1 //===- VPlan.h - Represent A Vectorizer Plan --------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This file contains the declarations of the Vectorization Plan base classes:
11 /// 1. VPBasicBlock and VPRegionBlock that inherit from a common pure virtual
12 ///    VPBlockBase, together implementing a Hierarchical CFG;
13 /// 2. Specializations of GraphTraits that allow VPBlockBase graphs to be
14 ///    treated as proper graphs for generic algorithms;
15 /// 3. Pure virtual VPRecipeBase serving as the base class for recipes contained
16 ///    within VPBasicBlocks;
17 /// 4. VPInstruction, a concrete Recipe and VPUser modeling a single planned
18 ///    instruction;
19 /// 5. The VPlan class holding a candidate for vectorization;
20 /// 6. The VPlanPrinter class providing a way to print a plan in dot format;
21 /// These are documented in docs/VectorizationPlan.rst.
22 //
23 //===----------------------------------------------------------------------===//
24 
25 #ifndef LLVM_TRANSFORMS_VECTORIZE_VPLAN_H
26 #define LLVM_TRANSFORMS_VECTORIZE_VPLAN_H
27 
28 #include "VPlanLoopInfo.h"
29 #include "VPlanValue.h"
30 #include "llvm/ADT/DenseMap.h"
31 #include "llvm/ADT/DepthFirstIterator.h"
32 #include "llvm/ADT/GraphTraits.h"
33 #include "llvm/ADT/Optional.h"
34 #include "llvm/ADT/SmallBitVector.h"
35 #include "llvm/ADT/SmallPtrSet.h"
36 #include "llvm/ADT/SmallSet.h"
37 #include "llvm/ADT/SmallVector.h"
38 #include "llvm/ADT/Twine.h"
39 #include "llvm/ADT/ilist.h"
40 #include "llvm/ADT/ilist_node.h"
41 #include "llvm/Analysis/VectorUtils.h"
42 #include "llvm/IR/IRBuilder.h"
43 #include <algorithm>
44 #include <cassert>
45 #include <cstddef>
46 #include <map>
47 #include <string>
48 
49 namespace llvm {
50 
51 class BasicBlock;
52 class DominatorTree;
53 class InnerLoopVectorizer;
54 class LoopInfo;
55 class raw_ostream;
56 class RecurrenceDescriptor;
57 class Value;
58 class VPBasicBlock;
59 class VPRegionBlock;
60 class VPlan;
61 class VPlanSlp;
62 
63 /// A range of powers-of-2 vectorization factors with fixed start and
64 /// adjustable end. The range includes start and excludes end, e.g.,:
65 /// [1, 9) = {1, 2, 4, 8}
66 struct VFRange {
67   // A power of 2.
68   const ElementCount Start;
69 
70   // Need not be a power of 2. If End <= Start range is empty.
71   ElementCount End;
72 
73   bool isEmpty() const {
74     return End.getKnownMinValue() <= Start.getKnownMinValue();
75   }
76 
77   VFRange(const ElementCount &Start, const ElementCount &End)
78       : Start(Start), End(End) {
79     assert(Start.isScalable() == End.isScalable() &&
80            "Both Start and End should have the same scalable flag");
81     assert(isPowerOf2_32(Start.getKnownMinValue()) &&
82            "Expected Start to be a power of 2");
83   }
84 };
85 
86 using VPlanPtr = std::unique_ptr<VPlan>;
87 
88 /// In what follows, the term "input IR" refers to code that is fed into the
89 /// vectorizer whereas the term "output IR" refers to code that is generated by
90 /// the vectorizer.
91 
92 /// VPIteration represents a single point in the iteration space of the output
93 /// (vectorized and/or unrolled) IR loop.
94 struct VPIteration {
95   /// in [0..UF)
96   unsigned Part;
97 
98   /// in [0..VF)
99   unsigned Lane;
100 };
101 
102 /// This is a helper struct for maintaining vectorization state. It's used for
103 /// mapping values from the original loop to their corresponding values in
104 /// the new loop. Two mappings are maintained: one for vectorized values and
105 /// one for scalarized values. Vectorized values are represented with UF
106 /// vector values in the new loop, and scalarized values are represented with
107 /// UF x VF scalar values in the new loop. UF and VF are the unroll and
108 /// vectorization factors, respectively.
109 ///
110 /// Entries can be added to either map with setVectorValue and setScalarValue,
111 /// which assert that an entry was not already added before. If an entry is to
112 /// replace an existing one, call resetVectorValue and resetScalarValue. This is
113 /// currently needed to modify the mapped values during "fix-up" operations that
114 /// occur once the first phase of widening is complete. These operations include
115 /// type truncation and the second phase of recurrence widening.
116 ///
117 /// Entries from either map can be retrieved using the getVectorValue and
118 /// getScalarValue functions, which assert that the desired value exists.
119 struct VectorizerValueMap {
120   friend struct VPTransformState;
121 
122 private:
123   /// The unroll factor. Each entry in the vector map contains UF vector values.
124   unsigned UF;
125 
126   /// The vectorization factor. Each entry in the scalar map contains UF x VF
127   /// scalar values.
128   ElementCount VF;
129 
130   /// The vector and scalar map storage. We use std::map and not DenseMap
131   /// because insertions to DenseMap invalidate its iterators.
132   using VectorParts = SmallVector<Value *, 2>;
133   using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
134   std::map<Value *, VectorParts> VectorMapStorage;
135   std::map<Value *, ScalarParts> ScalarMapStorage;
136 
137 public:
138   /// Construct an empty map with the given unroll and vectorization factors.
139   VectorizerValueMap(unsigned UF, ElementCount VF) : UF(UF), VF(VF) {}
140 
141   /// \return True if the map has any vector entry for \p Key.
142   bool hasAnyVectorValue(Value *Key) const {
143     return VectorMapStorage.count(Key);
144   }
145 
146   /// \return True if the map has a vector entry for \p Key and \p Part.
147   bool hasVectorValue(Value *Key, unsigned Part) const {
148     assert(Part < UF && "Queried Vector Part is too large.");
149     if (!hasAnyVectorValue(Key))
150       return false;
151     const VectorParts &Entry = VectorMapStorage.find(Key)->second;
152     assert(Entry.size() == UF && "VectorParts has wrong dimensions.");
153     return Entry[Part] != nullptr;
154   }
155 
156   /// \return True if the map has any scalar entry for \p Key.
157   bool hasAnyScalarValue(Value *Key) const {
158     return ScalarMapStorage.count(Key);
159   }
160 
161   /// \return True if the map has a scalar entry for \p Key and \p Instance.
162   bool hasScalarValue(Value *Key, const VPIteration &Instance) const {
163     assert(Instance.Part < UF && "Queried Scalar Part is too large.");
164     assert(Instance.Lane < VF.getKnownMinValue() &&
165            "Queried Scalar Lane is too large.");
166 
167     if (!hasAnyScalarValue(Key))
168       return false;
169     const ScalarParts &Entry = ScalarMapStorage.find(Key)->second;
170     assert(Entry.size() == UF && "ScalarParts has wrong dimensions.");
171     assert(Entry[Instance.Part].size() == VF.getKnownMinValue() &&
172            "ScalarParts has wrong dimensions.");
173     return Entry[Instance.Part][Instance.Lane] != nullptr;
174   }
175 
176   /// Retrieve the existing vector value that corresponds to \p Key and
177   /// \p Part.
178   Value *getVectorValue(Value *Key, unsigned Part) {
179     assert(hasVectorValue(Key, Part) && "Getting non-existent value.");
180     return VectorMapStorage[Key][Part];
181   }
182 
183   /// Retrieve the existing scalar value that corresponds to \p Key and
184   /// \p Instance.
185   Value *getScalarValue(Value *Key, const VPIteration &Instance) {
186     assert(hasScalarValue(Key, Instance) && "Getting non-existent value.");
187     return ScalarMapStorage[Key][Instance.Part][Instance.Lane];
188   }
189 
190   /// Set a vector value associated with \p Key and \p Part. Assumes such a
191   /// value is not already set. If it is, use resetVectorValue() instead.
192   void setVectorValue(Value *Key, unsigned Part, Value *Vector) {
193     assert(!hasVectorValue(Key, Part) && "Vector value already set for part");
194     if (!VectorMapStorage.count(Key)) {
195       VectorParts Entry(UF);
196       VectorMapStorage[Key] = Entry;
197     }
198     VectorMapStorage[Key][Part] = Vector;
199   }
200 
201   /// Set a scalar value associated with \p Key and \p Instance. Assumes such a
202   /// value is not already set.
203   void setScalarValue(Value *Key, const VPIteration &Instance, Value *Scalar) {
204     assert(!hasScalarValue(Key, Instance) && "Scalar value already set");
205     if (!ScalarMapStorage.count(Key)) {
206       ScalarParts Entry(UF);
207       // TODO: Consider storing uniform values only per-part, as they occupy
208       //       lane 0 only, keeping the other VF-1 redundant entries null.
209       for (unsigned Part = 0; Part < UF; ++Part)
210         Entry[Part].resize(VF.getKnownMinValue(), nullptr);
211       ScalarMapStorage[Key] = Entry;
212     }
213     ScalarMapStorage[Key][Instance.Part][Instance.Lane] = Scalar;
214   }
215 
216   /// Reset the vector value associated with \p Key for the given \p Part.
217   /// This function can be used to update values that have already been
218   /// vectorized. This is the case for "fix-up" operations including type
219   /// truncation and the second phase of recurrence vectorization.
220   void resetVectorValue(Value *Key, unsigned Part, Value *Vector) {
221     assert(hasVectorValue(Key, Part) && "Vector value not set for part");
222     VectorMapStorage[Key][Part] = Vector;
223   }
224 
225   /// Reset the scalar value associated with \p Key for \p Part and \p Lane.
226   /// This function can be used to update values that have already been
227   /// scalarized. This is the case for "fix-up" operations including scalar phi
228   /// nodes for scalarized and predicated instructions.
229   void resetScalarValue(Value *Key, const VPIteration &Instance,
230                         Value *Scalar) {
231     assert(hasScalarValue(Key, Instance) &&
232            "Scalar value not set for part and lane");
233     ScalarMapStorage[Key][Instance.Part][Instance.Lane] = Scalar;
234   }
235 };
236 
237 /// This class is used to enable the VPlan to invoke a method of ILV. This is
238 /// needed until the method is refactored out of ILV and becomes reusable.
239 struct VPCallback {
240   virtual ~VPCallback() {}
241   virtual Value *getOrCreateVectorValues(Value *V, unsigned Part) = 0;
242   virtual Value *getOrCreateScalarValue(Value *V,
243                                         const VPIteration &Instance) = 0;
244 };
245 
246 /// VPTransformState holds information passed down when "executing" a VPlan,
247 /// needed for generating the output IR.
248 struct VPTransformState {
249   VPTransformState(ElementCount VF, unsigned UF, Loop *OrigLoop, LoopInfo *LI,
250                    DominatorTree *DT, IRBuilder<> &Builder,
251                    VectorizerValueMap &ValueMap, InnerLoopVectorizer *ILV,
252                    VPCallback &Callback)
253       : VF(VF), UF(UF), Instance(), OrigLoop(OrigLoop), LI(LI), DT(DT),
254         Builder(Builder), ValueMap(ValueMap), ILV(ILV), Callback(Callback) {}
255 
256   /// The chosen Vectorization and Unroll Factors of the loop being vectorized.
257   ElementCount VF;
258   unsigned UF;
259 
260   /// Hold the indices to generate specific scalar instructions. Null indicates
261   /// that all instances are to be generated, using either scalar or vector
262   /// instructions.
263   Optional<VPIteration> Instance;
264 
265   struct DataState {
266     /// A type for vectorized values in the new loop. Each value from the
267     /// original loop, when vectorized, is represented by UF vector values in
268     /// the new unrolled loop, where UF is the unroll factor.
269     typedef SmallVector<Value *, 2> PerPartValuesTy;
270 
271     DenseMap<VPValue *, PerPartValuesTy> PerPartOutput;
272 
273     using ScalarsPerPartValuesTy = SmallVector<SmallVector<Value *, 4>, 2>;
274     DenseMap<VPValue *, ScalarsPerPartValuesTy> PerPartScalars;
275   } Data;
276 
277   /// Get the generated Value for a given VPValue and a given Part. Note that
278   /// as some Defs are still created by ILV and managed in its ValueMap, this
279   /// method will delegate the call to ILV in such cases in order to provide
280   /// callers a consistent API.
281   /// \see set.
282   Value *get(VPValue *Def, unsigned Part) {
283     // If Values have been set for this Def return the one relevant for \p Part.
284     if (Data.PerPartOutput.count(Def))
285       return Data.PerPartOutput[Def][Part];
286     // Def is managed by ILV: bring the Values from ValueMap.
287     return Callback.getOrCreateVectorValues(VPValue2Value[Def], Part);
288   }
289 
290   /// Get the generated Value for a given VPValue and given Part and Lane.
291   Value *get(VPValue *Def, const VPIteration &Instance);
292 
293   bool hasVectorValue(VPValue *Def, unsigned Part) {
294     auto I = Data.PerPartOutput.find(Def);
295     return I != Data.PerPartOutput.end() && Part < I->second.size() &&
296            I->second[Part];
297   }
298 
299   bool hasScalarValue(VPValue *Def, VPIteration Instance) {
300     auto I = Data.PerPartScalars.find(Def);
301     if (I == Data.PerPartScalars.end())
302       return false;
303     return Instance.Part < I->second.size() &&
304            Instance.Lane < I->second[Instance.Part].size() &&
305            I->second[Instance.Part][Instance.Lane];
306   }
307 
308   /// Set the generated Value for a given VPValue and a given Part.
309   void set(VPValue *Def, Value *V, unsigned Part) {
310     if (!Data.PerPartOutput.count(Def)) {
311       DataState::PerPartValuesTy Entry(UF);
312       Data.PerPartOutput[Def] = Entry;
313     }
314     Data.PerPartOutput[Def][Part] = V;
315   }
316   void set(VPValue *Def, Value *IRDef, Value *V, unsigned Part);
317 
318   void set(VPValue *Def, Value *V, const VPIteration &Instance) {
319     auto Iter = Data.PerPartScalars.insert({Def, {}});
320     auto &PerPartVec = Iter.first->second;
321     while (PerPartVec.size() <= Instance.Part)
322       PerPartVec.emplace_back();
323     auto &Scalars = PerPartVec[Instance.Part];
324     while (Scalars.size() <= Instance.Lane)
325       Scalars.push_back(nullptr);
326     Scalars[Instance.Lane] = V;
327   }
328 
329   /// Hold state information used when constructing the CFG of the output IR,
330   /// traversing the VPBasicBlocks and generating corresponding IR BasicBlocks.
331   struct CFGState {
332     /// The previous VPBasicBlock visited. Initially set to null.
333     VPBasicBlock *PrevVPBB = nullptr;
334 
335     /// The previous IR BasicBlock created or used. Initially set to the new
336     /// header BasicBlock.
337     BasicBlock *PrevBB = nullptr;
338 
339     /// The last IR BasicBlock in the output IR. Set to the new latch
340     /// BasicBlock, used for placing the newly created BasicBlocks.
341     BasicBlock *LastBB = nullptr;
342 
343     /// A mapping of each VPBasicBlock to the corresponding BasicBlock. In case
344     /// of replication, maps the BasicBlock of the last replica created.
345     SmallDenseMap<VPBasicBlock *, BasicBlock *> VPBB2IRBB;
346 
347     /// Vector of VPBasicBlocks whose terminator instruction needs to be fixed
348     /// up at the end of vector code generation.
349     SmallVector<VPBasicBlock *, 8> VPBBsToFix;
350 
351     CFGState() = default;
352   } CFG;
353 
354   /// Hold a pointer to the original loop.
355   Loop *OrigLoop;
356 
357   /// Hold a pointer to LoopInfo to register new basic blocks in the loop.
358   LoopInfo *LI;
359 
360   /// Hold a pointer to Dominator Tree to register new basic blocks in the loop.
361   DominatorTree *DT;
362 
363   /// Hold a reference to the IRBuilder used to generate output IR code.
364   IRBuilder<> &Builder;
365 
366   /// Hold a reference to the Value state information used when generating the
367   /// Values of the output IR.
368   VectorizerValueMap &ValueMap;
369 
370   /// Hold a reference to a mapping between VPValues in VPlan and original
371   /// Values they correspond to.
372   VPValue2ValueTy VPValue2Value;
373 
374   /// Hold the canonical scalar IV of the vector loop (start=0, step=VF*UF).
375   Value *CanonicalIV = nullptr;
376 
377   /// Hold the trip count of the scalar loop.
378   Value *TripCount = nullptr;
379 
380   /// Hold a pointer to InnerLoopVectorizer to reuse its IR generation methods.
381   InnerLoopVectorizer *ILV;
382 
383   VPCallback &Callback;
384 };
385 
386 /// VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
387 /// A VPBlockBase can be either a VPBasicBlock or a VPRegionBlock.
388 class VPBlockBase {
389   friend class VPBlockUtils;
390 
391   const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast).
392 
393   /// An optional name for the block.
394   std::string Name;
395 
396   /// The immediate VPRegionBlock which this VPBlockBase belongs to, or null if
397   /// it is a topmost VPBlockBase.
398   VPRegionBlock *Parent = nullptr;
399 
400   /// List of predecessor blocks.
401   SmallVector<VPBlockBase *, 1> Predecessors;
402 
403   /// List of successor blocks.
404   SmallVector<VPBlockBase *, 1> Successors;
405 
406   /// Successor selector, null for zero or single successor blocks.
407   VPValue *CondBit = nullptr;
408 
409   /// Current block predicate - null if the block does not need a predicate.
410   VPValue *Predicate = nullptr;
411 
412   /// VPlan containing the block. Can only be set on the entry block of the
413   /// plan.
414   VPlan *Plan = nullptr;
415 
416   /// Add \p Successor as the last successor to this block.
417   void appendSuccessor(VPBlockBase *Successor) {
418     assert(Successor && "Cannot add nullptr successor!");
419     Successors.push_back(Successor);
420   }
421 
422   /// Add \p Predecessor as the last predecessor to this block.
423   void appendPredecessor(VPBlockBase *Predecessor) {
424     assert(Predecessor && "Cannot add nullptr predecessor!");
425     Predecessors.push_back(Predecessor);
426   }
427 
428   /// Remove \p Predecessor from the predecessors of this block.
429   void removePredecessor(VPBlockBase *Predecessor) {
430     auto Pos = find(Predecessors, Predecessor);
431     assert(Pos && "Predecessor does not exist");
432     Predecessors.erase(Pos);
433   }
434 
435   /// Remove \p Successor from the successors of this block.
436   void removeSuccessor(VPBlockBase *Successor) {
437     auto Pos = find(Successors, Successor);
438     assert(Pos && "Successor does not exist");
439     Successors.erase(Pos);
440   }
441 
442 protected:
443   VPBlockBase(const unsigned char SC, const std::string &N)
444       : SubclassID(SC), Name(N) {}
445 
446 public:
447   /// An enumeration for keeping track of the concrete subclass of VPBlockBase
448   /// that are actually instantiated. Values of this enumeration are kept in the
449   /// SubclassID field of the VPBlockBase objects. They are used for concrete
450   /// type identification.
451   using VPBlockTy = enum { VPBasicBlockSC, VPRegionBlockSC };
452 
453   using VPBlocksTy = SmallVectorImpl<VPBlockBase *>;
454 
455   virtual ~VPBlockBase() = default;
456 
457   const std::string &getName() const { return Name; }
458 
459   void setName(const Twine &newName) { Name = newName.str(); }
460 
461   /// \return an ID for the concrete type of this object.
462   /// This is used to implement the classof checks. This should not be used
463   /// for any other purpose, as the values may change as LLVM evolves.
464   unsigned getVPBlockID() const { return SubclassID; }
465 
466   VPRegionBlock *getParent() { return Parent; }
467   const VPRegionBlock *getParent() const { return Parent; }
468 
469   /// \return A pointer to the plan containing the current block.
470   VPlan *getPlan();
471   const VPlan *getPlan() const;
472 
473   /// Sets the pointer of the plan containing the block. The block must be the
474   /// entry block into the VPlan.
475   void setPlan(VPlan *ParentPlan);
476 
477   void setParent(VPRegionBlock *P) { Parent = P; }
478 
479   /// \return the VPBasicBlock that is the entry of this VPBlockBase,
480   /// recursively, if the latter is a VPRegionBlock. Otherwise, if this
481   /// VPBlockBase is a VPBasicBlock, it is returned.
482   const VPBasicBlock *getEntryBasicBlock() const;
483   VPBasicBlock *getEntryBasicBlock();
484 
485   /// \return the VPBasicBlock that is the exit of this VPBlockBase,
486   /// recursively, if the latter is a VPRegionBlock. Otherwise, if this
487   /// VPBlockBase is a VPBasicBlock, it is returned.
488   const VPBasicBlock *getExitBasicBlock() const;
489   VPBasicBlock *getExitBasicBlock();
490 
491   const VPBlocksTy &getSuccessors() const { return Successors; }
492   VPBlocksTy &getSuccessors() { return Successors; }
493 
494   const VPBlocksTy &getPredecessors() const { return Predecessors; }
495   VPBlocksTy &getPredecessors() { return Predecessors; }
496 
497   /// \return the successor of this VPBlockBase if it has a single successor.
498   /// Otherwise return a null pointer.
499   VPBlockBase *getSingleSuccessor() const {
500     return (Successors.size() == 1 ? *Successors.begin() : nullptr);
501   }
502 
503   /// \return the predecessor of this VPBlockBase if it has a single
504   /// predecessor. Otherwise return a null pointer.
505   VPBlockBase *getSinglePredecessor() const {
506     return (Predecessors.size() == 1 ? *Predecessors.begin() : nullptr);
507   }
508 
509   size_t getNumSuccessors() const { return Successors.size(); }
510   size_t getNumPredecessors() const { return Predecessors.size(); }
511 
512   /// An Enclosing Block of a block B is any block containing B, including B
513   /// itself. \return the closest enclosing block starting from "this", which
514   /// has successors. \return the root enclosing block if all enclosing blocks
515   /// have no successors.
516   VPBlockBase *getEnclosingBlockWithSuccessors();
517 
518   /// \return the closest enclosing block starting from "this", which has
519   /// predecessors. \return the root enclosing block if all enclosing blocks
520   /// have no predecessors.
521   VPBlockBase *getEnclosingBlockWithPredecessors();
522 
523   /// \return the successors either attached directly to this VPBlockBase or, if
524   /// this VPBlockBase is the exit block of a VPRegionBlock and has no
525   /// successors of its own, search recursively for the first enclosing
526   /// VPRegionBlock that has successors and return them. If no such
527   /// VPRegionBlock exists, return the (empty) successors of the topmost
528   /// VPBlockBase reached.
529   const VPBlocksTy &getHierarchicalSuccessors() {
530     return getEnclosingBlockWithSuccessors()->getSuccessors();
531   }
532 
533   /// \return the hierarchical successor of this VPBlockBase if it has a single
534   /// hierarchical successor. Otherwise return a null pointer.
535   VPBlockBase *getSingleHierarchicalSuccessor() {
536     return getEnclosingBlockWithSuccessors()->getSingleSuccessor();
537   }
538 
539   /// \return the predecessors either attached directly to this VPBlockBase or,
540   /// if this VPBlockBase is the entry block of a VPRegionBlock and has no
541   /// predecessors of its own, search recursively for the first enclosing
542   /// VPRegionBlock that has predecessors and return them. If no such
543   /// VPRegionBlock exists, return the (empty) predecessors of the topmost
544   /// VPBlockBase reached.
545   const VPBlocksTy &getHierarchicalPredecessors() {
546     return getEnclosingBlockWithPredecessors()->getPredecessors();
547   }
548 
549   /// \return the hierarchical predecessor of this VPBlockBase if it has a
550   /// single hierarchical predecessor. Otherwise return a null pointer.
551   VPBlockBase *getSingleHierarchicalPredecessor() {
552     return getEnclosingBlockWithPredecessors()->getSinglePredecessor();
553   }
554 
555   /// \return the condition bit selecting the successor.
556   VPValue *getCondBit() { return CondBit; }
557 
558   const VPValue *getCondBit() const { return CondBit; }
559 
560   void setCondBit(VPValue *CV) { CondBit = CV; }
561 
562   VPValue *getPredicate() { return Predicate; }
563 
564   const VPValue *getPredicate() const { return Predicate; }
565 
566   void setPredicate(VPValue *Pred) { Predicate = Pred; }
567 
568   /// Set a given VPBlockBase \p Successor as the single successor of this
569   /// VPBlockBase. This VPBlockBase is not added as predecessor of \p Successor.
570   /// This VPBlockBase must have no successors.
571   void setOneSuccessor(VPBlockBase *Successor) {
572     assert(Successors.empty() && "Setting one successor when others exist.");
573     appendSuccessor(Successor);
574   }
575 
576   /// Set two given VPBlockBases \p IfTrue and \p IfFalse to be the two
577   /// successors of this VPBlockBase. \p Condition is set as the successor
578   /// selector. This VPBlockBase is not added as predecessor of \p IfTrue or \p
579   /// IfFalse. This VPBlockBase must have no successors.
580   void setTwoSuccessors(VPBlockBase *IfTrue, VPBlockBase *IfFalse,
581                         VPValue *Condition) {
582     assert(Successors.empty() && "Setting two successors when others exist.");
583     assert(Condition && "Setting two successors without condition!");
584     CondBit = Condition;
585     appendSuccessor(IfTrue);
586     appendSuccessor(IfFalse);
587   }
588 
589   /// Set each VPBasicBlock in \p NewPreds as predecessor of this VPBlockBase.
590   /// This VPBlockBase must have no predecessors. This VPBlockBase is not added
591   /// as successor of any VPBasicBlock in \p NewPreds.
592   void setPredecessors(ArrayRef<VPBlockBase *> NewPreds) {
593     assert(Predecessors.empty() && "Block predecessors already set.");
594     for (auto *Pred : NewPreds)
595       appendPredecessor(Pred);
596   }
597 
598   /// Remove all the predecessor of this block.
599   void clearPredecessors() { Predecessors.clear(); }
600 
601   /// Remove all the successors of this block and set to null its condition bit
602   void clearSuccessors() {
603     Successors.clear();
604     CondBit = nullptr;
605   }
606 
607   /// The method which generates the output IR that correspond to this
608   /// VPBlockBase, thereby "executing" the VPlan.
609   virtual void execute(struct VPTransformState *State) = 0;
610 
611   /// Delete all blocks reachable from a given VPBlockBase, inclusive.
612   static void deleteCFG(VPBlockBase *Entry);
613 
614   void printAsOperand(raw_ostream &OS, bool PrintType) const {
615     OS << getName();
616   }
617 
618   void print(raw_ostream &OS) const {
619     // TODO: Only printing VPBB name for now since we only have dot printing
620     // support for VPInstructions/Recipes.
621     printAsOperand(OS, false);
622   }
623 
624   /// Return true if it is legal to hoist instructions into this block.
625   bool isLegalToHoistInto() {
626     // There are currently no constraints that prevent an instruction to be
627     // hoisted into a VPBlockBase.
628     return true;
629   }
630 
631   /// Replace all operands of VPUsers in the block with \p NewValue and also
632   /// replaces all uses of VPValues defined in the block with NewValue.
633   virtual void dropAllReferences(VPValue *NewValue) = 0;
634 };
635 
636 /// VPRecipeBase is a base class modeling a sequence of one or more output IR
637 /// instructions. VPRecipeBase owns the the VPValues it defines through VPDef
638 /// and is responsible for deleting its defined values. Single-value
639 /// VPRecipeBases that also inherit from VPValue must make sure to inherit from
640 /// VPRecipeBase before VPValue.
641 class VPRecipeBase : public ilist_node_with_parent<VPRecipeBase, VPBasicBlock>,
642                      public VPDef {
643   friend VPBasicBlock;
644   friend class VPBlockUtils;
645 
646 
647   /// Each VPRecipe belongs to a single VPBasicBlock.
648   VPBasicBlock *Parent = nullptr;
649 
650 public:
651   VPRecipeBase(const unsigned char SC) : VPDef(SC) {}
652   virtual ~VPRecipeBase() = default;
653 
654   /// \return the VPBasicBlock which this VPRecipe belongs to.
655   VPBasicBlock *getParent() { return Parent; }
656   const VPBasicBlock *getParent() const { return Parent; }
657 
658   /// The method which generates the output IR instructions that correspond to
659   /// this VPRecipe, thereby "executing" the VPlan.
660   virtual void execute(struct VPTransformState &State) = 0;
661 
662   /// Insert an unlinked recipe into a basic block immediately before
663   /// the specified recipe.
664   void insertBefore(VPRecipeBase *InsertPos);
665 
666   /// Insert an unlinked Recipe into a basic block immediately after
667   /// the specified Recipe.
668   void insertAfter(VPRecipeBase *InsertPos);
669 
670   /// Unlink this recipe from its current VPBasicBlock and insert it into
671   /// the VPBasicBlock that MovePos lives in, right after MovePos.
672   void moveAfter(VPRecipeBase *MovePos);
673 
674   /// Unlink this recipe and insert into BB before I.
675   ///
676   /// \pre I is a valid iterator into BB.
677   void moveBefore(VPBasicBlock &BB, iplist<VPRecipeBase>::iterator I);
678 
679   /// This method unlinks 'this' from the containing basic block, but does not
680   /// delete it.
681   void removeFromParent();
682 
683   /// This method unlinks 'this' from the containing basic block and deletes it.
684   ///
685   /// \returns an iterator pointing to the element after the erased one
686   iplist<VPRecipeBase>::iterator eraseFromParent();
687 
688   /// Returns a pointer to a VPUser, if the recipe inherits from VPUser or
689   /// nullptr otherwise.
690   VPUser *toVPUser();
691 
692   /// Returns the underlying instruction, if the recipe is a VPValue or nullptr
693   /// otherwise.
694   Instruction *getUnderlyingInstr() {
695     return cast<Instruction>(getVPValue()->getUnderlyingValue());
696   }
697   const Instruction *getUnderlyingInstr() const {
698     return cast<Instruction>(getVPValue()->getUnderlyingValue());
699   }
700 
701   /// Method to support type inquiry through isa, cast, and dyn_cast.
702   static inline bool classof(const VPDef *D) {
703     // All VPDefs are also VPRecipeBases.
704     return true;
705   }
706 };
707 
708 inline bool VPUser::classof(const VPDef *Def) {
709   return Def->getVPDefID() == VPRecipeBase::VPInstructionSC ||
710          Def->getVPDefID() == VPRecipeBase::VPWidenSC ||
711          Def->getVPDefID() == VPRecipeBase::VPWidenCallSC ||
712          Def->getVPDefID() == VPRecipeBase::VPWidenSelectSC ||
713          Def->getVPDefID() == VPRecipeBase::VPWidenGEPSC ||
714          Def->getVPDefID() == VPRecipeBase::VPBlendSC ||
715          Def->getVPDefID() == VPRecipeBase::VPInterleaveSC ||
716          Def->getVPDefID() == VPRecipeBase::VPReplicateSC ||
717          Def->getVPDefID() == VPRecipeBase::VPReductionSC ||
718          Def->getVPDefID() == VPRecipeBase::VPBranchOnMaskSC ||
719          Def->getVPDefID() == VPRecipeBase::VPWidenMemoryInstructionSC;
720 }
721 
722 /// This is a concrete Recipe that models a single VPlan-level instruction.
723 /// While as any Recipe it may generate a sequence of IR instructions when
724 /// executed, these instructions would always form a single-def expression as
725 /// the VPInstruction is also a single def-use vertex.
726 class VPInstruction : public VPRecipeBase, public VPUser, public VPValue {
727   friend class VPlanSlp;
728 
729 public:
730   /// VPlan opcodes, extending LLVM IR with idiomatics instructions.
731   enum {
732     Not = Instruction::OtherOpsEnd + 1,
733     ICmpULE,
734     SLPLoad,
735     SLPStore,
736     ActiveLaneMask,
737   };
738 
739 private:
740   typedef unsigned char OpcodeTy;
741   OpcodeTy Opcode;
742 
743   /// Utility method serving execute(): generates a single instance of the
744   /// modeled instruction.
745   void generateInstruction(VPTransformState &State, unsigned Part);
746 
747 protected:
748   void setUnderlyingInstr(Instruction *I) { setUnderlyingValue(I); }
749 
750 public:
751   VPInstruction(unsigned Opcode, ArrayRef<VPValue *> Operands)
752       : VPRecipeBase(VPRecipeBase::VPInstructionSC), VPUser(Operands),
753         VPValue(VPValue::VPVInstructionSC, nullptr, this), Opcode(Opcode) {}
754 
755   VPInstruction(unsigned Opcode, ArrayRef<VPInstruction *> Operands)
756       : VPRecipeBase(VPRecipeBase::VPInstructionSC), VPUser({}),
757         VPValue(VPValue::VPVInstructionSC, nullptr, this), Opcode(Opcode) {
758     for (auto *I : Operands)
759       addOperand(I->getVPValue());
760   }
761 
762   VPInstruction(unsigned Opcode, std::initializer_list<VPValue *> Operands)
763       : VPInstruction(Opcode, ArrayRef<VPValue *>(Operands)) {}
764 
765   /// Method to support type inquiry through isa, cast, and dyn_cast.
766   static inline bool classof(const VPValue *V) {
767     return V->getVPValueID() == VPValue::VPVInstructionSC;
768   }
769 
770   VPInstruction *clone() const {
771     SmallVector<VPValue *, 2> Operands(operands());
772     return new VPInstruction(Opcode, Operands);
773   }
774 
775   /// Method to support type inquiry through isa, cast, and dyn_cast.
776   static inline bool classof(const VPDef *R) {
777     return R->getVPDefID() == VPRecipeBase::VPInstructionSC;
778   }
779 
780   unsigned getOpcode() const { return Opcode; }
781 
782   /// Generate the instruction.
783   /// TODO: We currently execute only per-part unless a specific instance is
784   /// provided.
785   void execute(VPTransformState &State) override;
786 
787   /// Print the VPInstruction to \p O.
788   void print(raw_ostream &O, const Twine &Indent,
789              VPSlotTracker &SlotTracker) const override;
790 
791   /// Print the VPInstruction to dbgs() (for debugging).
792   void dump() const;
793 
794   /// Return true if this instruction may modify memory.
795   bool mayWriteToMemory() const {
796     // TODO: we can use attributes of the called function to rule out memory
797     //       modifications.
798     return Opcode == Instruction::Store || Opcode == Instruction::Call ||
799            Opcode == Instruction::Invoke || Opcode == SLPStore;
800   }
801 
802   bool hasResult() const {
803     // CallInst may or may not have a result, depending on the called function.
804     // Conservatively return calls have results for now.
805     switch (getOpcode()) {
806     case Instruction::Ret:
807     case Instruction::Br:
808     case Instruction::Store:
809     case Instruction::Switch:
810     case Instruction::IndirectBr:
811     case Instruction::Resume:
812     case Instruction::CatchRet:
813     case Instruction::Unreachable:
814     case Instruction::Fence:
815     case Instruction::AtomicRMW:
816       return false;
817     default:
818       return true;
819     }
820   }
821 };
822 
823 /// VPWidenRecipe is a recipe for producing a copy of vector type its
824 /// ingredient. This recipe covers most of the traditional vectorization cases
825 /// where each ingredient transforms into a vectorized version of itself.
826 class VPWidenRecipe : public VPRecipeBase, public VPValue, public VPUser {
827 public:
828   template <typename IterT>
829   VPWidenRecipe(Instruction &I, iterator_range<IterT> Operands)
830       : VPRecipeBase(VPRecipeBase::VPWidenSC),
831         VPValue(VPValue::VPVWidenSC, &I, this), VPUser(Operands) {}
832 
833   ~VPWidenRecipe() override = default;
834 
835   /// Method to support type inquiry through isa, cast, and dyn_cast.
836   static inline bool classof(const VPDef *D) {
837     return D->getVPDefID() == VPRecipeBase::VPWidenSC;
838   }
839   static inline bool classof(const VPValue *V) {
840     return V->getVPValueID() == VPValue::VPVWidenSC;
841   }
842 
843   /// Produce widened copies of all Ingredients.
844   void execute(VPTransformState &State) override;
845 
846   /// Print the recipe.
847   void print(raw_ostream &O, const Twine &Indent,
848              VPSlotTracker &SlotTracker) const override;
849 };
850 
851 /// A recipe for widening Call instructions.
852 class VPWidenCallRecipe : public VPRecipeBase, public VPUser, public VPValue {
853 
854 public:
855   template <typename IterT>
856   VPWidenCallRecipe(CallInst &I, iterator_range<IterT> CallArguments)
857       : VPRecipeBase(VPRecipeBase::VPWidenCallSC), VPUser(CallArguments),
858         VPValue(VPValue::VPVWidenCallSC, &I, this) {}
859 
860   ~VPWidenCallRecipe() override = default;
861 
862   /// Method to support type inquiry through isa, cast, and dyn_cast.
863   static inline bool classof(const VPDef *D) {
864     return D->getVPDefID() == VPRecipeBase::VPWidenCallSC;
865   }
866 
867   /// Produce a widened version of the call instruction.
868   void execute(VPTransformState &State) override;
869 
870   /// Print the recipe.
871   void print(raw_ostream &O, const Twine &Indent,
872              VPSlotTracker &SlotTracker) const override;
873 };
874 
875 /// A recipe for widening select instructions.
876 class VPWidenSelectRecipe : public VPRecipeBase, public VPUser, public VPValue {
877 
878   /// Is the condition of the select loop invariant?
879   bool InvariantCond;
880 
881 public:
882   template <typename IterT>
883   VPWidenSelectRecipe(SelectInst &I, iterator_range<IterT> Operands,
884                       bool InvariantCond)
885       : VPRecipeBase(VPRecipeBase::VPWidenSelectSC), VPUser(Operands),
886         VPValue(VPValue::VPVWidenSelectSC, &I, this),
887         InvariantCond(InvariantCond) {}
888 
889   ~VPWidenSelectRecipe() override = default;
890 
891   /// Method to support type inquiry through isa, cast, and dyn_cast.
892   static inline bool classof(const VPDef *D) {
893     return D->getVPDefID() == VPRecipeBase::VPWidenSelectSC;
894   }
895 
896   /// Produce a widened version of the select instruction.
897   void execute(VPTransformState &State) override;
898 
899   /// Print the recipe.
900   void print(raw_ostream &O, const Twine &Indent,
901              VPSlotTracker &SlotTracker) const override;
902 };
903 
904 /// A recipe for handling GEP instructions.
905 class VPWidenGEPRecipe : public VPRecipeBase,
906                          public VPUser,
907                          public VPValue {
908   bool IsPtrLoopInvariant;
909   SmallBitVector IsIndexLoopInvariant;
910 
911 public:
912   template <typename IterT>
913   VPWidenGEPRecipe(GetElementPtrInst *GEP, iterator_range<IterT> Operands)
914       : VPRecipeBase(VPRecipeBase::VPWidenGEPSC), VPUser(Operands),
915         VPValue(VPWidenGEPSC, GEP, this),
916         IsIndexLoopInvariant(GEP->getNumIndices(), false) {}
917 
918   template <typename IterT>
919   VPWidenGEPRecipe(GetElementPtrInst *GEP, iterator_range<IterT> Operands,
920                    Loop *OrigLoop)
921       : VPRecipeBase(VPRecipeBase::VPWidenGEPSC), VPUser(Operands),
922         VPValue(VPValue::VPVWidenGEPSC, GEP, this),
923         IsIndexLoopInvariant(GEP->getNumIndices(), false) {
924     IsPtrLoopInvariant = OrigLoop->isLoopInvariant(GEP->getPointerOperand());
925     for (auto Index : enumerate(GEP->indices()))
926       IsIndexLoopInvariant[Index.index()] =
927           OrigLoop->isLoopInvariant(Index.value().get());
928   }
929   ~VPWidenGEPRecipe() override = default;
930 
931   /// Method to support type inquiry through isa, cast, and dyn_cast.
932   static inline bool classof(const VPDef *D) {
933     return D->getVPDefID() == VPRecipeBase::VPWidenGEPSC;
934   }
935 
936   /// Generate the gep nodes.
937   void execute(VPTransformState &State) override;
938 
939   /// Print the recipe.
940   void print(raw_ostream &O, const Twine &Indent,
941              VPSlotTracker &SlotTracker) const override;
942 };
943 
944 /// A recipe for handling phi nodes of integer and floating-point inductions,
945 /// producing their vector and scalar values.
946 class VPWidenIntOrFpInductionRecipe : public VPRecipeBase, public VPUser {
947   PHINode *IV;
948   TruncInst *Trunc;
949 
950 public:
951   VPWidenIntOrFpInductionRecipe(PHINode *IV, VPValue *Start,
952                                 TruncInst *Trunc = nullptr)
953       : VPRecipeBase(VPWidenIntOrFpInductionSC), VPUser({Start}), IV(IV),
954         Trunc(Trunc) {
955     if (Trunc)
956       new VPValue(Trunc, this);
957     else
958       new VPValue(IV, this);
959   }
960   ~VPWidenIntOrFpInductionRecipe() override = default;
961 
962   /// Method to support type inquiry through isa, cast, and dyn_cast.
963   static inline bool classof(const VPDef *D) {
964     return D->getVPDefID() == VPRecipeBase::VPWidenIntOrFpInductionSC;
965   }
966 
967   /// Generate the vectorized and scalarized versions of the phi node as
968   /// needed by their users.
969   void execute(VPTransformState &State) override;
970 
971   /// Print the recipe.
972   void print(raw_ostream &O, const Twine &Indent,
973              VPSlotTracker &SlotTracker) const override;
974 
975   /// Returns the start value of the induction.
976   VPValue *getStartValue() { return getOperand(0); }
977 };
978 
979 /// A recipe for handling all phi nodes except for integer and FP inductions.
980 /// For reduction PHIs, RdxDesc must point to the corresponding recurrence
981 /// descriptor and the start value is the first operand of the recipe.
982 class VPWidenPHIRecipe : public VPRecipeBase, public VPUser {
983   PHINode *Phi;
984 
985   /// Descriptor for a reduction PHI.
986   RecurrenceDescriptor *RdxDesc = nullptr;
987 
988 public:
989   /// Create a new VPWidenPHIRecipe for the reduction \p Phi described by \p
990   /// RdxDesc.
991   VPWidenPHIRecipe(PHINode *Phi, RecurrenceDescriptor &RdxDesc, VPValue &Start)
992       : VPWidenPHIRecipe(Phi) {
993     this->RdxDesc = &RdxDesc;
994     addOperand(&Start);
995   }
996 
997   /// Create a VPWidenPHIRecipe for \p Phi
998   VPWidenPHIRecipe(PHINode *Phi) : VPRecipeBase(VPWidenPHISC), Phi(Phi) {
999     new VPValue(Phi, this);
1000   }
1001   ~VPWidenPHIRecipe() override = default;
1002 
1003   /// Method to support type inquiry through isa, cast, and dyn_cast.
1004   static inline bool classof(const VPDef *D) {
1005     return D->getVPDefID() == VPRecipeBase::VPWidenPHISC;
1006   }
1007 
1008   /// Generate the phi/select nodes.
1009   void execute(VPTransformState &State) override;
1010 
1011   /// Print the recipe.
1012   void print(raw_ostream &O, const Twine &Indent,
1013              VPSlotTracker &SlotTracker) const override;
1014 
1015   /// Returns the start value of the phi, if it is a reduction.
1016   VPValue *getStartValue() {
1017     return getNumOperands() == 0 ? nullptr : getOperand(0);
1018   }
1019 };
1020 
1021 /// A recipe for vectorizing a phi-node as a sequence of mask-based select
1022 /// instructions.
1023 class VPBlendRecipe : public VPRecipeBase, public VPUser {
1024   PHINode *Phi;
1025 
1026 public:
1027   /// The blend operation is a User of the incoming values and of their
1028   /// respective masks, ordered [I0, M0, I1, M1, ...]. Note that a single value
1029   /// might be incoming with a full mask for which there is no VPValue.
1030   VPBlendRecipe(PHINode *Phi, ArrayRef<VPValue *> Operands)
1031       : VPRecipeBase(VPBlendSC), VPUser(Operands), Phi(Phi) {
1032     new VPValue(Phi, this);
1033     assert(Operands.size() > 0 &&
1034            ((Operands.size() == 1) || (Operands.size() % 2 == 0)) &&
1035            "Expected either a single incoming value or a positive even number "
1036            "of operands");
1037   }
1038 
1039   /// Method to support type inquiry through isa, cast, and dyn_cast.
1040   static inline bool classof(const VPDef *D) {
1041     return D->getVPDefID() == VPRecipeBase::VPBlendSC;
1042   }
1043 
1044   /// Return the number of incoming values, taking into account that a single
1045   /// incoming value has no mask.
1046   unsigned getNumIncomingValues() const { return (getNumOperands() + 1) / 2; }
1047 
1048   /// Return incoming value number \p Idx.
1049   VPValue *getIncomingValue(unsigned Idx) const { return getOperand(Idx * 2); }
1050 
1051   /// Return mask number \p Idx.
1052   VPValue *getMask(unsigned Idx) const { return getOperand(Idx * 2 + 1); }
1053 
1054   /// Generate the phi/select nodes.
1055   void execute(VPTransformState &State) override;
1056 
1057   /// Print the recipe.
1058   void print(raw_ostream &O, const Twine &Indent,
1059              VPSlotTracker &SlotTracker) const override;
1060 };
1061 
1062 /// VPInterleaveRecipe is a recipe for transforming an interleave group of load
1063 /// or stores into one wide load/store and shuffles. The first operand of a
1064 /// VPInterleave recipe is the address, followed by the stored values, followed
1065 /// by an optional mask.
1066 class VPInterleaveRecipe : public VPRecipeBase, public VPUser {
1067   const InterleaveGroup<Instruction> *IG;
1068 
1069   bool HasMask = false;
1070 
1071 public:
1072   VPInterleaveRecipe(const InterleaveGroup<Instruction> *IG, VPValue *Addr,
1073                      ArrayRef<VPValue *> StoredValues, VPValue *Mask)
1074       : VPRecipeBase(VPInterleaveSC), VPUser(Addr), IG(IG) {
1075     for (unsigned i = 0; i < IG->getFactor(); ++i)
1076       if (Instruction *I = IG->getMember(i)) {
1077         if (I->getType()->isVoidTy())
1078           continue;
1079         new VPValue(I, this);
1080       }
1081 
1082     for (auto *SV : StoredValues)
1083       addOperand(SV);
1084     if (Mask) {
1085       HasMask = true;
1086       addOperand(Mask);
1087     }
1088   }
1089   ~VPInterleaveRecipe() override = default;
1090 
1091   /// Method to support type inquiry through isa, cast, and dyn_cast.
1092   static inline bool classof(const VPDef *D) {
1093     return D->getVPDefID() == VPRecipeBase::VPInterleaveSC;
1094   }
1095 
1096   /// Return the address accessed by this recipe.
1097   VPValue *getAddr() const {
1098     return getOperand(0); // Address is the 1st, mandatory operand.
1099   }
1100 
1101   /// Return the mask used by this recipe. Note that a full mask is represented
1102   /// by a nullptr.
1103   VPValue *getMask() const {
1104     // Mask is optional and therefore the last, currently 2nd operand.
1105     return HasMask ? getOperand(getNumOperands() - 1) : nullptr;
1106   }
1107 
1108   /// Return the VPValues stored by this interleave group. If it is a load
1109   /// interleave group, return an empty ArrayRef.
1110   ArrayRef<VPValue *> getStoredValues() const {
1111     // The first operand is the address, followed by the stored values, followed
1112     // by an optional mask.
1113     return ArrayRef<VPValue *>(op_begin(), getNumOperands())
1114         .slice(1, getNumOperands() - (HasMask ? 2 : 1));
1115   }
1116 
1117   /// Generate the wide load or store, and shuffles.
1118   void execute(VPTransformState &State) override;
1119 
1120   /// Print the recipe.
1121   void print(raw_ostream &O, const Twine &Indent,
1122              VPSlotTracker &SlotTracker) const override;
1123 
1124   const InterleaveGroup<Instruction> *getInterleaveGroup() { return IG; }
1125 };
1126 
1127 /// A recipe to represent inloop reduction operations, performing a reduction on
1128 /// a vector operand into a scalar value, and adding the result to a chain.
1129 /// The Operands are {ChainOp, VecOp, [Condition]}.
1130 class VPReductionRecipe : public VPRecipeBase, public VPUser, public VPValue {
1131   /// The recurrence decriptor for the reduction in question.
1132   RecurrenceDescriptor *RdxDesc;
1133   /// Fast math flags to use for the resulting reduction operation.
1134   bool NoNaN;
1135   /// Pointer to the TTI, needed to create the target reduction
1136   const TargetTransformInfo *TTI;
1137 
1138 public:
1139   VPReductionRecipe(RecurrenceDescriptor *R, Instruction *I, VPValue *ChainOp,
1140                     VPValue *VecOp, VPValue *CondOp, bool NoNaN,
1141                     const TargetTransformInfo *TTI)
1142       : VPRecipeBase(VPRecipeBase::VPReductionSC), VPUser({ChainOp, VecOp}),
1143         VPValue(VPValue::VPVReductionSC, I, this), RdxDesc(R), NoNaN(NoNaN),
1144         TTI(TTI) {
1145     if (CondOp)
1146       addOperand(CondOp);
1147   }
1148 
1149   ~VPReductionRecipe() override = default;
1150 
1151   /// Method to support type inquiry through isa, cast, and dyn_cast.
1152   static inline bool classof(const VPValue *V) {
1153     return V->getVPValueID() == VPValue::VPVReductionSC;
1154   }
1155 
1156   static inline bool classof(const VPDef *D) {
1157     return D->getVPDefID() == VPRecipeBase::VPReductionSC;
1158   }
1159 
1160   /// Generate the reduction in the loop
1161   void execute(VPTransformState &State) override;
1162 
1163   /// Print the recipe.
1164   void print(raw_ostream &O, const Twine &Indent,
1165              VPSlotTracker &SlotTracker) const override;
1166 
1167   /// The VPValue of the scalar Chain being accumulated.
1168   VPValue *getChainOp() const { return getOperand(0); }
1169   /// The VPValue of the vector value to be reduced.
1170   VPValue *getVecOp() const { return getOperand(1); }
1171   /// The VPValue of the condition for the block.
1172   VPValue *getCondOp() const {
1173     return getNumOperands() > 2 ? getOperand(2) : nullptr;
1174   }
1175 };
1176 
1177 /// VPReplicateRecipe replicates a given instruction producing multiple scalar
1178 /// copies of the original scalar type, one per lane, instead of producing a
1179 /// single copy of widened type for all lanes. If the instruction is known to be
1180 /// uniform only one copy, per lane zero, will be generated.
1181 class VPReplicateRecipe : public VPRecipeBase, public VPUser, public VPValue {
1182   /// Indicator if only a single replica per lane is needed.
1183   bool IsUniform;
1184 
1185   /// Indicator if the replicas are also predicated.
1186   bool IsPredicated;
1187 
1188   /// Indicator if the scalar values should also be packed into a vector.
1189   bool AlsoPack;
1190 
1191 public:
1192   template <typename IterT>
1193   VPReplicateRecipe(Instruction *I, iterator_range<IterT> Operands,
1194                     bool IsUniform, bool IsPredicated = false)
1195       : VPRecipeBase(VPReplicateSC), VPUser(Operands),
1196         VPValue(VPVReplicateSC, I, this), IsUniform(IsUniform),
1197         IsPredicated(IsPredicated) {
1198     // Retain the previous behavior of predicateInstructions(), where an
1199     // insert-element of a predicated instruction got hoisted into the
1200     // predicated basic block iff it was its only user. This is achieved by
1201     // having predicated instructions also pack their values into a vector by
1202     // default unless they have a replicated user which uses their scalar value.
1203     AlsoPack = IsPredicated && !I->use_empty();
1204   }
1205 
1206   ~VPReplicateRecipe() override = default;
1207 
1208   /// Method to support type inquiry through isa, cast, and dyn_cast.
1209   static inline bool classof(const VPDef *D) {
1210     return D->getVPDefID() == VPRecipeBase::VPReplicateSC;
1211   }
1212 
1213   static inline bool classof(const VPValue *V) {
1214     return V->getVPValueID() == VPValue::VPVReplicateSC;
1215   }
1216 
1217   /// Generate replicas of the desired Ingredient. Replicas will be generated
1218   /// for all parts and lanes unless a specific part and lane are specified in
1219   /// the \p State.
1220   void execute(VPTransformState &State) override;
1221 
1222   void setAlsoPack(bool Pack) { AlsoPack = Pack; }
1223 
1224   /// Print the recipe.
1225   void print(raw_ostream &O, const Twine &Indent,
1226              VPSlotTracker &SlotTracker) const override;
1227 
1228   bool isUniform() const { return IsUniform; }
1229 };
1230 
1231 /// A recipe for generating conditional branches on the bits of a mask.
1232 class VPBranchOnMaskRecipe : public VPRecipeBase, public VPUser {
1233 public:
1234   VPBranchOnMaskRecipe(VPValue *BlockInMask) : VPRecipeBase(VPBranchOnMaskSC) {
1235     if (BlockInMask) // nullptr means all-one mask.
1236       addOperand(BlockInMask);
1237   }
1238 
1239   /// Method to support type inquiry through isa, cast, and dyn_cast.
1240   static inline bool classof(const VPDef *D) {
1241     return D->getVPDefID() == VPRecipeBase::VPBranchOnMaskSC;
1242   }
1243 
1244   /// Generate the extraction of the appropriate bit from the block mask and the
1245   /// conditional branch.
1246   void execute(VPTransformState &State) override;
1247 
1248   /// Print the recipe.
1249   void print(raw_ostream &O, const Twine &Indent,
1250              VPSlotTracker &SlotTracker) const override {
1251     O << " +\n" << Indent << "\"BRANCH-ON-MASK ";
1252     if (VPValue *Mask = getMask())
1253       Mask->printAsOperand(O, SlotTracker);
1254     else
1255       O << " All-One";
1256     O << "\\l\"";
1257   }
1258 
1259   /// Return the mask used by this recipe. Note that a full mask is represented
1260   /// by a nullptr.
1261   VPValue *getMask() const {
1262     assert(getNumOperands() <= 1 && "should have either 0 or 1 operands");
1263     // Mask is optional.
1264     return getNumOperands() == 1 ? getOperand(0) : nullptr;
1265   }
1266 };
1267 
1268 /// VPPredInstPHIRecipe is a recipe for generating the phi nodes needed when
1269 /// control converges back from a Branch-on-Mask. The phi nodes are needed in
1270 /// order to merge values that are set under such a branch and feed their uses.
1271 /// The phi nodes can be scalar or vector depending on the users of the value.
1272 /// This recipe works in concert with VPBranchOnMaskRecipe.
1273 class VPPredInstPHIRecipe : public VPRecipeBase, public VPUser {
1274 
1275 public:
1276   /// Construct a VPPredInstPHIRecipe given \p PredInst whose value needs a phi
1277   /// nodes after merging back from a Branch-on-Mask.
1278   VPPredInstPHIRecipe(VPValue *PredV)
1279       : VPRecipeBase(VPPredInstPHISC), VPUser(PredV) {
1280     new VPValue(PredV->getUnderlyingValue(), this);
1281   }
1282   ~VPPredInstPHIRecipe() override = default;
1283 
1284   /// Method to support type inquiry through isa, cast, and dyn_cast.
1285   static inline bool classof(const VPDef *D) {
1286     return D->getVPDefID() == VPRecipeBase::VPPredInstPHISC;
1287   }
1288 
1289   /// Generates phi nodes for live-outs as needed to retain SSA form.
1290   void execute(VPTransformState &State) override;
1291 
1292   /// Print the recipe.
1293   void print(raw_ostream &O, const Twine &Indent,
1294              VPSlotTracker &SlotTracker) const override;
1295 };
1296 
1297 /// A Recipe for widening load/store operations.
1298 /// The recipe uses the following VPValues:
1299 /// - For load: Address, optional mask
1300 /// - For store: Address, stored value, optional mask
1301 /// TODO: We currently execute only per-part unless a specific instance is
1302 /// provided.
1303 class VPWidenMemoryInstructionRecipe : public VPRecipeBase,
1304                                        public VPUser {
1305   Instruction &Ingredient;
1306 
1307   void setMask(VPValue *Mask) {
1308     if (!Mask)
1309       return;
1310     addOperand(Mask);
1311   }
1312 
1313   bool isMasked() const {
1314     return isStore() ? getNumOperands() == 3 : getNumOperands() == 2;
1315   }
1316 
1317 public:
1318   VPWidenMemoryInstructionRecipe(LoadInst &Load, VPValue *Addr, VPValue *Mask)
1319       : VPRecipeBase(VPWidenMemoryInstructionSC), VPUser({Addr}),
1320         Ingredient(Load) {
1321     new VPValue(VPValue::VPVMemoryInstructionSC, &Load, this);
1322     setMask(Mask);
1323   }
1324 
1325   VPWidenMemoryInstructionRecipe(StoreInst &Store, VPValue *Addr,
1326                                  VPValue *StoredValue, VPValue *Mask)
1327       : VPRecipeBase(VPWidenMemoryInstructionSC), VPUser({Addr, StoredValue}),
1328         Ingredient(Store) {
1329     setMask(Mask);
1330   }
1331 
1332   /// Method to support type inquiry through isa, cast, and dyn_cast.
1333   static inline bool classof(const VPDef *D) {
1334     return D->getVPDefID() == VPRecipeBase::VPWidenMemoryInstructionSC;
1335   }
1336 
1337   /// Return the address accessed by this recipe.
1338   VPValue *getAddr() const {
1339     return getOperand(0); // Address is the 1st, mandatory operand.
1340   }
1341 
1342   /// Return the mask used by this recipe. Note that a full mask is represented
1343   /// by a nullptr.
1344   VPValue *getMask() const {
1345     // Mask is optional and therefore the last operand.
1346     return isMasked() ? getOperand(getNumOperands() - 1) : nullptr;
1347   }
1348 
1349   /// Returns true if this recipe is a store.
1350   bool isStore() const { return isa<StoreInst>(Ingredient); }
1351 
1352   /// Return the address accessed by this recipe.
1353   VPValue *getStoredValue() const {
1354     assert(isStore() && "Stored value only available for store instructions");
1355     return getOperand(1); // Stored value is the 2nd, mandatory operand.
1356   }
1357 
1358   /// Generate the wide load/store.
1359   void execute(VPTransformState &State) override;
1360 
1361   /// Print the recipe.
1362   void print(raw_ostream &O, const Twine &Indent,
1363              VPSlotTracker &SlotTracker) const override;
1364 };
1365 
1366 /// A Recipe for widening the canonical induction variable of the vector loop.
1367 class VPWidenCanonicalIVRecipe : public VPRecipeBase {
1368 public:
1369   VPWidenCanonicalIVRecipe() : VPRecipeBase(VPWidenCanonicalIVSC) {
1370     new VPValue(nullptr, this);
1371   }
1372 
1373   ~VPWidenCanonicalIVRecipe() override = default;
1374 
1375   /// Method to support type inquiry through isa, cast, and dyn_cast.
1376   static inline bool classof(const VPDef *D) {
1377     return D->getVPDefID() == VPRecipeBase::VPWidenCanonicalIVSC;
1378   }
1379 
1380   /// Generate a canonical vector induction variable of the vector loop, with
1381   /// start = {<Part*VF, Part*VF+1, ..., Part*VF+VF-1> for 0 <= Part < UF}, and
1382   /// step = <VF*UF, VF*UF, ..., VF*UF>.
1383   void execute(VPTransformState &State) override;
1384 
1385   /// Print the recipe.
1386   void print(raw_ostream &O, const Twine &Indent,
1387              VPSlotTracker &SlotTracker) const override;
1388 };
1389 
1390 /// VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph. It
1391 /// holds a sequence of zero or more VPRecipe's each representing a sequence of
1392 /// output IR instructions.
1393 class VPBasicBlock : public VPBlockBase {
1394 public:
1395   using RecipeListTy = iplist<VPRecipeBase>;
1396 
1397 private:
1398   /// The VPRecipes held in the order of output instructions to generate.
1399   RecipeListTy Recipes;
1400 
1401 public:
1402   VPBasicBlock(const Twine &Name = "", VPRecipeBase *Recipe = nullptr)
1403       : VPBlockBase(VPBasicBlockSC, Name.str()) {
1404     if (Recipe)
1405       appendRecipe(Recipe);
1406   }
1407 
1408   ~VPBasicBlock() override { Recipes.clear(); }
1409 
1410   /// Instruction iterators...
1411   using iterator = RecipeListTy::iterator;
1412   using const_iterator = RecipeListTy::const_iterator;
1413   using reverse_iterator = RecipeListTy::reverse_iterator;
1414   using const_reverse_iterator = RecipeListTy::const_reverse_iterator;
1415 
1416   //===--------------------------------------------------------------------===//
1417   /// Recipe iterator methods
1418   ///
1419   inline iterator begin() { return Recipes.begin(); }
1420   inline const_iterator begin() const { return Recipes.begin(); }
1421   inline iterator end() { return Recipes.end(); }
1422   inline const_iterator end() const { return Recipes.end(); }
1423 
1424   inline reverse_iterator rbegin() { return Recipes.rbegin(); }
1425   inline const_reverse_iterator rbegin() const { return Recipes.rbegin(); }
1426   inline reverse_iterator rend() { return Recipes.rend(); }
1427   inline const_reverse_iterator rend() const { return Recipes.rend(); }
1428 
1429   inline size_t size() const { return Recipes.size(); }
1430   inline bool empty() const { return Recipes.empty(); }
1431   inline const VPRecipeBase &front() const { return Recipes.front(); }
1432   inline VPRecipeBase &front() { return Recipes.front(); }
1433   inline const VPRecipeBase &back() const { return Recipes.back(); }
1434   inline VPRecipeBase &back() { return Recipes.back(); }
1435 
1436   /// Returns a reference to the list of recipes.
1437   RecipeListTy &getRecipeList() { return Recipes; }
1438 
1439   /// Returns a pointer to a member of the recipe list.
1440   static RecipeListTy VPBasicBlock::*getSublistAccess(VPRecipeBase *) {
1441     return &VPBasicBlock::Recipes;
1442   }
1443 
1444   /// Method to support type inquiry through isa, cast, and dyn_cast.
1445   static inline bool classof(const VPBlockBase *V) {
1446     return V->getVPBlockID() == VPBlockBase::VPBasicBlockSC;
1447   }
1448 
1449   void insert(VPRecipeBase *Recipe, iterator InsertPt) {
1450     assert(Recipe && "No recipe to append.");
1451     assert(!Recipe->Parent && "Recipe already in VPlan");
1452     Recipe->Parent = this;
1453     Recipes.insert(InsertPt, Recipe);
1454   }
1455 
1456   /// Augment the existing recipes of a VPBasicBlock with an additional
1457   /// \p Recipe as the last recipe.
1458   void appendRecipe(VPRecipeBase *Recipe) { insert(Recipe, end()); }
1459 
1460   /// The method which generates the output IR instructions that correspond to
1461   /// this VPBasicBlock, thereby "executing" the VPlan.
1462   void execute(struct VPTransformState *State) override;
1463 
1464   /// Return the position of the first non-phi node recipe in the block.
1465   iterator getFirstNonPhi();
1466 
1467   void dropAllReferences(VPValue *NewValue) override;
1468 
1469 private:
1470   /// Create an IR BasicBlock to hold the output instructions generated by this
1471   /// VPBasicBlock, and return it. Update the CFGState accordingly.
1472   BasicBlock *createEmptyBasicBlock(VPTransformState::CFGState &CFG);
1473 };
1474 
1475 /// VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks
1476 /// which form a Single-Entry-Single-Exit subgraph of the output IR CFG.
1477 /// A VPRegionBlock may indicate that its contents are to be replicated several
1478 /// times. This is designed to support predicated scalarization, in which a
1479 /// scalar if-then code structure needs to be generated VF * UF times. Having
1480 /// this replication indicator helps to keep a single model for multiple
1481 /// candidate VF's. The actual replication takes place only once the desired VF
1482 /// and UF have been determined.
1483 class VPRegionBlock : public VPBlockBase {
1484   /// Hold the Single Entry of the SESE region modelled by the VPRegionBlock.
1485   VPBlockBase *Entry;
1486 
1487   /// Hold the Single Exit of the SESE region modelled by the VPRegionBlock.
1488   VPBlockBase *Exit;
1489 
1490   /// An indicator whether this region is to generate multiple replicated
1491   /// instances of output IR corresponding to its VPBlockBases.
1492   bool IsReplicator;
1493 
1494 public:
1495   VPRegionBlock(VPBlockBase *Entry, VPBlockBase *Exit,
1496                 const std::string &Name = "", bool IsReplicator = false)
1497       : VPBlockBase(VPRegionBlockSC, Name), Entry(Entry), Exit(Exit),
1498         IsReplicator(IsReplicator) {
1499     assert(Entry->getPredecessors().empty() && "Entry block has predecessors.");
1500     assert(Exit->getSuccessors().empty() && "Exit block has successors.");
1501     Entry->setParent(this);
1502     Exit->setParent(this);
1503   }
1504   VPRegionBlock(const std::string &Name = "", bool IsReplicator = false)
1505       : VPBlockBase(VPRegionBlockSC, Name), Entry(nullptr), Exit(nullptr),
1506         IsReplicator(IsReplicator) {}
1507 
1508   ~VPRegionBlock() override {
1509     if (Entry) {
1510       VPValue DummyValue;
1511       Entry->dropAllReferences(&DummyValue);
1512       deleteCFG(Entry);
1513     }
1514   }
1515 
1516   /// Method to support type inquiry through isa, cast, and dyn_cast.
1517   static inline bool classof(const VPBlockBase *V) {
1518     return V->getVPBlockID() == VPBlockBase::VPRegionBlockSC;
1519   }
1520 
1521   const VPBlockBase *getEntry() const { return Entry; }
1522   VPBlockBase *getEntry() { return Entry; }
1523 
1524   /// Set \p EntryBlock as the entry VPBlockBase of this VPRegionBlock. \p
1525   /// EntryBlock must have no predecessors.
1526   void setEntry(VPBlockBase *EntryBlock) {
1527     assert(EntryBlock->getPredecessors().empty() &&
1528            "Entry block cannot have predecessors.");
1529     Entry = EntryBlock;
1530     EntryBlock->setParent(this);
1531   }
1532 
1533   // FIXME: DominatorTreeBase is doing 'A->getParent()->front()'. 'front' is a
1534   // specific interface of llvm::Function, instead of using
1535   // GraphTraints::getEntryNode. We should add a new template parameter to
1536   // DominatorTreeBase representing the Graph type.
1537   VPBlockBase &front() const { return *Entry; }
1538 
1539   const VPBlockBase *getExit() const { return Exit; }
1540   VPBlockBase *getExit() { return Exit; }
1541 
1542   /// Set \p ExitBlock as the exit VPBlockBase of this VPRegionBlock. \p
1543   /// ExitBlock must have no successors.
1544   void setExit(VPBlockBase *ExitBlock) {
1545     assert(ExitBlock->getSuccessors().empty() &&
1546            "Exit block cannot have successors.");
1547     Exit = ExitBlock;
1548     ExitBlock->setParent(this);
1549   }
1550 
1551   /// An indicator whether this region is to generate multiple replicated
1552   /// instances of output IR corresponding to its VPBlockBases.
1553   bool isReplicator() const { return IsReplicator; }
1554 
1555   /// The method which generates the output IR instructions that correspond to
1556   /// this VPRegionBlock, thereby "executing" the VPlan.
1557   void execute(struct VPTransformState *State) override;
1558 
1559   void dropAllReferences(VPValue *NewValue) override;
1560 };
1561 
1562 //===----------------------------------------------------------------------===//
1563 // GraphTraits specializations for VPlan Hierarchical Control-Flow Graphs     //
1564 //===----------------------------------------------------------------------===//
1565 
1566 // The following set of template specializations implement GraphTraits to treat
1567 // any VPBlockBase as a node in a graph of VPBlockBases. It's important to note
1568 // that VPBlockBase traits don't recurse into VPRegioBlocks, i.e., if the
1569 // VPBlockBase is a VPRegionBlock, this specialization provides access to its
1570 // successors/predecessors but not to the blocks inside the region.
1571 
1572 template <> struct GraphTraits<VPBlockBase *> {
1573   using NodeRef = VPBlockBase *;
1574   using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::iterator;
1575 
1576   static NodeRef getEntryNode(NodeRef N) { return N; }
1577 
1578   static inline ChildIteratorType child_begin(NodeRef N) {
1579     return N->getSuccessors().begin();
1580   }
1581 
1582   static inline ChildIteratorType child_end(NodeRef N) {
1583     return N->getSuccessors().end();
1584   }
1585 };
1586 
1587 template <> struct GraphTraits<const VPBlockBase *> {
1588   using NodeRef = const VPBlockBase *;
1589   using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::const_iterator;
1590 
1591   static NodeRef getEntryNode(NodeRef N) { return N; }
1592 
1593   static inline ChildIteratorType child_begin(NodeRef N) {
1594     return N->getSuccessors().begin();
1595   }
1596 
1597   static inline ChildIteratorType child_end(NodeRef N) {
1598     return N->getSuccessors().end();
1599   }
1600 };
1601 
1602 // Inverse order specialization for VPBasicBlocks. Predecessors are used instead
1603 // of successors for the inverse traversal.
1604 template <> struct GraphTraits<Inverse<VPBlockBase *>> {
1605   using NodeRef = VPBlockBase *;
1606   using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::iterator;
1607 
1608   static NodeRef getEntryNode(Inverse<NodeRef> B) { return B.Graph; }
1609 
1610   static inline ChildIteratorType child_begin(NodeRef N) {
1611     return N->getPredecessors().begin();
1612   }
1613 
1614   static inline ChildIteratorType child_end(NodeRef N) {
1615     return N->getPredecessors().end();
1616   }
1617 };
1618 
1619 // The following set of template specializations implement GraphTraits to
1620 // treat VPRegionBlock as a graph and recurse inside its nodes. It's important
1621 // to note that the blocks inside the VPRegionBlock are treated as VPBlockBases
1622 // (i.e., no dyn_cast is performed, VPBlockBases specialization is used), so
1623 // there won't be automatic recursion into other VPBlockBases that turn to be
1624 // VPRegionBlocks.
1625 
1626 template <>
1627 struct GraphTraits<VPRegionBlock *> : public GraphTraits<VPBlockBase *> {
1628   using GraphRef = VPRegionBlock *;
1629   using nodes_iterator = df_iterator<NodeRef>;
1630 
1631   static NodeRef getEntryNode(GraphRef N) { return N->getEntry(); }
1632 
1633   static nodes_iterator nodes_begin(GraphRef N) {
1634     return nodes_iterator::begin(N->getEntry());
1635   }
1636 
1637   static nodes_iterator nodes_end(GraphRef N) {
1638     // df_iterator::end() returns an empty iterator so the node used doesn't
1639     // matter.
1640     return nodes_iterator::end(N);
1641   }
1642 };
1643 
1644 template <>
1645 struct GraphTraits<const VPRegionBlock *>
1646     : public GraphTraits<const VPBlockBase *> {
1647   using GraphRef = const VPRegionBlock *;
1648   using nodes_iterator = df_iterator<NodeRef>;
1649 
1650   static NodeRef getEntryNode(GraphRef N) { return N->getEntry(); }
1651 
1652   static nodes_iterator nodes_begin(GraphRef N) {
1653     return nodes_iterator::begin(N->getEntry());
1654   }
1655 
1656   static nodes_iterator nodes_end(GraphRef N) {
1657     // df_iterator::end() returns an empty iterator so the node used doesn't
1658     // matter.
1659     return nodes_iterator::end(N);
1660   }
1661 };
1662 
1663 template <>
1664 struct GraphTraits<Inverse<VPRegionBlock *>>
1665     : public GraphTraits<Inverse<VPBlockBase *>> {
1666   using GraphRef = VPRegionBlock *;
1667   using nodes_iterator = df_iterator<NodeRef>;
1668 
1669   static NodeRef getEntryNode(Inverse<GraphRef> N) {
1670     return N.Graph->getExit();
1671   }
1672 
1673   static nodes_iterator nodes_begin(GraphRef N) {
1674     return nodes_iterator::begin(N->getExit());
1675   }
1676 
1677   static nodes_iterator nodes_end(GraphRef N) {
1678     // df_iterator::end() returns an empty iterator so the node used doesn't
1679     // matter.
1680     return nodes_iterator::end(N);
1681   }
1682 };
1683 
1684 /// VPlan models a candidate for vectorization, encoding various decisions take
1685 /// to produce efficient output IR, including which branches, basic-blocks and
1686 /// output IR instructions to generate, and their cost. VPlan holds a
1687 /// Hierarchical-CFG of VPBasicBlocks and VPRegionBlocks rooted at an Entry
1688 /// VPBlock.
1689 class VPlan {
1690   friend class VPlanPrinter;
1691   friend class VPSlotTracker;
1692 
1693   /// Hold the single entry to the Hierarchical CFG of the VPlan.
1694   VPBlockBase *Entry;
1695 
1696   /// Holds the VFs applicable to this VPlan.
1697   SmallSetVector<ElementCount, 2> VFs;
1698 
1699   /// Holds the name of the VPlan, for printing.
1700   std::string Name;
1701 
1702   /// Holds all the external definitions created for this VPlan.
1703   // TODO: Introduce a specific representation for external definitions in
1704   // VPlan. External definitions must be immutable and hold a pointer to its
1705   // underlying IR that will be used to implement its structural comparison
1706   // (operators '==' and '<').
1707   SmallPtrSet<VPValue *, 16> VPExternalDefs;
1708 
1709   /// Represents the backedge taken count of the original loop, for folding
1710   /// the tail.
1711   VPValue *BackedgeTakenCount = nullptr;
1712 
1713   /// Holds a mapping between Values and their corresponding VPValue inside
1714   /// VPlan.
1715   Value2VPValueTy Value2VPValue;
1716 
1717   /// Contains all VPValues that been allocated by addVPValue directly and need
1718   /// to be free when the plan's destructor is called.
1719   SmallVector<VPValue *, 16> VPValuesToFree;
1720 
1721   /// Holds the VPLoopInfo analysis for this VPlan.
1722   VPLoopInfo VPLInfo;
1723 
1724   /// Holds the condition bit values built during VPInstruction to VPRecipe transformation.
1725   SmallVector<VPValue *, 4> VPCBVs;
1726 
1727 public:
1728   VPlan(VPBlockBase *Entry = nullptr) : Entry(Entry) {
1729     if (Entry)
1730       Entry->setPlan(this);
1731   }
1732 
1733   ~VPlan() {
1734     if (Entry) {
1735       VPValue DummyValue;
1736       for (VPBlockBase *Block : depth_first(Entry))
1737         Block->dropAllReferences(&DummyValue);
1738 
1739       VPBlockBase::deleteCFG(Entry);
1740     }
1741     for (VPValue *VPV : VPValuesToFree)
1742       delete VPV;
1743     if (BackedgeTakenCount)
1744       delete BackedgeTakenCount;
1745     for (VPValue *Def : VPExternalDefs)
1746       delete Def;
1747     for (VPValue *CBV : VPCBVs)
1748       delete CBV;
1749   }
1750 
1751   /// Generate the IR code for this VPlan.
1752   void execute(struct VPTransformState *State);
1753 
1754   VPBlockBase *getEntry() { return Entry; }
1755   const VPBlockBase *getEntry() const { return Entry; }
1756 
1757   VPBlockBase *setEntry(VPBlockBase *Block) {
1758     Entry = Block;
1759     Block->setPlan(this);
1760     return Entry;
1761   }
1762 
1763   /// The backedge taken count of the original loop.
1764   VPValue *getOrCreateBackedgeTakenCount() {
1765     if (!BackedgeTakenCount)
1766       BackedgeTakenCount = new VPValue();
1767     return BackedgeTakenCount;
1768   }
1769 
1770   void addVF(ElementCount VF) { VFs.insert(VF); }
1771 
1772   bool hasVF(ElementCount VF) { return VFs.count(VF); }
1773 
1774   const std::string &getName() const { return Name; }
1775 
1776   void setName(const Twine &newName) { Name = newName.str(); }
1777 
1778   /// Add \p VPVal to the pool of external definitions if it's not already
1779   /// in the pool.
1780   void addExternalDef(VPValue *VPVal) {
1781     VPExternalDefs.insert(VPVal);
1782   }
1783 
1784   /// Add \p CBV to the vector of condition bit values.
1785   void addCBV(VPValue *CBV) {
1786     VPCBVs.push_back(CBV);
1787   }
1788 
1789   void addVPValue(Value *V) {
1790     assert(V && "Trying to add a null Value to VPlan");
1791     assert(!Value2VPValue.count(V) && "Value already exists in VPlan");
1792     VPValue *VPV = new VPValue(V);
1793     Value2VPValue[V] = VPV;
1794     VPValuesToFree.push_back(VPV);
1795   }
1796 
1797   void addVPValue(Value *V, VPValue *VPV) {
1798     assert(V && "Trying to add a null Value to VPlan");
1799     assert(!Value2VPValue.count(V) && "Value already exists in VPlan");
1800     Value2VPValue[V] = VPV;
1801   }
1802 
1803   VPValue *getVPValue(Value *V) {
1804     assert(V && "Trying to get the VPValue of a null Value");
1805     assert(Value2VPValue.count(V) && "Value does not exist in VPlan");
1806     return Value2VPValue[V];
1807   }
1808 
1809   VPValue *getOrAddVPValue(Value *V) {
1810     assert(V && "Trying to get or add the VPValue of a null Value");
1811     if (!Value2VPValue.count(V))
1812       addVPValue(V);
1813     return getVPValue(V);
1814   }
1815 
1816   void removeVPValueFor(Value *V) { Value2VPValue.erase(V); }
1817 
1818   /// Return the VPLoopInfo analysis for this VPlan.
1819   VPLoopInfo &getVPLoopInfo() { return VPLInfo; }
1820   const VPLoopInfo &getVPLoopInfo() const { return VPLInfo; }
1821 
1822   /// Dump the plan to stderr (for debugging).
1823   void dump() const;
1824 
1825   /// Returns a range mapping the values the range \p Operands to their
1826   /// corresponding VPValues.
1827   iterator_range<mapped_iterator<Use *, std::function<VPValue *(Value *)>>>
1828   mapToVPValues(User::op_range Operands) {
1829     std::function<VPValue *(Value *)> Fn = [this](Value *Op) {
1830       return getOrAddVPValue(Op);
1831     };
1832     return map_range(Operands, Fn);
1833   }
1834 
1835 private:
1836   /// Add to the given dominator tree the header block and every new basic block
1837   /// that was created between it and the latch block, inclusive.
1838   static void updateDominatorTree(DominatorTree *DT, BasicBlock *LoopLatchBB,
1839                                   BasicBlock *LoopPreHeaderBB,
1840                                   BasicBlock *LoopExitBB);
1841 };
1842 
1843 /// VPlanPrinter prints a given VPlan to a given output stream. The printing is
1844 /// indented and follows the dot format.
1845 class VPlanPrinter {
1846   friend inline raw_ostream &operator<<(raw_ostream &OS, const VPlan &Plan);
1847   friend inline raw_ostream &operator<<(raw_ostream &OS,
1848                                         const struct VPlanIngredient &I);
1849 
1850 private:
1851   raw_ostream &OS;
1852   const VPlan &Plan;
1853   unsigned Depth = 0;
1854   unsigned TabWidth = 2;
1855   std::string Indent;
1856   unsigned BID = 0;
1857   SmallDenseMap<const VPBlockBase *, unsigned> BlockID;
1858 
1859   VPSlotTracker SlotTracker;
1860 
1861   VPlanPrinter(raw_ostream &O, const VPlan &P)
1862       : OS(O), Plan(P), SlotTracker(&P) {}
1863 
1864   /// Handle indentation.
1865   void bumpIndent(int b) { Indent = std::string((Depth += b) * TabWidth, ' '); }
1866 
1867   /// Print a given \p Block of the Plan.
1868   void dumpBlock(const VPBlockBase *Block);
1869 
1870   /// Print the information related to the CFG edges going out of a given
1871   /// \p Block, followed by printing the successor blocks themselves.
1872   void dumpEdges(const VPBlockBase *Block);
1873 
1874   /// Print a given \p BasicBlock, including its VPRecipes, followed by printing
1875   /// its successor blocks.
1876   void dumpBasicBlock(const VPBasicBlock *BasicBlock);
1877 
1878   /// Print a given \p Region of the Plan.
1879   void dumpRegion(const VPRegionBlock *Region);
1880 
1881   unsigned getOrCreateBID(const VPBlockBase *Block) {
1882     return BlockID.count(Block) ? BlockID[Block] : BlockID[Block] = BID++;
1883   }
1884 
1885   const Twine getOrCreateName(const VPBlockBase *Block);
1886 
1887   const Twine getUID(const VPBlockBase *Block);
1888 
1889   /// Print the information related to a CFG edge between two VPBlockBases.
1890   void drawEdge(const VPBlockBase *From, const VPBlockBase *To, bool Hidden,
1891                 const Twine &Label);
1892 
1893   void dump();
1894 
1895   static void printAsIngredient(raw_ostream &O, const Value *V);
1896 };
1897 
1898 struct VPlanIngredient {
1899   const Value *V;
1900 
1901   VPlanIngredient(const Value *V) : V(V) {}
1902 };
1903 
1904 inline raw_ostream &operator<<(raw_ostream &OS, const VPlanIngredient &I) {
1905   VPlanPrinter::printAsIngredient(OS, I.V);
1906   return OS;
1907 }
1908 
1909 inline raw_ostream &operator<<(raw_ostream &OS, const VPlan &Plan) {
1910   VPlanPrinter Printer(OS, Plan);
1911   Printer.dump();
1912   return OS;
1913 }
1914 
1915 //===----------------------------------------------------------------------===//
1916 // VPlan Utilities
1917 //===----------------------------------------------------------------------===//
1918 
1919 /// Class that provides utilities for VPBlockBases in VPlan.
1920 class VPBlockUtils {
1921 public:
1922   VPBlockUtils() = delete;
1923 
1924   /// Insert disconnected VPBlockBase \p NewBlock after \p BlockPtr. Add \p
1925   /// NewBlock as successor of \p BlockPtr and \p BlockPtr as predecessor of \p
1926   /// NewBlock, and propagate \p BlockPtr parent to \p NewBlock. If \p BlockPtr
1927   /// has more than one successor, its conditional bit is propagated to \p
1928   /// NewBlock. \p NewBlock must have neither successors nor predecessors.
1929   static void insertBlockAfter(VPBlockBase *NewBlock, VPBlockBase *BlockPtr) {
1930     assert(NewBlock->getSuccessors().empty() &&
1931            "Can't insert new block with successors.");
1932     // TODO: move successors from BlockPtr to NewBlock when this functionality
1933     // is necessary. For now, setBlockSingleSuccessor will assert if BlockPtr
1934     // already has successors.
1935     BlockPtr->setOneSuccessor(NewBlock);
1936     NewBlock->setPredecessors({BlockPtr});
1937     NewBlock->setParent(BlockPtr->getParent());
1938   }
1939 
1940   /// Insert disconnected VPBlockBases \p IfTrue and \p IfFalse after \p
1941   /// BlockPtr. Add \p IfTrue and \p IfFalse as succesors of \p BlockPtr and \p
1942   /// BlockPtr as predecessor of \p IfTrue and \p IfFalse. Propagate \p BlockPtr
1943   /// parent to \p IfTrue and \p IfFalse. \p Condition is set as the successor
1944   /// selector. \p BlockPtr must have no successors and \p IfTrue and \p IfFalse
1945   /// must have neither successors nor predecessors.
1946   static void insertTwoBlocksAfter(VPBlockBase *IfTrue, VPBlockBase *IfFalse,
1947                                    VPValue *Condition, VPBlockBase *BlockPtr) {
1948     assert(IfTrue->getSuccessors().empty() &&
1949            "Can't insert IfTrue with successors.");
1950     assert(IfFalse->getSuccessors().empty() &&
1951            "Can't insert IfFalse with successors.");
1952     BlockPtr->setTwoSuccessors(IfTrue, IfFalse, Condition);
1953     IfTrue->setPredecessors({BlockPtr});
1954     IfFalse->setPredecessors({BlockPtr});
1955     IfTrue->setParent(BlockPtr->getParent());
1956     IfFalse->setParent(BlockPtr->getParent());
1957   }
1958 
1959   /// Connect VPBlockBases \p From and \p To bi-directionally. Append \p To to
1960   /// the successors of \p From and \p From to the predecessors of \p To. Both
1961   /// VPBlockBases must have the same parent, which can be null. Both
1962   /// VPBlockBases can be already connected to other VPBlockBases.
1963   static void connectBlocks(VPBlockBase *From, VPBlockBase *To) {
1964     assert((From->getParent() == To->getParent()) &&
1965            "Can't connect two block with different parents");
1966     assert(From->getNumSuccessors() < 2 &&
1967            "Blocks can't have more than two successors.");
1968     From->appendSuccessor(To);
1969     To->appendPredecessor(From);
1970   }
1971 
1972   /// Disconnect VPBlockBases \p From and \p To bi-directionally. Remove \p To
1973   /// from the successors of \p From and \p From from the predecessors of \p To.
1974   static void disconnectBlocks(VPBlockBase *From, VPBlockBase *To) {
1975     assert(To && "Successor to disconnect is null.");
1976     From->removeSuccessor(To);
1977     To->removePredecessor(From);
1978   }
1979 
1980   /// Returns true if the edge \p FromBlock -> \p ToBlock is a back-edge.
1981   static bool isBackEdge(const VPBlockBase *FromBlock,
1982                          const VPBlockBase *ToBlock, const VPLoopInfo *VPLI) {
1983     assert(FromBlock->getParent() == ToBlock->getParent() &&
1984            FromBlock->getParent() && "Must be in same region");
1985     const VPLoop *FromLoop = VPLI->getLoopFor(FromBlock);
1986     const VPLoop *ToLoop = VPLI->getLoopFor(ToBlock);
1987     if (!FromLoop || !ToLoop || FromLoop != ToLoop)
1988       return false;
1989 
1990     // A back-edge is a branch from the loop latch to its header.
1991     return ToLoop->isLoopLatch(FromBlock) && ToBlock == ToLoop->getHeader();
1992   }
1993 
1994   /// Returns true if \p Block is a loop latch
1995   static bool blockIsLoopLatch(const VPBlockBase *Block,
1996                                const VPLoopInfo *VPLInfo) {
1997     if (const VPLoop *ParentVPL = VPLInfo->getLoopFor(Block))
1998       return ParentVPL->isLoopLatch(Block);
1999 
2000     return false;
2001   }
2002 
2003   /// Count and return the number of succesors of \p PredBlock excluding any
2004   /// backedges.
2005   static unsigned countSuccessorsNoBE(VPBlockBase *PredBlock,
2006                                       VPLoopInfo *VPLI) {
2007     unsigned Count = 0;
2008     for (VPBlockBase *SuccBlock : PredBlock->getSuccessors()) {
2009       if (!VPBlockUtils::isBackEdge(PredBlock, SuccBlock, VPLI))
2010         Count++;
2011     }
2012     return Count;
2013   }
2014 };
2015 
2016 class VPInterleavedAccessInfo {
2017   DenseMap<VPInstruction *, InterleaveGroup<VPInstruction> *>
2018       InterleaveGroupMap;
2019 
2020   /// Type for mapping of instruction based interleave groups to VPInstruction
2021   /// interleave groups
2022   using Old2NewTy = DenseMap<InterleaveGroup<Instruction> *,
2023                              InterleaveGroup<VPInstruction> *>;
2024 
2025   /// Recursively \p Region and populate VPlan based interleave groups based on
2026   /// \p IAI.
2027   void visitRegion(VPRegionBlock *Region, Old2NewTy &Old2New,
2028                    InterleavedAccessInfo &IAI);
2029   /// Recursively traverse \p Block and populate VPlan based interleave groups
2030   /// based on \p IAI.
2031   void visitBlock(VPBlockBase *Block, Old2NewTy &Old2New,
2032                   InterleavedAccessInfo &IAI);
2033 
2034 public:
2035   VPInterleavedAccessInfo(VPlan &Plan, InterleavedAccessInfo &IAI);
2036 
2037   ~VPInterleavedAccessInfo() {
2038     SmallPtrSet<InterleaveGroup<VPInstruction> *, 4> DelSet;
2039     // Avoid releasing a pointer twice.
2040     for (auto &I : InterleaveGroupMap)
2041       DelSet.insert(I.second);
2042     for (auto *Ptr : DelSet)
2043       delete Ptr;
2044   }
2045 
2046   /// Get the interleave group that \p Instr belongs to.
2047   ///
2048   /// \returns nullptr if doesn't have such group.
2049   InterleaveGroup<VPInstruction> *
2050   getInterleaveGroup(VPInstruction *Instr) const {
2051     return InterleaveGroupMap.lookup(Instr);
2052   }
2053 };
2054 
2055 /// Class that maps (parts of) an existing VPlan to trees of combined
2056 /// VPInstructions.
2057 class VPlanSlp {
2058   enum class OpMode { Failed, Load, Opcode };
2059 
2060   /// A DenseMapInfo implementation for using SmallVector<VPValue *, 4> as
2061   /// DenseMap keys.
2062   struct BundleDenseMapInfo {
2063     static SmallVector<VPValue *, 4> getEmptyKey() {
2064       return {reinterpret_cast<VPValue *>(-1)};
2065     }
2066 
2067     static SmallVector<VPValue *, 4> getTombstoneKey() {
2068       return {reinterpret_cast<VPValue *>(-2)};
2069     }
2070 
2071     static unsigned getHashValue(const SmallVector<VPValue *, 4> &V) {
2072       return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
2073     }
2074 
2075     static bool isEqual(const SmallVector<VPValue *, 4> &LHS,
2076                         const SmallVector<VPValue *, 4> &RHS) {
2077       return LHS == RHS;
2078     }
2079   };
2080 
2081   /// Mapping of values in the original VPlan to a combined VPInstruction.
2082   DenseMap<SmallVector<VPValue *, 4>, VPInstruction *, BundleDenseMapInfo>
2083       BundleToCombined;
2084 
2085   VPInterleavedAccessInfo &IAI;
2086 
2087   /// Basic block to operate on. For now, only instructions in a single BB are
2088   /// considered.
2089   const VPBasicBlock &BB;
2090 
2091   /// Indicates whether we managed to combine all visited instructions or not.
2092   bool CompletelySLP = true;
2093 
2094   /// Width of the widest combined bundle in bits.
2095   unsigned WidestBundleBits = 0;
2096 
2097   using MultiNodeOpTy =
2098       typename std::pair<VPInstruction *, SmallVector<VPValue *, 4>>;
2099 
2100   // Input operand bundles for the current multi node. Each multi node operand
2101   // bundle contains values not matching the multi node's opcode. They will
2102   // be reordered in reorderMultiNodeOps, once we completed building a
2103   // multi node.
2104   SmallVector<MultiNodeOpTy, 4> MultiNodeOps;
2105 
2106   /// Indicates whether we are building a multi node currently.
2107   bool MultiNodeActive = false;
2108 
2109   /// Check if we can vectorize Operands together.
2110   bool areVectorizable(ArrayRef<VPValue *> Operands) const;
2111 
2112   /// Add combined instruction \p New for the bundle \p Operands.
2113   void addCombined(ArrayRef<VPValue *> Operands, VPInstruction *New);
2114 
2115   /// Indicate we hit a bundle we failed to combine. Returns nullptr for now.
2116   VPInstruction *markFailed();
2117 
2118   /// Reorder operands in the multi node to maximize sequential memory access
2119   /// and commutative operations.
2120   SmallVector<MultiNodeOpTy, 4> reorderMultiNodeOps();
2121 
2122   /// Choose the best candidate to use for the lane after \p Last. The set of
2123   /// candidates to choose from are values with an opcode matching \p Last's
2124   /// or loads consecutive to \p Last.
2125   std::pair<OpMode, VPValue *> getBest(OpMode Mode, VPValue *Last,
2126                                        SmallPtrSetImpl<VPValue *> &Candidates,
2127                                        VPInterleavedAccessInfo &IAI);
2128 
2129   /// Print bundle \p Values to dbgs().
2130   void dumpBundle(ArrayRef<VPValue *> Values);
2131 
2132 public:
2133   VPlanSlp(VPInterleavedAccessInfo &IAI, VPBasicBlock &BB) : IAI(IAI), BB(BB) {}
2134 
2135   ~VPlanSlp() = default;
2136 
2137   /// Tries to build an SLP tree rooted at \p Operands and returns a
2138   /// VPInstruction combining \p Operands, if they can be combined.
2139   VPInstruction *buildGraph(ArrayRef<VPValue *> Operands);
2140 
2141   /// Return the width of the widest combined bundle in bits.
2142   unsigned getWidestBundleBits() const { return WidestBundleBits; }
2143 
2144   /// Return true if all visited instruction can be combined.
2145   bool isCompletelySLP() const { return CompletelySLP; }
2146 };
2147 } // end namespace llvm
2148 
2149 #endif // LLVM_TRANSFORMS_VECTORIZE_VPLAN_H
2150