1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive
10 // stores that can be put together into vector-stores. Next, it attempts to
11 // construct vectorizable tree using the use-def chains. If a profitable tree
12 // was found, the SLP vectorizer performs vectorization on the tree.
13 //
14 // The pass is inspired by the work described in the paper:
15 //  "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h"
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/DenseSet.h"
23 #include "llvm/ADT/MapVector.h"
24 #include "llvm/ADT/None.h"
25 #include "llvm/ADT/Optional.h"
26 #include "llvm/ADT/PostOrderIterator.h"
27 #include "llvm/ADT/STLExtras.h"
28 #include "llvm/ADT/SetVector.h"
29 #include "llvm/ADT/SmallBitVector.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallSet.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/Statistic.h"
34 #include "llvm/ADT/iterator.h"
35 #include "llvm/ADT/iterator_range.h"
36 #include "llvm/Analysis/AliasAnalysis.h"
37 #include "llvm/Analysis/CodeMetrics.h"
38 #include "llvm/Analysis/DemandedBits.h"
39 #include "llvm/Analysis/GlobalsModRef.h"
40 #include "llvm/Analysis/LoopAccessAnalysis.h"
41 #include "llvm/Analysis/LoopInfo.h"
42 #include "llvm/Analysis/MemoryLocation.h"
43 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
44 #include "llvm/Analysis/ScalarEvolution.h"
45 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
46 #include "llvm/Analysis/TargetLibraryInfo.h"
47 #include "llvm/Analysis/TargetTransformInfo.h"
48 #include "llvm/Analysis/ValueTracking.h"
49 #include "llvm/Analysis/VectorUtils.h"
50 #include "llvm/IR/Attributes.h"
51 #include "llvm/IR/BasicBlock.h"
52 #include "llvm/IR/Constant.h"
53 #include "llvm/IR/Constants.h"
54 #include "llvm/IR/DataLayout.h"
55 #include "llvm/IR/DebugLoc.h"
56 #include "llvm/IR/DerivedTypes.h"
57 #include "llvm/IR/Dominators.h"
58 #include "llvm/IR/Function.h"
59 #include "llvm/IR/IRBuilder.h"
60 #include "llvm/IR/InstrTypes.h"
61 #include "llvm/IR/Instruction.h"
62 #include "llvm/IR/Instructions.h"
63 #include "llvm/IR/IntrinsicInst.h"
64 #include "llvm/IR/Intrinsics.h"
65 #include "llvm/IR/Module.h"
66 #include "llvm/IR/NoFolder.h"
67 #include "llvm/IR/Operator.h"
68 #include "llvm/IR/PassManager.h"
69 #include "llvm/IR/PatternMatch.h"
70 #include "llvm/IR/Type.h"
71 #include "llvm/IR/Use.h"
72 #include "llvm/IR/User.h"
73 #include "llvm/IR/Value.h"
74 #include "llvm/IR/ValueHandle.h"
75 #include "llvm/IR/Verifier.h"
76 #include "llvm/InitializePasses.h"
77 #include "llvm/Pass.h"
78 #include "llvm/Support/Casting.h"
79 #include "llvm/Support/CommandLine.h"
80 #include "llvm/Support/Compiler.h"
81 #include "llvm/Support/DOTGraphTraits.h"
82 #include "llvm/Support/Debug.h"
83 #include "llvm/Support/ErrorHandling.h"
84 #include "llvm/Support/GraphWriter.h"
85 #include "llvm/Support/KnownBits.h"
86 #include "llvm/Support/MathExtras.h"
87 #include "llvm/Support/raw_ostream.h"
88 #include "llvm/Transforms/Utils/LoopUtils.h"
89 #include "llvm/Transforms/Vectorize.h"
90 #include <algorithm>
91 #include <cassert>
92 #include <cstdint>
93 #include <iterator>
94 #include <memory>
95 #include <set>
96 #include <string>
97 #include <tuple>
98 #include <utility>
99 #include <vector>
100 
101 using namespace llvm;
102 using namespace llvm::PatternMatch;
103 using namespace slpvectorizer;
104 
105 #define SV_NAME "slp-vectorizer"
106 #define DEBUG_TYPE "SLP"
107 
108 STATISTIC(NumVectorInstructions, "Number of vector instructions generated");
109 
110 cl::opt<bool>
111     llvm::RunSLPVectorization("vectorize-slp", cl::init(false), cl::Hidden,
112                               cl::desc("Run the SLP vectorization passes"));
113 
114 static cl::opt<int>
115     SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
116                      cl::desc("Only vectorize if you gain more than this "
117                               "number "));
118 
119 static cl::opt<bool>
120 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden,
121                    cl::desc("Attempt to vectorize horizontal reductions"));
122 
123 static cl::opt<bool> ShouldStartVectorizeHorAtStore(
124     "slp-vectorize-hor-store", cl::init(false), cl::Hidden,
125     cl::desc(
126         "Attempt to vectorize horizontal reductions feeding into a store"));
127 
128 static cl::opt<int>
129 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden,
130     cl::desc("Attempt to vectorize for this register size in bits"));
131 
132 static cl::opt<int>
133 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden,
134     cl::desc("Maximum depth of the lookup for consecutive stores."));
135 
136 /// Limits the size of scheduling regions in a block.
137 /// It avoid long compile times for _very_ large blocks where vector
138 /// instructions are spread over a wide range.
139 /// This limit is way higher than needed by real-world functions.
140 static cl::opt<int>
141 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden,
142     cl::desc("Limit the size of the SLP scheduling region per block"));
143 
144 static cl::opt<int> MinVectorRegSizeOption(
145     "slp-min-reg-size", cl::init(128), cl::Hidden,
146     cl::desc("Attempt to vectorize for this register size in bits"));
147 
148 static cl::opt<unsigned> RecursionMaxDepth(
149     "slp-recursion-max-depth", cl::init(12), cl::Hidden,
150     cl::desc("Limit the recursion depth when building a vectorizable tree"));
151 
152 static cl::opt<unsigned> MinTreeSize(
153     "slp-min-tree-size", cl::init(3), cl::Hidden,
154     cl::desc("Only vectorize small trees if they are fully vectorizable"));
155 
156 // The maximum depth that the look-ahead score heuristic will explore.
157 // The higher this value, the higher the compilation time overhead.
158 static cl::opt<int> LookAheadMaxDepth(
159     "slp-max-look-ahead-depth", cl::init(2), cl::Hidden,
160     cl::desc("The maximum look-ahead depth for operand reordering scores"));
161 
162 // The Look-ahead heuristic goes through the users of the bundle to calculate
163 // the users cost in getExternalUsesCost(). To avoid compilation time increase
164 // we limit the number of users visited to this value.
165 static cl::opt<unsigned> LookAheadUsersBudget(
166     "slp-look-ahead-users-budget", cl::init(2), cl::Hidden,
167     cl::desc("The maximum number of users to visit while visiting the "
168              "predecessors. This prevents compilation time increase."));
169 
170 static cl::opt<bool>
171     ViewSLPTree("view-slp-tree", cl::Hidden,
172                 cl::desc("Display the SLP trees with Graphviz"));
173 
174 // Limit the number of alias checks. The limit is chosen so that
175 // it has no negative effect on the llvm benchmarks.
176 static const unsigned AliasedCheckLimit = 10;
177 
178 // Another limit for the alias checks: The maximum distance between load/store
179 // instructions where alias checks are done.
180 // This limit is useful for very large basic blocks.
181 static const unsigned MaxMemDepDistance = 160;
182 
183 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling
184 /// regions to be handled.
185 static const int MinScheduleRegionSize = 16;
186 
187 /// Predicate for the element types that the SLP vectorizer supports.
188 ///
189 /// The most important thing to filter here are types which are invalid in LLVM
190 /// vectors. We also filter target specific types which have absolutely no
191 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just
192 /// avoids spending time checking the cost model and realizing that they will
193 /// be inevitably scalarized.
194 static bool isValidElementType(Type *Ty) {
195   return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() &&
196          !Ty->isPPC_FP128Ty();
197 }
198 
199 /// \returns true if all of the instructions in \p VL are in the same block or
200 /// false otherwise.
201 static bool allSameBlock(ArrayRef<Value *> VL) {
202   Instruction *I0 = dyn_cast<Instruction>(VL[0]);
203   if (!I0)
204     return false;
205   BasicBlock *BB = I0->getParent();
206   for (int i = 1, e = VL.size(); i < e; i++) {
207     Instruction *I = dyn_cast<Instruction>(VL[i]);
208     if (!I)
209       return false;
210 
211     if (BB != I->getParent())
212       return false;
213   }
214   return true;
215 }
216 
217 /// \returns True if all of the values in \p VL are constants (but not
218 /// globals/constant expressions).
219 static bool allConstant(ArrayRef<Value *> VL) {
220   // Constant expressions and globals can't be vectorized like normal integer/FP
221   // constants.
222   for (Value *i : VL)
223     if (!isa<Constant>(i) || isa<ConstantExpr>(i) || isa<GlobalValue>(i))
224       return false;
225   return true;
226 }
227 
228 /// \returns True if all of the values in \p VL are identical.
229 static bool isSplat(ArrayRef<Value *> VL) {
230   for (unsigned i = 1, e = VL.size(); i < e; ++i)
231     if (VL[i] != VL[0])
232       return false;
233   return true;
234 }
235 
236 /// \returns True if \p I is commutative, handles CmpInst as well as Instruction.
237 static bool isCommutative(Instruction *I) {
238   if (auto *IC = dyn_cast<CmpInst>(I))
239     return IC->isCommutative();
240   return I->isCommutative();
241 }
242 
243 /// Checks if the vector of instructions can be represented as a shuffle, like:
244 /// %x0 = extractelement <4 x i8> %x, i32 0
245 /// %x3 = extractelement <4 x i8> %x, i32 3
246 /// %y1 = extractelement <4 x i8> %y, i32 1
247 /// %y2 = extractelement <4 x i8> %y, i32 2
248 /// %x0x0 = mul i8 %x0, %x0
249 /// %x3x3 = mul i8 %x3, %x3
250 /// %y1y1 = mul i8 %y1, %y1
251 /// %y2y2 = mul i8 %y2, %y2
252 /// %ins1 = insertelement <4 x i8> undef, i8 %x0x0, i32 0
253 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1
254 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2
255 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3
256 /// ret <4 x i8> %ins4
257 /// can be transformed into:
258 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5,
259 ///                                                         i32 6>
260 /// %2 = mul <4 x i8> %1, %1
261 /// ret <4 x i8> %2
262 /// We convert this initially to something like:
263 /// %x0 = extractelement <4 x i8> %x, i32 0
264 /// %x3 = extractelement <4 x i8> %x, i32 3
265 /// %y1 = extractelement <4 x i8> %y, i32 1
266 /// %y2 = extractelement <4 x i8> %y, i32 2
267 /// %1 = insertelement <4 x i8> undef, i8 %x0, i32 0
268 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1
269 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2
270 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3
271 /// %5 = mul <4 x i8> %4, %4
272 /// %6 = extractelement <4 x i8> %5, i32 0
273 /// %ins1 = insertelement <4 x i8> undef, i8 %6, i32 0
274 /// %7 = extractelement <4 x i8> %5, i32 1
275 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1
276 /// %8 = extractelement <4 x i8> %5, i32 2
277 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2
278 /// %9 = extractelement <4 x i8> %5, i32 3
279 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3
280 /// ret <4 x i8> %ins4
281 /// InstCombiner transforms this into a shuffle and vector mul
282 /// TODO: Can we split off and reuse the shuffle mask detection from
283 /// TargetTransformInfo::getInstructionThroughput?
284 static Optional<TargetTransformInfo::ShuffleKind>
285 isShuffle(ArrayRef<Value *> VL) {
286   auto *EI0 = cast<ExtractElementInst>(VL[0]);
287   unsigned Size = EI0->getVectorOperandType()->getVectorNumElements();
288   Value *Vec1 = nullptr;
289   Value *Vec2 = nullptr;
290   enum ShuffleMode { Unknown, Select, Permute };
291   ShuffleMode CommonShuffleMode = Unknown;
292   for (unsigned I = 0, E = VL.size(); I < E; ++I) {
293     auto *EI = cast<ExtractElementInst>(VL[I]);
294     auto *Vec = EI->getVectorOperand();
295     // All vector operands must have the same number of vector elements.
296     if (Vec->getType()->getVectorNumElements() != Size)
297       return None;
298     auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand());
299     if (!Idx)
300       return None;
301     // Undefined behavior if Idx is negative or >= Size.
302     if (Idx->getValue().uge(Size))
303       continue;
304     unsigned IntIdx = Idx->getValue().getZExtValue();
305     // We can extractelement from undef vector.
306     if (isa<UndefValue>(Vec))
307       continue;
308     // For correct shuffling we have to have at most 2 different vector operands
309     // in all extractelement instructions.
310     if (!Vec1 || Vec1 == Vec)
311       Vec1 = Vec;
312     else if (!Vec2 || Vec2 == Vec)
313       Vec2 = Vec;
314     else
315       return None;
316     if (CommonShuffleMode == Permute)
317       continue;
318     // If the extract index is not the same as the operation number, it is a
319     // permutation.
320     if (IntIdx != I) {
321       CommonShuffleMode = Permute;
322       continue;
323     }
324     CommonShuffleMode = Select;
325   }
326   // If we're not crossing lanes in different vectors, consider it as blending.
327   if (CommonShuffleMode == Select && Vec2)
328     return TargetTransformInfo::SK_Select;
329   // If Vec2 was never used, we have a permutation of a single vector, otherwise
330   // we have permutation of 2 vectors.
331   return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc
332               : TargetTransformInfo::SK_PermuteSingleSrc;
333 }
334 
335 namespace {
336 
337 /// Main data required for vectorization of instructions.
338 struct InstructionsState {
339   /// The very first instruction in the list with the main opcode.
340   Value *OpValue = nullptr;
341 
342   /// The main/alternate instruction.
343   Instruction *MainOp = nullptr;
344   Instruction *AltOp = nullptr;
345 
346   /// The main/alternate opcodes for the list of instructions.
347   unsigned getOpcode() const {
348     return MainOp ? MainOp->getOpcode() : 0;
349   }
350 
351   unsigned getAltOpcode() const {
352     return AltOp ? AltOp->getOpcode() : 0;
353   }
354 
355   /// Some of the instructions in the list have alternate opcodes.
356   bool isAltShuffle() const { return getOpcode() != getAltOpcode(); }
357 
358   bool isOpcodeOrAlt(Instruction *I) const {
359     unsigned CheckedOpcode = I->getOpcode();
360     return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode;
361   }
362 
363   InstructionsState() = delete;
364   InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp)
365       : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {}
366 };
367 
368 } // end anonymous namespace
369 
370 /// Chooses the correct key for scheduling data. If \p Op has the same (or
371 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p
372 /// OpValue.
373 static Value *isOneOf(const InstructionsState &S, Value *Op) {
374   auto *I = dyn_cast<Instruction>(Op);
375   if (I && S.isOpcodeOrAlt(I))
376     return Op;
377   return S.OpValue;
378 }
379 
380 /// \returns true if \p Opcode is allowed as part of of the main/alternate
381 /// instruction for SLP vectorization.
382 ///
383 /// Example of unsupported opcode is SDIV that can potentially cause UB if the
384 /// "shuffled out" lane would result in division by zero.
385 static bool isValidForAlternation(unsigned Opcode) {
386   if (Instruction::isIntDivRem(Opcode))
387     return false;
388 
389   return true;
390 }
391 
392 /// \returns analysis of the Instructions in \p VL described in
393 /// InstructionsState, the Opcode that we suppose the whole list
394 /// could be vectorized even if its structure is diverse.
395 static InstructionsState getSameOpcode(ArrayRef<Value *> VL,
396                                        unsigned BaseIndex = 0) {
397   // Make sure these are all Instructions.
398   if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); }))
399     return InstructionsState(VL[BaseIndex], nullptr, nullptr);
400 
401   bool IsCastOp = isa<CastInst>(VL[BaseIndex]);
402   bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]);
403   unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode();
404   unsigned AltOpcode = Opcode;
405   unsigned AltIndex = BaseIndex;
406 
407   // Check for one alternate opcode from another BinaryOperator.
408   // TODO - generalize to support all operators (types, calls etc.).
409   for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) {
410     unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode();
411     if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) {
412       if (InstOpcode == Opcode || InstOpcode == AltOpcode)
413         continue;
414       if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) &&
415           isValidForAlternation(Opcode)) {
416         AltOpcode = InstOpcode;
417         AltIndex = Cnt;
418         continue;
419       }
420     } else if (IsCastOp && isa<CastInst>(VL[Cnt])) {
421       Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType();
422       Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType();
423       if (Ty0 == Ty1) {
424         if (InstOpcode == Opcode || InstOpcode == AltOpcode)
425           continue;
426         if (Opcode == AltOpcode) {
427           assert(isValidForAlternation(Opcode) &&
428                  isValidForAlternation(InstOpcode) &&
429                  "Cast isn't safe for alternation, logic needs to be updated!");
430           AltOpcode = InstOpcode;
431           AltIndex = Cnt;
432           continue;
433         }
434       }
435     } else if (InstOpcode == Opcode || InstOpcode == AltOpcode)
436       continue;
437     return InstructionsState(VL[BaseIndex], nullptr, nullptr);
438   }
439 
440   return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]),
441                            cast<Instruction>(VL[AltIndex]));
442 }
443 
444 /// \returns true if all of the values in \p VL have the same type or false
445 /// otherwise.
446 static bool allSameType(ArrayRef<Value *> VL) {
447   Type *Ty = VL[0]->getType();
448   for (int i = 1, e = VL.size(); i < e; i++)
449     if (VL[i]->getType() != Ty)
450       return false;
451 
452   return true;
453 }
454 
455 /// \returns True if Extract{Value,Element} instruction extracts element Idx.
456 static Optional<unsigned> getExtractIndex(Instruction *E) {
457   unsigned Opcode = E->getOpcode();
458   assert((Opcode == Instruction::ExtractElement ||
459           Opcode == Instruction::ExtractValue) &&
460          "Expected extractelement or extractvalue instruction.");
461   if (Opcode == Instruction::ExtractElement) {
462     auto *CI = dyn_cast<ConstantInt>(E->getOperand(1));
463     if (!CI)
464       return None;
465     return CI->getZExtValue();
466   }
467   ExtractValueInst *EI = cast<ExtractValueInst>(E);
468   if (EI->getNumIndices() != 1)
469     return None;
470   return *EI->idx_begin();
471 }
472 
473 /// \returns True if in-tree use also needs extract. This refers to
474 /// possible scalar operand in vectorized instruction.
475 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst,
476                                     TargetLibraryInfo *TLI) {
477   unsigned Opcode = UserInst->getOpcode();
478   switch (Opcode) {
479   case Instruction::Load: {
480     LoadInst *LI = cast<LoadInst>(UserInst);
481     return (LI->getPointerOperand() == Scalar);
482   }
483   case Instruction::Store: {
484     StoreInst *SI = cast<StoreInst>(UserInst);
485     return (SI->getPointerOperand() == Scalar);
486   }
487   case Instruction::Call: {
488     CallInst *CI = cast<CallInst>(UserInst);
489     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
490     for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
491       if (hasVectorInstrinsicScalarOpd(ID, i))
492         return (CI->getArgOperand(i) == Scalar);
493     }
494     LLVM_FALLTHROUGH;
495   }
496   default:
497     return false;
498   }
499 }
500 
501 /// \returns the AA location that is being access by the instruction.
502 static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) {
503   if (StoreInst *SI = dyn_cast<StoreInst>(I))
504     return MemoryLocation::get(SI);
505   if (LoadInst *LI = dyn_cast<LoadInst>(I))
506     return MemoryLocation::get(LI);
507   return MemoryLocation();
508 }
509 
510 /// \returns True if the instruction is not a volatile or atomic load/store.
511 static bool isSimple(Instruction *I) {
512   if (LoadInst *LI = dyn_cast<LoadInst>(I))
513     return LI->isSimple();
514   if (StoreInst *SI = dyn_cast<StoreInst>(I))
515     return SI->isSimple();
516   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
517     return !MI->isVolatile();
518   return true;
519 }
520 
521 namespace llvm {
522 
523 namespace slpvectorizer {
524 
525 /// Bottom Up SLP Vectorizer.
526 class BoUpSLP {
527   struct TreeEntry;
528   struct ScheduleData;
529 
530 public:
531   using ValueList = SmallVector<Value *, 8>;
532   using InstrList = SmallVector<Instruction *, 16>;
533   using ValueSet = SmallPtrSet<Value *, 16>;
534   using StoreList = SmallVector<StoreInst *, 8>;
535   using ExtraValueToDebugLocsMap =
536       MapVector<Value *, SmallVector<Instruction *, 2>>;
537 
538   BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti,
539           TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li,
540           DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB,
541           const DataLayout *DL, OptimizationRemarkEmitter *ORE)
542       : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC),
543         DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) {
544     CodeMetrics::collectEphemeralValues(F, AC, EphValues);
545     // Use the vector register size specified by the target unless overridden
546     // by a command-line option.
547     // TODO: It would be better to limit the vectorization factor based on
548     //       data type rather than just register size. For example, x86 AVX has
549     //       256-bit registers, but it does not support integer operations
550     //       at that width (that requires AVX2).
551     if (MaxVectorRegSizeOption.getNumOccurrences())
552       MaxVecRegSize = MaxVectorRegSizeOption;
553     else
554       MaxVecRegSize = TTI->getRegisterBitWidth(true);
555 
556     if (MinVectorRegSizeOption.getNumOccurrences())
557       MinVecRegSize = MinVectorRegSizeOption;
558     else
559       MinVecRegSize = TTI->getMinVectorRegisterBitWidth();
560   }
561 
562   /// Vectorize the tree that starts with the elements in \p VL.
563   /// Returns the vectorized root.
564   Value *vectorizeTree();
565 
566   /// Vectorize the tree but with the list of externally used values \p
567   /// ExternallyUsedValues. Values in this MapVector can be replaced but the
568   /// generated extractvalue instructions.
569   Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues);
570 
571   /// \returns the cost incurred by unwanted spills and fills, caused by
572   /// holding live values over call sites.
573   int getSpillCost() const;
574 
575   /// \returns the vectorization cost of the subtree that starts at \p VL.
576   /// A negative number means that this is profitable.
577   int getTreeCost();
578 
579   /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
580   /// the purpose of scheduling and extraction in the \p UserIgnoreLst.
581   void buildTree(ArrayRef<Value *> Roots,
582                  ArrayRef<Value *> UserIgnoreLst = None);
583 
584   /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
585   /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking
586   /// into account (and updating it, if required) list of externally used
587   /// values stored in \p ExternallyUsedValues.
588   void buildTree(ArrayRef<Value *> Roots,
589                  ExtraValueToDebugLocsMap &ExternallyUsedValues,
590                  ArrayRef<Value *> UserIgnoreLst = None);
591 
592   /// Clear the internal data structures that are created by 'buildTree'.
593   void deleteTree() {
594     VectorizableTree.clear();
595     ScalarToTreeEntry.clear();
596     MustGather.clear();
597     ExternalUses.clear();
598     NumOpsWantToKeepOrder.clear();
599     NumOpsWantToKeepOriginalOrder = 0;
600     for (auto &Iter : BlocksSchedules) {
601       BlockScheduling *BS = Iter.second.get();
602       BS->clear();
603     }
604     MinBWs.clear();
605   }
606 
607   unsigned getTreeSize() const { return VectorizableTree.size(); }
608 
609   /// Perform LICM and CSE on the newly generated gather sequences.
610   void optimizeGatherSequence();
611 
612   /// \returns The best order of instructions for vectorization.
613   Optional<ArrayRef<unsigned>> bestOrder() const {
614     auto I = std::max_element(
615         NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(),
616         [](const decltype(NumOpsWantToKeepOrder)::value_type &D1,
617            const decltype(NumOpsWantToKeepOrder)::value_type &D2) {
618           return D1.second < D2.second;
619         });
620     if (I == NumOpsWantToKeepOrder.end() ||
621         I->getSecond() <= NumOpsWantToKeepOriginalOrder)
622       return None;
623 
624     return makeArrayRef(I->getFirst());
625   }
626 
627   /// \return The vector element size in bits to use when vectorizing the
628   /// expression tree ending at \p V. If V is a store, the size is the width of
629   /// the stored value. Otherwise, the size is the width of the largest loaded
630   /// value reaching V. This method is used by the vectorizer to calculate
631   /// vectorization factors.
632   unsigned getVectorElementSize(Value *V) const;
633 
634   /// Compute the minimum type sizes required to represent the entries in a
635   /// vectorizable tree.
636   void computeMinimumValueSizes();
637 
638   // \returns maximum vector register size as set by TTI or overridden by cl::opt.
639   unsigned getMaxVecRegSize() const {
640     return MaxVecRegSize;
641   }
642 
643   // \returns minimum vector register size as set by cl::opt.
644   unsigned getMinVecRegSize() const {
645     return MinVecRegSize;
646   }
647 
648   /// Check if homogeneous aggregate is isomorphic to some VectorType.
649   /// Accepts homogeneous multidimensional aggregate of scalars/vectors like
650   /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> },
651   /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on.
652   ///
653   /// \returns number of elements in vector if isomorphism exists, 0 otherwise.
654   unsigned canMapToVector(Type *T, const DataLayout &DL) const;
655 
656   /// \returns True if the VectorizableTree is both tiny and not fully
657   /// vectorizable. We do not vectorize such trees.
658   bool isTreeTinyAndNotFullyVectorizable() const;
659 
660   /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values
661   /// can be load combined in the backend. Load combining may not be allowed in
662   /// the IR optimizer, so we do not want to alter the pattern. For example,
663   /// partially transforming a scalar bswap() pattern into vector code is
664   /// effectively impossible for the backend to undo.
665   /// TODO: If load combining is allowed in the IR optimizer, this analysis
666   ///       may not be necessary.
667   bool isLoadCombineReductionCandidate(unsigned ReductionOpcode) const;
668 
669   OptimizationRemarkEmitter *getORE() { return ORE; }
670 
671   /// This structure holds any data we need about the edges being traversed
672   /// during buildTree_rec(). We keep track of:
673   /// (i) the user TreeEntry index, and
674   /// (ii) the index of the edge.
675   struct EdgeInfo {
676     EdgeInfo() = default;
677     EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx)
678         : UserTE(UserTE), EdgeIdx(EdgeIdx) {}
679     /// The user TreeEntry.
680     TreeEntry *UserTE = nullptr;
681     /// The operand index of the use.
682     unsigned EdgeIdx = UINT_MAX;
683 #ifndef NDEBUG
684     friend inline raw_ostream &operator<<(raw_ostream &OS,
685                                           const BoUpSLP::EdgeInfo &EI) {
686       EI.dump(OS);
687       return OS;
688     }
689     /// Debug print.
690     void dump(raw_ostream &OS) const {
691       OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null")
692          << " EdgeIdx:" << EdgeIdx << "}";
693     }
694     LLVM_DUMP_METHOD void dump() const { dump(dbgs()); }
695 #endif
696   };
697 
698   /// A helper data structure to hold the operands of a vector of instructions.
699   /// This supports a fixed vector length for all operand vectors.
700   class VLOperands {
701     /// For each operand we need (i) the value, and (ii) the opcode that it
702     /// would be attached to if the expression was in a left-linearized form.
703     /// This is required to avoid illegal operand reordering.
704     /// For example:
705     /// \verbatim
706     ///                         0 Op1
707     ///                         |/
708     /// Op1 Op2   Linearized    + Op2
709     ///   \ /     ---------->   |/
710     ///    -                    -
711     ///
712     /// Op1 - Op2            (0 + Op1) - Op2
713     /// \endverbatim
714     ///
715     /// Value Op1 is attached to a '+' operation, and Op2 to a '-'.
716     ///
717     /// Another way to think of this is to track all the operations across the
718     /// path from the operand all the way to the root of the tree and to
719     /// calculate the operation that corresponds to this path. For example, the
720     /// path from Op2 to the root crosses the RHS of the '-', therefore the
721     /// corresponding operation is a '-' (which matches the one in the
722     /// linearized tree, as shown above).
723     ///
724     /// For lack of a better term, we refer to this operation as Accumulated
725     /// Path Operation (APO).
726     struct OperandData {
727       OperandData() = default;
728       OperandData(Value *V, bool APO, bool IsUsed)
729           : V(V), APO(APO), IsUsed(IsUsed) {}
730       /// The operand value.
731       Value *V = nullptr;
732       /// TreeEntries only allow a single opcode, or an alternate sequence of
733       /// them (e.g, +, -). Therefore, we can safely use a boolean value for the
734       /// APO. It is set to 'true' if 'V' is attached to an inverse operation
735       /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise
736       /// (e.g., Add/Mul)
737       bool APO = false;
738       /// Helper data for the reordering function.
739       bool IsUsed = false;
740     };
741 
742     /// During operand reordering, we are trying to select the operand at lane
743     /// that matches best with the operand at the neighboring lane. Our
744     /// selection is based on the type of value we are looking for. For example,
745     /// if the neighboring lane has a load, we need to look for a load that is
746     /// accessing a consecutive address. These strategies are summarized in the
747     /// 'ReorderingMode' enumerator.
748     enum class ReorderingMode {
749       Load,     ///< Matching loads to consecutive memory addresses
750       Opcode,   ///< Matching instructions based on opcode (same or alternate)
751       Constant, ///< Matching constants
752       Splat,    ///< Matching the same instruction multiple times (broadcast)
753       Failed,   ///< We failed to create a vectorizable group
754     };
755 
756     using OperandDataVec = SmallVector<OperandData, 2>;
757 
758     /// A vector of operand vectors.
759     SmallVector<OperandDataVec, 4> OpsVec;
760 
761     const DataLayout &DL;
762     ScalarEvolution &SE;
763     const BoUpSLP &R;
764 
765     /// \returns the operand data at \p OpIdx and \p Lane.
766     OperandData &getData(unsigned OpIdx, unsigned Lane) {
767       return OpsVec[OpIdx][Lane];
768     }
769 
770     /// \returns the operand data at \p OpIdx and \p Lane. Const version.
771     const OperandData &getData(unsigned OpIdx, unsigned Lane) const {
772       return OpsVec[OpIdx][Lane];
773     }
774 
775     /// Clears the used flag for all entries.
776     void clearUsed() {
777       for (unsigned OpIdx = 0, NumOperands = getNumOperands();
778            OpIdx != NumOperands; ++OpIdx)
779         for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes;
780              ++Lane)
781           OpsVec[OpIdx][Lane].IsUsed = false;
782     }
783 
784     /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2.
785     void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) {
786       std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]);
787     }
788 
789     // The hard-coded scores listed here are not very important. When computing
790     // the scores of matching one sub-tree with another, we are basically
791     // counting the number of values that are matching. So even if all scores
792     // are set to 1, we would still get a decent matching result.
793     // However, sometimes we have to break ties. For example we may have to
794     // choose between matching loads vs matching opcodes. This is what these
795     // scores are helping us with: they provide the order of preference.
796 
797     /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]).
798     static const int ScoreConsecutiveLoads = 3;
799     /// ExtractElementInst from same vector and consecutive indexes.
800     static const int ScoreConsecutiveExtracts = 3;
801     /// Constants.
802     static const int ScoreConstants = 2;
803     /// Instructions with the same opcode.
804     static const int ScoreSameOpcode = 2;
805     /// Instructions with alt opcodes (e.g, add + sub).
806     static const int ScoreAltOpcodes = 1;
807     /// Identical instructions (a.k.a. splat or broadcast).
808     static const int ScoreSplat = 1;
809     /// Matching with an undef is preferable to failing.
810     static const int ScoreUndef = 1;
811     /// Score for failing to find a decent match.
812     static const int ScoreFail = 0;
813     /// User exteranl to the vectorized code.
814     static const int ExternalUseCost = 1;
815     /// The user is internal but in a different lane.
816     static const int UserInDiffLaneCost = ExternalUseCost;
817 
818     /// \returns the score of placing \p V1 and \p V2 in consecutive lanes.
819     static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL,
820                                ScalarEvolution &SE) {
821       auto *LI1 = dyn_cast<LoadInst>(V1);
822       auto *LI2 = dyn_cast<LoadInst>(V2);
823       if (LI1 && LI2)
824         return isConsecutiveAccess(LI1, LI2, DL, SE)
825                    ? VLOperands::ScoreConsecutiveLoads
826                    : VLOperands::ScoreFail;
827 
828       auto *C1 = dyn_cast<Constant>(V1);
829       auto *C2 = dyn_cast<Constant>(V2);
830       if (C1 && C2)
831         return VLOperands::ScoreConstants;
832 
833       // Extracts from consecutive indexes of the same vector better score as
834       // the extracts could be optimized away.
835       Value *EV;
836       ConstantInt *Ex1Idx, *Ex2Idx;
837       if (match(V1, m_ExtractElement(m_Value(EV), m_ConstantInt(Ex1Idx))) &&
838           match(V2, m_ExtractElement(m_Deferred(EV), m_ConstantInt(Ex2Idx))) &&
839           Ex1Idx->getZExtValue() + 1 == Ex2Idx->getZExtValue())
840         return VLOperands::ScoreConsecutiveExtracts;
841 
842       auto *I1 = dyn_cast<Instruction>(V1);
843       auto *I2 = dyn_cast<Instruction>(V2);
844       if (I1 && I2) {
845         if (I1 == I2)
846           return VLOperands::ScoreSplat;
847         InstructionsState S = getSameOpcode({I1, I2});
848         // Note: Only consider instructions with <= 2 operands to avoid
849         // complexity explosion.
850         if (S.getOpcode() && S.MainOp->getNumOperands() <= 2)
851           return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes
852                                   : VLOperands::ScoreSameOpcode;
853       }
854 
855       if (isa<UndefValue>(V2))
856         return VLOperands::ScoreUndef;
857 
858       return VLOperands::ScoreFail;
859     }
860 
861     /// Holds the values and their lane that are taking part in the look-ahead
862     /// score calculation. This is used in the external uses cost calculation.
863     SmallDenseMap<Value *, int> InLookAheadValues;
864 
865     /// \Returns the additinal cost due to uses of \p LHS and \p RHS that are
866     /// either external to the vectorized code, or require shuffling.
867     int getExternalUsesCost(const std::pair<Value *, int> &LHS,
868                             const std::pair<Value *, int> &RHS) {
869       int Cost = 0;
870       SmallVector<std::pair<Value *, int>, 2> Values = {LHS, RHS};
871       for (int Idx = 0, IdxE = Values.size(); Idx != IdxE; ++Idx) {
872         Value *V = Values[Idx].first;
873         // Calculate the absolute lane, using the minimum relative lane of LHS
874         // and RHS as base and Idx as the offset.
875         int Ln = std::min(LHS.second, RHS.second) + Idx;
876         assert(Ln >= 0 && "Bad lane calculation");
877         unsigned UsersBudget = LookAheadUsersBudget;
878         for (User *U : V->users()) {
879           if (const TreeEntry *UserTE = R.getTreeEntry(U)) {
880             // The user is in the VectorizableTree. Check if we need to insert.
881             auto It = llvm::find(UserTE->Scalars, U);
882             assert(It != UserTE->Scalars.end() && "U is in UserTE");
883             int UserLn = std::distance(UserTE->Scalars.begin(), It);
884             assert(UserLn >= 0 && "Bad lane");
885             if (UserLn != Ln)
886               Cost += UserInDiffLaneCost;
887           } else {
888             // Check if the user is in the look-ahead code.
889             auto It2 = InLookAheadValues.find(U);
890             if (It2 != InLookAheadValues.end()) {
891               // The user is in the look-ahead code. Check the lane.
892               if (It2->second != Ln)
893                 Cost += UserInDiffLaneCost;
894             } else {
895               // The user is neither in SLP tree nor in the look-ahead code.
896               Cost += ExternalUseCost;
897             }
898           }
899           // Limit the number of visited uses to cap compilation time.
900           if (--UsersBudget == 0)
901             break;
902         }
903       }
904       return Cost;
905     }
906 
907     /// Go through the operands of \p LHS and \p RHS recursively until \p
908     /// MaxLevel, and return the cummulative score. For example:
909     /// \verbatim
910     ///  A[0]  B[0]  A[1]  B[1]  C[0] D[0]  B[1] A[1]
911     ///     \ /         \ /         \ /        \ /
912     ///      +           +           +          +
913     ///     G1          G2          G3         G4
914     /// \endverbatim
915     /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at
916     /// each level recursively, accumulating the score. It starts from matching
917     /// the additions at level 0, then moves on to the loads (level 1). The
918     /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and
919     /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while
920     /// {A[0],C[0]} has a score of VLOperands::ScoreFail.
921     /// Please note that the order of the operands does not matter, as we
922     /// evaluate the score of all profitable combinations of operands. In
923     /// other words the score of G1 and G4 is the same as G1 and G2. This
924     /// heuristic is based on ideas described in:
925     ///   Look-ahead SLP: Auto-vectorization in the presence of commutative
926     ///   operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha,
927     ///   Luís F. W. Góes
928     int getScoreAtLevelRec(const std::pair<Value *, int> &LHS,
929                            const std::pair<Value *, int> &RHS, int CurrLevel,
930                            int MaxLevel) {
931 
932       Value *V1 = LHS.first;
933       Value *V2 = RHS.first;
934       // Get the shallow score of V1 and V2.
935       int ShallowScoreAtThisLevel =
936           std::max((int)ScoreFail, getShallowScore(V1, V2, DL, SE) -
937                                        getExternalUsesCost(LHS, RHS));
938       int Lane1 = LHS.second;
939       int Lane2 = RHS.second;
940 
941       // If reached MaxLevel,
942       //  or if V1 and V2 are not instructions,
943       //  or if they are SPLAT,
944       //  or if they are not consecutive, early return the current cost.
945       auto *I1 = dyn_cast<Instruction>(V1);
946       auto *I2 = dyn_cast<Instruction>(V2);
947       if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 ||
948           ShallowScoreAtThisLevel == VLOperands::ScoreFail ||
949           (isa<LoadInst>(I1) && isa<LoadInst>(I2) && ShallowScoreAtThisLevel))
950         return ShallowScoreAtThisLevel;
951       assert(I1 && I2 && "Should have early exited.");
952 
953       // Keep track of in-tree values for determining the external-use cost.
954       InLookAheadValues[V1] = Lane1;
955       InLookAheadValues[V2] = Lane2;
956 
957       // Contains the I2 operand indexes that got matched with I1 operands.
958       SmallSet<unsigned, 4> Op2Used;
959 
960       // Recursion towards the operands of I1 and I2. We are trying all possbile
961       // operand pairs, and keeping track of the best score.
962       for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands();
963            OpIdx1 != NumOperands1; ++OpIdx1) {
964         // Try to pair op1I with the best operand of I2.
965         int MaxTmpScore = 0;
966         unsigned MaxOpIdx2 = 0;
967         bool FoundBest = false;
968         // If I2 is commutative try all combinations.
969         unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1;
970         unsigned ToIdx = isCommutative(I2)
971                              ? I2->getNumOperands()
972                              : std::min(I2->getNumOperands(), OpIdx1 + 1);
973         assert(FromIdx <= ToIdx && "Bad index");
974         for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) {
975           // Skip operands already paired with OpIdx1.
976           if (Op2Used.count(OpIdx2))
977             continue;
978           // Recursively calculate the cost at each level
979           int TmpScore = getScoreAtLevelRec({I1->getOperand(OpIdx1), Lane1},
980                                             {I2->getOperand(OpIdx2), Lane2},
981                                             CurrLevel + 1, MaxLevel);
982           // Look for the best score.
983           if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) {
984             MaxTmpScore = TmpScore;
985             MaxOpIdx2 = OpIdx2;
986             FoundBest = true;
987           }
988         }
989         if (FoundBest) {
990           // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it.
991           Op2Used.insert(MaxOpIdx2);
992           ShallowScoreAtThisLevel += MaxTmpScore;
993         }
994       }
995       return ShallowScoreAtThisLevel;
996     }
997 
998     /// \Returns the look-ahead score, which tells us how much the sub-trees
999     /// rooted at \p LHS and \p RHS match, the more they match the higher the
1000     /// score. This helps break ties in an informed way when we cannot decide on
1001     /// the order of the operands by just considering the immediate
1002     /// predecessors.
1003     int getLookAheadScore(const std::pair<Value *, int> &LHS,
1004                           const std::pair<Value *, int> &RHS) {
1005       InLookAheadValues.clear();
1006       return getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth);
1007     }
1008 
1009     // Search all operands in Ops[*][Lane] for the one that matches best
1010     // Ops[OpIdx][LastLane] and return its opreand index.
1011     // If no good match can be found, return None.
1012     Optional<unsigned>
1013     getBestOperand(unsigned OpIdx, int Lane, int LastLane,
1014                    ArrayRef<ReorderingMode> ReorderingModes) {
1015       unsigned NumOperands = getNumOperands();
1016 
1017       // The operand of the previous lane at OpIdx.
1018       Value *OpLastLane = getData(OpIdx, LastLane).V;
1019 
1020       // Our strategy mode for OpIdx.
1021       ReorderingMode RMode = ReorderingModes[OpIdx];
1022 
1023       // The linearized opcode of the operand at OpIdx, Lane.
1024       bool OpIdxAPO = getData(OpIdx, Lane).APO;
1025 
1026       // The best operand index and its score.
1027       // Sometimes we have more than one option (e.g., Opcode and Undefs), so we
1028       // are using the score to differentiate between the two.
1029       struct BestOpData {
1030         Optional<unsigned> Idx = None;
1031         unsigned Score = 0;
1032       } BestOp;
1033 
1034       // Iterate through all unused operands and look for the best.
1035       for (unsigned Idx = 0; Idx != NumOperands; ++Idx) {
1036         // Get the operand at Idx and Lane.
1037         OperandData &OpData = getData(Idx, Lane);
1038         Value *Op = OpData.V;
1039         bool OpAPO = OpData.APO;
1040 
1041         // Skip already selected operands.
1042         if (OpData.IsUsed)
1043           continue;
1044 
1045         // Skip if we are trying to move the operand to a position with a
1046         // different opcode in the linearized tree form. This would break the
1047         // semantics.
1048         if (OpAPO != OpIdxAPO)
1049           continue;
1050 
1051         // Look for an operand that matches the current mode.
1052         switch (RMode) {
1053         case ReorderingMode::Load:
1054         case ReorderingMode::Constant:
1055         case ReorderingMode::Opcode: {
1056           bool LeftToRight = Lane > LastLane;
1057           Value *OpLeft = (LeftToRight) ? OpLastLane : Op;
1058           Value *OpRight = (LeftToRight) ? Op : OpLastLane;
1059           unsigned Score =
1060               getLookAheadScore({OpLeft, LastLane}, {OpRight, Lane});
1061           if (Score > BestOp.Score) {
1062             BestOp.Idx = Idx;
1063             BestOp.Score = Score;
1064           }
1065           break;
1066         }
1067         case ReorderingMode::Splat:
1068           if (Op == OpLastLane)
1069             BestOp.Idx = Idx;
1070           break;
1071         case ReorderingMode::Failed:
1072           return None;
1073         }
1074       }
1075 
1076       if (BestOp.Idx) {
1077         getData(BestOp.Idx.getValue(), Lane).IsUsed = true;
1078         return BestOp.Idx;
1079       }
1080       // If we could not find a good match return None.
1081       return None;
1082     }
1083 
1084     /// Helper for reorderOperandVecs. \Returns the lane that we should start
1085     /// reordering from. This is the one which has the least number of operands
1086     /// that can freely move about.
1087     unsigned getBestLaneToStartReordering() const {
1088       unsigned BestLane = 0;
1089       unsigned Min = UINT_MAX;
1090       for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes;
1091            ++Lane) {
1092         unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane);
1093         if (NumFreeOps < Min) {
1094           Min = NumFreeOps;
1095           BestLane = Lane;
1096         }
1097       }
1098       return BestLane;
1099     }
1100 
1101     /// \Returns the maximum number of operands that are allowed to be reordered
1102     /// for \p Lane. This is used as a heuristic for selecting the first lane to
1103     /// start operand reordering.
1104     unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const {
1105       unsigned CntTrue = 0;
1106       unsigned NumOperands = getNumOperands();
1107       // Operands with the same APO can be reordered. We therefore need to count
1108       // how many of them we have for each APO, like this: Cnt[APO] = x.
1109       // Since we only have two APOs, namely true and false, we can avoid using
1110       // a map. Instead we can simply count the number of operands that
1111       // correspond to one of them (in this case the 'true' APO), and calculate
1112       // the other by subtracting it from the total number of operands.
1113       for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx)
1114         if (getData(OpIdx, Lane).APO)
1115           ++CntTrue;
1116       unsigned CntFalse = NumOperands - CntTrue;
1117       return std::max(CntTrue, CntFalse);
1118     }
1119 
1120     /// Go through the instructions in VL and append their operands.
1121     void appendOperandsOfVL(ArrayRef<Value *> VL) {
1122       assert(!VL.empty() && "Bad VL");
1123       assert((empty() || VL.size() == getNumLanes()) &&
1124              "Expected same number of lanes");
1125       assert(isa<Instruction>(VL[0]) && "Expected instruction");
1126       unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands();
1127       OpsVec.resize(NumOperands);
1128       unsigned NumLanes = VL.size();
1129       for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1130         OpsVec[OpIdx].resize(NumLanes);
1131         for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1132           assert(isa<Instruction>(VL[Lane]) && "Expected instruction");
1133           // Our tree has just 3 nodes: the root and two operands.
1134           // It is therefore trivial to get the APO. We only need to check the
1135           // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or
1136           // RHS operand. The LHS operand of both add and sub is never attached
1137           // to an inversese operation in the linearized form, therefore its APO
1138           // is false. The RHS is true only if VL[Lane] is an inverse operation.
1139 
1140           // Since operand reordering is performed on groups of commutative
1141           // operations or alternating sequences (e.g., +, -), we can safely
1142           // tell the inverse operations by checking commutativity.
1143           bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane]));
1144           bool APO = (OpIdx == 0) ? false : IsInverseOperation;
1145           OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx),
1146                                  APO, false};
1147         }
1148       }
1149     }
1150 
1151     /// \returns the number of operands.
1152     unsigned getNumOperands() const { return OpsVec.size(); }
1153 
1154     /// \returns the number of lanes.
1155     unsigned getNumLanes() const { return OpsVec[0].size(); }
1156 
1157     /// \returns the operand value at \p OpIdx and \p Lane.
1158     Value *getValue(unsigned OpIdx, unsigned Lane) const {
1159       return getData(OpIdx, Lane).V;
1160     }
1161 
1162     /// \returns true if the data structure is empty.
1163     bool empty() const { return OpsVec.empty(); }
1164 
1165     /// Clears the data.
1166     void clear() { OpsVec.clear(); }
1167 
1168     /// \Returns true if there are enough operands identical to \p Op to fill
1169     /// the whole vector.
1170     /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow.
1171     bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) {
1172       bool OpAPO = getData(OpIdx, Lane).APO;
1173       for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) {
1174         if (Ln == Lane)
1175           continue;
1176         // This is set to true if we found a candidate for broadcast at Lane.
1177         bool FoundCandidate = false;
1178         for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) {
1179           OperandData &Data = getData(OpI, Ln);
1180           if (Data.APO != OpAPO || Data.IsUsed)
1181             continue;
1182           if (Data.V == Op) {
1183             FoundCandidate = true;
1184             Data.IsUsed = true;
1185             break;
1186           }
1187         }
1188         if (!FoundCandidate)
1189           return false;
1190       }
1191       return true;
1192     }
1193 
1194   public:
1195     /// Initialize with all the operands of the instruction vector \p RootVL.
1196     VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL,
1197                ScalarEvolution &SE, const BoUpSLP &R)
1198         : DL(DL), SE(SE), R(R) {
1199       // Append all the operands of RootVL.
1200       appendOperandsOfVL(RootVL);
1201     }
1202 
1203     /// \Returns a value vector with the operands across all lanes for the
1204     /// opearnd at \p OpIdx.
1205     ValueList getVL(unsigned OpIdx) const {
1206       ValueList OpVL(OpsVec[OpIdx].size());
1207       assert(OpsVec[OpIdx].size() == getNumLanes() &&
1208              "Expected same num of lanes across all operands");
1209       for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane)
1210         OpVL[Lane] = OpsVec[OpIdx][Lane].V;
1211       return OpVL;
1212     }
1213 
1214     // Performs operand reordering for 2 or more operands.
1215     // The original operands are in OrigOps[OpIdx][Lane].
1216     // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'.
1217     void reorder() {
1218       unsigned NumOperands = getNumOperands();
1219       unsigned NumLanes = getNumLanes();
1220       // Each operand has its own mode. We are using this mode to help us select
1221       // the instructions for each lane, so that they match best with the ones
1222       // we have selected so far.
1223       SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands);
1224 
1225       // This is a greedy single-pass algorithm. We are going over each lane
1226       // once and deciding on the best order right away with no back-tracking.
1227       // However, in order to increase its effectiveness, we start with the lane
1228       // that has operands that can move the least. For example, given the
1229       // following lanes:
1230       //  Lane 0 : A[0] = B[0] + C[0]   // Visited 3rd
1231       //  Lane 1 : A[1] = C[1] - B[1]   // Visited 1st
1232       //  Lane 2 : A[2] = B[2] + C[2]   // Visited 2nd
1233       //  Lane 3 : A[3] = C[3] - B[3]   // Visited 4th
1234       // we will start at Lane 1, since the operands of the subtraction cannot
1235       // be reordered. Then we will visit the rest of the lanes in a circular
1236       // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3.
1237 
1238       // Find the first lane that we will start our search from.
1239       unsigned FirstLane = getBestLaneToStartReordering();
1240 
1241       // Initialize the modes.
1242       for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1243         Value *OpLane0 = getValue(OpIdx, FirstLane);
1244         // Keep track if we have instructions with all the same opcode on one
1245         // side.
1246         if (isa<LoadInst>(OpLane0))
1247           ReorderingModes[OpIdx] = ReorderingMode::Load;
1248         else if (isa<Instruction>(OpLane0)) {
1249           // Check if OpLane0 should be broadcast.
1250           if (shouldBroadcast(OpLane0, OpIdx, FirstLane))
1251             ReorderingModes[OpIdx] = ReorderingMode::Splat;
1252           else
1253             ReorderingModes[OpIdx] = ReorderingMode::Opcode;
1254         }
1255         else if (isa<Constant>(OpLane0))
1256           ReorderingModes[OpIdx] = ReorderingMode::Constant;
1257         else if (isa<Argument>(OpLane0))
1258           // Our best hope is a Splat. It may save some cost in some cases.
1259           ReorderingModes[OpIdx] = ReorderingMode::Splat;
1260         else
1261           // NOTE: This should be unreachable.
1262           ReorderingModes[OpIdx] = ReorderingMode::Failed;
1263       }
1264 
1265       // If the initial strategy fails for any of the operand indexes, then we
1266       // perform reordering again in a second pass. This helps avoid assigning
1267       // high priority to the failed strategy, and should improve reordering for
1268       // the non-failed operand indexes.
1269       for (int Pass = 0; Pass != 2; ++Pass) {
1270         // Skip the second pass if the first pass did not fail.
1271         bool StrategyFailed = false;
1272         // Mark all operand data as free to use.
1273         clearUsed();
1274         // We keep the original operand order for the FirstLane, so reorder the
1275         // rest of the lanes. We are visiting the nodes in a circular fashion,
1276         // using FirstLane as the center point and increasing the radius
1277         // distance.
1278         for (unsigned Distance = 1; Distance != NumLanes; ++Distance) {
1279           // Visit the lane on the right and then the lane on the left.
1280           for (int Direction : {+1, -1}) {
1281             int Lane = FirstLane + Direction * Distance;
1282             if (Lane < 0 || Lane >= (int)NumLanes)
1283               continue;
1284             int LastLane = Lane - Direction;
1285             assert(LastLane >= 0 && LastLane < (int)NumLanes &&
1286                    "Out of bounds");
1287             // Look for a good match for each operand.
1288             for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1289               // Search for the operand that matches SortedOps[OpIdx][Lane-1].
1290               Optional<unsigned> BestIdx =
1291                   getBestOperand(OpIdx, Lane, LastLane, ReorderingModes);
1292               // By not selecting a value, we allow the operands that follow to
1293               // select a better matching value. We will get a non-null value in
1294               // the next run of getBestOperand().
1295               if (BestIdx) {
1296                 // Swap the current operand with the one returned by
1297                 // getBestOperand().
1298                 swap(OpIdx, BestIdx.getValue(), Lane);
1299               } else {
1300                 // We failed to find a best operand, set mode to 'Failed'.
1301                 ReorderingModes[OpIdx] = ReorderingMode::Failed;
1302                 // Enable the second pass.
1303                 StrategyFailed = true;
1304               }
1305             }
1306           }
1307         }
1308         // Skip second pass if the strategy did not fail.
1309         if (!StrategyFailed)
1310           break;
1311       }
1312     }
1313 
1314 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1315     LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) {
1316       switch (RMode) {
1317       case ReorderingMode::Load:
1318         return "Load";
1319       case ReorderingMode::Opcode:
1320         return "Opcode";
1321       case ReorderingMode::Constant:
1322         return "Constant";
1323       case ReorderingMode::Splat:
1324         return "Splat";
1325       case ReorderingMode::Failed:
1326         return "Failed";
1327       }
1328       llvm_unreachable("Unimplemented Reordering Type");
1329     }
1330 
1331     LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode,
1332                                                    raw_ostream &OS) {
1333       return OS << getModeStr(RMode);
1334     }
1335 
1336     /// Debug print.
1337     LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) {
1338       printMode(RMode, dbgs());
1339     }
1340 
1341     friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) {
1342       return printMode(RMode, OS);
1343     }
1344 
1345     LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const {
1346       const unsigned Indent = 2;
1347       unsigned Cnt = 0;
1348       for (const OperandDataVec &OpDataVec : OpsVec) {
1349         OS << "Operand " << Cnt++ << "\n";
1350         for (const OperandData &OpData : OpDataVec) {
1351           OS.indent(Indent) << "{";
1352           if (Value *V = OpData.V)
1353             OS << *V;
1354           else
1355             OS << "null";
1356           OS << ", APO:" << OpData.APO << "}\n";
1357         }
1358         OS << "\n";
1359       }
1360       return OS;
1361     }
1362 
1363     /// Debug print.
1364     LLVM_DUMP_METHOD void dump() const { print(dbgs()); }
1365 #endif
1366   };
1367 
1368   /// Checks if the instruction is marked for deletion.
1369   bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); }
1370 
1371   /// Marks values operands for later deletion by replacing them with Undefs.
1372   void eraseInstructions(ArrayRef<Value *> AV);
1373 
1374   ~BoUpSLP();
1375 
1376 private:
1377   /// Checks if all users of \p I are the part of the vectorization tree.
1378   bool areAllUsersVectorized(Instruction *I) const;
1379 
1380   /// \returns the cost of the vectorizable entry.
1381   int getEntryCost(TreeEntry *E);
1382 
1383   /// This is the recursive part of buildTree.
1384   void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth,
1385                      const EdgeInfo &EI);
1386 
1387   /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can
1388   /// be vectorized to use the original vector (or aggregate "bitcast" to a
1389   /// vector) and sets \p CurrentOrder to the identity permutation; otherwise
1390   /// returns false, setting \p CurrentOrder to either an empty vector or a
1391   /// non-identity permutation that allows to reuse extract instructions.
1392   bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
1393                        SmallVectorImpl<unsigned> &CurrentOrder) const;
1394 
1395   /// Vectorize a single entry in the tree.
1396   Value *vectorizeTree(TreeEntry *E);
1397 
1398   /// Vectorize a single entry in the tree, starting in \p VL.
1399   Value *vectorizeTree(ArrayRef<Value *> VL);
1400 
1401   /// \returns the scalarization cost for this type. Scalarization in this
1402   /// context means the creation of vectors from a group of scalars.
1403   int getGatherCost(Type *Ty, const DenseSet<unsigned> &ShuffledIndices) const;
1404 
1405   /// \returns the scalarization cost for this list of values. Assuming that
1406   /// this subtree gets vectorized, we may need to extract the values from the
1407   /// roots. This method calculates the cost of extracting the values.
1408   int getGatherCost(ArrayRef<Value *> VL) const;
1409 
1410   /// Set the Builder insert point to one after the last instruction in
1411   /// the bundle
1412   void setInsertPointAfterBundle(TreeEntry *E);
1413 
1414   /// \returns a vector from a collection of scalars in \p VL.
1415   Value *Gather(ArrayRef<Value *> VL, VectorType *Ty);
1416 
1417   /// \returns whether the VectorizableTree is fully vectorizable and will
1418   /// be beneficial even the tree height is tiny.
1419   bool isFullyVectorizableTinyTree() const;
1420 
1421   /// Reorder commutative or alt operands to get better probability of
1422   /// generating vectorized code.
1423   static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
1424                                              SmallVectorImpl<Value *> &Left,
1425                                              SmallVectorImpl<Value *> &Right,
1426                                              const DataLayout &DL,
1427                                              ScalarEvolution &SE,
1428                                              const BoUpSLP &R);
1429   struct TreeEntry {
1430     using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>;
1431     TreeEntry(VecTreeTy &Container) : Container(Container) {}
1432 
1433     /// \returns true if the scalars in VL are equal to this entry.
1434     bool isSame(ArrayRef<Value *> VL) const {
1435       if (VL.size() == Scalars.size())
1436         return std::equal(VL.begin(), VL.end(), Scalars.begin());
1437       return VL.size() == ReuseShuffleIndices.size() &&
1438              std::equal(
1439                  VL.begin(), VL.end(), ReuseShuffleIndices.begin(),
1440                  [this](Value *V, unsigned Idx) { return V == Scalars[Idx]; });
1441     }
1442 
1443     /// A vector of scalars.
1444     ValueList Scalars;
1445 
1446     /// The Scalars are vectorized into this value. It is initialized to Null.
1447     Value *VectorizedValue = nullptr;
1448 
1449     /// Do we need to gather this sequence ?
1450     enum EntryState { Vectorize, NeedToGather };
1451     EntryState State;
1452 
1453     /// Does this sequence require some shuffling?
1454     SmallVector<unsigned, 4> ReuseShuffleIndices;
1455 
1456     /// Does this entry require reordering?
1457     ArrayRef<unsigned> ReorderIndices;
1458 
1459     /// Points back to the VectorizableTree.
1460     ///
1461     /// Only used for Graphviz right now.  Unfortunately GraphTrait::NodeRef has
1462     /// to be a pointer and needs to be able to initialize the child iterator.
1463     /// Thus we need a reference back to the container to translate the indices
1464     /// to entries.
1465     VecTreeTy &Container;
1466 
1467     /// The TreeEntry index containing the user of this entry.  We can actually
1468     /// have multiple users so the data structure is not truly a tree.
1469     SmallVector<EdgeInfo, 1> UserTreeIndices;
1470 
1471     /// The index of this treeEntry in VectorizableTree.
1472     int Idx = -1;
1473 
1474   private:
1475     /// The operands of each instruction in each lane Operands[op_index][lane].
1476     /// Note: This helps avoid the replication of the code that performs the
1477     /// reordering of operands during buildTree_rec() and vectorizeTree().
1478     SmallVector<ValueList, 2> Operands;
1479 
1480     /// The main/alternate instruction.
1481     Instruction *MainOp = nullptr;
1482     Instruction *AltOp = nullptr;
1483 
1484   public:
1485     /// Set this bundle's \p OpIdx'th operand to \p OpVL.
1486     void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) {
1487       if (Operands.size() < OpIdx + 1)
1488         Operands.resize(OpIdx + 1);
1489       assert(Operands[OpIdx].size() == 0 && "Already resized?");
1490       Operands[OpIdx].resize(Scalars.size());
1491       for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane)
1492         Operands[OpIdx][Lane] = OpVL[Lane];
1493     }
1494 
1495     /// Set the operands of this bundle in their original order.
1496     void setOperandsInOrder() {
1497       assert(Operands.empty() && "Already initialized?");
1498       auto *I0 = cast<Instruction>(Scalars[0]);
1499       Operands.resize(I0->getNumOperands());
1500       unsigned NumLanes = Scalars.size();
1501       for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands();
1502            OpIdx != NumOperands; ++OpIdx) {
1503         Operands[OpIdx].resize(NumLanes);
1504         for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1505           auto *I = cast<Instruction>(Scalars[Lane]);
1506           assert(I->getNumOperands() == NumOperands &&
1507                  "Expected same number of operands");
1508           Operands[OpIdx][Lane] = I->getOperand(OpIdx);
1509         }
1510       }
1511     }
1512 
1513     /// \returns the \p OpIdx operand of this TreeEntry.
1514     ValueList &getOperand(unsigned OpIdx) {
1515       assert(OpIdx < Operands.size() && "Off bounds");
1516       return Operands[OpIdx];
1517     }
1518 
1519     /// \returns the number of operands.
1520     unsigned getNumOperands() const { return Operands.size(); }
1521 
1522     /// \return the single \p OpIdx operand.
1523     Value *getSingleOperand(unsigned OpIdx) const {
1524       assert(OpIdx < Operands.size() && "Off bounds");
1525       assert(!Operands[OpIdx].empty() && "No operand available");
1526       return Operands[OpIdx][0];
1527     }
1528 
1529     /// Some of the instructions in the list have alternate opcodes.
1530     bool isAltShuffle() const {
1531       return getOpcode() != getAltOpcode();
1532     }
1533 
1534     bool isOpcodeOrAlt(Instruction *I) const {
1535       unsigned CheckedOpcode = I->getOpcode();
1536       return (getOpcode() == CheckedOpcode ||
1537               getAltOpcode() == CheckedOpcode);
1538     }
1539 
1540     /// Chooses the correct key for scheduling data. If \p Op has the same (or
1541     /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is
1542     /// \p OpValue.
1543     Value *isOneOf(Value *Op) const {
1544       auto *I = dyn_cast<Instruction>(Op);
1545       if (I && isOpcodeOrAlt(I))
1546         return Op;
1547       return MainOp;
1548     }
1549 
1550     void setOperations(const InstructionsState &S) {
1551       MainOp = S.MainOp;
1552       AltOp = S.AltOp;
1553     }
1554 
1555     Instruction *getMainOp() const {
1556       return MainOp;
1557     }
1558 
1559     Instruction *getAltOp() const {
1560       return AltOp;
1561     }
1562 
1563     /// The main/alternate opcodes for the list of instructions.
1564     unsigned getOpcode() const {
1565       return MainOp ? MainOp->getOpcode() : 0;
1566     }
1567 
1568     unsigned getAltOpcode() const {
1569       return AltOp ? AltOp->getOpcode() : 0;
1570     }
1571 
1572     /// Update operations state of this entry if reorder occurred.
1573     bool updateStateIfReorder() {
1574       if (ReorderIndices.empty())
1575         return false;
1576       InstructionsState S = getSameOpcode(Scalars, ReorderIndices.front());
1577       setOperations(S);
1578       return true;
1579     }
1580 
1581 #ifndef NDEBUG
1582     /// Debug printer.
1583     LLVM_DUMP_METHOD void dump() const {
1584       dbgs() << Idx << ".\n";
1585       for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) {
1586         dbgs() << "Operand " << OpI << ":\n";
1587         for (const Value *V : Operands[OpI])
1588           dbgs().indent(2) << *V << "\n";
1589       }
1590       dbgs() << "Scalars: \n";
1591       for (Value *V : Scalars)
1592         dbgs().indent(2) << *V << "\n";
1593       dbgs() << "State: ";
1594       switch (State) {
1595       case Vectorize:
1596         dbgs() << "Vectorize\n";
1597         break;
1598       case NeedToGather:
1599         dbgs() << "NeedToGather\n";
1600         break;
1601       }
1602       dbgs() << "MainOp: ";
1603       if (MainOp)
1604         dbgs() << *MainOp << "\n";
1605       else
1606         dbgs() << "NULL\n";
1607       dbgs() << "AltOp: ";
1608       if (AltOp)
1609         dbgs() << *AltOp << "\n";
1610       else
1611         dbgs() << "NULL\n";
1612       dbgs() << "VectorizedValue: ";
1613       if (VectorizedValue)
1614         dbgs() << *VectorizedValue << "\n";
1615       else
1616         dbgs() << "NULL\n";
1617       dbgs() << "ReuseShuffleIndices: ";
1618       if (ReuseShuffleIndices.empty())
1619         dbgs() << "Emtpy";
1620       else
1621         for (unsigned ReuseIdx : ReuseShuffleIndices)
1622           dbgs() << ReuseIdx << ", ";
1623       dbgs() << "\n";
1624       dbgs() << "ReorderIndices: ";
1625       for (unsigned ReorderIdx : ReorderIndices)
1626         dbgs() << ReorderIdx << ", ";
1627       dbgs() << "\n";
1628       dbgs() << "UserTreeIndices: ";
1629       for (const auto &EInfo : UserTreeIndices)
1630         dbgs() << EInfo << ", ";
1631       dbgs() << "\n";
1632     }
1633 #endif
1634   };
1635 
1636   /// Create a new VectorizableTree entry.
1637   TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle,
1638                           const InstructionsState &S,
1639                           const EdgeInfo &UserTreeIdx,
1640                           ArrayRef<unsigned> ReuseShuffleIndices = None,
1641                           ArrayRef<unsigned> ReorderIndices = None) {
1642     bool Vectorized = (bool)Bundle;
1643     VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree));
1644     TreeEntry *Last = VectorizableTree.back().get();
1645     Last->Idx = VectorizableTree.size() - 1;
1646     Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end());
1647     Last->State = Vectorized ? TreeEntry::Vectorize : TreeEntry::NeedToGather;
1648     Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(),
1649                                      ReuseShuffleIndices.end());
1650     Last->ReorderIndices = ReorderIndices;
1651     Last->setOperations(S);
1652     if (Vectorized) {
1653       for (int i = 0, e = VL.size(); i != e; ++i) {
1654         assert(!getTreeEntry(VL[i]) && "Scalar already in tree!");
1655         ScalarToTreeEntry[VL[i]] = Last;
1656       }
1657       // Update the scheduler bundle to point to this TreeEntry.
1658       unsigned Lane = 0;
1659       for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember;
1660            BundleMember = BundleMember->NextInBundle) {
1661         BundleMember->TE = Last;
1662         BundleMember->Lane = Lane;
1663         ++Lane;
1664       }
1665       assert((!Bundle.getValue() || Lane == VL.size()) &&
1666              "Bundle and VL out of sync");
1667     } else {
1668       MustGather.insert(VL.begin(), VL.end());
1669     }
1670 
1671     if (UserTreeIdx.UserTE)
1672       Last->UserTreeIndices.push_back(UserTreeIdx);
1673 
1674     return Last;
1675   }
1676 
1677   /// -- Vectorization State --
1678   /// Holds all of the tree entries.
1679   TreeEntry::VecTreeTy VectorizableTree;
1680 
1681 #ifndef NDEBUG
1682   /// Debug printer.
1683   LLVM_DUMP_METHOD void dumpVectorizableTree() const {
1684     for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) {
1685       VectorizableTree[Id]->dump();
1686       dbgs() << "\n";
1687     }
1688   }
1689 #endif
1690 
1691   TreeEntry *getTreeEntry(Value *V) {
1692     auto I = ScalarToTreeEntry.find(V);
1693     if (I != ScalarToTreeEntry.end())
1694       return I->second;
1695     return nullptr;
1696   }
1697 
1698   const TreeEntry *getTreeEntry(Value *V) const {
1699     auto I = ScalarToTreeEntry.find(V);
1700     if (I != ScalarToTreeEntry.end())
1701       return I->second;
1702     return nullptr;
1703   }
1704 
1705   /// Maps a specific scalar to its tree entry.
1706   SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry;
1707 
1708   /// A list of scalars that we found that we need to keep as scalars.
1709   ValueSet MustGather;
1710 
1711   /// This POD struct describes one external user in the vectorized tree.
1712   struct ExternalUser {
1713     ExternalUser(Value *S, llvm::User *U, int L)
1714         : Scalar(S), User(U), Lane(L) {}
1715 
1716     // Which scalar in our function.
1717     Value *Scalar;
1718 
1719     // Which user that uses the scalar.
1720     llvm::User *User;
1721 
1722     // Which lane does the scalar belong to.
1723     int Lane;
1724   };
1725   using UserList = SmallVector<ExternalUser, 16>;
1726 
1727   /// Checks if two instructions may access the same memory.
1728   ///
1729   /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it
1730   /// is invariant in the calling loop.
1731   bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1,
1732                  Instruction *Inst2) {
1733     // First check if the result is already in the cache.
1734     AliasCacheKey key = std::make_pair(Inst1, Inst2);
1735     Optional<bool> &result = AliasCache[key];
1736     if (result.hasValue()) {
1737       return result.getValue();
1738     }
1739     MemoryLocation Loc2 = getLocation(Inst2, AA);
1740     bool aliased = true;
1741     if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) {
1742       // Do the alias check.
1743       aliased = AA->alias(Loc1, Loc2);
1744     }
1745     // Store the result in the cache.
1746     result = aliased;
1747     return aliased;
1748   }
1749 
1750   using AliasCacheKey = std::pair<Instruction *, Instruction *>;
1751 
1752   /// Cache for alias results.
1753   /// TODO: consider moving this to the AliasAnalysis itself.
1754   DenseMap<AliasCacheKey, Optional<bool>> AliasCache;
1755 
1756   /// Removes an instruction from its block and eventually deletes it.
1757   /// It's like Instruction::eraseFromParent() except that the actual deletion
1758   /// is delayed until BoUpSLP is destructed.
1759   /// This is required to ensure that there are no incorrect collisions in the
1760   /// AliasCache, which can happen if a new instruction is allocated at the
1761   /// same address as a previously deleted instruction.
1762   void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) {
1763     auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first;
1764     It->getSecond() = It->getSecond() && ReplaceOpsWithUndef;
1765   }
1766 
1767   /// Temporary store for deleted instructions. Instructions will be deleted
1768   /// eventually when the BoUpSLP is destructed.
1769   DenseMap<Instruction *, bool> DeletedInstructions;
1770 
1771   /// A list of values that need to extracted out of the tree.
1772   /// This list holds pairs of (Internal Scalar : External User). External User
1773   /// can be nullptr, it means that this Internal Scalar will be used later,
1774   /// after vectorization.
1775   UserList ExternalUses;
1776 
1777   /// Values used only by @llvm.assume calls.
1778   SmallPtrSet<const Value *, 32> EphValues;
1779 
1780   /// Holds all of the instructions that we gathered.
1781   SetVector<Instruction *> GatherSeq;
1782 
1783   /// A list of blocks that we are going to CSE.
1784   SetVector<BasicBlock *> CSEBlocks;
1785 
1786   /// Contains all scheduling relevant data for an instruction.
1787   /// A ScheduleData either represents a single instruction or a member of an
1788   /// instruction bundle (= a group of instructions which is combined into a
1789   /// vector instruction).
1790   struct ScheduleData {
1791     // The initial value for the dependency counters. It means that the
1792     // dependencies are not calculated yet.
1793     enum { InvalidDeps = -1 };
1794 
1795     ScheduleData() = default;
1796 
1797     void init(int BlockSchedulingRegionID, Value *OpVal) {
1798       FirstInBundle = this;
1799       NextInBundle = nullptr;
1800       NextLoadStore = nullptr;
1801       IsScheduled = false;
1802       SchedulingRegionID = BlockSchedulingRegionID;
1803       UnscheduledDepsInBundle = UnscheduledDeps;
1804       clearDependencies();
1805       OpValue = OpVal;
1806       TE = nullptr;
1807       Lane = -1;
1808     }
1809 
1810     /// Returns true if the dependency information has been calculated.
1811     bool hasValidDependencies() const { return Dependencies != InvalidDeps; }
1812 
1813     /// Returns true for single instructions and for bundle representatives
1814     /// (= the head of a bundle).
1815     bool isSchedulingEntity() const { return FirstInBundle == this; }
1816 
1817     /// Returns true if it represents an instruction bundle and not only a
1818     /// single instruction.
1819     bool isPartOfBundle() const {
1820       return NextInBundle != nullptr || FirstInBundle != this;
1821     }
1822 
1823     /// Returns true if it is ready for scheduling, i.e. it has no more
1824     /// unscheduled depending instructions/bundles.
1825     bool isReady() const {
1826       assert(isSchedulingEntity() &&
1827              "can't consider non-scheduling entity for ready list");
1828       return UnscheduledDepsInBundle == 0 && !IsScheduled;
1829     }
1830 
1831     /// Modifies the number of unscheduled dependencies, also updating it for
1832     /// the whole bundle.
1833     int incrementUnscheduledDeps(int Incr) {
1834       UnscheduledDeps += Incr;
1835       return FirstInBundle->UnscheduledDepsInBundle += Incr;
1836     }
1837 
1838     /// Sets the number of unscheduled dependencies to the number of
1839     /// dependencies.
1840     void resetUnscheduledDeps() {
1841       incrementUnscheduledDeps(Dependencies - UnscheduledDeps);
1842     }
1843 
1844     /// Clears all dependency information.
1845     void clearDependencies() {
1846       Dependencies = InvalidDeps;
1847       resetUnscheduledDeps();
1848       MemoryDependencies.clear();
1849     }
1850 
1851     void dump(raw_ostream &os) const {
1852       if (!isSchedulingEntity()) {
1853         os << "/ " << *Inst;
1854       } else if (NextInBundle) {
1855         os << '[' << *Inst;
1856         ScheduleData *SD = NextInBundle;
1857         while (SD) {
1858           os << ';' << *SD->Inst;
1859           SD = SD->NextInBundle;
1860         }
1861         os << ']';
1862       } else {
1863         os << *Inst;
1864       }
1865     }
1866 
1867     Instruction *Inst = nullptr;
1868 
1869     /// Points to the head in an instruction bundle (and always to this for
1870     /// single instructions).
1871     ScheduleData *FirstInBundle = nullptr;
1872 
1873     /// Single linked list of all instructions in a bundle. Null if it is a
1874     /// single instruction.
1875     ScheduleData *NextInBundle = nullptr;
1876 
1877     /// Single linked list of all memory instructions (e.g. load, store, call)
1878     /// in the block - until the end of the scheduling region.
1879     ScheduleData *NextLoadStore = nullptr;
1880 
1881     /// The dependent memory instructions.
1882     /// This list is derived on demand in calculateDependencies().
1883     SmallVector<ScheduleData *, 4> MemoryDependencies;
1884 
1885     /// This ScheduleData is in the current scheduling region if this matches
1886     /// the current SchedulingRegionID of BlockScheduling.
1887     int SchedulingRegionID = 0;
1888 
1889     /// Used for getting a "good" final ordering of instructions.
1890     int SchedulingPriority = 0;
1891 
1892     /// The number of dependencies. Constitutes of the number of users of the
1893     /// instruction plus the number of dependent memory instructions (if any).
1894     /// This value is calculated on demand.
1895     /// If InvalidDeps, the number of dependencies is not calculated yet.
1896     int Dependencies = InvalidDeps;
1897 
1898     /// The number of dependencies minus the number of dependencies of scheduled
1899     /// instructions. As soon as this is zero, the instruction/bundle gets ready
1900     /// for scheduling.
1901     /// Note that this is negative as long as Dependencies is not calculated.
1902     int UnscheduledDeps = InvalidDeps;
1903 
1904     /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for
1905     /// single instructions.
1906     int UnscheduledDepsInBundle = InvalidDeps;
1907 
1908     /// True if this instruction is scheduled (or considered as scheduled in the
1909     /// dry-run).
1910     bool IsScheduled = false;
1911 
1912     /// Opcode of the current instruction in the schedule data.
1913     Value *OpValue = nullptr;
1914 
1915     /// The TreeEntry that this instruction corresponds to.
1916     TreeEntry *TE = nullptr;
1917 
1918     /// The lane of this node in the TreeEntry.
1919     int Lane = -1;
1920   };
1921 
1922 #ifndef NDEBUG
1923   friend inline raw_ostream &operator<<(raw_ostream &os,
1924                                         const BoUpSLP::ScheduleData &SD) {
1925     SD.dump(os);
1926     return os;
1927   }
1928 #endif
1929 
1930   friend struct GraphTraits<BoUpSLP *>;
1931   friend struct DOTGraphTraits<BoUpSLP *>;
1932 
1933   /// Contains all scheduling data for a basic block.
1934   struct BlockScheduling {
1935     BlockScheduling(BasicBlock *BB)
1936         : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {}
1937 
1938     void clear() {
1939       ReadyInsts.clear();
1940       ScheduleStart = nullptr;
1941       ScheduleEnd = nullptr;
1942       FirstLoadStoreInRegion = nullptr;
1943       LastLoadStoreInRegion = nullptr;
1944 
1945       // Reduce the maximum schedule region size by the size of the
1946       // previous scheduling run.
1947       ScheduleRegionSizeLimit -= ScheduleRegionSize;
1948       if (ScheduleRegionSizeLimit < MinScheduleRegionSize)
1949         ScheduleRegionSizeLimit = MinScheduleRegionSize;
1950       ScheduleRegionSize = 0;
1951 
1952       // Make a new scheduling region, i.e. all existing ScheduleData is not
1953       // in the new region yet.
1954       ++SchedulingRegionID;
1955     }
1956 
1957     ScheduleData *getScheduleData(Value *V) {
1958       ScheduleData *SD = ScheduleDataMap[V];
1959       if (SD && SD->SchedulingRegionID == SchedulingRegionID)
1960         return SD;
1961       return nullptr;
1962     }
1963 
1964     ScheduleData *getScheduleData(Value *V, Value *Key) {
1965       if (V == Key)
1966         return getScheduleData(V);
1967       auto I = ExtraScheduleDataMap.find(V);
1968       if (I != ExtraScheduleDataMap.end()) {
1969         ScheduleData *SD = I->second[Key];
1970         if (SD && SD->SchedulingRegionID == SchedulingRegionID)
1971           return SD;
1972       }
1973       return nullptr;
1974     }
1975 
1976     bool isInSchedulingRegion(ScheduleData *SD) const {
1977       return SD->SchedulingRegionID == SchedulingRegionID;
1978     }
1979 
1980     /// Marks an instruction as scheduled and puts all dependent ready
1981     /// instructions into the ready-list.
1982     template <typename ReadyListType>
1983     void schedule(ScheduleData *SD, ReadyListType &ReadyList) {
1984       SD->IsScheduled = true;
1985       LLVM_DEBUG(dbgs() << "SLP:   schedule " << *SD << "\n");
1986 
1987       ScheduleData *BundleMember = SD;
1988       while (BundleMember) {
1989         if (BundleMember->Inst != BundleMember->OpValue) {
1990           BundleMember = BundleMember->NextInBundle;
1991           continue;
1992         }
1993         // Handle the def-use chain dependencies.
1994 
1995         // Decrement the unscheduled counter and insert to ready list if ready.
1996         auto &&DecrUnsched = [this, &ReadyList](Instruction *I) {
1997           doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) {
1998             if (OpDef && OpDef->hasValidDependencies() &&
1999                 OpDef->incrementUnscheduledDeps(-1) == 0) {
2000               // There are no more unscheduled dependencies after
2001               // decrementing, so we can put the dependent instruction
2002               // into the ready list.
2003               ScheduleData *DepBundle = OpDef->FirstInBundle;
2004               assert(!DepBundle->IsScheduled &&
2005                      "already scheduled bundle gets ready");
2006               ReadyList.insert(DepBundle);
2007               LLVM_DEBUG(dbgs()
2008                          << "SLP:    gets ready (def): " << *DepBundle << "\n");
2009             }
2010           });
2011         };
2012 
2013         // If BundleMember is a vector bundle, its operands may have been
2014         // reordered duiring buildTree(). We therefore need to get its operands
2015         // through the TreeEntry.
2016         if (TreeEntry *TE = BundleMember->TE) {
2017           int Lane = BundleMember->Lane;
2018           assert(Lane >= 0 && "Lane not set");
2019           for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands();
2020                OpIdx != NumOperands; ++OpIdx)
2021             if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane]))
2022               DecrUnsched(I);
2023         } else {
2024           // If BundleMember is a stand-alone instruction, no operand reordering
2025           // has taken place, so we directly access its operands.
2026           for (Use &U : BundleMember->Inst->operands())
2027             if (auto *I = dyn_cast<Instruction>(U.get()))
2028               DecrUnsched(I);
2029         }
2030         // Handle the memory dependencies.
2031         for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) {
2032           if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) {
2033             // There are no more unscheduled dependencies after decrementing,
2034             // so we can put the dependent instruction into the ready list.
2035             ScheduleData *DepBundle = MemoryDepSD->FirstInBundle;
2036             assert(!DepBundle->IsScheduled &&
2037                    "already scheduled bundle gets ready");
2038             ReadyList.insert(DepBundle);
2039             LLVM_DEBUG(dbgs()
2040                        << "SLP:    gets ready (mem): " << *DepBundle << "\n");
2041           }
2042         }
2043         BundleMember = BundleMember->NextInBundle;
2044       }
2045     }
2046 
2047     void doForAllOpcodes(Value *V,
2048                          function_ref<void(ScheduleData *SD)> Action) {
2049       if (ScheduleData *SD = getScheduleData(V))
2050         Action(SD);
2051       auto I = ExtraScheduleDataMap.find(V);
2052       if (I != ExtraScheduleDataMap.end())
2053         for (auto &P : I->second)
2054           if (P.second->SchedulingRegionID == SchedulingRegionID)
2055             Action(P.second);
2056     }
2057 
2058     /// Put all instructions into the ReadyList which are ready for scheduling.
2059     template <typename ReadyListType>
2060     void initialFillReadyList(ReadyListType &ReadyList) {
2061       for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
2062         doForAllOpcodes(I, [&](ScheduleData *SD) {
2063           if (SD->isSchedulingEntity() && SD->isReady()) {
2064             ReadyList.insert(SD);
2065             LLVM_DEBUG(dbgs()
2066                        << "SLP:    initially in ready list: " << *I << "\n");
2067           }
2068         });
2069       }
2070     }
2071 
2072     /// Checks if a bundle of instructions can be scheduled, i.e. has no
2073     /// cyclic dependencies. This is only a dry-run, no instructions are
2074     /// actually moved at this stage.
2075     /// \returns the scheduling bundle. The returned Optional value is non-None
2076     /// if \p VL is allowed to be scheduled.
2077     Optional<ScheduleData *>
2078     tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP,
2079                       const InstructionsState &S);
2080 
2081     /// Un-bundles a group of instructions.
2082     void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue);
2083 
2084     /// Allocates schedule data chunk.
2085     ScheduleData *allocateScheduleDataChunks();
2086 
2087     /// Extends the scheduling region so that V is inside the region.
2088     /// \returns true if the region size is within the limit.
2089     bool extendSchedulingRegion(Value *V, const InstructionsState &S);
2090 
2091     /// Initialize the ScheduleData structures for new instructions in the
2092     /// scheduling region.
2093     void initScheduleData(Instruction *FromI, Instruction *ToI,
2094                           ScheduleData *PrevLoadStore,
2095                           ScheduleData *NextLoadStore);
2096 
2097     /// Updates the dependency information of a bundle and of all instructions/
2098     /// bundles which depend on the original bundle.
2099     void calculateDependencies(ScheduleData *SD, bool InsertInReadyList,
2100                                BoUpSLP *SLP);
2101 
2102     /// Sets all instruction in the scheduling region to un-scheduled.
2103     void resetSchedule();
2104 
2105     BasicBlock *BB;
2106 
2107     /// Simple memory allocation for ScheduleData.
2108     std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks;
2109 
2110     /// The size of a ScheduleData array in ScheduleDataChunks.
2111     int ChunkSize;
2112 
2113     /// The allocator position in the current chunk, which is the last entry
2114     /// of ScheduleDataChunks.
2115     int ChunkPos;
2116 
2117     /// Attaches ScheduleData to Instruction.
2118     /// Note that the mapping survives during all vectorization iterations, i.e.
2119     /// ScheduleData structures are recycled.
2120     DenseMap<Value *, ScheduleData *> ScheduleDataMap;
2121 
2122     /// Attaches ScheduleData to Instruction with the leading key.
2123     DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>>
2124         ExtraScheduleDataMap;
2125 
2126     struct ReadyList : SmallVector<ScheduleData *, 8> {
2127       void insert(ScheduleData *SD) { push_back(SD); }
2128     };
2129 
2130     /// The ready-list for scheduling (only used for the dry-run).
2131     ReadyList ReadyInsts;
2132 
2133     /// The first instruction of the scheduling region.
2134     Instruction *ScheduleStart = nullptr;
2135 
2136     /// The first instruction _after_ the scheduling region.
2137     Instruction *ScheduleEnd = nullptr;
2138 
2139     /// The first memory accessing instruction in the scheduling region
2140     /// (can be null).
2141     ScheduleData *FirstLoadStoreInRegion = nullptr;
2142 
2143     /// The last memory accessing instruction in the scheduling region
2144     /// (can be null).
2145     ScheduleData *LastLoadStoreInRegion = nullptr;
2146 
2147     /// The current size of the scheduling region.
2148     int ScheduleRegionSize = 0;
2149 
2150     /// The maximum size allowed for the scheduling region.
2151     int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget;
2152 
2153     /// The ID of the scheduling region. For a new vectorization iteration this
2154     /// is incremented which "removes" all ScheduleData from the region.
2155     // Make sure that the initial SchedulingRegionID is greater than the
2156     // initial SchedulingRegionID in ScheduleData (which is 0).
2157     int SchedulingRegionID = 1;
2158   };
2159 
2160   /// Attaches the BlockScheduling structures to basic blocks.
2161   MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules;
2162 
2163   /// Performs the "real" scheduling. Done before vectorization is actually
2164   /// performed in a basic block.
2165   void scheduleBlock(BlockScheduling *BS);
2166 
2167   /// List of users to ignore during scheduling and that don't need extracting.
2168   ArrayRef<Value *> UserIgnoreList;
2169 
2170   using OrdersType = SmallVector<unsigned, 4>;
2171   /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of
2172   /// sorted SmallVectors of unsigned.
2173   struct OrdersTypeDenseMapInfo {
2174     static OrdersType getEmptyKey() {
2175       OrdersType V;
2176       V.push_back(~1U);
2177       return V;
2178     }
2179 
2180     static OrdersType getTombstoneKey() {
2181       OrdersType V;
2182       V.push_back(~2U);
2183       return V;
2184     }
2185 
2186     static unsigned getHashValue(const OrdersType &V) {
2187       return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
2188     }
2189 
2190     static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) {
2191       return LHS == RHS;
2192     }
2193   };
2194 
2195   /// Contains orders of operations along with the number of bundles that have
2196   /// operations in this order. It stores only those orders that require
2197   /// reordering, if reordering is not required it is counted using \a
2198   /// NumOpsWantToKeepOriginalOrder.
2199   DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder;
2200   /// Number of bundles that do not require reordering.
2201   unsigned NumOpsWantToKeepOriginalOrder = 0;
2202 
2203   // Analysis and block reference.
2204   Function *F;
2205   ScalarEvolution *SE;
2206   TargetTransformInfo *TTI;
2207   TargetLibraryInfo *TLI;
2208   AliasAnalysis *AA;
2209   LoopInfo *LI;
2210   DominatorTree *DT;
2211   AssumptionCache *AC;
2212   DemandedBits *DB;
2213   const DataLayout *DL;
2214   OptimizationRemarkEmitter *ORE;
2215 
2216   unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt.
2217   unsigned MinVecRegSize; // Set by cl::opt (default: 128).
2218 
2219   /// Instruction builder to construct the vectorized tree.
2220   IRBuilder<> Builder;
2221 
2222   /// A map of scalar integer values to the smallest bit width with which they
2223   /// can legally be represented. The values map to (width, signed) pairs,
2224   /// where "width" indicates the minimum bit width and "signed" is True if the
2225   /// value must be signed-extended, rather than zero-extended, back to its
2226   /// original width.
2227   MapVector<Value *, std::pair<uint64_t, bool>> MinBWs;
2228 };
2229 
2230 } // end namespace slpvectorizer
2231 
2232 template <> struct GraphTraits<BoUpSLP *> {
2233   using TreeEntry = BoUpSLP::TreeEntry;
2234 
2235   /// NodeRef has to be a pointer per the GraphWriter.
2236   using NodeRef = TreeEntry *;
2237 
2238   using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy;
2239 
2240   /// Add the VectorizableTree to the index iterator to be able to return
2241   /// TreeEntry pointers.
2242   struct ChildIteratorType
2243       : public iterator_adaptor_base<
2244             ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> {
2245     ContainerTy &VectorizableTree;
2246 
2247     ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W,
2248                       ContainerTy &VT)
2249         : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {}
2250 
2251     NodeRef operator*() { return I->UserTE; }
2252   };
2253 
2254   static NodeRef getEntryNode(BoUpSLP &R) {
2255     return R.VectorizableTree[0].get();
2256   }
2257 
2258   static ChildIteratorType child_begin(NodeRef N) {
2259     return {N->UserTreeIndices.begin(), N->Container};
2260   }
2261 
2262   static ChildIteratorType child_end(NodeRef N) {
2263     return {N->UserTreeIndices.end(), N->Container};
2264   }
2265 
2266   /// For the node iterator we just need to turn the TreeEntry iterator into a
2267   /// TreeEntry* iterator so that it dereferences to NodeRef.
2268   class nodes_iterator {
2269     using ItTy = ContainerTy::iterator;
2270     ItTy It;
2271 
2272   public:
2273     nodes_iterator(const ItTy &It2) : It(It2) {}
2274     NodeRef operator*() { return It->get(); }
2275     nodes_iterator operator++() {
2276       ++It;
2277       return *this;
2278     }
2279     bool operator!=(const nodes_iterator &N2) const { return N2.It != It; }
2280   };
2281 
2282   static nodes_iterator nodes_begin(BoUpSLP *R) {
2283     return nodes_iterator(R->VectorizableTree.begin());
2284   }
2285 
2286   static nodes_iterator nodes_end(BoUpSLP *R) {
2287     return nodes_iterator(R->VectorizableTree.end());
2288   }
2289 
2290   static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); }
2291 };
2292 
2293 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits {
2294   using TreeEntry = BoUpSLP::TreeEntry;
2295 
2296   DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
2297 
2298   std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) {
2299     std::string Str;
2300     raw_string_ostream OS(Str);
2301     if (isSplat(Entry->Scalars)) {
2302       OS << "<splat> " << *Entry->Scalars[0];
2303       return Str;
2304     }
2305     for (auto V : Entry->Scalars) {
2306       OS << *V;
2307       if (std::any_of(
2308               R->ExternalUses.begin(), R->ExternalUses.end(),
2309               [&](const BoUpSLP::ExternalUser &EU) { return EU.Scalar == V; }))
2310         OS << " <extract>";
2311       OS << "\n";
2312     }
2313     return Str;
2314   }
2315 
2316   static std::string getNodeAttributes(const TreeEntry *Entry,
2317                                        const BoUpSLP *) {
2318     if (Entry->State == TreeEntry::NeedToGather)
2319       return "color=red";
2320     return "";
2321   }
2322 };
2323 
2324 } // end namespace llvm
2325 
2326 BoUpSLP::~BoUpSLP() {
2327   for (const auto &Pair : DeletedInstructions) {
2328     // Replace operands of ignored instructions with Undefs in case if they were
2329     // marked for deletion.
2330     if (Pair.getSecond()) {
2331       Value *Undef = UndefValue::get(Pair.getFirst()->getType());
2332       Pair.getFirst()->replaceAllUsesWith(Undef);
2333     }
2334     Pair.getFirst()->dropAllReferences();
2335   }
2336   for (const auto &Pair : DeletedInstructions) {
2337     assert(Pair.getFirst()->use_empty() &&
2338            "trying to erase instruction with users.");
2339     Pair.getFirst()->eraseFromParent();
2340   }
2341 }
2342 
2343 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) {
2344   for (auto *V : AV) {
2345     if (auto *I = dyn_cast<Instruction>(V))
2346       eraseInstruction(I, /*ReplaceWithUndef=*/true);
2347   };
2348 }
2349 
2350 void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
2351                         ArrayRef<Value *> UserIgnoreLst) {
2352   ExtraValueToDebugLocsMap ExternallyUsedValues;
2353   buildTree(Roots, ExternallyUsedValues, UserIgnoreLst);
2354 }
2355 
2356 void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
2357                         ExtraValueToDebugLocsMap &ExternallyUsedValues,
2358                         ArrayRef<Value *> UserIgnoreLst) {
2359   deleteTree();
2360   UserIgnoreList = UserIgnoreLst;
2361   if (!allSameType(Roots))
2362     return;
2363   buildTree_rec(Roots, 0, EdgeInfo());
2364 
2365   // Collect the values that we need to extract from the tree.
2366   for (auto &TEPtr : VectorizableTree) {
2367     TreeEntry *Entry = TEPtr.get();
2368 
2369     // No need to handle users of gathered values.
2370     if (Entry->State == TreeEntry::NeedToGather)
2371       continue;
2372 
2373     // For each lane:
2374     for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
2375       Value *Scalar = Entry->Scalars[Lane];
2376       int FoundLane = Lane;
2377       if (!Entry->ReuseShuffleIndices.empty()) {
2378         FoundLane =
2379             std::distance(Entry->ReuseShuffleIndices.begin(),
2380                           llvm::find(Entry->ReuseShuffleIndices, FoundLane));
2381       }
2382 
2383       // Check if the scalar is externally used as an extra arg.
2384       auto ExtI = ExternallyUsedValues.find(Scalar);
2385       if (ExtI != ExternallyUsedValues.end()) {
2386         LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane "
2387                           << Lane << " from " << *Scalar << ".\n");
2388         ExternalUses.emplace_back(Scalar, nullptr, FoundLane);
2389       }
2390       for (User *U : Scalar->users()) {
2391         LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n");
2392 
2393         Instruction *UserInst = dyn_cast<Instruction>(U);
2394         if (!UserInst)
2395           continue;
2396 
2397         // Skip in-tree scalars that become vectors
2398         if (TreeEntry *UseEntry = getTreeEntry(U)) {
2399           Value *UseScalar = UseEntry->Scalars[0];
2400           // Some in-tree scalars will remain as scalar in vectorized
2401           // instructions. If that is the case, the one in Lane 0 will
2402           // be used.
2403           if (UseScalar != U ||
2404               !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) {
2405             LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U
2406                               << ".\n");
2407             assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state");
2408             continue;
2409           }
2410         }
2411 
2412         // Ignore users in the user ignore list.
2413         if (is_contained(UserIgnoreList, UserInst))
2414           continue;
2415 
2416         LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane "
2417                           << Lane << " from " << *Scalar << ".\n");
2418         ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane));
2419       }
2420     }
2421   }
2422 }
2423 
2424 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth,
2425                             const EdgeInfo &UserTreeIdx) {
2426   assert((allConstant(VL) || allSameType(VL)) && "Invalid types!");
2427 
2428   InstructionsState S = getSameOpcode(VL);
2429   if (Depth == RecursionMaxDepth) {
2430     LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n");
2431     newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2432     return;
2433   }
2434 
2435   // Don't handle vectors.
2436   if (S.OpValue->getType()->isVectorTy()) {
2437     LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n");
2438     newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2439     return;
2440   }
2441 
2442   if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue))
2443     if (SI->getValueOperand()->getType()->isVectorTy()) {
2444       LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n");
2445       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2446       return;
2447     }
2448 
2449   // If all of the operands are identical or constant we have a simple solution.
2450   if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) {
2451     LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n");
2452     newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2453     return;
2454   }
2455 
2456   // We now know that this is a vector of instructions of the same type from
2457   // the same block.
2458 
2459   // Don't vectorize ephemeral values.
2460   for (Value *V : VL) {
2461     if (EphValues.count(V)) {
2462       LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V
2463                         << ") is ephemeral.\n");
2464       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2465       return;
2466     }
2467   }
2468 
2469   // Check if this is a duplicate of another entry.
2470   if (TreeEntry *E = getTreeEntry(S.OpValue)) {
2471     LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n");
2472     if (!E->isSame(VL)) {
2473       LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n");
2474       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2475       return;
2476     }
2477     // Record the reuse of the tree node.  FIXME, currently this is only used to
2478     // properly draw the graph rather than for the actual vectorization.
2479     E->UserTreeIndices.push_back(UserTreeIdx);
2480     LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue
2481                       << ".\n");
2482     return;
2483   }
2484 
2485   // Check that none of the instructions in the bundle are already in the tree.
2486   for (Value *V : VL) {
2487     auto *I = dyn_cast<Instruction>(V);
2488     if (!I)
2489       continue;
2490     if (getTreeEntry(I)) {
2491       LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V
2492                         << ") is already in tree.\n");
2493       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2494       return;
2495     }
2496   }
2497 
2498   // If any of the scalars is marked as a value that needs to stay scalar, then
2499   // we need to gather the scalars.
2500   // The reduction nodes (stored in UserIgnoreList) also should stay scalar.
2501   for (Value *V : VL) {
2502     if (MustGather.count(V) || is_contained(UserIgnoreList, V)) {
2503       LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n");
2504       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2505       return;
2506     }
2507   }
2508 
2509   // Check that all of the users of the scalars that we want to vectorize are
2510   // schedulable.
2511   auto *VL0 = cast<Instruction>(S.OpValue);
2512   BasicBlock *BB = VL0->getParent();
2513 
2514   if (!DT->isReachableFromEntry(BB)) {
2515     // Don't go into unreachable blocks. They may contain instructions with
2516     // dependency cycles which confuse the final scheduling.
2517     LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n");
2518     newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2519     return;
2520   }
2521 
2522   // Check that every instruction appears once in this bundle.
2523   SmallVector<unsigned, 4> ReuseShuffleIndicies;
2524   SmallVector<Value *, 4> UniqueValues;
2525   DenseMap<Value *, unsigned> UniquePositions;
2526   for (Value *V : VL) {
2527     auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
2528     ReuseShuffleIndicies.emplace_back(Res.first->second);
2529     if (Res.second)
2530       UniqueValues.emplace_back(V);
2531   }
2532   size_t NumUniqueScalarValues = UniqueValues.size();
2533   if (NumUniqueScalarValues == VL.size()) {
2534     ReuseShuffleIndicies.clear();
2535   } else {
2536     LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n");
2537     if (NumUniqueScalarValues <= 1 ||
2538         !llvm::isPowerOf2_32(NumUniqueScalarValues)) {
2539       LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n");
2540       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2541       return;
2542     }
2543     VL = UniqueValues;
2544   }
2545 
2546   auto &BSRef = BlocksSchedules[BB];
2547   if (!BSRef)
2548     BSRef = std::make_unique<BlockScheduling>(BB);
2549 
2550   BlockScheduling &BS = *BSRef.get();
2551 
2552   Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S);
2553   if (!Bundle) {
2554     LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n");
2555     assert((!BS.getScheduleData(VL0) ||
2556             !BS.getScheduleData(VL0)->isPartOfBundle()) &&
2557            "tryScheduleBundle should cancelScheduling on failure");
2558     newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2559                  ReuseShuffleIndicies);
2560     return;
2561   }
2562   LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n");
2563 
2564   unsigned ShuffleOrOp = S.isAltShuffle() ?
2565                 (unsigned) Instruction::ShuffleVector : S.getOpcode();
2566   switch (ShuffleOrOp) {
2567     case Instruction::PHI: {
2568       auto *PH = cast<PHINode>(VL0);
2569 
2570       // Check for terminator values (e.g. invoke).
2571       for (unsigned j = 0; j < VL.size(); ++j)
2572         for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
2573           Instruction *Term = dyn_cast<Instruction>(
2574               cast<PHINode>(VL[j])->getIncomingValueForBlock(
2575                   PH->getIncomingBlock(i)));
2576           if (Term && Term->isTerminator()) {
2577             LLVM_DEBUG(dbgs()
2578                        << "SLP: Need to swizzle PHINodes (terminator use).\n");
2579             BS.cancelScheduling(VL, VL0);
2580             newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2581                          ReuseShuffleIndicies);
2582             return;
2583           }
2584         }
2585 
2586       TreeEntry *TE =
2587           newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies);
2588       LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n");
2589 
2590       // Keeps the reordered operands to avoid code duplication.
2591       SmallVector<ValueList, 2> OperandsVec;
2592       for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
2593         ValueList Operands;
2594         // Prepare the operand vector.
2595         for (Value *j : VL)
2596           Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock(
2597               PH->getIncomingBlock(i)));
2598         TE->setOperand(i, Operands);
2599         OperandsVec.push_back(Operands);
2600       }
2601       for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx)
2602         buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx});
2603       return;
2604     }
2605     case Instruction::ExtractValue:
2606     case Instruction::ExtractElement: {
2607       OrdersType CurrentOrder;
2608       bool Reuse = canReuseExtract(VL, VL0, CurrentOrder);
2609       if (Reuse) {
2610         LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n");
2611         ++NumOpsWantToKeepOriginalOrder;
2612         newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2613                      ReuseShuffleIndicies);
2614         // This is a special case, as it does not gather, but at the same time
2615         // we are not extending buildTree_rec() towards the operands.
2616         ValueList Op0;
2617         Op0.assign(VL.size(), VL0->getOperand(0));
2618         VectorizableTree.back()->setOperand(0, Op0);
2619         return;
2620       }
2621       if (!CurrentOrder.empty()) {
2622         LLVM_DEBUG({
2623           dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
2624                     "with order";
2625           for (unsigned Idx : CurrentOrder)
2626             dbgs() << " " << Idx;
2627           dbgs() << "\n";
2628         });
2629         // Insert new order with initial value 0, if it does not exist,
2630         // otherwise return the iterator to the existing one.
2631         auto StoredCurrentOrderAndNum =
2632             NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first;
2633         ++StoredCurrentOrderAndNum->getSecond();
2634         newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2635                      ReuseShuffleIndicies,
2636                      StoredCurrentOrderAndNum->getFirst());
2637         // This is a special case, as it does not gather, but at the same time
2638         // we are not extending buildTree_rec() towards the operands.
2639         ValueList Op0;
2640         Op0.assign(VL.size(), VL0->getOperand(0));
2641         VectorizableTree.back()->setOperand(0, Op0);
2642         return;
2643       }
2644       LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n");
2645       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2646                    ReuseShuffleIndicies);
2647       BS.cancelScheduling(VL, VL0);
2648       return;
2649     }
2650     case Instruction::Load: {
2651       // Check that a vectorized load would load the same memory as a scalar
2652       // load. For example, we don't want to vectorize loads that are smaller
2653       // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM
2654       // treats loading/storing it as an i8 struct. If we vectorize loads/stores
2655       // from such a struct, we read/write packed bits disagreeing with the
2656       // unvectorized version.
2657       Type *ScalarTy = VL0->getType();
2658 
2659       if (DL->getTypeSizeInBits(ScalarTy) !=
2660           DL->getTypeAllocSizeInBits(ScalarTy)) {
2661         BS.cancelScheduling(VL, VL0);
2662         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2663                      ReuseShuffleIndicies);
2664         LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n");
2665         return;
2666       }
2667 
2668       // Make sure all loads in the bundle are simple - we can't vectorize
2669       // atomic or volatile loads.
2670       SmallVector<Value *, 4> PointerOps(VL.size());
2671       auto POIter = PointerOps.begin();
2672       for (Value *V : VL) {
2673         auto *L = cast<LoadInst>(V);
2674         if (!L->isSimple()) {
2675           BS.cancelScheduling(VL, VL0);
2676           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2677                        ReuseShuffleIndicies);
2678           LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n");
2679           return;
2680         }
2681         *POIter = L->getPointerOperand();
2682         ++POIter;
2683       }
2684 
2685       OrdersType CurrentOrder;
2686       // Check the order of pointer operands.
2687       if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) {
2688         Value *Ptr0;
2689         Value *PtrN;
2690         if (CurrentOrder.empty()) {
2691           Ptr0 = PointerOps.front();
2692           PtrN = PointerOps.back();
2693         } else {
2694           Ptr0 = PointerOps[CurrentOrder.front()];
2695           PtrN = PointerOps[CurrentOrder.back()];
2696         }
2697         const SCEV *Scev0 = SE->getSCEV(Ptr0);
2698         const SCEV *ScevN = SE->getSCEV(PtrN);
2699         const auto *Diff =
2700             dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0));
2701         uint64_t Size = DL->getTypeAllocSize(ScalarTy);
2702         // Check that the sorted loads are consecutive.
2703         if (Diff && Diff->getAPInt() == (VL.size() - 1) * Size) {
2704           if (CurrentOrder.empty()) {
2705             // Original loads are consecutive and does not require reordering.
2706             ++NumOpsWantToKeepOriginalOrder;
2707             TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S,
2708                                          UserTreeIdx, ReuseShuffleIndicies);
2709             TE->setOperandsInOrder();
2710             LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n");
2711           } else {
2712             // Need to reorder.
2713             auto I = NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first;
2714             ++I->getSecond();
2715             TreeEntry *TE =
2716                 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2717                              ReuseShuffleIndicies, I->getFirst());
2718             TE->setOperandsInOrder();
2719             LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n");
2720           }
2721           return;
2722         }
2723       }
2724 
2725       LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n");
2726       BS.cancelScheduling(VL, VL0);
2727       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2728                    ReuseShuffleIndicies);
2729       return;
2730     }
2731     case Instruction::ZExt:
2732     case Instruction::SExt:
2733     case Instruction::FPToUI:
2734     case Instruction::FPToSI:
2735     case Instruction::FPExt:
2736     case Instruction::PtrToInt:
2737     case Instruction::IntToPtr:
2738     case Instruction::SIToFP:
2739     case Instruction::UIToFP:
2740     case Instruction::Trunc:
2741     case Instruction::FPTrunc:
2742     case Instruction::BitCast: {
2743       Type *SrcTy = VL0->getOperand(0)->getType();
2744       for (Value *V : VL) {
2745         Type *Ty = cast<Instruction>(V)->getOperand(0)->getType();
2746         if (Ty != SrcTy || !isValidElementType(Ty)) {
2747           BS.cancelScheduling(VL, VL0);
2748           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2749                        ReuseShuffleIndicies);
2750           LLVM_DEBUG(dbgs()
2751                      << "SLP: Gathering casts with different src types.\n");
2752           return;
2753         }
2754       }
2755       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2756                                    ReuseShuffleIndicies);
2757       LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n");
2758 
2759       TE->setOperandsInOrder();
2760       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
2761         ValueList Operands;
2762         // Prepare the operand vector.
2763         for (Value *V : VL)
2764           Operands.push_back(cast<Instruction>(V)->getOperand(i));
2765 
2766         buildTree_rec(Operands, Depth + 1, {TE, i});
2767       }
2768       return;
2769     }
2770     case Instruction::ICmp:
2771     case Instruction::FCmp: {
2772       // Check that all of the compares have the same predicate.
2773       CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
2774       CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0);
2775       Type *ComparedTy = VL0->getOperand(0)->getType();
2776       for (Value *V : VL) {
2777         CmpInst *Cmp = cast<CmpInst>(V);
2778         if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) ||
2779             Cmp->getOperand(0)->getType() != ComparedTy) {
2780           BS.cancelScheduling(VL, VL0);
2781           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2782                        ReuseShuffleIndicies);
2783           LLVM_DEBUG(dbgs()
2784                      << "SLP: Gathering cmp with different predicate.\n");
2785           return;
2786         }
2787       }
2788 
2789       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2790                                    ReuseShuffleIndicies);
2791       LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n");
2792 
2793       ValueList Left, Right;
2794       if (cast<CmpInst>(VL0)->isCommutative()) {
2795         // Commutative predicate - collect + sort operands of the instructions
2796         // so that each side is more likely to have the same opcode.
2797         assert(P0 == SwapP0 && "Commutative Predicate mismatch");
2798         reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
2799       } else {
2800         // Collect operands - commute if it uses the swapped predicate.
2801         for (Value *V : VL) {
2802           auto *Cmp = cast<CmpInst>(V);
2803           Value *LHS = Cmp->getOperand(0);
2804           Value *RHS = Cmp->getOperand(1);
2805           if (Cmp->getPredicate() != P0)
2806             std::swap(LHS, RHS);
2807           Left.push_back(LHS);
2808           Right.push_back(RHS);
2809         }
2810       }
2811       TE->setOperand(0, Left);
2812       TE->setOperand(1, Right);
2813       buildTree_rec(Left, Depth + 1, {TE, 0});
2814       buildTree_rec(Right, Depth + 1, {TE, 1});
2815       return;
2816     }
2817     case Instruction::Select:
2818     case Instruction::FNeg:
2819     case Instruction::Add:
2820     case Instruction::FAdd:
2821     case Instruction::Sub:
2822     case Instruction::FSub:
2823     case Instruction::Mul:
2824     case Instruction::FMul:
2825     case Instruction::UDiv:
2826     case Instruction::SDiv:
2827     case Instruction::FDiv:
2828     case Instruction::URem:
2829     case Instruction::SRem:
2830     case Instruction::FRem:
2831     case Instruction::Shl:
2832     case Instruction::LShr:
2833     case Instruction::AShr:
2834     case Instruction::And:
2835     case Instruction::Or:
2836     case Instruction::Xor: {
2837       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2838                                    ReuseShuffleIndicies);
2839       LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n");
2840 
2841       // Sort operands of the instructions so that each side is more likely to
2842       // have the same opcode.
2843       if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) {
2844         ValueList Left, Right;
2845         reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
2846         TE->setOperand(0, Left);
2847         TE->setOperand(1, Right);
2848         buildTree_rec(Left, Depth + 1, {TE, 0});
2849         buildTree_rec(Right, Depth + 1, {TE, 1});
2850         return;
2851       }
2852 
2853       TE->setOperandsInOrder();
2854       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
2855         ValueList Operands;
2856         // Prepare the operand vector.
2857         for (Value *j : VL)
2858           Operands.push_back(cast<Instruction>(j)->getOperand(i));
2859 
2860         buildTree_rec(Operands, Depth + 1, {TE, i});
2861       }
2862       return;
2863     }
2864     case Instruction::GetElementPtr: {
2865       // We don't combine GEPs with complicated (nested) indexing.
2866       for (Value *V : VL) {
2867         if (cast<Instruction>(V)->getNumOperands() != 2) {
2868           LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n");
2869           BS.cancelScheduling(VL, VL0);
2870           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2871                        ReuseShuffleIndicies);
2872           return;
2873         }
2874       }
2875 
2876       // We can't combine several GEPs into one vector if they operate on
2877       // different types.
2878       Type *Ty0 = VL0->getOperand(0)->getType();
2879       for (Value *V : VL) {
2880         Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType();
2881         if (Ty0 != CurTy) {
2882           LLVM_DEBUG(dbgs()
2883                      << "SLP: not-vectorizable GEP (different types).\n");
2884           BS.cancelScheduling(VL, VL0);
2885           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2886                        ReuseShuffleIndicies);
2887           return;
2888         }
2889       }
2890 
2891       // We don't combine GEPs with non-constant indexes.
2892       Type *Ty1 = VL0->getOperand(1)->getType();
2893       for (Value *V : VL) {
2894         auto Op = cast<Instruction>(V)->getOperand(1);
2895         if (!isa<ConstantInt>(Op) ||
2896             (Op->getType() != Ty1 &&
2897              Op->getType()->getScalarSizeInBits() >
2898                  DL->getIndexSizeInBits(
2899                      V->getType()->getPointerAddressSpace()))) {
2900           LLVM_DEBUG(dbgs()
2901                      << "SLP: not-vectorizable GEP (non-constant indexes).\n");
2902           BS.cancelScheduling(VL, VL0);
2903           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2904                        ReuseShuffleIndicies);
2905           return;
2906         }
2907       }
2908 
2909       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2910                                    ReuseShuffleIndicies);
2911       LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n");
2912       TE->setOperandsInOrder();
2913       for (unsigned i = 0, e = 2; i < e; ++i) {
2914         ValueList Operands;
2915         // Prepare the operand vector.
2916         for (Value *V : VL)
2917           Operands.push_back(cast<Instruction>(V)->getOperand(i));
2918 
2919         buildTree_rec(Operands, Depth + 1, {TE, i});
2920       }
2921       return;
2922     }
2923     case Instruction::Store: {
2924       // Check if the stores are consecutive or if we need to swizzle them.
2925       llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType();
2926       // Make sure all stores in the bundle are simple - we can't vectorize
2927       // atomic or volatile stores.
2928       SmallVector<Value *, 4> PointerOps(VL.size());
2929       ValueList Operands(VL.size());
2930       auto POIter = PointerOps.begin();
2931       auto OIter = Operands.begin();
2932       for (Value *V : VL) {
2933         auto *SI = cast<StoreInst>(V);
2934         if (!SI->isSimple()) {
2935           BS.cancelScheduling(VL, VL0);
2936           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2937                        ReuseShuffleIndicies);
2938           LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n");
2939           return;
2940         }
2941         *POIter = SI->getPointerOperand();
2942         *OIter = SI->getValueOperand();
2943         ++POIter;
2944         ++OIter;
2945       }
2946 
2947       OrdersType CurrentOrder;
2948       // Check the order of pointer operands.
2949       if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) {
2950         Value *Ptr0;
2951         Value *PtrN;
2952         if (CurrentOrder.empty()) {
2953           Ptr0 = PointerOps.front();
2954           PtrN = PointerOps.back();
2955         } else {
2956           Ptr0 = PointerOps[CurrentOrder.front()];
2957           PtrN = PointerOps[CurrentOrder.back()];
2958         }
2959         const SCEV *Scev0 = SE->getSCEV(Ptr0);
2960         const SCEV *ScevN = SE->getSCEV(PtrN);
2961         const auto *Diff =
2962             dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0));
2963         uint64_t Size = DL->getTypeAllocSize(ScalarTy);
2964         // Check that the sorted pointer operands are consecutive.
2965         if (Diff && Diff->getAPInt() == (VL.size() - 1) * Size) {
2966           if (CurrentOrder.empty()) {
2967             // Original stores are consecutive and does not require reordering.
2968             ++NumOpsWantToKeepOriginalOrder;
2969             TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S,
2970                                          UserTreeIdx, ReuseShuffleIndicies);
2971             TE->setOperandsInOrder();
2972             buildTree_rec(Operands, Depth + 1, {TE, 0});
2973             LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n");
2974           } else {
2975             // Need to reorder.
2976             auto I = NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first;
2977             ++(I->getSecond());
2978             TreeEntry *TE =
2979                 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2980                              ReuseShuffleIndicies, I->getFirst());
2981             TE->setOperandsInOrder();
2982             buildTree_rec(Operands, Depth + 1, {TE, 0});
2983             LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n");
2984           }
2985           return;
2986         }
2987       }
2988 
2989       BS.cancelScheduling(VL, VL0);
2990       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2991                    ReuseShuffleIndicies);
2992       LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n");
2993       return;
2994     }
2995     case Instruction::Call: {
2996       // Check if the calls are all to the same vectorizable intrinsic.
2997       CallInst *CI = cast<CallInst>(VL0);
2998       // Check if this is an Intrinsic call or something that can be
2999       // represented by an intrinsic call
3000       Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3001       if (!isTriviallyVectorizable(ID)) {
3002         BS.cancelScheduling(VL, VL0);
3003         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3004                      ReuseShuffleIndicies);
3005         LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n");
3006         return;
3007       }
3008       Function *Int = CI->getCalledFunction();
3009       unsigned NumArgs = CI->getNumArgOperands();
3010       SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr);
3011       for (unsigned j = 0; j != NumArgs; ++j)
3012         if (hasVectorInstrinsicScalarOpd(ID, j))
3013           ScalarArgs[j] = CI->getArgOperand(j);
3014       for (Value *V : VL) {
3015         CallInst *CI2 = dyn_cast<CallInst>(V);
3016         if (!CI2 || CI2->getCalledFunction() != Int ||
3017             getVectorIntrinsicIDForCall(CI2, TLI) != ID ||
3018             !CI->hasIdenticalOperandBundleSchema(*CI2)) {
3019           BS.cancelScheduling(VL, VL0);
3020           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3021                        ReuseShuffleIndicies);
3022           LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V
3023                             << "\n");
3024           return;
3025         }
3026         // Some intrinsics have scalar arguments and should be same in order for
3027         // them to be vectorized.
3028         for (unsigned j = 0; j != NumArgs; ++j) {
3029           if (hasVectorInstrinsicScalarOpd(ID, j)) {
3030             Value *A1J = CI2->getArgOperand(j);
3031             if (ScalarArgs[j] != A1J) {
3032               BS.cancelScheduling(VL, VL0);
3033               newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3034                            ReuseShuffleIndicies);
3035               LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI
3036                                 << " argument " << ScalarArgs[j] << "!=" << A1J
3037                                 << "\n");
3038               return;
3039             }
3040           }
3041         }
3042         // Verify that the bundle operands are identical between the two calls.
3043         if (CI->hasOperandBundles() &&
3044             !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(),
3045                         CI->op_begin() + CI->getBundleOperandsEndIndex(),
3046                         CI2->op_begin() + CI2->getBundleOperandsStartIndex())) {
3047           BS.cancelScheduling(VL, VL0);
3048           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3049                        ReuseShuffleIndicies);
3050           LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:"
3051                             << *CI << "!=" << *V << '\n');
3052           return;
3053         }
3054       }
3055 
3056       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3057                                    ReuseShuffleIndicies);
3058       TE->setOperandsInOrder();
3059       for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
3060         ValueList Operands;
3061         // Prepare the operand vector.
3062         for (Value *V : VL) {
3063           auto *CI2 = cast<CallInst>(V);
3064           Operands.push_back(CI2->getArgOperand(i));
3065         }
3066         buildTree_rec(Operands, Depth + 1, {TE, i});
3067       }
3068       return;
3069     }
3070     case Instruction::ShuffleVector: {
3071       // If this is not an alternate sequence of opcode like add-sub
3072       // then do not vectorize this instruction.
3073       if (!S.isAltShuffle()) {
3074         BS.cancelScheduling(VL, VL0);
3075         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3076                      ReuseShuffleIndicies);
3077         LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n");
3078         return;
3079       }
3080       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3081                                    ReuseShuffleIndicies);
3082       LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n");
3083 
3084       // Reorder operands if reordering would enable vectorization.
3085       if (isa<BinaryOperator>(VL0)) {
3086         ValueList Left, Right;
3087         reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
3088         TE->setOperand(0, Left);
3089         TE->setOperand(1, Right);
3090         buildTree_rec(Left, Depth + 1, {TE, 0});
3091         buildTree_rec(Right, Depth + 1, {TE, 1});
3092         return;
3093       }
3094 
3095       TE->setOperandsInOrder();
3096       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
3097         ValueList Operands;
3098         // Prepare the operand vector.
3099         for (Value *V : VL)
3100           Operands.push_back(cast<Instruction>(V)->getOperand(i));
3101 
3102         buildTree_rec(Operands, Depth + 1, {TE, i});
3103       }
3104       return;
3105     }
3106     default:
3107       BS.cancelScheduling(VL, VL0);
3108       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3109                    ReuseShuffleIndicies);
3110       LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n");
3111       return;
3112   }
3113 }
3114 
3115 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const {
3116   unsigned N = 1;
3117   Type *EltTy = T;
3118 
3119   while (isa<CompositeType>(EltTy)) {
3120     if (auto *ST = dyn_cast<StructType>(EltTy)) {
3121       // Check that struct is homogeneous.
3122       for (const auto *Ty : ST->elements())
3123         if (Ty != *ST->element_begin())
3124           return 0;
3125       N *= ST->getNumElements();
3126       EltTy = *ST->element_begin();
3127     } else {
3128       auto *SeqT = cast<SequentialType>(EltTy);
3129       N *= SeqT->getNumElements();
3130       EltTy = SeqT->getElementType();
3131     }
3132   }
3133 
3134   if (!isValidElementType(EltTy))
3135     return 0;
3136   uint64_t VTSize = DL.getTypeStoreSizeInBits(VectorType::get(EltTy, N));
3137   if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T))
3138     return 0;
3139   return N;
3140 }
3141 
3142 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
3143                               SmallVectorImpl<unsigned> &CurrentOrder) const {
3144   Instruction *E0 = cast<Instruction>(OpValue);
3145   assert(E0->getOpcode() == Instruction::ExtractElement ||
3146          E0->getOpcode() == Instruction::ExtractValue);
3147   assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode");
3148   // Check if all of the extracts come from the same vector and from the
3149   // correct offset.
3150   Value *Vec = E0->getOperand(0);
3151 
3152   CurrentOrder.clear();
3153 
3154   // We have to extract from a vector/aggregate with the same number of elements.
3155   unsigned NElts;
3156   if (E0->getOpcode() == Instruction::ExtractValue) {
3157     const DataLayout &DL = E0->getModule()->getDataLayout();
3158     NElts = canMapToVector(Vec->getType(), DL);
3159     if (!NElts)
3160       return false;
3161     // Check if load can be rewritten as load of vector.
3162     LoadInst *LI = dyn_cast<LoadInst>(Vec);
3163     if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size()))
3164       return false;
3165   } else {
3166     NElts = Vec->getType()->getVectorNumElements();
3167   }
3168 
3169   if (NElts != VL.size())
3170     return false;
3171 
3172   // Check that all of the indices extract from the correct offset.
3173   bool ShouldKeepOrder = true;
3174   unsigned E = VL.size();
3175   // Assign to all items the initial value E + 1 so we can check if the extract
3176   // instruction index was used already.
3177   // Also, later we can check that all the indices are used and we have a
3178   // consecutive access in the extract instructions, by checking that no
3179   // element of CurrentOrder still has value E + 1.
3180   CurrentOrder.assign(E, E + 1);
3181   unsigned I = 0;
3182   for (; I < E; ++I) {
3183     auto *Inst = cast<Instruction>(VL[I]);
3184     if (Inst->getOperand(0) != Vec)
3185       break;
3186     Optional<unsigned> Idx = getExtractIndex(Inst);
3187     if (!Idx)
3188       break;
3189     const unsigned ExtIdx = *Idx;
3190     if (ExtIdx != I) {
3191       if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1)
3192         break;
3193       ShouldKeepOrder = false;
3194       CurrentOrder[ExtIdx] = I;
3195     } else {
3196       if (CurrentOrder[I] != E + 1)
3197         break;
3198       CurrentOrder[I] = I;
3199     }
3200   }
3201   if (I < E) {
3202     CurrentOrder.clear();
3203     return false;
3204   }
3205 
3206   return ShouldKeepOrder;
3207 }
3208 
3209 bool BoUpSLP::areAllUsersVectorized(Instruction *I) const {
3210   return I->hasOneUse() ||
3211          std::all_of(I->user_begin(), I->user_end(), [this](User *U) {
3212            return ScalarToTreeEntry.count(U) > 0;
3213          });
3214 }
3215 
3216 int BoUpSLP::getEntryCost(TreeEntry *E) {
3217   ArrayRef<Value*> VL = E->Scalars;
3218 
3219   Type *ScalarTy = VL[0]->getType();
3220   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
3221     ScalarTy = SI->getValueOperand()->getType();
3222   else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0]))
3223     ScalarTy = CI->getOperand(0)->getType();
3224   VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
3225 
3226   // If we have computed a smaller type for the expression, update VecTy so
3227   // that the costs will be accurate.
3228   if (MinBWs.count(VL[0]))
3229     VecTy = VectorType::get(
3230         IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size());
3231 
3232   unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size();
3233   bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
3234   int ReuseShuffleCost = 0;
3235   if (NeedToShuffleReuses) {
3236     ReuseShuffleCost =
3237         TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
3238   }
3239   if (E->State == TreeEntry::NeedToGather) {
3240     if (allConstant(VL))
3241       return 0;
3242     if (isSplat(VL)) {
3243       return ReuseShuffleCost +
3244              TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0);
3245     }
3246     if (E->getOpcode() == Instruction::ExtractElement &&
3247         allSameType(VL) && allSameBlock(VL)) {
3248       Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = isShuffle(VL);
3249       if (ShuffleKind.hasValue()) {
3250         int Cost = TTI->getShuffleCost(ShuffleKind.getValue(), VecTy);
3251         for (auto *V : VL) {
3252           // If all users of instruction are going to be vectorized and this
3253           // instruction itself is not going to be vectorized, consider this
3254           // instruction as dead and remove its cost from the final cost of the
3255           // vectorized tree.
3256           if (areAllUsersVectorized(cast<Instruction>(V)) &&
3257               !ScalarToTreeEntry.count(V)) {
3258             auto *IO = cast<ConstantInt>(
3259                 cast<ExtractElementInst>(V)->getIndexOperand());
3260             Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy,
3261                                             IO->getZExtValue());
3262           }
3263         }
3264         return ReuseShuffleCost + Cost;
3265       }
3266     }
3267     return ReuseShuffleCost + getGatherCost(VL);
3268   }
3269   assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL");
3270   Instruction *VL0 = E->getMainOp();
3271   unsigned ShuffleOrOp =
3272       E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode();
3273   switch (ShuffleOrOp) {
3274     case Instruction::PHI:
3275       return 0;
3276 
3277     case Instruction::ExtractValue:
3278     case Instruction::ExtractElement:
3279       if (NeedToShuffleReuses) {
3280         unsigned Idx = 0;
3281         for (unsigned I : E->ReuseShuffleIndices) {
3282           if (ShuffleOrOp == Instruction::ExtractElement) {
3283             auto *IO = cast<ConstantInt>(
3284                 cast<ExtractElementInst>(VL[I])->getIndexOperand());
3285             Idx = IO->getZExtValue();
3286             ReuseShuffleCost -= TTI->getVectorInstrCost(
3287                 Instruction::ExtractElement, VecTy, Idx);
3288           } else {
3289             ReuseShuffleCost -= TTI->getVectorInstrCost(
3290                 Instruction::ExtractElement, VecTy, Idx);
3291             ++Idx;
3292           }
3293         }
3294         Idx = ReuseShuffleNumbers;
3295         for (Value *V : VL) {
3296           if (ShuffleOrOp == Instruction::ExtractElement) {
3297             auto *IO = cast<ConstantInt>(
3298                 cast<ExtractElementInst>(V)->getIndexOperand());
3299             Idx = IO->getZExtValue();
3300           } else {
3301             --Idx;
3302           }
3303           ReuseShuffleCost +=
3304               TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, Idx);
3305         }
3306       }
3307       if (E->State == TreeEntry::Vectorize) {
3308         int DeadCost = ReuseShuffleCost;
3309         if (!E->ReorderIndices.empty()) {
3310           // TODO: Merge this shuffle with the ReuseShuffleCost.
3311           DeadCost += TTI->getShuffleCost(
3312               TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
3313         }
3314         for (unsigned i = 0, e = VL.size(); i < e; ++i) {
3315           Instruction *E = cast<Instruction>(VL[i]);
3316           // If all users are going to be vectorized, instruction can be
3317           // considered as dead.
3318           // The same, if have only one user, it will be vectorized for sure.
3319           if (areAllUsersVectorized(E)) {
3320             // Take credit for instruction that will become dead.
3321             if (E->hasOneUse()) {
3322               Instruction *Ext = E->user_back();
3323               if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
3324                   all_of(Ext->users(),
3325                          [](User *U) { return isa<GetElementPtrInst>(U); })) {
3326                 // Use getExtractWithExtendCost() to calculate the cost of
3327                 // extractelement/ext pair.
3328                 DeadCost -= TTI->getExtractWithExtendCost(
3329                     Ext->getOpcode(), Ext->getType(), VecTy, i);
3330                 // Add back the cost of s|zext which is subtracted separately.
3331                 DeadCost += TTI->getCastInstrCost(
3332                     Ext->getOpcode(), Ext->getType(), E->getType(), Ext);
3333                 continue;
3334               }
3335             }
3336             DeadCost -=
3337                 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i);
3338           }
3339         }
3340         return DeadCost;
3341       }
3342       return ReuseShuffleCost + getGatherCost(VL);
3343 
3344     case Instruction::ZExt:
3345     case Instruction::SExt:
3346     case Instruction::FPToUI:
3347     case Instruction::FPToSI:
3348     case Instruction::FPExt:
3349     case Instruction::PtrToInt:
3350     case Instruction::IntToPtr:
3351     case Instruction::SIToFP:
3352     case Instruction::UIToFP:
3353     case Instruction::Trunc:
3354     case Instruction::FPTrunc:
3355     case Instruction::BitCast: {
3356       Type *SrcTy = VL0->getOperand(0)->getType();
3357       int ScalarEltCost =
3358           TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, VL0);
3359       if (NeedToShuffleReuses) {
3360         ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3361       }
3362 
3363       // Calculate the cost of this instruction.
3364       int ScalarCost = VL.size() * ScalarEltCost;
3365 
3366       VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size());
3367       int VecCost = 0;
3368       // Check if the values are candidates to demote.
3369       if (!MinBWs.count(VL0) || VecTy != SrcVecTy) {
3370         VecCost = ReuseShuffleCost +
3371                   TTI->getCastInstrCost(E->getOpcode(), VecTy, SrcVecTy, VL0);
3372       }
3373       return VecCost - ScalarCost;
3374     }
3375     case Instruction::FCmp:
3376     case Instruction::ICmp:
3377     case Instruction::Select: {
3378       // Calculate the cost of this instruction.
3379       int ScalarEltCost = TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy,
3380                                                   Builder.getInt1Ty(), VL0);
3381       if (NeedToShuffleReuses) {
3382         ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3383       }
3384       VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size());
3385       int ScalarCost = VecTy->getNumElements() * ScalarEltCost;
3386       int VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), VecTy, MaskTy, VL0);
3387       return ReuseShuffleCost + VecCost - ScalarCost;
3388     }
3389     case Instruction::FNeg:
3390     case Instruction::Add:
3391     case Instruction::FAdd:
3392     case Instruction::Sub:
3393     case Instruction::FSub:
3394     case Instruction::Mul:
3395     case Instruction::FMul:
3396     case Instruction::UDiv:
3397     case Instruction::SDiv:
3398     case Instruction::FDiv:
3399     case Instruction::URem:
3400     case Instruction::SRem:
3401     case Instruction::FRem:
3402     case Instruction::Shl:
3403     case Instruction::LShr:
3404     case Instruction::AShr:
3405     case Instruction::And:
3406     case Instruction::Or:
3407     case Instruction::Xor: {
3408       // Certain instructions can be cheaper to vectorize if they have a
3409       // constant second vector operand.
3410       TargetTransformInfo::OperandValueKind Op1VK =
3411           TargetTransformInfo::OK_AnyValue;
3412       TargetTransformInfo::OperandValueKind Op2VK =
3413           TargetTransformInfo::OK_UniformConstantValue;
3414       TargetTransformInfo::OperandValueProperties Op1VP =
3415           TargetTransformInfo::OP_None;
3416       TargetTransformInfo::OperandValueProperties Op2VP =
3417           TargetTransformInfo::OP_PowerOf2;
3418 
3419       // If all operands are exactly the same ConstantInt then set the
3420       // operand kind to OK_UniformConstantValue.
3421       // If instead not all operands are constants, then set the operand kind
3422       // to OK_AnyValue. If all operands are constants but not the same,
3423       // then set the operand kind to OK_NonUniformConstantValue.
3424       ConstantInt *CInt0 = nullptr;
3425       for (unsigned i = 0, e = VL.size(); i < e; ++i) {
3426         const Instruction *I = cast<Instruction>(VL[i]);
3427         unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0;
3428         ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx));
3429         if (!CInt) {
3430           Op2VK = TargetTransformInfo::OK_AnyValue;
3431           Op2VP = TargetTransformInfo::OP_None;
3432           break;
3433         }
3434         if (Op2VP == TargetTransformInfo::OP_PowerOf2 &&
3435             !CInt->getValue().isPowerOf2())
3436           Op2VP = TargetTransformInfo::OP_None;
3437         if (i == 0) {
3438           CInt0 = CInt;
3439           continue;
3440         }
3441         if (CInt0 != CInt)
3442           Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
3443       }
3444 
3445       SmallVector<const Value *, 4> Operands(VL0->operand_values());
3446       int ScalarEltCost = TTI->getArithmeticInstrCost(
3447           E->getOpcode(), ScalarTy, Op1VK, Op2VK, Op1VP, Op2VP, Operands, VL0);
3448       if (NeedToShuffleReuses) {
3449         ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3450       }
3451       int ScalarCost = VecTy->getNumElements() * ScalarEltCost;
3452       int VecCost = TTI->getArithmeticInstrCost(
3453           E->getOpcode(), VecTy, Op1VK, Op2VK, Op1VP, Op2VP, Operands, VL0);
3454       return ReuseShuffleCost + VecCost - ScalarCost;
3455     }
3456     case Instruction::GetElementPtr: {
3457       TargetTransformInfo::OperandValueKind Op1VK =
3458           TargetTransformInfo::OK_AnyValue;
3459       TargetTransformInfo::OperandValueKind Op2VK =
3460           TargetTransformInfo::OK_UniformConstantValue;
3461 
3462       int ScalarEltCost =
3463           TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK);
3464       if (NeedToShuffleReuses) {
3465         ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3466       }
3467       int ScalarCost = VecTy->getNumElements() * ScalarEltCost;
3468       int VecCost =
3469           TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK);
3470       return ReuseShuffleCost + VecCost - ScalarCost;
3471     }
3472     case Instruction::Load: {
3473       // Cost of wide load - cost of scalar loads.
3474       MaybeAlign alignment(cast<LoadInst>(VL0)->getAlignment());
3475       int ScalarEltCost =
3476           TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0, VL0);
3477       if (NeedToShuffleReuses) {
3478         ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3479       }
3480       int ScalarLdCost = VecTy->getNumElements() * ScalarEltCost;
3481       int VecLdCost =
3482           TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0, VL0);
3483       if (!E->ReorderIndices.empty()) {
3484         // TODO: Merge this shuffle with the ReuseShuffleCost.
3485         VecLdCost += TTI->getShuffleCost(
3486             TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
3487       }
3488       return ReuseShuffleCost + VecLdCost - ScalarLdCost;
3489     }
3490     case Instruction::Store: {
3491       // We know that we can merge the stores. Calculate the cost.
3492       bool IsReorder = !E->ReorderIndices.empty();
3493       auto *SI =
3494           cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0);
3495       MaybeAlign Alignment(SI->getAlignment());
3496       int ScalarEltCost =
3497           TTI->getMemoryOpCost(Instruction::Store, ScalarTy, Alignment, 0, VL0);
3498       if (NeedToShuffleReuses)
3499         ReuseShuffleCost = -(ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3500       int ScalarStCost = VecTy->getNumElements() * ScalarEltCost;
3501       int VecStCost = TTI->getMemoryOpCost(Instruction::Store,
3502                                            VecTy, Alignment, 0, VL0);
3503       if (IsReorder) {
3504         // TODO: Merge this shuffle with the ReuseShuffleCost.
3505         VecStCost += TTI->getShuffleCost(
3506             TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
3507       }
3508       return ReuseShuffleCost + VecStCost - ScalarStCost;
3509     }
3510     case Instruction::Call: {
3511       CallInst *CI = cast<CallInst>(VL0);
3512       Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3513 
3514       // Calculate the cost of the scalar and vector calls.
3515       SmallVector<Type *, 4> ScalarTys;
3516       for (unsigned op = 0, opc = CI->getNumArgOperands(); op != opc; ++op)
3517         ScalarTys.push_back(CI->getArgOperand(op)->getType());
3518 
3519       FastMathFlags FMF;
3520       if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
3521         FMF = FPMO->getFastMathFlags();
3522 
3523       int ScalarEltCost =
3524           TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF);
3525       if (NeedToShuffleReuses) {
3526         ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3527       }
3528       int ScalarCallCost = VecTy->getNumElements() * ScalarEltCost;
3529 
3530       SmallVector<Value *, 4> Args(CI->arg_operands());
3531       int VecCallCost = TTI->getIntrinsicInstrCost(ID, CI->getType(), Args, FMF,
3532                                                    VecTy->getNumElements());
3533 
3534       LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost
3535                         << " (" << VecCallCost << "-" << ScalarCallCost << ")"
3536                         << " for " << *CI << "\n");
3537 
3538       return ReuseShuffleCost + VecCallCost - ScalarCallCost;
3539     }
3540     case Instruction::ShuffleVector: {
3541       assert(E->isAltShuffle() &&
3542              ((Instruction::isBinaryOp(E->getOpcode()) &&
3543                Instruction::isBinaryOp(E->getAltOpcode())) ||
3544               (Instruction::isCast(E->getOpcode()) &&
3545                Instruction::isCast(E->getAltOpcode()))) &&
3546              "Invalid Shuffle Vector Operand");
3547       int ScalarCost = 0;
3548       if (NeedToShuffleReuses) {
3549         for (unsigned Idx : E->ReuseShuffleIndices) {
3550           Instruction *I = cast<Instruction>(VL[Idx]);
3551           ReuseShuffleCost -= TTI->getInstructionCost(
3552               I, TargetTransformInfo::TCK_RecipThroughput);
3553         }
3554         for (Value *V : VL) {
3555           Instruction *I = cast<Instruction>(V);
3556           ReuseShuffleCost += TTI->getInstructionCost(
3557               I, TargetTransformInfo::TCK_RecipThroughput);
3558         }
3559       }
3560       for (Value *V : VL) {
3561         Instruction *I = cast<Instruction>(V);
3562         assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode");
3563         ScalarCost += TTI->getInstructionCost(
3564             I, TargetTransformInfo::TCK_RecipThroughput);
3565       }
3566       // VecCost is equal to sum of the cost of creating 2 vectors
3567       // and the cost of creating shuffle.
3568       int VecCost = 0;
3569       if (Instruction::isBinaryOp(E->getOpcode())) {
3570         VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy);
3571         VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy);
3572       } else {
3573         Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType();
3574         Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType();
3575         VectorType *Src0Ty = VectorType::get(Src0SclTy, VL.size());
3576         VectorType *Src1Ty = VectorType::get(Src1SclTy, VL.size());
3577         VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty);
3578         VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty);
3579       }
3580       VecCost += TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, 0);
3581       return ReuseShuffleCost + VecCost - ScalarCost;
3582     }
3583     default:
3584       llvm_unreachable("Unknown instruction");
3585   }
3586 }
3587 
3588 bool BoUpSLP::isFullyVectorizableTinyTree() const {
3589   LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height "
3590                     << VectorizableTree.size() << " is fully vectorizable .\n");
3591 
3592   // We only handle trees of heights 1 and 2.
3593   if (VectorizableTree.size() == 1 &&
3594       VectorizableTree[0]->State == TreeEntry::Vectorize)
3595     return true;
3596 
3597   if (VectorizableTree.size() != 2)
3598     return false;
3599 
3600   // Handle splat and all-constants stores.
3601   if (VectorizableTree[0]->State == TreeEntry::Vectorize &&
3602       (allConstant(VectorizableTree[1]->Scalars) ||
3603        isSplat(VectorizableTree[1]->Scalars)))
3604     return true;
3605 
3606   // Gathering cost would be too much for tiny trees.
3607   if (VectorizableTree[0]->State == TreeEntry::NeedToGather ||
3608       VectorizableTree[1]->State == TreeEntry::NeedToGather)
3609     return false;
3610 
3611   return true;
3612 }
3613 
3614 bool BoUpSLP::isLoadCombineReductionCandidate(unsigned RdxOpcode) const {
3615   if (RdxOpcode != Instruction::Or)
3616     return false;
3617 
3618   unsigned NumElts = VectorizableTree[0]->Scalars.size();
3619   Value *FirstReduced = VectorizableTree[0]->Scalars[0];
3620 
3621   // Look past the reduction to find a source value. Arbitrarily follow the
3622   // path through operand 0 of any 'or'. Also, peek through optional
3623   // shift-left-by-constant.
3624   Value *ZextLoad = FirstReduced;
3625   while (match(ZextLoad, m_Or(m_Value(), m_Value())) ||
3626          match(ZextLoad, m_Shl(m_Value(), m_Constant())))
3627     ZextLoad = cast<BinaryOperator>(ZextLoad)->getOperand(0);
3628 
3629   // Check if the input to the reduction is an extended load.
3630   Value *LoadPtr;
3631   if (!match(ZextLoad, m_ZExt(m_Load(m_Value(LoadPtr)))))
3632     return false;
3633 
3634   // Require that the total load bit width is a legal integer type.
3635   // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target.
3636   // But <16 x i8> --> i128 is not, so the backend probably can't reduce it.
3637   Type *SrcTy = LoadPtr->getType()->getPointerElementType();
3638   unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts;
3639   LLVMContext &Context = FirstReduced->getContext();
3640   if (!TTI->isTypeLegal(IntegerType::get(Context, LoadBitWidth)))
3641     return false;
3642 
3643   // Everything matched - assume that we can fold the whole sequence using
3644   // load combining.
3645   LLVM_DEBUG(dbgs() << "SLP: Assume load combining for scalar reduction of "
3646              << *(cast<Instruction>(FirstReduced)) << "\n");
3647 
3648   return true;
3649 }
3650 
3651 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const {
3652   // We can vectorize the tree if its size is greater than or equal to the
3653   // minimum size specified by the MinTreeSize command line option.
3654   if (VectorizableTree.size() >= MinTreeSize)
3655     return false;
3656 
3657   // If we have a tiny tree (a tree whose size is less than MinTreeSize), we
3658   // can vectorize it if we can prove it fully vectorizable.
3659   if (isFullyVectorizableTinyTree())
3660     return false;
3661 
3662   assert(VectorizableTree.empty()
3663              ? ExternalUses.empty()
3664              : true && "We shouldn't have any external users");
3665 
3666   // Otherwise, we can't vectorize the tree. It is both tiny and not fully
3667   // vectorizable.
3668   return true;
3669 }
3670 
3671 int BoUpSLP::getSpillCost() const {
3672   // Walk from the bottom of the tree to the top, tracking which values are
3673   // live. When we see a call instruction that is not part of our tree,
3674   // query TTI to see if there is a cost to keeping values live over it
3675   // (for example, if spills and fills are required).
3676   unsigned BundleWidth = VectorizableTree.front()->Scalars.size();
3677   int Cost = 0;
3678 
3679   SmallPtrSet<Instruction*, 4> LiveValues;
3680   Instruction *PrevInst = nullptr;
3681 
3682   for (const auto &TEPtr : VectorizableTree) {
3683     Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]);
3684     if (!Inst)
3685       continue;
3686 
3687     if (!PrevInst) {
3688       PrevInst = Inst;
3689       continue;
3690     }
3691 
3692     // Update LiveValues.
3693     LiveValues.erase(PrevInst);
3694     for (auto &J : PrevInst->operands()) {
3695       if (isa<Instruction>(&*J) && getTreeEntry(&*J))
3696         LiveValues.insert(cast<Instruction>(&*J));
3697     }
3698 
3699     LLVM_DEBUG({
3700       dbgs() << "SLP: #LV: " << LiveValues.size();
3701       for (auto *X : LiveValues)
3702         dbgs() << " " << X->getName();
3703       dbgs() << ", Looking at ";
3704       Inst->dump();
3705     });
3706 
3707     // Now find the sequence of instructions between PrevInst and Inst.
3708     unsigned NumCalls = 0;
3709     BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(),
3710                                  PrevInstIt =
3711                                      PrevInst->getIterator().getReverse();
3712     while (InstIt != PrevInstIt) {
3713       if (PrevInstIt == PrevInst->getParent()->rend()) {
3714         PrevInstIt = Inst->getParent()->rbegin();
3715         continue;
3716       }
3717 
3718       // Debug information does not impact spill cost.
3719       if ((isa<CallInst>(&*PrevInstIt) &&
3720            !isa<DbgInfoIntrinsic>(&*PrevInstIt)) &&
3721           &*PrevInstIt != PrevInst)
3722         NumCalls++;
3723 
3724       ++PrevInstIt;
3725     }
3726 
3727     if (NumCalls) {
3728       SmallVector<Type*, 4> V;
3729       for (auto *II : LiveValues)
3730         V.push_back(VectorType::get(II->getType(), BundleWidth));
3731       Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V);
3732     }
3733 
3734     PrevInst = Inst;
3735   }
3736 
3737   return Cost;
3738 }
3739 
3740 int BoUpSLP::getTreeCost() {
3741   int Cost = 0;
3742   LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size "
3743                     << VectorizableTree.size() << ".\n");
3744 
3745   unsigned BundleWidth = VectorizableTree[0]->Scalars.size();
3746 
3747   for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) {
3748     TreeEntry &TE = *VectorizableTree[I].get();
3749 
3750     // We create duplicate tree entries for gather sequences that have multiple
3751     // uses. However, we should not compute the cost of duplicate sequences.
3752     // For example, if we have a build vector (i.e., insertelement sequence)
3753     // that is used by more than one vector instruction, we only need to
3754     // compute the cost of the insertelement instructions once. The redundant
3755     // instructions will be eliminated by CSE.
3756     //
3757     // We should consider not creating duplicate tree entries for gather
3758     // sequences, and instead add additional edges to the tree representing
3759     // their uses. Since such an approach results in fewer total entries,
3760     // existing heuristics based on tree size may yield different results.
3761     //
3762     if (TE.State == TreeEntry::NeedToGather &&
3763         std::any_of(std::next(VectorizableTree.begin(), I + 1),
3764                     VectorizableTree.end(),
3765                     [TE](const std::unique_ptr<TreeEntry> &EntryPtr) {
3766                       return EntryPtr->State == TreeEntry::NeedToGather &&
3767                              EntryPtr->isSame(TE.Scalars);
3768                     }))
3769       continue;
3770 
3771     int C = getEntryCost(&TE);
3772     LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C
3773                       << " for bundle that starts with " << *TE.Scalars[0]
3774                       << ".\n");
3775     Cost += C;
3776   }
3777 
3778   SmallPtrSet<Value *, 16> ExtractCostCalculated;
3779   int ExtractCost = 0;
3780   for (ExternalUser &EU : ExternalUses) {
3781     // We only add extract cost once for the same scalar.
3782     if (!ExtractCostCalculated.insert(EU.Scalar).second)
3783       continue;
3784 
3785     // Uses by ephemeral values are free (because the ephemeral value will be
3786     // removed prior to code generation, and so the extraction will be
3787     // removed as well).
3788     if (EphValues.count(EU.User))
3789       continue;
3790 
3791     // If we plan to rewrite the tree in a smaller type, we will need to sign
3792     // extend the extracted value back to the original type. Here, we account
3793     // for the extract and the added cost of the sign extend if needed.
3794     auto *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth);
3795     auto *ScalarRoot = VectorizableTree[0]->Scalars[0];
3796     if (MinBWs.count(ScalarRoot)) {
3797       auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
3798       auto Extend =
3799           MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt;
3800       VecTy = VectorType::get(MinTy, BundleWidth);
3801       ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(),
3802                                                    VecTy, EU.Lane);
3803     } else {
3804       ExtractCost +=
3805           TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane);
3806     }
3807   }
3808 
3809   int SpillCost = getSpillCost();
3810   Cost += SpillCost + ExtractCost;
3811 
3812   std::string Str;
3813   {
3814     raw_string_ostream OS(Str);
3815     OS << "SLP: Spill Cost = " << SpillCost << ".\n"
3816        << "SLP: Extract Cost = " << ExtractCost << ".\n"
3817        << "SLP: Total Cost = " << Cost << ".\n";
3818   }
3819   LLVM_DEBUG(dbgs() << Str);
3820 
3821   if (ViewSLPTree)
3822     ViewGraph(this, "SLP" + F->getName(), false, Str);
3823 
3824   return Cost;
3825 }
3826 
3827 int BoUpSLP::getGatherCost(Type *Ty,
3828                            const DenseSet<unsigned> &ShuffledIndices) const {
3829   int Cost = 0;
3830   for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i)
3831     if (!ShuffledIndices.count(i))
3832       Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
3833   if (!ShuffledIndices.empty())
3834     Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty);
3835   return Cost;
3836 }
3837 
3838 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const {
3839   // Find the type of the operands in VL.
3840   Type *ScalarTy = VL[0]->getType();
3841   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
3842     ScalarTy = SI->getValueOperand()->getType();
3843   VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
3844   // Find the cost of inserting/extracting values from the vector.
3845   // Check if the same elements are inserted several times and count them as
3846   // shuffle candidates.
3847   DenseSet<unsigned> ShuffledElements;
3848   DenseSet<Value *> UniqueElements;
3849   // Iterate in reverse order to consider insert elements with the high cost.
3850   for (unsigned I = VL.size(); I > 0; --I) {
3851     unsigned Idx = I - 1;
3852     if (!UniqueElements.insert(VL[Idx]).second)
3853       ShuffledElements.insert(Idx);
3854   }
3855   return getGatherCost(VecTy, ShuffledElements);
3856 }
3857 
3858 // Perform operand reordering on the instructions in VL and return the reordered
3859 // operands in Left and Right.
3860 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
3861                                              SmallVectorImpl<Value *> &Left,
3862                                              SmallVectorImpl<Value *> &Right,
3863                                              const DataLayout &DL,
3864                                              ScalarEvolution &SE,
3865                                              const BoUpSLP &R) {
3866   if (VL.empty())
3867     return;
3868   VLOperands Ops(VL, DL, SE, R);
3869   // Reorder the operands in place.
3870   Ops.reorder();
3871   Left = Ops.getVL(0);
3872   Right = Ops.getVL(1);
3873 }
3874 
3875 void BoUpSLP::setInsertPointAfterBundle(TreeEntry *E) {
3876   // Get the basic block this bundle is in. All instructions in the bundle
3877   // should be in this block.
3878   auto *Front = E->getMainOp();
3879   auto *BB = Front->getParent();
3880   assert(llvm::all_of(make_range(E->Scalars.begin(), E->Scalars.end()),
3881                       [=](Value *V) -> bool {
3882                         auto *I = cast<Instruction>(V);
3883                         return !E->isOpcodeOrAlt(I) || I->getParent() == BB;
3884                       }));
3885 
3886   // The last instruction in the bundle in program order.
3887   Instruction *LastInst = nullptr;
3888 
3889   // Find the last instruction. The common case should be that BB has been
3890   // scheduled, and the last instruction is VL.back(). So we start with
3891   // VL.back() and iterate over schedule data until we reach the end of the
3892   // bundle. The end of the bundle is marked by null ScheduleData.
3893   if (BlocksSchedules.count(BB)) {
3894     auto *Bundle =
3895         BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back()));
3896     if (Bundle && Bundle->isPartOfBundle())
3897       for (; Bundle; Bundle = Bundle->NextInBundle)
3898         if (Bundle->OpValue == Bundle->Inst)
3899           LastInst = Bundle->Inst;
3900   }
3901 
3902   // LastInst can still be null at this point if there's either not an entry
3903   // for BB in BlocksSchedules or there's no ScheduleData available for
3904   // VL.back(). This can be the case if buildTree_rec aborts for various
3905   // reasons (e.g., the maximum recursion depth is reached, the maximum region
3906   // size is reached, etc.). ScheduleData is initialized in the scheduling
3907   // "dry-run".
3908   //
3909   // If this happens, we can still find the last instruction by brute force. We
3910   // iterate forwards from Front (inclusive) until we either see all
3911   // instructions in the bundle or reach the end of the block. If Front is the
3912   // last instruction in program order, LastInst will be set to Front, and we
3913   // will visit all the remaining instructions in the block.
3914   //
3915   // One of the reasons we exit early from buildTree_rec is to place an upper
3916   // bound on compile-time. Thus, taking an additional compile-time hit here is
3917   // not ideal. However, this should be exceedingly rare since it requires that
3918   // we both exit early from buildTree_rec and that the bundle be out-of-order
3919   // (causing us to iterate all the way to the end of the block).
3920   if (!LastInst) {
3921     SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end());
3922     for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) {
3923       if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I))
3924         LastInst = &I;
3925       if (Bundle.empty())
3926         break;
3927     }
3928   }
3929   assert(LastInst && "Failed to find last instruction in bundle");
3930 
3931   // Set the insertion point after the last instruction in the bundle. Set the
3932   // debug location to Front.
3933   Builder.SetInsertPoint(BB, ++LastInst->getIterator());
3934   Builder.SetCurrentDebugLocation(Front->getDebugLoc());
3935 }
3936 
3937 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) {
3938   Value *Vec = UndefValue::get(Ty);
3939   // Generate the 'InsertElement' instruction.
3940   for (unsigned i = 0; i < Ty->getNumElements(); ++i) {
3941     Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i));
3942     if (auto *Insrt = dyn_cast<InsertElementInst>(Vec)) {
3943       GatherSeq.insert(Insrt);
3944       CSEBlocks.insert(Insrt->getParent());
3945 
3946       // Add to our 'need-to-extract' list.
3947       if (TreeEntry *E = getTreeEntry(VL[i])) {
3948         // Find which lane we need to extract.
3949         int FoundLane = -1;
3950         for (unsigned Lane = 0, LE = E->Scalars.size(); Lane != LE; ++Lane) {
3951           // Is this the lane of the scalar that we are looking for ?
3952           if (E->Scalars[Lane] == VL[i]) {
3953             FoundLane = Lane;
3954             break;
3955           }
3956         }
3957         assert(FoundLane >= 0 && "Could not find the correct lane");
3958         if (!E->ReuseShuffleIndices.empty()) {
3959           FoundLane =
3960               std::distance(E->ReuseShuffleIndices.begin(),
3961                             llvm::find(E->ReuseShuffleIndices, FoundLane));
3962         }
3963         ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane));
3964       }
3965     }
3966   }
3967 
3968   return Vec;
3969 }
3970 
3971 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) {
3972   InstructionsState S = getSameOpcode(VL);
3973   if (S.getOpcode()) {
3974     if (TreeEntry *E = getTreeEntry(S.OpValue)) {
3975       if (E->isSame(VL)) {
3976         Value *V = vectorizeTree(E);
3977         if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) {
3978           // We need to get the vectorized value but without shuffle.
3979           if (auto *SV = dyn_cast<ShuffleVectorInst>(V)) {
3980             V = SV->getOperand(0);
3981           } else {
3982             // Reshuffle to get only unique values.
3983             SmallVector<unsigned, 4> UniqueIdxs;
3984             SmallSet<unsigned, 4> UsedIdxs;
3985             for(unsigned Idx : E->ReuseShuffleIndices)
3986               if (UsedIdxs.insert(Idx).second)
3987                 UniqueIdxs.emplace_back(Idx);
3988             V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()),
3989                                             UniqueIdxs);
3990           }
3991         }
3992         return V;
3993       }
3994     }
3995   }
3996 
3997   Type *ScalarTy = S.OpValue->getType();
3998   if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue))
3999     ScalarTy = SI->getValueOperand()->getType();
4000 
4001   // Check that every instruction appears once in this bundle.
4002   SmallVector<unsigned, 4> ReuseShuffleIndicies;
4003   SmallVector<Value *, 4> UniqueValues;
4004   if (VL.size() > 2) {
4005     DenseMap<Value *, unsigned> UniquePositions;
4006     for (Value *V : VL) {
4007       auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
4008       ReuseShuffleIndicies.emplace_back(Res.first->second);
4009       if (Res.second || isa<Constant>(V))
4010         UniqueValues.emplace_back(V);
4011     }
4012     // Do not shuffle single element or if number of unique values is not power
4013     // of 2.
4014     if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 ||
4015         !llvm::isPowerOf2_32(UniqueValues.size()))
4016       ReuseShuffleIndicies.clear();
4017     else
4018       VL = UniqueValues;
4019   }
4020   VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
4021 
4022   Value *V = Gather(VL, VecTy);
4023   if (!ReuseShuffleIndicies.empty()) {
4024     V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4025                                     ReuseShuffleIndicies, "shuffle");
4026     if (auto *I = dyn_cast<Instruction>(V)) {
4027       GatherSeq.insert(I);
4028       CSEBlocks.insert(I->getParent());
4029     }
4030   }
4031   return V;
4032 }
4033 
4034 static void inversePermutation(ArrayRef<unsigned> Indices,
4035                                SmallVectorImpl<unsigned> &Mask) {
4036   Mask.clear();
4037   const unsigned E = Indices.size();
4038   Mask.resize(E);
4039   for (unsigned I = 0; I < E; ++I)
4040     Mask[Indices[I]] = I;
4041 }
4042 
4043 Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
4044   IRBuilder<>::InsertPointGuard Guard(Builder);
4045 
4046   if (E->VectorizedValue) {
4047     LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n");
4048     return E->VectorizedValue;
4049   }
4050 
4051   Instruction *VL0 = E->getMainOp();
4052   Type *ScalarTy = VL0->getType();
4053   if (StoreInst *SI = dyn_cast<StoreInst>(VL0))
4054     ScalarTy = SI->getValueOperand()->getType();
4055   VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size());
4056 
4057   bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
4058 
4059   if (E->State == TreeEntry::NeedToGather) {
4060     setInsertPointAfterBundle(E);
4061     auto *V = Gather(E->Scalars, VecTy);
4062     if (NeedToShuffleReuses) {
4063       V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4064                                       E->ReuseShuffleIndices, "shuffle");
4065       if (auto *I = dyn_cast<Instruction>(V)) {
4066         GatherSeq.insert(I);
4067         CSEBlocks.insert(I->getParent());
4068       }
4069     }
4070     E->VectorizedValue = V;
4071     return V;
4072   }
4073 
4074   unsigned ShuffleOrOp =
4075       E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode();
4076   switch (ShuffleOrOp) {
4077     case Instruction::PHI: {
4078       auto *PH = cast<PHINode>(VL0);
4079       Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI());
4080       Builder.SetCurrentDebugLocation(PH->getDebugLoc());
4081       PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues());
4082       Value *V = NewPhi;
4083       if (NeedToShuffleReuses) {
4084         V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4085                                         E->ReuseShuffleIndices, "shuffle");
4086       }
4087       E->VectorizedValue = V;
4088 
4089       // PHINodes may have multiple entries from the same block. We want to
4090       // visit every block once.
4091       SmallPtrSet<BasicBlock*, 4> VisitedBBs;
4092 
4093       for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
4094         ValueList Operands;
4095         BasicBlock *IBB = PH->getIncomingBlock(i);
4096 
4097         if (!VisitedBBs.insert(IBB).second) {
4098           NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB);
4099           continue;
4100         }
4101 
4102         Builder.SetInsertPoint(IBB->getTerminator());
4103         Builder.SetCurrentDebugLocation(PH->getDebugLoc());
4104         Value *Vec = vectorizeTree(E->getOperand(i));
4105         NewPhi->addIncoming(Vec, IBB);
4106       }
4107 
4108       assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() &&
4109              "Invalid number of incoming values");
4110       return V;
4111     }
4112 
4113     case Instruction::ExtractElement: {
4114       if (E->State == TreeEntry::Vectorize) {
4115         Value *V = E->getSingleOperand(0);
4116         if (!E->ReorderIndices.empty()) {
4117           OrdersType Mask;
4118           inversePermutation(E->ReorderIndices, Mask);
4119           Builder.SetInsertPoint(VL0);
4120           V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), Mask,
4121                                           "reorder_shuffle");
4122         }
4123         if (NeedToShuffleReuses) {
4124           // TODO: Merge this shuffle with the ReorderShuffleMask.
4125           if (E->ReorderIndices.empty())
4126             Builder.SetInsertPoint(VL0);
4127           V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4128                                           E->ReuseShuffleIndices, "shuffle");
4129         }
4130         E->VectorizedValue = V;
4131         return V;
4132       }
4133       setInsertPointAfterBundle(E);
4134       auto *V = Gather(E->Scalars, VecTy);
4135       if (NeedToShuffleReuses) {
4136         V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4137                                         E->ReuseShuffleIndices, "shuffle");
4138         if (auto *I = dyn_cast<Instruction>(V)) {
4139           GatherSeq.insert(I);
4140           CSEBlocks.insert(I->getParent());
4141         }
4142       }
4143       E->VectorizedValue = V;
4144       return V;
4145     }
4146     case Instruction::ExtractValue: {
4147       if (E->State == TreeEntry::Vectorize) {
4148         LoadInst *LI = cast<LoadInst>(E->getSingleOperand(0));
4149         Builder.SetInsertPoint(LI);
4150         PointerType *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace());
4151         Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy);
4152         LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlignment());
4153         Value *NewV = propagateMetadata(V, E->Scalars);
4154         if (!E->ReorderIndices.empty()) {
4155           OrdersType Mask;
4156           inversePermutation(E->ReorderIndices, Mask);
4157           NewV = Builder.CreateShuffleVector(NewV, UndefValue::get(VecTy), Mask,
4158                                              "reorder_shuffle");
4159         }
4160         if (NeedToShuffleReuses) {
4161           // TODO: Merge this shuffle with the ReorderShuffleMask.
4162           NewV = Builder.CreateShuffleVector(
4163               NewV, UndefValue::get(VecTy), E->ReuseShuffleIndices, "shuffle");
4164         }
4165         E->VectorizedValue = NewV;
4166         return NewV;
4167       }
4168       setInsertPointAfterBundle(E);
4169       auto *V = Gather(E->Scalars, VecTy);
4170       if (NeedToShuffleReuses) {
4171         V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4172                                         E->ReuseShuffleIndices, "shuffle");
4173         if (auto *I = dyn_cast<Instruction>(V)) {
4174           GatherSeq.insert(I);
4175           CSEBlocks.insert(I->getParent());
4176         }
4177       }
4178       E->VectorizedValue = V;
4179       return V;
4180     }
4181     case Instruction::ZExt:
4182     case Instruction::SExt:
4183     case Instruction::FPToUI:
4184     case Instruction::FPToSI:
4185     case Instruction::FPExt:
4186     case Instruction::PtrToInt:
4187     case Instruction::IntToPtr:
4188     case Instruction::SIToFP:
4189     case Instruction::UIToFP:
4190     case Instruction::Trunc:
4191     case Instruction::FPTrunc:
4192     case Instruction::BitCast: {
4193       setInsertPointAfterBundle(E);
4194 
4195       Value *InVec = vectorizeTree(E->getOperand(0));
4196 
4197       if (E->VectorizedValue) {
4198         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
4199         return E->VectorizedValue;
4200       }
4201 
4202       auto *CI = cast<CastInst>(VL0);
4203       Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy);
4204       if (NeedToShuffleReuses) {
4205         V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4206                                         E->ReuseShuffleIndices, "shuffle");
4207       }
4208       E->VectorizedValue = V;
4209       ++NumVectorInstructions;
4210       return V;
4211     }
4212     case Instruction::FCmp:
4213     case Instruction::ICmp: {
4214       setInsertPointAfterBundle(E);
4215 
4216       Value *L = vectorizeTree(E->getOperand(0));
4217       Value *R = vectorizeTree(E->getOperand(1));
4218 
4219       if (E->VectorizedValue) {
4220         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
4221         return E->VectorizedValue;
4222       }
4223 
4224       CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
4225       Value *V;
4226       if (E->getOpcode() == Instruction::FCmp)
4227         V = Builder.CreateFCmp(P0, L, R);
4228       else
4229         V = Builder.CreateICmp(P0, L, R);
4230 
4231       propagateIRFlags(V, E->Scalars, VL0);
4232       if (NeedToShuffleReuses) {
4233         V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4234                                         E->ReuseShuffleIndices, "shuffle");
4235       }
4236       E->VectorizedValue = V;
4237       ++NumVectorInstructions;
4238       return V;
4239     }
4240     case Instruction::Select: {
4241       setInsertPointAfterBundle(E);
4242 
4243       Value *Cond = vectorizeTree(E->getOperand(0));
4244       Value *True = vectorizeTree(E->getOperand(1));
4245       Value *False = vectorizeTree(E->getOperand(2));
4246 
4247       if (E->VectorizedValue) {
4248         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
4249         return E->VectorizedValue;
4250       }
4251 
4252       Value *V = Builder.CreateSelect(Cond, True, False);
4253       if (NeedToShuffleReuses) {
4254         V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4255                                         E->ReuseShuffleIndices, "shuffle");
4256       }
4257       E->VectorizedValue = V;
4258       ++NumVectorInstructions;
4259       return V;
4260     }
4261     case Instruction::FNeg: {
4262       setInsertPointAfterBundle(E);
4263 
4264       Value *Op = vectorizeTree(E->getOperand(0));
4265 
4266       if (E->VectorizedValue) {
4267         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
4268         return E->VectorizedValue;
4269       }
4270 
4271       Value *V = Builder.CreateUnOp(
4272           static_cast<Instruction::UnaryOps>(E->getOpcode()), Op);
4273       propagateIRFlags(V, E->Scalars, VL0);
4274       if (auto *I = dyn_cast<Instruction>(V))
4275         V = propagateMetadata(I, E->Scalars);
4276 
4277       if (NeedToShuffleReuses) {
4278         V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4279                                         E->ReuseShuffleIndices, "shuffle");
4280       }
4281       E->VectorizedValue = V;
4282       ++NumVectorInstructions;
4283 
4284       return V;
4285     }
4286     case Instruction::Add:
4287     case Instruction::FAdd:
4288     case Instruction::Sub:
4289     case Instruction::FSub:
4290     case Instruction::Mul:
4291     case Instruction::FMul:
4292     case Instruction::UDiv:
4293     case Instruction::SDiv:
4294     case Instruction::FDiv:
4295     case Instruction::URem:
4296     case Instruction::SRem:
4297     case Instruction::FRem:
4298     case Instruction::Shl:
4299     case Instruction::LShr:
4300     case Instruction::AShr:
4301     case Instruction::And:
4302     case Instruction::Or:
4303     case Instruction::Xor: {
4304       setInsertPointAfterBundle(E);
4305 
4306       Value *LHS = vectorizeTree(E->getOperand(0));
4307       Value *RHS = vectorizeTree(E->getOperand(1));
4308 
4309       if (E->VectorizedValue) {
4310         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
4311         return E->VectorizedValue;
4312       }
4313 
4314       Value *V = Builder.CreateBinOp(
4315           static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS,
4316           RHS);
4317       propagateIRFlags(V, E->Scalars, VL0);
4318       if (auto *I = dyn_cast<Instruction>(V))
4319         V = propagateMetadata(I, E->Scalars);
4320 
4321       if (NeedToShuffleReuses) {
4322         V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4323                                         E->ReuseShuffleIndices, "shuffle");
4324       }
4325       E->VectorizedValue = V;
4326       ++NumVectorInstructions;
4327 
4328       return V;
4329     }
4330     case Instruction::Load: {
4331       // Loads are inserted at the head of the tree because we don't want to
4332       // sink them all the way down past store instructions.
4333       bool IsReorder = E->updateStateIfReorder();
4334       if (IsReorder)
4335         VL0 = E->getMainOp();
4336       setInsertPointAfterBundle(E);
4337 
4338       LoadInst *LI = cast<LoadInst>(VL0);
4339       Type *ScalarLoadTy = LI->getType();
4340       unsigned AS = LI->getPointerAddressSpace();
4341 
4342       Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(),
4343                                             VecTy->getPointerTo(AS));
4344 
4345       // The pointer operand uses an in-tree scalar so we add the new BitCast to
4346       // ExternalUses list to make sure that an extract will be generated in the
4347       // future.
4348       Value *PO = LI->getPointerOperand();
4349       if (getTreeEntry(PO))
4350         ExternalUses.push_back(ExternalUser(PO, cast<User>(VecPtr), 0));
4351 
4352       MaybeAlign Alignment = MaybeAlign(LI->getAlignment());
4353       LI = Builder.CreateLoad(VecTy, VecPtr);
4354       if (!Alignment)
4355         Alignment = MaybeAlign(DL->getABITypeAlignment(ScalarLoadTy));
4356       LI->setAlignment(Alignment);
4357       Value *V = propagateMetadata(LI, E->Scalars);
4358       if (IsReorder) {
4359         OrdersType Mask;
4360         inversePermutation(E->ReorderIndices, Mask);
4361         V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()),
4362                                         Mask, "reorder_shuffle");
4363       }
4364       if (NeedToShuffleReuses) {
4365         // TODO: Merge this shuffle with the ReorderShuffleMask.
4366         V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4367                                         E->ReuseShuffleIndices, "shuffle");
4368       }
4369       E->VectorizedValue = V;
4370       ++NumVectorInstructions;
4371       return V;
4372     }
4373     case Instruction::Store: {
4374       bool IsReorder = !E->ReorderIndices.empty();
4375       auto *SI = cast<StoreInst>(
4376           IsReorder ? E->Scalars[E->ReorderIndices.front()] : VL0);
4377       unsigned Alignment = SI->getAlignment();
4378       unsigned AS = SI->getPointerAddressSpace();
4379 
4380       setInsertPointAfterBundle(E);
4381 
4382       Value *VecValue = vectorizeTree(E->getOperand(0));
4383       if (IsReorder) {
4384         OrdersType Mask;
4385         inversePermutation(E->ReorderIndices, Mask);
4386         VecValue = Builder.CreateShuffleVector(
4387             VecValue, UndefValue::get(VecValue->getType()), E->ReorderIndices,
4388             "reorder_shuffle");
4389       }
4390       Value *ScalarPtr = SI->getPointerOperand();
4391       Value *VecPtr = Builder.CreateBitCast(
4392           ScalarPtr, VecValue->getType()->getPointerTo(AS));
4393       StoreInst *ST = Builder.CreateStore(VecValue, VecPtr);
4394 
4395       // The pointer operand uses an in-tree scalar, so add the new BitCast to
4396       // ExternalUses to make sure that an extract will be generated in the
4397       // future.
4398       if (getTreeEntry(ScalarPtr))
4399         ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0));
4400 
4401       if (!Alignment)
4402         Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType());
4403 
4404       ST->setAlignment(Align(Alignment));
4405       Value *V = propagateMetadata(ST, E->Scalars);
4406       if (NeedToShuffleReuses) {
4407         V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4408                                         E->ReuseShuffleIndices, "shuffle");
4409       }
4410       E->VectorizedValue = V;
4411       ++NumVectorInstructions;
4412       return V;
4413     }
4414     case Instruction::GetElementPtr: {
4415       setInsertPointAfterBundle(E);
4416 
4417       Value *Op0 = vectorizeTree(E->getOperand(0));
4418 
4419       std::vector<Value *> OpVecs;
4420       for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e;
4421            ++j) {
4422         ValueList &VL = E->getOperand(j);
4423         // Need to cast all elements to the same type before vectorization to
4424         // avoid crash.
4425         Type *VL0Ty = VL0->getOperand(j)->getType();
4426         Type *Ty = llvm::all_of(
4427                        VL, [VL0Ty](Value *V) { return VL0Ty == V->getType(); })
4428                        ? VL0Ty
4429                        : DL->getIndexType(cast<GetElementPtrInst>(VL0)
4430                                               ->getPointerOperandType()
4431                                               ->getScalarType());
4432         for (Value *&V : VL) {
4433           auto *CI = cast<ConstantInt>(V);
4434           V = ConstantExpr::getIntegerCast(CI, Ty,
4435                                            CI->getValue().isSignBitSet());
4436         }
4437         Value *OpVec = vectorizeTree(VL);
4438         OpVecs.push_back(OpVec);
4439       }
4440 
4441       Value *V = Builder.CreateGEP(
4442           cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs);
4443       if (Instruction *I = dyn_cast<Instruction>(V))
4444         V = propagateMetadata(I, E->Scalars);
4445 
4446       if (NeedToShuffleReuses) {
4447         V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4448                                         E->ReuseShuffleIndices, "shuffle");
4449       }
4450       E->VectorizedValue = V;
4451       ++NumVectorInstructions;
4452 
4453       return V;
4454     }
4455     case Instruction::Call: {
4456       CallInst *CI = cast<CallInst>(VL0);
4457       setInsertPointAfterBundle(E);
4458 
4459       Intrinsic::ID IID  = Intrinsic::not_intrinsic;
4460       if (Function *FI = CI->getCalledFunction())
4461         IID = FI->getIntrinsicID();
4462 
4463       Value *ScalarArg = nullptr;
4464       std::vector<Value *> OpVecs;
4465       for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) {
4466         ValueList OpVL;
4467         // Some intrinsics have scalar arguments. This argument should not be
4468         // vectorized.
4469         if (hasVectorInstrinsicScalarOpd(IID, j)) {
4470           CallInst *CEI = cast<CallInst>(VL0);
4471           ScalarArg = CEI->getArgOperand(j);
4472           OpVecs.push_back(CEI->getArgOperand(j));
4473           continue;
4474         }
4475 
4476         Value *OpVec = vectorizeTree(E->getOperand(j));
4477         LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n");
4478         OpVecs.push_back(OpVec);
4479       }
4480 
4481       Module *M = F->getParent();
4482       Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4483       Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) };
4484       Function *CF = Intrinsic::getDeclaration(M, ID, Tys);
4485       SmallVector<OperandBundleDef, 1> OpBundles;
4486       CI->getOperandBundlesAsDefs(OpBundles);
4487       Value *V = Builder.CreateCall(CF, OpVecs, OpBundles);
4488 
4489       // The scalar argument uses an in-tree scalar so we add the new vectorized
4490       // call to ExternalUses list to make sure that an extract will be
4491       // generated in the future.
4492       if (ScalarArg && getTreeEntry(ScalarArg))
4493         ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0));
4494 
4495       propagateIRFlags(V, E->Scalars, VL0);
4496       if (NeedToShuffleReuses) {
4497         V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4498                                         E->ReuseShuffleIndices, "shuffle");
4499       }
4500       E->VectorizedValue = V;
4501       ++NumVectorInstructions;
4502       return V;
4503     }
4504     case Instruction::ShuffleVector: {
4505       assert(E->isAltShuffle() &&
4506              ((Instruction::isBinaryOp(E->getOpcode()) &&
4507                Instruction::isBinaryOp(E->getAltOpcode())) ||
4508               (Instruction::isCast(E->getOpcode()) &&
4509                Instruction::isCast(E->getAltOpcode()))) &&
4510              "Invalid Shuffle Vector Operand");
4511 
4512       Value *LHS = nullptr, *RHS = nullptr;
4513       if (Instruction::isBinaryOp(E->getOpcode())) {
4514         setInsertPointAfterBundle(E);
4515         LHS = vectorizeTree(E->getOperand(0));
4516         RHS = vectorizeTree(E->getOperand(1));
4517       } else {
4518         setInsertPointAfterBundle(E);
4519         LHS = vectorizeTree(E->getOperand(0));
4520       }
4521 
4522       if (E->VectorizedValue) {
4523         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
4524         return E->VectorizedValue;
4525       }
4526 
4527       Value *V0, *V1;
4528       if (Instruction::isBinaryOp(E->getOpcode())) {
4529         V0 = Builder.CreateBinOp(
4530             static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS);
4531         V1 = Builder.CreateBinOp(
4532             static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS);
4533       } else {
4534         V0 = Builder.CreateCast(
4535             static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy);
4536         V1 = Builder.CreateCast(
4537             static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy);
4538       }
4539 
4540       // Create shuffle to take alternate operations from the vector.
4541       // Also, gather up main and alt scalar ops to propagate IR flags to
4542       // each vector operation.
4543       ValueList OpScalars, AltScalars;
4544       unsigned e = E->Scalars.size();
4545       SmallVector<Constant *, 8> Mask(e);
4546       for (unsigned i = 0; i < e; ++i) {
4547         auto *OpInst = cast<Instruction>(E->Scalars[i]);
4548         assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode");
4549         if (OpInst->getOpcode() == E->getAltOpcode()) {
4550           Mask[i] = Builder.getInt32(e + i);
4551           AltScalars.push_back(E->Scalars[i]);
4552         } else {
4553           Mask[i] = Builder.getInt32(i);
4554           OpScalars.push_back(E->Scalars[i]);
4555         }
4556       }
4557 
4558       Value *ShuffleMask = ConstantVector::get(Mask);
4559       propagateIRFlags(V0, OpScalars);
4560       propagateIRFlags(V1, AltScalars);
4561 
4562       Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask);
4563       if (Instruction *I = dyn_cast<Instruction>(V))
4564         V = propagateMetadata(I, E->Scalars);
4565       if (NeedToShuffleReuses) {
4566         V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4567                                         E->ReuseShuffleIndices, "shuffle");
4568       }
4569       E->VectorizedValue = V;
4570       ++NumVectorInstructions;
4571 
4572       return V;
4573     }
4574     default:
4575     llvm_unreachable("unknown inst");
4576   }
4577   return nullptr;
4578 }
4579 
4580 Value *BoUpSLP::vectorizeTree() {
4581   ExtraValueToDebugLocsMap ExternallyUsedValues;
4582   return vectorizeTree(ExternallyUsedValues);
4583 }
4584 
4585 Value *
4586 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) {
4587   // All blocks must be scheduled before any instructions are inserted.
4588   for (auto &BSIter : BlocksSchedules) {
4589     scheduleBlock(BSIter.second.get());
4590   }
4591 
4592   Builder.SetInsertPoint(&F->getEntryBlock().front());
4593   auto *VectorRoot = vectorizeTree(VectorizableTree[0].get());
4594 
4595   // If the vectorized tree can be rewritten in a smaller type, we truncate the
4596   // vectorized root. InstCombine will then rewrite the entire expression. We
4597   // sign extend the extracted values below.
4598   auto *ScalarRoot = VectorizableTree[0]->Scalars[0];
4599   if (MinBWs.count(ScalarRoot)) {
4600     if (auto *I = dyn_cast<Instruction>(VectorRoot))
4601       Builder.SetInsertPoint(&*++BasicBlock::iterator(I));
4602     auto BundleWidth = VectorizableTree[0]->Scalars.size();
4603     auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
4604     auto *VecTy = VectorType::get(MinTy, BundleWidth);
4605     auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy);
4606     VectorizableTree[0]->VectorizedValue = Trunc;
4607   }
4608 
4609   LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size()
4610                     << " values .\n");
4611 
4612   // If necessary, sign-extend or zero-extend ScalarRoot to the larger type
4613   // specified by ScalarType.
4614   auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) {
4615     if (!MinBWs.count(ScalarRoot))
4616       return Ex;
4617     if (MinBWs[ScalarRoot].second)
4618       return Builder.CreateSExt(Ex, ScalarType);
4619     return Builder.CreateZExt(Ex, ScalarType);
4620   };
4621 
4622   // Extract all of the elements with the external uses.
4623   for (const auto &ExternalUse : ExternalUses) {
4624     Value *Scalar = ExternalUse.Scalar;
4625     llvm::User *User = ExternalUse.User;
4626 
4627     // Skip users that we already RAUW. This happens when one instruction
4628     // has multiple uses of the same value.
4629     if (User && !is_contained(Scalar->users(), User))
4630       continue;
4631     TreeEntry *E = getTreeEntry(Scalar);
4632     assert(E && "Invalid scalar");
4633     assert(E->State == TreeEntry::Vectorize && "Extracting from a gather list");
4634 
4635     Value *Vec = E->VectorizedValue;
4636     assert(Vec && "Can't find vectorizable value");
4637 
4638     Value *Lane = Builder.getInt32(ExternalUse.Lane);
4639     // If User == nullptr, the Scalar is used as extra arg. Generate
4640     // ExtractElement instruction and update the record for this scalar in
4641     // ExternallyUsedValues.
4642     if (!User) {
4643       assert(ExternallyUsedValues.count(Scalar) &&
4644              "Scalar with nullptr as an external user must be registered in "
4645              "ExternallyUsedValues map");
4646       if (auto *VecI = dyn_cast<Instruction>(Vec)) {
4647         Builder.SetInsertPoint(VecI->getParent(),
4648                                std::next(VecI->getIterator()));
4649       } else {
4650         Builder.SetInsertPoint(&F->getEntryBlock().front());
4651       }
4652       Value *Ex = Builder.CreateExtractElement(Vec, Lane);
4653       Ex = extend(ScalarRoot, Ex, Scalar->getType());
4654       CSEBlocks.insert(cast<Instruction>(Scalar)->getParent());
4655       auto &Locs = ExternallyUsedValues[Scalar];
4656       ExternallyUsedValues.insert({Ex, Locs});
4657       ExternallyUsedValues.erase(Scalar);
4658       // Required to update internally referenced instructions.
4659       Scalar->replaceAllUsesWith(Ex);
4660       continue;
4661     }
4662 
4663     // Generate extracts for out-of-tree users.
4664     // Find the insertion point for the extractelement lane.
4665     if (auto *VecI = dyn_cast<Instruction>(Vec)) {
4666       if (PHINode *PH = dyn_cast<PHINode>(User)) {
4667         for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) {
4668           if (PH->getIncomingValue(i) == Scalar) {
4669             Instruction *IncomingTerminator =
4670                 PH->getIncomingBlock(i)->getTerminator();
4671             if (isa<CatchSwitchInst>(IncomingTerminator)) {
4672               Builder.SetInsertPoint(VecI->getParent(),
4673                                      std::next(VecI->getIterator()));
4674             } else {
4675               Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator());
4676             }
4677             Value *Ex = Builder.CreateExtractElement(Vec, Lane);
4678             Ex = extend(ScalarRoot, Ex, Scalar->getType());
4679             CSEBlocks.insert(PH->getIncomingBlock(i));
4680             PH->setOperand(i, Ex);
4681           }
4682         }
4683       } else {
4684         Builder.SetInsertPoint(cast<Instruction>(User));
4685         Value *Ex = Builder.CreateExtractElement(Vec, Lane);
4686         Ex = extend(ScalarRoot, Ex, Scalar->getType());
4687         CSEBlocks.insert(cast<Instruction>(User)->getParent());
4688         User->replaceUsesOfWith(Scalar, Ex);
4689       }
4690     } else {
4691       Builder.SetInsertPoint(&F->getEntryBlock().front());
4692       Value *Ex = Builder.CreateExtractElement(Vec, Lane);
4693       Ex = extend(ScalarRoot, Ex, Scalar->getType());
4694       CSEBlocks.insert(&F->getEntryBlock());
4695       User->replaceUsesOfWith(Scalar, Ex);
4696     }
4697 
4698     LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n");
4699   }
4700 
4701   // For each vectorized value:
4702   for (auto &TEPtr : VectorizableTree) {
4703     TreeEntry *Entry = TEPtr.get();
4704 
4705     // No need to handle users of gathered values.
4706     if (Entry->State == TreeEntry::NeedToGather)
4707       continue;
4708 
4709     assert(Entry->VectorizedValue && "Can't find vectorizable value");
4710 
4711     // For each lane:
4712     for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
4713       Value *Scalar = Entry->Scalars[Lane];
4714 
4715 #ifndef NDEBUG
4716       Type *Ty = Scalar->getType();
4717       if (!Ty->isVoidTy()) {
4718         for (User *U : Scalar->users()) {
4719           LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n");
4720 
4721           // It is legal to delete users in the ignorelist.
4722           assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) &&
4723                  "Deleting out-of-tree value");
4724         }
4725       }
4726 #endif
4727       LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n");
4728       eraseInstruction(cast<Instruction>(Scalar));
4729     }
4730   }
4731 
4732   Builder.ClearInsertionPoint();
4733 
4734   return VectorizableTree[0]->VectorizedValue;
4735 }
4736 
4737 void BoUpSLP::optimizeGatherSequence() {
4738   LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size()
4739                     << " gather sequences instructions.\n");
4740   // LICM InsertElementInst sequences.
4741   for (Instruction *I : GatherSeq) {
4742     if (isDeleted(I))
4743       continue;
4744 
4745     // Check if this block is inside a loop.
4746     Loop *L = LI->getLoopFor(I->getParent());
4747     if (!L)
4748       continue;
4749 
4750     // Check if it has a preheader.
4751     BasicBlock *PreHeader = L->getLoopPreheader();
4752     if (!PreHeader)
4753       continue;
4754 
4755     // If the vector or the element that we insert into it are
4756     // instructions that are defined in this basic block then we can't
4757     // hoist this instruction.
4758     auto *Op0 = dyn_cast<Instruction>(I->getOperand(0));
4759     auto *Op1 = dyn_cast<Instruction>(I->getOperand(1));
4760     if (Op0 && L->contains(Op0))
4761       continue;
4762     if (Op1 && L->contains(Op1))
4763       continue;
4764 
4765     // We can hoist this instruction. Move it to the pre-header.
4766     I->moveBefore(PreHeader->getTerminator());
4767   }
4768 
4769   // Make a list of all reachable blocks in our CSE queue.
4770   SmallVector<const DomTreeNode *, 8> CSEWorkList;
4771   CSEWorkList.reserve(CSEBlocks.size());
4772   for (BasicBlock *BB : CSEBlocks)
4773     if (DomTreeNode *N = DT->getNode(BB)) {
4774       assert(DT->isReachableFromEntry(N));
4775       CSEWorkList.push_back(N);
4776     }
4777 
4778   // Sort blocks by domination. This ensures we visit a block after all blocks
4779   // dominating it are visited.
4780   llvm::stable_sort(CSEWorkList,
4781                     [this](const DomTreeNode *A, const DomTreeNode *B) {
4782                       return DT->properlyDominates(A, B);
4783                     });
4784 
4785   // Perform O(N^2) search over the gather sequences and merge identical
4786   // instructions. TODO: We can further optimize this scan if we split the
4787   // instructions into different buckets based on the insert lane.
4788   SmallVector<Instruction *, 16> Visited;
4789   for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) {
4790     assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) &&
4791            "Worklist not sorted properly!");
4792     BasicBlock *BB = (*I)->getBlock();
4793     // For all instructions in blocks containing gather sequences:
4794     for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) {
4795       Instruction *In = &*it++;
4796       if (isDeleted(In))
4797         continue;
4798       if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In))
4799         continue;
4800 
4801       // Check if we can replace this instruction with any of the
4802       // visited instructions.
4803       for (Instruction *v : Visited) {
4804         if (In->isIdenticalTo(v) &&
4805             DT->dominates(v->getParent(), In->getParent())) {
4806           In->replaceAllUsesWith(v);
4807           eraseInstruction(In);
4808           In = nullptr;
4809           break;
4810         }
4811       }
4812       if (In) {
4813         assert(!is_contained(Visited, In));
4814         Visited.push_back(In);
4815       }
4816     }
4817   }
4818   CSEBlocks.clear();
4819   GatherSeq.clear();
4820 }
4821 
4822 // Groups the instructions to a bundle (which is then a single scheduling entity)
4823 // and schedules instructions until the bundle gets ready.
4824 Optional<BoUpSLP::ScheduleData *>
4825 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP,
4826                                             const InstructionsState &S) {
4827   if (isa<PHINode>(S.OpValue))
4828     return nullptr;
4829 
4830   // Initialize the instruction bundle.
4831   Instruction *OldScheduleEnd = ScheduleEnd;
4832   ScheduleData *PrevInBundle = nullptr;
4833   ScheduleData *Bundle = nullptr;
4834   bool ReSchedule = false;
4835   LLVM_DEBUG(dbgs() << "SLP:  bundle: " << *S.OpValue << "\n");
4836 
4837   // Make sure that the scheduling region contains all
4838   // instructions of the bundle.
4839   for (Value *V : VL) {
4840     if (!extendSchedulingRegion(V, S))
4841       return None;
4842   }
4843 
4844   for (Value *V : VL) {
4845     ScheduleData *BundleMember = getScheduleData(V);
4846     assert(BundleMember &&
4847            "no ScheduleData for bundle member (maybe not in same basic block)");
4848     if (BundleMember->IsScheduled) {
4849       // A bundle member was scheduled as single instruction before and now
4850       // needs to be scheduled as part of the bundle. We just get rid of the
4851       // existing schedule.
4852       LLVM_DEBUG(dbgs() << "SLP:  reset schedule because " << *BundleMember
4853                         << " was already scheduled\n");
4854       ReSchedule = true;
4855     }
4856     assert(BundleMember->isSchedulingEntity() &&
4857            "bundle member already part of other bundle");
4858     if (PrevInBundle) {
4859       PrevInBundle->NextInBundle = BundleMember;
4860     } else {
4861       Bundle = BundleMember;
4862     }
4863     BundleMember->UnscheduledDepsInBundle = 0;
4864     Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps;
4865 
4866     // Group the instructions to a bundle.
4867     BundleMember->FirstInBundle = Bundle;
4868     PrevInBundle = BundleMember;
4869   }
4870   if (ScheduleEnd != OldScheduleEnd) {
4871     // The scheduling region got new instructions at the lower end (or it is a
4872     // new region for the first bundle). This makes it necessary to
4873     // recalculate all dependencies.
4874     // It is seldom that this needs to be done a second time after adding the
4875     // initial bundle to the region.
4876     for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
4877       doForAllOpcodes(I, [](ScheduleData *SD) {
4878         SD->clearDependencies();
4879       });
4880     }
4881     ReSchedule = true;
4882   }
4883   if (ReSchedule) {
4884     resetSchedule();
4885     initialFillReadyList(ReadyInsts);
4886   }
4887   assert(Bundle && "Failed to find schedule bundle");
4888 
4889   LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block "
4890                     << BB->getName() << "\n");
4891 
4892   calculateDependencies(Bundle, true, SLP);
4893 
4894   // Now try to schedule the new bundle. As soon as the bundle is "ready" it
4895   // means that there are no cyclic dependencies and we can schedule it.
4896   // Note that's important that we don't "schedule" the bundle yet (see
4897   // cancelScheduling).
4898   while (!Bundle->isReady() && !ReadyInsts.empty()) {
4899 
4900     ScheduleData *pickedSD = ReadyInsts.back();
4901     ReadyInsts.pop_back();
4902 
4903     if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) {
4904       schedule(pickedSD, ReadyInsts);
4905     }
4906   }
4907   if (!Bundle->isReady()) {
4908     cancelScheduling(VL, S.OpValue);
4909     return None;
4910   }
4911   return Bundle;
4912 }
4913 
4914 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL,
4915                                                 Value *OpValue) {
4916   if (isa<PHINode>(OpValue))
4917     return;
4918 
4919   ScheduleData *Bundle = getScheduleData(OpValue);
4920   LLVM_DEBUG(dbgs() << "SLP:  cancel scheduling of " << *Bundle << "\n");
4921   assert(!Bundle->IsScheduled &&
4922          "Can't cancel bundle which is already scheduled");
4923   assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() &&
4924          "tried to unbundle something which is not a bundle");
4925 
4926   // Un-bundle: make single instructions out of the bundle.
4927   ScheduleData *BundleMember = Bundle;
4928   while (BundleMember) {
4929     assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links");
4930     BundleMember->FirstInBundle = BundleMember;
4931     ScheduleData *Next = BundleMember->NextInBundle;
4932     BundleMember->NextInBundle = nullptr;
4933     BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps;
4934     if (BundleMember->UnscheduledDepsInBundle == 0) {
4935       ReadyInsts.insert(BundleMember);
4936     }
4937     BundleMember = Next;
4938   }
4939 }
4940 
4941 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() {
4942   // Allocate a new ScheduleData for the instruction.
4943   if (ChunkPos >= ChunkSize) {
4944     ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize));
4945     ChunkPos = 0;
4946   }
4947   return &(ScheduleDataChunks.back()[ChunkPos++]);
4948 }
4949 
4950 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V,
4951                                                       const InstructionsState &S) {
4952   if (getScheduleData(V, isOneOf(S, V)))
4953     return true;
4954   Instruction *I = dyn_cast<Instruction>(V);
4955   assert(I && "bundle member must be an instruction");
4956   assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled");
4957   auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool {
4958     ScheduleData *ISD = getScheduleData(I);
4959     if (!ISD)
4960       return false;
4961     assert(isInSchedulingRegion(ISD) &&
4962            "ScheduleData not in scheduling region");
4963     ScheduleData *SD = allocateScheduleDataChunks();
4964     SD->Inst = I;
4965     SD->init(SchedulingRegionID, S.OpValue);
4966     ExtraScheduleDataMap[I][S.OpValue] = SD;
4967     return true;
4968   };
4969   if (CheckSheduleForI(I))
4970     return true;
4971   if (!ScheduleStart) {
4972     // It's the first instruction in the new region.
4973     initScheduleData(I, I->getNextNode(), nullptr, nullptr);
4974     ScheduleStart = I;
4975     ScheduleEnd = I->getNextNode();
4976     if (isOneOf(S, I) != I)
4977       CheckSheduleForI(I);
4978     assert(ScheduleEnd && "tried to vectorize a terminator?");
4979     LLVM_DEBUG(dbgs() << "SLP:  initialize schedule region to " << *I << "\n");
4980     return true;
4981   }
4982   // Search up and down at the same time, because we don't know if the new
4983   // instruction is above or below the existing scheduling region.
4984   BasicBlock::reverse_iterator UpIter =
4985       ++ScheduleStart->getIterator().getReverse();
4986   BasicBlock::reverse_iterator UpperEnd = BB->rend();
4987   BasicBlock::iterator DownIter = ScheduleEnd->getIterator();
4988   BasicBlock::iterator LowerEnd = BB->end();
4989   while (true) {
4990     if (++ScheduleRegionSize > ScheduleRegionSizeLimit) {
4991       LLVM_DEBUG(dbgs() << "SLP:  exceeded schedule region size limit\n");
4992       return false;
4993     }
4994 
4995     if (UpIter != UpperEnd) {
4996       if (&*UpIter == I) {
4997         initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion);
4998         ScheduleStart = I;
4999         if (isOneOf(S, I) != I)
5000           CheckSheduleForI(I);
5001         LLVM_DEBUG(dbgs() << "SLP:  extend schedule region start to " << *I
5002                           << "\n");
5003         return true;
5004       }
5005       ++UpIter;
5006     }
5007     if (DownIter != LowerEnd) {
5008       if (&*DownIter == I) {
5009         initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion,
5010                          nullptr);
5011         ScheduleEnd = I->getNextNode();
5012         if (isOneOf(S, I) != I)
5013           CheckSheduleForI(I);
5014         assert(ScheduleEnd && "tried to vectorize a terminator?");
5015         LLVM_DEBUG(dbgs() << "SLP:  extend schedule region end to " << *I
5016                           << "\n");
5017         return true;
5018       }
5019       ++DownIter;
5020     }
5021     assert((UpIter != UpperEnd || DownIter != LowerEnd) &&
5022            "instruction not found in block");
5023   }
5024   return true;
5025 }
5026 
5027 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI,
5028                                                 Instruction *ToI,
5029                                                 ScheduleData *PrevLoadStore,
5030                                                 ScheduleData *NextLoadStore) {
5031   ScheduleData *CurrentLoadStore = PrevLoadStore;
5032   for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) {
5033     ScheduleData *SD = ScheduleDataMap[I];
5034     if (!SD) {
5035       SD = allocateScheduleDataChunks();
5036       ScheduleDataMap[I] = SD;
5037       SD->Inst = I;
5038     }
5039     assert(!isInSchedulingRegion(SD) &&
5040            "new ScheduleData already in scheduling region");
5041     SD->init(SchedulingRegionID, I);
5042 
5043     if (I->mayReadOrWriteMemory() &&
5044         (!isa<IntrinsicInst>(I) ||
5045          cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect)) {
5046       // Update the linked list of memory accessing instructions.
5047       if (CurrentLoadStore) {
5048         CurrentLoadStore->NextLoadStore = SD;
5049       } else {
5050         FirstLoadStoreInRegion = SD;
5051       }
5052       CurrentLoadStore = SD;
5053     }
5054   }
5055   if (NextLoadStore) {
5056     if (CurrentLoadStore)
5057       CurrentLoadStore->NextLoadStore = NextLoadStore;
5058   } else {
5059     LastLoadStoreInRegion = CurrentLoadStore;
5060   }
5061 }
5062 
5063 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD,
5064                                                      bool InsertInReadyList,
5065                                                      BoUpSLP *SLP) {
5066   assert(SD->isSchedulingEntity());
5067 
5068   SmallVector<ScheduleData *, 10> WorkList;
5069   WorkList.push_back(SD);
5070 
5071   while (!WorkList.empty()) {
5072     ScheduleData *SD = WorkList.back();
5073     WorkList.pop_back();
5074 
5075     ScheduleData *BundleMember = SD;
5076     while (BundleMember) {
5077       assert(isInSchedulingRegion(BundleMember));
5078       if (!BundleMember->hasValidDependencies()) {
5079 
5080         LLVM_DEBUG(dbgs() << "SLP:       update deps of " << *BundleMember
5081                           << "\n");
5082         BundleMember->Dependencies = 0;
5083         BundleMember->resetUnscheduledDeps();
5084 
5085         // Handle def-use chain dependencies.
5086         if (BundleMember->OpValue != BundleMember->Inst) {
5087           ScheduleData *UseSD = getScheduleData(BundleMember->Inst);
5088           if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
5089             BundleMember->Dependencies++;
5090             ScheduleData *DestBundle = UseSD->FirstInBundle;
5091             if (!DestBundle->IsScheduled)
5092               BundleMember->incrementUnscheduledDeps(1);
5093             if (!DestBundle->hasValidDependencies())
5094               WorkList.push_back(DestBundle);
5095           }
5096         } else {
5097           for (User *U : BundleMember->Inst->users()) {
5098             if (isa<Instruction>(U)) {
5099               ScheduleData *UseSD = getScheduleData(U);
5100               if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
5101                 BundleMember->Dependencies++;
5102                 ScheduleData *DestBundle = UseSD->FirstInBundle;
5103                 if (!DestBundle->IsScheduled)
5104                   BundleMember->incrementUnscheduledDeps(1);
5105                 if (!DestBundle->hasValidDependencies())
5106                   WorkList.push_back(DestBundle);
5107               }
5108             } else {
5109               // I'm not sure if this can ever happen. But we need to be safe.
5110               // This lets the instruction/bundle never be scheduled and
5111               // eventually disable vectorization.
5112               BundleMember->Dependencies++;
5113               BundleMember->incrementUnscheduledDeps(1);
5114             }
5115           }
5116         }
5117 
5118         // Handle the memory dependencies.
5119         ScheduleData *DepDest = BundleMember->NextLoadStore;
5120         if (DepDest) {
5121           Instruction *SrcInst = BundleMember->Inst;
5122           MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA);
5123           bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory();
5124           unsigned numAliased = 0;
5125           unsigned DistToSrc = 1;
5126 
5127           while (DepDest) {
5128             assert(isInSchedulingRegion(DepDest));
5129 
5130             // We have two limits to reduce the complexity:
5131             // 1) AliasedCheckLimit: It's a small limit to reduce calls to
5132             //    SLP->isAliased (which is the expensive part in this loop).
5133             // 2) MaxMemDepDistance: It's for very large blocks and it aborts
5134             //    the whole loop (even if the loop is fast, it's quadratic).
5135             //    It's important for the loop break condition (see below) to
5136             //    check this limit even between two read-only instructions.
5137             if (DistToSrc >= MaxMemDepDistance ||
5138                     ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) &&
5139                      (numAliased >= AliasedCheckLimit ||
5140                       SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) {
5141 
5142               // We increment the counter only if the locations are aliased
5143               // (instead of counting all alias checks). This gives a better
5144               // balance between reduced runtime and accurate dependencies.
5145               numAliased++;
5146 
5147               DepDest->MemoryDependencies.push_back(BundleMember);
5148               BundleMember->Dependencies++;
5149               ScheduleData *DestBundle = DepDest->FirstInBundle;
5150               if (!DestBundle->IsScheduled) {
5151                 BundleMember->incrementUnscheduledDeps(1);
5152               }
5153               if (!DestBundle->hasValidDependencies()) {
5154                 WorkList.push_back(DestBundle);
5155               }
5156             }
5157             DepDest = DepDest->NextLoadStore;
5158 
5159             // Example, explaining the loop break condition: Let's assume our
5160             // starting instruction is i0 and MaxMemDepDistance = 3.
5161             //
5162             //                      +--------v--v--v
5163             //             i0,i1,i2,i3,i4,i5,i6,i7,i8
5164             //             +--------^--^--^
5165             //
5166             // MaxMemDepDistance let us stop alias-checking at i3 and we add
5167             // dependencies from i0 to i3,i4,.. (even if they are not aliased).
5168             // Previously we already added dependencies from i3 to i6,i7,i8
5169             // (because of MaxMemDepDistance). As we added a dependency from
5170             // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8
5171             // and we can abort this loop at i6.
5172             if (DistToSrc >= 2 * MaxMemDepDistance)
5173               break;
5174             DistToSrc++;
5175           }
5176         }
5177       }
5178       BundleMember = BundleMember->NextInBundle;
5179     }
5180     if (InsertInReadyList && SD->isReady()) {
5181       ReadyInsts.push_back(SD);
5182       LLVM_DEBUG(dbgs() << "SLP:     gets ready on update: " << *SD->Inst
5183                         << "\n");
5184     }
5185   }
5186 }
5187 
5188 void BoUpSLP::BlockScheduling::resetSchedule() {
5189   assert(ScheduleStart &&
5190          "tried to reset schedule on block which has not been scheduled");
5191   for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
5192     doForAllOpcodes(I, [&](ScheduleData *SD) {
5193       assert(isInSchedulingRegion(SD) &&
5194              "ScheduleData not in scheduling region");
5195       SD->IsScheduled = false;
5196       SD->resetUnscheduledDeps();
5197     });
5198   }
5199   ReadyInsts.clear();
5200 }
5201 
5202 void BoUpSLP::scheduleBlock(BlockScheduling *BS) {
5203   if (!BS->ScheduleStart)
5204     return;
5205 
5206   LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n");
5207 
5208   BS->resetSchedule();
5209 
5210   // For the real scheduling we use a more sophisticated ready-list: it is
5211   // sorted by the original instruction location. This lets the final schedule
5212   // be as  close as possible to the original instruction order.
5213   struct ScheduleDataCompare {
5214     bool operator()(ScheduleData *SD1, ScheduleData *SD2) const {
5215       return SD2->SchedulingPriority < SD1->SchedulingPriority;
5216     }
5217   };
5218   std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts;
5219 
5220   // Ensure that all dependency data is updated and fill the ready-list with
5221   // initial instructions.
5222   int Idx = 0;
5223   int NumToSchedule = 0;
5224   for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd;
5225        I = I->getNextNode()) {
5226     BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) {
5227       assert(SD->isPartOfBundle() ==
5228                  (getTreeEntry(SD->Inst) != nullptr) &&
5229              "scheduler and vectorizer bundle mismatch");
5230       SD->FirstInBundle->SchedulingPriority = Idx++;
5231       if (SD->isSchedulingEntity()) {
5232         BS->calculateDependencies(SD, false, this);
5233         NumToSchedule++;
5234       }
5235     });
5236   }
5237   BS->initialFillReadyList(ReadyInsts);
5238 
5239   Instruction *LastScheduledInst = BS->ScheduleEnd;
5240 
5241   // Do the "real" scheduling.
5242   while (!ReadyInsts.empty()) {
5243     ScheduleData *picked = *ReadyInsts.begin();
5244     ReadyInsts.erase(ReadyInsts.begin());
5245 
5246     // Move the scheduled instruction(s) to their dedicated places, if not
5247     // there yet.
5248     ScheduleData *BundleMember = picked;
5249     while (BundleMember) {
5250       Instruction *pickedInst = BundleMember->Inst;
5251       if (LastScheduledInst->getNextNode() != pickedInst) {
5252         BS->BB->getInstList().remove(pickedInst);
5253         BS->BB->getInstList().insert(LastScheduledInst->getIterator(),
5254                                      pickedInst);
5255       }
5256       LastScheduledInst = pickedInst;
5257       BundleMember = BundleMember->NextInBundle;
5258     }
5259 
5260     BS->schedule(picked, ReadyInsts);
5261     NumToSchedule--;
5262   }
5263   assert(NumToSchedule == 0 && "could not schedule all instructions");
5264 
5265   // Avoid duplicate scheduling of the block.
5266   BS->ScheduleStart = nullptr;
5267 }
5268 
5269 unsigned BoUpSLP::getVectorElementSize(Value *V) const {
5270   // If V is a store, just return the width of the stored value without
5271   // traversing the expression tree. This is the common case.
5272   if (auto *Store = dyn_cast<StoreInst>(V))
5273     return DL->getTypeSizeInBits(Store->getValueOperand()->getType());
5274 
5275   // If V is not a store, we can traverse the expression tree to find loads
5276   // that feed it. The type of the loaded value may indicate a more suitable
5277   // width than V's type. We want to base the vector element size on the width
5278   // of memory operations where possible.
5279   SmallVector<Instruction *, 16> Worklist;
5280   SmallPtrSet<Instruction *, 16> Visited;
5281   if (auto *I = dyn_cast<Instruction>(V))
5282     Worklist.push_back(I);
5283 
5284   // Traverse the expression tree in bottom-up order looking for loads. If we
5285   // encounter an instruction we don't yet handle, we give up.
5286   auto MaxWidth = 0u;
5287   auto FoundUnknownInst = false;
5288   while (!Worklist.empty() && !FoundUnknownInst) {
5289     auto *I = Worklist.pop_back_val();
5290     Visited.insert(I);
5291 
5292     // We should only be looking at scalar instructions here. If the current
5293     // instruction has a vector type, give up.
5294     auto *Ty = I->getType();
5295     if (isa<VectorType>(Ty))
5296       FoundUnknownInst = true;
5297 
5298     // If the current instruction is a load, update MaxWidth to reflect the
5299     // width of the loaded value.
5300     else if (isa<LoadInst>(I))
5301       MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty));
5302 
5303     // Otherwise, we need to visit the operands of the instruction. We only
5304     // handle the interesting cases from buildTree here. If an operand is an
5305     // instruction we haven't yet visited, we add it to the worklist.
5306     else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
5307              isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) {
5308       for (Use &U : I->operands())
5309         if (auto *J = dyn_cast<Instruction>(U.get()))
5310           if (!Visited.count(J))
5311             Worklist.push_back(J);
5312     }
5313 
5314     // If we don't yet handle the instruction, give up.
5315     else
5316       FoundUnknownInst = true;
5317   }
5318 
5319   // If we didn't encounter a memory access in the expression tree, or if we
5320   // gave up for some reason, just return the width of V.
5321   if (!MaxWidth || FoundUnknownInst)
5322     return DL->getTypeSizeInBits(V->getType());
5323 
5324   // Otherwise, return the maximum width we found.
5325   return MaxWidth;
5326 }
5327 
5328 // Determine if a value V in a vectorizable expression Expr can be demoted to a
5329 // smaller type with a truncation. We collect the values that will be demoted
5330 // in ToDemote and additional roots that require investigating in Roots.
5331 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr,
5332                                   SmallVectorImpl<Value *> &ToDemote,
5333                                   SmallVectorImpl<Value *> &Roots) {
5334   // We can always demote constants.
5335   if (isa<Constant>(V)) {
5336     ToDemote.push_back(V);
5337     return true;
5338   }
5339 
5340   // If the value is not an instruction in the expression with only one use, it
5341   // cannot be demoted.
5342   auto *I = dyn_cast<Instruction>(V);
5343   if (!I || !I->hasOneUse() || !Expr.count(I))
5344     return false;
5345 
5346   switch (I->getOpcode()) {
5347 
5348   // We can always demote truncations and extensions. Since truncations can
5349   // seed additional demotion, we save the truncated value.
5350   case Instruction::Trunc:
5351     Roots.push_back(I->getOperand(0));
5352     break;
5353   case Instruction::ZExt:
5354   case Instruction::SExt:
5355     break;
5356 
5357   // We can demote certain binary operations if we can demote both of their
5358   // operands.
5359   case Instruction::Add:
5360   case Instruction::Sub:
5361   case Instruction::Mul:
5362   case Instruction::And:
5363   case Instruction::Or:
5364   case Instruction::Xor:
5365     if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) ||
5366         !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots))
5367       return false;
5368     break;
5369 
5370   // We can demote selects if we can demote their true and false values.
5371   case Instruction::Select: {
5372     SelectInst *SI = cast<SelectInst>(I);
5373     if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) ||
5374         !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots))
5375       return false;
5376     break;
5377   }
5378 
5379   // We can demote phis if we can demote all their incoming operands. Note that
5380   // we don't need to worry about cycles since we ensure single use above.
5381   case Instruction::PHI: {
5382     PHINode *PN = cast<PHINode>(I);
5383     for (Value *IncValue : PN->incoming_values())
5384       if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots))
5385         return false;
5386     break;
5387   }
5388 
5389   // Otherwise, conservatively give up.
5390   default:
5391     return false;
5392   }
5393 
5394   // Record the value that we can demote.
5395   ToDemote.push_back(V);
5396   return true;
5397 }
5398 
5399 void BoUpSLP::computeMinimumValueSizes() {
5400   // If there are no external uses, the expression tree must be rooted by a
5401   // store. We can't demote in-memory values, so there is nothing to do here.
5402   if (ExternalUses.empty())
5403     return;
5404 
5405   // We only attempt to truncate integer expressions.
5406   auto &TreeRoot = VectorizableTree[0]->Scalars;
5407   auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType());
5408   if (!TreeRootIT)
5409     return;
5410 
5411   // If the expression is not rooted by a store, these roots should have
5412   // external uses. We will rely on InstCombine to rewrite the expression in
5413   // the narrower type. However, InstCombine only rewrites single-use values.
5414   // This means that if a tree entry other than a root is used externally, it
5415   // must have multiple uses and InstCombine will not rewrite it. The code
5416   // below ensures that only the roots are used externally.
5417   SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end());
5418   for (auto &EU : ExternalUses)
5419     if (!Expr.erase(EU.Scalar))
5420       return;
5421   if (!Expr.empty())
5422     return;
5423 
5424   // Collect the scalar values of the vectorizable expression. We will use this
5425   // context to determine which values can be demoted. If we see a truncation,
5426   // we mark it as seeding another demotion.
5427   for (auto &EntryPtr : VectorizableTree)
5428     Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end());
5429 
5430   // Ensure the roots of the vectorizable tree don't form a cycle. They must
5431   // have a single external user that is not in the vectorizable tree.
5432   for (auto *Root : TreeRoot)
5433     if (!Root->hasOneUse() || Expr.count(*Root->user_begin()))
5434       return;
5435 
5436   // Conservatively determine if we can actually truncate the roots of the
5437   // expression. Collect the values that can be demoted in ToDemote and
5438   // additional roots that require investigating in Roots.
5439   SmallVector<Value *, 32> ToDemote;
5440   SmallVector<Value *, 4> Roots;
5441   for (auto *Root : TreeRoot)
5442     if (!collectValuesToDemote(Root, Expr, ToDemote, Roots))
5443       return;
5444 
5445   // The maximum bit width required to represent all the values that can be
5446   // demoted without loss of precision. It would be safe to truncate the roots
5447   // of the expression to this width.
5448   auto MaxBitWidth = 8u;
5449 
5450   // We first check if all the bits of the roots are demanded. If they're not,
5451   // we can truncate the roots to this narrower type.
5452   for (auto *Root : TreeRoot) {
5453     auto Mask = DB->getDemandedBits(cast<Instruction>(Root));
5454     MaxBitWidth = std::max<unsigned>(
5455         Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth);
5456   }
5457 
5458   // True if the roots can be zero-extended back to their original type, rather
5459   // than sign-extended. We know that if the leading bits are not demanded, we
5460   // can safely zero-extend. So we initialize IsKnownPositive to True.
5461   bool IsKnownPositive = true;
5462 
5463   // If all the bits of the roots are demanded, we can try a little harder to
5464   // compute a narrower type. This can happen, for example, if the roots are
5465   // getelementptr indices. InstCombine promotes these indices to the pointer
5466   // width. Thus, all their bits are technically demanded even though the
5467   // address computation might be vectorized in a smaller type.
5468   //
5469   // We start by looking at each entry that can be demoted. We compute the
5470   // maximum bit width required to store the scalar by using ValueTracking to
5471   // compute the number of high-order bits we can truncate.
5472   if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) &&
5473       llvm::all_of(TreeRoot, [](Value *R) {
5474         assert(R->hasOneUse() && "Root should have only one use!");
5475         return isa<GetElementPtrInst>(R->user_back());
5476       })) {
5477     MaxBitWidth = 8u;
5478 
5479     // Determine if the sign bit of all the roots is known to be zero. If not,
5480     // IsKnownPositive is set to False.
5481     IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) {
5482       KnownBits Known = computeKnownBits(R, *DL);
5483       return Known.isNonNegative();
5484     });
5485 
5486     // Determine the maximum number of bits required to store the scalar
5487     // values.
5488     for (auto *Scalar : ToDemote) {
5489       auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT);
5490       auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType());
5491       MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth);
5492     }
5493 
5494     // If we can't prove that the sign bit is zero, we must add one to the
5495     // maximum bit width to account for the unknown sign bit. This preserves
5496     // the existing sign bit so we can safely sign-extend the root back to the
5497     // original type. Otherwise, if we know the sign bit is zero, we will
5498     // zero-extend the root instead.
5499     //
5500     // FIXME: This is somewhat suboptimal, as there will be cases where adding
5501     //        one to the maximum bit width will yield a larger-than-necessary
5502     //        type. In general, we need to add an extra bit only if we can't
5503     //        prove that the upper bit of the original type is equal to the
5504     //        upper bit of the proposed smaller type. If these two bits are the
5505     //        same (either zero or one) we know that sign-extending from the
5506     //        smaller type will result in the same value. Here, since we can't
5507     //        yet prove this, we are just making the proposed smaller type
5508     //        larger to ensure correctness.
5509     if (!IsKnownPositive)
5510       ++MaxBitWidth;
5511   }
5512 
5513   // Round MaxBitWidth up to the next power-of-two.
5514   if (!isPowerOf2_64(MaxBitWidth))
5515     MaxBitWidth = NextPowerOf2(MaxBitWidth);
5516 
5517   // If the maximum bit width we compute is less than the with of the roots'
5518   // type, we can proceed with the narrowing. Otherwise, do nothing.
5519   if (MaxBitWidth >= TreeRootIT->getBitWidth())
5520     return;
5521 
5522   // If we can truncate the root, we must collect additional values that might
5523   // be demoted as a result. That is, those seeded by truncations we will
5524   // modify.
5525   while (!Roots.empty())
5526     collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots);
5527 
5528   // Finally, map the values we can demote to the maximum bit with we computed.
5529   for (auto *Scalar : ToDemote)
5530     MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive);
5531 }
5532 
5533 namespace {
5534 
5535 /// The SLPVectorizer Pass.
5536 struct SLPVectorizer : public FunctionPass {
5537   SLPVectorizerPass Impl;
5538 
5539   /// Pass identification, replacement for typeid
5540   static char ID;
5541 
5542   explicit SLPVectorizer() : FunctionPass(ID) {
5543     initializeSLPVectorizerPass(*PassRegistry::getPassRegistry());
5544   }
5545 
5546   bool doInitialization(Module &M) override {
5547     return false;
5548   }
5549 
5550   bool runOnFunction(Function &F) override {
5551     if (skipFunction(F))
5552       return false;
5553 
5554     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
5555     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
5556     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
5557     auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
5558     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
5559     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
5560     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
5561     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
5562     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
5563     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
5564 
5565     return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
5566   }
5567 
5568   void getAnalysisUsage(AnalysisUsage &AU) const override {
5569     FunctionPass::getAnalysisUsage(AU);
5570     AU.addRequired<AssumptionCacheTracker>();
5571     AU.addRequired<ScalarEvolutionWrapperPass>();
5572     AU.addRequired<AAResultsWrapperPass>();
5573     AU.addRequired<TargetTransformInfoWrapperPass>();
5574     AU.addRequired<LoopInfoWrapperPass>();
5575     AU.addRequired<DominatorTreeWrapperPass>();
5576     AU.addRequired<DemandedBitsWrapperPass>();
5577     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
5578     AU.addPreserved<LoopInfoWrapperPass>();
5579     AU.addPreserved<DominatorTreeWrapperPass>();
5580     AU.addPreserved<AAResultsWrapperPass>();
5581     AU.addPreserved<GlobalsAAWrapperPass>();
5582     AU.setPreservesCFG();
5583   }
5584 };
5585 
5586 } // end anonymous namespace
5587 
5588 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) {
5589   auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
5590   auto *TTI = &AM.getResult<TargetIRAnalysis>(F);
5591   auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F);
5592   auto *AA = &AM.getResult<AAManager>(F);
5593   auto *LI = &AM.getResult<LoopAnalysis>(F);
5594   auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
5595   auto *AC = &AM.getResult<AssumptionAnalysis>(F);
5596   auto *DB = &AM.getResult<DemandedBitsAnalysis>(F);
5597   auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
5598 
5599   bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
5600   if (!Changed)
5601     return PreservedAnalyses::all();
5602 
5603   PreservedAnalyses PA;
5604   PA.preserveSet<CFGAnalyses>();
5605   PA.preserve<AAManager>();
5606   PA.preserve<GlobalsAA>();
5607   return PA;
5608 }
5609 
5610 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_,
5611                                 TargetTransformInfo *TTI_,
5612                                 TargetLibraryInfo *TLI_, AliasAnalysis *AA_,
5613                                 LoopInfo *LI_, DominatorTree *DT_,
5614                                 AssumptionCache *AC_, DemandedBits *DB_,
5615                                 OptimizationRemarkEmitter *ORE_) {
5616   SE = SE_;
5617   TTI = TTI_;
5618   TLI = TLI_;
5619   AA = AA_;
5620   LI = LI_;
5621   DT = DT_;
5622   AC = AC_;
5623   DB = DB_;
5624   DL = &F.getParent()->getDataLayout();
5625 
5626   Stores.clear();
5627   GEPs.clear();
5628   bool Changed = false;
5629 
5630   // If the target claims to have no vector registers don't attempt
5631   // vectorization.
5632   if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)))
5633     return false;
5634 
5635   // Don't vectorize when the attribute NoImplicitFloat is used.
5636   if (F.hasFnAttribute(Attribute::NoImplicitFloat))
5637     return false;
5638 
5639   LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n");
5640 
5641   // Use the bottom up slp vectorizer to construct chains that start with
5642   // store instructions.
5643   BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_);
5644 
5645   // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to
5646   // delete instructions.
5647 
5648   // Scan the blocks in the function in post order.
5649   for (auto BB : post_order(&F.getEntryBlock())) {
5650     collectSeedInstructions(BB);
5651 
5652     // Vectorize trees that end at stores.
5653     if (!Stores.empty()) {
5654       LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size()
5655                         << " underlying objects.\n");
5656       Changed |= vectorizeStoreChains(R);
5657     }
5658 
5659     // Vectorize trees that end at reductions.
5660     Changed |= vectorizeChainsInBlock(BB, R);
5661 
5662     // Vectorize the index computations of getelementptr instructions. This
5663     // is primarily intended to catch gather-like idioms ending at
5664     // non-consecutive loads.
5665     if (!GEPs.empty()) {
5666       LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size()
5667                         << " underlying objects.\n");
5668       Changed |= vectorizeGEPIndices(BB, R);
5669     }
5670   }
5671 
5672   if (Changed) {
5673     R.optimizeGatherSequence();
5674     LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n");
5675     LLVM_DEBUG(verifyFunction(F));
5676   }
5677   return Changed;
5678 }
5679 
5680 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R,
5681                                             unsigned Idx) {
5682   LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size()
5683                     << "\n");
5684   const unsigned Sz = R.getVectorElementSize(Chain[0]);
5685   const unsigned MinVF = R.getMinVecRegSize() / Sz;
5686   unsigned VF = Chain.size();
5687 
5688   if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF)
5689     return false;
5690 
5691   LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx
5692                     << "\n");
5693 
5694   R.buildTree(Chain);
5695   Optional<ArrayRef<unsigned>> Order = R.bestOrder();
5696   // TODO: Handle orders of size less than number of elements in the vector.
5697   if (Order && Order->size() == Chain.size()) {
5698     // TODO: reorder tree nodes without tree rebuilding.
5699     SmallVector<Value *, 4> ReorderedOps(Chain.rbegin(), Chain.rend());
5700     llvm::transform(*Order, ReorderedOps.begin(),
5701                     [Chain](const unsigned Idx) { return Chain[Idx]; });
5702     R.buildTree(ReorderedOps);
5703   }
5704   if (R.isTreeTinyAndNotFullyVectorizable())
5705     return false;
5706 
5707   R.computeMinimumValueSizes();
5708 
5709   int Cost = R.getTreeCost();
5710 
5711   LLVM_DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n");
5712   if (Cost < -SLPCostThreshold) {
5713     LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n");
5714 
5715     using namespace ore;
5716 
5717     R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized",
5718                                         cast<StoreInst>(Chain[0]))
5719                      << "Stores SLP vectorized with cost " << NV("Cost", Cost)
5720                      << " and with tree size "
5721                      << NV("TreeSize", R.getTreeSize()));
5722 
5723     R.vectorizeTree();
5724     return true;
5725   }
5726 
5727   return false;
5728 }
5729 
5730 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores,
5731                                         BoUpSLP &R) {
5732   // We may run into multiple chains that merge into a single chain. We mark the
5733   // stores that we vectorized so that we don't visit the same store twice.
5734   BoUpSLP::ValueSet VectorizedStores;
5735   bool Changed = false;
5736 
5737   int E = Stores.size();
5738   SmallBitVector Tails(E, false);
5739   SmallVector<int, 16> ConsecutiveChain(E, E + 1);
5740   int MaxIter = MaxStoreLookup.getValue();
5741   int IterCnt;
5742   auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter,
5743                                   &ConsecutiveChain](int K, int Idx) {
5744     if (IterCnt >= MaxIter)
5745       return true;
5746     ++IterCnt;
5747     if (!isConsecutiveAccess(Stores[K], Stores[Idx], *DL, *SE))
5748       return false;
5749 
5750     Tails.set(Idx);
5751     ConsecutiveChain[K] = Idx;
5752     return true;
5753   };
5754   // Do a quadratic search on all of the given stores in reverse order and find
5755   // all of the pairs of stores that follow each other.
5756   for (int Idx = E - 1; Idx >= 0; --Idx) {
5757     // If a store has multiple consecutive store candidates, search according
5758     // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ...
5759     // This is because usually pairing with immediate succeeding or preceding
5760     // candidate create the best chance to find slp vectorization opportunity.
5761     const int MaxLookDepth = std::max(E - Idx, Idx + 1);
5762     IterCnt = 0;
5763     for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset)
5764       if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) ||
5765           (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx)))
5766         break;
5767   }
5768 
5769   // For stores that start but don't end a link in the chain:
5770   for (int Cnt = E; Cnt > 0; --Cnt) {
5771     int I = Cnt - 1;
5772     if (ConsecutiveChain[I] == E + 1 || Tails.test(I))
5773       continue;
5774     // We found a store instr that starts a chain. Now follow the chain and try
5775     // to vectorize it.
5776     BoUpSLP::ValueList Operands;
5777     // Collect the chain into a list.
5778     while (I != E + 1 && !VectorizedStores.count(Stores[I])) {
5779       Operands.push_back(Stores[I]);
5780       // Move to the next value in the chain.
5781       I = ConsecutiveChain[I];
5782     }
5783 
5784     // If a vector register can't hold 1 element, we are done.
5785     unsigned MaxVecRegSize = R.getMaxVecRegSize();
5786     unsigned EltSize = R.getVectorElementSize(Stores[0]);
5787     if (MaxVecRegSize % EltSize != 0)
5788       continue;
5789 
5790     unsigned MaxElts = MaxVecRegSize / EltSize;
5791     // FIXME: Is division-by-2 the correct step? Should we assert that the
5792     // register size is a power-of-2?
5793     unsigned StartIdx = 0;
5794     for (unsigned Size = llvm::PowerOf2Ceil(MaxElts); Size >= 2; Size /= 2) {
5795       for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) {
5796         ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size);
5797         if (!VectorizedStores.count(Slice.front()) &&
5798             !VectorizedStores.count(Slice.back()) &&
5799             vectorizeStoreChain(Slice, R, Cnt)) {
5800           // Mark the vectorized stores so that we don't vectorize them again.
5801           VectorizedStores.insert(Slice.begin(), Slice.end());
5802           Changed = true;
5803           // If we vectorized initial block, no need to try to vectorize it
5804           // again.
5805           if (Cnt == StartIdx)
5806             StartIdx += Size;
5807           Cnt += Size;
5808           continue;
5809         }
5810         ++Cnt;
5811       }
5812       // Check if the whole array was vectorized already - exit.
5813       if (StartIdx >= Operands.size())
5814         break;
5815     }
5816   }
5817 
5818   return Changed;
5819 }
5820 
5821 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) {
5822   // Initialize the collections. We will make a single pass over the block.
5823   Stores.clear();
5824   GEPs.clear();
5825 
5826   // Visit the store and getelementptr instructions in BB and organize them in
5827   // Stores and GEPs according to the underlying objects of their pointer
5828   // operands.
5829   for (Instruction &I : *BB) {
5830     // Ignore store instructions that are volatile or have a pointer operand
5831     // that doesn't point to a scalar type.
5832     if (auto *SI = dyn_cast<StoreInst>(&I)) {
5833       if (!SI->isSimple())
5834         continue;
5835       if (!isValidElementType(SI->getValueOperand()->getType()))
5836         continue;
5837       Stores[GetUnderlyingObject(SI->getPointerOperand(), *DL)].push_back(SI);
5838     }
5839 
5840     // Ignore getelementptr instructions that have more than one index, a
5841     // constant index, or a pointer operand that doesn't point to a scalar
5842     // type.
5843     else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
5844       auto Idx = GEP->idx_begin()->get();
5845       if (GEP->getNumIndices() > 1 || isa<Constant>(Idx))
5846         continue;
5847       if (!isValidElementType(Idx->getType()))
5848         continue;
5849       if (GEP->getType()->isVectorTy())
5850         continue;
5851       GEPs[GEP->getPointerOperand()].push_back(GEP);
5852     }
5853   }
5854 }
5855 
5856 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) {
5857   if (!A || !B)
5858     return false;
5859   Value *VL[] = { A, B };
5860   return tryToVectorizeList(VL, R, /*UserCost=*/0, true);
5861 }
5862 
5863 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
5864                                            int UserCost, bool AllowReorder) {
5865   if (VL.size() < 2)
5866     return false;
5867 
5868   LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = "
5869                     << VL.size() << ".\n");
5870 
5871   // Check that all of the parts are scalar instructions of the same type,
5872   // we permit an alternate opcode via InstructionsState.
5873   InstructionsState S = getSameOpcode(VL);
5874   if (!S.getOpcode())
5875     return false;
5876 
5877   Instruction *I0 = cast<Instruction>(S.OpValue);
5878   unsigned Sz = R.getVectorElementSize(I0);
5879   unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz);
5880   unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF);
5881   if (MaxVF < 2) {
5882     R.getORE()->emit([&]() {
5883       return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0)
5884              << "Cannot SLP vectorize list: vectorization factor "
5885              << "less than 2 is not supported";
5886     });
5887     return false;
5888   }
5889 
5890   for (Value *V : VL) {
5891     Type *Ty = V->getType();
5892     if (!isValidElementType(Ty)) {
5893       // NOTE: the following will give user internal llvm type name, which may
5894       // not be useful.
5895       R.getORE()->emit([&]() {
5896         std::string type_str;
5897         llvm::raw_string_ostream rso(type_str);
5898         Ty->print(rso);
5899         return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0)
5900                << "Cannot SLP vectorize list: type "
5901                << rso.str() + " is unsupported by vectorizer";
5902       });
5903       return false;
5904     }
5905   }
5906 
5907   bool Changed = false;
5908   bool CandidateFound = false;
5909   int MinCost = SLPCostThreshold;
5910 
5911   unsigned NextInst = 0, MaxInst = VL.size();
5912   for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) {
5913     // No actual vectorization should happen, if number of parts is the same as
5914     // provided vectorization factor (i.e. the scalar type is used for vector
5915     // code during codegen).
5916     auto *VecTy = VectorType::get(VL[0]->getType(), VF);
5917     if (TTI->getNumberOfParts(VecTy) == VF)
5918       continue;
5919     for (unsigned I = NextInst; I < MaxInst; ++I) {
5920       unsigned OpsWidth = 0;
5921 
5922       if (I + VF > MaxInst)
5923         OpsWidth = MaxInst - I;
5924       else
5925         OpsWidth = VF;
5926 
5927       if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2)
5928         break;
5929 
5930       ArrayRef<Value *> Ops = VL.slice(I, OpsWidth);
5931       // Check that a previous iteration of this loop did not delete the Value.
5932       if (llvm::any_of(Ops, [&R](Value *V) {
5933             auto *I = dyn_cast<Instruction>(V);
5934             return I && R.isDeleted(I);
5935           }))
5936         continue;
5937 
5938       LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations "
5939                         << "\n");
5940 
5941       R.buildTree(Ops);
5942       Optional<ArrayRef<unsigned>> Order = R.bestOrder();
5943       // TODO: check if we can allow reordering for more cases.
5944       if (AllowReorder && Order) {
5945         // TODO: reorder tree nodes without tree rebuilding.
5946         // Conceptually, there is nothing actually preventing us from trying to
5947         // reorder a larger list. In fact, we do exactly this when vectorizing
5948         // reductions. However, at this point, we only expect to get here when
5949         // there are exactly two operations.
5950         assert(Ops.size() == 2);
5951         Value *ReorderedOps[] = {Ops[1], Ops[0]};
5952         R.buildTree(ReorderedOps, None);
5953       }
5954       if (R.isTreeTinyAndNotFullyVectorizable())
5955         continue;
5956 
5957       R.computeMinimumValueSizes();
5958       int Cost = R.getTreeCost() - UserCost;
5959       CandidateFound = true;
5960       MinCost = std::min(MinCost, Cost);
5961 
5962       if (Cost < -SLPCostThreshold) {
5963         LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n");
5964         R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList",
5965                                                     cast<Instruction>(Ops[0]))
5966                                  << "SLP vectorized with cost " << ore::NV("Cost", Cost)
5967                                  << " and with tree size "
5968                                  << ore::NV("TreeSize", R.getTreeSize()));
5969 
5970         R.vectorizeTree();
5971         // Move to the next bundle.
5972         I += VF - 1;
5973         NextInst = I + 1;
5974         Changed = true;
5975       }
5976     }
5977   }
5978 
5979   if (!Changed && CandidateFound) {
5980     R.getORE()->emit([&]() {
5981       return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0)
5982              << "List vectorization was possible but not beneficial with cost "
5983              << ore::NV("Cost", MinCost) << " >= "
5984              << ore::NV("Treshold", -SLPCostThreshold);
5985     });
5986   } else if (!Changed) {
5987     R.getORE()->emit([&]() {
5988       return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0)
5989              << "Cannot SLP vectorize list: vectorization was impossible"
5990              << " with available vectorization factors";
5991     });
5992   }
5993   return Changed;
5994 }
5995 
5996 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) {
5997   if (!I)
5998     return false;
5999 
6000   if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I))
6001     return false;
6002 
6003   Value *P = I->getParent();
6004 
6005   // Vectorize in current basic block only.
6006   auto *Op0 = dyn_cast<Instruction>(I->getOperand(0));
6007   auto *Op1 = dyn_cast<Instruction>(I->getOperand(1));
6008   if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P)
6009     return false;
6010 
6011   // Try to vectorize V.
6012   if (tryToVectorizePair(Op0, Op1, R))
6013     return true;
6014 
6015   auto *A = dyn_cast<BinaryOperator>(Op0);
6016   auto *B = dyn_cast<BinaryOperator>(Op1);
6017   // Try to skip B.
6018   if (B && B->hasOneUse()) {
6019     auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0));
6020     auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1));
6021     if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R))
6022       return true;
6023     if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R))
6024       return true;
6025   }
6026 
6027   // Try to skip A.
6028   if (A && A->hasOneUse()) {
6029     auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0));
6030     auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1));
6031     if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R))
6032       return true;
6033     if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R))
6034       return true;
6035   }
6036   return false;
6037 }
6038 
6039 /// Generate a shuffle mask to be used in a reduction tree.
6040 ///
6041 /// \param VecLen The length of the vector to be reduced.
6042 /// \param NumEltsToRdx The number of elements that should be reduced in the
6043 ///        vector.
6044 /// \param IsPairwise Whether the reduction is a pairwise or splitting
6045 ///        reduction. A pairwise reduction will generate a mask of
6046 ///        <0,2,...> or <1,3,..> while a splitting reduction will generate
6047 ///        <2,3, undef,undef> for a vector of 4 and NumElts = 2.
6048 /// \param IsLeft True will generate a mask of even elements, odd otherwise.
6049 static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx,
6050                                    bool IsPairwise, bool IsLeft,
6051                                    IRBuilder<> &Builder) {
6052   assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask");
6053 
6054   SmallVector<Constant *, 32> ShuffleMask(
6055       VecLen, UndefValue::get(Builder.getInt32Ty()));
6056 
6057   if (IsPairwise)
6058     // Build a mask of 0, 2, ... (left) or 1, 3, ... (right).
6059     for (unsigned i = 0; i != NumEltsToRdx; ++i)
6060       ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft);
6061   else
6062     // Move the upper half of the vector to the lower half.
6063     for (unsigned i = 0; i != NumEltsToRdx; ++i)
6064       ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i);
6065 
6066   return ConstantVector::get(ShuffleMask);
6067 }
6068 
6069 namespace {
6070 
6071 /// Model horizontal reductions.
6072 ///
6073 /// A horizontal reduction is a tree of reduction operations (currently add and
6074 /// fadd) that has operations that can be put into a vector as its leaf.
6075 /// For example, this tree:
6076 ///
6077 /// mul mul mul mul
6078 ///  \  /    \  /
6079 ///   +       +
6080 ///    \     /
6081 ///       +
6082 /// This tree has "mul" as its reduced values and "+" as its reduction
6083 /// operations. A reduction might be feeding into a store or a binary operation
6084 /// feeding a phi.
6085 ///    ...
6086 ///    \  /
6087 ///     +
6088 ///     |
6089 ///  phi +=
6090 ///
6091 ///  Or:
6092 ///    ...
6093 ///    \  /
6094 ///     +
6095 ///     |
6096 ///   *p =
6097 ///
6098 class HorizontalReduction {
6099   using ReductionOpsType = SmallVector<Value *, 16>;
6100   using ReductionOpsListType = SmallVector<ReductionOpsType, 2>;
6101   ReductionOpsListType  ReductionOps;
6102   SmallVector<Value *, 32> ReducedVals;
6103   // Use map vector to make stable output.
6104   MapVector<Instruction *, Value *> ExtraArgs;
6105 
6106   /// Kind of the reduction data.
6107   enum ReductionKind {
6108     RK_None,       /// Not a reduction.
6109     RK_Arithmetic, /// Binary reduction data.
6110     RK_Min,        /// Minimum reduction data.
6111     RK_UMin,       /// Unsigned minimum reduction data.
6112     RK_Max,        /// Maximum reduction data.
6113     RK_UMax,       /// Unsigned maximum reduction data.
6114   };
6115 
6116   /// Contains info about operation, like its opcode, left and right operands.
6117   class OperationData {
6118     /// Opcode of the instruction.
6119     unsigned Opcode = 0;
6120 
6121     /// Left operand of the reduction operation.
6122     Value *LHS = nullptr;
6123 
6124     /// Right operand of the reduction operation.
6125     Value *RHS = nullptr;
6126 
6127     /// Kind of the reduction operation.
6128     ReductionKind Kind = RK_None;
6129 
6130     /// True if float point min/max reduction has no NaNs.
6131     bool NoNaN = false;
6132 
6133     /// Checks if the reduction operation can be vectorized.
6134     bool isVectorizable() const {
6135       return LHS && RHS &&
6136              // We currently only support add/mul/logical && min/max reductions.
6137              ((Kind == RK_Arithmetic &&
6138                (Opcode == Instruction::Add || Opcode == Instruction::FAdd ||
6139                 Opcode == Instruction::Mul || Opcode == Instruction::FMul ||
6140                 Opcode == Instruction::And || Opcode == Instruction::Or ||
6141                 Opcode == Instruction::Xor)) ||
6142               ((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
6143                (Kind == RK_Min || Kind == RK_Max)) ||
6144               (Opcode == Instruction::ICmp &&
6145                (Kind == RK_UMin || Kind == RK_UMax)));
6146     }
6147 
6148     /// Creates reduction operation with the current opcode.
6149     Value *createOp(IRBuilder<> &Builder, const Twine &Name) const {
6150       assert(isVectorizable() &&
6151              "Expected add|fadd or min/max reduction operation.");
6152       Value *Cmp = nullptr;
6153       switch (Kind) {
6154       case RK_Arithmetic:
6155         return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, LHS, RHS,
6156                                    Name);
6157       case RK_Min:
6158         Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSLT(LHS, RHS)
6159                                           : Builder.CreateFCmpOLT(LHS, RHS);
6160         return Builder.CreateSelect(Cmp, LHS, RHS, Name);
6161       case RK_Max:
6162         Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSGT(LHS, RHS)
6163                                           : Builder.CreateFCmpOGT(LHS, RHS);
6164         return Builder.CreateSelect(Cmp, LHS, RHS, Name);
6165       case RK_UMin:
6166         assert(Opcode == Instruction::ICmp && "Expected integer types.");
6167         Cmp = Builder.CreateICmpULT(LHS, RHS);
6168         return Builder.CreateSelect(Cmp, LHS, RHS, Name);
6169       case RK_UMax:
6170         assert(Opcode == Instruction::ICmp && "Expected integer types.");
6171         Cmp = Builder.CreateICmpUGT(LHS, RHS);
6172         return Builder.CreateSelect(Cmp, LHS, RHS, Name);
6173       case RK_None:
6174         break;
6175       }
6176       llvm_unreachable("Unknown reduction operation.");
6177     }
6178 
6179   public:
6180     explicit OperationData() = default;
6181 
6182     /// Construction for reduced values. They are identified by opcode only and
6183     /// don't have associated LHS/RHS values.
6184     explicit OperationData(Value *V) {
6185       if (auto *I = dyn_cast<Instruction>(V))
6186         Opcode = I->getOpcode();
6187     }
6188 
6189     /// Constructor for reduction operations with opcode and its left and
6190     /// right operands.
6191     OperationData(unsigned Opcode, Value *LHS, Value *RHS, ReductionKind Kind,
6192                   bool NoNaN = false)
6193         : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind), NoNaN(NoNaN) {
6194       assert(Kind != RK_None && "One of the reduction operations is expected.");
6195     }
6196 
6197     explicit operator bool() const { return Opcode; }
6198 
6199     /// Return true if this operation is any kind of minimum or maximum.
6200     bool isMinMax() const {
6201       switch (Kind) {
6202       case RK_Arithmetic:
6203         return false;
6204       case RK_Min:
6205       case RK_Max:
6206       case RK_UMin:
6207       case RK_UMax:
6208         return true;
6209       case RK_None:
6210         break;
6211       }
6212       llvm_unreachable("Reduction kind is not set");
6213     }
6214 
6215     /// Get the index of the first operand.
6216     unsigned getFirstOperandIndex() const {
6217       assert(!!*this && "The opcode is not set.");
6218       // We allow calling this before 'Kind' is set, so handle that specially.
6219       if (Kind == RK_None)
6220         return 0;
6221       return isMinMax() ? 1 : 0;
6222     }
6223 
6224     /// Total number of operands in the reduction operation.
6225     unsigned getNumberOfOperands() const {
6226       assert(Kind != RK_None && !!*this && LHS && RHS &&
6227              "Expected reduction operation.");
6228       return isMinMax() ? 3 : 2;
6229     }
6230 
6231     /// Checks if the operation has the same parent as \p P.
6232     bool hasSameParent(Instruction *I, Value *P, bool IsRedOp) const {
6233       assert(Kind != RK_None && !!*this && LHS && RHS &&
6234              "Expected reduction operation.");
6235       if (!IsRedOp)
6236         return I->getParent() == P;
6237       if (isMinMax()) {
6238         // SelectInst must be used twice while the condition op must have single
6239         // use only.
6240         auto *Cmp = cast<Instruction>(cast<SelectInst>(I)->getCondition());
6241         return I->getParent() == P && Cmp && Cmp->getParent() == P;
6242       }
6243       // Arithmetic reduction operation must be used once only.
6244       return I->getParent() == P;
6245     }
6246 
6247     /// Expected number of uses for reduction operations/reduced values.
6248     bool hasRequiredNumberOfUses(Instruction *I, bool IsReductionOp) const {
6249       assert(Kind != RK_None && !!*this && LHS && RHS &&
6250              "Expected reduction operation.");
6251       if (isMinMax())
6252         return I->hasNUses(2) &&
6253                (!IsReductionOp ||
6254                 cast<SelectInst>(I)->getCondition()->hasOneUse());
6255       return I->hasOneUse();
6256     }
6257 
6258     /// Initializes the list of reduction operations.
6259     void initReductionOps(ReductionOpsListType &ReductionOps) {
6260       assert(Kind != RK_None && !!*this && LHS && RHS &&
6261              "Expected reduction operation.");
6262       if (isMinMax())
6263         ReductionOps.assign(2, ReductionOpsType());
6264       else
6265         ReductionOps.assign(1, ReductionOpsType());
6266     }
6267 
6268     /// Add all reduction operations for the reduction instruction \p I.
6269     void addReductionOps(Instruction *I, ReductionOpsListType &ReductionOps) {
6270       assert(Kind != RK_None && !!*this && LHS && RHS &&
6271              "Expected reduction operation.");
6272       if (isMinMax()) {
6273         ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition());
6274         ReductionOps[1].emplace_back(I);
6275       } else {
6276         ReductionOps[0].emplace_back(I);
6277       }
6278     }
6279 
6280     /// Checks if instruction is associative and can be vectorized.
6281     bool isAssociative(Instruction *I) const {
6282       assert(Kind != RK_None && *this && LHS && RHS &&
6283              "Expected reduction operation.");
6284       switch (Kind) {
6285       case RK_Arithmetic:
6286         return I->isAssociative();
6287       case RK_Min:
6288       case RK_Max:
6289         return Opcode == Instruction::ICmp ||
6290                cast<Instruction>(I->getOperand(0))->isFast();
6291       case RK_UMin:
6292       case RK_UMax:
6293         assert(Opcode == Instruction::ICmp &&
6294                "Only integer compare operation is expected.");
6295         return true;
6296       case RK_None:
6297         break;
6298       }
6299       llvm_unreachable("Reduction kind is not set");
6300     }
6301 
6302     /// Checks if the reduction operation can be vectorized.
6303     bool isVectorizable(Instruction *I) const {
6304       return isVectorizable() && isAssociative(I);
6305     }
6306 
6307     /// Checks if two operation data are both a reduction op or both a reduced
6308     /// value.
6309     bool operator==(const OperationData &OD) const {
6310       assert(((Kind != OD.Kind) || ((!LHS == !OD.LHS) && (!RHS == !OD.RHS))) &&
6311              "One of the comparing operations is incorrect.");
6312       return this == &OD || (Kind == OD.Kind && Opcode == OD.Opcode);
6313     }
6314     bool operator!=(const OperationData &OD) const { return !(*this == OD); }
6315     void clear() {
6316       Opcode = 0;
6317       LHS = nullptr;
6318       RHS = nullptr;
6319       Kind = RK_None;
6320       NoNaN = false;
6321     }
6322 
6323     /// Get the opcode of the reduction operation.
6324     unsigned getOpcode() const {
6325       assert(isVectorizable() && "Expected vectorizable operation.");
6326       return Opcode;
6327     }
6328 
6329     /// Get kind of reduction data.
6330     ReductionKind getKind() const { return Kind; }
6331     Value *getLHS() const { return LHS; }
6332     Value *getRHS() const { return RHS; }
6333     Type *getConditionType() const {
6334       return isMinMax() ? CmpInst::makeCmpResultType(LHS->getType()) : nullptr;
6335     }
6336 
6337     /// Creates reduction operation with the current opcode with the IR flags
6338     /// from \p ReductionOps.
6339     Value *createOp(IRBuilder<> &Builder, const Twine &Name,
6340                     const ReductionOpsListType &ReductionOps) const {
6341       assert(isVectorizable() &&
6342              "Expected add|fadd or min/max reduction operation.");
6343       auto *Op = createOp(Builder, Name);
6344       switch (Kind) {
6345       case RK_Arithmetic:
6346         propagateIRFlags(Op, ReductionOps[0]);
6347         return Op;
6348       case RK_Min:
6349       case RK_Max:
6350       case RK_UMin:
6351       case RK_UMax:
6352         if (auto *SI = dyn_cast<SelectInst>(Op))
6353           propagateIRFlags(SI->getCondition(), ReductionOps[0]);
6354         propagateIRFlags(Op, ReductionOps[1]);
6355         return Op;
6356       case RK_None:
6357         break;
6358       }
6359       llvm_unreachable("Unknown reduction operation.");
6360     }
6361     /// Creates reduction operation with the current opcode with the IR flags
6362     /// from \p I.
6363     Value *createOp(IRBuilder<> &Builder, const Twine &Name,
6364                     Instruction *I) const {
6365       assert(isVectorizable() &&
6366              "Expected add|fadd or min/max reduction operation.");
6367       auto *Op = createOp(Builder, Name);
6368       switch (Kind) {
6369       case RK_Arithmetic:
6370         propagateIRFlags(Op, I);
6371         return Op;
6372       case RK_Min:
6373       case RK_Max:
6374       case RK_UMin:
6375       case RK_UMax:
6376         if (auto *SI = dyn_cast<SelectInst>(Op)) {
6377           propagateIRFlags(SI->getCondition(),
6378                            cast<SelectInst>(I)->getCondition());
6379         }
6380         propagateIRFlags(Op, I);
6381         return Op;
6382       case RK_None:
6383         break;
6384       }
6385       llvm_unreachable("Unknown reduction operation.");
6386     }
6387 
6388     TargetTransformInfo::ReductionFlags getFlags() const {
6389       TargetTransformInfo::ReductionFlags Flags;
6390       Flags.NoNaN = NoNaN;
6391       switch (Kind) {
6392       case RK_Arithmetic:
6393         break;
6394       case RK_Min:
6395         Flags.IsSigned = Opcode == Instruction::ICmp;
6396         Flags.IsMaxOp = false;
6397         break;
6398       case RK_Max:
6399         Flags.IsSigned = Opcode == Instruction::ICmp;
6400         Flags.IsMaxOp = true;
6401         break;
6402       case RK_UMin:
6403         Flags.IsSigned = false;
6404         Flags.IsMaxOp = false;
6405         break;
6406       case RK_UMax:
6407         Flags.IsSigned = false;
6408         Flags.IsMaxOp = true;
6409         break;
6410       case RK_None:
6411         llvm_unreachable("Reduction kind is not set");
6412       }
6413       return Flags;
6414     }
6415   };
6416 
6417   WeakTrackingVH ReductionRoot;
6418 
6419   /// The operation data of the reduction operation.
6420   OperationData ReductionData;
6421 
6422   /// The operation data of the values we perform a reduction on.
6423   OperationData ReducedValueData;
6424 
6425   /// Should we model this reduction as a pairwise reduction tree or a tree that
6426   /// splits the vector in halves and adds those halves.
6427   bool IsPairwiseReduction = false;
6428 
6429   /// Checks if the ParentStackElem.first should be marked as a reduction
6430   /// operation with an extra argument or as extra argument itself.
6431   void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem,
6432                     Value *ExtraArg) {
6433     if (ExtraArgs.count(ParentStackElem.first)) {
6434       ExtraArgs[ParentStackElem.first] = nullptr;
6435       // We ran into something like:
6436       // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg.
6437       // The whole ParentStackElem.first should be considered as an extra value
6438       // in this case.
6439       // Do not perform analysis of remaining operands of ParentStackElem.first
6440       // instruction, this whole instruction is an extra argument.
6441       ParentStackElem.second = ParentStackElem.first->getNumOperands();
6442     } else {
6443       // We ran into something like:
6444       // ParentStackElem.first += ... + ExtraArg + ...
6445       ExtraArgs[ParentStackElem.first] = ExtraArg;
6446     }
6447   }
6448 
6449   static OperationData getOperationData(Value *V) {
6450     if (!V)
6451       return OperationData();
6452 
6453     Value *LHS;
6454     Value *RHS;
6455     if (m_BinOp(m_Value(LHS), m_Value(RHS)).match(V)) {
6456       return OperationData(cast<BinaryOperator>(V)->getOpcode(), LHS, RHS,
6457                            RK_Arithmetic);
6458     }
6459     if (auto *Select = dyn_cast<SelectInst>(V)) {
6460       // Look for a min/max pattern.
6461       if (m_UMin(m_Value(LHS), m_Value(RHS)).match(Select)) {
6462         return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin);
6463       } else if (m_SMin(m_Value(LHS), m_Value(RHS)).match(Select)) {
6464         return OperationData(Instruction::ICmp, LHS, RHS, RK_Min);
6465       } else if (m_OrdFMin(m_Value(LHS), m_Value(RHS)).match(Select) ||
6466                  m_UnordFMin(m_Value(LHS), m_Value(RHS)).match(Select)) {
6467         return OperationData(
6468             Instruction::FCmp, LHS, RHS, RK_Min,
6469             cast<Instruction>(Select->getCondition())->hasNoNaNs());
6470       } else if (m_UMax(m_Value(LHS), m_Value(RHS)).match(Select)) {
6471         return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax);
6472       } else if (m_SMax(m_Value(LHS), m_Value(RHS)).match(Select)) {
6473         return OperationData(Instruction::ICmp, LHS, RHS, RK_Max);
6474       } else if (m_OrdFMax(m_Value(LHS), m_Value(RHS)).match(Select) ||
6475                  m_UnordFMax(m_Value(LHS), m_Value(RHS)).match(Select)) {
6476         return OperationData(
6477             Instruction::FCmp, LHS, RHS, RK_Max,
6478             cast<Instruction>(Select->getCondition())->hasNoNaNs());
6479       } else {
6480         // Try harder: look for min/max pattern based on instructions producing
6481         // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2).
6482         // During the intermediate stages of SLP, it's very common to have
6483         // pattern like this (since optimizeGatherSequence is run only once
6484         // at the end):
6485         // %1 = extractelement <2 x i32> %a, i32 0
6486         // %2 = extractelement <2 x i32> %a, i32 1
6487         // %cond = icmp sgt i32 %1, %2
6488         // %3 = extractelement <2 x i32> %a, i32 0
6489         // %4 = extractelement <2 x i32> %a, i32 1
6490         // %select = select i1 %cond, i32 %3, i32 %4
6491         CmpInst::Predicate Pred;
6492         Instruction *L1;
6493         Instruction *L2;
6494 
6495         LHS = Select->getTrueValue();
6496         RHS = Select->getFalseValue();
6497         Value *Cond = Select->getCondition();
6498 
6499         // TODO: Support inverse predicates.
6500         if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) {
6501           if (!isa<ExtractElementInst>(RHS) ||
6502               !L2->isIdenticalTo(cast<Instruction>(RHS)))
6503             return OperationData(V);
6504         } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) {
6505           if (!isa<ExtractElementInst>(LHS) ||
6506               !L1->isIdenticalTo(cast<Instruction>(LHS)))
6507             return OperationData(V);
6508         } else {
6509           if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS))
6510             return OperationData(V);
6511           if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) ||
6512               !L1->isIdenticalTo(cast<Instruction>(LHS)) ||
6513               !L2->isIdenticalTo(cast<Instruction>(RHS)))
6514             return OperationData(V);
6515         }
6516         switch (Pred) {
6517         default:
6518           return OperationData(V);
6519 
6520         case CmpInst::ICMP_ULT:
6521         case CmpInst::ICMP_ULE:
6522           return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin);
6523 
6524         case CmpInst::ICMP_SLT:
6525         case CmpInst::ICMP_SLE:
6526           return OperationData(Instruction::ICmp, LHS, RHS, RK_Min);
6527 
6528         case CmpInst::FCMP_OLT:
6529         case CmpInst::FCMP_OLE:
6530         case CmpInst::FCMP_ULT:
6531         case CmpInst::FCMP_ULE:
6532           return OperationData(Instruction::FCmp, LHS, RHS, RK_Min,
6533                                cast<Instruction>(Cond)->hasNoNaNs());
6534 
6535         case CmpInst::ICMP_UGT:
6536         case CmpInst::ICMP_UGE:
6537           return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax);
6538 
6539         case CmpInst::ICMP_SGT:
6540         case CmpInst::ICMP_SGE:
6541           return OperationData(Instruction::ICmp, LHS, RHS, RK_Max);
6542 
6543         case CmpInst::FCMP_OGT:
6544         case CmpInst::FCMP_OGE:
6545         case CmpInst::FCMP_UGT:
6546         case CmpInst::FCMP_UGE:
6547           return OperationData(Instruction::FCmp, LHS, RHS, RK_Max,
6548                                cast<Instruction>(Cond)->hasNoNaNs());
6549         }
6550       }
6551     }
6552     return OperationData(V);
6553   }
6554 
6555 public:
6556   HorizontalReduction() = default;
6557 
6558   /// Try to find a reduction tree.
6559   bool matchAssociativeReduction(PHINode *Phi, Instruction *B) {
6560     assert((!Phi || is_contained(Phi->operands(), B)) &&
6561            "Thi phi needs to use the binary operator");
6562 
6563     ReductionData = getOperationData(B);
6564 
6565     // We could have a initial reductions that is not an add.
6566     //  r *= v1 + v2 + v3 + v4
6567     // In such a case start looking for a tree rooted in the first '+'.
6568     if (Phi) {
6569       if (ReductionData.getLHS() == Phi) {
6570         Phi = nullptr;
6571         B = dyn_cast<Instruction>(ReductionData.getRHS());
6572         ReductionData = getOperationData(B);
6573       } else if (ReductionData.getRHS() == Phi) {
6574         Phi = nullptr;
6575         B = dyn_cast<Instruction>(ReductionData.getLHS());
6576         ReductionData = getOperationData(B);
6577       }
6578     }
6579 
6580     if (!ReductionData.isVectorizable(B))
6581       return false;
6582 
6583     Type *Ty = B->getType();
6584     if (!isValidElementType(Ty))
6585       return false;
6586     if (!Ty->isIntOrIntVectorTy() && !Ty->isFPOrFPVectorTy())
6587       return false;
6588 
6589     ReducedValueData.clear();
6590     ReductionRoot = B;
6591 
6592     // Post order traverse the reduction tree starting at B. We only handle true
6593     // trees containing only binary operators.
6594     SmallVector<std::pair<Instruction *, unsigned>, 32> Stack;
6595     Stack.push_back(std::make_pair(B, ReductionData.getFirstOperandIndex()));
6596     ReductionData.initReductionOps(ReductionOps);
6597     while (!Stack.empty()) {
6598       Instruction *TreeN = Stack.back().first;
6599       unsigned EdgeToVist = Stack.back().second++;
6600       OperationData OpData = getOperationData(TreeN);
6601       bool IsReducedValue = OpData != ReductionData;
6602 
6603       // Postorder vist.
6604       if (IsReducedValue || EdgeToVist == OpData.getNumberOfOperands()) {
6605         if (IsReducedValue)
6606           ReducedVals.push_back(TreeN);
6607         else {
6608           auto I = ExtraArgs.find(TreeN);
6609           if (I != ExtraArgs.end() && !I->second) {
6610             // Check if TreeN is an extra argument of its parent operation.
6611             if (Stack.size() <= 1) {
6612               // TreeN can't be an extra argument as it is a root reduction
6613               // operation.
6614               return false;
6615             }
6616             // Yes, TreeN is an extra argument, do not add it to a list of
6617             // reduction operations.
6618             // Stack[Stack.size() - 2] always points to the parent operation.
6619             markExtraArg(Stack[Stack.size() - 2], TreeN);
6620             ExtraArgs.erase(TreeN);
6621           } else
6622             ReductionData.addReductionOps(TreeN, ReductionOps);
6623         }
6624         // Retract.
6625         Stack.pop_back();
6626         continue;
6627       }
6628 
6629       // Visit left or right.
6630       Value *NextV = TreeN->getOperand(EdgeToVist);
6631       if (NextV != Phi) {
6632         auto *I = dyn_cast<Instruction>(NextV);
6633         OpData = getOperationData(I);
6634         // Continue analysis if the next operand is a reduction operation or
6635         // (possibly) a reduced value. If the reduced value opcode is not set,
6636         // the first met operation != reduction operation is considered as the
6637         // reduced value class.
6638         if (I && (!ReducedValueData || OpData == ReducedValueData ||
6639                   OpData == ReductionData)) {
6640           const bool IsReductionOperation = OpData == ReductionData;
6641           // Only handle trees in the current basic block.
6642           if (!ReductionData.hasSameParent(I, B->getParent(),
6643                                            IsReductionOperation)) {
6644             // I is an extra argument for TreeN (its parent operation).
6645             markExtraArg(Stack.back(), I);
6646             continue;
6647           }
6648 
6649           // Each tree node needs to have minimal number of users except for the
6650           // ultimate reduction.
6651           if (!ReductionData.hasRequiredNumberOfUses(I,
6652                                                      OpData == ReductionData) &&
6653               I != B) {
6654             // I is an extra argument for TreeN (its parent operation).
6655             markExtraArg(Stack.back(), I);
6656             continue;
6657           }
6658 
6659           if (IsReductionOperation) {
6660             // We need to be able to reassociate the reduction operations.
6661             if (!OpData.isAssociative(I)) {
6662               // I is an extra argument for TreeN (its parent operation).
6663               markExtraArg(Stack.back(), I);
6664               continue;
6665             }
6666           } else if (ReducedValueData &&
6667                      ReducedValueData != OpData) {
6668             // Make sure that the opcodes of the operations that we are going to
6669             // reduce match.
6670             // I is an extra argument for TreeN (its parent operation).
6671             markExtraArg(Stack.back(), I);
6672             continue;
6673           } else if (!ReducedValueData)
6674             ReducedValueData = OpData;
6675 
6676           Stack.push_back(std::make_pair(I, OpData.getFirstOperandIndex()));
6677           continue;
6678         }
6679       }
6680       // NextV is an extra argument for TreeN (its parent operation).
6681       markExtraArg(Stack.back(), NextV);
6682     }
6683     return true;
6684   }
6685 
6686   /// Attempt to vectorize the tree found by
6687   /// matchAssociativeReduction.
6688   bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) {
6689     if (ReducedVals.empty())
6690       return false;
6691 
6692     // If there is a sufficient number of reduction values, reduce
6693     // to a nearby power-of-2. Can safely generate oversized
6694     // vectors and rely on the backend to split them to legal sizes.
6695     unsigned NumReducedVals = ReducedVals.size();
6696     if (NumReducedVals < 4)
6697       return false;
6698 
6699     unsigned ReduxWidth = PowerOf2Floor(NumReducedVals);
6700 
6701     Value *VectorizedTree = nullptr;
6702 
6703     // FIXME: Fast-math-flags should be set based on the instructions in the
6704     //        reduction (not all of 'fast' are required).
6705     IRBuilder<> Builder(cast<Instruction>(ReductionRoot));
6706     FastMathFlags Unsafe;
6707     Unsafe.setFast();
6708     Builder.setFastMathFlags(Unsafe);
6709     unsigned i = 0;
6710 
6711     BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues;
6712     // The same extra argument may be used several time, so log each attempt
6713     // to use it.
6714     for (auto &Pair : ExtraArgs) {
6715       assert(Pair.first && "DebugLoc must be set.");
6716       ExternallyUsedValues[Pair.second].push_back(Pair.first);
6717     }
6718 
6719     // The compare instruction of a min/max is the insertion point for new
6720     // instructions and may be replaced with a new compare instruction.
6721     auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) {
6722       assert(isa<SelectInst>(RdxRootInst) &&
6723              "Expected min/max reduction to have select root instruction");
6724       Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition();
6725       assert(isa<Instruction>(ScalarCond) &&
6726              "Expected min/max reduction to have compare condition");
6727       return cast<Instruction>(ScalarCond);
6728     };
6729 
6730     // The reduction root is used as the insertion point for new instructions,
6731     // so set it as externally used to prevent it from being deleted.
6732     ExternallyUsedValues[ReductionRoot];
6733     SmallVector<Value *, 16> IgnoreList;
6734     for (auto &V : ReductionOps)
6735       IgnoreList.append(V.begin(), V.end());
6736     while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) {
6737       auto VL = makeArrayRef(&ReducedVals[i], ReduxWidth);
6738       V.buildTree(VL, ExternallyUsedValues, IgnoreList);
6739       Optional<ArrayRef<unsigned>> Order = V.bestOrder();
6740       // TODO: Handle orders of size less than number of elements in the vector.
6741       if (Order && Order->size() == VL.size()) {
6742         // TODO: reorder tree nodes without tree rebuilding.
6743         SmallVector<Value *, 4> ReorderedOps(VL.size());
6744         llvm::transform(*Order, ReorderedOps.begin(),
6745                         [VL](const unsigned Idx) { return VL[Idx]; });
6746         V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList);
6747       }
6748       if (V.isTreeTinyAndNotFullyVectorizable())
6749         break;
6750       if (V.isLoadCombineReductionCandidate(ReductionData.getOpcode()))
6751         break;
6752 
6753       V.computeMinimumValueSizes();
6754 
6755       // Estimate cost.
6756       int TreeCost = V.getTreeCost();
6757       int ReductionCost = getReductionCost(TTI, ReducedVals[i], ReduxWidth);
6758       int Cost = TreeCost + ReductionCost;
6759       if (Cost >= -SLPCostThreshold) {
6760           V.getORE()->emit([&]() {
6761               return OptimizationRemarkMissed(
6762                          SV_NAME, "HorSLPNotBeneficial", cast<Instruction>(VL[0]))
6763                      << "Vectorizing horizontal reduction is possible"
6764                      << "but not beneficial with cost "
6765                      << ore::NV("Cost", Cost) << " and threshold "
6766                      << ore::NV("Threshold", -SLPCostThreshold);
6767           });
6768           break;
6769       }
6770 
6771       LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:"
6772                         << Cost << ". (HorRdx)\n");
6773       V.getORE()->emit([&]() {
6774           return OptimizationRemark(
6775                      SV_NAME, "VectorizedHorizontalReduction", cast<Instruction>(VL[0]))
6776           << "Vectorized horizontal reduction with cost "
6777           << ore::NV("Cost", Cost) << " and with tree size "
6778           << ore::NV("TreeSize", V.getTreeSize());
6779       });
6780 
6781       // Vectorize a tree.
6782       DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc();
6783       Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues);
6784 
6785       // Emit a reduction. For min/max, the root is a select, but the insertion
6786       // point is the compare condition of that select.
6787       Instruction *RdxRootInst = cast<Instruction>(ReductionRoot);
6788       if (ReductionData.isMinMax())
6789         Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst));
6790       else
6791         Builder.SetInsertPoint(RdxRootInst);
6792 
6793       Value *ReducedSubTree =
6794           emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI);
6795       if (VectorizedTree) {
6796         Builder.SetCurrentDebugLocation(Loc);
6797         OperationData VectReductionData(ReductionData.getOpcode(),
6798                                         VectorizedTree, ReducedSubTree,
6799                                         ReductionData.getKind());
6800         VectorizedTree =
6801             VectReductionData.createOp(Builder, "op.rdx", ReductionOps);
6802       } else
6803         VectorizedTree = ReducedSubTree;
6804       i += ReduxWidth;
6805       ReduxWidth = PowerOf2Floor(NumReducedVals - i);
6806     }
6807 
6808     if (VectorizedTree) {
6809       // Finish the reduction.
6810       for (; i < NumReducedVals; ++i) {
6811         auto *I = cast<Instruction>(ReducedVals[i]);
6812         Builder.SetCurrentDebugLocation(I->getDebugLoc());
6813         OperationData VectReductionData(ReductionData.getOpcode(),
6814                                         VectorizedTree, I,
6815                                         ReductionData.getKind());
6816         VectorizedTree = VectReductionData.createOp(Builder, "", ReductionOps);
6817       }
6818       for (auto &Pair : ExternallyUsedValues) {
6819         // Add each externally used value to the final reduction.
6820         for (auto *I : Pair.second) {
6821           Builder.SetCurrentDebugLocation(I->getDebugLoc());
6822           OperationData VectReductionData(ReductionData.getOpcode(),
6823                                           VectorizedTree, Pair.first,
6824                                           ReductionData.getKind());
6825           VectorizedTree = VectReductionData.createOp(Builder, "op.extra", I);
6826         }
6827       }
6828 
6829       // Update users. For a min/max reduction that ends with a compare and
6830       // select, we also have to RAUW for the compare instruction feeding the
6831       // reduction root. That's because the original compare may have extra uses
6832       // besides the final select of the reduction.
6833       if (ReductionData.isMinMax()) {
6834         if (auto *VecSelect = dyn_cast<SelectInst>(VectorizedTree)) {
6835           Instruction *ScalarCmp =
6836               getCmpForMinMaxReduction(cast<Instruction>(ReductionRoot));
6837           ScalarCmp->replaceAllUsesWith(VecSelect->getCondition());
6838         }
6839       }
6840       ReductionRoot->replaceAllUsesWith(VectorizedTree);
6841 
6842       // Mark all scalar reduction ops for deletion, they are replaced by the
6843       // vector reductions.
6844       V.eraseInstructions(IgnoreList);
6845     }
6846     return VectorizedTree != nullptr;
6847   }
6848 
6849   unsigned numReductionValues() const {
6850     return ReducedVals.size();
6851   }
6852 
6853 private:
6854   /// Calculate the cost of a reduction.
6855   int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal,
6856                        unsigned ReduxWidth) {
6857     Type *ScalarTy = FirstReducedVal->getType();
6858     Type *VecTy = VectorType::get(ScalarTy, ReduxWidth);
6859 
6860     int PairwiseRdxCost;
6861     int SplittingRdxCost;
6862     switch (ReductionData.getKind()) {
6863     case RK_Arithmetic:
6864       PairwiseRdxCost =
6865           TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy,
6866                                           /*IsPairwiseForm=*/true);
6867       SplittingRdxCost =
6868           TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy,
6869                                           /*IsPairwiseForm=*/false);
6870       break;
6871     case RK_Min:
6872     case RK_Max:
6873     case RK_UMin:
6874     case RK_UMax: {
6875       Type *VecCondTy = CmpInst::makeCmpResultType(VecTy);
6876       bool IsUnsigned = ReductionData.getKind() == RK_UMin ||
6877                         ReductionData.getKind() == RK_UMax;
6878       PairwiseRdxCost =
6879           TTI->getMinMaxReductionCost(VecTy, VecCondTy,
6880                                       /*IsPairwiseForm=*/true, IsUnsigned);
6881       SplittingRdxCost =
6882           TTI->getMinMaxReductionCost(VecTy, VecCondTy,
6883                                       /*IsPairwiseForm=*/false, IsUnsigned);
6884       break;
6885     }
6886     case RK_None:
6887       llvm_unreachable("Expected arithmetic or min/max reduction operation");
6888     }
6889 
6890     IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost;
6891     int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost;
6892 
6893     int ScalarReduxCost = 0;
6894     switch (ReductionData.getKind()) {
6895     case RK_Arithmetic:
6896       ScalarReduxCost =
6897           TTI->getArithmeticInstrCost(ReductionData.getOpcode(), ScalarTy);
6898       break;
6899     case RK_Min:
6900     case RK_Max:
6901     case RK_UMin:
6902     case RK_UMax:
6903       ScalarReduxCost =
6904           TTI->getCmpSelInstrCost(ReductionData.getOpcode(), ScalarTy) +
6905           TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy,
6906                                   CmpInst::makeCmpResultType(ScalarTy));
6907       break;
6908     case RK_None:
6909       llvm_unreachable("Expected arithmetic or min/max reduction operation");
6910     }
6911     ScalarReduxCost *= (ReduxWidth - 1);
6912 
6913     LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost
6914                       << " for reduction that starts with " << *FirstReducedVal
6915                       << " (It is a "
6916                       << (IsPairwiseReduction ? "pairwise" : "splitting")
6917                       << " reduction)\n");
6918 
6919     return VecReduxCost - ScalarReduxCost;
6920   }
6921 
6922   /// Emit a horizontal reduction of the vectorized value.
6923   Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder,
6924                        unsigned ReduxWidth, const TargetTransformInfo *TTI) {
6925     assert(VectorizedValue && "Need to have a vectorized tree node");
6926     assert(isPowerOf2_32(ReduxWidth) &&
6927            "We only handle power-of-two reductions for now");
6928 
6929     if (!IsPairwiseReduction) {
6930       // FIXME: The builder should use an FMF guard. It should not be hard-coded
6931       //        to 'fast'.
6932       assert(Builder.getFastMathFlags().isFast() && "Expected 'fast' FMF");
6933       return createSimpleTargetReduction(
6934           Builder, TTI, ReductionData.getOpcode(), VectorizedValue,
6935           ReductionData.getFlags(), ReductionOps.back());
6936     }
6937 
6938     Value *TmpVec = VectorizedValue;
6939     for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) {
6940       Value *LeftMask =
6941           createRdxShuffleMask(ReduxWidth, i, true, true, Builder);
6942       Value *RightMask =
6943           createRdxShuffleMask(ReduxWidth, i, true, false, Builder);
6944 
6945       Value *LeftShuf = Builder.CreateShuffleVector(
6946           TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l");
6947       Value *RightShuf = Builder.CreateShuffleVector(
6948           TmpVec, UndefValue::get(TmpVec->getType()), (RightMask),
6949           "rdx.shuf.r");
6950       OperationData VectReductionData(ReductionData.getOpcode(), LeftShuf,
6951                                       RightShuf, ReductionData.getKind());
6952       TmpVec = VectReductionData.createOp(Builder, "op.rdx", ReductionOps);
6953     }
6954 
6955     // The result is in the first element of the vector.
6956     return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
6957   }
6958 };
6959 
6960 } // end anonymous namespace
6961 
6962 /// Recognize construction of vectors like
6963 ///  %ra = insertelement <4 x float> undef, float %s0, i32 0
6964 ///  %rb = insertelement <4 x float> %ra, float %s1, i32 1
6965 ///  %rc = insertelement <4 x float> %rb, float %s2, i32 2
6966 ///  %rd = insertelement <4 x float> %rc, float %s3, i32 3
6967 ///  starting from the last insertelement or insertvalue instruction.
6968 ///
6969 /// Also recognize aggregates like {<2 x float>, <2 x float>},
6970 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on.
6971 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples.
6972 ///
6973 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type.
6974 ///
6975 /// \return true if it matches.
6976 static bool findBuildAggregate(Value *LastInsertInst, TargetTransformInfo *TTI,
6977                                SmallVectorImpl<Value *> &BuildVectorOpds,
6978                                int &UserCost) {
6979   assert((isa<InsertElementInst>(LastInsertInst) ||
6980           isa<InsertValueInst>(LastInsertInst)) &&
6981          "Expected insertelement or insertvalue instruction!");
6982   UserCost = 0;
6983   do {
6984     Value *InsertedOperand;
6985     if (auto *IE = dyn_cast<InsertElementInst>(LastInsertInst)) {
6986       InsertedOperand = IE->getOperand(1);
6987       LastInsertInst = IE->getOperand(0);
6988       if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) {
6989         UserCost += TTI->getVectorInstrCost(Instruction::InsertElement,
6990                                             IE->getType(), CI->getZExtValue());
6991       }
6992     } else {
6993       auto *IV = cast<InsertValueInst>(LastInsertInst);
6994       InsertedOperand = IV->getInsertedValueOperand();
6995       LastInsertInst = IV->getAggregateOperand();
6996     }
6997     if (isa<InsertElementInst>(InsertedOperand) ||
6998         isa<InsertValueInst>(InsertedOperand)) {
6999       int TmpUserCost;
7000       SmallVector<Value *, 8> TmpBuildVectorOpds;
7001       if (!findBuildAggregate(InsertedOperand, TTI, TmpBuildVectorOpds,
7002                               TmpUserCost))
7003         return false;
7004       BuildVectorOpds.append(TmpBuildVectorOpds.rbegin(),
7005                              TmpBuildVectorOpds.rend());
7006       UserCost += TmpUserCost;
7007     } else {
7008       BuildVectorOpds.push_back(InsertedOperand);
7009     }
7010     if (isa<UndefValue>(LastInsertInst))
7011       break;
7012     if ((!isa<InsertValueInst>(LastInsertInst) &&
7013          !isa<InsertElementInst>(LastInsertInst)) ||
7014         !LastInsertInst->hasOneUse())
7015       return false;
7016   } while (true);
7017   std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end());
7018   return true;
7019 }
7020 
7021 static bool PhiTypeSorterFunc(Value *V, Value *V2) {
7022   return V->getType() < V2->getType();
7023 }
7024 
7025 /// Try and get a reduction value from a phi node.
7026 ///
7027 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions
7028 /// if they come from either \p ParentBB or a containing loop latch.
7029 ///
7030 /// \returns A candidate reduction value if possible, or \code nullptr \endcode
7031 /// if not possible.
7032 static Value *getReductionValue(const DominatorTree *DT, PHINode *P,
7033                                 BasicBlock *ParentBB, LoopInfo *LI) {
7034   // There are situations where the reduction value is not dominated by the
7035   // reduction phi. Vectorizing such cases has been reported to cause
7036   // miscompiles. See PR25787.
7037   auto DominatedReduxValue = [&](Value *R) {
7038     return isa<Instruction>(R) &&
7039            DT->dominates(P->getParent(), cast<Instruction>(R)->getParent());
7040   };
7041 
7042   Value *Rdx = nullptr;
7043 
7044   // Return the incoming value if it comes from the same BB as the phi node.
7045   if (P->getIncomingBlock(0) == ParentBB) {
7046     Rdx = P->getIncomingValue(0);
7047   } else if (P->getIncomingBlock(1) == ParentBB) {
7048     Rdx = P->getIncomingValue(1);
7049   }
7050 
7051   if (Rdx && DominatedReduxValue(Rdx))
7052     return Rdx;
7053 
7054   // Otherwise, check whether we have a loop latch to look at.
7055   Loop *BBL = LI->getLoopFor(ParentBB);
7056   if (!BBL)
7057     return nullptr;
7058   BasicBlock *BBLatch = BBL->getLoopLatch();
7059   if (!BBLatch)
7060     return nullptr;
7061 
7062   // There is a loop latch, return the incoming value if it comes from
7063   // that. This reduction pattern occasionally turns up.
7064   if (P->getIncomingBlock(0) == BBLatch) {
7065     Rdx = P->getIncomingValue(0);
7066   } else if (P->getIncomingBlock(1) == BBLatch) {
7067     Rdx = P->getIncomingValue(1);
7068   }
7069 
7070   if (Rdx && DominatedReduxValue(Rdx))
7071     return Rdx;
7072 
7073   return nullptr;
7074 }
7075 
7076 /// Attempt to reduce a horizontal reduction.
7077 /// If it is legal to match a horizontal reduction feeding the phi node \a P
7078 /// with reduction operators \a Root (or one of its operands) in a basic block
7079 /// \a BB, then check if it can be done. If horizontal reduction is not found
7080 /// and root instruction is a binary operation, vectorization of the operands is
7081 /// attempted.
7082 /// \returns true if a horizontal reduction was matched and reduced or operands
7083 /// of one of the binary instruction were vectorized.
7084 /// \returns false if a horizontal reduction was not matched (or not possible)
7085 /// or no vectorization of any binary operation feeding \a Root instruction was
7086 /// performed.
7087 static bool tryToVectorizeHorReductionOrInstOperands(
7088     PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R,
7089     TargetTransformInfo *TTI,
7090     const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) {
7091   if (!ShouldVectorizeHor)
7092     return false;
7093 
7094   if (!Root)
7095     return false;
7096 
7097   if (Root->getParent() != BB || isa<PHINode>(Root))
7098     return false;
7099   // Start analysis starting from Root instruction. If horizontal reduction is
7100   // found, try to vectorize it. If it is not a horizontal reduction or
7101   // vectorization is not possible or not effective, and currently analyzed
7102   // instruction is a binary operation, try to vectorize the operands, using
7103   // pre-order DFS traversal order. If the operands were not vectorized, repeat
7104   // the same procedure considering each operand as a possible root of the
7105   // horizontal reduction.
7106   // Interrupt the process if the Root instruction itself was vectorized or all
7107   // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized.
7108   SmallVector<std::pair<Instruction *, unsigned>, 8> Stack(1, {Root, 0});
7109   SmallPtrSet<Value *, 8> VisitedInstrs;
7110   bool Res = false;
7111   while (!Stack.empty()) {
7112     Instruction *Inst;
7113     unsigned Level;
7114     std::tie(Inst, Level) = Stack.pop_back_val();
7115     auto *BI = dyn_cast<BinaryOperator>(Inst);
7116     auto *SI = dyn_cast<SelectInst>(Inst);
7117     if (BI || SI) {
7118       HorizontalReduction HorRdx;
7119       if (HorRdx.matchAssociativeReduction(P, Inst)) {
7120         if (HorRdx.tryToReduce(R, TTI)) {
7121           Res = true;
7122           // Set P to nullptr to avoid re-analysis of phi node in
7123           // matchAssociativeReduction function unless this is the root node.
7124           P = nullptr;
7125           continue;
7126         }
7127       }
7128       if (P && BI) {
7129         Inst = dyn_cast<Instruction>(BI->getOperand(0));
7130         if (Inst == P)
7131           Inst = dyn_cast<Instruction>(BI->getOperand(1));
7132         if (!Inst) {
7133           // Set P to nullptr to avoid re-analysis of phi node in
7134           // matchAssociativeReduction function unless this is the root node.
7135           P = nullptr;
7136           continue;
7137         }
7138       }
7139     }
7140     // Set P to nullptr to avoid re-analysis of phi node in
7141     // matchAssociativeReduction function unless this is the root node.
7142     P = nullptr;
7143     if (Vectorize(Inst, R)) {
7144       Res = true;
7145       continue;
7146     }
7147 
7148     // Try to vectorize operands.
7149     // Continue analysis for the instruction from the same basic block only to
7150     // save compile time.
7151     if (++Level < RecursionMaxDepth)
7152       for (auto *Op : Inst->operand_values())
7153         if (VisitedInstrs.insert(Op).second)
7154           if (auto *I = dyn_cast<Instruction>(Op))
7155             if (!isa<PHINode>(I) && !R.isDeleted(I) && I->getParent() == BB)
7156               Stack.emplace_back(I, Level);
7157   }
7158   return Res;
7159 }
7160 
7161 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V,
7162                                                  BasicBlock *BB, BoUpSLP &R,
7163                                                  TargetTransformInfo *TTI) {
7164   if (!V)
7165     return false;
7166   auto *I = dyn_cast<Instruction>(V);
7167   if (!I)
7168     return false;
7169 
7170   if (!isa<BinaryOperator>(I))
7171     P = nullptr;
7172   // Try to match and vectorize a horizontal reduction.
7173   auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool {
7174     return tryToVectorize(I, R);
7175   };
7176   return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI,
7177                                                   ExtraVectorization);
7178 }
7179 
7180 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI,
7181                                                  BasicBlock *BB, BoUpSLP &R) {
7182   int UserCost = 0;
7183   const DataLayout &DL = BB->getModule()->getDataLayout();
7184   if (!R.canMapToVector(IVI->getType(), DL))
7185     return false;
7186 
7187   SmallVector<Value *, 16> BuildVectorOpds;
7188   if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, UserCost))
7189     return false;
7190 
7191   LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n");
7192   // Aggregate value is unlikely to be processed in vector register, we need to
7193   // extract scalars into scalar registers, so NeedExtraction is set true.
7194   return tryToVectorizeList(BuildVectorOpds, R, UserCost);
7195 }
7196 
7197 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI,
7198                                                    BasicBlock *BB, BoUpSLP &R) {
7199   int UserCost;
7200   SmallVector<Value *, 16> BuildVectorOpds;
7201   if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, UserCost) ||
7202       (llvm::all_of(BuildVectorOpds,
7203                     [](Value *V) { return isa<ExtractElementInst>(V); }) &&
7204        isShuffle(BuildVectorOpds)))
7205     return false;
7206 
7207   // Vectorize starting with the build vector operands ignoring the BuildVector
7208   // instructions for the purpose of scheduling and user extraction.
7209   return tryToVectorizeList(BuildVectorOpds, R, UserCost);
7210 }
7211 
7212 bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB,
7213                                          BoUpSLP &R) {
7214   if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R))
7215     return true;
7216 
7217   bool OpsChanged = false;
7218   for (int Idx = 0; Idx < 2; ++Idx) {
7219     OpsChanged |=
7220         vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI);
7221   }
7222   return OpsChanged;
7223 }
7224 
7225 bool SLPVectorizerPass::vectorizeSimpleInstructions(
7226     SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R) {
7227   bool OpsChanged = false;
7228   for (auto *I : reverse(Instructions)) {
7229     if (R.isDeleted(I))
7230       continue;
7231     if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I))
7232       OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R);
7233     else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I))
7234       OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R);
7235     else if (auto *CI = dyn_cast<CmpInst>(I))
7236       OpsChanged |= vectorizeCmpInst(CI, BB, R);
7237   }
7238   Instructions.clear();
7239   return OpsChanged;
7240 }
7241 
7242 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
7243   bool Changed = false;
7244   SmallVector<Value *, 4> Incoming;
7245   SmallPtrSet<Value *, 16> VisitedInstrs;
7246 
7247   bool HaveVectorizedPhiNodes = true;
7248   while (HaveVectorizedPhiNodes) {
7249     HaveVectorizedPhiNodes = false;
7250 
7251     // Collect the incoming values from the PHIs.
7252     Incoming.clear();
7253     for (Instruction &I : *BB) {
7254       PHINode *P = dyn_cast<PHINode>(&I);
7255       if (!P)
7256         break;
7257 
7258       if (!VisitedInstrs.count(P) && !R.isDeleted(P))
7259         Incoming.push_back(P);
7260     }
7261 
7262     // Sort by type.
7263     llvm::stable_sort(Incoming, PhiTypeSorterFunc);
7264 
7265     // Try to vectorize elements base on their type.
7266     for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(),
7267                                            E = Incoming.end();
7268          IncIt != E;) {
7269 
7270       // Look for the next elements with the same type.
7271       SmallVector<Value *, 4>::iterator SameTypeIt = IncIt;
7272       while (SameTypeIt != E &&
7273              (*SameTypeIt)->getType() == (*IncIt)->getType()) {
7274         VisitedInstrs.insert(*SameTypeIt);
7275         ++SameTypeIt;
7276       }
7277 
7278       // Try to vectorize them.
7279       unsigned NumElts = (SameTypeIt - IncIt);
7280       LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs ("
7281                         << NumElts << ")\n");
7282       // The order in which the phi nodes appear in the program does not matter.
7283       // So allow tryToVectorizeList to reorder them if it is beneficial. This
7284       // is done when there are exactly two elements since tryToVectorizeList
7285       // asserts that there are only two values when AllowReorder is true.
7286       bool AllowReorder = NumElts == 2;
7287       if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R,
7288                                             /*UserCost=*/0, AllowReorder)) {
7289         // Success start over because instructions might have been changed.
7290         HaveVectorizedPhiNodes = true;
7291         Changed = true;
7292         break;
7293       }
7294 
7295       // Start over at the next instruction of a different type (or the end).
7296       IncIt = SameTypeIt;
7297     }
7298   }
7299 
7300   VisitedInstrs.clear();
7301 
7302   SmallVector<Instruction *, 8> PostProcessInstructions;
7303   SmallDenseSet<Instruction *, 4> KeyNodes;
7304   for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
7305     // Skip instructions marked for the deletion.
7306     if (R.isDeleted(&*it))
7307       continue;
7308     // We may go through BB multiple times so skip the one we have checked.
7309     if (!VisitedInstrs.insert(&*it).second) {
7310       if (it->use_empty() && KeyNodes.count(&*it) > 0 &&
7311           vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) {
7312         // We would like to start over since some instructions are deleted
7313         // and the iterator may become invalid value.
7314         Changed = true;
7315         it = BB->begin();
7316         e = BB->end();
7317       }
7318       continue;
7319     }
7320 
7321     if (isa<DbgInfoIntrinsic>(it))
7322       continue;
7323 
7324     // Try to vectorize reductions that use PHINodes.
7325     if (PHINode *P = dyn_cast<PHINode>(it)) {
7326       // Check that the PHI is a reduction PHI.
7327       if (P->getNumIncomingValues() != 2)
7328         return Changed;
7329 
7330       // Try to match and vectorize a horizontal reduction.
7331       if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R,
7332                                    TTI)) {
7333         Changed = true;
7334         it = BB->begin();
7335         e = BB->end();
7336         continue;
7337       }
7338       continue;
7339     }
7340 
7341     // Ran into an instruction without users, like terminator, or function call
7342     // with ignored return value, store. Ignore unused instructions (basing on
7343     // instruction type, except for CallInst and InvokeInst).
7344     if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) ||
7345                             isa<InvokeInst>(it))) {
7346       KeyNodes.insert(&*it);
7347       bool OpsChanged = false;
7348       if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) {
7349         for (auto *V : it->operand_values()) {
7350           // Try to match and vectorize a horizontal reduction.
7351           OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI);
7352         }
7353       }
7354       // Start vectorization of post-process list of instructions from the
7355       // top-tree instructions to try to vectorize as many instructions as
7356       // possible.
7357       OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R);
7358       if (OpsChanged) {
7359         // We would like to start over since some instructions are deleted
7360         // and the iterator may become invalid value.
7361         Changed = true;
7362         it = BB->begin();
7363         e = BB->end();
7364         continue;
7365       }
7366     }
7367 
7368     if (isa<InsertElementInst>(it) || isa<CmpInst>(it) ||
7369         isa<InsertValueInst>(it))
7370       PostProcessInstructions.push_back(&*it);
7371   }
7372 
7373   return Changed;
7374 }
7375 
7376 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) {
7377   auto Changed = false;
7378   for (auto &Entry : GEPs) {
7379     // If the getelementptr list has fewer than two elements, there's nothing
7380     // to do.
7381     if (Entry.second.size() < 2)
7382       continue;
7383 
7384     LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length "
7385                       << Entry.second.size() << ".\n");
7386 
7387     // Process the GEP list in chunks suitable for the target's supported
7388     // vector size. If a vector register can't hold 1 element, we are done.
7389     unsigned MaxVecRegSize = R.getMaxVecRegSize();
7390     unsigned EltSize = R.getVectorElementSize(Entry.second[0]);
7391     if (MaxVecRegSize < EltSize)
7392       continue;
7393 
7394     unsigned MaxElts = MaxVecRegSize / EltSize;
7395     for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) {
7396       auto Len = std::min<unsigned>(BE - BI, MaxElts);
7397       auto GEPList = makeArrayRef(&Entry.second[BI], Len);
7398 
7399       // Initialize a set a candidate getelementptrs. Note that we use a
7400       // SetVector here to preserve program order. If the index computations
7401       // are vectorizable and begin with loads, we want to minimize the chance
7402       // of having to reorder them later.
7403       SetVector<Value *> Candidates(GEPList.begin(), GEPList.end());
7404 
7405       // Some of the candidates may have already been vectorized after we
7406       // initially collected them. If so, they are marked as deleted, so remove
7407       // them from the set of candidates.
7408       Candidates.remove_if(
7409           [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); });
7410 
7411       // Remove from the set of candidates all pairs of getelementptrs with
7412       // constant differences. Such getelementptrs are likely not good
7413       // candidates for vectorization in a bottom-up phase since one can be
7414       // computed from the other. We also ensure all candidate getelementptr
7415       // indices are unique.
7416       for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) {
7417         auto *GEPI = GEPList[I];
7418         if (!Candidates.count(GEPI))
7419           continue;
7420         auto *SCEVI = SE->getSCEV(GEPList[I]);
7421         for (int J = I + 1; J < E && Candidates.size() > 1; ++J) {
7422           auto *GEPJ = GEPList[J];
7423           auto *SCEVJ = SE->getSCEV(GEPList[J]);
7424           if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) {
7425             Candidates.remove(GEPI);
7426             Candidates.remove(GEPJ);
7427           } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) {
7428             Candidates.remove(GEPJ);
7429           }
7430         }
7431       }
7432 
7433       // We break out of the above computation as soon as we know there are
7434       // fewer than two candidates remaining.
7435       if (Candidates.size() < 2)
7436         continue;
7437 
7438       // Add the single, non-constant index of each candidate to the bundle. We
7439       // ensured the indices met these constraints when we originally collected
7440       // the getelementptrs.
7441       SmallVector<Value *, 16> Bundle(Candidates.size());
7442       auto BundleIndex = 0u;
7443       for (auto *V : Candidates) {
7444         auto *GEP = cast<GetElementPtrInst>(V);
7445         auto *GEPIdx = GEP->idx_begin()->get();
7446         assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx));
7447         Bundle[BundleIndex++] = GEPIdx;
7448       }
7449 
7450       // Try and vectorize the indices. We are currently only interested in
7451       // gather-like cases of the form:
7452       //
7453       // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ...
7454       //
7455       // where the loads of "a", the loads of "b", and the subtractions can be
7456       // performed in parallel. It's likely that detecting this pattern in a
7457       // bottom-up phase will be simpler and less costly than building a
7458       // full-blown top-down phase beginning at the consecutive loads.
7459       Changed |= tryToVectorizeList(Bundle, R);
7460     }
7461   }
7462   return Changed;
7463 }
7464 
7465 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) {
7466   bool Changed = false;
7467   // Attempt to sort and vectorize each of the store-groups.
7468   for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e;
7469        ++it) {
7470     if (it->second.size() < 2)
7471       continue;
7472 
7473     LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length "
7474                       << it->second.size() << ".\n");
7475 
7476     Changed |= vectorizeStores(it->second, R);
7477   }
7478   return Changed;
7479 }
7480 
7481 char SLPVectorizer::ID = 0;
7482 
7483 static const char lv_name[] = "SLP Vectorizer";
7484 
7485 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false)
7486 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
7487 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
7488 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
7489 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
7490 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
7491 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
7492 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
7493 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false)
7494 
7495 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); }
7496