1 //===- VPlan.h - Represent A Vectorizer Plan --------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This file contains the declarations of the Vectorization Plan base classes:
11 /// 1. VPBasicBlock and VPRegionBlock that inherit from a common pure virtual
12 ///    VPBlockBase, together implementing a Hierarchical CFG;
13 /// 2. Specializations of GraphTraits that allow VPBlockBase graphs to be
14 ///    treated as proper graphs for generic algorithms;
15 /// 3. Pure virtual VPRecipeBase serving as the base class for recipes contained
16 ///    within VPBasicBlocks;
17 /// 4. VPInstruction, a concrete Recipe and VPUser modeling a single planned
18 ///    instruction;
19 /// 5. The VPlan class holding a candidate for vectorization;
20 /// 6. The VPlanPrinter class providing a way to print a plan in dot format;
21 /// These are documented in docs/VectorizationPlan.rst.
22 //
23 //===----------------------------------------------------------------------===//
24 
25 #ifndef LLVM_TRANSFORMS_VECTORIZE_VPLAN_H
26 #define LLVM_TRANSFORMS_VECTORIZE_VPLAN_H
27 
28 #include "VPlanValue.h"
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/DepthFirstIterator.h"
31 #include "llvm/ADT/GraphTraits.h"
32 #include "llvm/ADT/MapVector.h"
33 #include "llvm/ADT/Optional.h"
34 #include "llvm/ADT/SmallBitVector.h"
35 #include "llvm/ADT/SmallPtrSet.h"
36 #include "llvm/ADT/SmallVector.h"
37 #include "llvm/ADT/Twine.h"
38 #include "llvm/ADT/ilist.h"
39 #include "llvm/ADT/ilist_node.h"
40 #include "llvm/Analysis/LoopInfo.h"
41 #include "llvm/Analysis/VectorUtils.h"
42 #include "llvm/IR/DebugLoc.h"
43 #include "llvm/IR/FMF.h"
44 #include "llvm/Transforms/Utils/LoopVersioning.h"
45 #include <algorithm>
46 #include <cassert>
47 #include <cstddef>
48 #include <string>
49 
50 namespace llvm {
51 
52 class BasicBlock;
53 class DominatorTree;
54 class InductionDescriptor;
55 class InnerLoopVectorizer;
56 class IRBuilderBase;
57 class LoopInfo;
58 class raw_ostream;
59 class RecurrenceDescriptor;
60 class Value;
61 class VPBasicBlock;
62 class VPRegionBlock;
63 class VPlan;
64 class VPReplicateRecipe;
65 class VPlanSlp;
66 
67 /// Returns a calculation for the total number of elements for a given \p VF.
68 /// For fixed width vectors this value is a constant, whereas for scalable
69 /// vectors it is an expression determined at runtime.
70 Value *getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF);
71 
72 /// Return a value for Step multiplied by VF.
73 Value *createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF,
74                        int64_t Step);
75 
76 /// A range of powers-of-2 vectorization factors with fixed start and
77 /// adjustable end. The range includes start and excludes end, e.g.,:
78 /// [1, 9) = {1, 2, 4, 8}
79 struct VFRange {
80   // A power of 2.
81   const ElementCount Start;
82 
83   // Need not be a power of 2. If End <= Start range is empty.
84   ElementCount End;
85 
86   bool isEmpty() const {
87     return End.getKnownMinValue() <= Start.getKnownMinValue();
88   }
89 
90   VFRange(const ElementCount &Start, const ElementCount &End)
91       : Start(Start), End(End) {
92     assert(Start.isScalable() == End.isScalable() &&
93            "Both Start and End should have the same scalable flag");
94     assert(isPowerOf2_32(Start.getKnownMinValue()) &&
95            "Expected Start to be a power of 2");
96   }
97 };
98 
99 using VPlanPtr = std::unique_ptr<VPlan>;
100 
101 /// In what follows, the term "input IR" refers to code that is fed into the
102 /// vectorizer whereas the term "output IR" refers to code that is generated by
103 /// the vectorizer.
104 
105 /// VPLane provides a way to access lanes in both fixed width and scalable
106 /// vectors, where for the latter the lane index sometimes needs calculating
107 /// as a runtime expression.
108 class VPLane {
109 public:
110   /// Kind describes how to interpret Lane.
111   enum class Kind : uint8_t {
112     /// For First, Lane is the index into the first N elements of a
113     /// fixed-vector <N x <ElTy>> or a scalable vector <vscale x N x <ElTy>>.
114     First,
115     /// For ScalableLast, Lane is the offset from the start of the last
116     /// N-element subvector in a scalable vector <vscale x N x <ElTy>>. For
117     /// example, a Lane of 0 corresponds to lane `(vscale - 1) * N`, a Lane of
118     /// 1 corresponds to `((vscale - 1) * N) + 1`, etc.
119     ScalableLast
120   };
121 
122 private:
123   /// in [0..VF)
124   unsigned Lane;
125 
126   /// Indicates how the Lane should be interpreted, as described above.
127   Kind LaneKind;
128 
129 public:
130   VPLane(unsigned Lane, Kind LaneKind) : Lane(Lane), LaneKind(LaneKind) {}
131 
132   static VPLane getFirstLane() { return VPLane(0, VPLane::Kind::First); }
133 
134   static VPLane getLastLaneForVF(const ElementCount &VF) {
135     unsigned LaneOffset = VF.getKnownMinValue() - 1;
136     Kind LaneKind;
137     if (VF.isScalable())
138       // In this case 'LaneOffset' refers to the offset from the start of the
139       // last subvector with VF.getKnownMinValue() elements.
140       LaneKind = VPLane::Kind::ScalableLast;
141     else
142       LaneKind = VPLane::Kind::First;
143     return VPLane(LaneOffset, LaneKind);
144   }
145 
146   /// Returns a compile-time known value for the lane index and asserts if the
147   /// lane can only be calculated at runtime.
148   unsigned getKnownLane() const {
149     assert(LaneKind == Kind::First);
150     return Lane;
151   }
152 
153   /// Returns an expression describing the lane index that can be used at
154   /// runtime.
155   Value *getAsRuntimeExpr(IRBuilderBase &Builder, const ElementCount &VF) const;
156 
157   /// Returns the Kind of lane offset.
158   Kind getKind() const { return LaneKind; }
159 
160   /// Returns true if this is the first lane of the whole vector.
161   bool isFirstLane() const { return Lane == 0 && LaneKind == Kind::First; }
162 
163   /// Maps the lane to a cache index based on \p VF.
164   unsigned mapToCacheIndex(const ElementCount &VF) const {
165     switch (LaneKind) {
166     case VPLane::Kind::ScalableLast:
167       assert(VF.isScalable() && Lane < VF.getKnownMinValue());
168       return VF.getKnownMinValue() + Lane;
169     default:
170       assert(Lane < VF.getKnownMinValue());
171       return Lane;
172     }
173   }
174 
175   /// Returns the maxmimum number of lanes that we are able to consider
176   /// caching for \p VF.
177   static unsigned getNumCachedLanes(const ElementCount &VF) {
178     return VF.getKnownMinValue() * (VF.isScalable() ? 2 : 1);
179   }
180 };
181 
182 /// VPIteration represents a single point in the iteration space of the output
183 /// (vectorized and/or unrolled) IR loop.
184 struct VPIteration {
185   /// in [0..UF)
186   unsigned Part;
187 
188   VPLane Lane;
189 
190   VPIteration(unsigned Part, unsigned Lane,
191               VPLane::Kind Kind = VPLane::Kind::First)
192       : Part(Part), Lane(Lane, Kind) {}
193 
194   VPIteration(unsigned Part, const VPLane &Lane) : Part(Part), Lane(Lane) {}
195 
196   bool isFirstIteration() const { return Part == 0 && Lane.isFirstLane(); }
197 };
198 
199 /// VPTransformState holds information passed down when "executing" a VPlan,
200 /// needed for generating the output IR.
201 struct VPTransformState {
202   VPTransformState(ElementCount VF, unsigned UF, LoopInfo *LI,
203                    DominatorTree *DT, IRBuilderBase &Builder,
204                    InnerLoopVectorizer *ILV, VPlan *Plan)
205       : VF(VF), UF(UF), LI(LI), DT(DT), Builder(Builder), ILV(ILV), Plan(Plan),
206         LVer(nullptr) {}
207 
208   /// The chosen Vectorization and Unroll Factors of the loop being vectorized.
209   ElementCount VF;
210   unsigned UF;
211 
212   /// Hold the indices to generate specific scalar instructions. Null indicates
213   /// that all instances are to be generated, using either scalar or vector
214   /// instructions.
215   Optional<VPIteration> Instance;
216 
217   struct DataState {
218     /// A type for vectorized values in the new loop. Each value from the
219     /// original loop, when vectorized, is represented by UF vector values in
220     /// the new unrolled loop, where UF is the unroll factor.
221     typedef SmallVector<Value *, 2> PerPartValuesTy;
222 
223     DenseMap<VPValue *, PerPartValuesTy> PerPartOutput;
224 
225     using ScalarsPerPartValuesTy = SmallVector<SmallVector<Value *, 4>, 2>;
226     DenseMap<VPValue *, ScalarsPerPartValuesTy> PerPartScalars;
227   } Data;
228 
229   /// Get the generated Value for a given VPValue and a given Part. Note that
230   /// as some Defs are still created by ILV and managed in its ValueMap, this
231   /// method will delegate the call to ILV in such cases in order to provide
232   /// callers a consistent API.
233   /// \see set.
234   Value *get(VPValue *Def, unsigned Part);
235 
236   /// Get the generated Value for a given VPValue and given Part and Lane.
237   Value *get(VPValue *Def, const VPIteration &Instance);
238 
239   bool hasVectorValue(VPValue *Def, unsigned Part) {
240     auto I = Data.PerPartOutput.find(Def);
241     return I != Data.PerPartOutput.end() && Part < I->second.size() &&
242            I->second[Part];
243   }
244 
245   bool hasAnyVectorValue(VPValue *Def) const {
246     return Data.PerPartOutput.find(Def) != Data.PerPartOutput.end();
247   }
248 
249   bool hasScalarValue(VPValue *Def, VPIteration Instance) {
250     auto I = Data.PerPartScalars.find(Def);
251     if (I == Data.PerPartScalars.end())
252       return false;
253     unsigned CacheIdx = Instance.Lane.mapToCacheIndex(VF);
254     return Instance.Part < I->second.size() &&
255            CacheIdx < I->second[Instance.Part].size() &&
256            I->second[Instance.Part][CacheIdx];
257   }
258 
259   /// Set the generated Value for a given VPValue and a given Part.
260   void set(VPValue *Def, Value *V, unsigned Part) {
261     if (!Data.PerPartOutput.count(Def)) {
262       DataState::PerPartValuesTy Entry(UF);
263       Data.PerPartOutput[Def] = Entry;
264     }
265     Data.PerPartOutput[Def][Part] = V;
266   }
267   /// Reset an existing vector value for \p Def and a given \p Part.
268   void reset(VPValue *Def, Value *V, unsigned Part) {
269     auto Iter = Data.PerPartOutput.find(Def);
270     assert(Iter != Data.PerPartOutput.end() &&
271            "need to overwrite existing value");
272     Iter->second[Part] = V;
273   }
274 
275   /// Set the generated scalar \p V for \p Def and the given \p Instance.
276   void set(VPValue *Def, Value *V, const VPIteration &Instance) {
277     auto Iter = Data.PerPartScalars.insert({Def, {}});
278     auto &PerPartVec = Iter.first->second;
279     while (PerPartVec.size() <= Instance.Part)
280       PerPartVec.emplace_back();
281     auto &Scalars = PerPartVec[Instance.Part];
282     unsigned CacheIdx = Instance.Lane.mapToCacheIndex(VF);
283     while (Scalars.size() <= CacheIdx)
284       Scalars.push_back(nullptr);
285     assert(!Scalars[CacheIdx] && "should overwrite existing value");
286     Scalars[CacheIdx] = V;
287   }
288 
289   /// Reset an existing scalar value for \p Def and a given \p Instance.
290   void reset(VPValue *Def, Value *V, const VPIteration &Instance) {
291     auto Iter = Data.PerPartScalars.find(Def);
292     assert(Iter != Data.PerPartScalars.end() &&
293            "need to overwrite existing value");
294     assert(Instance.Part < Iter->second.size() &&
295            "need to overwrite existing value");
296     unsigned CacheIdx = Instance.Lane.mapToCacheIndex(VF);
297     assert(CacheIdx < Iter->second[Instance.Part].size() &&
298            "need to overwrite existing value");
299     Iter->second[Instance.Part][CacheIdx] = V;
300   }
301 
302   /// Add additional metadata to \p To that was not present on \p Orig.
303   ///
304   /// Currently this is used to add the noalias annotations based on the
305   /// inserted memchecks.  Use this for instructions that are *cloned* into the
306   /// vector loop.
307   void addNewMetadata(Instruction *To, const Instruction *Orig);
308 
309   /// Add metadata from one instruction to another.
310   ///
311   /// This includes both the original MDs from \p From and additional ones (\see
312   /// addNewMetadata).  Use this for *newly created* instructions in the vector
313   /// loop.
314   void addMetadata(Instruction *To, Instruction *From);
315 
316   /// Similar to the previous function but it adds the metadata to a
317   /// vector of instructions.
318   void addMetadata(ArrayRef<Value *> To, Instruction *From);
319 
320   /// Set the debug location in the builder using the debug location in \p V.
321   void setDebugLocFromInst(const Value *V);
322 
323   /// Hold state information used when constructing the CFG of the output IR,
324   /// traversing the VPBasicBlocks and generating corresponding IR BasicBlocks.
325   struct CFGState {
326     /// The previous VPBasicBlock visited. Initially set to null.
327     VPBasicBlock *PrevVPBB = nullptr;
328 
329     /// The previous IR BasicBlock created or used. Initially set to the new
330     /// header BasicBlock.
331     BasicBlock *PrevBB = nullptr;
332 
333     /// The last IR BasicBlock in the output IR. Set to the exit block of the
334     /// vector loop.
335     BasicBlock *ExitBB = nullptr;
336 
337     /// A mapping of each VPBasicBlock to the corresponding BasicBlock. In case
338     /// of replication, maps the BasicBlock of the last replica created.
339     SmallDenseMap<VPBasicBlock *, BasicBlock *> VPBB2IRBB;
340 
341     CFGState() = default;
342 
343     /// Returns the BasicBlock* mapped to the pre-header of the loop region
344     /// containing \p R.
345     BasicBlock *getPreheaderBBFor(VPRecipeBase *R);
346   } CFG;
347 
348   /// Hold a pointer to LoopInfo to register new basic blocks in the loop.
349   LoopInfo *LI;
350 
351   /// Hold a pointer to Dominator Tree to register new basic blocks in the loop.
352   DominatorTree *DT;
353 
354   /// Hold a reference to the IRBuilder used to generate output IR code.
355   IRBuilderBase &Builder;
356 
357   VPValue2ValueTy VPValue2Value;
358 
359   /// Hold the canonical scalar IV of the vector loop (start=0, step=VF*UF).
360   Value *CanonicalIV = nullptr;
361 
362   /// Hold a pointer to InnerLoopVectorizer to reuse its IR generation methods.
363   InnerLoopVectorizer *ILV;
364 
365   /// Pointer to the VPlan code is generated for.
366   VPlan *Plan;
367 
368   /// Holds recipes that may generate a poison value that is used after
369   /// vectorization, even when their operands are not poison.
370   SmallPtrSet<VPRecipeBase *, 16> MayGeneratePoisonRecipes;
371 
372   /// The loop object for the current parent region, or nullptr.
373   Loop *CurrentVectorLoop = nullptr;
374 
375   /// LoopVersioning.  It's only set up (non-null) if memchecks were
376   /// used.
377   ///
378   /// This is currently only used to add no-alias metadata based on the
379   /// memchecks.  The actually versioning is performed manually.
380   std::unique_ptr<LoopVersioning> LVer;
381 };
382 
383 /// VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
384 /// A VPBlockBase can be either a VPBasicBlock or a VPRegionBlock.
385 class VPBlockBase {
386   friend class VPBlockUtils;
387 
388   const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast).
389 
390   /// An optional name for the block.
391   std::string Name;
392 
393   /// The immediate VPRegionBlock which this VPBlockBase belongs to, or null if
394   /// it is a topmost VPBlockBase.
395   VPRegionBlock *Parent = nullptr;
396 
397   /// List of predecessor blocks.
398   SmallVector<VPBlockBase *, 1> Predecessors;
399 
400   /// List of successor blocks.
401   SmallVector<VPBlockBase *, 1> Successors;
402 
403   /// VPlan containing the block. Can only be set on the entry block of the
404   /// plan.
405   VPlan *Plan = nullptr;
406 
407   /// Add \p Successor as the last successor to this block.
408   void appendSuccessor(VPBlockBase *Successor) {
409     assert(Successor && "Cannot add nullptr successor!");
410     Successors.push_back(Successor);
411   }
412 
413   /// Add \p Predecessor as the last predecessor to this block.
414   void appendPredecessor(VPBlockBase *Predecessor) {
415     assert(Predecessor && "Cannot add nullptr predecessor!");
416     Predecessors.push_back(Predecessor);
417   }
418 
419   /// Remove \p Predecessor from the predecessors of this block.
420   void removePredecessor(VPBlockBase *Predecessor) {
421     auto Pos = find(Predecessors, Predecessor);
422     assert(Pos && "Predecessor does not exist");
423     Predecessors.erase(Pos);
424   }
425 
426   /// Remove \p Successor from the successors of this block.
427   void removeSuccessor(VPBlockBase *Successor) {
428     auto Pos = find(Successors, Successor);
429     assert(Pos && "Successor does not exist");
430     Successors.erase(Pos);
431   }
432 
433 protected:
434   VPBlockBase(const unsigned char SC, const std::string &N)
435       : SubclassID(SC), Name(N) {}
436 
437 public:
438   /// An enumeration for keeping track of the concrete subclass of VPBlockBase
439   /// that are actually instantiated. Values of this enumeration are kept in the
440   /// SubclassID field of the VPBlockBase objects. They are used for concrete
441   /// type identification.
442   using VPBlockTy = enum { VPBasicBlockSC, VPRegionBlockSC };
443 
444   using VPBlocksTy = SmallVectorImpl<VPBlockBase *>;
445 
446   virtual ~VPBlockBase() = default;
447 
448   const std::string &getName() const { return Name; }
449 
450   void setName(const Twine &newName) { Name = newName.str(); }
451 
452   /// \return an ID for the concrete type of this object.
453   /// This is used to implement the classof checks. This should not be used
454   /// for any other purpose, as the values may change as LLVM evolves.
455   unsigned getVPBlockID() const { return SubclassID; }
456 
457   VPRegionBlock *getParent() { return Parent; }
458   const VPRegionBlock *getParent() const { return Parent; }
459 
460   /// \return A pointer to the plan containing the current block.
461   VPlan *getPlan();
462   const VPlan *getPlan() const;
463 
464   /// Sets the pointer of the plan containing the block. The block must be the
465   /// entry block into the VPlan.
466   void setPlan(VPlan *ParentPlan);
467 
468   void setParent(VPRegionBlock *P) { Parent = P; }
469 
470   /// \return the VPBasicBlock that is the entry of this VPBlockBase,
471   /// recursively, if the latter is a VPRegionBlock. Otherwise, if this
472   /// VPBlockBase is a VPBasicBlock, it is returned.
473   const VPBasicBlock *getEntryBasicBlock() const;
474   VPBasicBlock *getEntryBasicBlock();
475 
476   /// \return the VPBasicBlock that is the exiting this VPBlockBase,
477   /// recursively, if the latter is a VPRegionBlock. Otherwise, if this
478   /// VPBlockBase is a VPBasicBlock, it is returned.
479   const VPBasicBlock *getExitingBasicBlock() const;
480   VPBasicBlock *getExitingBasicBlock();
481 
482   const VPBlocksTy &getSuccessors() const { return Successors; }
483   VPBlocksTy &getSuccessors() { return Successors; }
484 
485   iterator_range<VPBlockBase **> successors() { return Successors; }
486 
487   const VPBlocksTy &getPredecessors() const { return Predecessors; }
488   VPBlocksTy &getPredecessors() { return Predecessors; }
489 
490   /// \return the successor of this VPBlockBase if it has a single successor.
491   /// Otherwise return a null pointer.
492   VPBlockBase *getSingleSuccessor() const {
493     return (Successors.size() == 1 ? *Successors.begin() : nullptr);
494   }
495 
496   /// \return the predecessor of this VPBlockBase if it has a single
497   /// predecessor. Otherwise return a null pointer.
498   VPBlockBase *getSinglePredecessor() const {
499     return (Predecessors.size() == 1 ? *Predecessors.begin() : nullptr);
500   }
501 
502   size_t getNumSuccessors() const { return Successors.size(); }
503   size_t getNumPredecessors() const { return Predecessors.size(); }
504 
505   /// An Enclosing Block of a block B is any block containing B, including B
506   /// itself. \return the closest enclosing block starting from "this", which
507   /// has successors. \return the root enclosing block if all enclosing blocks
508   /// have no successors.
509   VPBlockBase *getEnclosingBlockWithSuccessors();
510 
511   /// \return the closest enclosing block starting from "this", which has
512   /// predecessors. \return the root enclosing block if all enclosing blocks
513   /// have no predecessors.
514   VPBlockBase *getEnclosingBlockWithPredecessors();
515 
516   /// \return the successors either attached directly to this VPBlockBase or, if
517   /// this VPBlockBase is the exit block of a VPRegionBlock and has no
518   /// successors of its own, search recursively for the first enclosing
519   /// VPRegionBlock that has successors and return them. If no such
520   /// VPRegionBlock exists, return the (empty) successors of the topmost
521   /// VPBlockBase reached.
522   const VPBlocksTy &getHierarchicalSuccessors() {
523     return getEnclosingBlockWithSuccessors()->getSuccessors();
524   }
525 
526   /// \return the hierarchical successor of this VPBlockBase if it has a single
527   /// hierarchical successor. Otherwise return a null pointer.
528   VPBlockBase *getSingleHierarchicalSuccessor() {
529     return getEnclosingBlockWithSuccessors()->getSingleSuccessor();
530   }
531 
532   /// \return the predecessors either attached directly to this VPBlockBase or,
533   /// if this VPBlockBase is the entry block of a VPRegionBlock and has no
534   /// predecessors of its own, search recursively for the first enclosing
535   /// VPRegionBlock that has predecessors and return them. If no such
536   /// VPRegionBlock exists, return the (empty) predecessors of the topmost
537   /// VPBlockBase reached.
538   const VPBlocksTy &getHierarchicalPredecessors() {
539     return getEnclosingBlockWithPredecessors()->getPredecessors();
540   }
541 
542   /// \return the hierarchical predecessor of this VPBlockBase if it has a
543   /// single hierarchical predecessor. Otherwise return a null pointer.
544   VPBlockBase *getSingleHierarchicalPredecessor() {
545     return getEnclosingBlockWithPredecessors()->getSinglePredecessor();
546   }
547 
548   /// Set a given VPBlockBase \p Successor as the single successor of this
549   /// VPBlockBase. This VPBlockBase is not added as predecessor of \p Successor.
550   /// This VPBlockBase must have no successors.
551   void setOneSuccessor(VPBlockBase *Successor) {
552     assert(Successors.empty() && "Setting one successor when others exist.");
553     appendSuccessor(Successor);
554   }
555 
556   /// Set two given VPBlockBases \p IfTrue and \p IfFalse to be the two
557   /// successors of this VPBlockBase. This VPBlockBase is not added as
558   /// predecessor of \p IfTrue or \p IfFalse. This VPBlockBase must have no
559   /// successors.
560   void setTwoSuccessors(VPBlockBase *IfTrue, VPBlockBase *IfFalse) {
561     assert(Successors.empty() && "Setting two successors when others exist.");
562     appendSuccessor(IfTrue);
563     appendSuccessor(IfFalse);
564   }
565 
566   /// Set each VPBasicBlock in \p NewPreds as predecessor of this VPBlockBase.
567   /// This VPBlockBase must have no predecessors. This VPBlockBase is not added
568   /// as successor of any VPBasicBlock in \p NewPreds.
569   void setPredecessors(ArrayRef<VPBlockBase *> NewPreds) {
570     assert(Predecessors.empty() && "Block predecessors already set.");
571     for (auto *Pred : NewPreds)
572       appendPredecessor(Pred);
573   }
574 
575   /// Remove all the predecessor of this block.
576   void clearPredecessors() { Predecessors.clear(); }
577 
578   /// Remove all the successors of this block.
579   void clearSuccessors() { Successors.clear(); }
580 
581   /// The method which generates the output IR that correspond to this
582   /// VPBlockBase, thereby "executing" the VPlan.
583   virtual void execute(struct VPTransformState *State) = 0;
584 
585   /// Delete all blocks reachable from a given VPBlockBase, inclusive.
586   static void deleteCFG(VPBlockBase *Entry);
587 
588   /// Return true if it is legal to hoist instructions into this block.
589   bool isLegalToHoistInto() {
590     // There are currently no constraints that prevent an instruction to be
591     // hoisted into a VPBlockBase.
592     return true;
593   }
594 
595   /// Replace all operands of VPUsers in the block with \p NewValue and also
596   /// replaces all uses of VPValues defined in the block with NewValue.
597   virtual void dropAllReferences(VPValue *NewValue) = 0;
598 
599 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
600   void printAsOperand(raw_ostream &OS, bool PrintType) const {
601     OS << getName();
602   }
603 
604   /// Print plain-text dump of this VPBlockBase to \p O, prefixing all lines
605   /// with \p Indent. \p SlotTracker is used to print unnamed VPValue's using
606   /// consequtive numbers.
607   ///
608   /// Note that the numbering is applied to the whole VPlan, so printing
609   /// individual blocks is consistent with the whole VPlan printing.
610   virtual void print(raw_ostream &O, const Twine &Indent,
611                      VPSlotTracker &SlotTracker) const = 0;
612 
613   /// Print plain-text dump of this VPlan to \p O.
614   void print(raw_ostream &O) const {
615     VPSlotTracker SlotTracker(getPlan());
616     print(O, "", SlotTracker);
617   }
618 
619   /// Print the successors of this block to \p O, prefixing all lines with \p
620   /// Indent.
621   void printSuccessors(raw_ostream &O, const Twine &Indent) const;
622 
623   /// Dump this VPBlockBase to dbgs().
624   LLVM_DUMP_METHOD void dump() const { print(dbgs()); }
625 #endif
626 };
627 
628 /// A value that is used outside the VPlan. The operand of the user needs to be
629 /// added to the associated LCSSA phi node.
630 class VPLiveOut : public VPUser {
631   PHINode *Phi;
632 
633 public:
634   VPLiveOut(PHINode *Phi, VPValue *Op)
635       : VPUser({Op}, VPUser::VPUserID::LiveOut), Phi(Phi) {}
636 
637   /// Fixup the wrapped LCSSA phi node in the unique exit block.  This simply
638   /// means we need to add the appropriate incoming value from the middle
639   /// block as exiting edges from the scalar epilogue loop (if present) are
640   /// already in place, and we exit the vector loop exclusively to the middle
641   /// block.
642   void fixPhi(VPlan &Plan, VPTransformState &State);
643 
644   /// Returns true if the VPLiveOut uses scalars of operand \p Op.
645   bool usesScalars(const VPValue *Op) const override {
646     assert(is_contained(operands(), Op) &&
647            "Op must be an operand of the recipe");
648     return true;
649   }
650 
651   PHINode *getPhi() const { return Phi; }
652 };
653 
654 /// VPRecipeBase is a base class modeling a sequence of one or more output IR
655 /// instructions. VPRecipeBase owns the the VPValues it defines through VPDef
656 /// and is responsible for deleting its defined values. Single-value
657 /// VPRecipeBases that also inherit from VPValue must make sure to inherit from
658 /// VPRecipeBase before VPValue.
659 class VPRecipeBase : public ilist_node_with_parent<VPRecipeBase, VPBasicBlock>,
660                      public VPDef,
661                      public VPUser {
662   friend VPBasicBlock;
663   friend class VPBlockUtils;
664 
665   /// Each VPRecipe belongs to a single VPBasicBlock.
666   VPBasicBlock *Parent = nullptr;
667 
668 public:
669   VPRecipeBase(const unsigned char SC, ArrayRef<VPValue *> Operands)
670       : VPDef(SC), VPUser(Operands, VPUser::VPUserID::Recipe) {}
671 
672   template <typename IterT>
673   VPRecipeBase(const unsigned char SC, iterator_range<IterT> Operands)
674       : VPDef(SC), VPUser(Operands, VPUser::VPUserID::Recipe) {}
675   virtual ~VPRecipeBase() = default;
676 
677   /// \return the VPBasicBlock which this VPRecipe belongs to.
678   VPBasicBlock *getParent() { return Parent; }
679   const VPBasicBlock *getParent() const { return Parent; }
680 
681   /// The method which generates the output IR instructions that correspond to
682   /// this VPRecipe, thereby "executing" the VPlan.
683   virtual void execute(struct VPTransformState &State) = 0;
684 
685   /// Insert an unlinked recipe into a basic block immediately before
686   /// the specified recipe.
687   void insertBefore(VPRecipeBase *InsertPos);
688   /// Insert an unlinked recipe into \p BB immediately before the insertion
689   /// point \p IP;
690   void insertBefore(VPBasicBlock &BB, iplist<VPRecipeBase>::iterator IP);
691 
692   /// Insert an unlinked Recipe into a basic block immediately after
693   /// the specified Recipe.
694   void insertAfter(VPRecipeBase *InsertPos);
695 
696   /// Unlink this recipe from its current VPBasicBlock and insert it into
697   /// the VPBasicBlock that MovePos lives in, right after MovePos.
698   void moveAfter(VPRecipeBase *MovePos);
699 
700   /// Unlink this recipe and insert into BB before I.
701   ///
702   /// \pre I is a valid iterator into BB.
703   void moveBefore(VPBasicBlock &BB, iplist<VPRecipeBase>::iterator I);
704 
705   /// This method unlinks 'this' from the containing basic block, but does not
706   /// delete it.
707   void removeFromParent();
708 
709   /// This method unlinks 'this' from the containing basic block and deletes it.
710   ///
711   /// \returns an iterator pointing to the element after the erased one
712   iplist<VPRecipeBase>::iterator eraseFromParent();
713 
714   /// Returns the underlying instruction, if the recipe is a VPValue or nullptr
715   /// otherwise.
716   Instruction *getUnderlyingInstr() {
717     return cast<Instruction>(getVPSingleValue()->getUnderlyingValue());
718   }
719   const Instruction *getUnderlyingInstr() const {
720     return cast<Instruction>(getVPSingleValue()->getUnderlyingValue());
721   }
722 
723   /// Method to support type inquiry through isa, cast, and dyn_cast.
724   static inline bool classof(const VPDef *D) {
725     // All VPDefs are also VPRecipeBases.
726     return true;
727   }
728 
729   static inline bool classof(const VPUser *U) {
730     return U->getVPUserID() == VPUser::VPUserID::Recipe;
731   }
732 
733   /// Returns true if the recipe may have side-effects.
734   bool mayHaveSideEffects() const;
735 
736   /// Returns true for PHI-like recipes.
737   bool isPhi() const {
738     return getVPDefID() >= VPFirstPHISC && getVPDefID() <= VPLastPHISC;
739   }
740 
741   /// Returns true if the recipe may read from memory.
742   bool mayReadFromMemory() const;
743 
744   /// Returns true if the recipe may write to memory.
745   bool mayWriteToMemory() const;
746 
747   /// Returns true if the recipe may read from or write to memory.
748   bool mayReadOrWriteMemory() const {
749     return mayReadFromMemory() || mayWriteToMemory();
750   }
751 };
752 
753 inline bool VPUser::classof(const VPDef *Def) {
754   return Def->getVPDefID() == VPRecipeBase::VPInstructionSC ||
755          Def->getVPDefID() == VPRecipeBase::VPWidenSC ||
756          Def->getVPDefID() == VPRecipeBase::VPWidenCallSC ||
757          Def->getVPDefID() == VPRecipeBase::VPWidenSelectSC ||
758          Def->getVPDefID() == VPRecipeBase::VPWidenGEPSC ||
759          Def->getVPDefID() == VPRecipeBase::VPBlendSC ||
760          Def->getVPDefID() == VPRecipeBase::VPInterleaveSC ||
761          Def->getVPDefID() == VPRecipeBase::VPReplicateSC ||
762          Def->getVPDefID() == VPRecipeBase::VPReductionSC ||
763          Def->getVPDefID() == VPRecipeBase::VPBranchOnMaskSC ||
764          Def->getVPDefID() == VPRecipeBase::VPWidenMemoryInstructionSC;
765 }
766 
767 /// This is a concrete Recipe that models a single VPlan-level instruction.
768 /// While as any Recipe it may generate a sequence of IR instructions when
769 /// executed, these instructions would always form a single-def expression as
770 /// the VPInstruction is also a single def-use vertex.
771 class VPInstruction : public VPRecipeBase, public VPValue {
772   friend class VPlanSlp;
773 
774 public:
775   /// VPlan opcodes, extending LLVM IR with idiomatics instructions.
776   enum {
777     FirstOrderRecurrenceSplice =
778         Instruction::OtherOpsEnd + 1, // Combines the incoming and previous
779                                       // values of a first-order recurrence.
780     Not,
781     ICmpULE,
782     SLPLoad,
783     SLPStore,
784     ActiveLaneMask,
785     CanonicalIVIncrement,
786     CanonicalIVIncrementNUW,
787     // The next two are similar to the above, but instead increment the
788     // canonical IV separately for each unrolled part.
789     CanonicalIVIncrementForPart,
790     CanonicalIVIncrementForPartNUW,
791     BranchOnCount,
792     BranchOnCond
793   };
794 
795 private:
796   typedef unsigned char OpcodeTy;
797   OpcodeTy Opcode;
798   FastMathFlags FMF;
799   DebugLoc DL;
800 
801   /// An optional name that can be used for the generated IR instruction.
802   const std::string Name;
803 
804   /// Utility method serving execute(): generates a single instance of the
805   /// modeled instruction.
806   void generateInstruction(VPTransformState &State, unsigned Part);
807 
808 protected:
809   void setUnderlyingInstr(Instruction *I) { setUnderlyingValue(I); }
810 
811 public:
812   VPInstruction(unsigned Opcode, ArrayRef<VPValue *> Operands, DebugLoc DL,
813                 const Twine &Name = "")
814       : VPRecipeBase(VPRecipeBase::VPInstructionSC, Operands),
815         VPValue(VPValue::VPVInstructionSC, nullptr, this), Opcode(Opcode),
816         DL(DL), Name(Name.str()) {}
817 
818   VPInstruction(unsigned Opcode, std::initializer_list<VPValue *> Operands,
819                 DebugLoc DL = {}, const Twine &Name = "")
820       : VPInstruction(Opcode, ArrayRef<VPValue *>(Operands), DL, Name) {}
821 
822   /// Method to support type inquiry through isa, cast, and dyn_cast.
823   static inline bool classof(const VPValue *V) {
824     return V->getVPValueID() == VPValue::VPVInstructionSC;
825   }
826 
827   VPInstruction *clone() const {
828     SmallVector<VPValue *, 2> Operands(operands());
829     return new VPInstruction(Opcode, Operands, DL, Name);
830   }
831 
832   /// Method to support type inquiry through isa, cast, and dyn_cast.
833   static inline bool classof(const VPDef *R) {
834     return R->getVPDefID() == VPRecipeBase::VPInstructionSC;
835   }
836 
837   /// Extra classof implementations to allow directly casting from VPUser ->
838   /// VPInstruction.
839   static inline bool classof(const VPUser *U) {
840     auto *R = dyn_cast<VPRecipeBase>(U);
841     return R && R->getVPDefID() == VPRecipeBase::VPInstructionSC;
842   }
843   static inline bool classof(const VPRecipeBase *R) {
844     return R->getVPDefID() == VPRecipeBase::VPInstructionSC;
845   }
846 
847   unsigned getOpcode() const { return Opcode; }
848 
849   /// Generate the instruction.
850   /// TODO: We currently execute only per-part unless a specific instance is
851   /// provided.
852   void execute(VPTransformState &State) override;
853 
854 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
855   /// Print the VPInstruction to \p O.
856   void print(raw_ostream &O, const Twine &Indent,
857              VPSlotTracker &SlotTracker) const override;
858 
859   /// Print the VPInstruction to dbgs() (for debugging).
860   LLVM_DUMP_METHOD void dump() const;
861 #endif
862 
863   /// Return true if this instruction may modify memory.
864   bool mayWriteToMemory() const {
865     // TODO: we can use attributes of the called function to rule out memory
866     //       modifications.
867     return Opcode == Instruction::Store || Opcode == Instruction::Call ||
868            Opcode == Instruction::Invoke || Opcode == SLPStore;
869   }
870 
871   bool hasResult() const {
872     // CallInst may or may not have a result, depending on the called function.
873     // Conservatively return calls have results for now.
874     switch (getOpcode()) {
875     case Instruction::Ret:
876     case Instruction::Br:
877     case Instruction::Store:
878     case Instruction::Switch:
879     case Instruction::IndirectBr:
880     case Instruction::Resume:
881     case Instruction::CatchRet:
882     case Instruction::Unreachable:
883     case Instruction::Fence:
884     case Instruction::AtomicRMW:
885     case VPInstruction::BranchOnCond:
886     case VPInstruction::BranchOnCount:
887       return false;
888     default:
889       return true;
890     }
891   }
892 
893   /// Set the fast-math flags.
894   void setFastMathFlags(FastMathFlags FMFNew);
895 
896   /// Returns true if the recipe only uses the first lane of operand \p Op.
897   bool onlyFirstLaneUsed(const VPValue *Op) const override {
898     assert(is_contained(operands(), Op) &&
899            "Op must be an operand of the recipe");
900     if (getOperand(0) != Op)
901       return false;
902     switch (getOpcode()) {
903     default:
904       return false;
905     case VPInstruction::ActiveLaneMask:
906     case VPInstruction::CanonicalIVIncrement:
907     case VPInstruction::CanonicalIVIncrementNUW:
908     case VPInstruction::CanonicalIVIncrementForPart:
909     case VPInstruction::CanonicalIVIncrementForPartNUW:
910     case VPInstruction::BranchOnCount:
911       return true;
912     };
913     llvm_unreachable("switch should return");
914   }
915 };
916 
917 /// VPWidenRecipe is a recipe for producing a copy of vector type its
918 /// ingredient. This recipe covers most of the traditional vectorization cases
919 /// where each ingredient transforms into a vectorized version of itself.
920 class VPWidenRecipe : public VPRecipeBase, public VPValue {
921 public:
922   template <typename IterT>
923   VPWidenRecipe(Instruction &I, iterator_range<IterT> Operands)
924       : VPRecipeBase(VPRecipeBase::VPWidenSC, Operands),
925         VPValue(VPValue::VPVWidenSC, &I, this) {}
926 
927   ~VPWidenRecipe() override = default;
928 
929   /// Method to support type inquiry through isa, cast, and dyn_cast.
930   static inline bool classof(const VPDef *D) {
931     return D->getVPDefID() == VPRecipeBase::VPWidenSC;
932   }
933   static inline bool classof(const VPValue *V) {
934     return V->getVPValueID() == VPValue::VPVWidenSC;
935   }
936 
937   /// Produce widened copies of all Ingredients.
938   void execute(VPTransformState &State) override;
939 
940 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
941   /// Print the recipe.
942   void print(raw_ostream &O, const Twine &Indent,
943              VPSlotTracker &SlotTracker) const override;
944 #endif
945 };
946 
947 /// A recipe for widening Call instructions.
948 class VPWidenCallRecipe : public VPRecipeBase, public VPValue {
949 
950 public:
951   template <typename IterT>
952   VPWidenCallRecipe(CallInst &I, iterator_range<IterT> CallArguments)
953       : VPRecipeBase(VPRecipeBase::VPWidenCallSC, CallArguments),
954         VPValue(VPValue::VPVWidenCallSC, &I, this) {}
955 
956   ~VPWidenCallRecipe() override = default;
957 
958   /// Method to support type inquiry through isa, cast, and dyn_cast.
959   static inline bool classof(const VPDef *D) {
960     return D->getVPDefID() == VPRecipeBase::VPWidenCallSC;
961   }
962 
963   /// Produce a widened version of the call instruction.
964   void execute(VPTransformState &State) override;
965 
966 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
967   /// Print the recipe.
968   void print(raw_ostream &O, const Twine &Indent,
969              VPSlotTracker &SlotTracker) const override;
970 #endif
971 };
972 
973 /// A recipe for widening select instructions.
974 class VPWidenSelectRecipe : public VPRecipeBase, public VPValue {
975 
976   /// Is the condition of the select loop invariant?
977   bool InvariantCond;
978 
979 public:
980   template <typename IterT>
981   VPWidenSelectRecipe(SelectInst &I, iterator_range<IterT> Operands,
982                       bool InvariantCond)
983       : VPRecipeBase(VPRecipeBase::VPWidenSelectSC, Operands),
984         VPValue(VPValue::VPVWidenSelectSC, &I, this),
985         InvariantCond(InvariantCond) {}
986 
987   ~VPWidenSelectRecipe() override = default;
988 
989   /// Method to support type inquiry through isa, cast, and dyn_cast.
990   static inline bool classof(const VPDef *D) {
991     return D->getVPDefID() == VPRecipeBase::VPWidenSelectSC;
992   }
993 
994   /// Produce a widened version of the select instruction.
995   void execute(VPTransformState &State) override;
996 
997 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
998   /// Print the recipe.
999   void print(raw_ostream &O, const Twine &Indent,
1000              VPSlotTracker &SlotTracker) const override;
1001 #endif
1002 };
1003 
1004 /// A recipe for handling GEP instructions.
1005 class VPWidenGEPRecipe : public VPRecipeBase, public VPValue {
1006   bool IsPtrLoopInvariant;
1007   SmallBitVector IsIndexLoopInvariant;
1008 
1009 public:
1010   template <typename IterT>
1011   VPWidenGEPRecipe(GetElementPtrInst *GEP, iterator_range<IterT> Operands)
1012       : VPRecipeBase(VPRecipeBase::VPWidenGEPSC, Operands),
1013         VPValue(VPWidenGEPSC, GEP, this),
1014         IsIndexLoopInvariant(GEP->getNumIndices(), false) {}
1015 
1016   template <typename IterT>
1017   VPWidenGEPRecipe(GetElementPtrInst *GEP, iterator_range<IterT> Operands,
1018                    Loop *OrigLoop)
1019       : VPRecipeBase(VPRecipeBase::VPWidenGEPSC, Operands),
1020         VPValue(VPValue::VPVWidenGEPSC, GEP, this),
1021         IsIndexLoopInvariant(GEP->getNumIndices(), false) {
1022     IsPtrLoopInvariant = OrigLoop->isLoopInvariant(GEP->getPointerOperand());
1023     for (auto Index : enumerate(GEP->indices()))
1024       IsIndexLoopInvariant[Index.index()] =
1025           OrigLoop->isLoopInvariant(Index.value().get());
1026   }
1027   ~VPWidenGEPRecipe() override = default;
1028 
1029   /// Method to support type inquiry through isa, cast, and dyn_cast.
1030   static inline bool classof(const VPDef *D) {
1031     return D->getVPDefID() == VPRecipeBase::VPWidenGEPSC;
1032   }
1033 
1034   /// Generate the gep nodes.
1035   void execute(VPTransformState &State) override;
1036 
1037 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1038   /// Print the recipe.
1039   void print(raw_ostream &O, const Twine &Indent,
1040              VPSlotTracker &SlotTracker) const override;
1041 #endif
1042 };
1043 
1044 /// A recipe for handling phi nodes of integer and floating-point inductions,
1045 /// producing their vector values.
1046 class VPWidenIntOrFpInductionRecipe : public VPRecipeBase, public VPValue {
1047   PHINode *IV;
1048   const InductionDescriptor &IndDesc;
1049   bool NeedsVectorIV;
1050 
1051 public:
1052   VPWidenIntOrFpInductionRecipe(PHINode *IV, VPValue *Start, VPValue *Step,
1053                                 const InductionDescriptor &IndDesc,
1054                                 bool NeedsVectorIV)
1055       : VPRecipeBase(VPWidenIntOrFpInductionSC, {Start, Step}),
1056         VPValue(IV, this), IV(IV), IndDesc(IndDesc),
1057         NeedsVectorIV(NeedsVectorIV) {}
1058 
1059   VPWidenIntOrFpInductionRecipe(PHINode *IV, VPValue *Start, VPValue *Step,
1060                                 const InductionDescriptor &IndDesc,
1061                                 TruncInst *Trunc, bool NeedsVectorIV)
1062       : VPRecipeBase(VPWidenIntOrFpInductionSC, {Start, Step}),
1063         VPValue(Trunc, this), IV(IV), IndDesc(IndDesc),
1064         NeedsVectorIV(NeedsVectorIV) {}
1065 
1066   ~VPWidenIntOrFpInductionRecipe() override = default;
1067 
1068   /// Method to support type inquiry through isa, cast, and dyn_cast.
1069   static inline bool classof(const VPDef *D) {
1070     return D->getVPDefID() == VPRecipeBase::VPWidenIntOrFpInductionSC;
1071   }
1072 
1073   /// Generate the vectorized and scalarized versions of the phi node as
1074   /// needed by their users.
1075   void execute(VPTransformState &State) override;
1076 
1077 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1078   /// Print the recipe.
1079   void print(raw_ostream &O, const Twine &Indent,
1080              VPSlotTracker &SlotTracker) const override;
1081 #endif
1082 
1083   /// Returns the start value of the induction.
1084   VPValue *getStartValue() { return getOperand(0); }
1085   const VPValue *getStartValue() const { return getOperand(0); }
1086 
1087   /// Returns the step value of the induction.
1088   VPValue *getStepValue() { return getOperand(1); }
1089   const VPValue *getStepValue() const { return getOperand(1); }
1090 
1091   /// Returns the first defined value as TruncInst, if it is one or nullptr
1092   /// otherwise.
1093   TruncInst *getTruncInst() {
1094     return dyn_cast_or_null<TruncInst>(getVPValue(0)->getUnderlyingValue());
1095   }
1096   const TruncInst *getTruncInst() const {
1097     return dyn_cast_or_null<TruncInst>(getVPValue(0)->getUnderlyingValue());
1098   }
1099 
1100   PHINode *getPHINode() { return IV; }
1101 
1102   /// Returns the induction descriptor for the recipe.
1103   const InductionDescriptor &getInductionDescriptor() const { return IndDesc; }
1104 
1105   /// Returns true if the induction is canonical, i.e. starting at 0 and
1106   /// incremented by UF * VF (= the original IV is incremented by 1).
1107   bool isCanonical() const;
1108 
1109   /// Returns the scalar type of the induction.
1110   const Type *getScalarType() const {
1111     const TruncInst *TruncI = getTruncInst();
1112     return TruncI ? TruncI->getType() : IV->getType();
1113   }
1114 
1115   /// Returns true if a vector phi needs to be created for the induction.
1116   bool needsVectorIV() const { return NeedsVectorIV; }
1117 };
1118 
1119 /// A pure virtual base class for all recipes modeling header phis, including
1120 /// phis for first order recurrences, pointer inductions and reductions. The
1121 /// start value is the first operand of the recipe and the incoming value from
1122 /// the backedge is the second operand.
1123 class VPHeaderPHIRecipe : public VPRecipeBase, public VPValue {
1124 protected:
1125   VPHeaderPHIRecipe(unsigned char VPVID, unsigned char VPDefID, PHINode *Phi,
1126                     VPValue *Start = nullptr)
1127       : VPRecipeBase(VPDefID, {}), VPValue(VPVID, Phi, this) {
1128     if (Start)
1129       addOperand(Start);
1130   }
1131 
1132 public:
1133   ~VPHeaderPHIRecipe() override = default;
1134 
1135   /// Method to support type inquiry through isa, cast, and dyn_cast.
1136   static inline bool classof(const VPRecipeBase *B) {
1137     return B->getVPDefID() == VPRecipeBase::VPCanonicalIVPHISC ||
1138            B->getVPDefID() == VPRecipeBase::VPActiveLaneMaskPHISC ||
1139            B->getVPDefID() == VPRecipeBase::VPFirstOrderRecurrencePHISC ||
1140            B->getVPDefID() == VPRecipeBase::VPReductionPHISC ||
1141            B->getVPDefID() == VPRecipeBase::VPWidenIntOrFpInductionSC ||
1142            B->getVPDefID() == VPRecipeBase::VPWidenPHISC;
1143   }
1144   static inline bool classof(const VPValue *V) {
1145     return V->getVPValueID() == VPValue::VPVCanonicalIVPHISC ||
1146            V->getVPValueID() == VPValue::VPVActiveLaneMaskPHISC ||
1147            V->getVPValueID() == VPValue::VPVFirstOrderRecurrencePHISC ||
1148            V->getVPValueID() == VPValue::VPVReductionPHISC ||
1149            V->getVPValueID() == VPValue::VPVWidenIntOrFpInductionSC ||
1150            V->getVPValueID() == VPValue::VPVWidenPHISC;
1151   }
1152 
1153   /// Generate the phi nodes.
1154   void execute(VPTransformState &State) override = 0;
1155 
1156 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1157   /// Print the recipe.
1158   void print(raw_ostream &O, const Twine &Indent,
1159              VPSlotTracker &SlotTracker) const override = 0;
1160 #endif
1161 
1162   /// Returns the start value of the phi, if one is set.
1163   VPValue *getStartValue() {
1164     return getNumOperands() == 0 ? nullptr : getOperand(0);
1165   }
1166   VPValue *getStartValue() const {
1167     return getNumOperands() == 0 ? nullptr : getOperand(0);
1168   }
1169 
1170   /// Returns the incoming value from the loop backedge.
1171   VPValue *getBackedgeValue() {
1172     return getOperand(1);
1173   }
1174 
1175   /// Returns the backedge value as a recipe. The backedge value is guaranteed
1176   /// to be a recipe.
1177   VPRecipeBase *getBackedgeRecipe() {
1178     return cast<VPRecipeBase>(getBackedgeValue()->getDef());
1179   }
1180 };
1181 
1182 class VPWidenPointerInductionRecipe : public VPHeaderPHIRecipe {
1183   const InductionDescriptor &IndDesc;
1184 
1185   /// SCEV used to expand step.
1186   /// FIXME: move expansion of step to the pre-header, once it is modeled
1187   /// explicitly.
1188   ScalarEvolution &SE;
1189 
1190   bool IsScalarAfterVectorization;
1191 
1192 public:
1193   /// Create a new VPWidenPointerInductionRecipe for \p Phi with start value \p
1194   /// Start.
1195   VPWidenPointerInductionRecipe(PHINode *Phi, VPValue *Start,
1196                                 const InductionDescriptor &IndDesc,
1197                                 ScalarEvolution &SE,
1198                                 bool IsScalarAfterVectorization)
1199       : VPHeaderPHIRecipe(VPVWidenPointerInductionSC, VPWidenPointerInductionSC,
1200                           Phi),
1201         IndDesc(IndDesc), SE(SE),
1202         IsScalarAfterVectorization(IsScalarAfterVectorization) {
1203     addOperand(Start);
1204   }
1205 
1206   ~VPWidenPointerInductionRecipe() override = default;
1207 
1208   /// Method to support type inquiry through isa, cast, and dyn_cast.
1209   static inline bool classof(const VPRecipeBase *B) {
1210     return B->getVPDefID() == VPRecipeBase::VPWidenPointerInductionSC;
1211   }
1212   static inline bool classof(const VPHeaderPHIRecipe *R) {
1213     return R->getVPDefID() == VPRecipeBase::VPWidenPointerInductionSC;
1214   }
1215   static inline bool classof(const VPValue *V) {
1216     return V->getVPValueID() == VPValue::VPVWidenPointerInductionSC;
1217   }
1218 
1219   /// Generate vector values for the pointer induction.
1220   void execute(VPTransformState &State) override;
1221 
1222   /// Returns true if only scalar values will be generated.
1223   bool onlyScalarsGenerated(ElementCount VF);
1224 
1225 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1226   /// Print the recipe.
1227   void print(raw_ostream &O, const Twine &Indent,
1228              VPSlotTracker &SlotTracker) const override;
1229 #endif
1230 };
1231 
1232 /// A recipe for handling header phis that are widened in the vector loop.
1233 /// In the VPlan native path, all incoming VPValues & VPBasicBlock pairs are
1234 /// managed in the recipe directly.
1235 class VPWidenPHIRecipe : public VPHeaderPHIRecipe {
1236   /// List of incoming blocks. Only used in the VPlan native path.
1237   SmallVector<VPBasicBlock *, 2> IncomingBlocks;
1238 
1239 public:
1240   /// Create a new VPWidenPHIRecipe for \p Phi with start value \p Start.
1241   VPWidenPHIRecipe(PHINode *Phi, VPValue *Start = nullptr)
1242       : VPHeaderPHIRecipe(VPVWidenPHISC, VPWidenPHISC, Phi) {
1243     if (Start)
1244       addOperand(Start);
1245   }
1246 
1247   ~VPWidenPHIRecipe() override = default;
1248 
1249   /// Method to support type inquiry through isa, cast, and dyn_cast.
1250   static inline bool classof(const VPRecipeBase *B) {
1251     return B->getVPDefID() == VPRecipeBase::VPWidenPHISC;
1252   }
1253   static inline bool classof(const VPHeaderPHIRecipe *R) {
1254     return R->getVPDefID() == VPRecipeBase::VPWidenPHISC;
1255   }
1256   static inline bool classof(const VPValue *V) {
1257     return V->getVPValueID() == VPValue::VPVWidenPHISC;
1258   }
1259 
1260   /// Generate the phi/select nodes.
1261   void execute(VPTransformState &State) override;
1262 
1263 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1264   /// Print the recipe.
1265   void print(raw_ostream &O, const Twine &Indent,
1266              VPSlotTracker &SlotTracker) const override;
1267 #endif
1268 
1269   /// Adds a pair (\p IncomingV, \p IncomingBlock) to the phi.
1270   void addIncoming(VPValue *IncomingV, VPBasicBlock *IncomingBlock) {
1271     addOperand(IncomingV);
1272     IncomingBlocks.push_back(IncomingBlock);
1273   }
1274 
1275   /// Returns the \p I th incoming VPBasicBlock.
1276   VPBasicBlock *getIncomingBlock(unsigned I) { return IncomingBlocks[I]; }
1277 
1278   /// Returns the \p I th incoming VPValue.
1279   VPValue *getIncomingValue(unsigned I) { return getOperand(I); }
1280 };
1281 
1282 /// A recipe for handling first-order recurrence phis. The start value is the
1283 /// first operand of the recipe and the incoming value from the backedge is the
1284 /// second operand.
1285 struct VPFirstOrderRecurrencePHIRecipe : public VPHeaderPHIRecipe {
1286   VPFirstOrderRecurrencePHIRecipe(PHINode *Phi, VPValue &Start)
1287       : VPHeaderPHIRecipe(VPVFirstOrderRecurrencePHISC,
1288                           VPFirstOrderRecurrencePHISC, Phi, &Start) {}
1289 
1290   /// Method to support type inquiry through isa, cast, and dyn_cast.
1291   static inline bool classof(const VPRecipeBase *R) {
1292     return R->getVPDefID() == VPRecipeBase::VPFirstOrderRecurrencePHISC;
1293   }
1294   static inline bool classof(const VPHeaderPHIRecipe *R) {
1295     return R->getVPDefID() == VPRecipeBase::VPFirstOrderRecurrencePHISC;
1296   }
1297   static inline bool classof(const VPValue *V) {
1298     return V->getVPValueID() == VPValue::VPVFirstOrderRecurrencePHISC;
1299   }
1300 
1301   void execute(VPTransformState &State) override;
1302 
1303 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1304   /// Print the recipe.
1305   void print(raw_ostream &O, const Twine &Indent,
1306              VPSlotTracker &SlotTracker) const override;
1307 #endif
1308 };
1309 
1310 /// A recipe for handling reduction phis. The start value is the first operand
1311 /// of the recipe and the incoming value from the backedge is the second
1312 /// operand.
1313 class VPReductionPHIRecipe : public VPHeaderPHIRecipe {
1314   /// Descriptor for the reduction.
1315   const RecurrenceDescriptor &RdxDesc;
1316 
1317   /// The phi is part of an in-loop reduction.
1318   bool IsInLoop;
1319 
1320   /// The phi is part of an ordered reduction. Requires IsInLoop to be true.
1321   bool IsOrdered;
1322 
1323 public:
1324   /// Create a new VPReductionPHIRecipe for the reduction \p Phi described by \p
1325   /// RdxDesc.
1326   VPReductionPHIRecipe(PHINode *Phi, const RecurrenceDescriptor &RdxDesc,
1327                        VPValue &Start, bool IsInLoop = false,
1328                        bool IsOrdered = false)
1329       : VPHeaderPHIRecipe(VPVReductionPHISC, VPReductionPHISC, Phi, &Start),
1330         RdxDesc(RdxDesc), IsInLoop(IsInLoop), IsOrdered(IsOrdered) {
1331     assert((!IsOrdered || IsInLoop) && "IsOrdered requires IsInLoop");
1332   }
1333 
1334   ~VPReductionPHIRecipe() override = default;
1335 
1336   /// Method to support type inquiry through isa, cast, and dyn_cast.
1337   static inline bool classof(const VPRecipeBase *R) {
1338     return R->getVPDefID() == VPRecipeBase::VPReductionPHISC;
1339   }
1340   static inline bool classof(const VPHeaderPHIRecipe *R) {
1341     return R->getVPDefID() == VPRecipeBase::VPReductionPHISC;
1342   }
1343   static inline bool classof(const VPValue *V) {
1344     return V->getVPValueID() == VPValue::VPVReductionPHISC;
1345   }
1346 
1347   /// Generate the phi/select nodes.
1348   void execute(VPTransformState &State) override;
1349 
1350 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1351   /// Print the recipe.
1352   void print(raw_ostream &O, const Twine &Indent,
1353              VPSlotTracker &SlotTracker) const override;
1354 #endif
1355 
1356   const RecurrenceDescriptor &getRecurrenceDescriptor() const {
1357     return RdxDesc;
1358   }
1359 
1360   /// Returns true, if the phi is part of an ordered reduction.
1361   bool isOrdered() const { return IsOrdered; }
1362 
1363   /// Returns true, if the phi is part of an in-loop reduction.
1364   bool isInLoop() const { return IsInLoop; }
1365 };
1366 
1367 /// A recipe for vectorizing a phi-node as a sequence of mask-based select
1368 /// instructions.
1369 class VPBlendRecipe : public VPRecipeBase, public VPValue {
1370   PHINode *Phi;
1371 
1372 public:
1373   /// The blend operation is a User of the incoming values and of their
1374   /// respective masks, ordered [I0, M0, I1, M1, ...]. Note that a single value
1375   /// might be incoming with a full mask for which there is no VPValue.
1376   VPBlendRecipe(PHINode *Phi, ArrayRef<VPValue *> Operands)
1377       : VPRecipeBase(VPBlendSC, Operands),
1378         VPValue(VPValue::VPVBlendSC, Phi, this), Phi(Phi) {
1379     assert(Operands.size() > 0 &&
1380            ((Operands.size() == 1) || (Operands.size() % 2 == 0)) &&
1381            "Expected either a single incoming value or a positive even number "
1382            "of operands");
1383   }
1384 
1385   /// Method to support type inquiry through isa, cast, and dyn_cast.
1386   static inline bool classof(const VPDef *D) {
1387     return D->getVPDefID() == VPRecipeBase::VPBlendSC;
1388   }
1389 
1390   /// Return the number of incoming values, taking into account that a single
1391   /// incoming value has no mask.
1392   unsigned getNumIncomingValues() const { return (getNumOperands() + 1) / 2; }
1393 
1394   /// Return incoming value number \p Idx.
1395   VPValue *getIncomingValue(unsigned Idx) const { return getOperand(Idx * 2); }
1396 
1397   /// Return mask number \p Idx.
1398   VPValue *getMask(unsigned Idx) const { return getOperand(Idx * 2 + 1); }
1399 
1400   /// Generate the phi/select nodes.
1401   void execute(VPTransformState &State) override;
1402 
1403 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1404   /// Print the recipe.
1405   void print(raw_ostream &O, const Twine &Indent,
1406              VPSlotTracker &SlotTracker) const override;
1407 #endif
1408 
1409   /// Returns true if the recipe only uses the first lane of operand \p Op.
1410   bool onlyFirstLaneUsed(const VPValue *Op) const override {
1411     assert(is_contained(operands(), Op) &&
1412            "Op must be an operand of the recipe");
1413     // Recursing through Blend recipes only, must terminate at header phi's the
1414     // latest.
1415     return all_of(users(),
1416                   [this](VPUser *U) { return U->onlyFirstLaneUsed(this); });
1417   }
1418 };
1419 
1420 /// VPInterleaveRecipe is a recipe for transforming an interleave group of load
1421 /// or stores into one wide load/store and shuffles. The first operand of a
1422 /// VPInterleave recipe is the address, followed by the stored values, followed
1423 /// by an optional mask.
1424 class VPInterleaveRecipe : public VPRecipeBase {
1425   const InterleaveGroup<Instruction> *IG;
1426 
1427   bool HasMask = false;
1428 
1429 public:
1430   VPInterleaveRecipe(const InterleaveGroup<Instruction> *IG, VPValue *Addr,
1431                      ArrayRef<VPValue *> StoredValues, VPValue *Mask)
1432       : VPRecipeBase(VPInterleaveSC, {Addr}), IG(IG) {
1433     for (unsigned i = 0; i < IG->getFactor(); ++i)
1434       if (Instruction *I = IG->getMember(i)) {
1435         if (I->getType()->isVoidTy())
1436           continue;
1437         new VPValue(I, this);
1438       }
1439 
1440     for (auto *SV : StoredValues)
1441       addOperand(SV);
1442     if (Mask) {
1443       HasMask = true;
1444       addOperand(Mask);
1445     }
1446   }
1447   ~VPInterleaveRecipe() override = default;
1448 
1449   /// Method to support type inquiry through isa, cast, and dyn_cast.
1450   static inline bool classof(const VPDef *D) {
1451     return D->getVPDefID() == VPRecipeBase::VPInterleaveSC;
1452   }
1453 
1454   /// Return the address accessed by this recipe.
1455   VPValue *getAddr() const {
1456     return getOperand(0); // Address is the 1st, mandatory operand.
1457   }
1458 
1459   /// Return the mask used by this recipe. Note that a full mask is represented
1460   /// by a nullptr.
1461   VPValue *getMask() const {
1462     // Mask is optional and therefore the last, currently 2nd operand.
1463     return HasMask ? getOperand(getNumOperands() - 1) : nullptr;
1464   }
1465 
1466   /// Return the VPValues stored by this interleave group. If it is a load
1467   /// interleave group, return an empty ArrayRef.
1468   ArrayRef<VPValue *> getStoredValues() const {
1469     // The first operand is the address, followed by the stored values, followed
1470     // by an optional mask.
1471     return ArrayRef<VPValue *>(op_begin(), getNumOperands())
1472         .slice(1, getNumStoreOperands());
1473   }
1474 
1475   /// Generate the wide load or store, and shuffles.
1476   void execute(VPTransformState &State) override;
1477 
1478 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1479   /// Print the recipe.
1480   void print(raw_ostream &O, const Twine &Indent,
1481              VPSlotTracker &SlotTracker) const override;
1482 #endif
1483 
1484   const InterleaveGroup<Instruction> *getInterleaveGroup() { return IG; }
1485 
1486   /// Returns the number of stored operands of this interleave group. Returns 0
1487   /// for load interleave groups.
1488   unsigned getNumStoreOperands() const {
1489     return getNumOperands() - (HasMask ? 2 : 1);
1490   }
1491 
1492   /// The recipe only uses the first lane of the address.
1493   bool onlyFirstLaneUsed(const VPValue *Op) const override {
1494     assert(is_contained(operands(), Op) &&
1495            "Op must be an operand of the recipe");
1496     return Op == getAddr() && all_of(getStoredValues(), [Op](VPValue *StoredV) {
1497              return Op != StoredV;
1498            });
1499   }
1500 };
1501 
1502 /// A recipe to represent inloop reduction operations, performing a reduction on
1503 /// a vector operand into a scalar value, and adding the result to a chain.
1504 /// The Operands are {ChainOp, VecOp, [Condition]}.
1505 class VPReductionRecipe : public VPRecipeBase, public VPValue {
1506   /// The recurrence decriptor for the reduction in question.
1507   const RecurrenceDescriptor *RdxDesc;
1508   /// Pointer to the TTI, needed to create the target reduction
1509   const TargetTransformInfo *TTI;
1510 
1511 public:
1512   VPReductionRecipe(const RecurrenceDescriptor *R, Instruction *I,
1513                     VPValue *ChainOp, VPValue *VecOp, VPValue *CondOp,
1514                     const TargetTransformInfo *TTI)
1515       : VPRecipeBase(VPRecipeBase::VPReductionSC, {ChainOp, VecOp}),
1516         VPValue(VPValue::VPVReductionSC, I, this), RdxDesc(R), TTI(TTI) {
1517     if (CondOp)
1518       addOperand(CondOp);
1519   }
1520 
1521   ~VPReductionRecipe() override = default;
1522 
1523   /// Method to support type inquiry through isa, cast, and dyn_cast.
1524   static inline bool classof(const VPValue *V) {
1525     return V->getVPValueID() == VPValue::VPVReductionSC;
1526   }
1527 
1528   /// Generate the reduction in the loop
1529   void execute(VPTransformState &State) override;
1530 
1531 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1532   /// Print the recipe.
1533   void print(raw_ostream &O, const Twine &Indent,
1534              VPSlotTracker &SlotTracker) const override;
1535 #endif
1536 
1537   /// The VPValue of the scalar Chain being accumulated.
1538   VPValue *getChainOp() const { return getOperand(0); }
1539   /// The VPValue of the vector value to be reduced.
1540   VPValue *getVecOp() const { return getOperand(1); }
1541   /// The VPValue of the condition for the block.
1542   VPValue *getCondOp() const {
1543     return getNumOperands() > 2 ? getOperand(2) : nullptr;
1544   }
1545 };
1546 
1547 /// VPReplicateRecipe replicates a given instruction producing multiple scalar
1548 /// copies of the original scalar type, one per lane, instead of producing a
1549 /// single copy of widened type for all lanes. If the instruction is known to be
1550 /// uniform only one copy, per lane zero, will be generated.
1551 class VPReplicateRecipe : public VPRecipeBase, public VPValue {
1552   /// Indicator if only a single replica per lane is needed.
1553   bool IsUniform;
1554 
1555   /// Indicator if the replicas are also predicated.
1556   bool IsPredicated;
1557 
1558   /// Indicator if the scalar values should also be packed into a vector.
1559   bool AlsoPack;
1560 
1561 public:
1562   template <typename IterT>
1563   VPReplicateRecipe(Instruction *I, iterator_range<IterT> Operands,
1564                     bool IsUniform, bool IsPredicated = false)
1565       : VPRecipeBase(VPReplicateSC, Operands), VPValue(VPVReplicateSC, I, this),
1566         IsUniform(IsUniform), IsPredicated(IsPredicated) {
1567     // Retain the previous behavior of predicateInstructions(), where an
1568     // insert-element of a predicated instruction got hoisted into the
1569     // predicated basic block iff it was its only user. This is achieved by
1570     // having predicated instructions also pack their values into a vector by
1571     // default unless they have a replicated user which uses their scalar value.
1572     AlsoPack = IsPredicated && !I->use_empty();
1573   }
1574 
1575   ~VPReplicateRecipe() override = default;
1576 
1577   /// Method to support type inquiry through isa, cast, and dyn_cast.
1578   static inline bool classof(const VPDef *D) {
1579     return D->getVPDefID() == VPRecipeBase::VPReplicateSC;
1580   }
1581 
1582   static inline bool classof(const VPValue *V) {
1583     return V->getVPValueID() == VPValue::VPVReplicateSC;
1584   }
1585 
1586   /// Generate replicas of the desired Ingredient. Replicas will be generated
1587   /// for all parts and lanes unless a specific part and lane are specified in
1588   /// the \p State.
1589   void execute(VPTransformState &State) override;
1590 
1591   void setAlsoPack(bool Pack) { AlsoPack = Pack; }
1592 
1593 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1594   /// Print the recipe.
1595   void print(raw_ostream &O, const Twine &Indent,
1596              VPSlotTracker &SlotTracker) const override;
1597 #endif
1598 
1599   bool isUniform() const { return IsUniform; }
1600 
1601   bool isPacked() const { return AlsoPack; }
1602 
1603   bool isPredicated() const { return IsPredicated; }
1604 
1605   /// Returns true if the recipe only uses the first lane of operand \p Op.
1606   bool onlyFirstLaneUsed(const VPValue *Op) const override {
1607     assert(is_contained(operands(), Op) &&
1608            "Op must be an operand of the recipe");
1609     return isUniform();
1610   }
1611 
1612   /// Returns true if the recipe uses scalars of operand \p Op.
1613   bool usesScalars(const VPValue *Op) const override {
1614     assert(is_contained(operands(), Op) &&
1615            "Op must be an operand of the recipe");
1616     return true;
1617   }
1618 };
1619 
1620 /// A recipe for generating conditional branches on the bits of a mask.
1621 class VPBranchOnMaskRecipe : public VPRecipeBase {
1622 public:
1623   VPBranchOnMaskRecipe(VPValue *BlockInMask)
1624       : VPRecipeBase(VPBranchOnMaskSC, {}) {
1625     if (BlockInMask) // nullptr means all-one mask.
1626       addOperand(BlockInMask);
1627   }
1628 
1629   /// Method to support type inquiry through isa, cast, and dyn_cast.
1630   static inline bool classof(const VPDef *D) {
1631     return D->getVPDefID() == VPRecipeBase::VPBranchOnMaskSC;
1632   }
1633 
1634   /// Generate the extraction of the appropriate bit from the block mask and the
1635   /// conditional branch.
1636   void execute(VPTransformState &State) override;
1637 
1638 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1639   /// Print the recipe.
1640   void print(raw_ostream &O, const Twine &Indent,
1641              VPSlotTracker &SlotTracker) const override {
1642     O << Indent << "BRANCH-ON-MASK ";
1643     if (VPValue *Mask = getMask())
1644       Mask->printAsOperand(O, SlotTracker);
1645     else
1646       O << " All-One";
1647   }
1648 #endif
1649 
1650   /// Return the mask used by this recipe. Note that a full mask is represented
1651   /// by a nullptr.
1652   VPValue *getMask() const {
1653     assert(getNumOperands() <= 1 && "should have either 0 or 1 operands");
1654     // Mask is optional.
1655     return getNumOperands() == 1 ? getOperand(0) : nullptr;
1656   }
1657 
1658   /// Returns true if the recipe uses scalars of operand \p Op.
1659   bool usesScalars(const VPValue *Op) const override {
1660     assert(is_contained(operands(), Op) &&
1661            "Op must be an operand of the recipe");
1662     return true;
1663   }
1664 };
1665 
1666 /// VPPredInstPHIRecipe is a recipe for generating the phi nodes needed when
1667 /// control converges back from a Branch-on-Mask. The phi nodes are needed in
1668 /// order to merge values that are set under such a branch and feed their uses.
1669 /// The phi nodes can be scalar or vector depending on the users of the value.
1670 /// This recipe works in concert with VPBranchOnMaskRecipe.
1671 class VPPredInstPHIRecipe : public VPRecipeBase, public VPValue {
1672 public:
1673   /// Construct a VPPredInstPHIRecipe given \p PredInst whose value needs a phi
1674   /// nodes after merging back from a Branch-on-Mask.
1675   VPPredInstPHIRecipe(VPValue *PredV)
1676       : VPRecipeBase(VPPredInstPHISC, PredV),
1677         VPValue(VPValue::VPVPredInstPHI, nullptr, this) {}
1678   ~VPPredInstPHIRecipe() override = default;
1679 
1680   /// Method to support type inquiry through isa, cast, and dyn_cast.
1681   static inline bool classof(const VPDef *D) {
1682     return D->getVPDefID() == VPRecipeBase::VPPredInstPHISC;
1683   }
1684 
1685   /// Generates phi nodes for live-outs as needed to retain SSA form.
1686   void execute(VPTransformState &State) override;
1687 
1688 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1689   /// Print the recipe.
1690   void print(raw_ostream &O, const Twine &Indent,
1691              VPSlotTracker &SlotTracker) const override;
1692 #endif
1693 
1694   /// Returns true if the recipe uses scalars of operand \p Op.
1695   bool usesScalars(const VPValue *Op) const override {
1696     assert(is_contained(operands(), Op) &&
1697            "Op must be an operand of the recipe");
1698     return true;
1699   }
1700 };
1701 
1702 /// A Recipe for widening load/store operations.
1703 /// The recipe uses the following VPValues:
1704 /// - For load: Address, optional mask
1705 /// - For store: Address, stored value, optional mask
1706 /// TODO: We currently execute only per-part unless a specific instance is
1707 /// provided.
1708 class VPWidenMemoryInstructionRecipe : public VPRecipeBase {
1709   Instruction &Ingredient;
1710 
1711   // Whether the loaded-from / stored-to addresses are consecutive.
1712   bool Consecutive;
1713 
1714   // Whether the consecutive loaded/stored addresses are in reverse order.
1715   bool Reverse;
1716 
1717   void setMask(VPValue *Mask) {
1718     if (!Mask)
1719       return;
1720     addOperand(Mask);
1721   }
1722 
1723   bool isMasked() const {
1724     return isStore() ? getNumOperands() == 3 : getNumOperands() == 2;
1725   }
1726 
1727 public:
1728   VPWidenMemoryInstructionRecipe(LoadInst &Load, VPValue *Addr, VPValue *Mask,
1729                                  bool Consecutive, bool Reverse)
1730       : VPRecipeBase(VPWidenMemoryInstructionSC, {Addr}), Ingredient(Load),
1731         Consecutive(Consecutive), Reverse(Reverse) {
1732     assert((Consecutive || !Reverse) && "Reverse implies consecutive");
1733     new VPValue(VPValue::VPVMemoryInstructionSC, &Load, this);
1734     setMask(Mask);
1735   }
1736 
1737   VPWidenMemoryInstructionRecipe(StoreInst &Store, VPValue *Addr,
1738                                  VPValue *StoredValue, VPValue *Mask,
1739                                  bool Consecutive, bool Reverse)
1740       : VPRecipeBase(VPWidenMemoryInstructionSC, {Addr, StoredValue}),
1741         Ingredient(Store), Consecutive(Consecutive), Reverse(Reverse) {
1742     assert((Consecutive || !Reverse) && "Reverse implies consecutive");
1743     setMask(Mask);
1744   }
1745 
1746   /// Method to support type inquiry through isa, cast, and dyn_cast.
1747   static inline bool classof(const VPDef *D) {
1748     return D->getVPDefID() == VPRecipeBase::VPWidenMemoryInstructionSC;
1749   }
1750 
1751   /// Return the address accessed by this recipe.
1752   VPValue *getAddr() const {
1753     return getOperand(0); // Address is the 1st, mandatory operand.
1754   }
1755 
1756   /// Return the mask used by this recipe. Note that a full mask is represented
1757   /// by a nullptr.
1758   VPValue *getMask() const {
1759     // Mask is optional and therefore the last operand.
1760     return isMasked() ? getOperand(getNumOperands() - 1) : nullptr;
1761   }
1762 
1763   /// Returns true if this recipe is a store.
1764   bool isStore() const { return isa<StoreInst>(Ingredient); }
1765 
1766   /// Return the address accessed by this recipe.
1767   VPValue *getStoredValue() const {
1768     assert(isStore() && "Stored value only available for store instructions");
1769     return getOperand(1); // Stored value is the 2nd, mandatory operand.
1770   }
1771 
1772   // Return whether the loaded-from / stored-to addresses are consecutive.
1773   bool isConsecutive() const { return Consecutive; }
1774 
1775   // Return whether the consecutive loaded/stored addresses are in reverse
1776   // order.
1777   bool isReverse() const { return Reverse; }
1778 
1779   /// Generate the wide load/store.
1780   void execute(VPTransformState &State) override;
1781 
1782 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1783   /// Print the recipe.
1784   void print(raw_ostream &O, const Twine &Indent,
1785              VPSlotTracker &SlotTracker) const override;
1786 #endif
1787 
1788   /// Returns true if the recipe only uses the first lane of operand \p Op.
1789   bool onlyFirstLaneUsed(const VPValue *Op) const override {
1790     assert(is_contained(operands(), Op) &&
1791            "Op must be an operand of the recipe");
1792 
1793     // Widened, consecutive memory operations only demand the first lane of
1794     // their address, unless the same operand is also stored. That latter can
1795     // happen with opaque pointers.
1796     return Op == getAddr() && isConsecutive() &&
1797            (!isStore() || Op != getStoredValue());
1798   }
1799 
1800   Instruction &getIngredient() const { return Ingredient; }
1801 };
1802 
1803 /// Recipe to expand a SCEV expression.
1804 class VPExpandSCEVRecipe : public VPRecipeBase, public VPValue {
1805   const SCEV *Expr;
1806   ScalarEvolution &SE;
1807 
1808 public:
1809   VPExpandSCEVRecipe(const SCEV *Expr, ScalarEvolution &SE)
1810       : VPRecipeBase(VPExpandSCEVSC, {}), VPValue(nullptr, this), Expr(Expr),
1811         SE(SE) {}
1812 
1813   ~VPExpandSCEVRecipe() override = default;
1814 
1815   /// Method to support type inquiry through isa, cast, and dyn_cast.
1816   static inline bool classof(const VPDef *D) {
1817     return D->getVPDefID() == VPExpandSCEVSC;
1818   }
1819 
1820   /// Generate a canonical vector induction variable of the vector loop, with
1821   void execute(VPTransformState &State) override;
1822 
1823 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1824   /// Print the recipe.
1825   void print(raw_ostream &O, const Twine &Indent,
1826              VPSlotTracker &SlotTracker) const override;
1827 #endif
1828 
1829   const SCEV *getSCEV() const { return Expr; }
1830 };
1831 
1832 /// Canonical scalar induction phi of the vector loop. Starting at the specified
1833 /// start value (either 0 or the resume value when vectorizing the epilogue
1834 /// loop). VPWidenCanonicalIVRecipe represents the vector version of the
1835 /// canonical induction variable.
1836 class VPCanonicalIVPHIRecipe : public VPHeaderPHIRecipe {
1837   DebugLoc DL;
1838 
1839 public:
1840   VPCanonicalIVPHIRecipe(VPValue *StartV, DebugLoc DL)
1841       : VPHeaderPHIRecipe(VPValue::VPVCanonicalIVPHISC, VPCanonicalIVPHISC,
1842                           nullptr, StartV),
1843         DL(DL) {}
1844 
1845   ~VPCanonicalIVPHIRecipe() override = default;
1846 
1847   /// Method to support type inquiry through isa, cast, and dyn_cast.
1848   static inline bool classof(const VPDef *D) {
1849     return D->getVPDefID() == VPCanonicalIVPHISC;
1850   }
1851   static inline bool classof(const VPHeaderPHIRecipe *D) {
1852     return D->getVPDefID() == VPCanonicalIVPHISC;
1853   }
1854   static inline bool classof(const VPValue *V) {
1855     return V->getVPValueID() == VPValue::VPVCanonicalIVPHISC;
1856   }
1857 
1858   /// Generate the canonical scalar induction phi of the vector loop.
1859   void execute(VPTransformState &State) override;
1860 
1861 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1862   /// Print the recipe.
1863   void print(raw_ostream &O, const Twine &Indent,
1864              VPSlotTracker &SlotTracker) const override;
1865 #endif
1866 
1867   /// Returns the scalar type of the induction.
1868   const Type *getScalarType() const {
1869     return getOperand(0)->getLiveInIRValue()->getType();
1870   }
1871 
1872   /// Returns true if the recipe only uses the first lane of operand \p Op.
1873   bool onlyFirstLaneUsed(const VPValue *Op) const override {
1874     assert(is_contained(operands(), Op) &&
1875            "Op must be an operand of the recipe");
1876     return true;
1877   }
1878 };
1879 
1880 /// A recipe for generating the active lane mask for the vector loop that is
1881 /// used to predicate the vector operations.
1882 /// TODO: It would be good to use the existing VPWidenPHIRecipe instead and
1883 /// remove VPActiveLaneMaskPHIRecipe.
1884 class VPActiveLaneMaskPHIRecipe : public VPHeaderPHIRecipe {
1885   DebugLoc DL;
1886 
1887 public:
1888   VPActiveLaneMaskPHIRecipe(VPValue *StartMask, DebugLoc DL)
1889       : VPHeaderPHIRecipe(VPValue::VPVActiveLaneMaskPHISC,
1890                           VPActiveLaneMaskPHISC, nullptr, StartMask),
1891         DL(DL) {}
1892 
1893   ~VPActiveLaneMaskPHIRecipe() override = default;
1894 
1895   /// Method to support type inquiry through isa, cast, and dyn_cast.
1896   static inline bool classof(const VPDef *D) {
1897     return D->getVPDefID() == VPActiveLaneMaskPHISC;
1898   }
1899   static inline bool classof(const VPHeaderPHIRecipe *D) {
1900     return D->getVPDefID() == VPActiveLaneMaskPHISC;
1901   }
1902   static inline bool classof(const VPValue *V) {
1903     return V->getVPValueID() == VPValue::VPVActiveLaneMaskPHISC;
1904   }
1905 
1906   /// Generate the active lane mask phi of the vector loop.
1907   void execute(VPTransformState &State) override;
1908 
1909 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1910   /// Print the recipe.
1911   void print(raw_ostream &O, const Twine &Indent,
1912              VPSlotTracker &SlotTracker) const override;
1913 #endif
1914 };
1915 
1916 /// A Recipe for widening the canonical induction variable of the vector loop.
1917 class VPWidenCanonicalIVRecipe : public VPRecipeBase, public VPValue {
1918 public:
1919   VPWidenCanonicalIVRecipe(VPCanonicalIVPHIRecipe *CanonicalIV)
1920       : VPRecipeBase(VPWidenCanonicalIVSC, {CanonicalIV}),
1921         VPValue(VPValue::VPVWidenCanonicalIVSC, nullptr, this) {}
1922 
1923   ~VPWidenCanonicalIVRecipe() override = default;
1924 
1925   /// Method to support type inquiry through isa, cast, and dyn_cast.
1926   static inline bool classof(const VPDef *D) {
1927     return D->getVPDefID() == VPRecipeBase::VPWidenCanonicalIVSC;
1928   }
1929 
1930   /// Extra classof implementations to allow directly casting from VPUser ->
1931   /// VPWidenCanonicalIVRecipe.
1932   static inline bool classof(const VPUser *U) {
1933     auto *R = dyn_cast<VPRecipeBase>(U);
1934     return R && R->getVPDefID() == VPRecipeBase::VPWidenCanonicalIVSC;
1935   }
1936   static inline bool classof(const VPRecipeBase *R) {
1937     return R->getVPDefID() == VPRecipeBase::VPWidenCanonicalIVSC;
1938   }
1939 
1940   /// Generate a canonical vector induction variable of the vector loop, with
1941   /// start = {<Part*VF, Part*VF+1, ..., Part*VF+VF-1> for 0 <= Part < UF}, and
1942   /// step = <VF*UF, VF*UF, ..., VF*UF>.
1943   void execute(VPTransformState &State) override;
1944 
1945 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1946   /// Print the recipe.
1947   void print(raw_ostream &O, const Twine &Indent,
1948              VPSlotTracker &SlotTracker) const override;
1949 #endif
1950 
1951   /// Returns the scalar type of the induction.
1952   const Type *getScalarType() const {
1953     return cast<VPCanonicalIVPHIRecipe>(getOperand(0)->getDef())
1954         ->getScalarType();
1955   }
1956 };
1957 
1958 /// A recipe for handling phi nodes of integer and floating-point inductions,
1959 /// producing their scalar values.
1960 class VPScalarIVStepsRecipe : public VPRecipeBase, public VPValue {
1961   /// Scalar type to use for the generated values.
1962   Type *Ty;
1963   /// If not nullptr, truncate the generated values to TruncToTy.
1964   Type *TruncToTy;
1965   const InductionDescriptor &IndDesc;
1966 
1967 public:
1968   VPScalarIVStepsRecipe(Type *Ty, const InductionDescriptor &IndDesc,
1969                         VPValue *CanonicalIV, VPValue *Start, VPValue *Step,
1970                         Type *TruncToTy)
1971       : VPRecipeBase(VPScalarIVStepsSC, {CanonicalIV, Start, Step}),
1972         VPValue(nullptr, this), Ty(Ty), TruncToTy(TruncToTy), IndDesc(IndDesc) {
1973   }
1974 
1975   ~VPScalarIVStepsRecipe() override = default;
1976 
1977   /// Method to support type inquiry through isa, cast, and dyn_cast.
1978   static inline bool classof(const VPDef *D) {
1979     return D->getVPDefID() == VPRecipeBase::VPScalarIVStepsSC;
1980   }
1981   /// Extra classof implementations to allow directly casting from VPUser ->
1982   /// VPScalarIVStepsRecipe.
1983   static inline bool classof(const VPUser *U) {
1984     auto *R = dyn_cast<VPRecipeBase>(U);
1985     return R && R->getVPDefID() == VPRecipeBase::VPScalarIVStepsSC;
1986   }
1987   static inline bool classof(const VPRecipeBase *R) {
1988     return R->getVPDefID() == VPRecipeBase::VPScalarIVStepsSC;
1989   }
1990 
1991   /// Generate the scalarized versions of the phi node as needed by their users.
1992   void execute(VPTransformState &State) override;
1993 
1994 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1995   /// Print the recipe.
1996   void print(raw_ostream &O, const Twine &Indent,
1997              VPSlotTracker &SlotTracker) const override;
1998 #endif
1999 
2000   /// Returns true if the induction is canonical, i.e. starting at 0 and
2001   /// incremented by UF * VF (= the original IV is incremented by 1).
2002   bool isCanonical() const;
2003 
2004   VPCanonicalIVPHIRecipe *getCanonicalIV() const;
2005   VPValue *getStartValue() const { return getOperand(1); }
2006   VPValue *getStepValue() const { return getOperand(2); }
2007 
2008   /// Returns true if the recipe only uses the first lane of operand \p Op.
2009   bool onlyFirstLaneUsed(const VPValue *Op) const override {
2010     assert(is_contained(operands(), Op) &&
2011            "Op must be an operand of the recipe");
2012     return true;
2013   }
2014 };
2015 
2016 /// VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph. It
2017 /// holds a sequence of zero or more VPRecipe's each representing a sequence of
2018 /// output IR instructions. All PHI-like recipes must come before any non-PHI recipes.
2019 class VPBasicBlock : public VPBlockBase {
2020 public:
2021   using RecipeListTy = iplist<VPRecipeBase>;
2022 
2023 private:
2024   /// The VPRecipes held in the order of output instructions to generate.
2025   RecipeListTy Recipes;
2026 
2027 public:
2028   VPBasicBlock(const Twine &Name = "", VPRecipeBase *Recipe = nullptr)
2029       : VPBlockBase(VPBasicBlockSC, Name.str()) {
2030     if (Recipe)
2031       appendRecipe(Recipe);
2032   }
2033 
2034   ~VPBasicBlock() override {
2035     while (!Recipes.empty())
2036       Recipes.pop_back();
2037   }
2038 
2039   /// Instruction iterators...
2040   using iterator = RecipeListTy::iterator;
2041   using const_iterator = RecipeListTy::const_iterator;
2042   using reverse_iterator = RecipeListTy::reverse_iterator;
2043   using const_reverse_iterator = RecipeListTy::const_reverse_iterator;
2044 
2045   //===--------------------------------------------------------------------===//
2046   /// Recipe iterator methods
2047   ///
2048   inline iterator begin() { return Recipes.begin(); }
2049   inline const_iterator begin() const { return Recipes.begin(); }
2050   inline iterator end() { return Recipes.end(); }
2051   inline const_iterator end() const { return Recipes.end(); }
2052 
2053   inline reverse_iterator rbegin() { return Recipes.rbegin(); }
2054   inline const_reverse_iterator rbegin() const { return Recipes.rbegin(); }
2055   inline reverse_iterator rend() { return Recipes.rend(); }
2056   inline const_reverse_iterator rend() const { return Recipes.rend(); }
2057 
2058   inline size_t size() const { return Recipes.size(); }
2059   inline bool empty() const { return Recipes.empty(); }
2060   inline const VPRecipeBase &front() const { return Recipes.front(); }
2061   inline VPRecipeBase &front() { return Recipes.front(); }
2062   inline const VPRecipeBase &back() const { return Recipes.back(); }
2063   inline VPRecipeBase &back() { return Recipes.back(); }
2064 
2065   /// Returns a reference to the list of recipes.
2066   RecipeListTy &getRecipeList() { return Recipes; }
2067 
2068   /// Returns a pointer to a member of the recipe list.
2069   static RecipeListTy VPBasicBlock::*getSublistAccess(VPRecipeBase *) {
2070     return &VPBasicBlock::Recipes;
2071   }
2072 
2073   /// Method to support type inquiry through isa, cast, and dyn_cast.
2074   static inline bool classof(const VPBlockBase *V) {
2075     return V->getVPBlockID() == VPBlockBase::VPBasicBlockSC;
2076   }
2077 
2078   void insert(VPRecipeBase *Recipe, iterator InsertPt) {
2079     assert(Recipe && "No recipe to append.");
2080     assert(!Recipe->Parent && "Recipe already in VPlan");
2081     Recipe->Parent = this;
2082     Recipes.insert(InsertPt, Recipe);
2083   }
2084 
2085   /// Augment the existing recipes of a VPBasicBlock with an additional
2086   /// \p Recipe as the last recipe.
2087   void appendRecipe(VPRecipeBase *Recipe) { insert(Recipe, end()); }
2088 
2089   /// The method which generates the output IR instructions that correspond to
2090   /// this VPBasicBlock, thereby "executing" the VPlan.
2091   void execute(struct VPTransformState *State) override;
2092 
2093   /// Return the position of the first non-phi node recipe in the block.
2094   iterator getFirstNonPhi();
2095 
2096   /// Returns an iterator range over the PHI-like recipes in the block.
2097   iterator_range<iterator> phis() {
2098     return make_range(begin(), getFirstNonPhi());
2099   }
2100 
2101   void dropAllReferences(VPValue *NewValue) override;
2102 
2103   /// Split current block at \p SplitAt by inserting a new block between the
2104   /// current block and its successors and moving all recipes starting at
2105   /// SplitAt to the new block. Returns the new block.
2106   VPBasicBlock *splitAt(iterator SplitAt);
2107 
2108   VPRegionBlock *getEnclosingLoopRegion();
2109 
2110 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2111   /// Print this VPBsicBlock to \p O, prefixing all lines with \p Indent. \p
2112   /// SlotTracker is used to print unnamed VPValue's using consequtive numbers.
2113   ///
2114   /// Note that the numbering is applied to the whole VPlan, so printing
2115   /// individual blocks is consistent with the whole VPlan printing.
2116   void print(raw_ostream &O, const Twine &Indent,
2117              VPSlotTracker &SlotTracker) const override;
2118   using VPBlockBase::print; // Get the print(raw_stream &O) version.
2119 #endif
2120 
2121   /// If the block has multiple successors, return the branch recipe terminating
2122   /// the block. If there are no or only a single successor, return nullptr;
2123   VPRecipeBase *getTerminator();
2124   const VPRecipeBase *getTerminator() const;
2125 
2126   /// Returns true if the block is exiting it's parent region.
2127   bool isExiting() const;
2128 
2129 private:
2130   /// Create an IR BasicBlock to hold the output instructions generated by this
2131   /// VPBasicBlock, and return it. Update the CFGState accordingly.
2132   BasicBlock *createEmptyBasicBlock(VPTransformState::CFGState &CFG);
2133 };
2134 
2135 /// VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks
2136 /// which form a Single-Entry-Single-Exiting subgraph of the output IR CFG.
2137 /// A VPRegionBlock may indicate that its contents are to be replicated several
2138 /// times. This is designed to support predicated scalarization, in which a
2139 /// scalar if-then code structure needs to be generated VF * UF times. Having
2140 /// this replication indicator helps to keep a single model for multiple
2141 /// candidate VF's. The actual replication takes place only once the desired VF
2142 /// and UF have been determined.
2143 class VPRegionBlock : public VPBlockBase {
2144   /// Hold the Single Entry of the SESE region modelled by the VPRegionBlock.
2145   VPBlockBase *Entry;
2146 
2147   /// Hold the Single Exiting block of the SESE region modelled by the
2148   /// VPRegionBlock.
2149   VPBlockBase *Exiting;
2150 
2151   /// An indicator whether this region is to generate multiple replicated
2152   /// instances of output IR corresponding to its VPBlockBases.
2153   bool IsReplicator;
2154 
2155 public:
2156   VPRegionBlock(VPBlockBase *Entry, VPBlockBase *Exiting,
2157                 const std::string &Name = "", bool IsReplicator = false)
2158       : VPBlockBase(VPRegionBlockSC, Name), Entry(Entry), Exiting(Exiting),
2159         IsReplicator(IsReplicator) {
2160     assert(Entry->getPredecessors().empty() && "Entry block has predecessors.");
2161     assert(Exiting->getSuccessors().empty() && "Exit block has successors.");
2162     Entry->setParent(this);
2163     Exiting->setParent(this);
2164   }
2165   VPRegionBlock(const std::string &Name = "", bool IsReplicator = false)
2166       : VPBlockBase(VPRegionBlockSC, Name), Entry(nullptr), Exiting(nullptr),
2167         IsReplicator(IsReplicator) {}
2168 
2169   ~VPRegionBlock() override {
2170     if (Entry) {
2171       VPValue DummyValue;
2172       Entry->dropAllReferences(&DummyValue);
2173       deleteCFG(Entry);
2174     }
2175   }
2176 
2177   /// Method to support type inquiry through isa, cast, and dyn_cast.
2178   static inline bool classof(const VPBlockBase *V) {
2179     return V->getVPBlockID() == VPBlockBase::VPRegionBlockSC;
2180   }
2181 
2182   const VPBlockBase *getEntry() const { return Entry; }
2183   VPBlockBase *getEntry() { return Entry; }
2184 
2185   /// Set \p EntryBlock as the entry VPBlockBase of this VPRegionBlock. \p
2186   /// EntryBlock must have no predecessors.
2187   void setEntry(VPBlockBase *EntryBlock) {
2188     assert(EntryBlock->getPredecessors().empty() &&
2189            "Entry block cannot have predecessors.");
2190     Entry = EntryBlock;
2191     EntryBlock->setParent(this);
2192   }
2193 
2194   // FIXME: DominatorTreeBase is doing 'A->getParent()->front()'. 'front' is a
2195   // specific interface of llvm::Function, instead of using
2196   // GraphTraints::getEntryNode. We should add a new template parameter to
2197   // DominatorTreeBase representing the Graph type.
2198   VPBlockBase &front() const { return *Entry; }
2199 
2200   const VPBlockBase *getExiting() const { return Exiting; }
2201   VPBlockBase *getExiting() { return Exiting; }
2202 
2203   /// Set \p ExitingBlock as the exiting VPBlockBase of this VPRegionBlock. \p
2204   /// ExitingBlock must have no successors.
2205   void setExiting(VPBlockBase *ExitingBlock) {
2206     assert(ExitingBlock->getSuccessors().empty() &&
2207            "Exit block cannot have successors.");
2208     Exiting = ExitingBlock;
2209     ExitingBlock->setParent(this);
2210   }
2211 
2212   /// Returns the pre-header VPBasicBlock of the loop region.
2213   VPBasicBlock *getPreheaderVPBB() {
2214     assert(!isReplicator() && "should only get pre-header of loop regions");
2215     return getSinglePredecessor()->getExitingBasicBlock();
2216   }
2217 
2218   /// An indicator whether this region is to generate multiple replicated
2219   /// instances of output IR corresponding to its VPBlockBases.
2220   bool isReplicator() const { return IsReplicator; }
2221 
2222   /// The method which generates the output IR instructions that correspond to
2223   /// this VPRegionBlock, thereby "executing" the VPlan.
2224   void execute(struct VPTransformState *State) override;
2225 
2226   void dropAllReferences(VPValue *NewValue) override;
2227 
2228 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2229   /// Print this VPRegionBlock to \p O (recursively), prefixing all lines with
2230   /// \p Indent. \p SlotTracker is used to print unnamed VPValue's using
2231   /// consequtive numbers.
2232   ///
2233   /// Note that the numbering is applied to the whole VPlan, so printing
2234   /// individual regions is consistent with the whole VPlan printing.
2235   void print(raw_ostream &O, const Twine &Indent,
2236              VPSlotTracker &SlotTracker) const override;
2237   using VPBlockBase::print; // Get the print(raw_stream &O) version.
2238 #endif
2239 };
2240 
2241 //===----------------------------------------------------------------------===//
2242 // GraphTraits specializations for VPlan Hierarchical Control-Flow Graphs     //
2243 //===----------------------------------------------------------------------===//
2244 
2245 // The following set of template specializations implement GraphTraits to treat
2246 // any VPBlockBase as a node in a graph of VPBlockBases. It's important to note
2247 // that VPBlockBase traits don't recurse into VPRegioBlocks, i.e., if the
2248 // VPBlockBase is a VPRegionBlock, this specialization provides access to its
2249 // successors/predecessors but not to the blocks inside the region.
2250 
2251 template <> struct GraphTraits<VPBlockBase *> {
2252   using NodeRef = VPBlockBase *;
2253   using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::iterator;
2254 
2255   static NodeRef getEntryNode(NodeRef N) { return N; }
2256 
2257   static inline ChildIteratorType child_begin(NodeRef N) {
2258     return N->getSuccessors().begin();
2259   }
2260 
2261   static inline ChildIteratorType child_end(NodeRef N) {
2262     return N->getSuccessors().end();
2263   }
2264 };
2265 
2266 template <> struct GraphTraits<const VPBlockBase *> {
2267   using NodeRef = const VPBlockBase *;
2268   using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::const_iterator;
2269 
2270   static NodeRef getEntryNode(NodeRef N) { return N; }
2271 
2272   static inline ChildIteratorType child_begin(NodeRef N) {
2273     return N->getSuccessors().begin();
2274   }
2275 
2276   static inline ChildIteratorType child_end(NodeRef N) {
2277     return N->getSuccessors().end();
2278   }
2279 };
2280 
2281 // Inverse order specialization for VPBasicBlocks. Predecessors are used instead
2282 // of successors for the inverse traversal.
2283 template <> struct GraphTraits<Inverse<VPBlockBase *>> {
2284   using NodeRef = VPBlockBase *;
2285   using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::iterator;
2286 
2287   static NodeRef getEntryNode(Inverse<NodeRef> B) { return B.Graph; }
2288 
2289   static inline ChildIteratorType child_begin(NodeRef N) {
2290     return N->getPredecessors().begin();
2291   }
2292 
2293   static inline ChildIteratorType child_end(NodeRef N) {
2294     return N->getPredecessors().end();
2295   }
2296 };
2297 
2298 // The following set of template specializations implement GraphTraits to
2299 // treat VPRegionBlock as a graph and recurse inside its nodes. It's important
2300 // to note that the blocks inside the VPRegionBlock are treated as VPBlockBases
2301 // (i.e., no dyn_cast is performed, VPBlockBases specialization is used), so
2302 // there won't be automatic recursion into other VPBlockBases that turn to be
2303 // VPRegionBlocks.
2304 
2305 template <>
2306 struct GraphTraits<VPRegionBlock *> : public GraphTraits<VPBlockBase *> {
2307   using GraphRef = VPRegionBlock *;
2308   using nodes_iterator = df_iterator<NodeRef>;
2309 
2310   static NodeRef getEntryNode(GraphRef N) { return N->getEntry(); }
2311 
2312   static nodes_iterator nodes_begin(GraphRef N) {
2313     return nodes_iterator::begin(N->getEntry());
2314   }
2315 
2316   static nodes_iterator nodes_end(GraphRef N) {
2317     // df_iterator::end() returns an empty iterator so the node used doesn't
2318     // matter.
2319     return nodes_iterator::end(N);
2320   }
2321 };
2322 
2323 template <>
2324 struct GraphTraits<const VPRegionBlock *>
2325     : public GraphTraits<const VPBlockBase *> {
2326   using GraphRef = const VPRegionBlock *;
2327   using nodes_iterator = df_iterator<NodeRef>;
2328 
2329   static NodeRef getEntryNode(GraphRef N) { return N->getEntry(); }
2330 
2331   static nodes_iterator nodes_begin(GraphRef N) {
2332     return nodes_iterator::begin(N->getEntry());
2333   }
2334 
2335   static nodes_iterator nodes_end(GraphRef N) {
2336     // df_iterator::end() returns an empty iterator so the node used doesn't
2337     // matter.
2338     return nodes_iterator::end(N);
2339   }
2340 };
2341 
2342 template <>
2343 struct GraphTraits<Inverse<VPRegionBlock *>>
2344     : public GraphTraits<Inverse<VPBlockBase *>> {
2345   using GraphRef = VPRegionBlock *;
2346   using nodes_iterator = df_iterator<NodeRef>;
2347 
2348   static NodeRef getEntryNode(Inverse<GraphRef> N) {
2349     return N.Graph->getExiting();
2350   }
2351 
2352   static nodes_iterator nodes_begin(GraphRef N) {
2353     return nodes_iterator::begin(N->getExiting());
2354   }
2355 
2356   static nodes_iterator nodes_end(GraphRef N) {
2357     // df_iterator::end() returns an empty iterator so the node used doesn't
2358     // matter.
2359     return nodes_iterator::end(N);
2360   }
2361 };
2362 
2363 /// Iterator to traverse all successors of a VPBlockBase node. This includes the
2364 /// entry node of VPRegionBlocks. Exit blocks of a region implicitly have their
2365 /// parent region's successors. This ensures all blocks in a region are visited
2366 /// before any blocks in a successor region when doing a reverse post-order
2367 // traversal of the graph.
2368 template <typename BlockPtrTy>
2369 class VPAllSuccessorsIterator
2370     : public iterator_facade_base<VPAllSuccessorsIterator<BlockPtrTy>,
2371                                   std::forward_iterator_tag, VPBlockBase> {
2372   BlockPtrTy Block;
2373   /// Index of the current successor. For VPBasicBlock nodes, this simply is the
2374   /// index for the successor array. For VPRegionBlock, SuccessorIdx == 0 is
2375   /// used for the region's entry block, and SuccessorIdx - 1 are the indices
2376   /// for the successor array.
2377   size_t SuccessorIdx;
2378 
2379   static BlockPtrTy getBlockWithSuccs(BlockPtrTy Current) {
2380     while (Current && Current->getNumSuccessors() == 0)
2381       Current = Current->getParent();
2382     return Current;
2383   }
2384 
2385   /// Templated helper to dereference successor \p SuccIdx of \p Block. Used by
2386   /// both the const and non-const operator* implementations.
2387   template <typename T1> static T1 deref(T1 Block, unsigned SuccIdx) {
2388     if (auto *R = dyn_cast<VPRegionBlock>(Block)) {
2389       if (SuccIdx == 0)
2390         return R->getEntry();
2391       SuccIdx--;
2392     }
2393 
2394     // For exit blocks, use the next parent region with successors.
2395     return getBlockWithSuccs(Block)->getSuccessors()[SuccIdx];
2396   }
2397 
2398 public:
2399   VPAllSuccessorsIterator(BlockPtrTy Block, size_t Idx = 0)
2400       : Block(Block), SuccessorIdx(Idx) {}
2401   VPAllSuccessorsIterator(const VPAllSuccessorsIterator &Other)
2402       : Block(Other.Block), SuccessorIdx(Other.SuccessorIdx) {}
2403 
2404   VPAllSuccessorsIterator &operator=(const VPAllSuccessorsIterator &R) {
2405     Block = R.Block;
2406     SuccessorIdx = R.SuccessorIdx;
2407     return *this;
2408   }
2409 
2410   static VPAllSuccessorsIterator end(BlockPtrTy Block) {
2411     BlockPtrTy ParentWithSuccs = getBlockWithSuccs(Block);
2412     unsigned NumSuccessors = ParentWithSuccs
2413                                  ? ParentWithSuccs->getNumSuccessors()
2414                                  : Block->getNumSuccessors();
2415 
2416     if (auto *R = dyn_cast<VPRegionBlock>(Block))
2417       return {R, NumSuccessors + 1};
2418     return {Block, NumSuccessors};
2419   }
2420 
2421   bool operator==(const VPAllSuccessorsIterator &R) const {
2422     return Block == R.Block && SuccessorIdx == R.SuccessorIdx;
2423   }
2424 
2425   const VPBlockBase *operator*() const { return deref(Block, SuccessorIdx); }
2426 
2427   BlockPtrTy operator*() { return deref(Block, SuccessorIdx); }
2428 
2429   VPAllSuccessorsIterator &operator++() {
2430     SuccessorIdx++;
2431     return *this;
2432   }
2433 
2434   VPAllSuccessorsIterator operator++(int X) {
2435     VPAllSuccessorsIterator Orig = *this;
2436     SuccessorIdx++;
2437     return Orig;
2438   }
2439 };
2440 
2441 /// Helper for GraphTraits specialization that traverses through VPRegionBlocks.
2442 template <typename BlockTy> class VPBlockRecursiveTraversalWrapper {
2443   BlockTy Entry;
2444 
2445 public:
2446   VPBlockRecursiveTraversalWrapper(BlockTy Entry) : Entry(Entry) {}
2447   BlockTy getEntry() { return Entry; }
2448 };
2449 
2450 /// GraphTraits specialization to recursively traverse VPBlockBase nodes,
2451 /// including traversing through VPRegionBlocks.  Exit blocks of a region
2452 /// implicitly have their parent region's successors. This ensures all blocks in
2453 /// a region are visited before any blocks in a successor region when doing a
2454 /// reverse post-order traversal of the graph.
2455 template <>
2456 struct GraphTraits<VPBlockRecursiveTraversalWrapper<VPBlockBase *>> {
2457   using NodeRef = VPBlockBase *;
2458   using ChildIteratorType = VPAllSuccessorsIterator<VPBlockBase *>;
2459 
2460   static NodeRef
2461   getEntryNode(VPBlockRecursiveTraversalWrapper<VPBlockBase *> N) {
2462     return N.getEntry();
2463   }
2464 
2465   static inline ChildIteratorType child_begin(NodeRef N) {
2466     return ChildIteratorType(N);
2467   }
2468 
2469   static inline ChildIteratorType child_end(NodeRef N) {
2470     return ChildIteratorType::end(N);
2471   }
2472 };
2473 
2474 template <>
2475 struct GraphTraits<VPBlockRecursiveTraversalWrapper<const VPBlockBase *>> {
2476   using NodeRef = const VPBlockBase *;
2477   using ChildIteratorType = VPAllSuccessorsIterator<const VPBlockBase *>;
2478 
2479   static NodeRef
2480   getEntryNode(VPBlockRecursiveTraversalWrapper<const VPBlockBase *> N) {
2481     return N.getEntry();
2482   }
2483 
2484   static inline ChildIteratorType child_begin(NodeRef N) {
2485     return ChildIteratorType(N);
2486   }
2487 
2488   static inline ChildIteratorType child_end(NodeRef N) {
2489     return ChildIteratorType::end(N);
2490   }
2491 };
2492 
2493 /// VPlan models a candidate for vectorization, encoding various decisions take
2494 /// to produce efficient output IR, including which branches, basic-blocks and
2495 /// output IR instructions to generate, and their cost. VPlan holds a
2496 /// Hierarchical-CFG of VPBasicBlocks and VPRegionBlocks rooted at an Entry
2497 /// VPBlock.
2498 class VPlan {
2499   friend class VPlanPrinter;
2500   friend class VPSlotTracker;
2501 
2502   /// Hold the single entry to the Hierarchical CFG of the VPlan.
2503   VPBlockBase *Entry;
2504 
2505   /// Holds the VFs applicable to this VPlan.
2506   SmallSetVector<ElementCount, 2> VFs;
2507 
2508   /// Holds the name of the VPlan, for printing.
2509   std::string Name;
2510 
2511   /// Holds all the external definitions created for this VPlan. External
2512   /// definitions must be immutable and hold a pointer to their underlying IR.
2513   DenseMap<Value *, VPValue *> VPExternalDefs;
2514 
2515   /// Represents the trip count of the original loop, for folding
2516   /// the tail.
2517   VPValue *TripCount = nullptr;
2518 
2519   /// Represents the backedge taken count of the original loop, for folding
2520   /// the tail. It equals TripCount - 1.
2521   VPValue *BackedgeTakenCount = nullptr;
2522 
2523   /// Represents the vector trip count.
2524   VPValue VectorTripCount;
2525 
2526   /// Holds a mapping between Values and their corresponding VPValue inside
2527   /// VPlan.
2528   Value2VPValueTy Value2VPValue;
2529 
2530   /// Contains all VPValues that been allocated by addVPValue directly and need
2531   /// to be free when the plan's destructor is called.
2532   SmallVector<VPValue *, 16> VPValuesToFree;
2533 
2534   /// Indicates whether it is safe use the Value2VPValue mapping or if the
2535   /// mapping cannot be used any longer, because it is stale.
2536   bool Value2VPValueEnabled = true;
2537 
2538   /// Values used outside the plan.
2539   MapVector<PHINode *, VPLiveOut *> LiveOuts;
2540 
2541 public:
2542   VPlan(VPBlockBase *Entry = nullptr) : Entry(Entry) {
2543     if (Entry)
2544       Entry->setPlan(this);
2545   }
2546 
2547   ~VPlan() {
2548     clearLiveOuts();
2549 
2550     if (Entry) {
2551       VPValue DummyValue;
2552       for (VPBlockBase *Block : depth_first(Entry))
2553         Block->dropAllReferences(&DummyValue);
2554 
2555       VPBlockBase::deleteCFG(Entry);
2556     }
2557     for (VPValue *VPV : VPValuesToFree)
2558       delete VPV;
2559     if (TripCount)
2560       delete TripCount;
2561     if (BackedgeTakenCount)
2562       delete BackedgeTakenCount;
2563     for (auto &P : VPExternalDefs)
2564       delete P.second;
2565   }
2566 
2567   /// Prepare the plan for execution, setting up the required live-in values.
2568   void prepareToExecute(Value *TripCount, Value *VectorTripCount,
2569                         Value *CanonicalIVStartValue, VPTransformState &State,
2570                         bool IsEpilogueVectorization);
2571 
2572   /// Generate the IR code for this VPlan.
2573   void execute(struct VPTransformState *State);
2574 
2575   VPBlockBase *getEntry() { return Entry; }
2576   const VPBlockBase *getEntry() const { return Entry; }
2577 
2578   VPBlockBase *setEntry(VPBlockBase *Block) {
2579     Entry = Block;
2580     Block->setPlan(this);
2581     return Entry;
2582   }
2583 
2584   /// The trip count of the original loop.
2585   VPValue *getOrCreateTripCount() {
2586     if (!TripCount)
2587       TripCount = new VPValue();
2588     return TripCount;
2589   }
2590 
2591   /// The backedge taken count of the original loop.
2592   VPValue *getOrCreateBackedgeTakenCount() {
2593     if (!BackedgeTakenCount)
2594       BackedgeTakenCount = new VPValue();
2595     return BackedgeTakenCount;
2596   }
2597 
2598   /// The vector trip count.
2599   VPValue &getVectorTripCount() { return VectorTripCount; }
2600 
2601   /// Mark the plan to indicate that using Value2VPValue is not safe any
2602   /// longer, because it may be stale.
2603   void disableValue2VPValue() { Value2VPValueEnabled = false; }
2604 
2605   void addVF(ElementCount VF) { VFs.insert(VF); }
2606 
2607   bool hasVF(ElementCount VF) { return VFs.count(VF); }
2608 
2609   const std::string &getName() const { return Name; }
2610 
2611   void setName(const Twine &newName) { Name = newName.str(); }
2612 
2613   /// Get the existing or add a new external definition for \p V.
2614   VPValue *getOrAddExternalDef(Value *V) {
2615     auto I = VPExternalDefs.insert({V, nullptr});
2616     if (I.second)
2617       I.first->second = new VPValue(V);
2618     return I.first->second;
2619   }
2620 
2621   void addVPValue(Value *V) {
2622     assert(Value2VPValueEnabled &&
2623            "IR value to VPValue mapping may be out of date!");
2624     assert(V && "Trying to add a null Value to VPlan");
2625     assert(!Value2VPValue.count(V) && "Value already exists in VPlan");
2626     VPValue *VPV = new VPValue(V);
2627     Value2VPValue[V] = VPV;
2628     VPValuesToFree.push_back(VPV);
2629   }
2630 
2631   void addVPValue(Value *V, VPValue *VPV) {
2632     assert(Value2VPValueEnabled && "Value2VPValue mapping may be out of date!");
2633     assert(V && "Trying to add a null Value to VPlan");
2634     assert(!Value2VPValue.count(V) && "Value already exists in VPlan");
2635     Value2VPValue[V] = VPV;
2636   }
2637 
2638   /// Returns the VPValue for \p V. \p OverrideAllowed can be used to disable
2639   /// checking whether it is safe to query VPValues using IR Values.
2640   VPValue *getVPValue(Value *V, bool OverrideAllowed = false) {
2641     assert((OverrideAllowed || isa<Constant>(V) || Value2VPValueEnabled) &&
2642            "Value2VPValue mapping may be out of date!");
2643     assert(V && "Trying to get the VPValue of a null Value");
2644     assert(Value2VPValue.count(V) && "Value does not exist in VPlan");
2645     return Value2VPValue[V];
2646   }
2647 
2648   /// Gets the VPValue or adds a new one (if none exists yet) for \p V. \p
2649   /// OverrideAllowed can be used to disable checking whether it is safe to
2650   /// query VPValues using IR Values.
2651   VPValue *getOrAddVPValue(Value *V, bool OverrideAllowed = false) {
2652     assert((OverrideAllowed || isa<Constant>(V) || Value2VPValueEnabled) &&
2653            "Value2VPValue mapping may be out of date!");
2654     assert(V && "Trying to get or add the VPValue of a null Value");
2655     if (!Value2VPValue.count(V))
2656       addVPValue(V);
2657     return getVPValue(V);
2658   }
2659 
2660   void removeVPValueFor(Value *V) {
2661     assert(Value2VPValueEnabled &&
2662            "IR value to VPValue mapping may be out of date!");
2663     Value2VPValue.erase(V);
2664   }
2665 
2666 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2667   /// Print this VPlan to \p O.
2668   void print(raw_ostream &O) const;
2669 
2670   /// Print this VPlan in DOT format to \p O.
2671   void printDOT(raw_ostream &O) const;
2672 
2673   /// Dump the plan to stderr (for debugging).
2674   LLVM_DUMP_METHOD void dump() const;
2675 #endif
2676 
2677   /// Returns a range mapping the values the range \p Operands to their
2678   /// corresponding VPValues.
2679   iterator_range<mapped_iterator<Use *, std::function<VPValue *(Value *)>>>
2680   mapToVPValues(User::op_range Operands) {
2681     std::function<VPValue *(Value *)> Fn = [this](Value *Op) {
2682       return getOrAddVPValue(Op);
2683     };
2684     return map_range(Operands, Fn);
2685   }
2686 
2687   /// Returns true if \p VPV is uniform after vectorization.
2688   bool isUniformAfterVectorization(VPValue *VPV) const {
2689     auto RepR = dyn_cast_or_null<VPReplicateRecipe>(VPV->getDef());
2690     return !VPV->getDef() || (RepR && RepR->isUniform());
2691   }
2692 
2693   /// Returns the VPRegionBlock of the vector loop.
2694   VPRegionBlock *getVectorLoopRegion() {
2695     return cast<VPRegionBlock>(getEntry()->getSingleSuccessor());
2696   }
2697   const VPRegionBlock *getVectorLoopRegion() const {
2698     return cast<VPRegionBlock>(getEntry()->getSingleSuccessor());
2699   }
2700 
2701   /// Returns the canonical induction recipe of the vector loop.
2702   VPCanonicalIVPHIRecipe *getCanonicalIV() {
2703     VPBasicBlock *EntryVPBB = getVectorLoopRegion()->getEntryBasicBlock();
2704     if (EntryVPBB->empty()) {
2705       // VPlan native path.
2706       EntryVPBB = cast<VPBasicBlock>(EntryVPBB->getSingleSuccessor());
2707     }
2708     return cast<VPCanonicalIVPHIRecipe>(&*EntryVPBB->begin());
2709   }
2710 
2711   /// Find and return the VPActiveLaneMaskPHIRecipe from the header - there
2712   /// be only one at most. If there isn't one, then return nullptr.
2713   VPActiveLaneMaskPHIRecipe *getActiveLaneMaskPhi();
2714 
2715   void addLiveOut(PHINode *PN, VPValue *V);
2716 
2717   void clearLiveOuts() {
2718     for (auto &KV : LiveOuts)
2719       delete KV.second;
2720     LiveOuts.clear();
2721   }
2722 
2723   void removeLiveOut(PHINode *PN) {
2724     delete LiveOuts[PN];
2725     LiveOuts.erase(PN);
2726   }
2727 
2728   const MapVector<PHINode *, VPLiveOut *> &getLiveOuts() const {
2729     return LiveOuts;
2730   }
2731 
2732 private:
2733   /// Add to the given dominator tree the header block and every new basic block
2734   /// that was created between it and the latch block, inclusive.
2735   static void updateDominatorTree(DominatorTree *DT, BasicBlock *LoopLatchBB,
2736                                   BasicBlock *LoopPreHeaderBB,
2737                                   BasicBlock *LoopExitBB);
2738 };
2739 
2740 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2741 /// VPlanPrinter prints a given VPlan to a given output stream. The printing is
2742 /// indented and follows the dot format.
2743 class VPlanPrinter {
2744   raw_ostream &OS;
2745   const VPlan &Plan;
2746   unsigned Depth = 0;
2747   unsigned TabWidth = 2;
2748   std::string Indent;
2749   unsigned BID = 0;
2750   SmallDenseMap<const VPBlockBase *, unsigned> BlockID;
2751 
2752   VPSlotTracker SlotTracker;
2753 
2754   /// Handle indentation.
2755   void bumpIndent(int b) { Indent = std::string((Depth += b) * TabWidth, ' '); }
2756 
2757   /// Print a given \p Block of the Plan.
2758   void dumpBlock(const VPBlockBase *Block);
2759 
2760   /// Print the information related to the CFG edges going out of a given
2761   /// \p Block, followed by printing the successor blocks themselves.
2762   void dumpEdges(const VPBlockBase *Block);
2763 
2764   /// Print a given \p BasicBlock, including its VPRecipes, followed by printing
2765   /// its successor blocks.
2766   void dumpBasicBlock(const VPBasicBlock *BasicBlock);
2767 
2768   /// Print a given \p Region of the Plan.
2769   void dumpRegion(const VPRegionBlock *Region);
2770 
2771   unsigned getOrCreateBID(const VPBlockBase *Block) {
2772     return BlockID.count(Block) ? BlockID[Block] : BlockID[Block] = BID++;
2773   }
2774 
2775   Twine getOrCreateName(const VPBlockBase *Block);
2776 
2777   Twine getUID(const VPBlockBase *Block);
2778 
2779   /// Print the information related to a CFG edge between two VPBlockBases.
2780   void drawEdge(const VPBlockBase *From, const VPBlockBase *To, bool Hidden,
2781                 const Twine &Label);
2782 
2783 public:
2784   VPlanPrinter(raw_ostream &O, const VPlan &P)
2785       : OS(O), Plan(P), SlotTracker(&P) {}
2786 
2787   LLVM_DUMP_METHOD void dump();
2788 };
2789 
2790 struct VPlanIngredient {
2791   const Value *V;
2792 
2793   VPlanIngredient(const Value *V) : V(V) {}
2794 
2795   void print(raw_ostream &O) const;
2796 };
2797 
2798 inline raw_ostream &operator<<(raw_ostream &OS, const VPlanIngredient &I) {
2799   I.print(OS);
2800   return OS;
2801 }
2802 
2803 inline raw_ostream &operator<<(raw_ostream &OS, const VPlan &Plan) {
2804   Plan.print(OS);
2805   return OS;
2806 }
2807 #endif
2808 
2809 //===----------------------------------------------------------------------===//
2810 // VPlan Utilities
2811 //===----------------------------------------------------------------------===//
2812 
2813 /// Class that provides utilities for VPBlockBases in VPlan.
2814 class VPBlockUtils {
2815 public:
2816   VPBlockUtils() = delete;
2817 
2818   /// Insert disconnected VPBlockBase \p NewBlock after \p BlockPtr. Add \p
2819   /// NewBlock as successor of \p BlockPtr and \p BlockPtr as predecessor of \p
2820   /// NewBlock, and propagate \p BlockPtr parent to \p NewBlock. \p BlockPtr's
2821   /// successors are moved from \p BlockPtr to \p NewBlock. \p NewBlock must
2822   /// have neither successors nor predecessors.
2823   static void insertBlockAfter(VPBlockBase *NewBlock, VPBlockBase *BlockPtr) {
2824     assert(NewBlock->getSuccessors().empty() &&
2825            NewBlock->getPredecessors().empty() &&
2826            "Can't insert new block with predecessors or successors.");
2827     NewBlock->setParent(BlockPtr->getParent());
2828     SmallVector<VPBlockBase *> Succs(BlockPtr->successors());
2829     for (VPBlockBase *Succ : Succs) {
2830       disconnectBlocks(BlockPtr, Succ);
2831       connectBlocks(NewBlock, Succ);
2832     }
2833     connectBlocks(BlockPtr, NewBlock);
2834   }
2835 
2836   /// Insert disconnected VPBlockBases \p IfTrue and \p IfFalse after \p
2837   /// BlockPtr. Add \p IfTrue and \p IfFalse as succesors of \p BlockPtr and \p
2838   /// BlockPtr as predecessor of \p IfTrue and \p IfFalse. Propagate \p BlockPtr
2839   /// parent to \p IfTrue and \p IfFalse. \p BlockPtr must have no successors
2840   /// and \p IfTrue and \p IfFalse must have neither successors nor
2841   /// predecessors.
2842   static void insertTwoBlocksAfter(VPBlockBase *IfTrue, VPBlockBase *IfFalse,
2843                                    VPBlockBase *BlockPtr) {
2844     assert(IfTrue->getSuccessors().empty() &&
2845            "Can't insert IfTrue with successors.");
2846     assert(IfFalse->getSuccessors().empty() &&
2847            "Can't insert IfFalse with successors.");
2848     BlockPtr->setTwoSuccessors(IfTrue, IfFalse);
2849     IfTrue->setPredecessors({BlockPtr});
2850     IfFalse->setPredecessors({BlockPtr});
2851     IfTrue->setParent(BlockPtr->getParent());
2852     IfFalse->setParent(BlockPtr->getParent());
2853   }
2854 
2855   /// Connect VPBlockBases \p From and \p To bi-directionally. Append \p To to
2856   /// the successors of \p From and \p From to the predecessors of \p To. Both
2857   /// VPBlockBases must have the same parent, which can be null. Both
2858   /// VPBlockBases can be already connected to other VPBlockBases.
2859   static void connectBlocks(VPBlockBase *From, VPBlockBase *To) {
2860     assert((From->getParent() == To->getParent()) &&
2861            "Can't connect two block with different parents");
2862     assert(From->getNumSuccessors() < 2 &&
2863            "Blocks can't have more than two successors.");
2864     From->appendSuccessor(To);
2865     To->appendPredecessor(From);
2866   }
2867 
2868   /// Disconnect VPBlockBases \p From and \p To bi-directionally. Remove \p To
2869   /// from the successors of \p From and \p From from the predecessors of \p To.
2870   static void disconnectBlocks(VPBlockBase *From, VPBlockBase *To) {
2871     assert(To && "Successor to disconnect is null.");
2872     From->removeSuccessor(To);
2873     To->removePredecessor(From);
2874   }
2875 
2876   /// Try to merge \p Block into its single predecessor, if \p Block is a
2877   /// VPBasicBlock and its predecessor has a single successor. Returns a pointer
2878   /// to the predecessor \p Block was merged into or nullptr otherwise.
2879   static VPBasicBlock *tryToMergeBlockIntoPredecessor(VPBlockBase *Block) {
2880     auto *VPBB = dyn_cast<VPBasicBlock>(Block);
2881     auto *PredVPBB =
2882         dyn_cast_or_null<VPBasicBlock>(Block->getSinglePredecessor());
2883     if (!VPBB || !PredVPBB || PredVPBB->getNumSuccessors() != 1)
2884       return nullptr;
2885 
2886     for (VPRecipeBase &R : make_early_inc_range(*VPBB))
2887       R.moveBefore(*PredVPBB, PredVPBB->end());
2888     VPBlockUtils::disconnectBlocks(PredVPBB, VPBB);
2889     auto *ParentRegion = cast<VPRegionBlock>(Block->getParent());
2890     if (ParentRegion->getExiting() == Block)
2891       ParentRegion->setExiting(PredVPBB);
2892     SmallVector<VPBlockBase *> Successors(Block->successors());
2893     for (auto *Succ : Successors) {
2894       VPBlockUtils::disconnectBlocks(Block, Succ);
2895       VPBlockUtils::connectBlocks(PredVPBB, Succ);
2896     }
2897     delete Block;
2898     return PredVPBB;
2899   }
2900 
2901   /// Return an iterator range over \p Range which only includes \p BlockTy
2902   /// blocks. The accesses are casted to \p BlockTy.
2903   template <typename BlockTy, typename T>
2904   static auto blocksOnly(const T &Range) {
2905     // Create BaseTy with correct const-ness based on BlockTy.
2906     using BaseTy =
2907         typename std::conditional<std::is_const<BlockTy>::value,
2908                                   const VPBlockBase, VPBlockBase>::type;
2909 
2910     // We need to first create an iterator range over (const) BlocktTy & instead
2911     // of (const) BlockTy * for filter_range to work properly.
2912     auto Mapped =
2913         map_range(Range, [](BaseTy *Block) -> BaseTy & { return *Block; });
2914     auto Filter = make_filter_range(
2915         Mapped, [](BaseTy &Block) { return isa<BlockTy>(&Block); });
2916     return map_range(Filter, [](BaseTy &Block) -> BlockTy * {
2917       return cast<BlockTy>(&Block);
2918     });
2919   }
2920 };
2921 
2922 class VPInterleavedAccessInfo {
2923   DenseMap<VPInstruction *, InterleaveGroup<VPInstruction> *>
2924       InterleaveGroupMap;
2925 
2926   /// Type for mapping of instruction based interleave groups to VPInstruction
2927   /// interleave groups
2928   using Old2NewTy = DenseMap<InterleaveGroup<Instruction> *,
2929                              InterleaveGroup<VPInstruction> *>;
2930 
2931   /// Recursively \p Region and populate VPlan based interleave groups based on
2932   /// \p IAI.
2933   void visitRegion(VPRegionBlock *Region, Old2NewTy &Old2New,
2934                    InterleavedAccessInfo &IAI);
2935   /// Recursively traverse \p Block and populate VPlan based interleave groups
2936   /// based on \p IAI.
2937   void visitBlock(VPBlockBase *Block, Old2NewTy &Old2New,
2938                   InterleavedAccessInfo &IAI);
2939 
2940 public:
2941   VPInterleavedAccessInfo(VPlan &Plan, InterleavedAccessInfo &IAI);
2942 
2943   ~VPInterleavedAccessInfo() {
2944     SmallPtrSet<InterleaveGroup<VPInstruction> *, 4> DelSet;
2945     // Avoid releasing a pointer twice.
2946     for (auto &I : InterleaveGroupMap)
2947       DelSet.insert(I.second);
2948     for (auto *Ptr : DelSet)
2949       delete Ptr;
2950   }
2951 
2952   /// Get the interleave group that \p Instr belongs to.
2953   ///
2954   /// \returns nullptr if doesn't have such group.
2955   InterleaveGroup<VPInstruction> *
2956   getInterleaveGroup(VPInstruction *Instr) const {
2957     return InterleaveGroupMap.lookup(Instr);
2958   }
2959 };
2960 
2961 /// Class that maps (parts of) an existing VPlan to trees of combined
2962 /// VPInstructions.
2963 class VPlanSlp {
2964   enum class OpMode { Failed, Load, Opcode };
2965 
2966   /// A DenseMapInfo implementation for using SmallVector<VPValue *, 4> as
2967   /// DenseMap keys.
2968   struct BundleDenseMapInfo {
2969     static SmallVector<VPValue *, 4> getEmptyKey() {
2970       return {reinterpret_cast<VPValue *>(-1)};
2971     }
2972 
2973     static SmallVector<VPValue *, 4> getTombstoneKey() {
2974       return {reinterpret_cast<VPValue *>(-2)};
2975     }
2976 
2977     static unsigned getHashValue(const SmallVector<VPValue *, 4> &V) {
2978       return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
2979     }
2980 
2981     static bool isEqual(const SmallVector<VPValue *, 4> &LHS,
2982                         const SmallVector<VPValue *, 4> &RHS) {
2983       return LHS == RHS;
2984     }
2985   };
2986 
2987   /// Mapping of values in the original VPlan to a combined VPInstruction.
2988   DenseMap<SmallVector<VPValue *, 4>, VPInstruction *, BundleDenseMapInfo>
2989       BundleToCombined;
2990 
2991   VPInterleavedAccessInfo &IAI;
2992 
2993   /// Basic block to operate on. For now, only instructions in a single BB are
2994   /// considered.
2995   const VPBasicBlock &BB;
2996 
2997   /// Indicates whether we managed to combine all visited instructions or not.
2998   bool CompletelySLP = true;
2999 
3000   /// Width of the widest combined bundle in bits.
3001   unsigned WidestBundleBits = 0;
3002 
3003   using MultiNodeOpTy =
3004       typename std::pair<VPInstruction *, SmallVector<VPValue *, 4>>;
3005 
3006   // Input operand bundles for the current multi node. Each multi node operand
3007   // bundle contains values not matching the multi node's opcode. They will
3008   // be reordered in reorderMultiNodeOps, once we completed building a
3009   // multi node.
3010   SmallVector<MultiNodeOpTy, 4> MultiNodeOps;
3011 
3012   /// Indicates whether we are building a multi node currently.
3013   bool MultiNodeActive = false;
3014 
3015   /// Check if we can vectorize Operands together.
3016   bool areVectorizable(ArrayRef<VPValue *> Operands) const;
3017 
3018   /// Add combined instruction \p New for the bundle \p Operands.
3019   void addCombined(ArrayRef<VPValue *> Operands, VPInstruction *New);
3020 
3021   /// Indicate we hit a bundle we failed to combine. Returns nullptr for now.
3022   VPInstruction *markFailed();
3023 
3024   /// Reorder operands in the multi node to maximize sequential memory access
3025   /// and commutative operations.
3026   SmallVector<MultiNodeOpTy, 4> reorderMultiNodeOps();
3027 
3028   /// Choose the best candidate to use for the lane after \p Last. The set of
3029   /// candidates to choose from are values with an opcode matching \p Last's
3030   /// or loads consecutive to \p Last.
3031   std::pair<OpMode, VPValue *> getBest(OpMode Mode, VPValue *Last,
3032                                        SmallPtrSetImpl<VPValue *> &Candidates,
3033                                        VPInterleavedAccessInfo &IAI);
3034 
3035 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3036   /// Print bundle \p Values to dbgs().
3037   void dumpBundle(ArrayRef<VPValue *> Values);
3038 #endif
3039 
3040 public:
3041   VPlanSlp(VPInterleavedAccessInfo &IAI, VPBasicBlock &BB) : IAI(IAI), BB(BB) {}
3042 
3043   ~VPlanSlp() = default;
3044 
3045   /// Tries to build an SLP tree rooted at \p Operands and returns a
3046   /// VPInstruction combining \p Operands, if they can be combined.
3047   VPInstruction *buildGraph(ArrayRef<VPValue *> Operands);
3048 
3049   /// Return the width of the widest combined bundle in bits.
3050   unsigned getWidestBundleBits() const { return WidestBundleBits; }
3051 
3052   /// Return true if all visited instruction can be combined.
3053   bool isCompletelySLP() const { return CompletelySLP; }
3054 };
3055 
3056 namespace vputils {
3057 
3058 /// Returns true if only the first lane of \p Def is used.
3059 bool onlyFirstLaneUsed(VPValue *Def);
3060 
3061 /// Get or create a VPValue that corresponds to the expansion of \p Expr. If \p
3062 /// Expr is a SCEVConstant or SCEVUnknown, return a VPValue wrapping the live-in
3063 /// value. Otherwise return a VPExpandSCEVRecipe to expand \p Expr. If \p Plan's
3064 /// pre-header already contains a recipe expanding \p Expr, return it. If not,
3065 /// create a new one.
3066 VPValue *getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr,
3067                                        ScalarEvolution &SE);
3068 } // end namespace vputils
3069 
3070 } // end namespace llvm
3071 
3072 #endif // LLVM_TRANSFORMS_VECTORIZE_VPLAN_H
3073