1 //===- VPlan.h - Represent A Vectorizer Plan --------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This file contains the declarations of the Vectorization Plan base classes:
11 /// 1. VPBasicBlock and VPRegionBlock that inherit from a common pure virtual
12 ///    VPBlockBase, together implementing a Hierarchical CFG;
13 /// 2. Specializations of GraphTraits that allow VPBlockBase graphs to be
14 ///    treated as proper graphs for generic algorithms;
15 /// 3. Pure virtual VPRecipeBase serving as the base class for recipes contained
16 ///    within VPBasicBlocks;
17 /// 4. VPInstruction, a concrete Recipe and VPUser modeling a single planned
18 ///    instruction;
19 /// 5. The VPlan class holding a candidate for vectorization;
20 /// 6. The VPlanPrinter class providing a way to print a plan in dot format;
21 /// These are documented in docs/VectorizationPlan.rst.
22 //
23 //===----------------------------------------------------------------------===//
24 
25 #ifndef LLVM_TRANSFORMS_VECTORIZE_VPLAN_H
26 #define LLVM_TRANSFORMS_VECTORIZE_VPLAN_H
27 
28 #include "VPlanLoopInfo.h"
29 #include "VPlanValue.h"
30 #include "llvm/ADT/DenseMap.h"
31 #include "llvm/ADT/DepthFirstIterator.h"
32 #include "llvm/ADT/GraphTraits.h"
33 #include "llvm/ADT/Optional.h"
34 #include "llvm/ADT/SmallBitVector.h"
35 #include "llvm/ADT/SmallPtrSet.h"
36 #include "llvm/ADT/SmallSet.h"
37 #include "llvm/ADT/SmallVector.h"
38 #include "llvm/ADT/Twine.h"
39 #include "llvm/ADT/ilist.h"
40 #include "llvm/ADT/ilist_node.h"
41 #include "llvm/Analysis/VectorUtils.h"
42 #include "llvm/IR/IRBuilder.h"
43 #include <algorithm>
44 #include <cassert>
45 #include <cstddef>
46 #include <map>
47 #include <string>
48 
49 namespace llvm {
50 
51 class LoopVectorizationLegality;
52 class LoopVectorizationCostModel;
53 class BasicBlock;
54 class DominatorTree;
55 class InnerLoopVectorizer;
56 template <class T> class InterleaveGroup;
57 class LoopInfo;
58 class raw_ostream;
59 class Value;
60 class VPBasicBlock;
61 class VPRegionBlock;
62 class VPlan;
63 class VPlanSlp;
64 
65 /// A range of powers-of-2 vectorization factors with fixed start and
66 /// adjustable end. The range includes start and excludes end, e.g.,:
67 /// [1, 9) = {1, 2, 4, 8}
68 struct VFRange {
69   // A power of 2.
70   const unsigned Start;
71 
72   // Need not be a power of 2. If End <= Start range is empty.
73   unsigned End;
74 };
75 
76 using VPlanPtr = std::unique_ptr<VPlan>;
77 
78 /// In what follows, the term "input IR" refers to code that is fed into the
79 /// vectorizer whereas the term "output IR" refers to code that is generated by
80 /// the vectorizer.
81 
82 /// VPIteration represents a single point in the iteration space of the output
83 /// (vectorized and/or unrolled) IR loop.
84 struct VPIteration {
85   /// in [0..UF)
86   unsigned Part;
87 
88   /// in [0..VF)
89   unsigned Lane;
90 };
91 
92 /// This is a helper struct for maintaining vectorization state. It's used for
93 /// mapping values from the original loop to their corresponding values in
94 /// the new loop. Two mappings are maintained: one for vectorized values and
95 /// one for scalarized values. Vectorized values are represented with UF
96 /// vector values in the new loop, and scalarized values are represented with
97 /// UF x VF scalar values in the new loop. UF and VF are the unroll and
98 /// vectorization factors, respectively.
99 ///
100 /// Entries can be added to either map with setVectorValue and setScalarValue,
101 /// which assert that an entry was not already added before. If an entry is to
102 /// replace an existing one, call resetVectorValue and resetScalarValue. This is
103 /// currently needed to modify the mapped values during "fix-up" operations that
104 /// occur once the first phase of widening is complete. These operations include
105 /// type truncation and the second phase of recurrence widening.
106 ///
107 /// Entries from either map can be retrieved using the getVectorValue and
108 /// getScalarValue functions, which assert that the desired value exists.
109 struct VectorizerValueMap {
110   friend struct VPTransformState;
111 
112 private:
113   /// The unroll factor. Each entry in the vector map contains UF vector values.
114   unsigned UF;
115 
116   /// The vectorization factor. Each entry in the scalar map contains UF x VF
117   /// scalar values.
118   unsigned VF;
119 
120   /// The vector and scalar map storage. We use std::map and not DenseMap
121   /// because insertions to DenseMap invalidate its iterators.
122   using VectorParts = SmallVector<Value *, 2>;
123   using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
124   std::map<Value *, VectorParts> VectorMapStorage;
125   std::map<Value *, ScalarParts> ScalarMapStorage;
126 
127 public:
128   /// Construct an empty map with the given unroll and vectorization factors.
129   VectorizerValueMap(unsigned UF, unsigned VF) : UF(UF), VF(VF) {}
130 
131   /// \return True if the map has any vector entry for \p Key.
132   bool hasAnyVectorValue(Value *Key) const {
133     return VectorMapStorage.count(Key);
134   }
135 
136   /// \return True if the map has a vector entry for \p Key and \p Part.
137   bool hasVectorValue(Value *Key, unsigned Part) const {
138     assert(Part < UF && "Queried Vector Part is too large.");
139     if (!hasAnyVectorValue(Key))
140       return false;
141     const VectorParts &Entry = VectorMapStorage.find(Key)->second;
142     assert(Entry.size() == UF && "VectorParts has wrong dimensions.");
143     return Entry[Part] != nullptr;
144   }
145 
146   /// \return True if the map has any scalar entry for \p Key.
147   bool hasAnyScalarValue(Value *Key) const {
148     return ScalarMapStorage.count(Key);
149   }
150 
151   /// \return True if the map has a scalar entry for \p Key and \p Instance.
152   bool hasScalarValue(Value *Key, const VPIteration &Instance) const {
153     assert(Instance.Part < UF && "Queried Scalar Part is too large.");
154     assert(Instance.Lane < VF && "Queried Scalar Lane is too large.");
155     if (!hasAnyScalarValue(Key))
156       return false;
157     const ScalarParts &Entry = ScalarMapStorage.find(Key)->second;
158     assert(Entry.size() == UF && "ScalarParts has wrong dimensions.");
159     assert(Entry[Instance.Part].size() == VF &&
160            "ScalarParts has wrong dimensions.");
161     return Entry[Instance.Part][Instance.Lane] != nullptr;
162   }
163 
164   /// Retrieve the existing vector value that corresponds to \p Key and
165   /// \p Part.
166   Value *getVectorValue(Value *Key, unsigned Part) {
167     assert(hasVectorValue(Key, Part) && "Getting non-existent value.");
168     return VectorMapStorage[Key][Part];
169   }
170 
171   /// Retrieve the existing scalar value that corresponds to \p Key and
172   /// \p Instance.
173   Value *getScalarValue(Value *Key, const VPIteration &Instance) {
174     assert(hasScalarValue(Key, Instance) && "Getting non-existent value.");
175     return ScalarMapStorage[Key][Instance.Part][Instance.Lane];
176   }
177 
178   /// Set a vector value associated with \p Key and \p Part. Assumes such a
179   /// value is not already set. If it is, use resetVectorValue() instead.
180   void setVectorValue(Value *Key, unsigned Part, Value *Vector) {
181     assert(!hasVectorValue(Key, Part) && "Vector value already set for part");
182     if (!VectorMapStorage.count(Key)) {
183       VectorParts Entry(UF);
184       VectorMapStorage[Key] = Entry;
185     }
186     VectorMapStorage[Key][Part] = Vector;
187   }
188 
189   /// Set a scalar value associated with \p Key and \p Instance. Assumes such a
190   /// value is not already set.
191   void setScalarValue(Value *Key, const VPIteration &Instance, Value *Scalar) {
192     assert(!hasScalarValue(Key, Instance) && "Scalar value already set");
193     if (!ScalarMapStorage.count(Key)) {
194       ScalarParts Entry(UF);
195       // TODO: Consider storing uniform values only per-part, as they occupy
196       //       lane 0 only, keeping the other VF-1 redundant entries null.
197       for (unsigned Part = 0; Part < UF; ++Part)
198         Entry[Part].resize(VF, nullptr);
199       ScalarMapStorage[Key] = Entry;
200     }
201     ScalarMapStorage[Key][Instance.Part][Instance.Lane] = Scalar;
202   }
203 
204   /// Reset the vector value associated with \p Key for the given \p Part.
205   /// This function can be used to update values that have already been
206   /// vectorized. This is the case for "fix-up" operations including type
207   /// truncation and the second phase of recurrence vectorization.
208   void resetVectorValue(Value *Key, unsigned Part, Value *Vector) {
209     assert(hasVectorValue(Key, Part) && "Vector value not set for part");
210     VectorMapStorage[Key][Part] = Vector;
211   }
212 
213   /// Reset the scalar value associated with \p Key for \p Part and \p Lane.
214   /// This function can be used to update values that have already been
215   /// scalarized. This is the case for "fix-up" operations including scalar phi
216   /// nodes for scalarized and predicated instructions.
217   void resetScalarValue(Value *Key, const VPIteration &Instance,
218                         Value *Scalar) {
219     assert(hasScalarValue(Key, Instance) &&
220            "Scalar value not set for part and lane");
221     ScalarMapStorage[Key][Instance.Part][Instance.Lane] = Scalar;
222   }
223 };
224 
225 /// This class is used to enable the VPlan to invoke a method of ILV. This is
226 /// needed until the method is refactored out of ILV and becomes reusable.
227 struct VPCallback {
228   virtual ~VPCallback() {}
229   virtual Value *getOrCreateVectorValues(Value *V, unsigned Part) = 0;
230   virtual Value *getOrCreateScalarValue(Value *V,
231                                         const VPIteration &Instance) = 0;
232 };
233 
234 /// VPTransformState holds information passed down when "executing" a VPlan,
235 /// needed for generating the output IR.
236 struct VPTransformState {
237   VPTransformState(unsigned VF, unsigned UF, LoopInfo *LI, DominatorTree *DT,
238                    IRBuilder<> &Builder, VectorizerValueMap &ValueMap,
239                    InnerLoopVectorizer *ILV, VPCallback &Callback)
240       : VF(VF), UF(UF), Instance(), LI(LI), DT(DT), Builder(Builder),
241         ValueMap(ValueMap), ILV(ILV), Callback(Callback) {}
242 
243   /// The chosen Vectorization and Unroll Factors of the loop being vectorized.
244   unsigned VF;
245   unsigned UF;
246 
247   /// Hold the indices to generate specific scalar instructions. Null indicates
248   /// that all instances are to be generated, using either scalar or vector
249   /// instructions.
250   Optional<VPIteration> Instance;
251 
252   struct DataState {
253     /// A type for vectorized values in the new loop. Each value from the
254     /// original loop, when vectorized, is represented by UF vector values in
255     /// the new unrolled loop, where UF is the unroll factor.
256     typedef SmallVector<Value *, 2> PerPartValuesTy;
257 
258     DenseMap<VPValue *, PerPartValuesTy> PerPartOutput;
259   } Data;
260 
261   /// Get the generated Value for a given VPValue and a given Part. Note that
262   /// as some Defs are still created by ILV and managed in its ValueMap, this
263   /// method will delegate the call to ILV in such cases in order to provide
264   /// callers a consistent API.
265   /// \see set.
266   Value *get(VPValue *Def, unsigned Part) {
267     // If Values have been set for this Def return the one relevant for \p Part.
268     if (Data.PerPartOutput.count(Def))
269       return Data.PerPartOutput[Def][Part];
270     // Def is managed by ILV: bring the Values from ValueMap.
271     return Callback.getOrCreateVectorValues(VPValue2Value[Def], Part);
272   }
273 
274   /// Get the generated Value for a given VPValue and given Part and Lane. Note
275   /// that as per-lane Defs are still created by ILV and managed in its ValueMap
276   /// this method currently just delegates the call to ILV.
277   Value *get(VPValue *Def, const VPIteration &Instance) {
278     return Callback.getOrCreateScalarValue(VPValue2Value[Def], Instance);
279   }
280 
281   /// Set the generated Value for a given VPValue and a given Part.
282   void set(VPValue *Def, Value *V, unsigned Part) {
283     if (!Data.PerPartOutput.count(Def)) {
284       DataState::PerPartValuesTy Entry(UF);
285       Data.PerPartOutput[Def] = Entry;
286     }
287     Data.PerPartOutput[Def][Part] = V;
288   }
289 
290   /// Hold state information used when constructing the CFG of the output IR,
291   /// traversing the VPBasicBlocks and generating corresponding IR BasicBlocks.
292   struct CFGState {
293     /// The previous VPBasicBlock visited. Initially set to null.
294     VPBasicBlock *PrevVPBB = nullptr;
295 
296     /// The previous IR BasicBlock created or used. Initially set to the new
297     /// header BasicBlock.
298     BasicBlock *PrevBB = nullptr;
299 
300     /// The last IR BasicBlock in the output IR. Set to the new latch
301     /// BasicBlock, used for placing the newly created BasicBlocks.
302     BasicBlock *LastBB = nullptr;
303 
304     /// A mapping of each VPBasicBlock to the corresponding BasicBlock. In case
305     /// of replication, maps the BasicBlock of the last replica created.
306     SmallDenseMap<VPBasicBlock *, BasicBlock *> VPBB2IRBB;
307 
308     /// Vector of VPBasicBlocks whose terminator instruction needs to be fixed
309     /// up at the end of vector code generation.
310     SmallVector<VPBasicBlock *, 8> VPBBsToFix;
311 
312     CFGState() = default;
313   } CFG;
314 
315   /// Hold a pointer to LoopInfo to register new basic blocks in the loop.
316   LoopInfo *LI;
317 
318   /// Hold a pointer to Dominator Tree to register new basic blocks in the loop.
319   DominatorTree *DT;
320 
321   /// Hold a reference to the IRBuilder used to generate output IR code.
322   IRBuilder<> &Builder;
323 
324   /// Hold a reference to the Value state information used when generating the
325   /// Values of the output IR.
326   VectorizerValueMap &ValueMap;
327 
328   /// Hold a reference to a mapping between VPValues in VPlan and original
329   /// Values they correspond to.
330   VPValue2ValueTy VPValue2Value;
331 
332   /// Hold the trip count of the scalar loop.
333   Value *TripCount = nullptr;
334 
335   /// Hold a pointer to InnerLoopVectorizer to reuse its IR generation methods.
336   InnerLoopVectorizer *ILV;
337 
338   VPCallback &Callback;
339 };
340 
341 /// VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
342 /// A VPBlockBase can be either a VPBasicBlock or a VPRegionBlock.
343 class VPBlockBase {
344   friend class VPBlockUtils;
345 
346 private:
347   const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast).
348 
349   /// An optional name for the block.
350   std::string Name;
351 
352   /// The immediate VPRegionBlock which this VPBlockBase belongs to, or null if
353   /// it is a topmost VPBlockBase.
354   VPRegionBlock *Parent = nullptr;
355 
356   /// List of predecessor blocks.
357   SmallVector<VPBlockBase *, 1> Predecessors;
358 
359   /// List of successor blocks.
360   SmallVector<VPBlockBase *, 1> Successors;
361 
362   /// Successor selector, null for zero or single successor blocks.
363   VPValue *CondBit = nullptr;
364 
365   /// Current block predicate - null if the block does not need a predicate.
366   VPValue *Predicate = nullptr;
367 
368   /// Add \p Successor as the last successor to this block.
369   void appendSuccessor(VPBlockBase *Successor) {
370     assert(Successor && "Cannot add nullptr successor!");
371     Successors.push_back(Successor);
372   }
373 
374   /// Add \p Predecessor as the last predecessor to this block.
375   void appendPredecessor(VPBlockBase *Predecessor) {
376     assert(Predecessor && "Cannot add nullptr predecessor!");
377     Predecessors.push_back(Predecessor);
378   }
379 
380   /// Remove \p Predecessor from the predecessors of this block.
381   void removePredecessor(VPBlockBase *Predecessor) {
382     auto Pos = std::find(Predecessors.begin(), Predecessors.end(), Predecessor);
383     assert(Pos && "Predecessor does not exist");
384     Predecessors.erase(Pos);
385   }
386 
387   /// Remove \p Successor from the successors of this block.
388   void removeSuccessor(VPBlockBase *Successor) {
389     auto Pos = std::find(Successors.begin(), Successors.end(), Successor);
390     assert(Pos && "Successor does not exist");
391     Successors.erase(Pos);
392   }
393 
394 protected:
395   VPBlockBase(const unsigned char SC, const std::string &N)
396       : SubclassID(SC), Name(N) {}
397 
398 public:
399   /// An enumeration for keeping track of the concrete subclass of VPBlockBase
400   /// that are actually instantiated. Values of this enumeration are kept in the
401   /// SubclassID field of the VPBlockBase objects. They are used for concrete
402   /// type identification.
403   using VPBlockTy = enum { VPBasicBlockSC, VPRegionBlockSC };
404 
405   using VPBlocksTy = SmallVectorImpl<VPBlockBase *>;
406 
407   virtual ~VPBlockBase() = default;
408 
409   const std::string &getName() const { return Name; }
410 
411   void setName(const Twine &newName) { Name = newName.str(); }
412 
413   /// \return an ID for the concrete type of this object.
414   /// This is used to implement the classof checks. This should not be used
415   /// for any other purpose, as the values may change as LLVM evolves.
416   unsigned getVPBlockID() const { return SubclassID; }
417 
418   VPRegionBlock *getParent() { return Parent; }
419   const VPRegionBlock *getParent() const { return Parent; }
420 
421   void setParent(VPRegionBlock *P) { Parent = P; }
422 
423   /// \return the VPBasicBlock that is the entry of this VPBlockBase,
424   /// recursively, if the latter is a VPRegionBlock. Otherwise, if this
425   /// VPBlockBase is a VPBasicBlock, it is returned.
426   const VPBasicBlock *getEntryBasicBlock() const;
427   VPBasicBlock *getEntryBasicBlock();
428 
429   /// \return the VPBasicBlock that is the exit of this VPBlockBase,
430   /// recursively, if the latter is a VPRegionBlock. Otherwise, if this
431   /// VPBlockBase is a VPBasicBlock, it is returned.
432   const VPBasicBlock *getExitBasicBlock() const;
433   VPBasicBlock *getExitBasicBlock();
434 
435   const VPBlocksTy &getSuccessors() const { return Successors; }
436   VPBlocksTy &getSuccessors() { return Successors; }
437 
438   const VPBlocksTy &getPredecessors() const { return Predecessors; }
439   VPBlocksTy &getPredecessors() { return Predecessors; }
440 
441   /// \return the successor of this VPBlockBase if it has a single successor.
442   /// Otherwise return a null pointer.
443   VPBlockBase *getSingleSuccessor() const {
444     return (Successors.size() == 1 ? *Successors.begin() : nullptr);
445   }
446 
447   /// \return the predecessor of this VPBlockBase if it has a single
448   /// predecessor. Otherwise return a null pointer.
449   VPBlockBase *getSinglePredecessor() const {
450     return (Predecessors.size() == 1 ? *Predecessors.begin() : nullptr);
451   }
452 
453   size_t getNumSuccessors() const { return Successors.size(); }
454   size_t getNumPredecessors() const { return Predecessors.size(); }
455 
456   /// An Enclosing Block of a block B is any block containing B, including B
457   /// itself. \return the closest enclosing block starting from "this", which
458   /// has successors. \return the root enclosing block if all enclosing blocks
459   /// have no successors.
460   VPBlockBase *getEnclosingBlockWithSuccessors();
461 
462   /// \return the closest enclosing block starting from "this", which has
463   /// predecessors. \return the root enclosing block if all enclosing blocks
464   /// have no predecessors.
465   VPBlockBase *getEnclosingBlockWithPredecessors();
466 
467   /// \return the successors either attached directly to this VPBlockBase or, if
468   /// this VPBlockBase is the exit block of a VPRegionBlock and has no
469   /// successors of its own, search recursively for the first enclosing
470   /// VPRegionBlock that has successors and return them. If no such
471   /// VPRegionBlock exists, return the (empty) successors of the topmost
472   /// VPBlockBase reached.
473   const VPBlocksTy &getHierarchicalSuccessors() {
474     return getEnclosingBlockWithSuccessors()->getSuccessors();
475   }
476 
477   /// \return the hierarchical successor of this VPBlockBase if it has a single
478   /// hierarchical successor. Otherwise return a null pointer.
479   VPBlockBase *getSingleHierarchicalSuccessor() {
480     return getEnclosingBlockWithSuccessors()->getSingleSuccessor();
481   }
482 
483   /// \return the predecessors either attached directly to this VPBlockBase or,
484   /// if this VPBlockBase is the entry block of a VPRegionBlock and has no
485   /// predecessors of its own, search recursively for the first enclosing
486   /// VPRegionBlock that has predecessors and return them. If no such
487   /// VPRegionBlock exists, return the (empty) predecessors of the topmost
488   /// VPBlockBase reached.
489   const VPBlocksTy &getHierarchicalPredecessors() {
490     return getEnclosingBlockWithPredecessors()->getPredecessors();
491   }
492 
493   /// \return the hierarchical predecessor of this VPBlockBase if it has a
494   /// single hierarchical predecessor. Otherwise return a null pointer.
495   VPBlockBase *getSingleHierarchicalPredecessor() {
496     return getEnclosingBlockWithPredecessors()->getSinglePredecessor();
497   }
498 
499   /// \return the condition bit selecting the successor.
500   VPValue *getCondBit() { return CondBit; }
501 
502   const VPValue *getCondBit() const { return CondBit; }
503 
504   void setCondBit(VPValue *CV) { CondBit = CV; }
505 
506   VPValue *getPredicate() { return Predicate; }
507 
508   const VPValue *getPredicate() const { return Predicate; }
509 
510   void setPredicate(VPValue *Pred) { Predicate = Pred; }
511 
512   /// Set a given VPBlockBase \p Successor as the single successor of this
513   /// VPBlockBase. This VPBlockBase is not added as predecessor of \p Successor.
514   /// This VPBlockBase must have no successors.
515   void setOneSuccessor(VPBlockBase *Successor) {
516     assert(Successors.empty() && "Setting one successor when others exist.");
517     appendSuccessor(Successor);
518   }
519 
520   /// Set two given VPBlockBases \p IfTrue and \p IfFalse to be the two
521   /// successors of this VPBlockBase. \p Condition is set as the successor
522   /// selector. This VPBlockBase is not added as predecessor of \p IfTrue or \p
523   /// IfFalse. This VPBlockBase must have no successors.
524   void setTwoSuccessors(VPBlockBase *IfTrue, VPBlockBase *IfFalse,
525                         VPValue *Condition) {
526     assert(Successors.empty() && "Setting two successors when others exist.");
527     assert(Condition && "Setting two successors without condition!");
528     CondBit = Condition;
529     appendSuccessor(IfTrue);
530     appendSuccessor(IfFalse);
531   }
532 
533   /// Set each VPBasicBlock in \p NewPreds as predecessor of this VPBlockBase.
534   /// This VPBlockBase must have no predecessors. This VPBlockBase is not added
535   /// as successor of any VPBasicBlock in \p NewPreds.
536   void setPredecessors(ArrayRef<VPBlockBase *> NewPreds) {
537     assert(Predecessors.empty() && "Block predecessors already set.");
538     for (auto *Pred : NewPreds)
539       appendPredecessor(Pred);
540   }
541 
542   /// Remove all the predecessor of this block.
543   void clearPredecessors() { Predecessors.clear(); }
544 
545   /// Remove all the successors of this block and set to null its condition bit
546   void clearSuccessors() {
547     Successors.clear();
548     CondBit = nullptr;
549   }
550 
551   /// The method which generates the output IR that correspond to this
552   /// VPBlockBase, thereby "executing" the VPlan.
553   virtual void execute(struct VPTransformState *State) = 0;
554 
555   /// Delete all blocks reachable from a given VPBlockBase, inclusive.
556   static void deleteCFG(VPBlockBase *Entry);
557 
558   void printAsOperand(raw_ostream &OS, bool PrintType) const {
559     OS << getName();
560   }
561 
562   void print(raw_ostream &OS) const {
563     // TODO: Only printing VPBB name for now since we only have dot printing
564     // support for VPInstructions/Recipes.
565     printAsOperand(OS, false);
566   }
567 
568   /// Return true if it is legal to hoist instructions into this block.
569   bool isLegalToHoistInto() {
570     // There are currently no constraints that prevent an instruction to be
571     // hoisted into a VPBlockBase.
572     return true;
573   }
574 };
575 
576 /// VPRecipeBase is a base class modeling a sequence of one or more output IR
577 /// instructions.
578 class VPRecipeBase : public ilist_node_with_parent<VPRecipeBase, VPBasicBlock> {
579   friend VPBasicBlock;
580   friend class VPBlockUtils;
581 
582 private:
583   const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast).
584 
585   /// Each VPRecipe belongs to a single VPBasicBlock.
586   VPBasicBlock *Parent = nullptr;
587 
588 public:
589   /// An enumeration for keeping track of the concrete subclass of VPRecipeBase
590   /// that is actually instantiated. Values of this enumeration are kept in the
591   /// SubclassID field of the VPRecipeBase objects. They are used for concrete
592   /// type identification.
593   using VPRecipeTy = enum {
594     VPBlendSC,
595     VPBranchOnMaskSC,
596     VPInstructionSC,
597     VPInterleaveSC,
598     VPPredInstPHISC,
599     VPReplicateSC,
600     VPWidenGEPSC,
601     VPWidenIntOrFpInductionSC,
602     VPWidenMemoryInstructionSC,
603     VPWidenPHISC,
604     VPWidenSC,
605   };
606 
607   VPRecipeBase(const unsigned char SC) : SubclassID(SC) {}
608   virtual ~VPRecipeBase() = default;
609 
610   /// \return an ID for the concrete type of this object.
611   /// This is used to implement the classof checks. This should not be used
612   /// for any other purpose, as the values may change as LLVM evolves.
613   unsigned getVPRecipeID() const { return SubclassID; }
614 
615   /// \return the VPBasicBlock which this VPRecipe belongs to.
616   VPBasicBlock *getParent() { return Parent; }
617   const VPBasicBlock *getParent() const { return Parent; }
618 
619   /// The method which generates the output IR instructions that correspond to
620   /// this VPRecipe, thereby "executing" the VPlan.
621   virtual void execute(struct VPTransformState &State) = 0;
622 
623   /// Each recipe prints itself.
624   virtual void print(raw_ostream &O, const Twine &Indent) const = 0;
625 
626   /// Insert an unlinked recipe into a basic block immediately before
627   /// the specified recipe.
628   void insertBefore(VPRecipeBase *InsertPos);
629 
630   /// Insert an unlinked Recipe into a basic block immediately after
631   /// the specified Recipe.
632   void insertAfter(VPRecipeBase *InsertPos);
633 
634   /// Unlink this recipe from its current VPBasicBlock and insert it into
635   /// the VPBasicBlock that MovePos lives in, right after MovePos.
636   void moveAfter(VPRecipeBase *MovePos);
637 
638   /// This method unlinks 'this' from the containing basic block, but does not
639   /// delete it.
640   void removeFromParent();
641 
642   /// This method unlinks 'this' from the containing basic block and deletes it.
643   ///
644   /// \returns an iterator pointing to the element after the erased one
645   iplist<VPRecipeBase>::iterator eraseFromParent();
646 };
647 
648 /// This is a concrete Recipe that models a single VPlan-level instruction.
649 /// While as any Recipe it may generate a sequence of IR instructions when
650 /// executed, these instructions would always form a single-def expression as
651 /// the VPInstruction is also a single def-use vertex.
652 class VPInstruction : public VPUser, public VPRecipeBase {
653   friend class VPlanSlp;
654 
655 public:
656   /// VPlan opcodes, extending LLVM IR with idiomatics instructions.
657   enum {
658     Not = Instruction::OtherOpsEnd + 1,
659     ICmpULE,
660     SLPLoad,
661     SLPStore,
662   };
663 
664 private:
665   typedef unsigned char OpcodeTy;
666   OpcodeTy Opcode;
667 
668   /// Utility method serving execute(): generates a single instance of the
669   /// modeled instruction.
670   void generateInstruction(VPTransformState &State, unsigned Part);
671 
672 protected:
673   Instruction *getUnderlyingInstr() {
674     return cast_or_null<Instruction>(getUnderlyingValue());
675   }
676 
677   void setUnderlyingInstr(Instruction *I) { setUnderlyingValue(I); }
678 
679 public:
680   VPInstruction(unsigned Opcode, ArrayRef<VPValue *> Operands)
681       : VPUser(VPValue::VPInstructionSC, Operands),
682         VPRecipeBase(VPRecipeBase::VPInstructionSC), Opcode(Opcode) {}
683 
684   VPInstruction(unsigned Opcode, std::initializer_list<VPValue *> Operands)
685       : VPInstruction(Opcode, ArrayRef<VPValue *>(Operands)) {}
686 
687   /// Method to support type inquiry through isa, cast, and dyn_cast.
688   static inline bool classof(const VPValue *V) {
689     return V->getVPValueID() == VPValue::VPInstructionSC;
690   }
691 
692   VPInstruction *clone() const {
693     SmallVector<VPValue *, 2> Operands(operands());
694     return new VPInstruction(Opcode, Operands);
695   }
696 
697   /// Method to support type inquiry through isa, cast, and dyn_cast.
698   static inline bool classof(const VPRecipeBase *R) {
699     return R->getVPRecipeID() == VPRecipeBase::VPInstructionSC;
700   }
701 
702   unsigned getOpcode() const { return Opcode; }
703 
704   /// Generate the instruction.
705   /// TODO: We currently execute only per-part unless a specific instance is
706   /// provided.
707   void execute(VPTransformState &State) override;
708 
709   /// Print the Recipe.
710   void print(raw_ostream &O, const Twine &Indent) const override;
711 
712   /// Print the VPInstruction.
713   void print(raw_ostream &O) const;
714 
715   /// Return true if this instruction may modify memory.
716   bool mayWriteToMemory() const {
717     // TODO: we can use attributes of the called function to rule out memory
718     //       modifications.
719     return Opcode == Instruction::Store || Opcode == Instruction::Call ||
720            Opcode == Instruction::Invoke || Opcode == SLPStore;
721   }
722 };
723 
724 /// VPWidenRecipe is a recipe for producing a copy of vector type for each
725 /// Instruction in its ingredients independently, in order. This recipe covers
726 /// most of the traditional vectorization cases where each ingredient transforms
727 /// into a vectorized version of itself.
728 class VPWidenRecipe : public VPRecipeBase {
729 private:
730   /// Hold the ingredients by pointing to their original BasicBlock location.
731   BasicBlock::iterator Begin;
732   BasicBlock::iterator End;
733 
734 public:
735   VPWidenRecipe(Instruction *I) : VPRecipeBase(VPWidenSC) {
736     End = I->getIterator();
737     Begin = End++;
738   }
739 
740   ~VPWidenRecipe() override = default;
741 
742   /// Method to support type inquiry through isa, cast, and dyn_cast.
743   static inline bool classof(const VPRecipeBase *V) {
744     return V->getVPRecipeID() == VPRecipeBase::VPWidenSC;
745   }
746 
747   /// Produce widened copies of all Ingredients.
748   void execute(VPTransformState &State) override;
749 
750   /// Augment the recipe to include Instr, if it lies at its End.
751   bool appendInstruction(Instruction *Instr) {
752     if (End != Instr->getIterator())
753       return false;
754     End++;
755     return true;
756   }
757 
758   /// Print the recipe.
759   void print(raw_ostream &O, const Twine &Indent) const override;
760 };
761 
762 /// A recipe for handling GEP instructions.
763 class VPWidenGEPRecipe : public VPRecipeBase {
764 private:
765   GetElementPtrInst *GEP;
766   bool IsPtrLoopInvariant;
767   SmallBitVector IsIndexLoopInvariant;
768 
769 public:
770   VPWidenGEPRecipe(GetElementPtrInst *GEP, Loop *OrigLoop)
771       : VPRecipeBase(VPWidenGEPSC), GEP(GEP),
772         IsIndexLoopInvariant(GEP->getNumIndices(), false) {
773     IsPtrLoopInvariant = OrigLoop->isLoopInvariant(GEP->getPointerOperand());
774     for (auto Index : enumerate(GEP->indices()))
775       IsIndexLoopInvariant[Index.index()] =
776           OrigLoop->isLoopInvariant(Index.value().get());
777   }
778   ~VPWidenGEPRecipe() override = default;
779 
780   /// Method to support type inquiry through isa, cast, and dyn_cast.
781   static inline bool classof(const VPRecipeBase *V) {
782     return V->getVPRecipeID() == VPRecipeBase::VPWidenGEPSC;
783   }
784 
785   /// Generate the gep nodes.
786   void execute(VPTransformState &State) override;
787 
788   /// Print the recipe.
789   void print(raw_ostream &O, const Twine &Indent) const override;
790 };
791 
792 /// A recipe for handling phi nodes of integer and floating-point inductions,
793 /// producing their vector and scalar values.
794 class VPWidenIntOrFpInductionRecipe : public VPRecipeBase {
795 private:
796   PHINode *IV;
797   TruncInst *Trunc;
798 
799 public:
800   VPWidenIntOrFpInductionRecipe(PHINode *IV, TruncInst *Trunc = nullptr)
801       : VPRecipeBase(VPWidenIntOrFpInductionSC), IV(IV), Trunc(Trunc) {}
802   ~VPWidenIntOrFpInductionRecipe() override = default;
803 
804   /// Method to support type inquiry through isa, cast, and dyn_cast.
805   static inline bool classof(const VPRecipeBase *V) {
806     return V->getVPRecipeID() == VPRecipeBase::VPWidenIntOrFpInductionSC;
807   }
808 
809   /// Generate the vectorized and scalarized versions of the phi node as
810   /// needed by their users.
811   void execute(VPTransformState &State) override;
812 
813   /// Print the recipe.
814   void print(raw_ostream &O, const Twine &Indent) const override;
815 };
816 
817 /// A recipe for handling all phi nodes except for integer and FP inductions.
818 class VPWidenPHIRecipe : public VPRecipeBase {
819 private:
820   PHINode *Phi;
821 
822 public:
823   VPWidenPHIRecipe(PHINode *Phi) : VPRecipeBase(VPWidenPHISC), Phi(Phi) {}
824   ~VPWidenPHIRecipe() override = default;
825 
826   /// Method to support type inquiry through isa, cast, and dyn_cast.
827   static inline bool classof(const VPRecipeBase *V) {
828     return V->getVPRecipeID() == VPRecipeBase::VPWidenPHISC;
829   }
830 
831   /// Generate the phi/select nodes.
832   void execute(VPTransformState &State) override;
833 
834   /// Print the recipe.
835   void print(raw_ostream &O, const Twine &Indent) const override;
836 };
837 
838 /// A recipe for vectorizing a phi-node as a sequence of mask-based select
839 /// instructions.
840 class VPBlendRecipe : public VPRecipeBase {
841 private:
842   PHINode *Phi;
843 
844   /// The blend operation is a User of a mask, if not null.
845   std::unique_ptr<VPUser> User;
846 
847 public:
848   VPBlendRecipe(PHINode *Phi, ArrayRef<VPValue *> Masks)
849       : VPRecipeBase(VPBlendSC), Phi(Phi) {
850     assert((Phi->getNumIncomingValues() == 1 ||
851             Phi->getNumIncomingValues() == Masks.size()) &&
852            "Expected the same number of incoming values and masks");
853     if (!Masks.empty())
854       User.reset(new VPUser(Masks));
855   }
856 
857   /// Method to support type inquiry through isa, cast, and dyn_cast.
858   static inline bool classof(const VPRecipeBase *V) {
859     return V->getVPRecipeID() == VPRecipeBase::VPBlendSC;
860   }
861 
862   /// Generate the phi/select nodes.
863   void execute(VPTransformState &State) override;
864 
865   /// Print the recipe.
866   void print(raw_ostream &O, const Twine &Indent) const override;
867 };
868 
869 /// VPInterleaveRecipe is a recipe for transforming an interleave group of load
870 /// or stores into one wide load/store and shuffles.
871 class VPInterleaveRecipe : public VPRecipeBase {
872 private:
873   const InterleaveGroup<Instruction> *IG;
874   VPUser User;
875 
876 public:
877   VPInterleaveRecipe(const InterleaveGroup<Instruction> *IG, VPValue *Addr,
878                      VPValue *Mask)
879       : VPRecipeBase(VPInterleaveSC), IG(IG), User({Addr}) {
880     if (Mask)
881       User.addOperand(Mask);
882   }
883   ~VPInterleaveRecipe() override = default;
884 
885   /// Method to support type inquiry through isa, cast, and dyn_cast.
886   static inline bool classof(const VPRecipeBase *V) {
887     return V->getVPRecipeID() == VPRecipeBase::VPInterleaveSC;
888   }
889 
890   /// Return the address accessed by this recipe.
891   VPValue *getAddr() const {
892     return User.getOperand(0); // Address is the 1st, mandatory operand.
893   }
894 
895   /// Return the mask used by this recipe. Note that a full mask is represented
896   /// by a nullptr.
897   VPValue *getMask() const {
898     // Mask is optional and therefore the last, currently 2nd operand.
899     return User.getNumOperands() == 2 ? User.getOperand(1) : nullptr;
900   }
901 
902   /// Generate the wide load or store, and shuffles.
903   void execute(VPTransformState &State) override;
904 
905   /// Print the recipe.
906   void print(raw_ostream &O, const Twine &Indent) const override;
907 
908   const InterleaveGroup<Instruction> *getInterleaveGroup() { return IG; }
909 };
910 
911 /// VPReplicateRecipe replicates a given instruction producing multiple scalar
912 /// copies of the original scalar type, one per lane, instead of producing a
913 /// single copy of widened type for all lanes. If the instruction is known to be
914 /// uniform only one copy, per lane zero, will be generated.
915 class VPReplicateRecipe : public VPRecipeBase {
916 private:
917   /// The instruction being replicated.
918   Instruction *Ingredient;
919 
920   /// Indicator if only a single replica per lane is needed.
921   bool IsUniform;
922 
923   /// Indicator if the replicas are also predicated.
924   bool IsPredicated;
925 
926   /// Indicator if the scalar values should also be packed into a vector.
927   bool AlsoPack;
928 
929 public:
930   VPReplicateRecipe(Instruction *I, bool IsUniform, bool IsPredicated = false)
931       : VPRecipeBase(VPReplicateSC), Ingredient(I), IsUniform(IsUniform),
932         IsPredicated(IsPredicated) {
933     // Retain the previous behavior of predicateInstructions(), where an
934     // insert-element of a predicated instruction got hoisted into the
935     // predicated basic block iff it was its only user. This is achieved by
936     // having predicated instructions also pack their values into a vector by
937     // default unless they have a replicated user which uses their scalar value.
938     AlsoPack = IsPredicated && !I->use_empty();
939   }
940 
941   ~VPReplicateRecipe() override = default;
942 
943   /// Method to support type inquiry through isa, cast, and dyn_cast.
944   static inline bool classof(const VPRecipeBase *V) {
945     return V->getVPRecipeID() == VPRecipeBase::VPReplicateSC;
946   }
947 
948   /// Generate replicas of the desired Ingredient. Replicas will be generated
949   /// for all parts and lanes unless a specific part and lane are specified in
950   /// the \p State.
951   void execute(VPTransformState &State) override;
952 
953   void setAlsoPack(bool Pack) { AlsoPack = Pack; }
954 
955   /// Print the recipe.
956   void print(raw_ostream &O, const Twine &Indent) const override;
957 };
958 
959 /// A recipe for generating conditional branches on the bits of a mask.
960 class VPBranchOnMaskRecipe : public VPRecipeBase {
961 private:
962   std::unique_ptr<VPUser> User;
963 
964 public:
965   VPBranchOnMaskRecipe(VPValue *BlockInMask) : VPRecipeBase(VPBranchOnMaskSC) {
966     if (BlockInMask) // nullptr means all-one mask.
967       User.reset(new VPUser({BlockInMask}));
968   }
969 
970   /// Method to support type inquiry through isa, cast, and dyn_cast.
971   static inline bool classof(const VPRecipeBase *V) {
972     return V->getVPRecipeID() == VPRecipeBase::VPBranchOnMaskSC;
973   }
974 
975   /// Generate the extraction of the appropriate bit from the block mask and the
976   /// conditional branch.
977   void execute(VPTransformState &State) override;
978 
979   /// Print the recipe.
980   void print(raw_ostream &O, const Twine &Indent) const override {
981     O << " +\n" << Indent << "\"BRANCH-ON-MASK ";
982     if (User)
983       O << *User->getOperand(0);
984     else
985       O << " All-One";
986     O << "\\l\"";
987   }
988 };
989 
990 /// VPPredInstPHIRecipe is a recipe for generating the phi nodes needed when
991 /// control converges back from a Branch-on-Mask. The phi nodes are needed in
992 /// order to merge values that are set under such a branch and feed their uses.
993 /// The phi nodes can be scalar or vector depending on the users of the value.
994 /// This recipe works in concert with VPBranchOnMaskRecipe.
995 class VPPredInstPHIRecipe : public VPRecipeBase {
996 private:
997   Instruction *PredInst;
998 
999 public:
1000   /// Construct a VPPredInstPHIRecipe given \p PredInst whose value needs a phi
1001   /// nodes after merging back from a Branch-on-Mask.
1002   VPPredInstPHIRecipe(Instruction *PredInst)
1003       : VPRecipeBase(VPPredInstPHISC), PredInst(PredInst) {}
1004   ~VPPredInstPHIRecipe() override = default;
1005 
1006   /// Method to support type inquiry through isa, cast, and dyn_cast.
1007   static inline bool classof(const VPRecipeBase *V) {
1008     return V->getVPRecipeID() == VPRecipeBase::VPPredInstPHISC;
1009   }
1010 
1011   /// Generates phi nodes for live-outs as needed to retain SSA form.
1012   void execute(VPTransformState &State) override;
1013 
1014   /// Print the recipe.
1015   void print(raw_ostream &O, const Twine &Indent) const override;
1016 };
1017 
1018 /// A Recipe for widening load/store operations.
1019 /// TODO: We currently execute only per-part unless a specific instance is
1020 /// provided.
1021 class VPWidenMemoryInstructionRecipe : public VPRecipeBase {
1022 private:
1023   Instruction &Instr;
1024   VPUser User;
1025 
1026 public:
1027   VPWidenMemoryInstructionRecipe(Instruction &Instr, VPValue *Addr,
1028                                  VPValue *Mask)
1029       : VPRecipeBase(VPWidenMemoryInstructionSC), Instr(Instr), User({Addr}) {
1030     if (Mask)
1031       User.addOperand(Mask);
1032   }
1033 
1034   /// Method to support type inquiry through isa, cast, and dyn_cast.
1035   static inline bool classof(const VPRecipeBase *V) {
1036     return V->getVPRecipeID() == VPRecipeBase::VPWidenMemoryInstructionSC;
1037   }
1038 
1039   /// Return the address accessed by this recipe.
1040   VPValue *getAddr() const {
1041     return User.getOperand(0); // Address is the 1st, mandatory operand.
1042   }
1043 
1044   /// Return the mask used by this recipe. Note that a full mask is represented
1045   /// by a nullptr.
1046   VPValue *getMask() const {
1047     // Mask is optional and therefore the last, currently 2nd operand.
1048     return User.getNumOperands() == 2 ? User.getOperand(1) : nullptr;
1049   }
1050 
1051   /// Generate the wide load/store.
1052   void execute(VPTransformState &State) override;
1053 
1054   /// Print the recipe.
1055   void print(raw_ostream &O, const Twine &Indent) const override;
1056 };
1057 
1058 /// VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph. It
1059 /// holds a sequence of zero or more VPRecipe's each representing a sequence of
1060 /// output IR instructions.
1061 class VPBasicBlock : public VPBlockBase {
1062 public:
1063   using RecipeListTy = iplist<VPRecipeBase>;
1064 
1065 private:
1066   /// The VPRecipes held in the order of output instructions to generate.
1067   RecipeListTy Recipes;
1068 
1069 public:
1070   VPBasicBlock(const Twine &Name = "", VPRecipeBase *Recipe = nullptr)
1071       : VPBlockBase(VPBasicBlockSC, Name.str()) {
1072     if (Recipe)
1073       appendRecipe(Recipe);
1074   }
1075 
1076   ~VPBasicBlock() override { Recipes.clear(); }
1077 
1078   /// Instruction iterators...
1079   using iterator = RecipeListTy::iterator;
1080   using const_iterator = RecipeListTy::const_iterator;
1081   using reverse_iterator = RecipeListTy::reverse_iterator;
1082   using const_reverse_iterator = RecipeListTy::const_reverse_iterator;
1083 
1084   //===--------------------------------------------------------------------===//
1085   /// Recipe iterator methods
1086   ///
1087   inline iterator begin() { return Recipes.begin(); }
1088   inline const_iterator begin() const { return Recipes.begin(); }
1089   inline iterator end() { return Recipes.end(); }
1090   inline const_iterator end() const { return Recipes.end(); }
1091 
1092   inline reverse_iterator rbegin() { return Recipes.rbegin(); }
1093   inline const_reverse_iterator rbegin() const { return Recipes.rbegin(); }
1094   inline reverse_iterator rend() { return Recipes.rend(); }
1095   inline const_reverse_iterator rend() const { return Recipes.rend(); }
1096 
1097   inline size_t size() const { return Recipes.size(); }
1098   inline bool empty() const { return Recipes.empty(); }
1099   inline const VPRecipeBase &front() const { return Recipes.front(); }
1100   inline VPRecipeBase &front() { return Recipes.front(); }
1101   inline const VPRecipeBase &back() const { return Recipes.back(); }
1102   inline VPRecipeBase &back() { return Recipes.back(); }
1103 
1104   /// Returns a reference to the list of recipes.
1105   RecipeListTy &getRecipeList() { return Recipes; }
1106 
1107   /// Returns a pointer to a member of the recipe list.
1108   static RecipeListTy VPBasicBlock::*getSublistAccess(VPRecipeBase *) {
1109     return &VPBasicBlock::Recipes;
1110   }
1111 
1112   /// Method to support type inquiry through isa, cast, and dyn_cast.
1113   static inline bool classof(const VPBlockBase *V) {
1114     return V->getVPBlockID() == VPBlockBase::VPBasicBlockSC;
1115   }
1116 
1117   void insert(VPRecipeBase *Recipe, iterator InsertPt) {
1118     assert(Recipe && "No recipe to append.");
1119     assert(!Recipe->Parent && "Recipe already in VPlan");
1120     Recipe->Parent = this;
1121     Recipes.insert(InsertPt, Recipe);
1122   }
1123 
1124   /// Augment the existing recipes of a VPBasicBlock with an additional
1125   /// \p Recipe as the last recipe.
1126   void appendRecipe(VPRecipeBase *Recipe) { insert(Recipe, end()); }
1127 
1128   /// The method which generates the output IR instructions that correspond to
1129   /// this VPBasicBlock, thereby "executing" the VPlan.
1130   void execute(struct VPTransformState *State) override;
1131 
1132 private:
1133   /// Create an IR BasicBlock to hold the output instructions generated by this
1134   /// VPBasicBlock, and return it. Update the CFGState accordingly.
1135   BasicBlock *createEmptyBasicBlock(VPTransformState::CFGState &CFG);
1136 };
1137 
1138 /// VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks
1139 /// which form a Single-Entry-Single-Exit subgraph of the output IR CFG.
1140 /// A VPRegionBlock may indicate that its contents are to be replicated several
1141 /// times. This is designed to support predicated scalarization, in which a
1142 /// scalar if-then code structure needs to be generated VF * UF times. Having
1143 /// this replication indicator helps to keep a single model for multiple
1144 /// candidate VF's. The actual replication takes place only once the desired VF
1145 /// and UF have been determined.
1146 class VPRegionBlock : public VPBlockBase {
1147 private:
1148   /// Hold the Single Entry of the SESE region modelled by the VPRegionBlock.
1149   VPBlockBase *Entry;
1150 
1151   /// Hold the Single Exit of the SESE region modelled by the VPRegionBlock.
1152   VPBlockBase *Exit;
1153 
1154   /// An indicator whether this region is to generate multiple replicated
1155   /// instances of output IR corresponding to its VPBlockBases.
1156   bool IsReplicator;
1157 
1158 public:
1159   VPRegionBlock(VPBlockBase *Entry, VPBlockBase *Exit,
1160                 const std::string &Name = "", bool IsReplicator = false)
1161       : VPBlockBase(VPRegionBlockSC, Name), Entry(Entry), Exit(Exit),
1162         IsReplicator(IsReplicator) {
1163     assert(Entry->getPredecessors().empty() && "Entry block has predecessors.");
1164     assert(Exit->getSuccessors().empty() && "Exit block has successors.");
1165     Entry->setParent(this);
1166     Exit->setParent(this);
1167   }
1168   VPRegionBlock(const std::string &Name = "", bool IsReplicator = false)
1169       : VPBlockBase(VPRegionBlockSC, Name), Entry(nullptr), Exit(nullptr),
1170         IsReplicator(IsReplicator) {}
1171 
1172   ~VPRegionBlock() override {
1173     if (Entry)
1174       deleteCFG(Entry);
1175   }
1176 
1177   /// Method to support type inquiry through isa, cast, and dyn_cast.
1178   static inline bool classof(const VPBlockBase *V) {
1179     return V->getVPBlockID() == VPBlockBase::VPRegionBlockSC;
1180   }
1181 
1182   const VPBlockBase *getEntry() const { return Entry; }
1183   VPBlockBase *getEntry() { return Entry; }
1184 
1185   /// Set \p EntryBlock as the entry VPBlockBase of this VPRegionBlock. \p
1186   /// EntryBlock must have no predecessors.
1187   void setEntry(VPBlockBase *EntryBlock) {
1188     assert(EntryBlock->getPredecessors().empty() &&
1189            "Entry block cannot have predecessors.");
1190     Entry = EntryBlock;
1191     EntryBlock->setParent(this);
1192   }
1193 
1194   // FIXME: DominatorTreeBase is doing 'A->getParent()->front()'. 'front' is a
1195   // specific interface of llvm::Function, instead of using
1196   // GraphTraints::getEntryNode. We should add a new template parameter to
1197   // DominatorTreeBase representing the Graph type.
1198   VPBlockBase &front() const { return *Entry; }
1199 
1200   const VPBlockBase *getExit() const { return Exit; }
1201   VPBlockBase *getExit() { return Exit; }
1202 
1203   /// Set \p ExitBlock as the exit VPBlockBase of this VPRegionBlock. \p
1204   /// ExitBlock must have no successors.
1205   void setExit(VPBlockBase *ExitBlock) {
1206     assert(ExitBlock->getSuccessors().empty() &&
1207            "Exit block cannot have successors.");
1208     Exit = ExitBlock;
1209     ExitBlock->setParent(this);
1210   }
1211 
1212   /// An indicator whether this region is to generate multiple replicated
1213   /// instances of output IR corresponding to its VPBlockBases.
1214   bool isReplicator() const { return IsReplicator; }
1215 
1216   /// The method which generates the output IR instructions that correspond to
1217   /// this VPRegionBlock, thereby "executing" the VPlan.
1218   void execute(struct VPTransformState *State) override;
1219 };
1220 
1221 //===----------------------------------------------------------------------===//
1222 // GraphTraits specializations for VPlan Hierarchical Control-Flow Graphs     //
1223 //===----------------------------------------------------------------------===//
1224 
1225 // The following set of template specializations implement GraphTraits to treat
1226 // any VPBlockBase as a node in a graph of VPBlockBases. It's important to note
1227 // that VPBlockBase traits don't recurse into VPRegioBlocks, i.e., if the
1228 // VPBlockBase is a VPRegionBlock, this specialization provides access to its
1229 // successors/predecessors but not to the blocks inside the region.
1230 
1231 template <> struct GraphTraits<VPBlockBase *> {
1232   using NodeRef = VPBlockBase *;
1233   using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::iterator;
1234 
1235   static NodeRef getEntryNode(NodeRef N) { return N; }
1236 
1237   static inline ChildIteratorType child_begin(NodeRef N) {
1238     return N->getSuccessors().begin();
1239   }
1240 
1241   static inline ChildIteratorType child_end(NodeRef N) {
1242     return N->getSuccessors().end();
1243   }
1244 };
1245 
1246 template <> struct GraphTraits<const VPBlockBase *> {
1247   using NodeRef = const VPBlockBase *;
1248   using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::const_iterator;
1249 
1250   static NodeRef getEntryNode(NodeRef N) { return N; }
1251 
1252   static inline ChildIteratorType child_begin(NodeRef N) {
1253     return N->getSuccessors().begin();
1254   }
1255 
1256   static inline ChildIteratorType child_end(NodeRef N) {
1257     return N->getSuccessors().end();
1258   }
1259 };
1260 
1261 // Inverse order specialization for VPBasicBlocks. Predecessors are used instead
1262 // of successors for the inverse traversal.
1263 template <> struct GraphTraits<Inverse<VPBlockBase *>> {
1264   using NodeRef = VPBlockBase *;
1265   using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::iterator;
1266 
1267   static NodeRef getEntryNode(Inverse<NodeRef> B) { return B.Graph; }
1268 
1269   static inline ChildIteratorType child_begin(NodeRef N) {
1270     return N->getPredecessors().begin();
1271   }
1272 
1273   static inline ChildIteratorType child_end(NodeRef N) {
1274     return N->getPredecessors().end();
1275   }
1276 };
1277 
1278 // The following set of template specializations implement GraphTraits to
1279 // treat VPRegionBlock as a graph and recurse inside its nodes. It's important
1280 // to note that the blocks inside the VPRegionBlock are treated as VPBlockBases
1281 // (i.e., no dyn_cast is performed, VPBlockBases specialization is used), so
1282 // there won't be automatic recursion into other VPBlockBases that turn to be
1283 // VPRegionBlocks.
1284 
1285 template <>
1286 struct GraphTraits<VPRegionBlock *> : public GraphTraits<VPBlockBase *> {
1287   using GraphRef = VPRegionBlock *;
1288   using nodes_iterator = df_iterator<NodeRef>;
1289 
1290   static NodeRef getEntryNode(GraphRef N) { return N->getEntry(); }
1291 
1292   static nodes_iterator nodes_begin(GraphRef N) {
1293     return nodes_iterator::begin(N->getEntry());
1294   }
1295 
1296   static nodes_iterator nodes_end(GraphRef N) {
1297     // df_iterator::end() returns an empty iterator so the node used doesn't
1298     // matter.
1299     return nodes_iterator::end(N);
1300   }
1301 };
1302 
1303 template <>
1304 struct GraphTraits<const VPRegionBlock *>
1305     : public GraphTraits<const VPBlockBase *> {
1306   using GraphRef = const VPRegionBlock *;
1307   using nodes_iterator = df_iterator<NodeRef>;
1308 
1309   static NodeRef getEntryNode(GraphRef N) { return N->getEntry(); }
1310 
1311   static nodes_iterator nodes_begin(GraphRef N) {
1312     return nodes_iterator::begin(N->getEntry());
1313   }
1314 
1315   static nodes_iterator nodes_end(GraphRef N) {
1316     // df_iterator::end() returns an empty iterator so the node used doesn't
1317     // matter.
1318     return nodes_iterator::end(N);
1319   }
1320 };
1321 
1322 template <>
1323 struct GraphTraits<Inverse<VPRegionBlock *>>
1324     : public GraphTraits<Inverse<VPBlockBase *>> {
1325   using GraphRef = VPRegionBlock *;
1326   using nodes_iterator = df_iterator<NodeRef>;
1327 
1328   static NodeRef getEntryNode(Inverse<GraphRef> N) {
1329     return N.Graph->getExit();
1330   }
1331 
1332   static nodes_iterator nodes_begin(GraphRef N) {
1333     return nodes_iterator::begin(N->getExit());
1334   }
1335 
1336   static nodes_iterator nodes_end(GraphRef N) {
1337     // df_iterator::end() returns an empty iterator so the node used doesn't
1338     // matter.
1339     return nodes_iterator::end(N);
1340   }
1341 };
1342 
1343 /// VPlan models a candidate for vectorization, encoding various decisions take
1344 /// to produce efficient output IR, including which branches, basic-blocks and
1345 /// output IR instructions to generate, and their cost. VPlan holds a
1346 /// Hierarchical-CFG of VPBasicBlocks and VPRegionBlocks rooted at an Entry
1347 /// VPBlock.
1348 class VPlan {
1349   friend class VPlanPrinter;
1350 
1351 private:
1352   /// Hold the single entry to the Hierarchical CFG of the VPlan.
1353   VPBlockBase *Entry;
1354 
1355   /// Holds the VFs applicable to this VPlan.
1356   SmallSet<unsigned, 2> VFs;
1357 
1358   /// Holds the name of the VPlan, for printing.
1359   std::string Name;
1360 
1361   /// Holds all the external definitions created for this VPlan.
1362   // TODO: Introduce a specific representation for external definitions in
1363   // VPlan. External definitions must be immutable and hold a pointer to its
1364   // underlying IR that will be used to implement its structural comparison
1365   // (operators '==' and '<').
1366   SmallPtrSet<VPValue *, 16> VPExternalDefs;
1367 
1368   /// Represents the backedge taken count of the original loop, for folding
1369   /// the tail.
1370   VPValue *BackedgeTakenCount = nullptr;
1371 
1372   /// Holds a mapping between Values and their corresponding VPValue inside
1373   /// VPlan.
1374   Value2VPValueTy Value2VPValue;
1375 
1376   /// Holds the VPLoopInfo analysis for this VPlan.
1377   VPLoopInfo VPLInfo;
1378 
1379   /// Holds the condition bit values built during VPInstruction to VPRecipe transformation.
1380   SmallVector<VPValue *, 4> VPCBVs;
1381 
1382 public:
1383   VPlan(VPBlockBase *Entry = nullptr) : Entry(Entry) {}
1384 
1385   ~VPlan() {
1386     if (Entry)
1387       VPBlockBase::deleteCFG(Entry);
1388     for (auto &MapEntry : Value2VPValue)
1389       if (MapEntry.second != BackedgeTakenCount)
1390         delete MapEntry.second;
1391     if (BackedgeTakenCount)
1392       delete BackedgeTakenCount; // Delete once, if in Value2VPValue or not.
1393     for (VPValue *Def : VPExternalDefs)
1394       delete Def;
1395     for (VPValue *CBV : VPCBVs)
1396       delete CBV;
1397   }
1398 
1399   /// Generate the IR code for this VPlan.
1400   void execute(struct VPTransformState *State);
1401 
1402   VPBlockBase *getEntry() { return Entry; }
1403   const VPBlockBase *getEntry() const { return Entry; }
1404 
1405   VPBlockBase *setEntry(VPBlockBase *Block) { return Entry = Block; }
1406 
1407   /// The backedge taken count of the original loop.
1408   VPValue *getOrCreateBackedgeTakenCount() {
1409     if (!BackedgeTakenCount)
1410       BackedgeTakenCount = new VPValue();
1411     return BackedgeTakenCount;
1412   }
1413 
1414   void addVF(unsigned VF) { VFs.insert(VF); }
1415 
1416   bool hasVF(unsigned VF) { return VFs.count(VF); }
1417 
1418   const std::string &getName() const { return Name; }
1419 
1420   void setName(const Twine &newName) { Name = newName.str(); }
1421 
1422   /// Add \p VPVal to the pool of external definitions if it's not already
1423   /// in the pool.
1424   void addExternalDef(VPValue *VPVal) {
1425     VPExternalDefs.insert(VPVal);
1426   }
1427 
1428   /// Add \p CBV to the vector of condition bit values.
1429   void addCBV(VPValue *CBV) {
1430     VPCBVs.push_back(CBV);
1431   }
1432 
1433   void addVPValue(Value *V) {
1434     assert(V && "Trying to add a null Value to VPlan");
1435     assert(!Value2VPValue.count(V) && "Value already exists in VPlan");
1436     Value2VPValue[V] = new VPValue();
1437   }
1438 
1439   VPValue *getVPValue(Value *V) {
1440     assert(V && "Trying to get the VPValue of a null Value");
1441     assert(Value2VPValue.count(V) && "Value does not exist in VPlan");
1442     return Value2VPValue[V];
1443   }
1444 
1445   VPValue *getOrAddVPValue(Value *V) {
1446     assert(V && "Trying to get or add the VPValue of a null Value");
1447     if (!Value2VPValue.count(V))
1448       addVPValue(V);
1449     return getVPValue(V);
1450   }
1451 
1452   /// Return the VPLoopInfo analysis for this VPlan.
1453   VPLoopInfo &getVPLoopInfo() { return VPLInfo; }
1454   const VPLoopInfo &getVPLoopInfo() const { return VPLInfo; }
1455 
1456   /// Dump the plan to stderr (for debugging).
1457   void dump() const;
1458 
1459 private:
1460   /// Add to the given dominator tree the header block and every new basic block
1461   /// that was created between it and the latch block, inclusive.
1462   static void updateDominatorTree(DominatorTree *DT, BasicBlock *LoopLatchBB,
1463                                   BasicBlock *LoopPreHeaderBB,
1464                                   BasicBlock *LoopExitBB);
1465 };
1466 
1467 /// VPlanPrinter prints a given VPlan to a given output stream. The printing is
1468 /// indented and follows the dot format.
1469 class VPlanPrinter {
1470   friend inline raw_ostream &operator<<(raw_ostream &OS, const VPlan &Plan);
1471   friend inline raw_ostream &operator<<(raw_ostream &OS,
1472                                         const struct VPlanIngredient &I);
1473 
1474 private:
1475   raw_ostream &OS;
1476   const VPlan &Plan;
1477   unsigned Depth = 0;
1478   unsigned TabWidth = 2;
1479   std::string Indent;
1480   unsigned BID = 0;
1481   SmallDenseMap<const VPBlockBase *, unsigned> BlockID;
1482 
1483   VPlanPrinter(raw_ostream &O, const VPlan &P) : OS(O), Plan(P) {}
1484 
1485   /// Handle indentation.
1486   void bumpIndent(int b) { Indent = std::string((Depth += b) * TabWidth, ' '); }
1487 
1488   /// Print a given \p Block of the Plan.
1489   void dumpBlock(const VPBlockBase *Block);
1490 
1491   /// Print the information related to the CFG edges going out of a given
1492   /// \p Block, followed by printing the successor blocks themselves.
1493   void dumpEdges(const VPBlockBase *Block);
1494 
1495   /// Print a given \p BasicBlock, including its VPRecipes, followed by printing
1496   /// its successor blocks.
1497   void dumpBasicBlock(const VPBasicBlock *BasicBlock);
1498 
1499   /// Print a given \p Region of the Plan.
1500   void dumpRegion(const VPRegionBlock *Region);
1501 
1502   unsigned getOrCreateBID(const VPBlockBase *Block) {
1503     return BlockID.count(Block) ? BlockID[Block] : BlockID[Block] = BID++;
1504   }
1505 
1506   const Twine getOrCreateName(const VPBlockBase *Block);
1507 
1508   const Twine getUID(const VPBlockBase *Block);
1509 
1510   /// Print the information related to a CFG edge between two VPBlockBases.
1511   void drawEdge(const VPBlockBase *From, const VPBlockBase *To, bool Hidden,
1512                 const Twine &Label);
1513 
1514   void dump();
1515 
1516   static void printAsIngredient(raw_ostream &O, Value *V);
1517 };
1518 
1519 struct VPlanIngredient {
1520   Value *V;
1521 
1522   VPlanIngredient(Value *V) : V(V) {}
1523 };
1524 
1525 inline raw_ostream &operator<<(raw_ostream &OS, const VPlanIngredient &I) {
1526   VPlanPrinter::printAsIngredient(OS, I.V);
1527   return OS;
1528 }
1529 
1530 inline raw_ostream &operator<<(raw_ostream &OS, const VPlan &Plan) {
1531   VPlanPrinter Printer(OS, Plan);
1532   Printer.dump();
1533   return OS;
1534 }
1535 
1536 //===----------------------------------------------------------------------===//
1537 // VPlan Utilities
1538 //===----------------------------------------------------------------------===//
1539 
1540 /// Class that provides utilities for VPBlockBases in VPlan.
1541 class VPBlockUtils {
1542 public:
1543   VPBlockUtils() = delete;
1544 
1545   /// Insert disconnected VPBlockBase \p NewBlock after \p BlockPtr. Add \p
1546   /// NewBlock as successor of \p BlockPtr and \p BlockPtr as predecessor of \p
1547   /// NewBlock, and propagate \p BlockPtr parent to \p NewBlock. If \p BlockPtr
1548   /// has more than one successor, its conditional bit is propagated to \p
1549   /// NewBlock. \p NewBlock must have neither successors nor predecessors.
1550   static void insertBlockAfter(VPBlockBase *NewBlock, VPBlockBase *BlockPtr) {
1551     assert(NewBlock->getSuccessors().empty() &&
1552            "Can't insert new block with successors.");
1553     // TODO: move successors from BlockPtr to NewBlock when this functionality
1554     // is necessary. For now, setBlockSingleSuccessor will assert if BlockPtr
1555     // already has successors.
1556     BlockPtr->setOneSuccessor(NewBlock);
1557     NewBlock->setPredecessors({BlockPtr});
1558     NewBlock->setParent(BlockPtr->getParent());
1559   }
1560 
1561   /// Insert disconnected VPBlockBases \p IfTrue and \p IfFalse after \p
1562   /// BlockPtr. Add \p IfTrue and \p IfFalse as succesors of \p BlockPtr and \p
1563   /// BlockPtr as predecessor of \p IfTrue and \p IfFalse. Propagate \p BlockPtr
1564   /// parent to \p IfTrue and \p IfFalse. \p Condition is set as the successor
1565   /// selector. \p BlockPtr must have no successors and \p IfTrue and \p IfFalse
1566   /// must have neither successors nor predecessors.
1567   static void insertTwoBlocksAfter(VPBlockBase *IfTrue, VPBlockBase *IfFalse,
1568                                    VPValue *Condition, VPBlockBase *BlockPtr) {
1569     assert(IfTrue->getSuccessors().empty() &&
1570            "Can't insert IfTrue with successors.");
1571     assert(IfFalse->getSuccessors().empty() &&
1572            "Can't insert IfFalse with successors.");
1573     BlockPtr->setTwoSuccessors(IfTrue, IfFalse, Condition);
1574     IfTrue->setPredecessors({BlockPtr});
1575     IfFalse->setPredecessors({BlockPtr});
1576     IfTrue->setParent(BlockPtr->getParent());
1577     IfFalse->setParent(BlockPtr->getParent());
1578   }
1579 
1580   /// Connect VPBlockBases \p From and \p To bi-directionally. Append \p To to
1581   /// the successors of \p From and \p From to the predecessors of \p To. Both
1582   /// VPBlockBases must have the same parent, which can be null. Both
1583   /// VPBlockBases can be already connected to other VPBlockBases.
1584   static void connectBlocks(VPBlockBase *From, VPBlockBase *To) {
1585     assert((From->getParent() == To->getParent()) &&
1586            "Can't connect two block with different parents");
1587     assert(From->getNumSuccessors() < 2 &&
1588            "Blocks can't have more than two successors.");
1589     From->appendSuccessor(To);
1590     To->appendPredecessor(From);
1591   }
1592 
1593   /// Disconnect VPBlockBases \p From and \p To bi-directionally. Remove \p To
1594   /// from the successors of \p From and \p From from the predecessors of \p To.
1595   static void disconnectBlocks(VPBlockBase *From, VPBlockBase *To) {
1596     assert(To && "Successor to disconnect is null.");
1597     From->removeSuccessor(To);
1598     To->removePredecessor(From);
1599   }
1600 
1601   /// Returns true if the edge \p FromBlock -> \p ToBlock is a back-edge.
1602   static bool isBackEdge(const VPBlockBase *FromBlock,
1603                          const VPBlockBase *ToBlock, const VPLoopInfo *VPLI) {
1604     assert(FromBlock->getParent() == ToBlock->getParent() &&
1605            FromBlock->getParent() && "Must be in same region");
1606     const VPLoop *FromLoop = VPLI->getLoopFor(FromBlock);
1607     const VPLoop *ToLoop = VPLI->getLoopFor(ToBlock);
1608     if (!FromLoop || !ToLoop || FromLoop != ToLoop)
1609       return false;
1610 
1611     // A back-edge is a branch from the loop latch to its header.
1612     return ToLoop->isLoopLatch(FromBlock) && ToBlock == ToLoop->getHeader();
1613   }
1614 
1615   /// Returns true if \p Block is a loop latch
1616   static bool blockIsLoopLatch(const VPBlockBase *Block,
1617                                const VPLoopInfo *VPLInfo) {
1618     if (const VPLoop *ParentVPL = VPLInfo->getLoopFor(Block))
1619       return ParentVPL->isLoopLatch(Block);
1620 
1621     return false;
1622   }
1623 
1624   /// Count and return the number of succesors of \p PredBlock excluding any
1625   /// backedges.
1626   static unsigned countSuccessorsNoBE(VPBlockBase *PredBlock,
1627                                       VPLoopInfo *VPLI) {
1628     unsigned Count = 0;
1629     for (VPBlockBase *SuccBlock : PredBlock->getSuccessors()) {
1630       if (!VPBlockUtils::isBackEdge(PredBlock, SuccBlock, VPLI))
1631         Count++;
1632     }
1633     return Count;
1634   }
1635 };
1636 
1637 class VPInterleavedAccessInfo {
1638 private:
1639   DenseMap<VPInstruction *, InterleaveGroup<VPInstruction> *>
1640       InterleaveGroupMap;
1641 
1642   /// Type for mapping of instruction based interleave groups to VPInstruction
1643   /// interleave groups
1644   using Old2NewTy = DenseMap<InterleaveGroup<Instruction> *,
1645                              InterleaveGroup<VPInstruction> *>;
1646 
1647   /// Recursively \p Region and populate VPlan based interleave groups based on
1648   /// \p IAI.
1649   void visitRegion(VPRegionBlock *Region, Old2NewTy &Old2New,
1650                    InterleavedAccessInfo &IAI);
1651   /// Recursively traverse \p Block and populate VPlan based interleave groups
1652   /// based on \p IAI.
1653   void visitBlock(VPBlockBase *Block, Old2NewTy &Old2New,
1654                   InterleavedAccessInfo &IAI);
1655 
1656 public:
1657   VPInterleavedAccessInfo(VPlan &Plan, InterleavedAccessInfo &IAI);
1658 
1659   ~VPInterleavedAccessInfo() {
1660     SmallPtrSet<InterleaveGroup<VPInstruction> *, 4> DelSet;
1661     // Avoid releasing a pointer twice.
1662     for (auto &I : InterleaveGroupMap)
1663       DelSet.insert(I.second);
1664     for (auto *Ptr : DelSet)
1665       delete Ptr;
1666   }
1667 
1668   /// Get the interleave group that \p Instr belongs to.
1669   ///
1670   /// \returns nullptr if doesn't have such group.
1671   InterleaveGroup<VPInstruction> *
1672   getInterleaveGroup(VPInstruction *Instr) const {
1673     if (InterleaveGroupMap.count(Instr))
1674       return InterleaveGroupMap.find(Instr)->second;
1675     return nullptr;
1676   }
1677 };
1678 
1679 /// Class that maps (parts of) an existing VPlan to trees of combined
1680 /// VPInstructions.
1681 class VPlanSlp {
1682 private:
1683   enum class OpMode { Failed, Load, Opcode };
1684 
1685   /// A DenseMapInfo implementation for using SmallVector<VPValue *, 4> as
1686   /// DenseMap keys.
1687   struct BundleDenseMapInfo {
1688     static SmallVector<VPValue *, 4> getEmptyKey() {
1689       return {reinterpret_cast<VPValue *>(-1)};
1690     }
1691 
1692     static SmallVector<VPValue *, 4> getTombstoneKey() {
1693       return {reinterpret_cast<VPValue *>(-2)};
1694     }
1695 
1696     static unsigned getHashValue(const SmallVector<VPValue *, 4> &V) {
1697       return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
1698     }
1699 
1700     static bool isEqual(const SmallVector<VPValue *, 4> &LHS,
1701                         const SmallVector<VPValue *, 4> &RHS) {
1702       return LHS == RHS;
1703     }
1704   };
1705 
1706   /// Mapping of values in the original VPlan to a combined VPInstruction.
1707   DenseMap<SmallVector<VPValue *, 4>, VPInstruction *, BundleDenseMapInfo>
1708       BundleToCombined;
1709 
1710   VPInterleavedAccessInfo &IAI;
1711 
1712   /// Basic block to operate on. For now, only instructions in a single BB are
1713   /// considered.
1714   const VPBasicBlock &BB;
1715 
1716   /// Indicates whether we managed to combine all visited instructions or not.
1717   bool CompletelySLP = true;
1718 
1719   /// Width of the widest combined bundle in bits.
1720   unsigned WidestBundleBits = 0;
1721 
1722   using MultiNodeOpTy =
1723       typename std::pair<VPInstruction *, SmallVector<VPValue *, 4>>;
1724 
1725   // Input operand bundles for the current multi node. Each multi node operand
1726   // bundle contains values not matching the multi node's opcode. They will
1727   // be reordered in reorderMultiNodeOps, once we completed building a
1728   // multi node.
1729   SmallVector<MultiNodeOpTy, 4> MultiNodeOps;
1730 
1731   /// Indicates whether we are building a multi node currently.
1732   bool MultiNodeActive = false;
1733 
1734   /// Check if we can vectorize Operands together.
1735   bool areVectorizable(ArrayRef<VPValue *> Operands) const;
1736 
1737   /// Add combined instruction \p New for the bundle \p Operands.
1738   void addCombined(ArrayRef<VPValue *> Operands, VPInstruction *New);
1739 
1740   /// Indicate we hit a bundle we failed to combine. Returns nullptr for now.
1741   VPInstruction *markFailed();
1742 
1743   /// Reorder operands in the multi node to maximize sequential memory access
1744   /// and commutative operations.
1745   SmallVector<MultiNodeOpTy, 4> reorderMultiNodeOps();
1746 
1747   /// Choose the best candidate to use for the lane after \p Last. The set of
1748   /// candidates to choose from are values with an opcode matching \p Last's
1749   /// or loads consecutive to \p Last.
1750   std::pair<OpMode, VPValue *> getBest(OpMode Mode, VPValue *Last,
1751                                        SmallPtrSetImpl<VPValue *> &Candidates,
1752                                        VPInterleavedAccessInfo &IAI);
1753 
1754   /// Print bundle \p Values to dbgs().
1755   void dumpBundle(ArrayRef<VPValue *> Values);
1756 
1757 public:
1758   VPlanSlp(VPInterleavedAccessInfo &IAI, VPBasicBlock &BB) : IAI(IAI), BB(BB) {}
1759 
1760   ~VPlanSlp() {
1761     for (auto &KV : BundleToCombined)
1762       delete KV.second;
1763   }
1764 
1765   /// Tries to build an SLP tree rooted at \p Operands and returns a
1766   /// VPInstruction combining \p Operands, if they can be combined.
1767   VPInstruction *buildGraph(ArrayRef<VPValue *> Operands);
1768 
1769   /// Return the width of the widest combined bundle in bits.
1770   unsigned getWidestBundleBits() const { return WidestBundleBits; }
1771 
1772   /// Return true if all visited instruction can be combined.
1773   bool isCompletelySLP() const { return CompletelySLP; }
1774 };
1775 } // end namespace llvm
1776 
1777 #endif // LLVM_TRANSFORMS_VECTORIZE_VPLAN_H
1778