1 //===-- VPlanHCFGBuilder.cpp ----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the construction of a VPlan-based Hierarchical CFG
11 /// (H-CFG) for an incoming IR. This construction comprises the following
12 /// components and steps:
13 //
14 /// 1. PlainCFGBuilder class: builds a plain VPBasicBlock-based CFG that
15 /// faithfully represents the CFG in the incoming IR. A VPRegionBlock (Top
16 /// Region) is created to enclose and serve as parent of all the VPBasicBlocks
17 /// in the plain CFG.
18 /// NOTE: At this point, there is a direct correspondence between all the
19 /// VPBasicBlocks created for the initial plain CFG and the incoming
20 /// BasicBlocks. However, this might change in the future.
21 ///
22 //===----------------------------------------------------------------------===//
23 
24 #include "VPlanHCFGBuilder.h"
25 #include "LoopVectorizationPlanner.h"
26 #include "llvm/Analysis/LoopIterator.h"
27 
28 #define DEBUG_TYPE "loop-vectorize"
29 
30 using namespace llvm;
31 
32 namespace {
33 // Class that is used to build the plain CFG for the incoming IR.
34 class PlainCFGBuilder {
35 private:
36   // The outermost loop of the input loop nest considered for vectorization.
37   Loop *TheLoop;
38 
39   // Loop Info analysis.
40   LoopInfo *LI;
41 
42   // Vectorization plan that we are working on.
43   VPlan &Plan;
44 
45   // Builder of the VPlan instruction-level representation.
46   VPBuilder VPIRBuilder;
47 
48   // NOTE: The following maps are intentionally destroyed after the plain CFG
49   // construction because subsequent VPlan-to-VPlan transformation may
50   // invalidate them.
51   // Map incoming BasicBlocks to their newly-created VPBasicBlocks.
52   DenseMap<BasicBlock *, VPBasicBlock *> BB2VPBB;
53   // Map incoming Value definitions to their newly-created VPValues.
54   DenseMap<Value *, VPValue *> IRDef2VPValue;
55 
56   // Hold phi node's that need to be fixed once the plain CFG has been built.
57   SmallVector<PHINode *, 8> PhisToFix;
58 
59   /// Maps loops in the original IR to their corresponding region.
60   DenseMap<Loop *, VPRegionBlock *> Loop2Region;
61 
62   // Utility functions.
63   void setVPBBPredsFromBB(VPBasicBlock *VPBB, BasicBlock *BB);
64   void setRegionPredsFromBB(VPRegionBlock *VPBB, BasicBlock *BB);
65   void fixPhiNodes();
66   VPBasicBlock *getOrCreateVPBB(BasicBlock *BB);
67 #ifndef NDEBUG
68   bool isExternalDef(Value *Val);
69 #endif
70   VPValue *getOrCreateVPOperand(Value *IRVal);
71   void createVPInstructionsForVPBB(VPBasicBlock *VPBB, BasicBlock *BB);
72 
73 public:
74   PlainCFGBuilder(Loop *Lp, LoopInfo *LI, VPlan &P)
75       : TheLoop(Lp), LI(LI), Plan(P) {}
76 
77   /// Build plain CFG for TheLoop  and connects it to Plan's entry.
78   void buildPlainCFG();
79 };
80 } // anonymous namespace
81 
82 // Set predecessors of \p VPBB in the same order as they are in \p BB. \p VPBB
83 // must have no predecessors.
84 void PlainCFGBuilder::setVPBBPredsFromBB(VPBasicBlock *VPBB, BasicBlock *BB) {
85   auto GetLatchOfExit = [this](BasicBlock *BB) -> BasicBlock * {
86     auto *SinglePred = BB->getSinglePredecessor();
87     Loop *LoopForBB = LI->getLoopFor(BB);
88     if (!SinglePred || LI->getLoopFor(SinglePred) == LoopForBB)
89       return nullptr;
90     // The input IR must be in loop-simplify form, ensuring a single predecessor
91     // for exit blocks.
92     assert(SinglePred == LI->getLoopFor(SinglePred)->getLoopLatch() &&
93            "SinglePred must be the only loop latch");
94     return SinglePred;
95   };
96   if (auto *LatchBB = GetLatchOfExit(BB)) {
97     auto *PredRegion = getOrCreateVPBB(LatchBB)->getParent();
98     assert(VPBB == cast<VPBasicBlock>(PredRegion->getSingleSuccessor()) &&
99            "successor must already be set for PredRegion; it must have VPBB "
100            "as single successor");
101     VPBB->setPredecessors({PredRegion});
102     return;
103   }
104   // Collect VPBB predecessors.
105   SmallVector<VPBlockBase *, 2> VPBBPreds;
106   for (BasicBlock *Pred : predecessors(BB))
107     VPBBPreds.push_back(getOrCreateVPBB(Pred));
108   VPBB->setPredecessors(VPBBPreds);
109 }
110 
111 static bool isHeaderBB(BasicBlock *BB, Loop *L) {
112   return L && BB == L->getHeader();
113 }
114 
115 void PlainCFGBuilder::setRegionPredsFromBB(VPRegionBlock *Region,
116                                            BasicBlock *BB) {
117   // BB is a loop header block. Connect the region to the loop preheader.
118   Loop *LoopOfBB = LI->getLoopFor(BB);
119   Region->setPredecessors({getOrCreateVPBB(LoopOfBB->getLoopPredecessor())});
120 }
121 
122 // Add operands to VPInstructions representing phi nodes from the input IR.
123 void PlainCFGBuilder::fixPhiNodes() {
124   for (auto *Phi : PhisToFix) {
125     assert(IRDef2VPValue.count(Phi) && "Missing VPInstruction for PHINode.");
126     VPValue *VPVal = IRDef2VPValue[Phi];
127     assert(isa<VPWidenPHIRecipe>(VPVal) &&
128            "Expected WidenPHIRecipe for phi node.");
129     auto *VPPhi = cast<VPWidenPHIRecipe>(VPVal);
130     assert(VPPhi->getNumOperands() == 0 &&
131            "Expected VPInstruction with no operands.");
132 
133     Loop *L = LI->getLoopFor(Phi->getParent());
134     if (isHeaderBB(Phi->getParent(), L)) {
135       // For header phis, make sure the incoming value from the loop
136       // predecessor is the first operand of the recipe.
137       assert(Phi->getNumOperands() == 2);
138       BasicBlock *LoopPred = L->getLoopPredecessor();
139       VPPhi->addIncoming(
140           getOrCreateVPOperand(Phi->getIncomingValueForBlock(LoopPred)),
141           BB2VPBB[LoopPred]);
142       BasicBlock *LoopLatch = L->getLoopLatch();
143       VPPhi->addIncoming(
144           getOrCreateVPOperand(Phi->getIncomingValueForBlock(LoopLatch)),
145           BB2VPBB[LoopLatch]);
146       continue;
147     }
148 
149     for (unsigned I = 0; I != Phi->getNumOperands(); ++I)
150       VPPhi->addIncoming(getOrCreateVPOperand(Phi->getIncomingValue(I)),
151                          BB2VPBB[Phi->getIncomingBlock(I)]);
152   }
153 }
154 
155 static bool isHeaderVPBB(VPBasicBlock *VPBB) {
156   return VPBB->getParent() && VPBB->getParent()->getEntry() == VPBB;
157 }
158 
159 /// Return true of \p L loop is contained within \p OuterLoop.
160 static bool doesContainLoop(const Loop *L, const Loop *OuterLoop) {
161   if (L->getLoopDepth() < OuterLoop->getLoopDepth())
162     return false;
163   const Loop *P = L;
164   while (P) {
165     if (P == OuterLoop)
166       return true;
167     P = P->getParentLoop();
168   }
169   return false;
170 }
171 
172 // Create a new empty VPBasicBlock for an incoming BasicBlock in the region
173 // corresponding to the containing loop  or retrieve an existing one if it was
174 // already created. If no region exists yet for the loop containing \p BB, a new
175 // one is created.
176 VPBasicBlock *PlainCFGBuilder::getOrCreateVPBB(BasicBlock *BB) {
177   if (auto *VPBB = BB2VPBB.lookup(BB)) {
178     // Retrieve existing VPBB.
179     return VPBB;
180   }
181 
182   // Create new VPBB.
183   StringRef Name = isHeaderBB(BB, TheLoop) ? "vector.body" : BB->getName();
184   LLVM_DEBUG(dbgs() << "Creating VPBasicBlock for " << Name << "\n");
185   VPBasicBlock *VPBB = new VPBasicBlock(Name);
186   BB2VPBB[BB] = VPBB;
187 
188   // Get or create a region for the loop containing BB.
189   Loop *LoopOfBB = LI->getLoopFor(BB);
190   if (!LoopOfBB || !doesContainLoop(LoopOfBB, TheLoop))
191     return VPBB;
192 
193   auto *RegionOfVPBB = Loop2Region.lookup(LoopOfBB);
194   if (!isHeaderBB(BB, LoopOfBB)) {
195     assert(RegionOfVPBB &&
196            "Region should have been created by visiting header earlier");
197     VPBB->setParent(RegionOfVPBB);
198     return VPBB;
199   }
200 
201   assert(!RegionOfVPBB &&
202          "First visit of a header basic block expects to register its region.");
203   // Handle a header - take care of its Region.
204   if (LoopOfBB == TheLoop) {
205     RegionOfVPBB = Plan.getVectorLoopRegion();
206   } else {
207     RegionOfVPBB = new VPRegionBlock(Name.str(), false /*isReplicator*/);
208     RegionOfVPBB->setParent(Loop2Region[LoopOfBB->getParentLoop()]);
209   }
210   RegionOfVPBB->setEntry(VPBB);
211   Loop2Region[LoopOfBB] = RegionOfVPBB;
212   return VPBB;
213 }
214 
215 #ifndef NDEBUG
216 // Return true if \p Val is considered an external definition. An external
217 // definition is either:
218 // 1. A Value that is not an Instruction. This will be refined in the future.
219 // 2. An Instruction that is outside of the CFG snippet represented in VPlan,
220 // i.e., is not part of: a) the loop nest, b) outermost loop PH and, c)
221 // outermost loop exits.
222 bool PlainCFGBuilder::isExternalDef(Value *Val) {
223   // All the Values that are not Instructions are considered external
224   // definitions for now.
225   Instruction *Inst = dyn_cast<Instruction>(Val);
226   if (!Inst)
227     return true;
228 
229   BasicBlock *InstParent = Inst->getParent();
230   assert(InstParent && "Expected instruction parent.");
231 
232   // Check whether Instruction definition is in loop PH.
233   BasicBlock *PH = TheLoop->getLoopPreheader();
234   assert(PH && "Expected loop pre-header.");
235 
236   if (InstParent == PH)
237     // Instruction definition is in outermost loop PH.
238     return false;
239 
240   // Check whether Instruction definition is in the loop exit.
241   BasicBlock *Exit = TheLoop->getUniqueExitBlock();
242   assert(Exit && "Expected loop with single exit.");
243   if (InstParent == Exit) {
244     // Instruction definition is in outermost loop exit.
245     return false;
246   }
247 
248   // Check whether Instruction definition is in loop body.
249   return !TheLoop->contains(Inst);
250 }
251 #endif
252 
253 // Create a new VPValue or retrieve an existing one for the Instruction's
254 // operand \p IRVal. This function must only be used to create/retrieve VPValues
255 // for *Instruction's operands* and not to create regular VPInstruction's. For
256 // the latter, please, look at 'createVPInstructionsForVPBB'.
257 VPValue *PlainCFGBuilder::getOrCreateVPOperand(Value *IRVal) {
258   auto VPValIt = IRDef2VPValue.find(IRVal);
259   if (VPValIt != IRDef2VPValue.end())
260     // Operand has an associated VPInstruction or VPValue that was previously
261     // created.
262     return VPValIt->second;
263 
264   // Operand doesn't have a previously created VPInstruction/VPValue. This
265   // means that operand is:
266   //   A) a definition external to VPlan,
267   //   B) any other Value without specific representation in VPlan.
268   // For now, we use VPValue to represent A and B and classify both as external
269   // definitions. We may introduce specific VPValue subclasses for them in the
270   // future.
271   assert(isExternalDef(IRVal) && "Expected external definition as operand.");
272 
273   // A and B: Create VPValue and add it to the pool of external definitions and
274   // to the Value->VPValue map.
275   VPValue *NewVPVal = Plan.getVPValueOrAddLiveIn(IRVal);
276   IRDef2VPValue[IRVal] = NewVPVal;
277   return NewVPVal;
278 }
279 
280 // Create new VPInstructions in a VPBasicBlock, given its BasicBlock
281 // counterpart. This function must be invoked in RPO so that the operands of a
282 // VPInstruction in \p BB have been visited before (except for Phi nodes).
283 void PlainCFGBuilder::createVPInstructionsForVPBB(VPBasicBlock *VPBB,
284                                                   BasicBlock *BB) {
285   VPIRBuilder.setInsertPoint(VPBB);
286   for (Instruction &InstRef : *BB) {
287     Instruction *Inst = &InstRef;
288 
289     // There shouldn't be any VPValue for Inst at this point. Otherwise, we
290     // visited Inst when we shouldn't, breaking the RPO traversal order.
291     assert(!IRDef2VPValue.count(Inst) &&
292            "Instruction shouldn't have been visited.");
293 
294     if (auto *Br = dyn_cast<BranchInst>(Inst)) {
295       // Conditional branch instruction are represented using BranchOnCond
296       // recipes.
297       if (Br->isConditional()) {
298         VPValue *Cond = getOrCreateVPOperand(Br->getCondition());
299         VPBB->appendRecipe(
300             new VPInstruction(VPInstruction::BranchOnCond, {Cond}));
301       }
302 
303       // Skip the rest of the Instruction processing for Branch instructions.
304       continue;
305     }
306 
307     VPValue *NewVPV;
308     if (auto *Phi = dyn_cast<PHINode>(Inst)) {
309       // Phi node's operands may have not been visited at this point. We create
310       // an empty VPInstruction that we will fix once the whole plain CFG has
311       // been built.
312       NewVPV = new VPWidenPHIRecipe(Phi);
313       VPBB->appendRecipe(cast<VPWidenPHIRecipe>(NewVPV));
314       PhisToFix.push_back(Phi);
315     } else {
316       // Translate LLVM-IR operands into VPValue operands and set them in the
317       // new VPInstruction.
318       SmallVector<VPValue *, 4> VPOperands;
319       for (Value *Op : Inst->operands())
320         VPOperands.push_back(getOrCreateVPOperand(Op));
321 
322       // Build VPInstruction for any arbitrary Instruction without specific
323       // representation in VPlan.
324       NewVPV = cast<VPInstruction>(
325           VPIRBuilder.createNaryOp(Inst->getOpcode(), VPOperands, Inst));
326     }
327 
328     IRDef2VPValue[Inst] = NewVPV;
329   }
330 }
331 
332 // Main interface to build the plain CFG.
333 void PlainCFGBuilder::buildPlainCFG() {
334   // 0. Reuse the top-level region, vector-preheader and exit VPBBs from the
335   // skeleton. These were created directly rather than via getOrCreateVPBB(),
336   // revisit them now to update BB2VPBB. Note that header/entry and
337   // latch/exiting VPBB's of top-level region have yet to be created.
338   VPRegionBlock *TheRegion = Plan.getVectorLoopRegion();
339   BasicBlock *ThePreheaderBB = TheLoop->getLoopPreheader();
340   assert((ThePreheaderBB->getTerminator()->getNumSuccessors() == 1) &&
341          "Unexpected loop preheader");
342   auto *VectorPreheaderVPBB =
343       cast<VPBasicBlock>(TheRegion->getSinglePredecessor());
344   // ThePreheaderBB conceptually corresponds to both Plan.getPreheader() (which
345   // wraps the original preheader BB) and Plan.getEntry() (which represents the
346   // new vector preheader); here we're interested in setting BB2VPBB to the
347   // latter.
348   BB2VPBB[ThePreheaderBB] = VectorPreheaderVPBB;
349   BasicBlock *LoopExitBB = TheLoop->getUniqueExitBlock();
350   assert(LoopExitBB && "Loops with multiple exits are not supported.");
351   BB2VPBB[LoopExitBB] = cast<VPBasicBlock>(TheRegion->getSingleSuccessor());
352 
353   // 1. Scan the body of the loop in a topological order to visit each basic
354   // block after having visited its predecessor basic blocks. Create a VPBB for
355   // each BB and link it to its successor and predecessor VPBBs. Note that
356   // predecessors must be set in the same order as they are in the incomming IR.
357   // Otherwise, there might be problems with existing phi nodes and algorithm
358   // based on predecessors traversal.
359 
360   // Loop PH needs to be explicitly visited since it's not taken into account by
361   // LoopBlocksDFS.
362   for (auto &I : *ThePreheaderBB) {
363     if (I.getType()->isVoidTy())
364       continue;
365     IRDef2VPValue[&I] = Plan.getVPValueOrAddLiveIn(&I);
366   }
367 
368   LoopBlocksRPO RPO(TheLoop);
369   RPO.perform(LI);
370 
371   for (BasicBlock *BB : RPO) {
372     // Create or retrieve the VPBasicBlock for this BB and create its
373     // VPInstructions.
374     VPBasicBlock *VPBB = getOrCreateVPBB(BB);
375     VPRegionBlock *Region = VPBB->getParent();
376     createVPInstructionsForVPBB(VPBB, BB);
377     Loop *LoopForBB = LI->getLoopFor(BB);
378     // Set VPBB predecessors in the same order as they are in the incoming BB.
379     if (!isHeaderBB(BB, LoopForBB)) {
380       setVPBBPredsFromBB(VPBB, BB);
381     } else {
382       // BB is a loop header, set the predecessor for the region, except for the
383       // top region, whose predecessor was set when creating VPlan's skeleton.
384       assert(isHeaderVPBB(VPBB) && "isHeaderBB and isHeaderVPBB disagree");
385       if (TheRegion != Region)
386         setRegionPredsFromBB(Region, BB);
387     }
388 
389     // Set VPBB successors. We create empty VPBBs for successors if they don't
390     // exist already. Recipes will be created when the successor is visited
391     // during the RPO traversal.
392     auto *BI = cast<BranchInst>(BB->getTerminator());
393     unsigned NumSuccs = succ_size(BB);
394     if (NumSuccs == 1) {
395       auto *Successor = getOrCreateVPBB(BB->getSingleSuccessor());
396       VPBB->setOneSuccessor(isHeaderVPBB(Successor)
397                                 ? Successor->getParent()
398                                 : static_cast<VPBlockBase *>(Successor));
399       continue;
400     }
401     assert(BI->isConditional() && NumSuccs == 2 && BI->isConditional() &&
402            "block must have conditional branch with 2 successors");
403     // Look up the branch condition to get the corresponding VPValue
404     // representing the condition bit in VPlan (which may be in another VPBB).
405     assert(IRDef2VPValue.contains(BI->getCondition()) &&
406            "Missing condition bit in IRDef2VPValue!");
407     VPBasicBlock *Successor0 = getOrCreateVPBB(BI->getSuccessor(0));
408     VPBasicBlock *Successor1 = getOrCreateVPBB(BI->getSuccessor(1));
409     if (!LoopForBB || BB != LoopForBB->getLoopLatch()) {
410       VPBB->setTwoSuccessors(Successor0, Successor1);
411       continue;
412     }
413     // For a latch we need to set the successor of the region rather than that
414     // of VPBB and it should be set to the exit, i.e., non-header successor,
415     // except for the top region, whose successor was set when creating VPlan's
416     // skeleton.
417     if (TheRegion != Region)
418       Region->setOneSuccessor(isHeaderVPBB(Successor0) ? Successor1
419                                                        : Successor0);
420     Region->setExiting(VPBB);
421   }
422 
423   // 2. The whole CFG has been built at this point so all the input Values must
424   // have a VPlan couterpart. Fix VPlan phi nodes by adding their corresponding
425   // VPlan operands.
426   fixPhiNodes();
427 }
428 
429 void VPlanHCFGBuilder::buildPlainCFG() {
430   PlainCFGBuilder PCFGBuilder(TheLoop, LI, Plan);
431   PCFGBuilder.buildPlainCFG();
432 }
433 
434 // Public interface to build a H-CFG.
435 void VPlanHCFGBuilder::buildHierarchicalCFG() {
436   // Build Top Region enclosing the plain CFG.
437   buildPlainCFG();
438   LLVM_DEBUG(Plan.setName("HCFGBuilder: Plain CFG\n"); dbgs() << Plan);
439 
440   VPRegionBlock *TopRegion = Plan.getVectorLoopRegion();
441   Verifier.verifyHierarchicalCFG(TopRegion);
442 
443   // Compute plain CFG dom tree for VPLInfo.
444   VPDomTree.recalculate(Plan);
445   LLVM_DEBUG(dbgs() << "Dominator Tree after building the plain CFG.\n";
446              VPDomTree.print(dbgs()));
447 }
448