       buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, 0});
2940       return;
2941     }
2942     case Instruction::Load: {
2943       // Check that a vectorized load would load the same memory as a scalar
2944       // load. For example, we don't want to vectorize loads that are smaller
2945       // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM
2946       // treats loading/storing it as an i8 struct. If we vectorize loads/stores
2947       // from such a struct, we read/write packed bits disagreeing with the
2948       // unvectorized version.
2949       Type *ScalarTy = VL0->getType();
2950 
2951       if (DL->getTypeSizeInBits(ScalarTy) !=
2952           DL->getTypeAllocSizeInBits(ScalarTy)) {
2953         BS.cancelScheduling(VL, VL0);
2954         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2955                      ReuseShuffleIndicies);
2956         LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n");
2957         return;
2958       }
2959 
2960       // Make sure all loads in the bundle are simple - we can't vectorize
2961       // atomic or volatile loads.
2962       SmallVector<Value *, 4> PointerOps(VL.size());
2963       auto POIter = PointerOps.begin();
2964       for (Value *V : VL) {
2965         auto *L = cast<LoadInst>(V);
2966         if (!L->isSimple()) {
2967           BS.cancelScheduling(VL, VL0);
2968           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2969                        ReuseShuffleIndicies);
2970           LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n");
2971           return;
2972         }
2973         *POIter = L->getPointerOperand();
2974         ++POIter;
2975       }
2976 
2977       OrdersType CurrentOrder;
2978       // Check the order of pointer operands.
2979       if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) {
2980         Value *Ptr0;
2981         Value *PtrN;
2982         if (CurrentOrder.empty()) {
2983           Ptr0 = PointerOps.front();
2984           PtrN = PointerOps.back();
2985         } else {
2986           Ptr0 = PointerOps[CurrentOrder.front()];
2987           PtrN = PointerOps[CurrentOrder.back()];
2988         }
2989         Optional<int> Diff = getPointersDiff(
2990             ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE);
2991         // Check that the sorted loads are consecutive.
2992         if (static_cast<unsigned>(*Diff) == VL.size() - 1) {
2993           if (CurrentOrder.empty()) {
2994             // Original loads are consecutive and does not require reordering.
2995             ++NumOpsWantToKeepOriginalOrder;
2996             TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S,
2997                                          UserTreeIdx, ReuseShuffleIndicies);
2998             TE->setOperandsInOrder();
2999             LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n");
3000           } else {
3001             // Need to reorder.
3002             TreeEntry *TE =
3003                 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3004                              ReuseShuffleIndicies, CurrentOrder);
3005             TE->setOperandsInOrder();
3006             LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n");
3007             findRootOrder(CurrentOrder);
3008             ++NumOpsWantToKeepOrder[CurrentOrder];
3009           }
3010           return;
3011         }
3012         Align CommonAlignment = cast<LoadInst>(VL0)->getAlign();
3013         for (Value *V : VL)
3014           CommonAlignment =
3015               commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign());
3016         if (TTI->isLegalMaskedGather(FixedVectorType::get(ScalarTy, VL.size()),
3017                                      CommonAlignment)) {
3018           // Vectorizing non-consecutive loads with `llvm.masked.gather`.
3019           TreeEntry *TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle,
3020                                        S, UserTreeIdx, ReuseShuffleIndicies);
3021           TE->setOperandsInOrder();
3022           buildTree_rec(PointerOps, Depth + 1, {TE, 0});
3023           LLVM_DEBUG(dbgs()
3024                      << "SLP: added a vector of non-consecutive loads.\n");
3025           return;
3026         }
3027       }
3028 
3029       LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n");
3030       BS.cancelScheduling(VL, VL0);
3031       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3032                    ReuseShuffleIndicies);
3033       return;
3034     }
3035     case Instruction::ZExt:
3036     case Instruction::SExt:
3037     case Instruction::FPToUI:
3038     case Instruction::FPToSI:
3039     case Instruction::FPExt:
3040     case Instruction::PtrToInt:
3041     case Instruction::IntToPtr:
3042     case Instruction::SIToFP:
3043     case Instruction::UIToFP:
3044     case Instruction::Trunc:
3045     case Instruction::FPTrunc:
3046     case Instruction::BitCast: {
3047       Type *SrcTy = VL0->getOperand(0)->getType();
3048       for (Value *V : VL) {
3049         Type *Ty = cast<Instruction>(V)->getOperand(0)->getType();
3050         if (Ty != SrcTy || !isValidElementType(Ty)) {
3051           BS.cancelScheduling(VL, VL0);
3052           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3053                        ReuseShuffleIndicies);
3054           LLVM_DEBUG(dbgs()
3055                      << "SLP: Gathering casts with different src types.\n");
3056           return;
3057         }
3058       }
3059       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3060                                    ReuseShuffleIndicies);
3061       LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n");
3062 
3063       TE->setOperandsInOrder();
3064       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
3065         ValueList Operands;
3066         // Prepare the operand vector.
3067         for (Value *V : VL)
3068           Operands.push_back(cast<Instruction>(V)->getOperand(i));
3069 
3070         buildTree_rec(Operands, Depth + 1, {TE, i});
3071       }
3072       return;
3073     }
3074     case Instruction::ICmp:
3075     case Instruction::FCmp: {
3076       // Check that all of the compares have the same predicate.
3077       CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
3078       CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0);
3079       Type *ComparedTy = VL0->getOperand(0)->getType();
3080       for (Value *V : VL) {
3081         CmpInst *Cmp = cast<CmpInst>(V);
3082         if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) ||
3083             Cmp->getOperand(0)->getType() != ComparedTy) {
3084           BS.cancelScheduling(VL, VL0);
3085           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3086                        ReuseShuffleIndicies);
3087           LLVM_DEBUG(dbgs()
3088                      << "SLP: Gathering cmp with different predicate.\n");
3089           return;
3090         }
3091       }
3092 
3093       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3094                                    ReuseShuffleIndicies);
3095       LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n");
3096 
3097       ValueList Left, Right;
3098       if (cast<CmpInst>(VL0)->isCommutative()) {
3099         // Commutative predicate - collect + sort operands of the instructions
3100         // so that each side is more likely to have the same opcode.
3101         assert(P0 == SwapP0 && "Commutative Predicate mismatch");
3102         reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
3103       } else {
3104         // Collect operands - commute if it uses the swapped predicate.
3105         for (Value *V : VL) {
3106           auto *Cmp = cast<CmpInst>(V);
3107           Value *LHS = Cmp->getOperand(0);
3108           Value *RHS = Cmp->getOperand(1);
3109           if (Cmp->getPredicate() != P0)
3110             std::swap(LHS, RHS);
3111           Left.push_back(LHS);
3112           Right.push_back(RHS);
3113         }
3114       }
3115       TE->setOperand(0, Left);
3116       TE->setOperand(1, Right);
3117       buildTree_rec(Left, Depth + 1, {TE, 0});
3118       buildTree_rec(Right, Depth + 1, {TE, 1});
3119       return;
3120     }
3121     case Instruction::Select:
3122     case Instruction::FNeg:
3123     case Instruction::Add:
3124     case Instruction::FAdd:
3125     case Instruction::Sub:
3126     case Instruction::FSub:
3127     case Instruction::Mul:
3128     case Instruction::FMul:
3129     case Instruction::UDiv:
3130     case Instruction::SDiv:
3131     case Instruction::FDiv:
3132     case Instruction::URem:
3133     case Instruction::SRem:
3134     case Instruction::FRem:
3135     case Instruction::Shl:
3136     case Instruction::LShr:
3137     case Instruction::AShr:
3138     case Instruction::And:
3139     case Instruction::Or:
3140     case Instruction::Xor: {
3141       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3142                                    ReuseShuffleIndicies);
3143       LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n");
3144 
3145       // Sort operands of the instructions so that each side is more likely to
3146       // have the same opcode.
3147       if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) {
3148         ValueList Left, Right;
3149         reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
3150         TE->setOperand(0, Left);
3151         TE->setOperand(1, Right);
3152         buildTree_rec(Left, Depth + 1, {TE, 0});
3153         buildTree_rec(Right, Depth + 1, {TE, 1});
3154         return;
3155       }
3156 
3157       TE->setOperandsInOrder();
3158       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
3159         ValueList Operands;
3160         // Prepare the operand vector.
3161         for (Value *V : VL)
3162           Operands.push_back(cast<Instruction>(V)->getOperand(i));
3163 
3164         buildTree_rec(Operands, Depth + 1, {TE, i});
3165       }
3166       return;
3167     }
3168     case Instruction::GetElementPtr: {
3169       // We don't combine GEPs with complicated (nested) indexing.
3170       for (Value *V : VL) {
3171         if (cast<Instruction>(V)->getNumOperands() != 2) {
3172           LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n");
3173           BS.cancelScheduling(VL, VL0);
3174           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3175                        ReuseShuffleIndicies);
3176           return;
3177         }
3178       }
3179 
3180       // We can't combine several GEPs into one vector if they operate on
3181       // different types.
3182       Type *Ty0 = VL0->getOperand(0)->getType();
3183       for (Value *V : VL) {
3184         Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType();
3185         if (Ty0 != CurTy) {
3186           LLVM_DEBUG(dbgs()
3187                      << "SLP: not-vectorizable GEP (different types).\n");
3188           BS.cancelScheduling(VL, VL0);
3189           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3190                        ReuseShuffleIndicies);
3191           return;
3192         }
3193       }
3194 
3195       // We don't combine GEPs with non-constant indexes.
3196       Type *Ty1 = VL0->getOperand(1)->getType();
3197       for (Value *V : VL) {
3198         auto Op = cast<Instruction>(V)->getOperand(1);
3199         if (!isa<ConstantInt>(Op) ||
3200             (Op->getType() != Ty1 &&
3201              Op->getType()->getScalarSizeInBits() >
3202                  DL->getIndexSizeInBits(
3203                      V->getType()->getPointerAddressSpace()))) {
3204           LLVM_DEBUG(dbgs()
3205                      << "SLP: not-vectorizable GEP (non-constant indexes).\n");
3206           BS.cancelScheduling(VL, VL0);
3207           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3208                        ReuseShuffleIndicies);
3209           return;
3210         }
3211       }
3212 
3213       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3214                                    ReuseShuffleIndicies);
3215       LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n");
3216       TE->setOperandsInOrder();
3217       for (unsigned i = 0, e = 2; i < e; ++i) {
3218         ValueList Operands;
3219         // Prepare the operand vector.
3220         for (Value *V : VL)
3221           Operands.push_back(cast<Instruction>(V)->getOperand(i));
3222 
3223         buildTree_rec(Operands, Depth + 1, {TE, i});
3224       }
3225       return;
3226     }
3227     case Instruction::Store: {
3228       // Check if the stores are consecutive or if we need to swizzle them.
3229       llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType();
3230       // Avoid types that are padded when being allocated as scalars, while
3231       // being packed together in a vector (such as i1).
3232       if (DL->getTypeSizeInBits(ScalarTy) !=
3233           DL->getTypeAllocSizeInBits(ScalarTy)) {
3234         BS.cancelScheduling(VL, VL0);
3235         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3236                      ReuseShuffleIndicies);
3237         LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n");
3238         return;
3239       }
3240       // Make sure all stores in the bundle are simple - we can't vectorize
3241       // atomic or volatile stores.
3242       SmallVector<Value *, 4> PointerOps(VL.size());
3243       ValueList Operands(VL.size());
3244       auto POIter = PointerOps.begin();
3245       auto OIter = Operands.begin();
3246       for (Value *V : VL) {
3247         auto *SI = cast<StoreInst>(V);
3248         if (!SI->isSimple()) {
3249           BS.cancelScheduling(VL, VL0);
3250           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3251                        ReuseShuffleIndicies);
3252           LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n");
3253           return;
3254         }
3255         *POIter = SI->getPointerOperand();
3256         *OIter = SI->getValueOperand();
3257         ++POIter;
3258         ++OIter;
3259       }
3260 
3261       OrdersType CurrentOrder;
3262       // Check the order of pointer operands.
3263       if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) {
3264         Value *Ptr0;
3265         Value *PtrN;
3266         if (CurrentOrder.empty()) {
3267           Ptr0 = PointerOps.front();
3268           PtrN = PointerOps.back();
3269         } else {
3270           Ptr0 = PointerOps[CurrentOrder.front()];
3271           PtrN = PointerOps[CurrentOrder.back()];
3272         }
3273         Optional<int> Dist =
3274             getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE);
3275         // Check that the sorted pointer operands are consecutive.
3276         if (static_cast<unsigned>(*Dist) == VL.size() - 1) {
3277           if (CurrentOrder.empty()) {
3278             // Original stores are consecutive and does not require reordering.
3279             ++NumOpsWantToKeepOriginalOrder;
3280             TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S,
3281                                          UserTreeIdx, ReuseShuffleIndicies);
3282             TE->setOperandsInOrder();
3283             buildTree_rec(Operands, Depth + 1, {TE, 0});
3284             LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n");
3285           } else {
3286             TreeEntry *TE =
3287                 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3288                              ReuseShuffleIndicies, CurrentOrder);
3289             TE->setOperandsInOrder();
3290             buildTree_rec(Operands, Depth + 1, {TE, 0});
3291             LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n");
3292             findRootOrder(CurrentOrder);
3293             ++NumOpsWantToKeepOrder[CurrentOrder];
3294           }
3295           return;
3296         }
3297       }
3298 
3299       BS.cancelScheduling(VL, VL0);
3300       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3301                    ReuseShuffleIndicies);
3302       LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n");
3303       return;
3304     }
3305     case Instruction::Call: {
3306       // Check if the calls are all to the same vectorizable intrinsic or
3307       // library function.
3308       CallInst *CI = cast<CallInst>(VL0);
3309       Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3310 
3311       VFShape Shape = VFShape::get(
3312           *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())),
3313           false /*HasGlobalPred*/);
3314       Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3315 
3316       if (!VecFunc && !isTriviallyVectorizable(ID)) {
3317         BS.cancelScheduling(VL, VL0);
3318         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3319                      ReuseShuffleIndicies);
3320         LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n");
3321         return;
3322       }
3323       Function *F = CI->getCalledFunction();
3324       unsigned NumArgs = CI->getNumArgOperands();
3325       SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr);
3326       for (unsigned j = 0; j != NumArgs; ++j)
3327         if (hasVectorInstrinsicScalarOpd(ID, j))
3328           ScalarArgs[j] = CI->getArgOperand(j);
3329       for (Value *V : VL) {
3330         CallInst *CI2 = dyn_cast<CallInst>(V);
3331         if (!CI2 || CI2->getCalledFunction() != F ||
3332             getVectorIntrinsicIDForCall(CI2, TLI) != ID ||
3333             (VecFunc &&
3334              VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) ||
3335             !CI->hasIdenticalOperandBundleSchema(*CI2)) {
3336           BS.cancelScheduling(VL, VL0);
3337           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3338                        ReuseShuffleIndicies);
3339           LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V
3340                             << "\n");
3341           return;
3342         }
3343         // Some intrinsics have scalar arguments and should be same in order for
3344         // them to be vectorized.
3345         for (unsigned j = 0; j != NumArgs; ++j) {
3346           if (hasVectorInstrinsicScalarOpd(ID, j)) {
3347             Value *A1J = CI2->getArgOperand(j);
3348             if (ScalarArgs[j] != A1J) {
3349               BS.cancelScheduling(VL, VL0);
3350               newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3351                            ReuseShuffleIndicies);
3352               LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI
3353                                 << " argument " << ScalarArgs[j] << "!=" << A1J
3354                                 << "\n");
3355               return;
3356             }
3357           }
3358         }
3359         // Verify that the bundle operands are identical between the two calls.
3360         if (CI->hasOperandBundles() &&
3361             !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(),
3362                         CI->op_begin() + CI->getBundleOperandsEndIndex(),
3363                         CI2->op_begin() + CI2->getBundleOperandsStartIndex())) {
3364           BS.cancelScheduling(VL, VL0);
3365           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3366                        ReuseShuffleIndicies);
3367           LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:"
3368                             << *CI << "!=" << *V << '\n');
3369           return;
3370         }
3371       }
3372 
3373       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3374                                    ReuseShuffleIndicies);
3375       TE->setOperandsInOrder();
3376       for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
3377         ValueList Operands;
3378         // Prepare the operand vector.
3379         for (Value *V : VL) {
3380           auto *CI2 = cast<CallInst>(V);
3381           Operands.push_back(CI2->getArgOperand(i));
3382         }
3383         buildTree_rec(Operands, Depth + 1, {TE, i});
3384       }
3385       return;
3386     }
3387     case Instruction::ShuffleVector: {
3388       // If this is not an alternate sequence of opcode like add-sub
3389       // then do not vectorize this instruction.
3390       if (!S.isAltShuffle()) {
3391         BS.cancelScheduling(VL, VL0);
3392         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3393                      ReuseShuffleIndicies);
3394         LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n");
3395         return;
3396       }
3397       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3398                                    ReuseShuffleIndicies);
3399       LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n");
3400 
3401       // Reorder operands if reordering would enable vectorization.
3402       if (isa<BinaryOperator>(VL0)) {
3403         ValueList Left, Right;
3404         reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
3405         TE->setOperand(0, Left);
3406         TE->setOperand(1, Right);
3407         buildTree_rec(Left, Depth + 1, {TE, 0});
3408         buildTree_rec(Right, Depth + 1, {TE, 1});
3409         return;
3410       }
3411 
3412       TE->setOperandsInOrder();
3413       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
3414         ValueList Operands;
3415         // Prepare the operand vector.
3416         for (Value *V : VL)
3417           Operands.push_back(cast<Instruction>(V)->getOperand(i));
3418 
3419         buildTree_rec(Operands, Depth + 1, {TE, i});
3420       }
3421       return;
3422     }
3423     default:
3424       BS.cancelScheduling(VL, VL0);
3425       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3426                    ReuseShuffleIndicies);
3427       LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n");
3428       return;
3429   }
3430 }
3431 
3432 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const {
3433   unsigned N = 1;
3434   Type *EltTy = T;
3435 
3436   while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) ||
3437          isa<VectorType>(EltTy)) {
3438     if (auto *ST = dyn_cast<StructType>(EltTy)) {
3439       // Check that struct is homogeneous.
3440       for (const auto *Ty : ST->elements())
3441         if (Ty != *ST->element_begin())
3442           return 0;
3443       N *= ST->getNumElements();
3444       EltTy = *ST->element_begin();
3445     } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) {
3446       N *= AT->getNumElements();
3447       EltTy = AT->getElementType();
3448     } else {
3449       auto *VT = cast<FixedVectorType>(EltTy);
3450       N *= VT->getNumElements();
3451       EltTy = VT->getElementType();
3452     }
3453   }
3454 
3455   if (!isValidElementType(EltTy))
3456     return 0;
3457   uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N));
3458   if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T))
3459     return 0;
3460   return N;
3461 }
3462 
3463 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
3464                               SmallVectorImpl<unsigned> &CurrentOrder) const {
3465   Instruction *E0 = cast<Instruction>(OpValue);
3466   assert(E0->getOpcode() == Instruction::ExtractElement ||
3467          E0->getOpcode() == Instruction::ExtractValue);
3468   assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode");
3469   // Check if all of the extracts come from the same vector and from the
3470   // correct offset.
3471   Value *Vec = E0->getOperand(0);
3472 
3473   CurrentOrder.clear();
3474 
3475   // We have to extract from a vector/aggregate with the same number of elements.
3476   unsigned NElts;
3477   if (E0->getOpcode() == Instruction::ExtractValue) {
3478     const DataLayout &DL = E0->getModule()->getDataLayout();
3479     NElts = canMapToVector(Vec->getType(), DL);
3480     if (!NElts)
3481       return false;
3482     // Check if load can be rewritten as load of vector.
3483     LoadInst *LI = dyn_cast<LoadInst>(Vec);
3484     if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size()))
3485       return false;
3486   } else {
3487     NElts = cast<FixedVectorType>(Vec->getType())->getNumElements();
3488   }
3489 
3490   if (NElts != VL.size())
3491     return false;
3492 
3493   // Check that all of the indices extract from the correct offset.
3494   bool ShouldKeepOrder = true;
3495   unsigned E = VL.size();
3496   // Assign to all items the initial value E + 1 so we can check if the extract
3497   // instruction index was used already.
3498   // Also, later we can check that all the indices are used and we have a
3499   // consecutive access in the extract instructions, by checking that no
3500   // element of CurrentOrder still has value E + 1.
3501   CurrentOrder.assign(E, E + 1);
3502   unsigned I = 0;
3503   for (; I < E; ++I) {
3504     auto *Inst = cast<Instruction>(VL[I]);
3505     if (Inst->getOperand(0) != Vec)
3506       break;
3507     Optional<unsigned> Idx = getExtractIndex(Inst);
3508     if (!Idx)
3509       break;
3510     const unsigned ExtIdx = *Idx;
3511     if (ExtIdx != I) {
3512       if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1)
3513         break;
3514       ShouldKeepOrder = false;
3515       CurrentOrder[ExtIdx] = I;
3516     } else {
3517       if (CurrentOrder[I] != E + 1)
3518         break;
3519       CurrentOrder[I] = I;
3520     }
3521   }
3522   if (I < E) {
3523     CurrentOrder.clear();
3524     return false;
3525   }
3526 
3527   return ShouldKeepOrder;
3528 }
3529 
3530 bool BoUpSLP::areAllUsersVectorized(Instruction *I,
3531                                     ArrayRef<Value *> VectorizedVals) const {
3532   return (I->hasOneUse() && is_contained(VectorizedVals, I)) ||
3533          llvm::all_of(I->users(), [this](User *U) {
3534            return ScalarToTreeEntry.count(U) > 0;
3535          });
3536 }
3537 
3538 static std::pair<InstructionCost, InstructionCost>
3539 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy,
3540                    TargetTransformInfo *TTI, TargetLibraryInfo *TLI) {
3541   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3542 
3543   // Calculate the cost of the scalar and vector calls.
3544   SmallVector<Type *, 4> VecTys;
3545   for (Use &Arg : CI->args())
3546     VecTys.push_back(
3547         FixedVectorType::get(Arg->getType(), VecTy->getNumElements()));
3548   FastMathFlags FMF;
3549   if (auto *FPCI = dyn_cast<FPMathOperator>(CI))
3550     FMF = FPCI->getFastMathFlags();
3551   SmallVector<const Value *> Arguments(CI->arg_begin(), CI->arg_end());
3552   IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF,
3553                                     dyn_cast<IntrinsicInst>(CI));
3554   auto IntrinsicCost =
3555     TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput);
3556 
3557   auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>(
3558                                      VecTy->getNumElements())),
3559                             false /*HasGlobalPred*/);
3560   Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3561   auto LibCost = IntrinsicCost;
3562   if (!CI->isNoBuiltin() && VecFunc) {
3563     // Calculate the cost of the vector library call.
3564     // If the corresponding vector call is cheaper, return its cost.
3565     LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys,
3566                                     TTI::TCK_RecipThroughput);
3567   }
3568   return {IntrinsicCost, LibCost};
3569 }
3570 
3571 /// Compute the cost of creating a vector of type \p VecTy containing the
3572 /// extracted values from \p VL.
3573 static InstructionCost
3574 computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy,
3575                    TargetTransformInfo::ShuffleKind ShuffleKind,
3576                    ArrayRef<int> Mask, TargetTransformInfo &TTI) {
3577   unsigned NumOfParts = TTI.getNumberOfParts(VecTy);
3578 
3579   if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts ||
3580       VecTy->getNumElements() < NumOfParts)
3581     return TTI.getShuffleCost(ShuffleKind, VecTy, Mask);
3582 
3583   bool AllConsecutive = true;
3584   unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts;
3585   unsigned Idx = -1;
3586   InstructionCost Cost = 0;
3587 
3588   // Process extracts in blocks of EltsPerVector to check if the source vector
3589   // operand can be re-used directly. If not, add the cost of creating a shuffle
3590   // to extract the values into a vector register.
3591   for (auto *V : VL) {
3592     ++Idx;
3593 
3594     // Reached the start of a new vector registers.
3595     if (Idx % EltsPerVector == 0) {
3596       AllConsecutive = true;
3597       continue;
3598     }
3599 
3600     // Check all extracts for a vector register on the target directly
3601     // extract values in order.
3602     unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V));
3603     unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1]));
3604     AllConsecutive &= PrevIdx + 1 == CurrentIdx &&
3605                       CurrentIdx % EltsPerVector == Idx % EltsPerVector;
3606 
3607     if (AllConsecutive)
3608       continue;
3609 
3610     // Skip all indices, except for the last index per vector block.
3611     if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size())
3612       continue;
3613 
3614     // If we have a series of extracts which are not consecutive and hence
3615     // cannot re-use the source vector register directly, compute the shuffle
3616     // cost to extract the a vector with EltsPerVector elements.
3617     Cost += TTI.getShuffleCost(
3618         TargetTransformInfo::SK_PermuteSingleSrc,
3619         FixedVectorType::get(VecTy->getElementType(), EltsPerVector));
3620   }
3621   return Cost;
3622 }
3623 
3624 /// Shuffles \p Mask in accordance with the given \p SubMask.
3625 static void addMask(SmallVectorImpl<int> &Mask, ArrayRef<int> SubMask) {
3626   if (SubMask.empty())
3627     return;
3628   if (Mask.empty()) {
3629     Mask.append(SubMask.begin(), SubMask.end());
3630     return;
3631   }
3632   SmallVector<int, 4> NewMask(SubMask.size(), SubMask.size());
3633   int TermValue = std::min(Mask.size(), SubMask.size());
3634   for (int I = 0, E = SubMask.size(); I < E; ++I) {
3635     if (SubMask[I] >= TermValue || SubMask[I] == UndefMaskElem ||
3636         Mask[SubMask[I]] >= TermValue) {
3637       NewMask[I] = UndefMaskElem;
3638       continue;
3639     }
3640     NewMask[I] = Mask[SubMask[I]];
3641   }
3642   Mask.swap(NewMask);
3643 }
3644 
3645 InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E,
3646                                       ArrayRef<Value *> VectorizedVals) {
3647   ArrayRef<Value*> VL = E->Scalars;
3648 
3649   Type *ScalarTy = VL[0]->getType();
3650   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
3651     ScalarTy = SI->getValueOperand()->getType();
3652   else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0]))
3653     ScalarTy = CI->getOperand(0)->getType();
3654   else if (auto *IE = dyn_cast<InsertElementInst>(VL[0]))
3655     ScalarTy = IE->getOperand(1)->getType();
3656   auto *VecTy = FixedVectorType::get(ScalarTy, VL.size());
3657   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
3658 
3659   // If we have computed a smaller type for the expression, update VecTy so
3660   // that the costs will be accurate.
3661   if (MinBWs.count(VL[0]))
3662     VecTy = FixedVectorType::get(
3663         IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size());
3664   auto *FinalVecTy = VecTy;
3665 
3666   unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size();
3667   bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
3668   if (NeedToShuffleReuses)
3669     FinalVecTy =
3670         FixedVectorType::get(VecTy->getElementType(), ReuseShuffleNumbers);
3671   // FIXME: it tries to fix a problem with MSVC buildbots.
3672   TargetTransformInfo &TTIRef = *TTI;
3673   auto &&AdjustExtractsCost = [this, &TTIRef, CostKind, VL, VecTy,
3674                                VectorizedVals](InstructionCost &Cost,
3675                                                bool IsGather) {
3676     DenseMap<Value *, int> ExtractVectorsTys;
3677     for (auto *V : VL) {
3678       // If all users of instruction are going to be vectorized and this
3679       // instruction itself is not going to be vectorized, consider this
3680       // instruction as dead and remove its cost from the final cost of the
3681       // vectorized tree.
3682       if (!areAllUsersVectorized(cast<Instruction>(V), VectorizedVals) ||
3683           (IsGather && ScalarToTreeEntry.count(V)))
3684         continue;
3685       auto *EE = cast<ExtractElementInst>(V);
3686       unsigned Idx = *getExtractIndex(EE);
3687       if (TTIRef.getNumberOfParts(VecTy) !=
3688           TTIRef.getNumberOfParts(EE->getVectorOperandType())) {
3689         auto It =
3690             ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first;
3691         It->getSecond() = std::min<int>(It->second, Idx);
3692       }
3693       // Take credit for instruction that will become dead.
3694       if (EE->hasOneUse()) {
3695         Instruction *Ext = EE->user_back();
3696         if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
3697             all_of(Ext->users(),
3698                    [](User *U) { return isa<GetElementPtrInst>(U); })) {
3699           // Use getExtractWithExtendCost() to calculate the cost of
3700           // extractelement/ext pair.
3701           Cost -=
3702               TTIRef.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(),
3703                                               EE->getVectorOperandType(), Idx);
3704           // Add back the cost of s|zext which is subtracted separately.
3705           Cost += TTIRef.getCastInstrCost(
3706               Ext->getOpcode(), Ext->getType(), EE->getType(),
3707               TTI::getCastContextHint(Ext), CostKind, Ext);
3708           continue;
3709         }
3710       }
3711       Cost -= TTIRef.getVectorInstrCost(Instruction::ExtractElement,
3712                                         EE->getVectorOperandType(), Idx);
3713     }
3714     // Add a cost for subvector extracts/inserts if required.
3715     for (const auto &Data : ExtractVectorsTys) {
3716       auto *EEVTy = cast<FixedVectorType>(Data.first->getType());
3717       unsigned NumElts = VecTy->getNumElements();
3718       if (TTIRef.getNumberOfParts(EEVTy) > TTIRef.getNumberOfParts(VecTy)) {
3719         unsigned Idx = (Data.second / NumElts) * NumElts;
3720         unsigned EENumElts = EEVTy->getNumElements();
3721         if (Idx + NumElts <= EENumElts) {
3722           Cost +=
3723               TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector,
3724                                     EEVTy, None, Idx, VecTy);
3725         } else {
3726           // Need to round up the subvector type vectorization factor to avoid a
3727           // crash in cost model functions. Make SubVT so that Idx + VF of SubVT
3728           // <= EENumElts.
3729           auto *SubVT =
3730               FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx);
3731           Cost +=
3732               TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector,
3733                                     EEVTy, None, Idx, SubVT);
3734         }
3735       } else {
3736         Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_InsertSubvector,
3737                                       VecTy, None, 0, EEVTy);
3738       }
3739     }
3740   };
3741   if (E->State == TreeEntry::NeedToGather) {
3742     if (allConstant(VL))
3743       return 0;
3744     if (isa<InsertElementInst>(VL[0]))
3745       return InstructionCost::getInvalid();
3746     SmallVector<int> Mask;
3747     SmallVector<const TreeEntry *> Entries;
3748     Optional<TargetTransformInfo::ShuffleKind> Shuffle =
3749         isGatherShuffledEntry(E, Mask, Entries);
3750     if (Shuffle.hasValue()) {
3751       InstructionCost GatherCost = 0;
3752       if (ShuffleVectorInst::isIdentityMask(Mask)) {
3753         // Perfect match in the graph, will reuse the previously vectorized
3754         // node. Cost is 0.
3755         LLVM_DEBUG(
3756             dbgs()
3757             << "SLP: perfect diamond match for gather bundle that starts with "
3758             << *VL.front() << ".\n");
3759         if (NeedToShuffleReuses)
3760           GatherCost =
3761               TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc,
3762                                   FinalVecTy, E->ReuseShuffleIndices);
3763       } else {
3764         LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size()
3765                           << " entries for bundle that starts with "
3766                           << *VL.front() << ".\n");
3767         // Detected that instead of gather we can emit a shuffle of single/two
3768         // previously vectorized nodes. Add the cost of the permutation rather
3769         // than gather.
3770         ::addMask(Mask, E->ReuseShuffleIndices);
3771         GatherCost = TTI->getShuffleCost(*Shuffle, FinalVecTy, Mask);
3772       }
3773       return GatherCost;
3774     }
3775     if (isSplat(VL)) {
3776       // Found the broadcasting of the single scalar, calculate the cost as the
3777       // broadcast.
3778       return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy);
3779     }
3780     if (E->getOpcode() == Instruction::ExtractElement && allSameType(VL) &&
3781         allSameBlock(VL) &&
3782         !isa<ScalableVectorType>(
3783             cast<ExtractElementInst>(E->getMainOp())->getVectorOperandType())) {
3784       // Check that gather of extractelements can be represented as just a
3785       // shuffle of a single/two vectors the scalars are extracted from.
3786       SmallVector<int> Mask;
3787       Optional<TargetTransformInfo::ShuffleKind> ShuffleKind =
3788           isShuffle(VL, Mask);
3789       if (ShuffleKind.hasValue()) {
3790         // Found the bunch of extractelement instructions that must be gathered
3791         // into a vector and can be represented as a permutation elements in a
3792         // single input vector or of 2 input vectors.
3793         InstructionCost Cost =
3794             computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI);
3795         AdjustExtractsCost(Cost, /*IsGather=*/true);
3796         if (NeedToShuffleReuses)
3797           Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc,
3798                                       FinalVecTy, E->ReuseShuffleIndices);
3799         return Cost;
3800       }
3801     }
3802     InstructionCost ReuseShuffleCost = 0;
3803     if (NeedToShuffleReuses)
3804       ReuseShuffleCost = TTI->getShuffleCost(
3805           TTI::SK_PermuteSingleSrc, FinalVecTy, E->ReuseShuffleIndices);
3806     return ReuseShuffleCost + getGatherCost(VL);
3807   }
3808   InstructionCost CommonCost = 0;
3809   SmallVector<int> Mask;
3810   if (!E->ReorderIndices.empty()) {
3811     SmallVector<int> NewMask;
3812     if (E->getOpcode() == Instruction::Store) {
3813       // For stores the order is actually a mask.
3814       NewMask.resize(E->ReorderIndices.size());
3815       copy(E->ReorderIndices, NewMask.begin());
3816     } else {
3817       inversePermutation(E->ReorderIndices, NewMask);
3818     }
3819     ::addMask(Mask, NewMask);
3820   }
3821   if (NeedToShuffleReuses)
3822     ::addMask(Mask, E->ReuseShuffleIndices);
3823   if (!Mask.empty() && !ShuffleVectorInst::isIdentityMask(Mask))
3824     CommonCost =
3825         TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FinalVecTy, Mask);
3826   assert((E->State == TreeEntry::Vectorize ||
3827           E->State == TreeEntry::ScatterVectorize) &&
3828          "Unhandled state");
3829   assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL");
3830   Instruction *VL0 = E->getMainOp();
3831   unsigned ShuffleOrOp =
3832       E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode();
3833   switch (ShuffleOrOp) {
3834     case Instruction::PHI:
3835       return 0;
3836 
3837     case Instruction::ExtractValue:
3838     case Instruction::ExtractElement: {
3839       // The common cost of removal ExtractElement/ExtractValue instructions +
3840       // the cost of shuffles, if required to resuffle the original vector.
3841       if (NeedToShuffleReuses) {
3842         unsigned Idx = 0;
3843         for (unsigned I : E->ReuseShuffleIndices) {
3844           if (ShuffleOrOp == Instruction::ExtractElement) {
3845             auto *EE = cast<ExtractElementInst>(VL[I]);
3846             CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement,
3847                                                   EE->getVectorOperandType(),
3848                                                   *getExtractIndex(EE));
3849           } else {
3850             CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement,
3851                                                   VecTy, Idx);
3852             ++Idx;
3853           }
3854         }
3855         Idx = ReuseShuffleNumbers;
3856         for (Value *V : VL) {
3857           if (ShuffleOrOp == Instruction::ExtractElement) {
3858             auto *EE = cast<ExtractElementInst>(V);
3859             CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement,
3860                                                   EE->getVectorOperandType(),
3861                                                   *getExtractIndex(EE));
3862           } else {
3863             --Idx;
3864             CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement,
3865                                                   VecTy, Idx);
3866           }
3867         }
3868       }
3869       if (ShuffleOrOp == Instruction::ExtractValue) {
3870         for (unsigned I = 0, E = VL.size(); I < E; ++I) {
3871           auto *EI = cast<Instruction>(VL[I]);
3872           // Take credit for instruction that will become dead.
3873           if (EI->hasOneUse()) {
3874             Instruction *Ext = EI->user_back();
3875             if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
3876                 all_of(Ext->users(),
3877                        [](User *U) { return isa<GetElementPtrInst>(U); })) {
3878               // Use getExtractWithExtendCost() to calculate the cost of
3879               // extractelement/ext pair.
3880               CommonCost -= TTI->getExtractWithExtendCost(
3881                   Ext->getOpcode(), Ext->getType(), VecTy, I);
3882               // Add back the cost of s|zext which is subtracted separately.
3883               CommonCost += TTI->getCastInstrCost(
3884                   Ext->getOpcode(), Ext->getType(), EI->getType(),
3885                   TTI::getCastContextHint(Ext), CostKind, Ext);
3886               continue;
3887             }
3888           }
3889           CommonCost -=
3890               TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I);
3891         }
3892       } else {
3893         AdjustExtractsCost(CommonCost, /*IsGather=*/false);
3894       }
3895       return CommonCost;
3896     }
3897     case Instruction::InsertElement: {
3898       auto *SrcVecTy = cast<FixedVectorType>(VL0->getType());
3899 
3900       unsigned const NumElts = SrcVecTy->getNumElements();
3901       unsigned const NumScalars = VL.size();
3902       APInt DemandedElts = APInt::getNullValue(NumElts);
3903       // TODO: Add support for Instruction::InsertValue.
3904       unsigned Offset = UINT_MAX;
3905       bool IsIdentity = true;
3906       SmallVector<int> ShuffleMask(NumElts, UndefMaskElem);
3907       for (unsigned I = 0; I < NumScalars; ++I) {
3908         Optional<int> InsertIdx = getInsertIndex(VL[I], 0);
3909         if (!InsertIdx || *InsertIdx == UndefMaskElem)
3910           continue;
3911         unsigned Idx = *InsertIdx;
3912         DemandedElts.setBit(Idx);
3913         if (Idx < Offset) {
3914           Offset = Idx;
3915           IsIdentity &= I == 0;
3916         } else {
3917           assert(Idx >= Offset && "Failed to find vector index offset");
3918           IsIdentity &= Idx - Offset == I;
3919         }
3920         ShuffleMask[Idx] = I;
3921       }
3922       assert(Offset < NumElts && "Failed to find vector index offset");
3923 
3924       InstructionCost Cost = 0;
3925       Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts,
3926                                             /*Insert*/ true, /*Extract*/ false);
3927 
3928       if (IsIdentity && NumElts != NumScalars && Offset % NumScalars != 0) {
3929         // FIXME: Replace with SK_InsertSubvector once it is properly supported.
3930         unsigned Sz = PowerOf2Ceil(Offset + NumScalars);
3931         Cost += TTI->getShuffleCost(
3932             TargetTransformInfo::SK_PermuteSingleSrc,
3933             FixedVectorType::get(SrcVecTy->getElementType(), Sz));
3934       } else if (!IsIdentity) {
3935         Cost += TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, SrcVecTy,
3936                                     ShuffleMask);
3937       }
3938 
3939       return Cost;
3940     }
3941     case Instruction::ZExt:
3942     case Instruction::SExt:
3943     case Instruction::FPToUI:
3944     case Instruction::FPToSI:
3945     case Instruction::FPExt:
3946     case Instruction::PtrToInt:
3947     case Instruction::IntToPtr:
3948     case Instruction::SIToFP:
3949     case Instruction::UIToFP:
3950     case Instruction::Trunc:
3951     case Instruction::FPTrunc:
3952     case Instruction::BitCast: {
3953       Type *SrcTy = VL0->getOperand(0)->getType();
3954       InstructionCost ScalarEltCost =
3955           TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy,
3956                                 TTI::getCastContextHint(VL0), CostKind, VL0);
3957       if (NeedToShuffleReuses) {
3958         CommonCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3959       }
3960 
3961       // Calculate the cost of this instruction.
3962       InstructionCost ScalarCost = VL.size() * ScalarEltCost;
3963 
3964       auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size());
3965       InstructionCost VecCost = 0;
3966       // Check if the values are candidates to demote.
3967       if (!MinBWs.count(VL0) || VecTy != SrcVecTy) {
3968         VecCost = CommonCost + TTI->getCastInstrCost(
3969                                    E->getOpcode(), VecTy, SrcVecTy,
3970                                    TTI::getCastContextHint(VL0), CostKind, VL0);
3971       }
3972       LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost));
3973       return VecCost - ScalarCost;
3974     }
3975     case Instruction::FCmp:
3976     case Instruction::ICmp:
3977     case Instruction::Select: {
3978       // Calculate the cost of this instruction.
3979       InstructionCost ScalarEltCost =
3980           TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(),
3981                                   CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0);
3982       if (NeedToShuffleReuses) {
3983         CommonCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3984       }
3985       auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size());
3986       InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost;
3987 
3988       // Check if all entries in VL are either compares or selects with compares
3989       // as condition that have the same predicates.
3990       CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE;
3991       bool First = true;
3992       for (auto *V : VL) {
3993         CmpInst::Predicate CurrentPred;
3994         auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value());
3995         if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) &&
3996              !match(V, MatchCmp)) ||
3997             (!First && VecPred != CurrentPred)) {
3998           VecPred = CmpInst::BAD_ICMP_PREDICATE;
3999           break;
4000         }
4001         First = false;
4002         VecPred = CurrentPred;
4003       }
4004 
4005       InstructionCost VecCost = TTI->getCmpSelInstrCost(
4006           E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0);
4007       // Check if it is possible and profitable to use min/max for selects in
4008       // VL.
4009       //
4010       auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL);
4011       if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) {
4012         IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy,
4013                                           {VecTy, VecTy});
4014         InstructionCost IntrinsicCost =
4015             TTI->getIntrinsicInstrCost(CostAttrs, CostKind);
4016         // If the selects are the only uses of the compares, they will be dead
4017         // and we can adjust the cost by removing their cost.
4018         if (IntrinsicAndUse.second)
4019           IntrinsicCost -=
4020               TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, MaskTy,
4021                                       CmpInst::BAD_ICMP_PREDICATE, CostKind);
4022         VecCost = std::min(VecCost, IntrinsicCost);
4023       }
4024       LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost));
4025       return CommonCost + VecCost - ScalarCost;
4026     }
4027     case Instruction::FNeg:
4028     case Instruction::Add:
4029     case Instruction::FAdd:
4030     case Instruction::Sub:
4031     case Instruction::FSub:
4032     case Instruction::Mul:
4033     case Instruction::FMul:
4034     case Instruction::UDiv:
4035     case Instruction::SDiv:
4036     case Instruction::FDiv:
4037     case Instruction::URem:
4038     case Instruction::SRem:
4039     case Instruction::FRem:
4040     case Instruction::Shl:
4041     case Instruction::LShr:
4042     case Instruction::AShr:
4043     case Instruction::And:
4044     case Instruction::Or:
4045     case Instruction::Xor: {
4046       // Certain instructions can be cheaper to vectorize if they have a
4047       // constant second vector operand.
4048       TargetTransformInfo::OperandValueKind Op1VK =
4049           TargetTransformInfo::OK_AnyValue;
4050       TargetTransformInfo::OperandValueKind Op2VK =
4051           TargetTransformInfo::OK_UniformConstantValue;
4052       TargetTransformInfo::OperandValueProperties Op1VP =
4053           TargetTransformInfo::OP_None;
4054       TargetTransformInfo::OperandValueProperties Op2VP =
4055           TargetTransformInfo::OP_PowerOf2;
4056 
4057       // If all operands are exactly the same ConstantInt then set the
4058       // operand kind to OK_UniformConstantValue.
4059       // If instead not all operands are constants, then set the operand kind
4060       // to OK_AnyValue. If all operands are constants but not the same,
4061       // then set the operand kind to OK_NonUniformConstantValue.
4062       ConstantInt *CInt0 = nullptr;
4063       for (unsigned i = 0, e = VL.size(); i < e; ++i) {
4064         const Instruction *I = cast<Instruction>(VL[i]);
4065         unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0;
4066         ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx));
4067         if (!CInt) {
4068           Op2VK = TargetTransformInfo::OK_AnyValue;
4069           Op2VP = TargetTransformInfo::OP_None;
4070           break;
4071         }
4072         if (Op2VP == TargetTransformInfo::OP_PowerOf2 &&
4073             !CInt->getValue().isPowerOf2())
4074           Op2VP = TargetTransformInfo::OP_None;
4075         if (i == 0) {
4076           CInt0 = CInt;
4077           continue;
4078         }
4079         if (CInt0 != CInt)
4080           Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
4081       }
4082 
4083       SmallVector<const Value *, 4> Operands(VL0->operand_values());
4084       InstructionCost ScalarEltCost =
4085           TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK,
4086                                       Op2VK, Op1VP, Op2VP, Operands, VL0);
4087       if (NeedToShuffleReuses) {
4088         CommonCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
4089       }
4090       InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost;
4091       InstructionCost VecCost =
4092           TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK,
4093                                       Op2VK, Op1VP, Op2VP, Operands, VL0);
4094       LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost));
4095       return CommonCost + VecCost - ScalarCost;
4096     }
4097     case Instruction::GetElementPtr: {
4098       TargetTransformInfo::OperandValueKind Op1VK =
4099           TargetTransformInfo::OK_AnyValue;
4100       TargetTransformInfo::OperandValueKind Op2VK =
4101           TargetTransformInfo::OK_UniformConstantValue;
4102 
4103       InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost(
4104           Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK);
4105       if (NeedToShuffleReuses) {
4106         CommonCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
4107       }
4108       InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost;
4109       InstructionCost VecCost = TTI->getArithmeticInstrCost(
4110           Instruction::Add, VecTy, CostKind, Op1VK, Op2VK);
4111       LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost));
4112       return CommonCost + VecCost - ScalarCost;
4113     }
4114     case Instruction::Load: {
4115       // Cost of wide load - cost of scalar loads.
4116       Align Alignment = cast<LoadInst>(VL0)->getAlign();
4117       InstructionCost ScalarEltCost = TTI->getMemoryOpCost(
4118           Instruction::Load, ScalarTy, Alignment, 0, CostKind, VL0);
4119       if (NeedToShuffleReuses) {
4120         CommonCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
4121       }
4122       InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost;
4123       InstructionCost VecLdCost;
4124       if (E->State == TreeEntry::Vectorize) {
4125         VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, Alignment, 0,
4126                                          CostKind, VL0);
4127       } else {
4128         assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState");
4129         Align CommonAlignment = Alignment;
4130         for (Value *V : VL)
4131           CommonAlignment =
4132               commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign());
4133         VecLdCost = TTI->getGatherScatterOpCost(
4134             Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(),
4135             /*VariableMask=*/false, CommonAlignment, CostKind, VL0);
4136       }
4137       LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecLdCost, ScalarLdCost));
4138       return CommonCost + VecLdCost - ScalarLdCost;
4139     }
4140     case Instruction::Store: {
4141       // We know that we can merge the stores. Calculate the cost.
4142       bool IsReorder = !E->ReorderIndices.empty();
4143       auto *SI =
4144           cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0);
4145       Align Alignment = SI->getAlign();
4146       InstructionCost ScalarEltCost = TTI->getMemoryOpCost(
4147           Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0);
4148       InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost;
4149       InstructionCost VecStCost = TTI->getMemoryOpCost(
4150           Instruction::Store, VecTy, Alignment, 0, CostKind, VL0);
4151       LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecStCost, ScalarStCost));
4152       return CommonCost + VecStCost - ScalarStCost;
4153     }
4154     case Instruction::Call: {
4155       CallInst *CI = cast<CallInst>(VL0);
4156       Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4157 
4158       // Calculate the cost of the scalar and vector calls.
4159       IntrinsicCostAttributes CostAttrs(ID, *CI, 1);
4160       InstructionCost ScalarEltCost =
4161           TTI->getIntrinsicInstrCost(CostAttrs, CostKind);
4162       if (NeedToShuffleReuses) {
4163         CommonCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
4164       }
4165       InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost;
4166 
4167       auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI);
4168       InstructionCost VecCallCost =
4169           std::min(VecCallCosts.first, VecCallCosts.second);
4170 
4171       LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost
4172                         << " (" << VecCallCost << "-" << ScalarCallCost << ")"
4173                         << " for " << *CI << "\n");
4174 
4175       return CommonCost + VecCallCost - ScalarCallCost;
4176     }
4177     case Instruction::ShuffleVector: {
4178       assert(E->isAltShuffle() &&
4179              ((Instruction::isBinaryOp(E->getOpcode()) &&
4180                Instruction::isBinaryOp(E->getAltOpcode())) ||
4181               (Instruction::isCast(E->getOpcode()) &&
4182                Instruction::isCast(E->getAltOpcode()))) &&
4183              "Invalid Shuffle Vector Operand");
4184       InstructionCost ScalarCost = 0;
4185       if (NeedToShuffleReuses) {
4186         for (unsigned Idx : E->ReuseShuffleIndices) {
4187           Instruction *I = cast<Instruction>(VL[Idx]);
4188           CommonCost -= TTI->getInstructionCost(I, CostKind);
4189         }
4190         for (Value *V : VL) {
4191           Instruction *I = cast<Instruction>(V);
4192           CommonCost += TTI->getInstructionCost(I, CostKind);
4193         }
4194       }
4195       for (Value *V : VL) {
4196         Instruction *I = cast<Instruction>(V);
4197         assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode");
4198         ScalarCost += TTI->getInstructionCost(I, CostKind);
4199       }
4200       // VecCost is equal to sum of the cost of creating 2 vectors
4201       // and the cost of creating shuffle.
4202       InstructionCost VecCost = 0;
4203       if (Instruction::isBinaryOp(E->getOpcode())) {
4204         VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind);
4205         VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy,
4206                                                CostKind);
4207       } else {
4208         Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType();
4209         Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType();
4210         auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size());
4211         auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size());
4212         VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty,
4213                                         TTI::CastContextHint::None, CostKind);
4214         VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty,
4215                                          TTI::CastContextHint::None, CostKind);
4216       }
4217 
4218       SmallVector<int> Mask(E->Scalars.size());
4219       for (unsigned I = 0, End = E->Scalars.size(); I < End; ++I) {
4220         auto *OpInst = cast<Instruction>(E->Scalars[I]);
4221         assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode");
4222         Mask[I] = I + (OpInst->getOpcode() == E->getAltOpcode() ? End : 0);
4223       }
4224       VecCost +=
4225           TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, Mask, 0);
4226       LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost));
4227       return CommonCost + VecCost - ScalarCost;
4228     }
4229     default:
4230       llvm_unreachable("Unknown instruction");
4231   }
4232 }
4233 
4234 bool BoUpSLP::isFullyVectorizableTinyTree() const {
4235   LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height "
4236                     << VectorizableTree.size() << " is fully vectorizable .\n");
4237 
4238   // We only handle trees of heights 1 and 2.
4239   if (VectorizableTree.size() == 1 &&
4240       VectorizableTree[0]->State == TreeEntry::Vectorize)
4241     return true;
4242 
4243   if (VectorizableTree.size() != 2)
4244     return false;
4245 
4246   // Handle splat and all-constants stores. Also try to vectorize tiny trees
4247   // with the second gather nodes if they have less scalar operands rather than
4248   // the initial tree element (may be profitable to shuffle the second gather)
4249   // or they are extractelements, which form shuffle.
4250   SmallVector<int> Mask;
4251   if (VectorizableTree[0]->State == TreeEntry::Vectorize &&
4252       (allConstant(VectorizableTree[1]->Scalars) ||
4253        isSplat(VectorizableTree[1]->Scalars) ||
4254        (VectorizableTree[1]->State == TreeEntry::NeedToGather &&
4255         VectorizableTree[1]->Scalars.size() <
4256             VectorizableTree[0]->Scalars.size()) ||
4257        (VectorizableTree[1]->State == TreeEntry::NeedToGather &&
4258         VectorizableTree[1]->getOpcode() == Instruction::ExtractElement &&
4259         isShuffle(VectorizableTree[1]->Scalars, Mask))))
4260     return true;
4261 
4262   // Gathering cost would be too much for tiny trees.
4263   if (VectorizableTree[0]->State == TreeEntry::NeedToGather ||
4264       VectorizableTree[1]->State == TreeEntry::NeedToGather)
4265     return false;
4266 
4267   return true;
4268 }
4269 
4270 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts,
4271                                        TargetTransformInfo *TTI,
4272                                        bool MustMatchOrInst) {
4273   // Look past the root to find a source value. Arbitrarily follow the
4274   // path through operand 0 of any 'or'. Also, peek through optional
4275   // shift-left-by-multiple-of-8-bits.
4276   Value *ZextLoad = Root;
4277   const APInt *ShAmtC;
4278   bool FoundOr = false;
4279   while (!isa<ConstantExpr>(ZextLoad) &&
4280          (match(ZextLoad, m_Or(m_Value(), m_Value())) ||
4281           (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) &&
4282            ShAmtC->urem(8) == 0))) {
4283     auto *BinOp = cast<BinaryOperator>(ZextLoad);
4284     ZextLoad = BinOp->getOperand(0);
4285     if (BinOp->getOpcode() == Instruction::Or)
4286       FoundOr = true;
4287   }
4288   // Check if the input is an extended load of the required or/shift expression.
4289   Value *LoadPtr;
4290   if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root ||
4291       !match(ZextLoad, m_ZExt(m_Load(m_Value(LoadPtr)))))
4292     return false;
4293 
4294   // Require that the total load bit width is a legal integer type.
4295   // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target.
4296   // But <16 x i8> --> i128 is not, so the backend probably can't reduce it.
4297   Type *SrcTy = LoadPtr->getType()->getPointerElementType();
4298   unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts;
4299   if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth)))
4300     return false;
4301 
4302   // Everything matched - assume that we can fold the whole sequence using
4303   // load combining.
4304   LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at "
4305              << *(cast<Instruction>(Root)) << "\n");
4306 
4307   return true;
4308 }
4309 
4310 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const {
4311   if (RdxKind != RecurKind::Or)
4312     return false;
4313 
4314   unsigned NumElts = VectorizableTree[0]->Scalars.size();
4315   Value *FirstReduced = VectorizableTree[0]->Scalars[0];
4316   return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI,
4317                                     /* MatchOr */ false);
4318 }
4319 
4320 bool BoUpSLP::isLoadCombineCandidate() const {
4321   // Peek through a final sequence of stores and check if all operations are
4322   // likely to be load-combined.
4323   unsigned NumElts = VectorizableTree[0]->Scalars.size();
4324   for (Value *Scalar : VectorizableTree[0]->Scalars) {
4325     Value *X;
4326     if (!match(Scalar, m_Store(m_Value(X), m_Value())) ||
4327         !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true))
4328       return false;
4329   }
4330   return true;
4331 }
4332 
4333 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const {
4334   // No need to vectorize inserts of gathered values.
4335   if (VectorizableTree.size() == 2 &&
4336       isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) &&
4337       VectorizableTree[1]->State == TreeEntry::NeedToGather)
4338     return true;
4339 
4340   // We can vectorize the tree if its size is greater than or equal to the
4341   // minimum size specified by the MinTreeSize command line option.
4342   if (VectorizableTree.size() >= MinTreeSize)
4343     return false;
4344 
4345   // If we have a tiny tree (a tree whose size is less than MinTreeSize), we
4346   // can vectorize it if we can prove it fully vectorizable.
4347   if (isFullyVectorizableTinyTree())
4348     return false;
4349 
4350   assert(VectorizableTree.empty()
4351              ? ExternalUses.empty()
4352              : true && "We shouldn't have any external users");
4353 
4354   // Otherwise, we can't vectorize the tree. It is both tiny and not fully
4355   // vectorizable.
4356   return true;
4357 }
4358 
4359 InstructionCost BoUpSLP::getSpillCost() const {
4360   // Walk from the bottom of the tree to the top, tracking which values are
4361   // live. When we see a call instruction that is not part of our tree,
4362   // query TTI to see if there is a cost to keeping values live over it
4363   // (for example, if spills and fills are required).
4364   unsigned BundleWidth = VectorizableTree.front()->Scalars.size();
4365   InstructionCost Cost = 0;
4366 
4367   SmallPtrSet<Instruction*, 4> LiveValues;
4368   Instruction *PrevInst = nullptr;
4369 
4370   // The entries in VectorizableTree are not necessarily ordered by their
4371   // position in basic blocks. Collect them and order them by dominance so later
4372   // instructions are guaranteed to be visited first. For instructions in
4373   // different basic blocks, we only scan to the beginning of the block, so
4374   // their order does not matter, as long as all instructions in a basic block
4375   // are grouped together. Using dominance ensures a deterministic order.
4376   SmallVector<Instruction *, 16> OrderedScalars;
4377   for (const auto &TEPtr : VectorizableTree) {
4378     Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]);
4379     if (!Inst)
4380       continue;
4381     OrderedScalars.push_back(Inst);
4382   }
4383   llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) {
4384     auto *NodeA = DT->getNode(A->getParent());
4385     auto *NodeB = DT->getNode(B->getParent());
4386     assert(NodeA && "Should only process reachable instructions");
4387     assert(NodeB && "Should only process reachable instructions");
4388     assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) &&
4389            "Different nodes should have different DFS numbers");
4390     if (NodeA != NodeB)
4391       return NodeA->getDFSNumIn() < NodeB->getDFSNumIn();
4392     return B->comesBefore(A);
4393   });
4394 
4395   for (Instruction *Inst : OrderedScalars) {
4396     if (!PrevInst) {
4397       PrevInst = Inst;
4398       continue;
4399     }
4400 
4401     // Update LiveValues.
4402     LiveValues.erase(PrevInst);
4403     for (auto &J : PrevInst->operands()) {
4404       if (isa<Instruction>(&*J) && getTreeEntry(&*J))
4405         LiveValues.insert(cast<Instruction>(&*J));
4406     }
4407 
4408     LLVM_DEBUG({
4409       dbgs() << "SLP: #LV: " << LiveValues.size();
4410       for (auto *X : LiveValues)
4411         dbgs() << " " << X->getName();
4412       dbgs() << ", Looking at ";
4413       Inst->dump();
4414     });
4415 
4416     // Now find the sequence of instructions between PrevInst and Inst.
4417     unsigned NumCalls = 0;
4418     BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(),
4419                                  PrevInstIt =
4420                                      PrevInst->getIterator().getReverse();
4421     while (InstIt != PrevInstIt) {
4422       if (PrevInstIt == PrevInst->getParent()->rend()) {
4423         PrevInstIt = Inst->getParent()->rbegin();
4424         continue;
4425       }
4426 
4427       // Debug information does not impact spill cost.
4428       if ((isa<CallInst>(&*PrevInstIt) &&
4429            !isa<DbgInfoIntrinsic>(&*PrevInstIt)) &&
4430           &*PrevInstIt != PrevInst)
4431         NumCalls++;
4432 
4433       ++PrevInstIt;
4434     }
4435 
4436     if (NumCalls) {
4437       SmallVector<Type*, 4> V;
4438       for (auto *II : LiveValues) {
4439         auto *ScalarTy = II->getType();
4440         if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy))
4441           ScalarTy = VectorTy->getElementType();
4442         V.push_back(FixedVectorType::get(ScalarTy, BundleWidth));
4443       }
4444       Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V);
4445     }
4446 
4447     PrevInst = Inst;
4448   }
4449 
4450   return Cost;
4451 }
4452 
4453 InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) {
4454   InstructionCost Cost = 0;
4455   LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size "
4456                     << VectorizableTree.size() << ".\n");
4457 
4458   unsigned BundleWidth = VectorizableTree[0]->Scalars.size();
4459 
4460   for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) {
4461     TreeEntry &TE = *VectorizableTree[I].get();
4462 
4463     InstructionCost C = getEntryCost(&TE, VectorizedVals);
4464     Cost += C;
4465     LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C
4466                       << " for bundle that starts with " << *TE.Scalars[0]
4467                       << ".\n"
4468                       << "SLP: Current total cost = " << Cost << "\n");
4469   }
4470 
4471   SmallPtrSet<Value *, 16> ExtractCostCalculated;
4472   InstructionCost ExtractCost = 0;
4473   SmallVector<unsigned> VF;
4474   SmallVector<SmallVector<int>> ShuffleMask;
4475   SmallVector<Value *> FirstUsers;
4476   SmallVector<APInt> DemandedElts;
4477   for (ExternalUser &EU : ExternalUses) {
4478     // We only add extract cost once for the same scalar.
4479     if (!ExtractCostCalculated.insert(EU.Scalar).second)
4480       continue;
4481 
4482     // Uses by ephemeral values are free (because the ephemeral value will be
4483     // removed prior to code generation, and so the extraction will be
4484     // removed as well).
4485     if (EphValues.count(EU.User))
4486       continue;
4487 
4488     // No extract cost for vector "scalar"
4489     if (isa<FixedVectorType>(EU.Scalar->getType()))
4490       continue;
4491 
4492     // Already counted the cost for external uses when tried to adjust the cost
4493     // for extractelements, no need to add it again.
4494     if (isa<ExtractElementInst>(EU.Scalar))
4495       continue;
4496 
4497     // If found user is an insertelement, do not calculate extract cost but try
4498     // to detect it as a final shuffled/identity match.
4499     if (EU.User && isa<InsertElementInst>(EU.User)) {
4500       if (auto *FTy = dyn_cast<FixedVectorType>(EU.User->getType())) {
4501         Optional<int> InsertIdx = getInsertIndex(EU.User, 0);
4502         if (!InsertIdx || *InsertIdx == UndefMaskElem)
4503           continue;
4504         Value *VU = EU.User;
4505         auto *It = find_if(FirstUsers, [VU](Value *V) {
4506           // Checks if 2 insertelements are from the same buildvector.
4507           if (VU->getType() != V->getType())
4508             return false;
4509           auto *IE1 = cast<InsertElementInst>(VU);
4510           auto *IE2 = cast<InsertElementInst>(V);
4511           // Go though of insertelement instructions trying to find either VU as
4512           // the original vector for IE2 or V as the original vector for IE1.
4513           do {
4514             if (IE1 == VU || IE2 == V)
4515               return true;
4516             if (IE1)
4517               IE1 = dyn_cast<InsertElementInst>(IE1->getOperand(0));
4518             if (IE2)
4519               IE2 = dyn_cast<InsertElementInst>(IE2->getOperand(0));
4520           } while (IE1 || IE2);
4521           return false;
4522         });
4523         int VecId = -1;
4524         if (It == FirstUsers.end()) {
4525           VF.push_back(FTy->getNumElements());
4526           ShuffleMask.emplace_back(VF.back(), UndefMaskElem);
4527           FirstUsers.push_back(EU.User);
4528           DemandedElts.push_back(APInt::getNullValue(VF.back()));
4529           VecId = FirstUsers.size() - 1;
4530         } else {
4531           VecId = std::distance(FirstUsers.begin(), It);
4532         }
4533         int Idx = *InsertIdx;
4534         ShuffleMask[VecId][Idx] = EU.Lane;
4535         DemandedElts[VecId].setBit(Idx);
4536       }
4537     }
4538 
4539     // If we plan to rewrite the tree in a smaller type, we will need to sign
4540     // extend the extracted value back to the original type. Here, we account
4541     // for the extract and the added cost of the sign extend if needed.
4542     auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth);
4543     auto *ScalarRoot = VectorizableTree[0]->Scalars[0];
4544     if (MinBWs.count(ScalarRoot)) {
4545       auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
4546       auto Extend =
4547           MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt;
4548       VecTy = FixedVectorType::get(MinTy, BundleWidth);
4549       ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(),
4550                                                    VecTy, EU.Lane);
4551     } else {
4552       ExtractCost +=
4553           TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane);
4554     }
4555   }
4556 
4557   InstructionCost SpillCost = getSpillCost();
4558   Cost += SpillCost + ExtractCost;
4559   for (int I = 0, E = FirstUsers.size(); I < E; ++I) {
4560     // For the very first element - simple shuffle of the source vector.
4561     int Limit = ShuffleMask[I].size() * 2;
4562     if (I == 0 &&
4563         all_of(ShuffleMask[I], [Limit](int Idx) { return Idx < Limit; }) &&
4564         !ShuffleVectorInst::isIdentityMask(ShuffleMask[I])) {
4565       InstructionCost C = TTI->getShuffleCost(
4566           TTI::SK_PermuteSingleSrc,
4567           cast<FixedVectorType>(FirstUsers[I]->getType()), ShuffleMask[I]);
4568       LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C
4569                         << " for final shuffle of insertelement external users "
4570                         << *VectorizableTree.front()->Scalars.front() << ".\n"
4571                         << "SLP: Current total cost = " << Cost << "\n");
4572       Cost += C;
4573       continue;
4574     }
4575     // Other elements - permutation of 2 vectors (the initial one and the next
4576     // Ith incoming vector).
4577     unsigned VF = ShuffleMask[I].size();
4578     for (unsigned Idx = 0; Idx < VF; ++Idx) {
4579       int &Mask = ShuffleMask[I][Idx];
4580       Mask = Mask == UndefMaskElem ? Idx : VF + Mask;
4581     }
4582     InstructionCost C = TTI->getShuffleCost(
4583         TTI::SK_PermuteTwoSrc, cast<FixedVectorType>(FirstUsers[I]->getType()),
4584         ShuffleMask[I]);
4585     LLVM_DEBUG(
4586         dbgs()
4587         << "SLP: Adding cost " << C
4588         << " for final shuffle of vector node and external insertelement users "
4589         << *VectorizableTree.front()->Scalars.front() << ".\n"
4590         << "SLP: Current total cost = " << Cost << "\n");
4591     Cost += C;
4592     InstructionCost InsertCost = TTI->getScalarizationOverhead(
4593         cast<FixedVectorType>(FirstUsers[I]->getType()), DemandedElts[I],
4594         /*Insert*/ true,
4595         /*Extract*/ false);
4596     Cost -= InsertCost;
4597     LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost
4598                       << " for insertelements gather.\n"
4599                       << "SLP: Current total cost = " << Cost << "\n");
4600   }
4601 
4602 #ifndef NDEBUG
4603   SmallString<256> Str;
4604   {
4605     raw_svector_ostream OS(Str);
4606     OS << "SLP: Spill Cost = " << SpillCost << ".\n"
4607        << "SLP: Extract Cost = " << ExtractCost << ".\n"
4608        << "SLP: Total Cost = " << Cost << ".\n";
4609   }
4610   LLVM_DEBUG(dbgs() << Str);
4611   if (ViewSLPTree)
4612     ViewGraph(this, "SLP" + F->getName(), false, Str);
4613 #endif
4614 
4615   return Cost;
4616 }
4617 
4618 Optional<TargetTransformInfo::ShuffleKind>
4619 BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask,
4620                                SmallVectorImpl<const TreeEntry *> &Entries) {
4621   // TODO: currently checking only for Scalars in the tree entry, need to count
4622   // reused elements too for better cost estimation.
4623   Mask.assign(TE->Scalars.size(), UndefMaskElem);
4624   Entries.clear();
4625   // Build a lists of values to tree entries.
4626   DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>> ValueToTEs;
4627   for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) {
4628     if (EntryPtr.get() == TE)
4629       break;
4630     if (EntryPtr->State != TreeEntry::NeedToGather)
4631       continue;
4632     for (Value *V : EntryPtr->Scalars)
4633       ValueToTEs.try_emplace(V).first->getSecond().insert(EntryPtr.get());
4634   }
4635   // Find all tree entries used by the gathered values. If no common entries
4636   // found - not a shuffle.
4637   // Here we build a set of tree nodes for each gathered value and trying to
4638   // find the intersection between these sets. If we have at least one common
4639   // tree node for each gathered value - we have just a permutation of the
4640   // single vector. If we have 2 different sets, we're in situation where we
4641   // have a permutation of 2 input vectors.
4642   SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs;
4643   DenseMap<Value *, int> UsedValuesEntry;
4644   for (Value *V : TE->Scalars) {
4645     if (isa<UndefValue>(V))
4646       continue;
4647     // Build a list of tree entries where V is used.
4648     SmallPtrSet<const TreeEntry *, 4> VToTEs;
4649     auto It = ValueToTEs.find(V);
4650     if (It != ValueToTEs.end())
4651       VToTEs = It->second;
4652     if (const TreeEntry *VTE = getTreeEntry(V))
4653       VToTEs.insert(VTE);
4654     if (VToTEs.empty())
4655       return None;
4656     if (UsedTEs.empty()) {
4657       // The first iteration, just insert the list of nodes to vector.
4658       UsedTEs.push_back(VToTEs);
4659     } else {
4660       // Need to check if there are any previously used tree nodes which use V.
4661       // If there are no such nodes, consider that we have another one input
4662       // vector.
4663       SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs);
4664       unsigned Idx = 0;
4665       for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) {
4666         // Do we have a non-empty intersection of previously listed tree entries
4667         // and tree entries using current V?
4668         set_intersect(VToTEs, Set);
4669         if (!VToTEs.empty()) {
4670           // Yes, write the new subset and continue analysis for the next
4671           // scalar.
4672           Set.swap(VToTEs);
4673           break;
4674         }
4675         VToTEs = SavedVToTEs;
4676         ++Idx;
4677       }
4678       // No non-empty intersection found - need to add a second set of possible
4679       // source vectors.
4680       if (Idx == UsedTEs.size()) {
4681         // If the number of input vectors is greater than 2 - not a permutation,
4682         // fallback to the regular gather.
4683         if (UsedTEs.size() == 2)
4684           return None;
4685         UsedTEs.push_back(SavedVToTEs);
4686         Idx = UsedTEs.size() - 1;
4687       }
4688       UsedValuesEntry.try_emplace(V, Idx);
4689     }
4690   }
4691 
4692   unsigned VF = 0;
4693   if (UsedTEs.size() == 1) {
4694     // Try to find the perfect match in another gather node at first.
4695     auto It = find_if(UsedTEs.front(), [TE](const TreeEntry *EntryPtr) {
4696       return EntryPtr->isSame(TE->Scalars);
4697     });
4698     if (It != UsedTEs.front().end()) {
4699       Entries.push_back(*It);
4700       std::iota(Mask.begin(), Mask.end(), 0);
4701       return TargetTransformInfo::SK_PermuteSingleSrc;
4702     }
4703     // No perfect match, just shuffle, so choose the first tree node.
4704     Entries.push_back(*UsedTEs.front().begin());
4705   } else {
4706     // Try to find nodes with the same vector factor.
4707     assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries.");
4708     // FIXME: Shall be replaced by GetVF function once non-power-2 patch is
4709     // landed.
4710     auto &&GetVF = [](const TreeEntry *TE) {
4711       if (!TE->ReuseShuffleIndices.empty())
4712         return TE->ReuseShuffleIndices.size();
4713       return TE->Scalars.size();
4714     };
4715     DenseMap<int, const TreeEntry *> VFToTE;
4716     for (const TreeEntry *TE : UsedTEs.front())
4717       VFToTE.try_emplace(GetVF(TE), TE);
4718     for (const TreeEntry *TE : UsedTEs.back()) {
4719       auto It = VFToTE.find(GetVF(TE));
4720       if (It != VFToTE.end()) {
4721         VF = It->first;
4722         Entries.push_back(It->second);
4723         Entries.push_back(TE);
4724         break;
4725       }
4726     }
4727     // No 2 source vectors with the same vector factor - give up and do regular
4728     // gather.
4729     if (Entries.empty())
4730       return None;
4731   }
4732 
4733   // Build a shuffle mask for better cost estimation and vector emission.
4734   for (int I = 0, E = TE->Scalars.size(); I < E; ++I) {
4735     Value *V = TE->Scalars[I];
4736     if (isa<UndefValue>(V))
4737       continue;
4738     unsigned Idx = UsedValuesEntry.lookup(V);
4739     const TreeEntry *VTE = Entries[Idx];
4740     int FoundLane = VTE->findLaneForValue(V);
4741     Mask[I] = Idx * VF + FoundLane;
4742     // Extra check required by isSingleSourceMaskImpl function (called by
4743     // ShuffleVectorInst::isSingleSourceMask).
4744     if (Mask[I] >= 2 * E)
4745       return None;
4746   }
4747   switch (Entries.size()) {
4748   case 1:
4749     return TargetTransformInfo::SK_PermuteSingleSrc;
4750   case 2:
4751     return TargetTransformInfo::SK_PermuteTwoSrc;
4752   default:
4753     break;
4754   }
4755   return None;
4756 }
4757 
4758 InstructionCost
4759 BoUpSLP::getGatherCost(FixedVectorType *Ty,
4760                        const DenseSet<unsigned> &ShuffledIndices) const {
4761   unsigned NumElts = Ty->getNumElements();
4762   APInt DemandedElts = APInt::getNullValue(NumElts);
4763   for (unsigned I = 0; I < NumElts; ++I)
4764     if (!ShuffledIndices.count(I))
4765       DemandedElts.setBit(I);
4766   InstructionCost Cost =
4767       TTI->getScalarizationOverhead(Ty, DemandedElts, /*Insert*/ true,
4768                                     /*Extract*/ false);
4769   if (!ShuffledIndices.empty())
4770     Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty);
4771   return Cost;
4772 }
4773 
4774 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const {
4775   // Find the type of the operands in VL.
4776   Type *ScalarTy = VL[0]->getType();
4777   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
4778     ScalarTy = SI->getValueOperand()->getType();
4779   auto *VecTy = FixedVectorType::get(ScalarTy, VL.size());
4780   // Find the cost of inserting/extracting values from the vector.
4781   // Check if the same elements are inserted several times and count them as
4782   // shuffle candidates.
4783   DenseSet<unsigned> ShuffledElements;
4784   DenseSet<Value *> UniqueElements;
4785   // Iterate in reverse order to consider insert elements with the high cost.
4786   for (unsigned I = VL.size(); I > 0; --I) {
4787     unsigned Idx = I - 1;
4788     if (isConstant(VL[Idx]))
4789       continue;
4790     if (!UniqueElements.insert(VL[Idx]).second)
4791       ShuffledElements.insert(Idx);
4792   }
4793   return getGatherCost(VecTy, ShuffledElements);
4794 }
4795 
4796 // Perform operand reordering on the instructions in VL and return the reordered
4797 // operands in Left and Right.
4798 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
4799                                              SmallVectorImpl<Value *> &Left,
4800                                              SmallVectorImpl<Value *> &Right,
4801                                              const DataLayout &DL,
4802                                              ScalarEvolution &SE,
4803                                              const BoUpSLP &R) {
4804   if (VL.empty())
4805     return;
4806   VLOperands Ops(VL, DL, SE, R);
4807   // Reorder the operands in place.
4808   Ops.reorder();
4809   Left = Ops.getVL(0);
4810   Right = Ops.getVL(1);
4811 }
4812 
4813 void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) {
4814   // Get the basic block this bundle is in. All instructions in the bundle
4815   // should be in this block.
4816   auto *Front = E->getMainOp();
4817   auto *BB = Front->getParent();
4818   assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool {
4819     auto *I = cast<Instruction>(V);
4820     return !E->isOpcodeOrAlt(I) || I->getParent() == BB;
4821   }));
4822 
4823   // The last instruction in the bundle in program order.
4824   Instruction *LastInst = nullptr;
4825 
4826   // Find the last instruction. The common case should be that BB has been
4827   // scheduled, and the last instruction is VL.back(). So we start with
4828   // VL.back() and iterate over schedule data until we reach the end of the
4829   // bundle. The end of the bundle is marked by null ScheduleData.
4830   if (BlocksSchedules.count(BB)) {
4831     auto *Bundle =
4832         BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back()));
4833     if (Bundle && Bundle->isPartOfBundle())
4834       for (; Bundle; Bundle = Bundle->NextInBundle)
4835         if (Bundle->OpValue == Bundle->Inst)
4836           LastInst = Bundle->Inst;
4837   }
4838 
4839   // LastInst can still be null at this point if there's either not an entry
4840   // for BB in BlocksSchedules or there's no ScheduleData available for
4841   // VL.back(). This can be the case if buildTree_rec aborts for various
4842   // reasons (e.g., the maximum recursion depth is reached, the maximum region
4843   // size is reached, etc.). ScheduleData is initialized in the scheduling
4844   // "dry-run".
4845   //
4846   // If this happens, we can still find the last instruction by brute force. We
4847   // iterate forwards from Front (inclusive) until we either see all
4848   // instructions in the bundle or reach the end of the block. If Front is the
4849   // last instruction in program order, LastInst will be set to Front, and we
4850   // will visit all the remaining instructions in the block.
4851   //
4852   // One of the reasons we exit early from buildTree_rec is to place an upper
4853   // bound on compile-time. Thus, taking an additional compile-time hit here is
4854   // not ideal. However, this should be exceedingly rare since it requires that
4855   // we both exit early from buildTree_rec and that the bundle be out-of-order
4856   // (causing us to iterate all the way to the end of the block).
4857   if (!LastInst) {
4858     SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end());
4859     for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) {
4860       if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I))
4861         LastInst = &I;
4862       if (Bundle.empty())
4863         break;
4864     }
4865   }
4866   assert(LastInst && "Failed to find last instruction in bundle");
4867 
4868   // Set the insertion point after the last instruction in the bundle. Set the
4869   // debug location to Front.
4870   Builder.SetInsertPoint(BB, ++LastInst->getIterator());
4871   Builder.SetCurrentDebugLocation(Front->getDebugLoc());
4872 }
4873 
4874 Value *BoUpSLP::gather(ArrayRef<Value *> VL) {
4875   // List of instructions/lanes from current block and/or the blocks which are
4876   // part of the current loop. These instructions will be inserted at the end to
4877   // make it possible to optimize loops and hoist invariant instructions out of
4878   // the loops body with better chances for success.
4879   SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts;
4880   SmallSet<int, 4> PostponedIndices;
4881   Loop *L = LI->getLoopFor(Builder.GetInsertBlock());
4882   auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) {
4883     SmallPtrSet<BasicBlock *, 4> Visited;
4884     while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second)
4885       InsertBB = InsertBB->getSinglePredecessor();
4886     return InsertBB && InsertBB == InstBB;
4887   };
4888   for (int I = 0, E = VL.size(); I < E; ++I) {
4889     if (auto *Inst = dyn_cast<Instruction>(VL[I]))
4890       if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) ||
4891            getTreeEntry(Inst) || (L && (L->contains(Inst)))) &&
4892           PostponedIndices.insert(I).second)
4893         PostponedInsts.emplace_back(Inst, I);
4894   }
4895 
4896   auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) {
4897     Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos));
4898     auto *InsElt = dyn_cast<InsertElementInst>(Vec);
4899     if (!InsElt)
4900       return Vec;
4901     GatherSeq.insert(InsElt);
4902     CSEBlocks.insert(InsElt->getParent());
4903     // Add to our 'need-to-extract' list.
4904     if (TreeEntry *Entry = getTreeEntry(V)) {
4905       // Find which lane we need to extract.
4906       unsigned FoundLane = Entry->findLaneForValue(V);
4907       ExternalUses.emplace_back(V, InsElt, FoundLane);
4908     }
4909     return Vec;
4910   };
4911   Value *Val0 =
4912       isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0];
4913   FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size());
4914   Value *Vec = PoisonValue::get(VecTy);
4915   SmallVector<int> NonConsts;
4916   // Insert constant values at first.
4917   for (int I = 0, E = VL.size(); I < E; ++I) {
4918     if (PostponedIndices.contains(I))
4919       continue;
4920     if (!isConstant(VL[I])) {
4921       NonConsts.push_back(I);
4922       continue;
4923     }
4924     Vec = CreateInsertElement(Vec, VL[I], I);
4925   }
4926   // Insert non-constant values.
4927   for (int I : NonConsts)
4928     Vec = CreateInsertElement(Vec, VL[I], I);
4929   // Append instructions, which are/may be part of the loop, in the end to make
4930   // it possible to hoist non-loop-based instructions.
4931   for (const std::pair<Value *, unsigned> &Pair : PostponedInsts)
4932     Vec = CreateInsertElement(Vec, Pair.first, Pair.second);
4933 
4934   return Vec;
4935 }
4936 
4937 namespace {
4938 /// Merges shuffle masks and emits final shuffle instruction, if required.
4939 class ShuffleInstructionBuilder {
4940   IRBuilderBase &Builder;
4941   const unsigned VF = 0;
4942   bool IsFinalized = false;
4943   SmallVector<int, 4> Mask;
4944 
4945 public:
4946   ShuffleInstructionBuilder(IRBuilderBase &Builder, unsigned VF)
4947       : Builder(Builder), VF(VF) {}
4948 
4949   /// Adds a mask, inverting it before applying.
4950   void addInversedMask(ArrayRef<unsigned> SubMask) {
4951     if (SubMask.empty())
4952       return;
4953     SmallVector<int, 4> NewMask;
4954     inversePermutation(SubMask, NewMask);
4955     addMask(NewMask);
4956   }
4957 
4958   /// Functions adds masks, merging them into  single one.
4959   void addMask(ArrayRef<unsigned> SubMask) {
4960     SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end());
4961     addMask(NewMask);
4962   }
4963 
4964   void addMask(ArrayRef<int> SubMask) { ::addMask(Mask, SubMask); }
4965 
4966   Value *finalize(Value *V) {
4967     IsFinalized = true;
4968     unsigned ValueVF = cast<FixedVectorType>(V->getType())->getNumElements();
4969     if (VF == ValueVF && Mask.empty())
4970       return V;
4971     SmallVector<int, 4> NormalizedMask(VF, UndefMaskElem);
4972     std::iota(NormalizedMask.begin(), NormalizedMask.end(), 0);
4973     addMask(NormalizedMask);
4974 
4975     if (VF == ValueVF && ShuffleVectorInst::isIdentityMask(Mask))
4976       return V;
4977     return Builder.CreateShuffleVector(V, Mask, "shuffle");
4978   }
4979 
4980   ~ShuffleInstructionBuilder() {
4981     assert((IsFinalized || Mask.empty()) &&
4982            "Shuffle construction must be finalized.");
4983   }
4984 };
4985 } // namespace
4986 
4987 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) {
4988   unsigned VF = VL.size();
4989   InstructionsState S = getSameOpcode(VL);
4990   if (S.getOpcode()) {
4991     if (TreeEntry *E = getTreeEntry(S.OpValue))
4992       if (E->isSame(VL)) {
4993         Value *V = vectorizeTree(E);
4994         if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) {
4995           if (!E->ReuseShuffleIndices.empty()) {
4996             // Reshuffle to get only unique values.
4997             // If some of the scalars are duplicated in the vectorization tree
4998             // entry, we do not vectorize them but instead generate a mask for
4999             // the reuses. But if there are several users of the same entry,
5000             // they may have different vectorization factors. This is especially
5001             // important for PHI nodes. In this case, we need to adapt the
5002             // resulting instruction for the user vectorization factor and have
5003             // to reshuffle it again to take only unique elements of the vector.
5004             // Without this code the function incorrectly returns reduced vector
5005             // instruction with the same elements, not with the unique ones.
5006 
5007             // block:
5008             // %phi = phi <2 x > { .., %entry} {%shuffle, %block}
5009             // %2 = shuffle <2 x > %phi, %poison, <4 x > <0, 0, 1, 1>
5010             // ... (use %2)
5011             // %shuffle = shuffle <2 x> %2, poison, <2 x> {0, 2}
5012             // br %block
5013             SmallVector<int> UniqueIdxs;
5014             SmallSet<int, 4> UsedIdxs;
5015             int Pos = 0;
5016             int Sz = VL.size();
5017             for (int Idx : E->ReuseShuffleIndices) {
5018               if (Idx != Sz && UsedIdxs.insert(Idx).second)
5019                 UniqueIdxs.emplace_back(Pos);
5020               ++Pos;
5021             }
5022             assert(VF >= UsedIdxs.size() && "Expected vectorization factor "
5023                                             "less than original vector size.");
5024             UniqueIdxs.append(VF - UsedIdxs.size(), UndefMaskElem);
5025             V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle");
5026           } else {
5027             assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() &&
5028                    "Expected vectorization factor less "
5029                    "than original vector size.");
5030             SmallVector<int> UniformMask(VF, 0);
5031             std::iota(UniformMask.begin(), UniformMask.end(), 0);
5032             V = Builder.CreateShuffleVector(V, UniformMask, "shrink.shuffle");
5033           }
5034         }
5035         return V;
5036       }
5037   }
5038 
5039   // Check that every instruction appears once in this bundle.
5040   SmallVector<int> ReuseShuffleIndicies;
5041   SmallVector<Value *> UniqueValues;
5042   if (VL.size() > 2) {
5043     DenseMap<Value *, unsigned> UniquePositions;
5044     unsigned NumValues =
5045         std::distance(VL.begin(), find_if(reverse(VL), [](Value *V) {
5046                                     return !isa<UndefValue>(V);
5047                                   }).base());
5048     VF = std::max<unsigned>(VF, PowerOf2Ceil(NumValues));
5049     int UniqueVals = 0;
5050     bool HasUndefs = false;
5051     for (Value *V : VL.drop_back(VL.size() - VF)) {
5052       if (isa<UndefValue>(V)) {
5053         ReuseShuffleIndicies.emplace_back(UndefMaskElem);
5054         HasUndefs = true;
5055         continue;
5056       }
5057       if (isConstant(V)) {
5058         ReuseShuffleIndicies.emplace_back(UniqueValues.size());
5059         UniqueValues.emplace_back(V);
5060         continue;
5061       }
5062       auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
5063       ReuseShuffleIndicies.emplace_back(Res.first->second);
5064       if (Res.second) {
5065         UniqueValues.emplace_back(V);
5066         ++UniqueVals;
5067       }
5068     }
5069     if (HasUndefs && UniqueVals == 1 && UniqueValues.size() == 1) {
5070       // Emit pure splat vector.
5071       // FIXME: why it is not identified as an identity.
5072       unsigned NumUndefs = count(ReuseShuffleIndicies, UndefMaskElem);
5073       if (NumUndefs == ReuseShuffleIndicies.size() - 1)
5074         ReuseShuffleIndicies.append(VF - ReuseShuffleIndicies.size(),
5075                                     UndefMaskElem);
5076       else
5077         ReuseShuffleIndicies.assign(VF, 0);
5078     } else if (UniqueValues.size() >= VF - 1 || UniqueValues.size() <= 1) {
5079       ReuseShuffleIndicies.clear();
5080       UniqueValues.clear();
5081       UniqueValues.append(VL.begin(), std::next(VL.begin(), NumValues));
5082     }
5083     UniqueValues.append(VF - UniqueValues.size(),
5084                         PoisonValue::get(VL[0]->getType()));
5085     VL = UniqueValues;
5086   }
5087 
5088   ShuffleInstructionBuilder ShuffleBuilder(Builder, VF);
5089   Value *Vec = gather(VL);
5090   if (!ReuseShuffleIndicies.empty()) {
5091     ShuffleBuilder.addMask(ReuseShuffleIndicies);
5092     Vec = ShuffleBuilder.finalize(Vec);
5093     if (auto *I = dyn_cast<Instruction>(Vec)) {
5094       GatherSeq.insert(I);
5095       CSEBlocks.insert(I->getParent());
5096     }
5097   }
5098   return Vec;
5099 }
5100 
5101 Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
5102   IRBuilder<>::InsertPointGuard Guard(Builder);
5103 
5104   if (E->VectorizedValue) {
5105     LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n");
5106     return E->VectorizedValue;
5107   }
5108 
5109   bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
5110   unsigned VF = E->Scalars.size();
5111   if (NeedToShuffleReuses)
5112     VF = E->ReuseShuffleIndices.size();
5113   ShuffleInstructionBuilder ShuffleBuilder(Builder, VF);
5114   if (E->State == TreeEntry::NeedToGather) {
5115     setInsertPointAfterBundle(E);
5116     Value *Vec;
5117     SmallVector<int> Mask;
5118     SmallVector<const TreeEntry *> Entries;
5119     Optional<TargetTransformInfo::ShuffleKind> Shuffle =
5120         isGatherShuffledEntry(E, Mask, Entries);
5121     if (Shuffle.hasValue()) {
5122       assert((Entries.size() == 1 || Entries.size() == 2) &&
5123              "Expected shuffle of 1 or 2 entries.");
5124       Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue,
5125                                         Entries.back()->VectorizedValue, Mask);
5126     } else {
5127       Vec = gather(E->Scalars);
5128     }
5129     if (NeedToShuffleReuses) {
5130       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
5131       Vec = ShuffleBuilder.finalize(Vec);
5132       if (auto *I = dyn_cast<Instruction>(Vec)) {
5133         GatherSeq.insert(I);
5134         CSEBlocks.insert(I->getParent());
5135       }
5136     }
5137     E->VectorizedValue = Vec;
5138     return Vec;
5139   }
5140 
5141   assert((E->State == TreeEntry::Vectorize ||
5142           E->State == TreeEntry::ScatterVectorize) &&
5143          "Unhandled state");
5144   unsigned ShuffleOrOp =
5145       E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode();
5146   Instruction *VL0 = E->getMainOp();
5147   Type *ScalarTy = VL0->getType();
5148   if (auto *Store = dyn_cast<StoreInst>(VL0))
5149     ScalarTy = Store->getValueOperand()->getType();
5150   else if (auto *IE = dyn_cast<InsertElementInst>(VL0))
5151     ScalarTy = IE->getOperand(1)->getType();
5152   auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size());
5153   switch (ShuffleOrOp) {
5154     case Instruction::PHI: {
5155       auto *PH = cast<PHINode>(VL0);
5156       Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI());
5157       Builder.SetCurrentDebugLocation(PH->getDebugLoc());
5158       PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues());
5159       Value *V = NewPhi;
5160       if (NeedToShuffleReuses)
5161         V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle");
5162 
5163       E->VectorizedValue = V;
5164 
5165       // PHINodes may have multiple entries from the same block. We want to
5166       // visit every block once.
5167       SmallPtrSet<BasicBlock*, 4> VisitedBBs;
5168 
5169       for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
5170         ValueList Operands;
5171         BasicBlock *IBB = PH->getIncomingBlock(i);
5172 
5173         if (!VisitedBBs.insert(IBB).second) {
5174           NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB);
5175           continue;
5176         }
5177 
5178         Builder.SetInsertPoint(IBB->getTerminator());
5179         Builder.SetCurrentDebugLocation(PH->getDebugLoc());
5180         Value *Vec = vectorizeTree(E->getOperand(i));
5181         NewPhi->addIncoming(Vec, IBB);
5182       }
5183 
5184       assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() &&
5185              "Invalid number of incoming values");
5186       return V;
5187     }
5188 
5189     case Instruction::ExtractElement: {
5190       Value *V = E->getSingleOperand(0);
5191       Builder.SetInsertPoint(VL0);
5192       ShuffleBuilder.addInversedMask(E->ReorderIndices);
5193       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
5194       V = ShuffleBuilder.finalize(V);
5195       E->VectorizedValue = V;
5196       return V;
5197     }
5198     case Instruction::ExtractValue: {
5199       auto *LI = cast<LoadInst>(E->getSingleOperand(0));
5200       Builder.SetInsertPoint(LI);
5201       auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace());
5202       Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy);
5203       LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign());
5204       Value *NewV = propagateMetadata(V, E->Scalars);
5205       ShuffleBuilder.addInversedMask(E->ReorderIndices);
5206       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
5207       NewV = ShuffleBuilder.finalize(NewV);
5208       E->VectorizedValue = NewV;
5209       return NewV;
5210     }
5211     case Instruction::InsertElement: {
5212       Builder.SetInsertPoint(VL0);
5213       Value *V = vectorizeTree(E->getOperand(1));
5214 
5215       const unsigned NumElts =
5216           cast<FixedVectorType>(VL0->getType())->getNumElements();
5217       const unsigned NumScalars = E->Scalars.size();
5218 
5219       // Create InsertVector shuffle if necessary
5220       Instruction *FirstInsert = nullptr;
5221       bool IsIdentity = true;
5222       unsigned Offset = UINT_MAX;
5223       for (unsigned I = 0; I < NumScalars; ++I) {
5224         Value *Scalar = E->Scalars[I];
5225         if (!FirstInsert &&
5226             !is_contained(E->Scalars, cast<Instruction>(Scalar)->getOperand(0)))
5227           FirstInsert = cast<Instruction>(Scalar);
5228         Optional<int> InsertIdx = getInsertIndex(Scalar, 0);
5229         if (!InsertIdx || *InsertIdx == UndefMaskElem)
5230           continue;
5231         unsigned Idx = *InsertIdx;
5232         if (Idx < Offset) {
5233           Offset = Idx;
5234           IsIdentity &= I == 0;
5235         } else {
5236           assert(Idx >= Offset && "Failed to find vector index offset");
5237           IsIdentity &= Idx - Offset == I;
5238         }
5239       }
5240       assert(Offset < NumElts && "Failed to find vector index offset");
5241 
5242       // Create shuffle to resize vector
5243       SmallVector<int> Mask(NumElts, UndefMaskElem);
5244       if (!IsIdentity) {
5245         for (unsigned I = 0; I < NumScalars; ++I) {
5246           Value *Scalar = E->Scalars[I];
5247           Optional<int> InsertIdx = getInsertIndex(Scalar, 0);
5248           if (!InsertIdx || *InsertIdx == UndefMaskElem)
5249             continue;
5250           Mask[*InsertIdx - Offset] = I;
5251         }
5252       } else {
5253         std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0);
5254       }
5255       if (!IsIdentity || NumElts != NumScalars)
5256         V = Builder.CreateShuffleVector(V, Mask);
5257 
5258       if (NumElts != NumScalars) {
5259         SmallVector<int> InsertMask(NumElts);
5260         std::iota(InsertMask.begin(), InsertMask.end(), 0);
5261         for (unsigned I = 0; I < NumElts; I++) {
5262           if (Mask[I] != UndefMaskElem)
5263             InsertMask[Offset + I] = NumElts + I;
5264         }
5265 
5266         V = Builder.CreateShuffleVector(
5267             FirstInsert->getOperand(0), V, InsertMask,
5268             cast<Instruction>(E->Scalars.back())->getName());
5269       }
5270 
5271       ++NumVectorInstructions;
5272       E->VectorizedValue = V;
5273       return V;
5274     }
5275     case Instruction::ZExt:
5276     case Instruction::SExt:
5277     case Instruction::FPToUI:
5278     case Instruction::FPToSI:
5279     case Instruction::FPExt:
5280     case Instruction::PtrToInt:
5281     case Instruction::IntToPtr:
5282     case Instruction::SIToFP:
5283     case Instruction::UIToFP:
5284     case Instruction::Trunc:
5285     case Instruction::FPTrunc:
5286     case Instruction::BitCast: {
5287       setInsertPointAfterBundle(E);
5288 
5289       Value *InVec = vectorizeTree(E->getOperand(0));
5290 
5291       if (E->VectorizedValue) {
5292         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
5293         return E->VectorizedValue;
5294       }
5295 
5296       auto *CI = cast<CastInst>(VL0);
5297       Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy);
5298       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
5299       V = ShuffleBuilder.finalize(V);
5300 
5301       E->VectorizedValue = V;
5302       ++NumVectorInstructions;
5303       return V;
5304     }
5305     case Instruction::FCmp:
5306     case Instruction::ICmp: {
5307       setInsertPointAfterBundle(E);
5308 
5309       Value *L = vectorizeTree(E->getOperand(0));
5310       Value *R = vectorizeTree(E->getOperand(1));
5311 
5312       if (E->VectorizedValue) {
5313         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
5314         return E->VectorizedValue;
5315       }
5316 
5317       CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
5318       Value *V = Builder.CreateCmp(P0, L, R);
5319       propagateIRFlags(V, E->Scalars, VL0);
5320       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
5321       V = ShuffleBuilder.finalize(V);
5322 
5323       E->VectorizedValue = V;
5324       ++NumVectorInstructions;
5325       return V;
5326     }
5327     case Instruction::Select: {
5328       setInsertPointAfterBundle(E);
5329 
5330       Value *Cond = vectorizeTree(E->getOperand(0));
5331       Value *True = vectorizeTree(E->getOperand(1));
5332       Value *False = vectorizeTree(E->getOperand(2));
5333 
5334       if (E->VectorizedValue) {
5335         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
5336         return E->VectorizedValue;
5337       }
5338 
5339       Value *V = Builder.CreateSelect(Cond, True, False);
5340       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
5341       V = ShuffleBuilder.finalize(V);
5342 
5343       E->VectorizedValue = V;
5344       ++NumVectorInstructions;
5345       return V;
5346     }
5347     case Instruction::FNeg: {
5348       setInsertPointAfterBundle(E);
5349 
5350       Value *Op = vectorizeTree(E->getOperand(0));
5351 
5352       if (E->VectorizedValue) {
5353         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
5354         return E->VectorizedValue;
5355       }
5356 
5357       Value *V = Builder.CreateUnOp(
5358           static_cast<Instruction::UnaryOps>(E->getOpcode()), Op);
5359       propagateIRFlags(V, E->Scalars, VL0);
5360       if (auto *I = dyn_cast<Instruction>(V))
5361         V = propagateMetadata(I, E->Scalars);
5362 
5363       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
5364       V = ShuffleBuilder.finalize(V);
5365 
5366       E->VectorizedValue = V;
5367       ++NumVectorInstructions;
5368 
5369       return V;
5370     }
5371     case Instruction::Add:
5372     case Instruction::FAdd:
5373     case Instruction::Sub:
5374     case Instruction::FSub:
5375     case Instruction::Mul:
5376     case Instruction::FMul:
5377     case Instruction::UDiv:
5378     case Instruction::SDiv:
5379     case Instruction::FDiv:
5380     case Instruction::URem:
5381     case Instruction::SRem:
5382     case Instruction::FRem:
5383     case Instruction::Shl:
5384     case Instruction::LShr:
5385     case Instruction::AShr:
5386     case Instruction::And:
5387     case Instruction::Or:
5388     case Instruction::Xor: {
5389       setInsertPointAfterBundle(E);
5390 
5391       Value *LHS = vectorizeTree(E->getOperand(0));
5392       Value *RHS = vectorizeTree(E->getOperand(1));
5393 
5394       if (E->VectorizedValue) {
5395         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
5396         return E->VectorizedValue;
5397       }
5398 
5399       Value *V = Builder.CreateBinOp(
5400           static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS,
5401           RHS);
5402       propagateIRFlags(V, E->Scalars, VL0);
5403       if (auto *I = dyn_cast<Instruction>(V))
5404         V = propagateMetadata(I, E->Scalars);
5405 
5406       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
5407       V = ShuffleBuilder.finalize(V);
5408 
5409       E->VectorizedValue = V;
5410       ++NumVectorInstructions;
5411 
5412       return V;
5413     }
5414     case Instruction::Load: {
5415       // Loads are inserted at the head of the tree because we don't want to
5416       // sink them all the way down past store instructions.
5417       bool IsReorder = E->updateStateIfReorder();
5418       if (IsReorder)
5419         VL0 = E->getMainOp();
5420       setInsertPointAfterBundle(E);
5421 
5422       LoadInst *LI = cast<LoadInst>(VL0);
5423       Instruction *NewLI;
5424       unsigned AS = LI->getPointerAddressSpace();
5425       Value *PO = LI->getPointerOperand();
5426       if (E->State == TreeEntry::Vectorize) {
5427 
5428         Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS));
5429 
5430         // The pointer operand uses an in-tree scalar so we add the new BitCast
5431         // to ExternalUses list to make sure that an extract will be generated
5432         // in the future.
5433         if (TreeEntry *Entry = getTreeEntry(PO)) {
5434           // Find which lane we need to extract.
5435           unsigned FoundLane = Entry->findLaneForValue(PO);
5436           ExternalUses.emplace_back(PO, cast<User>(VecPtr), FoundLane);
5437         }
5438 
5439         NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign());
5440       } else {
5441         assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state");
5442         Value *VecPtr = vectorizeTree(E->getOperand(0));
5443         // Use the minimum alignment of the gathered loads.
5444         Align CommonAlignment = LI->getAlign();
5445         for (Value *V : E->Scalars)
5446           CommonAlignment =
5447               commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign());
5448         NewLI = Builder.CreateMaskedGather(VecTy, VecPtr, CommonAlignment);
5449       }
5450       Value *V = propagateMetadata(NewLI, E->Scalars);
5451 
5452       ShuffleBuilder.addInversedMask(E->ReorderIndices);
5453       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
5454       V = ShuffleBuilder.finalize(V);
5455       E->VectorizedValue = V;
5456       ++NumVectorInstructions;
5457       return V;
5458     }
5459     case Instruction::Store: {
5460       bool IsReorder = !E->ReorderIndices.empty();
5461       auto *SI = cast<StoreInst>(
5462           IsReorder ? E->Scalars[E->ReorderIndices.front()] : VL0);
5463       unsigned AS = SI->getPointerAddressSpace();
5464 
5465       setInsertPointAfterBundle(E);
5466 
5467       Value *VecValue = vectorizeTree(E->getOperand(0));
5468       ShuffleBuilder.addMask(E->ReorderIndices);
5469       VecValue = ShuffleBuilder.finalize(VecValue);
5470 
5471       Value *ScalarPtr = SI->getPointerOperand();
5472       Value *VecPtr = Builder.CreateBitCast(
5473           ScalarPtr, VecValue->getType()->getPointerTo(AS));
5474       StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr,
5475                                                  SI->getAlign());
5476 
5477       // The pointer operand uses an in-tree scalar, so add the new BitCast to
5478       // ExternalUses to make sure that an extract will be generated in the
5479       // future.
5480       if (TreeEntry *Entry = getTreeEntry(ScalarPtr)) {
5481         // Find which lane we need to extract.
5482         unsigned FoundLane = Entry->findLaneForValue(ScalarPtr);
5483         ExternalUses.push_back(
5484             ExternalUser(ScalarPtr, cast<User>(VecPtr), FoundLane));
5485       }
5486 
5487       Value *V = propagateMetadata(ST, E->Scalars);
5488 
5489       E->VectorizedValue = V;
5490       ++NumVectorInstructions;
5491       return V;
5492     }
5493     case Instruction::GetElementPtr: {
5494       setInsertPointAfterBundle(E);
5495 
5496       Value *Op0 = vectorizeTree(E->getOperand(0));
5497 
5498       std::vector<Value *> OpVecs;
5499       for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e;
5500            ++j) {
5501         ValueList &VL = E->getOperand(j);
5502         // Need to cast all elements to the same type before vectorization to
5503         // avoid crash.
5504         Type *VL0Ty = VL0->getOperand(j)->getType();
5505         Type *Ty = llvm::all_of(
5506                        VL, [VL0Ty](Value *V) { return VL0Ty == V->getType(); })
5507                        ? VL0Ty
5508                        : DL->getIndexType(cast<GetElementPtrInst>(VL0)
5509                                               ->getPointerOperandType()
5510                                               ->getScalarType());
5511         for (Value *&V : VL) {
5512           auto *CI = cast<ConstantInt>(V);
5513           V = ConstantExpr::getIntegerCast(CI, Ty,
5514                                            CI->getValue().isSignBitSet());
5515         }
5516         Value *OpVec = vectorizeTree(VL);
5517         OpVecs.push_back(OpVec);
5518       }
5519 
5520       Value *V = Builder.CreateGEP(
5521           cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs);
5522       if (Instruction *I = dyn_cast<Instruction>(V))
5523         V = propagateMetadata(I, E->Scalars);
5524 
5525       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
5526       V = ShuffleBuilder.finalize(V);
5527 
5528       E->VectorizedValue = V;
5529       ++NumVectorInstructions;
5530 
5531       return V;
5532     }
5533     case Instruction::Call: {
5534       CallInst *CI = cast<CallInst>(VL0);
5535       setInsertPointAfterBundle(E);
5536 
5537       Intrinsic::ID IID  = Intrinsic::not_intrinsic;
5538       if (Function *FI = CI->getCalledFunction())
5539         IID = FI->getIntrinsicID();
5540 
5541       Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
5542 
5543       auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI);
5544       bool UseIntrinsic = ID != Intrinsic::not_intrinsic &&
5545                           VecCallCosts.first <= VecCallCosts.second;
5546 
5547       Value *ScalarArg = nullptr;
5548       std::vector<Value *> OpVecs;
5549       SmallVector<Type *, 2> TysForDecl =
5550           {FixedVectorType::get(CI->getType(), E->Scalars.size())};
5551       for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) {
5552         ValueList OpVL;
5553         // Some intrinsics have scalar arguments. This argument should not be
5554         // vectorized.
5555         if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) {
5556           CallInst *CEI = cast<CallInst>(VL0);
5557           ScalarArg = CEI->getArgOperand(j);
5558           OpVecs.push_back(CEI->getArgOperand(j));
5559           if (hasVectorInstrinsicOverloadedScalarOpd(IID, j))
5560             TysForDecl.push_back(ScalarArg->getType());
5561           continue;
5562         }
5563 
5564         Value *OpVec = vectorizeTree(E->getOperand(j));
5565         LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n");
5566         OpVecs.push_back(OpVec);
5567       }
5568 
5569       Function *CF;
5570       if (!UseIntrinsic) {
5571         VFShape Shape =
5572             VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>(
5573                                   VecTy->getNumElements())),
5574                          false /*HasGlobalPred*/);
5575         CF = VFDatabase(*CI).getVectorizedFunction(Shape);
5576       } else {
5577         CF = Intrinsic::getDeclaration(F->getParent(), ID, TysForDecl);
5578       }
5579 
5580       SmallVector<OperandBundleDef, 1> OpBundles;
5581       CI->getOperandBundlesAsDefs(OpBundles);
5582       Value *V = Builder.CreateCall(CF, OpVecs, OpBundles);
5583 
5584       // The scalar argument uses an in-tree scalar so we add the new vectorized
5585       // call to ExternalUses list to make sure that an extract will be
5586       // generated in the future.
5587       if (ScalarArg) {
5588         if (TreeEntry *Entry = getTreeEntry(ScalarArg)) {
5589           // Find which lane we need to extract.
5590           unsigned FoundLane = Entry->findLaneForValue(ScalarArg);
5591           ExternalUses.push_back(
5592               ExternalUser(ScalarArg, cast<User>(V), FoundLane));
5593         }
5594       }
5595 
5596       propagateIRFlags(V, E->Scalars, VL0);
5597       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
5598       V = ShuffleBuilder.finalize(V);
5599 
5600       E->VectorizedValue = V;
5601       ++NumVectorInstructions;
5602       return V;
5603     }
5604     case Instruction::ShuffleVector: {
5605       assert(E->isAltShuffle() &&
5606              ((Instruction::isBinaryOp(E->getOpcode()) &&
5607                Instruction::isBinaryOp(E->getAltOpcode())) ||
5608               (Instruction::isCast(E->getOpcode()) &&
5609                Instruction::isCast(E->getAltOpcode()))) &&
5610              "Invalid Shuffle Vector Operand");
5611 
5612       Value *LHS = nullptr, *RHS = nullptr;
5613       if (Instruction::isBinaryOp(E->getOpcode())) {
5614         setInsertPointAfterBundle(E);
5615         LHS = vectorizeTree(E->getOperand(0));
5616         RHS = vectorizeTree(E->getOperand(1));
5617       } else {
5618         setInsertPointAfterBundle(E);
5619         LHS = vectorizeTree(E->getOperand(0));
5620       }
5621 
5622       if (E->VectorizedValue) {
5623         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
5624         return E->VectorizedValue;
5625       }
5626 
5627       Value *V0, *V1;
5628       if (Instruction::isBinaryOp(E->getOpcode())) {
5629         V0 = Builder.CreateBinOp(
5630             static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS);
5631         V1 = Builder.CreateBinOp(
5632             static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS);
5633       } else {
5634         V0 = Builder.CreateCast(
5635             static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy);
5636         V1 = Builder.CreateCast(
5637             static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy);
5638       }
5639 
5640       // Create shuffle to take alternate operations from the vector.
5641       // Also, gather up main and alt scalar ops to propagate IR flags to
5642       // each vector operation.
5643       ValueList OpScalars, AltScalars;
5644       unsigned Sz = E->Scalars.size();
5645       SmallVector<int> Mask(Sz);
5646       for (unsigned I = 0; I < Sz; ++I) {
5647         auto *OpInst = cast<Instruction>(E->Scalars[I]);
5648         assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode");
5649         if (OpInst->getOpcode() == E->getAltOpcode()) {
5650           Mask[I] = Sz + I;
5651           AltScalars.push_back(E->Scalars[I]);
5652         } else {
5653           Mask[I] = I;
5654           OpScalars.push_back(E->Scalars[I]);
5655         }
5656       }
5657 
5658       propagateIRFlags(V0, OpScalars);
5659       propagateIRFlags(V1, AltScalars);
5660 
5661       Value *V = Builder.CreateShuffleVector(V0, V1, Mask);
5662       if (Instruction *I = dyn_cast<Instruction>(V))
5663         V = propagateMetadata(I, E->Scalars);
5664       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
5665       V = ShuffleBuilder.finalize(V);
5666 
5667       E->VectorizedValue = V;
5668       ++NumVectorInstructions;
5669 
5670       return V;
5671     }
5672     default:
5673     llvm_unreachable("unknown inst");
5674   }
5675   return nullptr;
5676 }
5677 
5678 Value *BoUpSLP::vectorizeTree() {
5679   ExtraValueToDebugLocsMap ExternallyUsedValues;
5680   return vectorizeTree(ExternallyUsedValues);
5681 }
5682 
5683 Value *
5684 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) {
5685   // All blocks must be scheduled before any instructions are inserted.
5686   for (auto &BSIter : BlocksSchedules) {
5687     scheduleBlock(BSIter.second.get());
5688   }
5689 
5690   Builder.SetInsertPoint(&F->getEntryBlock().front());
5691   auto *VectorRoot = vectorizeTree(VectorizableTree[0].get());
5692 
5693   // If the vectorized tree can be rewritten in a smaller type, we truncate the
5694   // vectorized root. InstCombine will then rewrite the entire expression. We
5695   // sign extend the extracted values below.
5696   auto *ScalarRoot = VectorizableTree[0]->Scalars[0];
5697   if (MinBWs.count(ScalarRoot)) {
5698     if (auto *I = dyn_cast<Instruction>(VectorRoot)) {
5699       // If current instr is a phi and not the last phi, insert it after the
5700       // last phi node.
5701       if (isa<PHINode>(I))
5702         Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt());
5703       else
5704         Builder.SetInsertPoint(&*++BasicBlock::iterator(I));
5705     }
5706     auto BundleWidth = VectorizableTree[0]->Scalars.size();
5707     auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
5708     auto *VecTy = FixedVectorType::get(MinTy, BundleWidth);
5709     auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy);
5710     VectorizableTree[0]->VectorizedValue = Trunc;
5711   }
5712 
5713   LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size()
5714                     << " values .\n");
5715 
5716   // Extract all of the elements with the external uses.
5717   for (const auto &ExternalUse : ExternalUses) {
5718     Value *Scalar = ExternalUse.Scalar;
5719     llvm::User *User = ExternalUse.User;
5720 
5721     // Skip users that we already RAUW. This happens when one instruction
5722     // has multiple uses of the same value.
5723     if (User && !is_contained(Scalar->users(), User))
5724       continue;
5725     TreeEntry *E = getTreeEntry(Scalar);
5726     assert(E && "Invalid scalar");
5727     assert(E->State != TreeEntry::NeedToGather &&
5728            "Extracting from a gather list");
5729 
5730     Value *Vec = E->VectorizedValue;
5731     assert(Vec && "Can't find vectorizable value");
5732 
5733     Value *Lane = Builder.getInt32(ExternalUse.Lane);
5734     auto ExtractAndExtendIfNeeded = [&](Value *Vec) {
5735       if (Scalar->getType() != Vec->getType()) {
5736         Value *Ex;
5737         // "Reuse" the existing extract to improve final codegen.
5738         if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) {
5739           Ex = Builder.CreateExtractElement(ES->getOperand(0),
5740                                             ES->getOperand(1));
5741         } else {
5742           Ex = Builder.CreateExtractElement(Vec, Lane);
5743         }
5744         // If necessary, sign-extend or zero-extend ScalarRoot
5745         // to the larger type.
5746         if (!MinBWs.count(ScalarRoot))
5747           return Ex;
5748         if (MinBWs[ScalarRoot].second)
5749           return Builder.CreateSExt(Ex, Scalar->getType());
5750         return Builder.CreateZExt(Ex, Scalar->getType());
5751       }
5752       assert(isa<FixedVectorType>(Scalar->getType()) &&
5753              isa<InsertElementInst>(Scalar) &&
5754              "In-tree scalar of vector type is not insertelement?");
5755       return Vec;
5756     };
5757     // If User == nullptr, the Scalar is used as extra arg. Generate
5758     // ExtractElement instruction and update the record for this scalar in
5759     // ExternallyUsedValues.
5760     if (!User) {
5761       assert(ExternallyUsedValues.count(Scalar) &&
5762              "Scalar with nullptr as an external user must be registered in "
5763              "ExternallyUsedValues map");
5764       if (auto *VecI = dyn_cast<Instruction>(Vec)) {
5765         Builder.SetInsertPoint(VecI->getParent(),
5766                                std::next(VecI->getIterator()));
5767       } else {
5768         Builder.SetInsertPoint(&F->getEntryBlock().front());
5769       }
5770       Value *NewInst = ExtractAndExtendIfNeeded(Vec);
5771       CSEBlocks.insert(cast<Instruction>(Scalar)->getParent());
5772       auto &NewInstLocs = ExternallyUsedValues[NewInst];
5773       auto It = ExternallyUsedValues.find(Scalar);
5774       assert(It != ExternallyUsedValues.end() &&
5775              "Externally used scalar is not found in ExternallyUsedValues");
5776       NewInstLocs.append(It->second);
5777       ExternallyUsedValues.erase(Scalar);
5778       // Required to update internally referenced instructions.
5779       Scalar->replaceAllUsesWith(NewInst);
5780       continue;
5781     }
5782 
5783     // Generate extracts for out-of-tree users.
5784     // Find the insertion point for the extractelement lane.
5785     if (auto *VecI = dyn_cast<Instruction>(Vec)) {
5786       if (PHINode *PH = dyn_cast<PHINode>(User)) {
5787         for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) {
5788           if (PH->getIncomingValue(i) == Scalar) {
5789             Instruction *IncomingTerminator =
5790                 PH->getIncomingBlock(i)->getTerminator();
5791             if (isa<CatchSwitchInst>(IncomingTerminator)) {
5792               Builder.SetInsertPoint(VecI->getParent(),
5793                                      std::next(VecI->getIterator()));
5794             } else {
5795               Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator());
5796             }
5797             Value *NewInst = ExtractAndExtendIfNeeded(Vec);
5798             CSEBlocks.insert(PH->getIncomingBlock(i));
5799             PH->setOperand(i, NewInst);
5800           }
5801         }
5802       } else {
5803         Builder.SetInsertPoint(cast<Instruction>(User));
5804         Value *NewInst = ExtractAndExtendIfNeeded(Vec);
5805         CSEBlocks.insert(cast<Instruction>(User)->getParent());
5806         User->replaceUsesOfWith(Scalar, NewInst);
5807       }
5808     } else {
5809       Builder.SetInsertPoint(&F->getEntryBlock().front());
5810       Value *NewInst = ExtractAndExtendIfNeeded(Vec);
5811       CSEBlocks.insert(&F->getEntryBlock());
5812       User->replaceUsesOfWith(Scalar, NewInst);
5813     }
5814 
5815     LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n");
5816   }
5817 
5818   // For each vectorized value:
5819   for (auto &TEPtr : VectorizableTree) {
5820     TreeEntry *Entry = TEPtr.get();
5821 
5822     // No need to handle users of gathered values.
5823     if (Entry->State == TreeEntry::NeedToGather)
5824       continue;
5825 
5826     assert(Entry->VectorizedValue && "Can't find vectorizable value");
5827 
5828     // For each lane:
5829     for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
5830       Value *Scalar = Entry->Scalars[Lane];
5831 
5832 #ifndef NDEBUG
5833       Type *Ty = Scalar->getType();
5834       if (!Ty->isVoidTy()) {
5835         for (User *U : Scalar->users()) {
5836           LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n");
5837 
5838           // It is legal to delete users in the ignorelist.
5839           assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) &&
5840                  "Deleting out-of-tree value");
5841         }
5842       }
5843 #endif
5844       LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n");
5845       eraseInstruction(cast<Instruction>(Scalar));
5846     }
5847   }
5848 
5849   Builder.ClearInsertionPoint();
5850   InstrElementSize.clear();
5851 
5852   return VectorizableTree[0]->VectorizedValue;
5853 }
5854 
5855 void BoUpSLP::optimizeGatherSequence() {
5856   LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size()
5857                     << " gather sequences instructions.\n");
5858   // LICM InsertElementInst sequences.
5859   for (Instruction *I : GatherSeq) {
5860     if (isDeleted(I))
5861       continue;
5862 
5863     // Check if this block is inside a loop.
5864     Loop *L = LI->getLoopFor(I->getParent());
5865     if (!L)
5866       continue;
5867 
5868     // Check if it has a preheader.
5869     BasicBlock *PreHeader = L->getLoopPreheader();
5870     if (!PreHeader)
5871       continue;
5872 
5873     // If the vector or the element that we insert into it are
5874     // instructions that are defined in this basic block then we can't
5875     // hoist this instruction.
5876     auto *Op0 = dyn_cast<Instruction>(I->getOperand(0));
5877     auto *Op1 = dyn_cast<Instruction>(I->getOperand(1));
5878     if (Op0 && L->contains(Op0))
5879       continue;
5880     if (Op1 && L->contains(Op1))
5881       continue;
5882 
5883     // We can hoist this instruction. Move it to the pre-header.
5884     I->moveBefore(PreHeader->getTerminator());
5885   }
5886 
5887   // Make a list of all reachable blocks in our CSE queue.
5888   SmallVector<const DomTreeNode *, 8> CSEWorkList;
5889   CSEWorkList.reserve(CSEBlocks.size());
5890   for (BasicBlock *BB : CSEBlocks)
5891     if (DomTreeNode *N = DT->getNode(BB)) {
5892       assert(DT->isReachableFromEntry(N));
5893       CSEWorkList.push_back(N);
5894     }
5895 
5896   // Sort blocks by domination. This ensures we visit a block after all blocks
5897   // dominating it are visited.
5898   llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) {
5899     assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) &&
5900            "Different nodes should have different DFS numbers");
5901     return A->getDFSNumIn() < B->getDFSNumIn();
5902   });
5903 
5904   // Perform O(N^2) search over the gather sequences and merge identical
5905   // instructions. TODO: We can further optimize this scan if we split the
5906   // instructions into different buckets based on the insert lane.
5907   SmallVector<Instruction *, 16> Visited;
5908   for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) {
5909     assert(*I &&
5910            (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) &&
5911            "Worklist not sorted properly!");
5912     BasicBlock *BB = (*I)->getBlock();
5913     // For all instructions in blocks containing gather sequences:
5914     for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) {
5915       Instruction *In = &*it++;
5916       if (isDeleted(In))
5917         continue;
5918       if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In))
5919         continue;
5920 
5921       // Check if we can replace this instruction with any of the
5922       // visited instructions.
5923       for (Instruction *v : Visited) {
5924         if (In->isIdenticalTo(v) &&
5925             DT->dominates(v->getParent(), In->getParent())) {
5926           In->replaceAllUsesWith(v);
5927           eraseInstruction(In);
5928           In = nullptr;
5929           break;
5930         }
5931       }
5932       if (In) {
5933         assert(!is_contained(Visited, In));
5934         Visited.push_back(In);
5935       }
5936     }
5937   }
5938   CSEBlocks.clear();
5939   GatherSeq.clear();
5940 }
5941 
5942 // Groups the instructions to a bundle (which is then a single scheduling entity)
5943 // and schedules instructions until the bundle gets ready.
5944 Optional<BoUpSLP::ScheduleData *>
5945 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP,
5946                                             const InstructionsState &S) {
5947   if (isa<PHINode>(S.OpValue) || isa<InsertElementInst>(S.OpValue))
5948     return nullptr;
5949 
5950   // Initialize the instruction bundle.
5951   Instruction *OldScheduleEnd = ScheduleEnd;
5952   ScheduleData *PrevInBundle = nullptr;
5953   ScheduleData *Bundle = nullptr;
5954   bool ReSchedule = false;
5955   LLVM_DEBUG(dbgs() << "SLP:  bundle: " << *S.OpValue << "\n");
5956 
5957   auto &&TryScheduleBundle = [this, OldScheduleEnd, SLP](bool ReSchedule,
5958                                                          ScheduleData *Bundle) {
5959     // The scheduling region got new instructions at the lower end (or it is a
5960     // new region for the first bundle). This makes it necessary to
5961     // recalculate all dependencies.
5962     // It is seldom that this needs to be done a second time after adding the
5963     // initial bundle to the region.
5964     if (ScheduleEnd != OldScheduleEnd) {
5965       for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode())
5966         doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); });
5967       ReSchedule = true;
5968     }
5969     if (ReSchedule) {
5970       resetSchedule();
5971       initialFillReadyList(ReadyInsts);
5972     }
5973     if (Bundle) {
5974       LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle
5975                         << " in block " << BB->getName() << "\n");
5976       calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP);
5977     }
5978 
5979     // Now try to schedule the new bundle or (if no bundle) just calculate
5980     // dependencies. As soon as the bundle is "ready" it means that there are no
5981     // cyclic dependencies and we can schedule it. Note that's important that we
5982     // don't "schedule" the bundle yet (see cancelScheduling).
5983     while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) &&
5984            !ReadyInsts.empty()) {
5985       ScheduleData *Picked = ReadyInsts.pop_back_val();
5986       if (Picked->isSchedulingEntity() && Picked->isReady())
5987         schedule(Picked, ReadyInsts);
5988     }
5989   };
5990 
5991   // Make sure that the scheduling region contains all
5992   // instructions of the bundle.
5993   for (Value *V : VL) {
5994     if (!extendSchedulingRegion(V, S)) {
5995       // If the scheduling region got new instructions at the lower end (or it
5996       // is a new region for the first bundle). This makes it necessary to
5997       // recalculate all dependencies.
5998       // Otherwise the compiler may crash trying to incorrectly calculate
5999       // dependencies and emit instruction in the wrong order at the actual
6000       // scheduling.
6001       TryScheduleBundle(/*ReSchedule=*/false, nullptr);
6002       return None;
6003     }
6004   }
6005 
6006   for (Value *V : VL) {
6007     ScheduleData *BundleMember = getScheduleData(V);
6008     assert(BundleMember &&
6009            "no ScheduleData for bundle member (maybe not in same basic block)");
6010     if (BundleMember->IsScheduled) {
6011       // A bundle member was scheduled as single instruction before and now
6012       // needs to be scheduled as part of the bundle. We just get rid of the
6013       // existing schedule.
6014       LLVM_DEBUG(dbgs() << "SLP:  reset schedule because " << *BundleMember
6015                         << " was already scheduled\n");
6016       ReSchedule = true;
6017     }
6018     assert(BundleMember->isSchedulingEntity() &&
6019            "bundle member already part of other bundle");
6020     if (PrevInBundle) {
6021       PrevInBundle->NextInBundle = BundleMember;
6022     } else {
6023       Bundle = BundleMember;
6024     }
6025     BundleMember->UnscheduledDepsInBundle = 0;
6026     Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps;
6027 
6028     // Group the instructions to a bundle.
6029     BundleMember->FirstInBundle = Bundle;
6030     PrevInBundle = BundleMember;
6031   }
6032   assert(Bundle && "Failed to find schedule bundle");
6033   TryScheduleBundle(ReSchedule, Bundle);
6034   if (!Bundle->isReady()) {
6035     cancelScheduling(VL, S.OpValue);
6036     return None;
6037   }
6038   return Bundle;
6039 }
6040 
6041 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL,
6042                                                 Value *OpValue) {
6043   if (isa<PHINode>(OpValue) || isa<InsertElementInst>(OpValue))
6044     return;
6045 
6046   ScheduleData *Bundle = getScheduleData(OpValue);
6047   LLVM_DEBUG(dbgs() << "SLP:  cancel scheduling of " << *Bundle << "\n");
6048   assert(!Bundle->IsScheduled &&
6049          "Can't cancel bundle which is already scheduled");
6050   assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() &&
6051          "tried to unbundle something which is not a bundle");
6052 
6053   // Un-bundle: make single instructions out of the bundle.
6054   ScheduleData *BundleMember = Bundle;
6055   while (BundleMember) {
6056     assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links");
6057     BundleMember->FirstInBundle = BundleMember;
6058     ScheduleData *Next = BundleMember->NextInBundle;
6059     BundleMember->NextInBundle = nullptr;
6060     BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps;
6061     if (BundleMember->UnscheduledDepsInBundle == 0) {
6062       ReadyInsts.insert(BundleMember);
6063     }
6064     BundleMember = Next;
6065   }
6066 }
6067 
6068 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() {
6069   // Allocate a new ScheduleData for the instruction.
6070   if (ChunkPos >= ChunkSize) {
6071     ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize));
6072     ChunkPos = 0;
6073   }
6074   return &(ScheduleDataChunks.back()[ChunkPos++]);
6075 }
6076 
6077 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V,
6078                                                       const InstructionsState &S) {
6079   if (getScheduleData(V, isOneOf(S, V)))
6080     return true;
6081   Instruction *I = dyn_cast<Instruction>(V);
6082   assert(I && "bundle member must be an instruction");
6083   assert(!isa<PHINode>(I) && !isa<InsertElementInst>(I) &&
6084          "phi nodes/insertelements don't need to be scheduled");
6085   auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool {
6086     ScheduleData *ISD = getScheduleData(I);
6087     if (!ISD)
6088       return false;
6089     assert(isInSchedulingRegion(ISD) &&
6090            "ScheduleData not in scheduling region");
6091     ScheduleData *SD = allocateScheduleDataChunks();
6092     SD->Inst = I;
6093     SD->init(SchedulingRegionID, S.OpValue);
6094     ExtraScheduleDataMap[I][S.OpValue] = SD;
6095     return true;
6096   };
6097   if (CheckSheduleForI(I))
6098     return true;
6099   if (!ScheduleStart) {
6100     // It's the first instruction in the new region.
6101     initScheduleData(I, I->getNextNode(), nullptr, nullptr);
6102     ScheduleStart = I;
6103     ScheduleEnd = I->getNextNode();
6104     if (isOneOf(S, I) != I)
6105       CheckSheduleForI(I);
6106     assert(ScheduleEnd && "tried to vectorize a terminator?");
6107     LLVM_DEBUG(dbgs() << "SLP:  initialize schedule region to " << *I << "\n");
6108     return true;
6109   }
6110   // Search up and down at the same time, because we don't know if the new
6111   // instruction is above or below the existing scheduling region.
6112   BasicBlock::reverse_iterator UpIter =
6113       ++ScheduleStart->getIterator().getReverse();
6114   BasicBlock::reverse_iterator UpperEnd = BB->rend();
6115   BasicBlock::iterator DownIter = ScheduleEnd->getIterator();
6116   BasicBlock::iterator LowerEnd = BB->end();
6117   while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I &&
6118          &*DownIter != I) {
6119     if (++ScheduleRegionSize > ScheduleRegionSizeLimit) {
6120       LLVM_DEBUG(dbgs() << "SLP:  exceeded schedule region size limit\n");
6121       return false;
6122     }
6123 
6124     ++UpIter;
6125     ++DownIter;
6126   }
6127   if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) {
6128     assert(I->getParent() == ScheduleStart->getParent() &&
6129            "Instruction is in wrong basic block.");
6130     initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion);
6131     ScheduleStart = I;
6132     if (isOneOf(S, I) != I)
6133       CheckSheduleForI(I);
6134     LLVM_DEBUG(dbgs() << "SLP:  extend schedule region start to " << *I
6135                       << "\n");
6136     return true;
6137   }
6138   assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) &&
6139          "Expected to reach top of the basic block or instruction down the "
6140          "lower end.");
6141   assert(I->getParent() == ScheduleEnd->getParent() &&
6142          "Instruction is in wrong basic block.");
6143   initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion,
6144                    nullptr);
6145   ScheduleEnd = I->getNextNode();
6146   if (isOneOf(S, I) != I)
6147     CheckSheduleForI(I);
6148   assert(ScheduleEnd && "tried to vectorize a terminator?");
6149   LLVM_DEBUG(dbgs() << "SLP:  extend schedule region end to " << *I << "\n");
6150   return true;
6151 }
6152 
6153 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI,
6154                                                 Instruction *ToI,
6155                                                 ScheduleData *PrevLoadStore,
6156                                                 ScheduleData *NextLoadStore) {
6157   ScheduleData *CurrentLoadStore = PrevLoadStore;
6158   for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) {
6159     ScheduleData *SD = ScheduleDataMap[I];
6160     if (!SD) {
6161       SD = allocateScheduleDataChunks();
6162       ScheduleDataMap[I] = SD;
6163       SD->Inst = I;
6164     }
6165     assert(!isInSchedulingRegion(SD) &&
6166            "new ScheduleData already in scheduling region");
6167     SD->init(SchedulingRegionID, I);
6168 
6169     if (I->mayReadOrWriteMemory() &&
6170         (!isa<IntrinsicInst>(I) ||
6171          (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect &&
6172           cast<IntrinsicInst>(I)->getIntrinsicID() !=
6173               Intrinsic::pseudoprobe))) {
6174       // Update the linked list of memory accessing instructions.
6175       if (CurrentLoadStore) {
6176         CurrentLoadStore->NextLoadStore = SD;
6177       } else {
6178         FirstLoadStoreInRegion = SD;
6179       }
6180       CurrentLoadStore = SD;
6181     }
6182   }
6183   if (NextLoadStore) {
6184     if (CurrentLoadStore)
6185       CurrentLoadStore->NextLoadStore = NextLoadStore;
6186   } else {
6187     LastLoadStoreInRegion = CurrentLoadStore;
6188   }
6189 }
6190 
6191 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD,
6192                                                      bool InsertInReadyList,
6193                                                      BoUpSLP *SLP) {
6194   assert(SD->isSchedulingEntity());
6195 
6196   SmallVector<ScheduleData *, 10> WorkList;
6197   WorkList.push_back(SD);
6198 
6199   while (!WorkList.empty()) {
6200     ScheduleData *SD = WorkList.pop_back_val();
6201 
6202     ScheduleData *BundleMember = SD;
6203     while (BundleMember) {
6204       assert(isInSchedulingRegion(BundleMember));
6205       if (!BundleMember->hasValidDependencies()) {
6206 
6207         LLVM_DEBUG(dbgs() << "SLP:       update deps of " << *BundleMember
6208                           << "\n");
6209         BundleMember->Dependencies = 0;
6210         BundleMember->resetUnscheduledDeps();
6211 
6212         // Handle def-use chain dependencies.
6213         if (BundleMember->OpValue != BundleMember->Inst) {
6214           ScheduleData *UseSD = getScheduleData(BundleMember->Inst);
6215           if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
6216             BundleMember->Dependencies++;
6217             ScheduleData *DestBundle = UseSD->FirstInBundle;
6218             if (!DestBundle->IsScheduled)
6219               BundleMember->incrementUnscheduledDeps(1);
6220             if (!DestBundle->hasValidDependencies())
6221               WorkList.push_back(DestBundle);
6222           }
6223         } else {
6224           for (User *U : BundleMember->Inst->users()) {
6225             if (isa<Instruction>(U)) {
6226               ScheduleData *UseSD = getScheduleData(U);
6227               if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
6228                 BundleMember->Dependencies++;
6229                 ScheduleData *DestBundle = UseSD->FirstInBundle;
6230                 if (!DestBundle->IsScheduled)
6231                   BundleMember->incrementUnscheduledDeps(1);
6232                 if (!DestBundle->hasValidDependencies())
6233                   WorkList.push_back(DestBundle);
6234               }
6235             } else {
6236               // I'm not sure if this can ever happen. But we need to be safe.
6237               // This lets the instruction/bundle never be scheduled and
6238               // eventually disable vectorization.
6239               BundleMember->Dependencies++;
6240               BundleMember->incrementUnscheduledDeps(1);
6241             }
6242           }
6243         }
6244 
6245         // Handle the memory dependencies.
6246         ScheduleData *DepDest = BundleMember->NextLoadStore;
6247         if (DepDest) {
6248           Instruction *SrcInst = BundleMember->Inst;
6249           MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA);
6250           bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory();
6251           unsigned numAliased = 0;
6252           unsigned DistToSrc = 1;
6253 
6254           while (DepDest) {
6255             assert(isInSchedulingRegion(DepDest));
6256 
6257             // We have two limits to reduce the complexity:
6258             // 1) AliasedCheckLimit: It's a small limit to reduce calls to
6259             //    SLP->isAliased (which is the expensive part in this loop).
6260             // 2) MaxMemDepDistance: It's for very large blocks and it aborts
6261             //    the whole loop (even if the loop is fast, it's quadratic).
6262             //    It's important for the loop break condition (see below) to
6263             //    check this limit even between two read-only instructions.
6264             if (DistToSrc >= MaxMemDepDistance ||
6265                     ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) &&
6266                      (numAliased >= AliasedCheckLimit ||
6267                       SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) {
6268 
6269               // We increment the counter only if the locations are aliased
6270               // (instead of counting all alias checks). This gives a better
6271               // balance between reduced runtime and accurate dependencies.
6272               numAliased++;
6273 
6274               DepDest->MemoryDependencies.push_back(BundleMember);
6275               BundleMember->Dependencies++;
6276               ScheduleData *DestBundle = DepDest->FirstInBundle;
6277               if (!DestBundle->IsScheduled) {
6278                 BundleMember->incrementUnscheduledDeps(1);
6279               }
6280               if (!DestBundle->hasValidDependencies()) {
6281                 WorkList.push_back(DestBundle);
6282               }
6283             }
6284             DepDest = DepDest->NextLoadStore;
6285 
6286             // Example, explaining the loop break condition: Let's assume our
6287             // starting instruction is i0 and MaxMemDepDistance = 3.
6288             //
6289             //                      +--------v--v--v
6290             //             i0,i1,i2,i3,i4,i5,i6,i7,i8
6291             //             +--------^--^--^
6292             //
6293             // MaxMemDepDistance let us stop alias-checking at i3 and we add
6294             // dependencies from i0 to i3,i4,.. (even if they are not aliased).
6295             // Previously we already added dependencies from i3 to i6,i7,i8
6296             // (because of MaxMemDepDistance). As we added a dependency from
6297             // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8
6298             // and we can abort this loop at i6.
6299             if (DistToSrc >= 2 * MaxMemDepDistance)
6300               break;
6301             DistToSrc++;
6302           }
6303         }
6304       }
6305       BundleMember = BundleMember->NextInBundle;
6306     }
6307     if (InsertInReadyList && SD->isReady()) {
6308       ReadyInsts.push_back(SD);
6309       LLVM_DEBUG(dbgs() << "SLP:     gets ready on update: " << *SD->Inst
6310                         << "\n");
6311     }
6312   }
6313 }
6314 
6315 void BoUpSLP::BlockScheduling::resetSchedule() {
6316   assert(ScheduleStart &&
6317          "tried to reset schedule on block which has not been scheduled");
6318   for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
6319     doForAllOpcodes(I, [&](ScheduleData *SD) {
6320       assert(isInSchedulingRegion(SD) &&
6321              "ScheduleData not in scheduling region");
6322       SD->IsScheduled = false;
6323       SD->resetUnscheduledDeps();
6324     });
6325   }
6326   ReadyInsts.clear();
6327 }
6328 
6329 void BoUpSLP::scheduleBlock(BlockScheduling *BS) {
6330   if (!BS->ScheduleStart)
6331     return;
6332 
6333   LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n");
6334 
6335   BS->resetSchedule();
6336 
6337   // For the real scheduling we use a more sophisticated ready-list: it is
6338   // sorted by the original instruction location. This lets the final schedule
6339   // be as  close as possible to the original instruction order.
6340   struct ScheduleDataCompare {
6341     bool operator()(ScheduleData *SD1, ScheduleData *SD2) const {
6342       return SD2->SchedulingPriority < SD1->SchedulingPriority;
6343     }
6344   };
6345   std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts;
6346 
6347   // Ensure that all dependency data is updated and fill the ready-list with
6348   // initial instructions.
6349   int Idx = 0;
6350   int NumToSchedule = 0;
6351   for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd;
6352        I = I->getNextNode()) {
6353     BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) {
6354       assert((isa<InsertElementInst>(SD->Inst) ||
6355               SD->isPartOfBundle() == (getTreeEntry(SD->Inst) != nullptr)) &&
6356              "scheduler and vectorizer bundle mismatch");
6357       SD->FirstInBundle->SchedulingPriority = Idx++;
6358       if (SD->isSchedulingEntity()) {
6359         BS->calculateDependencies(SD, false, this);
6360         NumToSchedule++;
6361       }
6362     });
6363   }
6364   BS->initialFillReadyList(ReadyInsts);
6365 
6366   Instruction *LastScheduledInst = BS->ScheduleEnd;
6367 
6368   // Do the "real" scheduling.
6369   while (!ReadyInsts.empty()) {
6370     ScheduleData *picked = *ReadyInsts.begin();
6371     ReadyInsts.erase(ReadyInsts.begin());
6372 
6373     // Move the scheduled instruction(s) to their dedicated places, if not
6374     // there yet.
6375     ScheduleData *BundleMember = picked;
6376     while (BundleMember) {
6377       Instruction *pickedInst = BundleMember->Inst;
6378       if (pickedInst->getNextNode() != LastScheduledInst) {
6379         BS->BB->getInstList().remove(pickedInst);
6380         BS->BB->getInstList().insert(LastScheduledInst->getIterator(),
6381                                      pickedInst);
6382       }
6383       LastScheduledInst = pickedInst;
6384       BundleMember = BundleMember->NextInBundle;
6385     }
6386 
6387     BS->schedule(picked, ReadyInsts);
6388     NumToSchedule--;
6389   }
6390   assert(NumToSchedule == 0 && "could not schedule all instructions");
6391 
6392   // Avoid duplicate scheduling of the block.
6393   BS->ScheduleStart = nullptr;
6394 }
6395 
6396 unsigned BoUpSLP::getVectorElementSize(Value *V) {
6397   // If V is a store, just return the width of the stored value (or value
6398   // truncated just before storing) without traversing the expression tree.
6399   // This is the common case.
6400   if (auto *Store = dyn_cast<StoreInst>(V)) {
6401     if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand()))
6402       return DL->getTypeSizeInBits(Trunc->getSrcTy());
6403     return DL->getTypeSizeInBits(Store->getValueOperand()->getType());
6404   }
6405 
6406   if (auto *IEI = dyn_cast<InsertElementInst>(V))
6407     return getVectorElementSize(IEI->getOperand(1));
6408 
6409   auto E = InstrElementSize.find(V);
6410   if (E != InstrElementSize.end())
6411     return E->second;
6412 
6413   // If V is not a store, we can traverse the expression tree to find loads
6414   // that feed it. The type of the loaded value may indicate a more suitable
6415   // width than V's type. We want to base the vector element size on the width
6416   // of memory operations where possible.
6417   SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist;
6418   SmallPtrSet<Instruction *, 16> Visited;
6419   if (auto *I = dyn_cast<Instruction>(V)) {
6420     Worklist.emplace_back(I, I->getParent());
6421     Visited.insert(I);
6422   }
6423 
6424   // Traverse the expression tree in bottom-up order looking for loads. If we
6425   // encounter an instruction we don't yet handle, we give up.
6426   auto Width = 0u;
6427   while (!Worklist.empty()) {
6428     Instruction *I;
6429     BasicBlock *Parent;
6430     std::tie(I, Parent) = Worklist.pop_back_val();
6431 
6432     // We should only be looking at scalar instructions here. If the current
6433     // instruction has a vector type, skip.
6434     auto *Ty = I->getType();
6435     if (isa<VectorType>(Ty))
6436       continue;
6437 
6438     // If the current instruction is a load, update MaxWidth to reflect the
6439     // width of the loaded value.
6440     if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) ||
6441         isa<ExtractValueInst>(I))
6442       Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty));
6443 
6444     // Otherwise, we need to visit the operands of the instruction. We only
6445     // handle the interesting cases from buildTree here. If an operand is an
6446     // instruction we haven't yet visited and from the same basic block as the
6447     // user or the use is a PHI node, we add it to the worklist.
6448     else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
6449              isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) ||
6450              isa<UnaryOperator>(I)) {
6451       for (Use &U : I->operands())
6452         if (auto *J = dyn_cast<Instruction>(U.get()))
6453           if (Visited.insert(J).second &&
6454               (isa<PHINode>(I) || J->getParent() == Parent))
6455             Worklist.emplace_back(J, J->getParent());
6456     } else {
6457       break;
6458     }
6459   }
6460 
6461   // If we didn't encounter a memory access in the expression tree, or if we
6462   // gave up for some reason, just return the width of V. Otherwise, return the
6463   // maximum width we found.
6464   if (!Width) {
6465     if (auto *CI = dyn_cast<CmpInst>(V))
6466       V = CI->getOperand(0);
6467     Width = DL->getTypeSizeInBits(V->getType());
6468   }
6469 
6470   for (Instruction *I : Visited)
6471     InstrElementSize[I] = Width;
6472 
6473   return Width;
6474 }
6475 
6476 // Determine if a value V in a vectorizable expression Expr can be demoted to a
6477 // smaller type with a truncation. We collect the values that will be demoted
6478 // in ToDemote and additional roots that require investigating in Roots.
6479 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr,
6480                                   SmallVectorImpl<Value *> &ToDemote,
6481                                   SmallVectorImpl<Value *> &Roots) {
6482   // We can always demote constants.
6483   if (isa<Constant>(V)) {
6484     ToDemote.push_back(V);
6485     return true;
6486   }
6487 
6488   // If the value is not an instruction in the expression with only one use, it
6489   // cannot be demoted.
6490   auto *I = dyn_cast<Instruction>(V);
6491   if (!I || !I->hasOneUse() || !Expr.count(I))
6492     return false;
6493 
6494   switch (I->getOpcode()) {
6495 
6496   // We can always demote truncations and extensions. Since truncations can
6497   // seed additional demotion, we save the truncated value.
6498   case Instruction::Trunc:
6499     Roots.push_back(I->getOperand(0));
6500     break;
6501   case Instruction::ZExt:
6502   case Instruction::SExt:
6503     if (isa<ExtractElementInst>(I->getOperand(0)) ||
6504         isa<InsertElementInst>(I->getOperand(0)))
6505       return false;
6506     break;
6507 
6508   // We can demote certain binary operations if we can demote both of their
6509   // operands.
6510   case Instruction::Add:
6511   case Instruction::Sub:
6512   case Instruction::Mul:
6513   case Instruction::And:
6514   case Instruction::Or:
6515   case Instruction::Xor:
6516     if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) ||
6517         !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots))
6518       return false;
6519     break;
6520 
6521   // We can demote selects if we can demote their true and false values.
6522   case Instruction::Select: {
6523     SelectInst *SI = cast<SelectInst>(I);
6524     if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) ||
6525         !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots))
6526       return false;
6527     break;
6528   }
6529 
6530   // We can demote phis if we can demote all their incoming operands. Note that
6531   // we don't need to worry about cycles since we ensure single use above.
6532   case Instruction::PHI: {
6533     PHINode *PN = cast<PHINode>(I);
6534     for (Value *IncValue : PN->incoming_values())
6535       if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots))
6536         return false;
6537     break;
6538   }
6539 
6540   // Otherwise, conservatively give up.
6541   default:
6542     return false;
6543   }
6544 
6545   // Record the value that we can demote.
6546   ToDemote.push_back(V);
6547   return true;
6548 }
6549 
6550 void BoUpSLP::computeMinimumValueSizes() {
6551   // If there are no external uses, the expression tree must be rooted by a
6552   // store. We can't demote in-memory values, so there is nothing to do here.
6553   if (ExternalUses.empty())
6554     return;
6555 
6556   // We only attempt to truncate integer expressions.
6557   auto &TreeRoot = VectorizableTree[0]->Scalars;
6558   auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType());
6559   if (!TreeRootIT)
6560     return;
6561 
6562   // If the expression is not rooted by a store, these roots should have
6563   // external uses. We will rely on InstCombine to rewrite the expression in
6564   // the narrower type. However, InstCombine only rewrites single-use values.
6565   // This means that if a tree entry other than a root is used externally, it
6566   // must have multiple uses and InstCombine will not rewrite it. The code
6567   // below ensures that only the roots are used externally.
6568   SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end());
6569   for (auto &EU : ExternalUses)
6570     if (!Expr.erase(EU.Scalar))
6571       return;
6572   if (!Expr.empty())
6573     return;
6574 
6575   // Collect the scalar values of the vectorizable expression. We will use this
6576   // context to determine which values can be demoted. If we see a truncation,
6577   // we mark it as seeding another demotion.
6578   for (auto &EntryPtr : VectorizableTree)
6579     Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end());
6580 
6581   // Ensure the roots of the vectorizable tree don't form a cycle. They must
6582   // have a single external user that is not in the vectorizable tree.
6583   for (auto *Root : TreeRoot)
6584     if (!Root->hasOneUse() || Expr.count(*Root->user_begin()))
6585       return;
6586 
6587   // Conservatively determine if we can actually truncate the roots of the
6588   // expression. Collect the values that can be demoted in ToDemote and
6589   // additional roots that require investigating in Roots.
6590   SmallVector<Value *, 32> ToDemote;
6591   SmallVector<Value *, 4> Roots;
6592   for (auto *Root : TreeRoot)
6593     if (!collectValuesToDemote(Root, Expr, ToDemote, Roots))
6594       return;
6595 
6596   // The maximum bit width required to represent all the values that can be
6597   // demoted without loss of precision. It would be safe to truncate the roots
6598   // of the expression to this width.
6599   auto MaxBitWidth = 8u;
6600 
6601   // We first check if all the bits of the roots are demanded. If they're not,
6602   // we can truncate the roots to this narrower type.
6603   for (auto *Root : TreeRoot) {
6604     auto Mask = DB->getDemandedBits(cast<Instruction>(Root));
6605     MaxBitWidth = std::max<unsigned>(
6606         Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth);
6607   }
6608 
6609   // True if the roots can be zero-extended back to their original type, rather
6610   // than sign-extended. We know that if the leading bits are not demanded, we
6611   // can safely zero-extend. So we initialize IsKnownPositive to True.
6612   bool IsKnownPositive = true;
6613 
6614   // If all the bits of the roots are demanded, we can try a little harder to
6615   // compute a narrower type. This can happen, for example, if the roots are
6616   // getelementptr indices. InstCombine promotes these indices to the pointer
6617   // width. Thus, all their bits are technically demanded even though the
6618   // address computation might be vectorized in a smaller type.
6619   //
6620   // We start by looking at each entry that can be demoted. We compute the
6621   // maximum bit width required to store the scalar by using ValueTracking to
6622   // compute the number of high-order bits we can truncate.
6623   if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) &&
6624       llvm::all_of(TreeRoot, [](Value *R) {
6625         assert(R->hasOneUse() && "Root should have only one use!");
6626         return isa<GetElementPtrInst>(R->user_back());
6627       })) {
6628     MaxBitWidth = 8u;
6629 
6630     // Determine if the sign bit of all the roots is known to be zero. If not,
6631     // IsKnownPositive is set to False.
6632     IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) {
6633       KnownBits Known = computeKnownBits(R, *DL);
6634       return Known.isNonNegative();
6635     });
6636 
6637     // Determine the maximum number of bits required to store the scalar
6638     // values.
6639     for (auto *Scalar : ToDemote) {
6640       auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT);
6641       auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType());
6642       MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth);
6643     }
6644 
6645     // If we can't prove that the sign bit is zero, we must add one to the
6646     // maximum bit width to account for the unknown sign bit. This preserves
6647     // the existing sign bit so we can safely sign-extend the root back to the
6648     // original type. Otherwise, if we know the sign bit is zero, we will
6649     // zero-extend the root instead.
6650     //
6651     // FIXME: This is somewhat suboptimal, as there will be cases where adding
6652     //        one to the maximum bit width will yield a larger-than-necessary
6653     //        type. In general, we need to add an extra bit only if we can't
6654     //        prove that the upper bit of the original type is equal to the
6655     //        upper bit of the proposed smaller type. If these two bits are the
6656     //        same (either zero or one) we know that sign-extending from the
6657     //        smaller type will result in the same value. Here, since we can't
6658     //        yet prove this, we are just making the proposed smaller type
6659     //        larger to ensure correctness.
6660     if (!IsKnownPositive)
6661       ++MaxBitWidth;
6662   }
6663 
6664   // Round MaxBitWidth up to the next power-of-two.
6665   if (!isPowerOf2_64(MaxBitWidth))
6666     MaxBitWidth = NextPowerOf2(MaxBitWidth);
6667 
6668   // If the maximum bit width we compute is less than the with of the roots'
6669   // type, we can proceed with the narrowing. Otherwise, do nothing.
6670   if (MaxBitWidth >= TreeRootIT->getBitWidth())
6671     return;
6672 
6673   // If we can truncate the root, we must collect additional values that might
6674   // be demoted as a result. That is, those seeded by truncations we will
6675   // modify.
6676   while (!Roots.empty())
6677     collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots);
6678 
6679   // Finally, map the values we can demote to the maximum bit with we computed.
6680   for (auto *Scalar : ToDemote)
6681     MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive);
6682 }
6683 
6684 namespace {
6685 
6686 /// The SLPVectorizer Pass.
6687 struct SLPVectorizer : public FunctionPass {
6688   SLPVectorizerPass Impl;
6689 
6690   /// Pass identification, replacement for typeid
6691   static char ID;
6692 
6693   explicit SLPVectorizer() : FunctionPass(ID) {
6694     initializeSLPVectorizerPass(*PassRegistry::getPassRegistry());
6695   }
6696 
6697   bool doInitialization(Module &M) override {
6698     return false;
6699   }
6700 
6701   bool runOnFunction(Function &F) override {
6702     if (skipFunction(F))
6703       return false;
6704 
6705     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
6706     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
6707     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
6708     auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
6709     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
6710     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
6711     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
6712     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
6713     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
6714     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
6715 
6716     return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
6717   }
6718 
6719   void getAnalysisUsage(AnalysisUsage &AU) const override {
6720     FunctionPass::getAnalysisUsage(AU);
6721     AU.addRequired<AssumptionCacheTracker>();
6722     AU.addRequired<ScalarEvolutionWrapperPass>();
6723     AU.addRequired<AAResultsWrapperPass>();
6724     AU.addRequired<TargetTransformInfoWrapperPass>();
6725     AU.addRequired<LoopInfoWrapperPass>();
6726     AU.addRequired<DominatorTreeWrapperPass>();
6727     AU.addRequired<DemandedBitsWrapperPass>();
6728     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
6729     AU.addRequired<InjectTLIMappingsLegacy>();
6730     AU.addPreserved<LoopInfoWrapperPass>();
6731     AU.addPreserved<DominatorTreeWrapperPass>();
6732     AU.addPreserved<AAResultsWrapperPass>();
6733     AU.addPreserved<GlobalsAAWrapperPass>();
6734     AU.setPreservesCFG();
6735   }
6736 };
6737 
6738 } // end anonymous namespace
6739 
6740 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) {
6741   auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
6742   auto *TTI = &AM.getResult<TargetIRAnalysis>(F);
6743   auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F);
6744   auto *AA = &AM.getResult<AAManager>(F);
6745   auto *LI = &AM.getResult<LoopAnalysis>(F);
6746   auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
6747   auto *AC = &AM.getResult<AssumptionAnalysis>(F);
6748   auto *DB = &AM.getResult<DemandedBitsAnalysis>(F);
6749   auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
6750 
6751   bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
6752   if (!Changed)
6753     return PreservedAnalyses::all();
6754 
6755   PreservedAnalyses PA;
6756   PA.preserveSet<CFGAnalyses>();
6757   return PA;
6758 }
6759 
6760 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_,
6761                                 TargetTransformInfo *TTI_,
6762                                 TargetLibraryInfo *TLI_, AAResults *AA_,
6763                                 LoopInfo *LI_, DominatorTree *DT_,
6764                                 AssumptionCache *AC_, DemandedBits *DB_,
6765                                 OptimizationRemarkEmitter *ORE_) {
6766   if (!RunSLPVectorization)
6767     return false;
6768   SE = SE_;
6769   TTI = TTI_;
6770   TLI = TLI_;
6771   AA = AA_;
6772   LI = LI_;
6773   DT = DT_;
6774   AC = AC_;
6775   DB = DB_;
6776   DL = &F.getParent()->getDataLayout();
6777 
6778   Stores.clear();
6779   GEPs.clear();
6780   bool Changed = false;
6781 
6782   // If the target claims to have no vector registers don't attempt
6783   // vectorization.
6784   if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)))
6785     return false;
6786 
6787   // Don't vectorize when the attribute NoImplicitFloat is used.
6788   if (F.hasFnAttribute(Attribute::NoImplicitFloat))
6789     return false;
6790 
6791   LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n");
6792 
6793   // Use the bottom up slp vectorizer to construct chains that start with
6794   // store instructions.
6795   BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_);
6796 
6797   // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to
6798   // delete instructions.
6799 
6800   // Update DFS numbers now so that we can use them for ordering.
6801   DT->updateDFSNumbers();
6802 
6803   // Scan the blocks in the function in post order.
6804   for (auto BB : post_order(&F.getEntryBlock())) {
6805     collectSeedInstructions(BB);
6806 
6807     // Vectorize trees that end at stores.
6808     if (!Stores.empty()) {
6809       LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size()
6810                         << " underlying objects.\n");
6811       Changed |= vectorizeStoreChains(R);
6812     }
6813 
6814     // Vectorize trees that end at reductions.
6815     Changed |= vectorizeChainsInBlock(BB, R);
6816 
6817     // Vectorize the index computations of getelementptr instructions. This
6818     // is primarily intended to catch gather-like idioms ending at
6819     // non-consecutive loads.
6820     if (!GEPs.empty()) {
6821       LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size()
6822                         << " underlying objects.\n");
6823       Changed |= vectorizeGEPIndices(BB, R);
6824     }
6825   }
6826 
6827   if (Changed) {
6828     R.optimizeGatherSequence();
6829     LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n");
6830   }
6831   return Changed;
6832 }
6833 
6834 /// Order may have elements assigned special value (size) which is out of
6835 /// bounds. Such indices only appear on places which correspond to undef values
6836 /// (see canReuseExtract for details) and used in order to avoid undef values
6837 /// have effect on operands ordering.
6838 /// The first loop below simply finds all unused indices and then the next loop
6839 /// nest assigns these indices for undef values positions.
6840 /// As an example below Order has two undef positions and they have assigned
6841 /// values 3 and 7 respectively:
6842 /// before:  6 9 5 4 9 2 1 0
6843 /// after:   6 3 5 4 7 2 1 0
6844 /// \returns Fixed ordering.
6845 static BoUpSLP::OrdersType fixupOrderingIndices(ArrayRef<unsigned> Order) {
6846   BoUpSLP::OrdersType NewOrder(Order.begin(), Order.end());
6847   const unsigned Sz = NewOrder.size();
6848   SmallBitVector UsedIndices(Sz);
6849   SmallVector<int> MaskedIndices;
6850   for (int I = 0, E = NewOrder.size(); I < E; ++I) {
6851     if (NewOrder[I] < Sz)
6852       UsedIndices.set(NewOrder[I]);
6853     else
6854       MaskedIndices.push_back(I);
6855   }
6856   if (MaskedIndices.empty())
6857     return NewOrder;
6858   SmallVector<int> AvailableIndices(MaskedIndices.size());
6859   unsigned Cnt = 0;
6860   int Idx = UsedIndices.find_first();
6861   do {
6862     AvailableIndices[Cnt] = Idx;
6863     Idx = UsedIndices.find_next(Idx);
6864     ++Cnt;
6865   } while (Idx > 0);
6866   assert(Cnt == MaskedIndices.size() && "Non-synced masked/available indices.");
6867   for (int I = 0, E = MaskedIndices.size(); I < E; ++I)
6868     NewOrder[MaskedIndices[I]] = AvailableIndices[I];
6869   return NewOrder;
6870 }
6871 
6872 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R,
6873                                             unsigned Idx) {
6874   LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size()
6875                     << "\n");
6876   const unsigned Sz = R.getVectorElementSize(Chain[0]);
6877   const unsigned MinVF = R.getMinVecRegSize() / Sz;
6878   unsigned VF = Chain.size();
6879 
6880   if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF)
6881     return false;
6882 
6883   LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx
6884                     << "\n");
6885 
6886   R.buildTree(Chain);
6887   Optional<ArrayRef<unsigned>> Order = R.bestOrder();
6888   // TODO: Handle orders of size less than number of elements in the vector.
6889   if (Order && Order->size() == Chain.size()) {
6890     // TODO: reorder tree nodes without tree rebuilding.
6891     SmallVector<Value *, 4> ReorderedOps(Chain.size());
6892     transform(fixupOrderingIndices(*Order), ReorderedOps.begin(),
6893               [Chain](const unsigned Idx) { return Chain[Idx]; });
6894     R.buildTree(ReorderedOps);
6895   }
6896   if (R.isTreeTinyAndNotFullyVectorizable())
6897     return false;
6898   if (R.isLoadCombineCandidate())
6899     return false;
6900 
6901   R.computeMinimumValueSizes();
6902 
6903   InstructionCost Cost = R.getTreeCost();
6904 
6905   LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n");
6906   if (Cost < -SLPCostThreshold) {
6907     LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n");
6908 
6909     using namespace ore;
6910 
6911     R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized",
6912                                         cast<StoreInst>(Chain[0]))
6913                      << "Stores SLP vectorized with cost " << NV("Cost", Cost)
6914                      << " and with tree size "
6915                      << NV("TreeSize", R.getTreeSize()));
6916 
6917     R.vectorizeTree();
6918     return true;
6919   }
6920 
6921   return false;
6922 }
6923 
6924 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores,
6925                                         BoUpSLP &R) {
6926   // We may run into multiple chains that merge into a single chain. We mark the
6927   // stores that we vectorized so that we don't visit the same store twice.
6928   BoUpSLP::ValueSet VectorizedStores;
6929   bool Changed = false;
6930 
6931   int E = Stores.size();
6932   SmallBitVector Tails(E, false);
6933   int MaxIter = MaxStoreLookup.getValue();
6934   SmallVector<std::pair<int, int>, 16> ConsecutiveChain(
6935       E, std::make_pair(E, INT_MAX));
6936   SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false));
6937   int IterCnt;
6938   auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter,
6939                                   &CheckedPairs,
6940                                   &ConsecutiveChain](int K, int Idx) {
6941     if (IterCnt >= MaxIter)
6942       return true;
6943     if (CheckedPairs[Idx].test(K))
6944       return ConsecutiveChain[K].second == 1 &&
6945              ConsecutiveChain[K].first == Idx;
6946     ++IterCnt;
6947     CheckedPairs[Idx].set(K);
6948     CheckedPairs[K].set(Idx);
6949     Optional<int> Diff = getPointersDiff(
6950         Stores[K]->getValueOperand()->getType(), Stores[K]->getPointerOperand(),
6951         Stores[Idx]->getValueOperand()->getType(),
6952         Stores[Idx]->getPointerOperand(), *DL, *SE, /*StrictCheck=*/true);
6953     if (!Diff || *Diff == 0)
6954       return false;
6955     int Val = *Diff;
6956     if (Val < 0) {
6957       if (ConsecutiveChain[Idx].second > -Val) {
6958         Tails.set(K);
6959         ConsecutiveChain[Idx] = std::make_pair(K, -Val);
6960       }
6961       return false;
6962     }
6963     if (ConsecutiveChain[K].second <= Val)
6964       return false;
6965 
6966     Tails.set(Idx);
6967     ConsecutiveChain[K] = std::make_pair(Idx, Val);
6968     return Val == 1;
6969   };
6970   // Do a quadratic search on all of the given stores in reverse order and find
6971   // all of the pairs of stores that follow each other.
6972   for (int Idx = E - 1; Idx >= 0; --Idx) {
6973     // If a store has multiple consecutive store candidates, search according
6974     // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ...
6975     // This is because usually pairing with immediate succeeding or preceding
6976     // candidate create the best chance to find slp vectorization opportunity.
6977     const int MaxLookDepth = std::max(E - Idx, Idx + 1);
6978     IterCnt = 0;
6979     for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset)
6980       if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) ||
6981           (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx)))
6982         break;
6983   }
6984 
6985   // Tracks if we tried to vectorize stores starting from the given tail
6986   // already.
6987   SmallBitVector TriedTails(E, false);
6988   // For stores that start but don't end a link in the chain:
6989   for (int Cnt = E; Cnt > 0; --Cnt) {
6990     int I = Cnt - 1;
6991     if (ConsecutiveChain[I].first == E || Tails.test(I))
6992       continue;
6993     // We found a store instr that starts a chain. Now follow the chain and try
6994     // to vectorize it.
6995     BoUpSLP::ValueList Operands;
6996     // Collect the chain into a list.
6997     while (I != E && !VectorizedStores.count(Stores[I])) {
6998       Operands.push_back(Stores[I]);
6999       Tails.set(I);
7000       if (ConsecutiveChain[I].second != 1) {
7001         // Mark the new end in the chain and go back, if required. It might be
7002         // required if the original stores come in reversed order, for example.
7003         if (ConsecutiveChain[I].first != E &&
7004             Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) &&
7005             !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) {
7006           TriedTails.set(I);
7007           Tails.reset(ConsecutiveChain[I].first);
7008           if (Cnt < ConsecutiveChain[I].first + 2)
7009             Cnt = ConsecutiveChain[I].first + 2;
7010         }
7011         break;
7012       }
7013       // Move to the next value in the chain.
7014       I = ConsecutiveChain[I].first;
7015     }
7016     assert(!Operands.empty() && "Expected non-empty list of stores.");
7017 
7018     unsigned MaxVecRegSize = R.getMaxVecRegSize();
7019     unsigned EltSize = R.getVectorElementSize(Operands[0]);
7020     unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize);
7021 
7022     unsigned MinVF = std::max(2U, R.getMinVecRegSize() / EltSize);
7023     unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store),
7024                               MaxElts);
7025 
7026     // FIXME: Is division-by-2 the correct step? Should we assert that the
7027     // register size is a power-of-2?
7028     unsigned StartIdx = 0;
7029     for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) {
7030       for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) {
7031         ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size);
7032         if (!VectorizedStores.count(Slice.front()) &&
7033             !VectorizedStores.count(Slice.back()) &&
7034             vectorizeStoreChain(Slice, R, Cnt)) {
7035           // Mark the vectorized stores so that we don't vectorize them again.
7036           VectorizedStores.insert(Slice.begin(), Slice.end());
7037           Changed = true;
7038           // If we vectorized initial block, no need to try to vectorize it
7039           // again.
7040           if (Cnt == StartIdx)
7041             StartIdx += Size;
7042           Cnt += Size;
7043           continue;
7044         }
7045         ++Cnt;
7046       }
7047       // Check if the whole array was vectorized already - exit.
7048       if (StartIdx >= Operands.size())
7049         break;
7050     }
7051   }
7052 
7053   return Changed;
7054 }
7055 
7056 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) {
7057   // Initialize the collections. We will make a single pass over the block.
7058   Stores.clear();
7059   GEPs.clear();
7060 
7061   // Visit the store and getelementptr instructions in BB and organize them in
7062   // Stores and GEPs according to the underlying objects of their pointer
7063   // operands.
7064   for (Instruction &I : *BB) {
7065     // Ignore store instructions that are volatile or have a pointer operand
7066     // that doesn't point to a scalar type.
7067     if (auto *SI = dyn_cast<StoreInst>(&I)) {
7068       if (!SI->isSimple())
7069         continue;
7070       if (!isValidElementType(SI->getValueOperand()->getType()))
7071         continue;
7072       Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI);
7073     }
7074 
7075     // Ignore getelementptr instructions that have more than one index, a
7076     // constant index, or a pointer operand that doesn't point to a scalar
7077     // type.
7078     else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
7079       auto Idx = GEP->idx_begin()->get();
7080       if (GEP->getNumIndices() > 1 || isa<Constant>(Idx))
7081         continue;
7082       if (!isValidElementType(Idx->getType()))
7083         continue;
7084       if (GEP->getType()->isVectorTy())
7085         continue;
7086       GEPs[GEP->getPointerOperand()].push_back(GEP);
7087     }
7088   }
7089 }
7090 
7091 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) {
7092   if (!A || !B)
7093     return false;
7094   Value *VL[] = {A, B};
7095   return tryToVectorizeList(VL, R, /*AllowReorder=*/true);
7096 }
7097 
7098 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
7099                                            bool AllowReorder) {
7100   if (VL.size() < 2)
7101     return false;
7102 
7103   LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = "
7104                     << VL.size() << ".\n");
7105 
7106   // Check that all of the parts are instructions of the same type,
7107   // we permit an alternate opcode via InstructionsState.
7108   InstructionsState S = getSameOpcode(VL);
7109   if (!S.getOpcode())
7110     return false;
7111 
7112   Instruction *I0 = cast<Instruction>(S.OpValue);
7113   // Make sure invalid types (including vector type) are rejected before
7114   // determining vectorization factor for scalar instructions.
7115   for (Value *V : VL) {
7116     Type *Ty = V->getType();
7117     if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) {
7118       // NOTE: the following will give user internal llvm type name, which may
7119       // not be useful.
7120       R.getORE()->emit([&]() {
7121         std::string type_str;
7122         llvm::raw_string_ostream rso(type_str);
7123         Ty->print(rso);
7124         return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0)
7125                << "Cannot SLP vectorize list: type "
7126                << rso.str() + " is unsupported by vectorizer";
7127       });
7128       return false;
7129     }
7130   }
7131 
7132   unsigned Sz = R.getVectorElementSize(I0);
7133   unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz);
7134   unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF);
7135   MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF);
7136   if (MaxVF < 2) {
7137     R.getORE()->emit([&]() {
7138       return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0)
7139              << "Cannot SLP vectorize list: vectorization factor "
7140              << "less than 2 is not supported";
7141     });
7142     return false;
7143   }
7144 
7145   bool Changed = false;
7146   bool CandidateFound = false;
7147   InstructionCost MinCost = SLPCostThreshold.getValue();
7148   Type *ScalarTy = VL[0]->getType();
7149   if (auto *IE = dyn_cast<InsertElementInst>(VL[0]))
7150     ScalarTy = IE->getOperand(1)->getType();
7151 
7152   unsigned NextInst = 0, MaxInst = VL.size();
7153   for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) {
7154     // No actual vectorization should happen, if number of parts is the same as
7155     // provided vectorization factor (i.e. the scalar type is used for vector
7156     // code during codegen).
7157     auto *VecTy = FixedVectorType::get(ScalarTy, VF);
7158     if (TTI->getNumberOfParts(VecTy) == VF)
7159       continue;
7160     for (unsigned I = NextInst; I < MaxInst; ++I) {
7161       unsigned OpsWidth = 0;
7162 
7163       if (I + VF > MaxInst)
7164         OpsWidth = MaxInst - I;
7165       else
7166         OpsWidth = VF;
7167 
7168       if (!isPowerOf2_32(OpsWidth))
7169         continue;
7170 
7171       if ((VF > MinVF && OpsWidth <= VF / 2) || (VF == MinVF && OpsWidth < 2))
7172         break;
7173 
7174       ArrayRef<Value *> Ops = VL.slice(I, OpsWidth);
7175       // Check that a previous iteration of this loop did not delete the Value.
7176       if (llvm::any_of(Ops, [&R](Value *V) {
7177             auto *I = dyn_cast<Instruction>(V);
7178             return I && R.isDeleted(I);
7179           }))
7180         continue;
7181 
7182       LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations "
7183                         << "\n");
7184 
7185       R.buildTree(Ops);
7186       if (AllowReorder) {
7187         Optional<ArrayRef<unsigned>> Order = R.bestOrder();
7188         if (Order) {
7189           // TODO: reorder tree nodes without tree rebuilding.
7190           SmallVector<Value *, 4> ReorderedOps(Ops.size());
7191           transform(fixupOrderingIndices(*Order), ReorderedOps.begin(),
7192                     [Ops](const unsigned Idx) { return Ops[Idx]; });
7193           R.buildTree(ReorderedOps);
7194         }
7195       }
7196       if (R.isTreeTinyAndNotFullyVectorizable())
7197         continue;
7198 
7199       R.computeMinimumValueSizes();
7200       InstructionCost Cost = R.getTreeCost();
7201       CandidateFound = true;
7202       MinCost = std::min(MinCost, Cost);
7203 
7204       if (Cost < -SLPCostThreshold) {
7205         LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n");
7206         R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList",
7207                                                     cast<Instruction>(Ops[0]))
7208                                  << "SLP vectorized with cost " << ore::NV("Cost", Cost)
7209                                  << " and with tree size "
7210                                  << ore::NV("TreeSize", R.getTreeSize()));
7211 
7212         R.vectorizeTree();
7213         // Move to the next bundle.
7214         I += VF - 1;
7215         NextInst = I + 1;
7216         Changed = true;
7217       }
7218     }
7219   }
7220 
7221   if (!Changed && CandidateFound) {
7222     R.getORE()->emit([&]() {
7223       return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0)
7224              << "List vectorization was possible but not beneficial with cost "
7225              << ore::NV("Cost", MinCost) << " >= "
7226              << ore::NV("Treshold", -SLPCostThreshold);
7227     });
7228   } else if (!Changed) {
7229     R.getORE()->emit([&]() {
7230       return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0)
7231              << "Cannot SLP vectorize list: vectorization was impossible"
7232              << " with available vectorization factors";
7233     });
7234   }
7235   return Changed;
7236 }
7237 
7238 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) {
7239   if (!I)
7240     return false;
7241 
7242   if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I))
7243     return false;
7244 
7245   Value *P = I->getParent();
7246 
7247   // Vectorize in current basic block only.
7248   auto *Op0 = dyn_cast<Instruction>(I->getOperand(0));
7249   auto *Op1 = dyn_cast<Instruction>(I->getOperand(1));
7250   if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P)
7251     return false;
7252 
7253   // Try to vectorize V.
7254   if (tryToVectorizePair(Op0, Op1, R))
7255     return true;
7256 
7257   auto *A = dyn_cast<BinaryOperator>(Op0);
7258   auto *B = dyn_cast<BinaryOperator>(Op1);
7259   // Try to skip B.
7260   if (B && B->hasOneUse()) {
7261     auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0));
7262     auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1));
7263     if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R))
7264       return true;
7265     if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R))
7266       return true;
7267   }
7268 
7269   // Try to skip A.
7270   if (A && A->hasOneUse()) {
7271     auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0));
7272     auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1));
7273     if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R))
7274       return true;
7275     if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R))
7276       return true;
7277   }
7278   return false;
7279 }
7280 
7281 namespace {
7282 
7283 /// Model horizontal reductions.
7284 ///
7285 /// A horizontal reduction is a tree of reduction instructions that has values
7286 /// that can be put into a vector as its leaves. For example:
7287 ///
7288 /// mul mul mul mul
7289 ///  \  /    \  /
7290 ///   +       +
7291 ///    \     /
7292 ///       +
7293 /// This tree has "mul" as its leaf values and "+" as its reduction
7294 /// instructions. A reduction can feed into a store or a binary operation
7295 /// feeding a phi.
7296 ///    ...
7297 ///    \  /
7298 ///     +
7299 ///     |
7300 ///  phi +=
7301 ///
7302 ///  Or:
7303 ///    ...
7304 ///    \  /
7305 ///     +
7306 ///     |
7307 ///   *p =
7308 ///
7309 class HorizontalReduction {
7310   using ReductionOpsType = SmallVector<Value *, 16>;
7311   using ReductionOpsListType = SmallVector<ReductionOpsType, 2>;
7312   ReductionOpsListType ReductionOps;
7313   SmallVector<Value *, 32> ReducedVals;
7314   // Use map vector to make stable output.
7315   MapVector<Instruction *, Value *> ExtraArgs;
7316   WeakTrackingVH ReductionRoot;
7317   /// The type of reduction operation.
7318   RecurKind RdxKind;
7319 
7320   const unsigned INVALID_OPERAND_INDEX = std::numeric_limits<unsigned>::max();
7321 
7322   static bool isCmpSelMinMax(Instruction *I) {
7323     return match(I, m_Select(m_Cmp(), m_Value(), m_Value())) &&
7324            RecurrenceDescriptor::isMinMaxRecurrenceKind(getRdxKind(I));
7325   }
7326 
7327   // And/or are potentially poison-safe logical patterns like:
7328   // select x, y, false
7329   // select x, true, y
7330   static bool isBoolLogicOp(Instruction *I) {
7331     return match(I, m_LogicalAnd(m_Value(), m_Value())) ||
7332            match(I, m_LogicalOr(m_Value(), m_Value()));
7333   }
7334 
7335   /// Checks if instruction is associative and can be vectorized.
7336   static bool isVectorizable(RecurKind Kind, Instruction *I) {
7337     if (Kind == RecurKind::None)
7338       return false;
7339 
7340     // Integer ops that map to select instructions or intrinsics are fine.
7341     if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind) ||
7342         isBoolLogicOp(I))
7343       return true;
7344 
7345     if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) {
7346       // FP min/max are associative except for NaN and -0.0. We do not
7347       // have to rule out -0.0 here because the intrinsic semantics do not
7348       // specify a fixed result for it.
7349       return I->getFastMathFlags().noNaNs();
7350     }
7351 
7352     return I->isAssociative();
7353   }
7354 
7355   static Value *getRdxOperand(Instruction *I, unsigned Index) {
7356     // Poison-safe 'or' takes the form: select X, true, Y
7357     // To make that work with the normal operand processing, we skip the
7358     // true value operand.
7359     // TODO: Change the code and data structures to handle this without a hack.
7360     if (getRdxKind(I) == RecurKind::Or && isa<SelectInst>(I) && Index == 1)
7361       return I->getOperand(2);
7362     return I->getOperand(Index);
7363   }
7364 
7365   /// Checks if the ParentStackElem.first should be marked as a reduction
7366   /// operation with an extra argument or as extra argument itself.
7367   void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem,
7368                     Value *ExtraArg) {
7369     if (ExtraArgs.count(ParentStackElem.first)) {
7370       ExtraArgs[ParentStackElem.first] = nullptr;
7371       // We ran into something like:
7372       // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg.
7373       // The whole ParentStackElem.first should be considered as an extra value
7374       // in this case.
7375       // Do not perform analysis of remaining operands of ParentStackElem.first
7376       // instruction, this whole instruction is an extra argument.
7377       ParentStackElem.second = INVALID_OPERAND_INDEX;
7378     } else {
7379       // We ran into something like:
7380       // ParentStackElem.first += ... + ExtraArg + ...
7381       ExtraArgs[ParentStackElem.first] = ExtraArg;
7382     }
7383   }
7384 
7385   /// Creates reduction operation with the current opcode.
7386   static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS,
7387                          Value *RHS, const Twine &Name, bool UseSelect) {
7388     unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind);
7389     switch (Kind) {
7390     case RecurKind::Add:
7391     case RecurKind::Mul:
7392     case RecurKind::Or:
7393     case RecurKind::And:
7394     case RecurKind::Xor:
7395     case RecurKind::FAdd:
7396     case RecurKind::FMul:
7397       return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS,
7398                                  Name);
7399     case RecurKind::FMax:
7400       return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS);
7401     case RecurKind::FMin:
7402       return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS);
7403     case RecurKind::SMax:
7404       if (UseSelect) {
7405         Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name);
7406         return Builder.CreateSelect(Cmp, LHS, RHS, Name);
7407       }
7408       return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS);
7409     case RecurKind::SMin:
7410       if (UseSelect) {
7411         Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name);
7412         return Builder.CreateSelect(Cmp, LHS, RHS, Name);
7413       }
7414       return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS);
7415     case RecurKind::UMax:
7416       if (UseSelect) {
7417         Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name);
7418         return Builder.CreateSelect(Cmp, LHS, RHS, Name);
7419       }
7420       return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS);
7421     case RecurKind::UMin:
7422       if (UseSelect) {
7423         Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name);
7424         return Builder.CreateSelect(Cmp, LHS, RHS, Name);
7425       }
7426       return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS);
7427     default:
7428       llvm_unreachable("Unknown reduction operation.");
7429     }
7430   }
7431 
7432   /// Creates reduction operation with the current opcode with the IR flags
7433   /// from \p ReductionOps.
7434   static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS,
7435                          Value *RHS, const Twine &Name,
7436                          const ReductionOpsListType &ReductionOps) {
7437     bool UseSelect = ReductionOps.size() == 2;
7438     assert((!UseSelect || isa<SelectInst>(ReductionOps[1][0])) &&
7439            "Expected cmp + select pairs for reduction");
7440     Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect);
7441     if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) {
7442       if (auto *Sel = dyn_cast<SelectInst>(Op)) {
7443         propagateIRFlags(Sel->getCondition(), ReductionOps[0]);
7444         propagateIRFlags(Op, ReductionOps[1]);
7445         return Op;
7446       }
7447     }
7448     propagateIRFlags(Op, ReductionOps[0]);
7449     return Op;
7450   }
7451 
7452   /// Creates reduction operation with the current opcode with the IR flags
7453   /// from \p I.
7454   static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS,
7455                          Value *RHS, const Twine &Name, Instruction *I) {
7456     auto *SelI = dyn_cast<SelectInst>(I);
7457     Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, SelI != nullptr);
7458     if (SelI && RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) {
7459       if (auto *Sel = dyn_cast<SelectInst>(Op))
7460         propagateIRFlags(Sel->getCondition(), SelI->getCondition());
7461     }
7462     propagateIRFlags(Op, I);
7463     return Op;
7464   }
7465 
7466   static RecurKind getRdxKind(Instruction *I) {
7467     assert(I && "Expected instruction for reduction matching");
7468     TargetTransformInfo::ReductionFlags RdxFlags;
7469     if (match(I, m_Add(m_Value(), m_Value())))
7470       return RecurKind::Add;
7471     if (match(I, m_Mul(m_Value(), m_Value())))
7472       return RecurKind::Mul;
7473     if (match(I, m_And(m_Value(), m_Value())) ||
7474         match(I, m_LogicalAnd(m_Value(), m_Value())))
7475       return RecurKind::And;
7476     if (match(I, m_Or(m_Value(), m_Value())) ||
7477         match(I, m_LogicalOr(m_Value(), m_Value())))
7478       return RecurKind::Or;
7479     if (match(I, m_Xor(m_Value(), m_Value())))
7480       return RecurKind::Xor;
7481     if (match(I, m_FAdd(m_Value(), m_Value())))
7482       return RecurKind::FAdd;
7483     if (match(I, m_FMul(m_Value(), m_Value())))
7484       return RecurKind::FMul;
7485 
7486     if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value())))
7487       return RecurKind::FMax;
7488     if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value())))
7489       return RecurKind::FMin;
7490 
7491     // This matches either cmp+select or intrinsics. SLP is expected to handle
7492     // either form.
7493     // TODO: If we are canonicalizing to intrinsics, we can remove several
7494     //       special-case paths that deal with selects.
7495     if (match(I, m_SMax(m_Value(), m_Value())))
7496       return RecurKind::SMax;
7497     if (match(I, m_SMin(m_Value(), m_Value())))
7498       return RecurKind::SMin;
7499     if (match(I, m_UMax(m_Value(), m_Value())))
7500       return RecurKind::UMax;
7501     if (match(I, m_UMin(m_Value(), m_Value())))
7502       return RecurKind::UMin;
7503 
7504     if (auto *Select = dyn_cast<SelectInst>(I)) {
7505       // Try harder: look for min/max pattern based on instructions producing
7506       // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2).
7507       // During the intermediate stages of SLP, it's very common to have
7508       // pattern like this (since optimizeGatherSequence is run only once
7509       // at the end):
7510       // %1 = extractelement <2 x i32> %a, i32 0
7511       // %2 = extractelement <2 x i32> %a, i32 1
7512       // %cond = icmp sgt i32 %1, %2
7513       // %3 = extractelement <2 x i32> %a, i32 0
7514       // %4 = extractelement <2 x i32> %a, i32 1
7515       // %select = select i1 %cond, i32 %3, i32 %4
7516       CmpInst::Predicate Pred;
7517       Instruction *L1;
7518       Instruction *L2;
7519 
7520       Value *LHS = Select->getTrueValue();
7521       Value *RHS = Select->getFalseValue();
7522       Value *Cond = Select->getCondition();
7523 
7524       // TODO: Support inverse predicates.
7525       if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) {
7526         if (!isa<ExtractElementInst>(RHS) ||
7527             !L2->isIdenticalTo(cast<Instruction>(RHS)))
7528           return RecurKind::None;
7529       } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) {
7530         if (!isa<ExtractElementInst>(LHS) ||
7531             !L1->isIdenticalTo(cast<Instruction>(LHS)))
7532           return RecurKind::None;
7533       } else {
7534         if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS))
7535           return RecurKind::None;
7536         if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) ||
7537             !L1->isIdenticalTo(cast<Instruction>(LHS)) ||
7538             !L2->isIdenticalTo(cast<Instruction>(RHS)))
7539           return RecurKind::None;
7540       }
7541 
7542       TargetTransformInfo::ReductionFlags RdxFlags;
7543       switch (Pred) {
7544       default:
7545         return RecurKind::None;
7546       case CmpInst::ICMP_SGT:
7547       case CmpInst::ICMP_SGE:
7548         return RecurKind::SMax;
7549       case CmpInst::ICMP_SLT:
7550       case CmpInst::ICMP_SLE:
7551         return RecurKind::SMin;
7552       case CmpInst::ICMP_UGT:
7553       case CmpInst::ICMP_UGE:
7554         return RecurKind::UMax;
7555       case CmpInst::ICMP_ULT:
7556       case CmpInst::ICMP_ULE:
7557         return RecurKind::UMin;
7558       }
7559     }
7560     return RecurKind::None;
7561   }
7562 
7563   /// Get the index of the first operand.
7564   static unsigned getFirstOperandIndex(Instruction *I) {
7565     return isCmpSelMinMax(I) ? 1 : 0;
7566   }
7567 
7568   /// Total number of operands in the reduction operation.
7569   static unsigned getNumberOfOperands(Instruction *I) {
7570     return isCmpSelMinMax(I) ? 3 : 2;
7571   }
7572 
7573   /// Checks if the instruction is in basic block \p BB.
7574   /// For a cmp+sel min/max reduction check that both ops are in \p BB.
7575   static bool hasSameParent(Instruction *I, BasicBlock *BB) {
7576     if (isCmpSelMinMax(I)) {
7577       auto *Sel = cast<SelectInst>(I);
7578       auto *Cmp = cast<Instruction>(Sel->getCondition());
7579       return Sel->getParent() == BB && Cmp->getParent() == BB;
7580     }
7581     return I->getParent() == BB;
7582   }
7583 
7584   /// Expected number of uses for reduction operations/reduced values.
7585   static bool hasRequiredNumberOfUses(bool IsCmpSelMinMax, Instruction *I) {
7586     if (IsCmpSelMinMax) {
7587       // SelectInst must be used twice while the condition op must have single
7588       // use only.
7589       if (auto *Sel = dyn_cast<SelectInst>(I))
7590         return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse();
7591       return I->hasNUses(2);
7592     }
7593 
7594     // Arithmetic reduction operation must be used once only.
7595     return I->hasOneUse();
7596   }
7597 
7598   /// Initializes the list of reduction operations.
7599   void initReductionOps(Instruction *I) {
7600     if (isCmpSelMinMax(I))
7601       ReductionOps.assign(2, ReductionOpsType());
7602     else
7603       ReductionOps.assign(1, ReductionOpsType());
7604   }
7605 
7606   /// Add all reduction operations for the reduction instruction \p I.
7607   void addReductionOps(Instruction *I) {
7608     if (isCmpSelMinMax(I)) {
7609       ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition());
7610       ReductionOps[1].emplace_back(I);
7611     } else {
7612       ReductionOps[0].emplace_back(I);
7613     }
7614   }
7615 
7616   static Value *getLHS(RecurKind Kind, Instruction *I) {
7617     if (Kind == RecurKind::None)
7618       return nullptr;
7619     return I->getOperand(getFirstOperandIndex(I));
7620   }
7621   static Value *getRHS(RecurKind Kind, Instruction *I) {
7622     if (Kind == RecurKind::None)
7623       return nullptr;
7624     return I->getOperand(getFirstOperandIndex(I) + 1);
7625   }
7626 
7627 public:
7628   HorizontalReduction() = default;
7629 
7630   /// Try to find a reduction tree.
7631   bool matchAssociativeReduction(PHINode *Phi, Instruction *Inst) {
7632     assert((!Phi || is_contained(Phi->operands(), Inst)) &&
7633            "Phi needs to use the binary operator");
7634     assert((isa<BinaryOperator>(Inst) || isa<SelectInst>(Inst) ||
7635             isa<IntrinsicInst>(Inst)) &&
7636            "Expected binop, select, or intrinsic for reduction matching");
7637     RdxKind = getRdxKind(Inst);
7638 
7639     // We could have a initial reductions that is not an add.
7640     //  r *= v1 + v2 + v3 + v4
7641     // In such a case start looking for a tree rooted in the first '+'.
7642     if (Phi) {
7643       if (getLHS(RdxKind, Inst) == Phi) {
7644         Phi = nullptr;
7645         Inst = dyn_cast<Instruction>(getRHS(RdxKind, Inst));
7646         if (!Inst)
7647           return false;
7648         RdxKind = getRdxKind(Inst);
7649       } else if (getRHS(RdxKind, Inst) == Phi) {
7650         Phi = nullptr;
7651         Inst = dyn_cast<Instruction>(getLHS(RdxKind, Inst));
7652         if (!Inst)
7653           return false;
7654         RdxKind = getRdxKind(Inst);
7655       }
7656     }
7657 
7658     if (!isVectorizable(RdxKind, Inst))
7659       return false;
7660 
7661     // Analyze "regular" integer/FP types for reductions - no target-specific
7662     // types or pointers.
7663     Type *Ty = Inst->getType();
7664     if (!isValidElementType(Ty) || Ty->isPointerTy())
7665       return false;
7666 
7667     // Though the ultimate reduction may have multiple uses, its condition must
7668     // have only single use.
7669     if (auto *Sel = dyn_cast<SelectInst>(Inst))
7670       if (!Sel->getCondition()->hasOneUse())
7671         return false;
7672 
7673     ReductionRoot = Inst;
7674 
7675     // The opcode for leaf values that we perform a reduction on.
7676     // For example: load(x) + load(y) + load(z) + fptoui(w)
7677     // The leaf opcode for 'w' does not match, so we don't include it as a
7678     // potential candidate for the reduction.
7679     unsigned LeafOpcode = 0;
7680 
7681     // Post-order traverse the reduction tree starting at Inst. We only handle
7682     // true trees containing binary operators or selects.
7683     SmallVector<std::pair<Instruction *, unsigned>, 32> Stack;
7684     Stack.push_back(std::make_pair(Inst, getFirstOperandIndex(Inst)));
7685     initReductionOps(Inst);
7686     while (!Stack.empty()) {
7687       Instruction *TreeN = Stack.back().first;
7688       unsigned EdgeToVisit = Stack.back().second++;
7689       const RecurKind TreeRdxKind = getRdxKind(TreeN);
7690       bool IsReducedValue = TreeRdxKind != RdxKind;
7691 
7692       // Postorder visit.
7693       if (IsReducedValue || EdgeToVisit >= getNumberOfOperands(TreeN)) {
7694         if (IsReducedValue)
7695           ReducedVals.push_back(TreeN);
7696         else {
7697           auto ExtraArgsIter = ExtraArgs.find(TreeN);
7698           if (ExtraArgsIter != ExtraArgs.end() && !ExtraArgsIter->second) {
7699             // Check if TreeN is an extra argument of its parent operation.
7700             if (Stack.size() <= 1) {
7701               // TreeN can't be an extra argument as it is a root reduction
7702               // operation.
7703               return false;
7704             }
7705             // Yes, TreeN is an extra argument, do not add it to a list of
7706             // reduction operations.
7707             // Stack[Stack.size() - 2] always points to the parent operation.
7708             markExtraArg(Stack[Stack.size() - 2], TreeN);
7709             ExtraArgs.erase(TreeN);
7710           } else
7711             addReductionOps(TreeN);
7712         }
7713         // Retract.
7714         Stack.pop_back();
7715         continue;
7716       }
7717 
7718       // Visit operands.
7719       Value *EdgeVal = getRdxOperand(TreeN, EdgeToVisit);
7720       auto *EdgeInst = dyn_cast<Instruction>(EdgeVal);
7721       if (!EdgeInst) {
7722         // Edge value is not a reduction instruction or a leaf instruction.
7723         // (It may be a constant, function argument, or something else.)
7724         markExtraArg(Stack.back(), EdgeVal);
7725         continue;
7726       }
7727       RecurKind EdgeRdxKind = getRdxKind(EdgeInst);
7728       // Continue analysis if the next operand is a reduction operation or
7729       // (possibly) a leaf value. If the leaf value opcode is not set,
7730       // the first met operation != reduction operation is considered as the
7731       // leaf opcode.
7732       // Only handle trees in the current basic block.
7733       // Each tree node needs to have minimal number of users except for the
7734       // ultimate reduction.
7735       const bool IsRdxInst = EdgeRdxKind == RdxKind;
7736       if (EdgeInst != Phi && EdgeInst != Inst &&
7737           hasSameParent(EdgeInst, Inst->getParent()) &&
7738           hasRequiredNumberOfUses(isCmpSelMinMax(Inst), EdgeInst) &&
7739           (!LeafOpcode || LeafOpcode == EdgeInst->getOpcode() || IsRdxInst)) {
7740         if (IsRdxInst) {
7741           // We need to be able to reassociate the reduction operations.
7742           if (!isVectorizable(EdgeRdxKind, EdgeInst)) {
7743             // I is an extra argument for TreeN (its parent operation).
7744             markExtraArg(Stack.back(), EdgeInst);
7745             continue;
7746           }
7747         } else if (!LeafOpcode) {
7748           LeafOpcode = EdgeInst->getOpcode();
7749         }
7750         Stack.push_back(
7751             std::make_pair(EdgeInst, getFirstOperandIndex(EdgeInst)));
7752         continue;
7753       }
7754       // I is an extra argument for TreeN (its parent operation).
7755       markExtraArg(Stack.back(), EdgeInst);
7756     }
7757     return true;
7758   }
7759 
7760   /// Attempt to vectorize the tree found by matchAssociativeReduction.
7761   bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) {
7762     // If there are a sufficient number of reduction values, reduce
7763     // to a nearby power-of-2. We can safely generate oversized
7764     // vectors and rely on the backend to split them to legal sizes.
7765     unsigned NumReducedVals = ReducedVals.size();
7766     if (NumReducedVals < 4)
7767       return false;
7768 
7769     // Intersect the fast-math-flags from all reduction operations.
7770     FastMathFlags RdxFMF;
7771     RdxFMF.set();
7772     for (ReductionOpsType &RdxOp : ReductionOps) {
7773       for (Value *RdxVal : RdxOp) {
7774         if (auto *FPMO = dyn_cast<FPMathOperator>(RdxVal))
7775           RdxFMF &= FPMO->getFastMathFlags();
7776       }
7777     }
7778 
7779     IRBuilder<> Builder(cast<Instruction>(ReductionRoot));
7780     Builder.setFastMathFlags(RdxFMF);
7781 
7782     BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues;
7783     // The same extra argument may be used several times, so log each attempt
7784     // to use it.
7785     for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) {
7786       assert(Pair.first && "DebugLoc must be set.");
7787       ExternallyUsedValues[Pair.second].push_back(Pair.first);
7788     }
7789 
7790     // The compare instruction of a min/max is the insertion point for new
7791     // instructions and may be replaced with a new compare instruction.
7792     auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) {
7793       assert(isa<SelectInst>(RdxRootInst) &&
7794              "Expected min/max reduction to have select root instruction");
7795       Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition();
7796       assert(isa<Instruction>(ScalarCond) &&
7797              "Expected min/max reduction to have compare condition");
7798       return cast<Instruction>(ScalarCond);
7799     };
7800 
7801     // The reduction root is used as the insertion point for new instructions,
7802     // so set it as externally used to prevent it from being deleted.
7803     ExternallyUsedValues[ReductionRoot];
7804     SmallVector<Value *, 16> IgnoreList;
7805     for (ReductionOpsType &RdxOp : ReductionOps)
7806       IgnoreList.append(RdxOp.begin(), RdxOp.end());
7807 
7808     unsigned ReduxWidth = PowerOf2Floor(NumReducedVals);
7809     if (NumReducedVals > ReduxWidth) {
7810       // In the loop below, we are building a tree based on a window of
7811       // 'ReduxWidth' values.
7812       // If the operands of those values have common traits (compare predicate,
7813       // constant operand, etc), then we want to group those together to
7814       // minimize the cost of the reduction.
7815 
7816       // TODO: This should be extended to count common operands for
7817       //       compares and binops.
7818 
7819       // Step 1: Count the number of times each compare predicate occurs.
7820       SmallDenseMap<unsigned, unsigned> PredCountMap;
7821       for (Value *RdxVal : ReducedVals) {
7822         CmpInst::Predicate Pred;
7823         if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value())))
7824           ++PredCountMap[Pred];
7825       }
7826       // Step 2: Sort the values so the most common predicates come first.
7827       stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) {
7828         CmpInst::Predicate PredA, PredB;
7829         if (match(A, m_Cmp(PredA, m_Value(), m_Value())) &&
7830             match(B, m_Cmp(PredB, m_Value(), m_Value()))) {
7831           return PredCountMap[PredA] > PredCountMap[PredB];
7832         }
7833         return false;
7834       });
7835     }
7836 
7837     Value *VectorizedTree = nullptr;
7838     unsigned i = 0;
7839     while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) {
7840       ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth);
7841       V.buildTree(VL, ExternallyUsedValues, IgnoreList);
7842       Optional<ArrayRef<unsigned>> Order = V.bestOrder();
7843       if (Order) {
7844         assert(Order->size() == VL.size() &&
7845                "Order size must be the same as number of vectorized "
7846                "instructions.");
7847         // TODO: reorder tree nodes without tree rebuilding.
7848         SmallVector<Value *, 4> ReorderedOps(VL.size());
7849         transform(fixupOrderingIndices(*Order), ReorderedOps.begin(),
7850                   [VL](const unsigned Idx) { return VL[Idx]; });
7851         V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList);
7852       }
7853       if (V.isTreeTinyAndNotFullyVectorizable())
7854         break;
7855       if (V.isLoadCombineReductionCandidate(RdxKind))
7856         break;
7857 
7858       // For a poison-safe boolean logic reduction, do not replace select
7859       // instructions with logic ops. All reduced values will be frozen (see
7860       // below) to prevent leaking poison.
7861       if (isa<SelectInst>(ReductionRoot) &&
7862           isBoolLogicOp(cast<Instruction>(ReductionRoot)) &&
7863           NumReducedVals != ReduxWidth)
7864         break;
7865 
7866       V.computeMinimumValueSizes();
7867 
7868       // Estimate cost.
7869       InstructionCost TreeCost =
7870           V.getTreeCost(makeArrayRef(&ReducedVals[i], ReduxWidth));
7871       InstructionCost ReductionCost =
7872           getReductionCost(TTI, ReducedVals[i], ReduxWidth, RdxFMF);
7873       InstructionCost Cost = TreeCost + ReductionCost;
7874       if (!Cost.isValid()) {
7875         LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n");
7876         return false;
7877       }
7878       if (Cost >= -SLPCostThreshold) {
7879         V.getORE()->emit([&]() {
7880           return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial",
7881                                           cast<Instruction>(VL[0]))
7882                  << "Vectorizing horizontal reduction is possible"
7883                  << "but not beneficial with cost " << ore::NV("Cost", Cost)
7884                  << " and threshold "
7885                  << ore::NV("Threshold", -SLPCostThreshold);
7886         });
7887         break;
7888       }
7889 
7890       LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:"
7891                         << Cost << ". (HorRdx)\n");
7892       V.getORE()->emit([&]() {
7893         return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction",
7894                                   cast<Instruction>(VL[0]))
7895                << "Vectorized horizontal reduction with cost "
7896                << ore::NV("Cost", Cost) << " and with tree size "
7897                << ore::NV("TreeSize", V.getTreeSize());
7898       });
7899 
7900       // Vectorize a tree.
7901       DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc();
7902       Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues);
7903 
7904       // Emit a reduction. If the root is a select (min/max idiom), the insert
7905       // point is the compare condition of that select.
7906       Instruction *RdxRootInst = cast<Instruction>(ReductionRoot);
7907       if (isCmpSelMinMax(RdxRootInst))
7908         Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst));
7909       else
7910         Builder.SetInsertPoint(RdxRootInst);
7911 
7912       // To prevent poison from leaking across what used to be sequential, safe,
7913       // scalar boolean logic operations, the reduction operand must be frozen.
7914       if (isa<SelectInst>(RdxRootInst) && isBoolLogicOp(RdxRootInst))
7915         VectorizedRoot = Builder.CreateFreeze(VectorizedRoot);
7916 
7917       Value *ReducedSubTree =
7918           emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI);
7919 
7920       if (!VectorizedTree) {
7921         // Initialize the final value in the reduction.
7922         VectorizedTree = ReducedSubTree;
7923       } else {
7924         // Update the final value in the reduction.
7925         Builder.SetCurrentDebugLocation(Loc);
7926         VectorizedTree = createOp(Builder, RdxKind, VectorizedTree,
7927                                   ReducedSubTree, "op.rdx", ReductionOps);
7928       }
7929       i += ReduxWidth;
7930       ReduxWidth = PowerOf2Floor(NumReducedVals - i);
7931     }
7932 
7933     if (VectorizedTree) {
7934       // Finish the reduction.
7935       for (; i < NumReducedVals; ++i) {
7936         auto *I = cast<Instruction>(ReducedVals[i]);
7937         Builder.SetCurrentDebugLocation(I->getDebugLoc());
7938         VectorizedTree =
7939             createOp(Builder, RdxKind, VectorizedTree, I, "", ReductionOps);
7940       }
7941       for (auto &Pair : ExternallyUsedValues) {
7942         // Add each externally used value to the final reduction.
7943         for (auto *I : Pair.second) {
7944           Builder.SetCurrentDebugLocation(I->getDebugLoc());
7945           VectorizedTree = createOp(Builder, RdxKind, VectorizedTree,
7946                                     Pair.first, "op.extra", I);
7947         }
7948       }
7949 
7950       ReductionRoot->replaceAllUsesWith(VectorizedTree);
7951 
7952       // Mark all scalar reduction ops for deletion, they are replaced by the
7953       // vector reductions.
7954       V.eraseInstructions(IgnoreList);
7955     }
7956     return VectorizedTree != nullptr;
7957   }
7958 
7959   unsigned numReductionValues() const { return ReducedVals.size(); }
7960 
7961 private:
7962   /// Calculate the cost of a reduction.
7963   InstructionCost getReductionCost(TargetTransformInfo *TTI,
7964                                    Value *FirstReducedVal, unsigned ReduxWidth,
7965                                    FastMathFlags FMF) {
7966     Type *ScalarTy = FirstReducedVal->getType();
7967     FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth);
7968     InstructionCost VectorCost, ScalarCost;
7969     switch (RdxKind) {
7970     case RecurKind::Add:
7971     case RecurKind::Mul:
7972     case RecurKind::Or:
7973     case RecurKind::And:
7974     case RecurKind::Xor:
7975     case RecurKind::FAdd:
7976     case RecurKind::FMul: {
7977       unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind);
7978       VectorCost = TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, FMF);
7979       ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy);
7980       break;
7981     }
7982     case RecurKind::FMax:
7983     case RecurKind::FMin: {
7984       auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy));
7985       VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy,
7986                                                /*unsigned=*/false);
7987       ScalarCost =
7988           TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy) +
7989           TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy,
7990                                   CmpInst::makeCmpResultType(ScalarTy));
7991       break;
7992     }
7993     case RecurKind::SMax:
7994     case RecurKind::SMin:
7995     case RecurKind::UMax:
7996     case RecurKind::UMin: {
7997       auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy));
7998       bool IsUnsigned =
7999           RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin;
8000       VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, IsUnsigned);
8001       ScalarCost =
8002           TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy) +
8003           TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy,
8004                                   CmpInst::makeCmpResultType(ScalarTy));
8005       break;
8006     }
8007     default:
8008       llvm_unreachable("Expected arithmetic or min/max reduction operation");
8009     }
8010 
8011     // Scalar cost is repeated for N-1 elements.
8012     ScalarCost *= (ReduxWidth - 1);
8013     LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost
8014                       << " for reduction that starts with " << *FirstReducedVal
8015                       << " (It is a splitting reduction)\n");
8016     return VectorCost - ScalarCost;
8017   }
8018 
8019   /// Emit a horizontal reduction of the vectorized value.
8020   Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder,
8021                        unsigned ReduxWidth, const TargetTransformInfo *TTI) {
8022     assert(VectorizedValue && "Need to have a vectorized tree node");
8023     assert(isPowerOf2_32(ReduxWidth) &&
8024            "We only handle power-of-two reductions for now");
8025 
8026     return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind,
8027                                        ReductionOps.back());
8028   }
8029 };
8030 
8031 } // end anonymous namespace
8032 
8033 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) {
8034   if (auto *IE = dyn_cast<InsertElementInst>(InsertInst))
8035     return cast<FixedVectorType>(IE->getType())->getNumElements();
8036 
8037   unsigned AggregateSize = 1;
8038   auto *IV = cast<InsertValueInst>(InsertInst);
8039   Type *CurrentType = IV->getType();
8040   do {
8041     if (auto *ST = dyn_cast<StructType>(CurrentType)) {
8042       for (auto *Elt : ST->elements())
8043         if (Elt != ST->getElementType(0)) // check homogeneity
8044           return None;
8045       AggregateSize *= ST->getNumElements();
8046       CurrentType = ST->getElementType(0);
8047     } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) {
8048       AggregateSize *= AT->getNumElements();
8049       CurrentType = AT->getElementType();
8050     } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) {
8051       AggregateSize *= VT->getNumElements();
8052       return AggregateSize;
8053     } else if (CurrentType->isSingleValueType()) {
8054       return AggregateSize;
8055     } else {
8056       return None;
8057     }
8058   } while (true);
8059 }
8060 
8061 static bool findBuildAggregate_rec(Instruction *LastInsertInst,
8062                                    TargetTransformInfo *TTI,
8063                                    SmallVectorImpl<Value *> &BuildVectorOpds,
8064                                    SmallVectorImpl<Value *> &InsertElts,
8065                                    unsigned OperandOffset) {
8066   do {
8067     Value *InsertedOperand = LastInsertInst->getOperand(1);
8068     Optional<int> OperandIndex = getInsertIndex(LastInsertInst, OperandOffset);
8069     if (!OperandIndex)
8070       return false;
8071     if (isa<InsertElementInst>(InsertedOperand) ||
8072         isa<InsertValueInst>(InsertedOperand)) {
8073       if (!findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI,
8074                                   BuildVectorOpds, InsertElts, *OperandIndex))
8075         return false;
8076     } else {
8077       BuildVectorOpds[*OperandIndex] = InsertedOperand;
8078       InsertElts[*OperandIndex] = LastInsertInst;
8079     }
8080     LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0));
8081   } while (LastInsertInst != nullptr &&
8082            (isa<InsertValueInst>(LastInsertInst) ||
8083             isa<InsertElementInst>(LastInsertInst)) &&
8084            LastInsertInst->hasOneUse());
8085   return true;
8086 }
8087 
8088 /// Recognize construction of vectors like
8089 ///  %ra = insertelement <4 x float> poison, float %s0, i32 0
8090 ///  %rb = insertelement <4 x float> %ra, float %s1, i32 1
8091 ///  %rc = insertelement <4 x float> %rb, float %s2, i32 2
8092 ///  %rd = insertelement <4 x float> %rc, float %s3, i32 3
8093 ///  starting from the last insertelement or insertvalue instruction.
8094 ///
8095 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>},
8096 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on.
8097 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples.
8098 ///
8099 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type.
8100 ///
8101 /// \return true if it matches.
8102 static bool findBuildAggregate(Instruction *LastInsertInst,
8103                                TargetTransformInfo *TTI,
8104                                SmallVectorImpl<Value *> &BuildVectorOpds,
8105                                SmallVectorImpl<Value *> &InsertElts) {
8106 
8107   assert((isa<InsertElementInst>(LastInsertInst) ||
8108           isa<InsertValueInst>(LastInsertInst)) &&
8109          "Expected insertelement or insertvalue instruction!");
8110 
8111   assert((BuildVectorOpds.empty() && InsertElts.empty()) &&
8112          "Expected empty result vectors!");
8113 
8114   Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst);
8115   if (!AggregateSize)
8116     return false;
8117   BuildVectorOpds.resize(*AggregateSize);
8118   InsertElts.resize(*AggregateSize);
8119 
8120   if (findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts,
8121                              0)) {
8122     llvm::erase_value(BuildVectorOpds, nullptr);
8123     llvm::erase_value(InsertElts, nullptr);
8124     if (BuildVectorOpds.size() >= 2)
8125       return true;
8126   }
8127 
8128   return false;
8129 }
8130 
8131 /// Try and get a reduction value from a phi node.
8132 ///
8133 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions
8134 /// if they come from either \p ParentBB or a containing loop latch.
8135 ///
8136 /// \returns A candidate reduction value if possible, or \code nullptr \endcode
8137 /// if not possible.
8138 static Value *getReductionValue(const DominatorTree *DT, PHINode *P,
8139                                 BasicBlock *ParentBB, LoopInfo *LI) {
8140   // There are situations where the reduction value is not dominated by the
8141   // reduction phi. Vectorizing such cases has been reported to cause
8142   // miscompiles. See PR25787.
8143   auto DominatedReduxValue = [&](Value *R) {
8144     return isa<Instruction>(R) &&
8145            DT->dominates(P->getParent(), cast<Instruction>(R)->getParent());
8146   };
8147 
8148   Value *Rdx = nullptr;
8149 
8150   // Return the incoming value if it comes from the same BB as the phi node.
8151   if (P->getIncomingBlock(0) == ParentBB) {
8152     Rdx = P->getIncomingValue(0);
8153   } else if (P->getIncomingBlock(1) == ParentBB) {
8154     Rdx = P->getIncomingValue(1);
8155   }
8156 
8157   if (Rdx && DominatedReduxValue(Rdx))
8158     return Rdx;
8159 
8160   // Otherwise, check whether we have a loop latch to look at.
8161   Loop *BBL = LI->getLoopFor(ParentBB);
8162   if (!BBL)
8163     return nullptr;
8164   BasicBlock *BBLatch = BBL->getLoopLatch();
8165   if (!BBLatch)
8166     return nullptr;
8167 
8168   // There is a loop latch, return the incoming value if it comes from
8169   // that. This reduction pattern occasionally turns up.
8170   if (P->getIncomingBlock(0) == BBLatch) {
8171     Rdx = P->getIncomingValue(0);
8172   } else if (P->getIncomingBlock(1) == BBLatch) {
8173     Rdx = P->getIncomingValue(1);
8174   }
8175 
8176   if (Rdx && DominatedReduxValue(Rdx))
8177     return Rdx;
8178 
8179   return nullptr;
8180 }
8181 
8182 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) {
8183   if (match(I, m_BinOp(m_Value(V0), m_Value(V1))))
8184     return true;
8185   if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1))))
8186     return true;
8187   if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1))))
8188     return true;
8189   if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1))))
8190     return true;
8191   if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1))))
8192     return true;
8193   if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1))))
8194     return true;
8195   if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1))))
8196     return true;
8197   return false;
8198 }
8199 
8200 /// Attempt to reduce a horizontal reduction.
8201 /// If it is legal to match a horizontal reduction feeding the phi node \a P
8202 /// with reduction operators \a Root (or one of its operands) in a basic block
8203 /// \a BB, then check if it can be done. If horizontal reduction is not found
8204 /// and root instruction is a binary operation, vectorization of the operands is
8205 /// attempted.
8206 /// \returns true if a horizontal reduction was matched and reduced or operands
8207 /// of one of the binary instruction were vectorized.
8208 /// \returns false if a horizontal reduction was not matched (or not possible)
8209 /// or no vectorization of any binary operation feeding \a Root instruction was
8210 /// performed.
8211 static bool tryToVectorizeHorReductionOrInstOperands(
8212     PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R,
8213     TargetTransformInfo *TTI,
8214     const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) {
8215   if (!ShouldVectorizeHor)
8216     return false;
8217 
8218   if (!Root)
8219     return false;
8220 
8221   if (Root->getParent() != BB || isa<PHINode>(Root))
8222     return false;
8223   // Start analysis starting from Root instruction. If horizontal reduction is
8224   // found, try to vectorize it. If it is not a horizontal reduction or
8225   // vectorization is not possible or not effective, and currently analyzed
8226   // instruction is a binary operation, try to vectorize the operands, using
8227   // pre-order DFS traversal order. If the operands were not vectorized, repeat
8228   // the same procedure considering each operand as a possible root of the
8229   // horizontal reduction.
8230   // Interrupt the process if the Root instruction itself was vectorized or all
8231   // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized.
8232   // Skip the analysis of CmpInsts.Compiler implements postanalysis of the
8233   // CmpInsts so we can skip extra attempts in
8234   // tryToVectorizeHorReductionOrInstOperands and save compile time.
8235   SmallVector<std::pair<Instruction *, unsigned>, 8> Stack(1, {Root, 0});
8236   SmallPtrSet<Value *, 8> VisitedInstrs;
8237   bool Res = false;
8238   while (!Stack.empty()) {
8239     Instruction *Inst;
8240     unsigned Level;
8241     std::tie(Inst, Level) = Stack.pop_back_val();
8242     // Do not try to analyze instruction that has already been vectorized.
8243     // This may happen when we vectorize instruction operands on a previous
8244     // iteration while stack was populated before that happened.
8245     if (R.isDeleted(Inst))
8246       continue;
8247     Value *B0, *B1;
8248     bool IsBinop = matchRdxBop(Inst, B0, B1);
8249     bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value()));
8250     if (IsBinop || IsSelect) {
8251       HorizontalReduction HorRdx;
8252       if (HorRdx.matchAssociativeReduction(P, Inst)) {
8253         if (HorRdx.tryToReduce(R, TTI)) {
8254           Res = true;
8255           // Set P to nullptr to avoid re-analysis of phi node in
8256           // matchAssociativeReduction function unless this is the root node.
8257           P = nullptr;
8258           continue;
8259         }
8260       }
8261       if (P && IsBinop) {
8262         Inst = dyn_cast<Instruction>(B0);
8263         if (Inst == P)
8264           Inst = dyn_cast<Instruction>(B1);
8265         if (!Inst) {
8266           // Set P to nullptr to avoid re-analysis of phi node in
8267           // matchAssociativeReduction function unless this is the root node.
8268           P = nullptr;
8269           continue;
8270         }
8271       }
8272     }
8273     // Set P to nullptr to avoid re-analysis of phi node in
8274     // matchAssociativeReduction function unless this is the root node.
8275     P = nullptr;
8276     // Do not try to vectorize CmpInst operands, this is done separately.
8277     if (!isa<CmpInst>(Inst) && Vectorize(Inst, R)) {
8278       Res = true;
8279       continue;
8280     }
8281 
8282     // Try to vectorize operands.
8283     // Continue analysis for the instruction from the same basic block only to
8284     // save compile time.
8285     if (++Level < RecursionMaxDepth)
8286       for (auto *Op : Inst->operand_values())
8287         if (VisitedInstrs.insert(Op).second)
8288           if (auto *I = dyn_cast<Instruction>(Op))
8289             // Do not try to vectorize CmpInst operands,  this is done
8290             // separately.
8291             if (!isa<PHINode>(I) && !isa<CmpInst>(I) && !R.isDeleted(I) &&
8292                 I->getParent() == BB)
8293               Stack.emplace_back(I, Level);
8294   }
8295   return Res;
8296 }
8297 
8298 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V,
8299                                                  BasicBlock *BB, BoUpSLP &R,
8300                                                  TargetTransformInfo *TTI) {
8301   auto *I = dyn_cast_or_null<Instruction>(V);
8302   if (!I)
8303     return false;
8304 
8305   if (!isa<BinaryOperator>(I))
8306     P = nullptr;
8307   // Try to match and vectorize a horizontal reduction.
8308   auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool {
8309     return tryToVectorize(I, R);
8310   };
8311   return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI,
8312                                                   ExtraVectorization);
8313 }
8314 
8315 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI,
8316                                                  BasicBlock *BB, BoUpSLP &R) {
8317   const DataLayout &DL = BB->getModule()->getDataLayout();
8318   if (!R.canMapToVector(IVI->getType(), DL))
8319     return false;
8320 
8321   SmallVector<Value *, 16> BuildVectorOpds;
8322   SmallVector<Value *, 16> BuildVectorInsts;
8323   if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts))
8324     return false;
8325 
8326   LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n");
8327   // Aggregate value is unlikely to be processed in vector register, we need to
8328   // extract scalars into scalar registers, so NeedExtraction is set true.
8329   return tryToVectorizeList(BuildVectorOpds, R, /*AllowReorder=*/false);
8330 }
8331 
8332 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI,
8333                                                    BasicBlock *BB, BoUpSLP &R) {
8334   SmallVector<Value *, 16> BuildVectorInsts;
8335   SmallVector<Value *, 16> BuildVectorOpds;
8336   SmallVector<int> Mask;
8337   if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) ||
8338       (llvm::all_of(BuildVectorOpds,
8339                     [](Value *V) { return isa<ExtractElementInst>(V); }) &&
8340        isShuffle(BuildVectorOpds, Mask)))
8341     return false;
8342 
8343   LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n");
8344   return tryToVectorizeList(BuildVectorInsts, R, /*AllowReorder=*/true);
8345 }
8346 
8347 bool SLPVectorizerPass::vectorizeSimpleInstructions(
8348     SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R,
8349     bool AtTerminator) {
8350   bool OpsChanged = false;
8351   SmallVector<Instruction *, 4> PostponedCmps;
8352   for (auto *I : reverse(Instructions)) {
8353     if (R.isDeleted(I))
8354       continue;
8355     if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I))
8356       OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R);
8357     else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I))
8358       OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R);
8359     else if (isa<CmpInst>(I))
8360       PostponedCmps.push_back(I);
8361   }
8362   if (AtTerminator) {
8363     // Try to find reductions first.
8364     for (Instruction *I : PostponedCmps) {
8365       if (R.isDeleted(I))
8366         continue;
8367       for (Value *Op : I->operands())
8368         OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI);
8369     }
8370     // Try to vectorize operands as vector bundles.
8371     for (Instruction *I : PostponedCmps) {
8372       if (R.isDeleted(I))
8373         continue;
8374       OpsChanged |= tryToVectorize(I, R);
8375     }
8376     Instructions.clear();
8377   } else {
8378     // Insert in reverse order since the PostponedCmps vector was filled in
8379     // reverse order.
8380     Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend());
8381   }
8382   return OpsChanged;
8383 }
8384 
8385 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
8386   bool Changed = false;
8387   SmallVector<Value *, 4> Incoming;
8388   SmallPtrSet<Value *, 16> VisitedInstrs;
8389   // Maps phi nodes to the non-phi nodes found in the use tree for each phi
8390   // node. Allows better to identify the chains that can be vectorized in the
8391   // better way.
8392   DenseMap<Value *, SmallVector<Value *, 4>> PHIToOpcodes;
8393 
8394   bool HaveVectorizedPhiNodes = true;
8395   while (HaveVectorizedPhiNodes) {
8396     HaveVectorizedPhiNodes = false;
8397 
8398     // Collect the incoming values from the PHIs.
8399     Incoming.clear();
8400     for (Instruction &I : *BB) {
8401       PHINode *P = dyn_cast<PHINode>(&I);
8402       if (!P)
8403         break;
8404 
8405       // No need to analyze deleted, vectorized and non-vectorizable
8406       // instructions.
8407       if (!VisitedInstrs.count(P) && !R.isDeleted(P) &&
8408           isValidElementType(P->getType()))
8409         Incoming.push_back(P);
8410     }
8411 
8412     // Find the corresponding non-phi nodes for better matching when trying to
8413     // build the tree.
8414     for (Value *V : Incoming) {
8415       SmallVectorImpl<Value *> &Opcodes =
8416           PHIToOpcodes.try_emplace(V).first->getSecond();
8417       if (!Opcodes.empty())
8418         continue;
8419       SmallVector<Value *, 4> Nodes(1, V);
8420       SmallPtrSet<Value *, 4> Visited;
8421       while (!Nodes.empty()) {
8422         auto *PHI = cast<PHINode>(Nodes.pop_back_val());
8423         if (!Visited.insert(PHI).second)
8424           continue;
8425         for (Value *V : PHI->incoming_values()) {
8426           if (auto *PHI1 = dyn_cast<PHINode>((V))) {
8427             Nodes.push_back(PHI1);
8428             continue;
8429           }
8430           Opcodes.emplace_back(V);
8431         }
8432       }
8433     }
8434 
8435     // Sort by type, parent, operands.
8436     stable_sort(Incoming, [this, &PHIToOpcodes](Value *V1, Value *V2) {
8437       assert(isValidElementType(V1->getType()) &&
8438              isValidElementType(V2->getType()) &&
8439              "Expected vectorizable types only.");
8440       // It is fine to compare type IDs here, since we expect only vectorizable
8441       // types, like ints, floats and pointers, we don't care about other type.
8442       if (V1->getType()->getTypeID() < V2->getType()->getTypeID())
8443         return true;
8444       if (V1->getType()->getTypeID() > V2->getType()->getTypeID())
8445         return false;
8446       ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1];
8447       ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2];
8448       if (Opcodes1.size() < Opcodes2.size())
8449         return true;
8450       if (Opcodes1.size() > Opcodes2.size())
8451         return false;
8452       for (int I = 0, E = Opcodes1.size(); I < E; ++I) {
8453         // Undefs are compatible with any other value.
8454         if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I]))
8455           continue;
8456         if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I]))
8457           if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) {
8458             DomTreeNodeBase<BasicBlock> *NodeI1 = DT->getNode(I1->getParent());
8459             DomTreeNodeBase<BasicBlock> *NodeI2 = DT->getNode(I2->getParent());
8460             if (!NodeI1)
8461               return NodeI2 != nullptr;
8462             if (!NodeI2)
8463               return false;
8464             assert((NodeI1 == NodeI2) ==
8465                        (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) &&
8466                    "Different nodes should have different DFS numbers");
8467             if (NodeI1 != NodeI2)
8468               return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn();
8469             InstructionsState S = getSameOpcode({I1, I2});
8470             if (S.getOpcode())
8471               continue;
8472             return I1->getOpcode() < I2->getOpcode();
8473           }
8474         if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I]))
8475           continue;
8476         if (Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID())
8477           return true;
8478         if (Opcodes1[I]->getValueID() > Opcodes2[I]->getValueID())
8479           return false;
8480       }
8481       return false;
8482     });
8483 
8484     auto &&AreCompatiblePHIs = [&PHIToOpcodes](Value *V1, Value *V2) {
8485       if (V1 == V2)
8486         return true;
8487       if (V1->getType() != V2->getType())
8488         return false;
8489       ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1];
8490       ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2];
8491       if (Opcodes1.size() != Opcodes2.size())
8492         return false;
8493       for (int I = 0, E = Opcodes1.size(); I < E; ++I) {
8494         // Undefs are compatible with any other value.
8495         if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I]))
8496           continue;
8497         if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I]))
8498           if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) {
8499             if (I1->getParent() != I2->getParent())
8500               return false;
8501             InstructionsState S = getSameOpcode({I1, I2});
8502             if (S.getOpcode())
8503               continue;
8504             return false;
8505           }
8506         if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I]))
8507           continue;
8508         if (Opcodes1[I]->getValueID() != Opcodes2[I]->getValueID())
8509           return false;
8510       }
8511       return true;
8512     };
8513 
8514     // Try to vectorize elements base on their type.
8515     SmallVector<Value *, 4> Candidates;
8516     for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(),
8517                                            E = Incoming.end();
8518          IncIt != E;) {
8519 
8520       // Look for the next elements with the same type, parent and operand
8521       // kinds.
8522       SmallVector<Value *, 4>::iterator SameTypeIt = IncIt;
8523       while (SameTypeIt != E && AreCompatiblePHIs(*SameTypeIt, *IncIt)) {
8524         VisitedInstrs.insert(*SameTypeIt);
8525         ++SameTypeIt;
8526       }
8527 
8528       // Try to vectorize them.
8529       unsigned NumElts = (SameTypeIt - IncIt);
8530       LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs ("
8531                         << NumElts << ")\n");
8532       // The order in which the phi nodes appear in the program does not matter.
8533       // So allow tryToVectorizeList to reorder them if it is beneficial. This
8534       // is done when there are exactly two elements since tryToVectorizeList
8535       // asserts that there are only two values when AllowReorder is true.
8536       if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R,
8537                                             /*AllowReorder=*/true)) {
8538         // Success start over because instructions might have been changed.
8539         HaveVectorizedPhiNodes = true;
8540         Changed = true;
8541       } else if (NumElts < 4 &&
8542                  (Candidates.empty() ||
8543                   Candidates.front()->getType() == (*IncIt)->getType())) {
8544         Candidates.append(IncIt, std::next(IncIt, NumElts));
8545       }
8546       // Final attempt to vectorize phis with the same types.
8547       if (SameTypeIt == E || (*SameTypeIt)->getType() != (*IncIt)->getType()) {
8548         if (Candidates.size() > 1 &&
8549             tryToVectorizeList(Candidates, R, /*AllowReorder=*/true)) {
8550           // Success start over because instructions might have been changed.
8551           HaveVectorizedPhiNodes = true;
8552           Changed = true;
8553         }
8554         Candidates.clear();
8555       }
8556 
8557       // Start over at the next instruction of a different type (or the end).
8558       IncIt = SameTypeIt;
8559     }
8560   }
8561 
8562   VisitedInstrs.clear();
8563 
8564   SmallVector<Instruction *, 8> PostProcessInstructions;
8565   SmallDenseSet<Instruction *, 4> KeyNodes;
8566   for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
8567     // Skip instructions with scalable type. The num of elements is unknown at
8568     // compile-time for scalable type.
8569     if (isa<ScalableVectorType>(it->getType()))
8570       continue;
8571 
8572     // Skip instructions marked for the deletion.
8573     if (R.isDeleted(&*it))
8574       continue;
8575     // We may go through BB multiple times so skip the one we have checked.
8576     if (!VisitedInstrs.insert(&*it).second) {
8577       if (it->use_empty() && KeyNodes.contains(&*it) &&
8578           vectorizeSimpleInstructions(PostProcessInstructions, BB, R,
8579                                       it->isTerminator())) {
8580         // We would like to start over since some instructions are deleted
8581         // and the iterator may become invalid value.
8582         Changed = true;
8583         it = BB->begin();
8584         e = BB->end();
8585       }
8586       continue;
8587     }
8588 
8589     if (isa<DbgInfoIntrinsic>(it))
8590       continue;
8591 
8592     // Try to vectorize reductions that use PHINodes.
8593     if (PHINode *P = dyn_cast<PHINode>(it)) {
8594       // Check that the PHI is a reduction PHI.
8595       if (P->getNumIncomingValues() == 2) {
8596         // Try to match and vectorize a horizontal reduction.
8597         if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R,
8598                                      TTI)) {
8599           Changed = true;
8600           it = BB->begin();
8601           e = BB->end();
8602           continue;
8603         }
8604       }
8605       // Try to vectorize the incoming values of the PHI, to catch reductions
8606       // that feed into PHIs.
8607       for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) {
8608         // Skip if the incoming block is the current BB for now. Also, bypass
8609         // unreachable IR for efficiency and to avoid crashing.
8610         // TODO: Collect the skipped incoming values and try to vectorize them
8611         // after processing BB.
8612         if (BB == P->getIncomingBlock(I) ||
8613             !DT->isReachableFromEntry(P->getIncomingBlock(I)))
8614           continue;
8615 
8616         Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I),
8617                                             P->getIncomingBlock(I), R, TTI);
8618       }
8619       continue;
8620     }
8621 
8622     // Ran into an instruction without users, like terminator, or function call
8623     // with ignored return value, store. Ignore unused instructions (basing on
8624     // instruction type, except for CallInst and InvokeInst).
8625     if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) ||
8626                             isa<InvokeInst>(it))) {
8627       KeyNodes.insert(&*it);
8628       bool OpsChanged = false;
8629       if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) {
8630         for (auto *V : it->operand_values()) {
8631           // Try to match and vectorize a horizontal reduction.
8632           OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI);
8633         }
8634       }
8635       // Start vectorization of post-process list of instructions from the
8636       // top-tree instructions to try to vectorize as many instructions as
8637       // possible.
8638       OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R,
8639                                                 it->isTerminator());
8640       if (OpsChanged) {
8641         // We would like to start over since some instructions are deleted
8642         // and the iterator may become invalid value.
8643         Changed = true;
8644         it = BB->begin();
8645         e = BB->end();
8646         continue;
8647       }
8648     }
8649 
8650     if (isa<InsertElementInst>(it) || isa<CmpInst>(it) ||
8651         isa<InsertValueInst>(it))
8652       PostProcessInstructions.push_back(&*it);
8653   }
8654 
8655   return Changed;
8656 }
8657 
8658 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) {
8659   auto Changed = false;
8660   for (auto &Entry : GEPs) {
8661     // If the getelementptr list has fewer than two elements, there's nothing
8662     // to do.
8663     if (Entry.second.size() < 2)
8664       continue;
8665 
8666     LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length "
8667                       << Entry.second.size() << ".\n");
8668 
8669     // Process the GEP list in chunks suitable for the target's supported
8670     // vector size. If a vector register can't hold 1 element, we are done. We
8671     // are trying to vectorize the index computations, so the maximum number of
8672     // elements is based on the size of the index expression, rather than the
8673     // size of the GEP itself (the target's pointer size).
8674     unsigned MaxVecRegSize = R.getMaxVecRegSize();
8675     unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin());
8676     if (MaxVecRegSize < EltSize)
8677       continue;
8678 
8679     unsigned MaxElts = MaxVecRegSize / EltSize;
8680     for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) {
8681       auto Len = std::min<unsigned>(BE - BI, MaxElts);
8682       ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len);
8683 
8684       // Initialize a set a candidate getelementptrs. Note that we use a
8685       // SetVector here to preserve program order. If the index computations
8686       // are vectorizable and begin with loads, we want to minimize the chance
8687       // of having to reorder them later.
8688       SetVector<Value *> Candidates(GEPList.begin(), GEPList.end());
8689 
8690       // Some of the candidates may have already been vectorized after we
8691       // initially collected them. If so, they are marked as deleted, so remove
8692       // them from the set of candidates.
8693       Candidates.remove_if(
8694           [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); });
8695 
8696       // Remove from the set of candidates all pairs of getelementptrs with
8697       // constant differences. Such getelementptrs are likely not good
8698       // candidates for vectorization in a bottom-up phase since one can be
8699       // computed from the other. We also ensure all candidate getelementptr
8700       // indices are unique.
8701       for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) {
8702         auto *GEPI = GEPList[I];
8703         if (!Candidates.count(GEPI))
8704           continue;
8705         auto *SCEVI = SE->getSCEV(GEPList[I]);
8706         for (int J = I + 1; J < E && Candidates.size() > 1; ++J) {
8707           auto *GEPJ = GEPList[J];
8708           auto *SCEVJ = SE->getSCEV(GEPList[J]);
8709           if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) {
8710             Candidates.remove(GEPI);
8711             Candidates.remove(GEPJ);
8712           } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) {
8713             Candidates.remove(GEPJ);
8714           }
8715         }
8716       }
8717 
8718       // We break out of the above computation as soon as we know there are
8719       // fewer than two candidates remaining.
8720       if (Candidates.size() < 2)
8721         continue;
8722 
8723       // Add the single, non-constant index of each candidate to the bundle. We
8724       // ensured the indices met these constraints when we originally collected
8725       // the getelementptrs.
8726       SmallVector<Value *, 16> Bundle(Candidates.size());
8727       auto BundleIndex = 0u;
8728       for (auto *V : Candidates) {
8729         auto *GEP = cast<GetElementPtrInst>(V);
8730         auto *GEPIdx = GEP->idx_begin()->get();
8731         assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx));
8732         Bundle[BundleIndex++] = GEPIdx;
8733       }
8734 
8735       // Try and vectorize the indices. We are currently only interested in
8736       // gather-like cases of the form:
8737       //
8738       // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ...
8739       //
8740       // where the loads of "a", the loads of "b", and the subtractions can be
8741       // performed in parallel. It's likely that detecting this pattern in a
8742       // bottom-up phase will be simpler and less costly than building a
8743       // full-blown top-down phase beginning at the consecutive loads.
8744       Changed |= tryToVectorizeList(Bundle, R);
8745     }
8746   }
8747   return Changed;
8748 }
8749 
8750 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) {
8751   bool Changed = false;
8752   // Sort by type, base pointers and values operand. Value operands must be
8753   // compatible (have the same opcode, same parent), otherwise it is
8754   // definitely not profitable to try to vectorize them.
8755   auto &&StoreSorter = [this](StoreInst *V, StoreInst *V2) {
8756     if (V->getPointerOperandType()->getTypeID() <
8757         V2->getPointerOperandType()->getTypeID())
8758       return true;
8759     if (V->getPointerOperandType()->getTypeID() >
8760         V2->getPointerOperandType()->getTypeID())
8761       return false;
8762     // UndefValues are compatible with all other values.
8763     if (isa<UndefValue>(V->getValueOperand()) ||
8764         isa<UndefValue>(V2->getValueOperand()))
8765       return false;
8766     if (auto *I1 = dyn_cast<Instruction>(V->getValueOperand()))
8767       if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) {
8768         DomTreeNodeBase<llvm::BasicBlock> *NodeI1 =
8769             DT->getNode(I1->getParent());
8770         DomTreeNodeBase<llvm::BasicBlock> *NodeI2 =
8771             DT->getNode(I2->getParent());
8772         assert(NodeI1 && "Should only process reachable instructions");
8773         assert(NodeI1 && "Should only process reachable instructions");
8774         assert((NodeI1 == NodeI2) ==
8775                    (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) &&
8776                "Different nodes should have different DFS numbers");
8777         if (NodeI1 != NodeI2)
8778           return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn();
8779         InstructionsState S = getSameOpcode({I1, I2});
8780         if (S.getOpcode())
8781           return false;
8782         return I1->getOpcode() < I2->getOpcode();
8783       }
8784     if (isa<Constant>(V->getValueOperand()) &&
8785         isa<Constant>(V2->getValueOperand()))
8786       return false;
8787     return V->getValueOperand()->getValueID() <
8788            V2->getValueOperand()->getValueID();
8789   };
8790 
8791   auto &&AreCompatibleStores = [](StoreInst *V1, StoreInst *V2) {
8792     if (V1 == V2)
8793       return true;
8794     if (V1->getPointerOperandType() != V2->getPointerOperandType())
8795       return false;
8796     // Undefs are compatible with any other value.
8797     if (isa<UndefValue>(V1->getValueOperand()) ||
8798         isa<UndefValue>(V2->getValueOperand()))
8799       return true;
8800     if (auto *I1 = dyn_cast<Instruction>(V1->getValueOperand()))
8801       if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) {
8802         if (I1->getParent() != I2->getParent())
8803           return false;
8804         InstructionsState S = getSameOpcode({I1, I2});
8805         return S.getOpcode() > 0;
8806       }
8807     if (isa<Constant>(V1->getValueOperand()) &&
8808         isa<Constant>(V2->getValueOperand()))
8809       return true;
8810     return V1->getValueOperand()->getValueID() ==
8811            V2->getValueOperand()->getValueID();
8812   };
8813 
8814   // Attempt to sort and vectorize each of the store-groups.
8815   for (auto &Pair : Stores) {
8816     if (Pair.second.size() < 2)
8817       continue;
8818 
8819     LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length "
8820                       << Pair.second.size() << ".\n");
8821 
8822     stable_sort(Pair.second, StoreSorter);
8823 
8824     // Try to vectorize elements based on their compatibility.
8825     for (ArrayRef<StoreInst *>::iterator IncIt = Pair.second.begin(),
8826                                          E = Pair.second.end();
8827          IncIt != E;) {
8828 
8829       // Look for the next elements with the same type.
8830       ArrayRef<StoreInst *>::iterator SameTypeIt = IncIt;
8831       Type *EltTy = (*IncIt)->getPointerOperand()->getType();
8832 
8833       while (SameTypeIt != E && AreCompatibleStores(*SameTypeIt, *IncIt))
8834         ++SameTypeIt;
8835 
8836       // Try to vectorize them.
8837       unsigned NumElts = (SameTypeIt - IncIt);
8838       LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at stores ("
8839                         << NumElts << ")\n");
8840       if (NumElts > 1 && !EltTy->getPointerElementType()->isVectorTy() &&
8841           vectorizeStores(makeArrayRef(IncIt, NumElts), R)) {
8842         // Success start over because instructions might have been changed.
8843         Changed = true;
8844       }
8845 
8846       // Start over at the next instruction of a different type (or the end).
8847       IncIt = SameTypeIt;
8848     }
8849   }
8850   return Changed;
8851 }
8852 
8853 char SLPVectorizer::ID = 0;
8854 
8855 static const char lv_name[] = "SLP Vectorizer";
8856 
8857 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false)
8858 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
8859 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
8860 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
8861 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
8862 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
8863 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
8864 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
8865 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
8866 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false)
8867 
8868 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); }
8869